Tag Archives: #Chinese Weaponized Artificial Intelligence

Concept of future human-machine integrated forces

中國未來人機一體化軍事構想

現代英語:

At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.

The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.

USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.

On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.

The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.

On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.

According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.

In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment

The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.

Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).

It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.

In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.

On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.

Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.

Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.

Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.

On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.

The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.

At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.

It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force

With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.

In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”

In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.

The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.

Source: China Aviation News Author: Wei Yuejiang Editor-in-charge: Wu Xingjian 2021-03-26 08:0x

現代國語:

目前,從世界上主要國家編制體制改革發展情況看,軍隊正向精干、小型、高效、智能、“人機(機器人無人機)”一體方向發展,謀求機器人士兵、無人機與人類戰士一起並肩協同、聯合作戰。據統計,目前全球超過60個國家的軍隊已裝備了軍用機器人,種類超過150種。預計到2040年,世界軍事強國可能會有一半的成員是機器人。除美、俄、英、法、日、以色列、土耳其、伊朗等國家已相繼推出各自的機器人戰士外,其他國家也投入到這場無人化武器的研制與開發中去。

世界軍事強國將掀起組建無人作戰部隊爭鋒熱潮所謂無人作戰部隊,就是作戰機器人或者戰場殺人機器人系統的統稱。隨著各類信息化、精確化、數據化武器裝備的發展,智能化平台成為預先設計戰場的推手,作戰機器人成為戰場的主力軍,人機結合對抗成為克敵制勝的關鍵,未來戰場空間力量將凸顯陸海空三維無人化發展趨勢。

《今日美國報》曾發表的《新型機器人把戰爭帶入下一個層次:無人戰爭》一文中,這樣描述無人化戰爭:無人機編隊蜂擁而來,用精密的儀器探測、偵察與反偵察,它們鎖定目標後,從容地發射導彈;自動編程的無人潛艇,執行水下搜索、偵察、排除水雷等多種任務;地面戰場上,機器人負責彈藥、醫療補給和食物的配送……未來戰爭中,這些或許將成為現實。

在陸地,能執行特定任務的各種機器人,就是機械化、信息化、智能化高度融合的機動打擊平台。如:無人坦克,就是以自身程序控制為主的無人化履帶式裝甲平台,可讓士兵們遠程控制,以遠距離攻擊型智能化武器、信息化武器為主導,能自動裝載彈藥和自主發射,實施遠程間接精確打擊,有效降低士兵傷亡率。在海洋,各種無人潛艇、無人戰艦等,可航行數千英裡,無需船上人員操控就能執行各種海上作戰任務。在空中,實戰部署的人為控制操作的無人機系統,就是一種具有自己偵察判斷、人為控制、察打一體、自主攻擊、人機協同的無人機系統平台。

無人機武器在戰爭中的運用凸顯其作戰能力,必然牽引世界各國軍隊緊鑼密鼓組建無人作戰部隊。在伊拉克戰爭中,美國就開始對無人戰車的實戰能力進行測試。2013年3月,美國發布新版《機器人技術路線圖:從互聯網到機器人》,闡述了包括軍用機器人在內的機器人發展路線圖,決定將巨額軍備研究費投向軍用機器人研制,使美軍無人作戰裝備的比例增加至武器總數的30%,計劃未來三分之一的地面作戰行動將由軍用機器人承擔。據悉,美軍在2015年前就部署第一支未來機器人作戰旅(至少包括151個機器人戰士)。2016年,美軍在一次多國聯合軍事演習中,對“模塊化無人戰車”再次進行了試驗模擬測試。2020年,美國五角大樓發出一項標價1100萬美元的合同,以組建具有人類和機器人協同作戰能力的“聯合兵種班”,計劃2030年前完成15個未來作戰旅的全部建設工作。所有班成員,具有類似人一樣的視、聽、觸和嗅覺,能適時發出信息並對目標發起攻擊,甚至可以擔負自我維修與車輛維修及運輸、掃雷、偵察、巡邏等任務。美國每日科學網站報道稱,美陸軍研發了一種新技術,可迅速教會機器人在最低限度人為干預情況下完成新的穿越動作。報道稱,該技術可使移動機器人平台在作戰環境中自主導航,同時在特定情況下讓機器人完成人類期望其執行的作戰行動。目前,美陸軍科學家希望為機器人培育肌肉細胞和組織,進行生物雜交,而不是直接從活的有機體中提取,由此這種采取肌肉與機器人的組合,讓筆者聯想到電影《終結者:黑暗命運》中的半生化人葛蕾絲。

2018年4月21日,俄聯邦安全局(FSB)特戰隊在達吉斯坦傑爾賓特市,發動了一次針對極端組織恐怖分子的突襲行動,首次公開出動了配備機槍的武裝無人戰車打先鋒。美國在2018年俄羅斯紅場閱兵中發現了大批俄軍曾經在敘利亞南部與敘利亞反政府武裝交火的“天王星-9”機器人等作戰系統,向觀眾展示其外形特征。俄軍在2015年8月敘利亞戰場上使用戰斗機器人作戰連實施陣地攻堅戰,履帶式機器人沖鋒、打擊、吸引武裝分子開火,並引導自行火炮群將暴露火力點逐個摧毀,最後機器人作戰連僅用20分鐘就一舉攻下如今俄軍士兵難以攻下的高地,取得零傷亡斃敵77人戰績。

據英國《明星日報》網站報道稱,英國陸軍在一場名為“自主戰士2018”的活動中進行了大規模作戰機器人測試後,把無人機、無人駕駛汽車和戰斗人員統一到未來數十年穩居世界一流的軍隊中。未來的英軍自主軍用裝備,無論是坦克、機器人還是無人機,都可能會有腿而不是履帶或輪子。2021年年初,英國舉辦“未來海上航空力量加速日”活動後,繼續開發“即插即用”的海上自主平台開發系統,該系統接入皇家海軍的艦船後,可以簡化自動化和無人操作技術的獲取和使用過程。

除了俄羅斯、美國、英國研發裝備機器人外,其他有實力的國家也相續推出各自研制的機器人戰士,預計在未來20年內世界必將迎來陸海空機器人代替士兵執行高風險任務,未來戰場必將是無人化或人機結合一體化聯合作戰行動。世界軍事強國將掀起人機(無人機)一體化作戰試驗

空戰的樣式總是隨著航空科技的進步而在不斷發展變化。自1917年至今,隨著英國成功研制出世界第一架無人駕駛遙控飛機,無人裝備大家庭也不斷發展壯大,各種無人機日益活躍在現代戰爭的舞台上。

21世紀以來,隨著大量無人機被應用於戰場,作戰樣式不斷翻新。海灣戰爭中,無人機還僅僅限定於偵察監視、目標引導,可是到了阿富汗戰爭、伊拉克戰爭和反恐戰爭,無人機作戰能力日益凸顯,作戰樣式和方法呈現出新特點,讓世界各國看到無人機這把空中利劍,從此拉開人機(無人機)一體化作戰試驗序幕。

據報道,1993~2005年間,北約國家無人機總數增加了1.7倍,2006年前,這一數量達到11萬架。美國、北約其他國家、以色列、南非都非常重視無人偵察機和多用途無人機的研制和生產。

2019年,世界上大約有30多個國家已研制出了50多種類型無人機,有50多個國家裝備了無人機。主要種類:“密碼”無人機、多功能無人機、人工智能無人機、長時留空無人機、反導無人機、預警無人機、隱身無人機、微型無人機、空戰無人機、測繪無人機、航拍無人機。主要回收方式:自動著陸、降落傘回收、空中回收、攔阻回收。

2019年9月14日,沙特阿美石油公司的一處“世界最大石油加工設施”和油田遭襲擊後,也門胡塞武裝宣布“對此事負責”,並宣稱其使用了10架無人機對上述設施進行了攻擊。2020年1月3日,伊朗伊斯蘭革命衛隊下屬“聖城旅”指揮官卡西姆·蘇萊馬尼在美國對伊拉克首都巴格達國際機場凌晨發起的一場無人機突襲中被“定點清除”。2020年底,亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫(納卡地區)的戰斗中,無人機在雙方沖突中扮演重要角色顯而易見。尤其是許多軍事專家對阿塞拜疆國防部不斷發布剛從土耳其購買的TB-2“旗手”和以色列“哈羅普”自殺式無人機打擊亞方裝甲車輛、火炮、汽車甚至步兵陣地、S-300防空導彈畫面的視頻感到十分震撼。2020年12月,中東和外高加索地區所發生的局部沖突表明,無人機的作用正日益增大。基於此,有軍事家甚至預言,21世紀將是無人機發展的“黃金時期”,無人機勢必全面取代有人戰機,並成為21世紀的“戰場主角”。

目前,美國空軍計劃擴大無人機與有人機之間的有人與無人平台組隊,到2025年90%戰機將是無人機。也就是說,較大型飛機(F-35戰機或F-22戰機)能夠控制一支附近的無人機隊。如F-35戰斗機像一種飛行傳感計算機,能夠獲得大量數據,並自行聯系、分析和判斷,最後向飛行員的頭盔顯示屏上傳結論後,由飛行員對獲取的信息進行分析和處理,根據作戰計劃、戰場態勢、編隊配備的武器等制訂作戰方案後,再下達給無人機……實現有人機指揮無人機協同作戰的目的。也就是說,有人機與無人機混合編隊,把以往由地面控制改為空中控制無人機,由飛行員直接指揮無人機作戰行動。美軍設想采用模塊化設計,以便在未來戰場作戰需要時士兵從背包中取出無人機的零部件後組裝無人機,還可利用3D打印無人機。2020年8月,美國空軍在模擬空戰中AI擊敗了頂尖的F-16戰斗機飛行員,也有力證明AI飛行員能創造性地快速“思考”,將來可能超過人類飛行員技能為時不遠。美海軍新型MQ-25“黃貂魚”艦載無人加油機將於2021年試飛,2024年具備初始作戰能力,有利於航母艦載機擴大作戰半徑。

俄羅斯從2013年起,配備了大量無人機,其中僅無人偵察機到2019年年底已超過2000架,其中大多數是輕型無人機,如參與敘利亞的軍事行動的卡拉什尼科夫無人機。下一步,俄陸軍部隊每個旅或師級單位將分別編有無人機連,空降兵部隊也將裝備大量無人機。俄北方艦隊將編有無人機團,在俄軍一些現代化軍艦上也將配備了無人機。另外,從2021年起,由喀琅施塔得集團研發的“獵戶座”察打一體無人機裝備俄軍。這種重型無人機可搭載多種制導彈藥,執行作戰任務。此外,俄軍還在試驗“牽牛星”和C-70“獵人”兩款重型無人機。這些足以表明俄羅斯在無人機研發領域已經取得重大進展。

以色列是無人機領域真正的先驅,研制的無人機不僅先進,而且還出口其他國家,已經裝備部隊包括“鳥眼”系列單兵無人機、“螢火蟲”無人機、輕型“雲雀-I”無人機、輕型“英雄”無人機、中型“雲雀-II/III”無人機、“蒼鷺”無人機等型號數百架無人機。20世紀80年代中期,以色列已研發出名為“哈比”又稱“鷹身女妖”的陸基發射巡飛無人機。“哈比”是一種能夠自主進行反雷達攻擊的“自殺式無人機,重量為135千克,可攜帶32千克的高爆炸藥,航程為500千米。由於保密原因,目前尚不知以色列國防軍裝備無人機的具體數量和型號。為了對付敵方的地地導彈等威脅性目標,以色列飛機工業公司正在研制一種高空長航時隱身無人駕駛戰斗機。該機采用隱身技術與遠距空空導彈相結合,可攜帶莫阿布導彈,突入敵方戰區後方,攔截和攻擊處於助推階段的地地導彈。

2013年2月5日,駐扎在阿富汗的英國軍隊首次采用微型無人直升機執行刺探軍情的前線工作。這種無人直升機安裝了微型攝像機,可以將拍攝到的畫面即時傳送到手持式控制終端機;可以繞角落飛行,會規避障礙物,以辨別潛在危險。下一步,英國計劃實現一架有人機能夠同時指揮5架無人機。據英國《泰晤士報》網站2021年1月26日報道,英國國防部投資3000萬英鎊,將在北愛爾蘭研發首支無人機部隊。報道稱,設計和制造原型機的合同已交給美國“勢必銳”航空系統公司。該公司在貝爾法斯特設有分部,合同預計將提供100個工作崗位。英國國防部計劃到2025年開始制造首架這種新型無人機原型機。它將配備導彈、偵察和電子戰技術裝備,成為英軍首款能夠瞄准並擊落敵方戰機、並能規避地空導彈攻擊的無人機。與其搭檔的有人戰機將能夠專注於電子戰、偵察及轟炸等任務,從而以較低的成本和降低英軍機組人員面臨的高風險。

法國海軍將在土倫附近的某基地組建首個艦載無人機中隊,為法國海軍航空兵第36F艦載機中隊。該中隊將裝備S-100無人機,搭載於海軍西北風級兩棲登陸艦上。此次艦載無人機中隊的組建,反映了法國海軍希望將無人機專業知識融入到一個單一專業團隊的願望。此前,法國海軍內部討論了建立專屬無人機中隊,以及在31F、35F或36F中隊中配備無人機的方案。

在2004年6月舉行的巴黎航展上,法國達索飛機制造公司展示的NX70神經元無人作戰飛機的全尺寸模型,使人們對歐洲無人機的發展重新產生了興趣。伊朗、土耳其、阿聯酋……一些新的國家打亂了無人機地緣政治格局,正在書寫新的一頁。

可以預測,無人機必將成為世界各國武器裝備發展中的最大亮點,成為21世紀陸戰、海戰、空戰、天戰的“撒手鐧”,成為攻防作戰中一種新生作戰力量,既能使用自身攜帶的多種對地攻擊武器對敵前沿和縱深地區地面軍事目標進行打擊,也能使用空對地導彈或炸彈對敵防空武器實施壓制;既能使用反坦克導彈等武器對敵坦克或坦克群進行攻擊,也能使用集束炸彈等武器對敵地面部隊進行轟炸;既能發現目標、判斷目標價值後就可自主發射導彈,也能對敵方指揮控制系統進行欺騙干擾,等等。世界軍事強國將掀起組建“人機(機器人無人機)”一體部隊爭鋒

隨著軍民融合的深度推進,人工智能技術的突飛猛進,大數據、雲計算、物聯網的日新月異,不僅給無人化武器裝備發展帶來巨大變革,而且還將顛覆現有軍隊力量組建形態,“人機(機器人無人機)”一體化智能型軍隊必將到來。

2015年12月,俄軍在敘利亞戰場上除派出傳統作戰力量外,還首次成建制派出一個以無人作戰平台為主的機器人作戰連參加戰斗。該連采取有人無人混合編組的新型作戰模式,構建起以“仙女座-D”自動化指揮系統為核心的智能化作戰體系,采用全維偵察和飽和攻擊相結合的作戰方式對754.5高地發起進攻,順利奪佔高地。幾年前,負責遠征作戰的美國海軍官員就提到過打造千只人機結合戰艦的願景,即由人類控制的,由相互協同的無人艦組成的更大艦隊。美國海軍宣布,計劃未來5年打造一支由10艘大型無人水面艦艇組成的無人艦隊,用於獨立作戰或與水面部隊聯合作戰。根據美國海軍當前披露的構想方案,大型無人水面艦艇組成的無人艦隊將主要協助海軍完成高度危險的作戰任務,通過與“宙斯盾”作戰系統以及其他傳感器相結合,提升有人及無人系統的協同作戰能力,其部署將有助於減少大型有人戰艦的數量需求,減少作戰中的人員傷亡。國家利益網2021年1月20日消息,美國海軍作戰部長邁克爾·吉爾戴在1月11日發布《海軍作戰部長導航計劃》文件,呼籲建立包括大型戰艦、各型無人艦、潛航器和空襲裝備的人機混合艦隊,為未來幾十年的新威脅環境做好全域作戰准備。文件中寫道:“要建立滿足部隊戰略和戰役需求的,水下、水面和水上平台,有人與無人平台混合的更大艦隊。”

在“人機(機器人無人機)”一體部隊中,靠人工智能技術達到“人機”有機結合,靠雲計算、新算法、大數據擬制“人機”協同作戰計劃。人工智能就像一台發動機,大數據+雲計算就如宇宙飛船,智能機器人就是宇航員,三者有機結合定能如虎添翼、人機一體。未來軍隊就是人機結合軍隊,班排連長由人擔任逐步被機器人所取代,機器人由人為控制逐步轉變為機器人自主決策或者機器人通過人的腦細泡進行意念控制,軍營也可能出現無食堂軍營,部隊管理也可能出現由一名或幾名軍事人員率領多台甚至幾十台具有不同分工任務的智能機器人團隊,去完成以往班排連共同完成的戰訓管理任務,亦或是軍事訓練只有一名軍事指揮人員在指揮控制中心,通過視頻指揮控制訓練場所有智能機器人進行對抗訓練,或者遠程遙控機器人指揮員實時下達新的訓練指令、調整任務部署、變換訓練場。

對軍事人才智能素質的迫切需求,也會倒逼人工智能領域一級軍事學科的設置重新調整,未來軍隊院校也將開設智能機器人控制學科,建立有關人機結合實驗室和培訓基地,重點培訓既懂計算機控制程序、智能設計與管理、圖像認知、數據挖掘、知識圖譜,又能系統掌握智能科學與技術、具有創新意識的智能型職業化軍事人才。未來軍事人才必須熟練掌握智能技術、大數據應用、雲計算,尤其是能隨時利用3D或4D打印技術制作各種軍事裝備,精通智能機器人的控制程序、指揮方式、指令下達、調整任務,熟練掌握人機一體化自主作戰協同的要領,達到人的信息化科技素質與智能機器人的高效運作的最佳結合。此外,也不排除成立人機結合班排連、作戰模擬中心、假想敵部隊、作戰分隊、智能司令部、無人化旅、師等。屆時,軍事主官也可能人機各一或者機器人給人當下手或者副手。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/9991323888.html

Artificial Intelligence is Driving Profound Changes in Chinese Warfare

人工智慧正在推動中國戰爭發生深刻變化

現代英語:

In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.

Reshaping the combat force

These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.

From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.

From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.

From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.

Enhance combat system effectiveness

Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.

At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.

During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.

Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.

Improving combat command effectiveness

At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.

Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.

With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.

Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.

Improve the quality of combat coordination

As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.

Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.

China Military Network Ministry of National Defense Network

Tuesday , February 11, 2025

現代國語:

黃永剛

近年來,隨著人工智能技術的迅猛發展及其在軍事領域的廣泛運用,戰爭形態和作戰樣式不斷發生嬗變。國外一些學術文章認為,人工智能正在重塑作戰力量形態、增強作戰體系效能、提升作戰指揮實效、提高作戰協同質量,推動作戰活動發生深刻變化。

重塑作戰力量形態

這些學術文章指出,作戰力量主要由作戰人員、武器裝備及編組方式等整體構成,受人工智能技術影響,正發生著巨大變化。

從人員結構上看,隨著人工智能技術及相關裝備系統在軍事領域的廣泛應用,對具備人工智能技術研發、管理、使用和維護能力的專業人才需求大幅上升,技術人員在作戰力量中的佔比將不斷提高。一線作戰人員不再只是武器的直接操作者,而是逐漸向戰場監控者、系統指揮員和人機協同作戰中的關鍵決策者轉變,對其科技素養和信息處理能力的要求大大提高。

從裝備體系上看,無人機、無人戰車、智能導彈等智能武器裝備將大量出現,並成為裝備體系的重要組成部分。這些裝備具有高度的精確性和靈活性,自主作戰能力更強,能夠獨立完成偵察、打擊等任務,極大地改變了傳統的裝備結構和作戰模式。此外,傳統武器裝備也將通過加裝智能傳感器、通信模塊和自動控制系統等,加速進行智能化改造,以具備與人工智能系統互聯互通和協同作戰的能力。如老式坦克通過升級改造,可以實現自動駕駛、自動瞄准和智能彈藥裝填等功能,提升整體作戰效能。

從作戰單元編成上看,無人作戰系統憑借其在高風險、高強度作戰環境中的獨特優勢,將逐漸從輔助作戰力量發展為獨立的作戰單元並進行編組。西方國家一些智庫的研究報告認為,無人機集群作戰部隊、無人戰車營等將成為常見的作戰編制,它們可以完成偵察監視、情報分析、火力打擊等多種任務。為了充分發揮人工智能與人類戰士的各自優勢,人機混合編隊也將成為未來作戰力量的主要編成形式。在這種編隊中,人類戰士與智能武器裝備緊密配合,共同完成作戰任務。

增強作戰體系效能

從演進趨勢看,智能化技術跨域集成無人裝備、賦能傳統作戰平台,將成為未來體系作戰的“賦能器”。

目前,西方國家很多軍事專家認為,人工智能可以對作戰體系的各個要素進行全面分析和評估,找出體系中的薄弱環節和優化空間,為作戰體系的建設和調整提供科學依據。通過優化作戰體系的結構和功能,可以提高作戰體系的整體效能和穩定性,使其在面對多變戰場環境和強大作戰體系時更具競爭力。

在作戰過程中,人工智能可實時分析作戰雙方的作戰體系,預測對方的可能行動和薄弱點,提出針對性的體系對抗策略,並根據作戰過程中的實際情況不斷調整和優化,以實現己方作戰體系的高效運行,提升作戰體系對抗質效。

西方國家軍隊認為,基於人工智能賦能優勢,可以大大增強安全風險防御能力,通過自動預測、識別、發現、處置復雜安全風險,自主化保護人員、裝備、物資免受各類攻擊,能夠提升全領域、全方位防衛能力,確保作戰體系的安全性和穩定性。

提升作戰指揮實效

當前,人工智能已深度融入作戰指揮的各個環節,影響著作戰指揮的外在表現形式及主要活動方式。人工智能技術支撐下的人機智聯融合控制,將成為作戰行動控制的基本形態。

國外一些研究機構發現,人工智能系統可以根據實時戰場態勢和大量歷史數據,快速分析態勢,生成多種作戰方案,並及時推演評估方案、調整優化行動,為指揮員提供更科學合理的決策建議,高效指導計劃執行,讓作戰籌劃跟上快速變化的戰場節奏。尤其是在面對瞬息萬變的戰場情況時,能夠幫助指揮員更快地作出准確判斷。

隨著人工智能技術的不斷發展,一些智能作戰系統具備了一定的自主決策能力。在特定情況下,如面對突發的威脅或臨時出現的戰機,基於人工智能輔助的作戰指揮系統可以在預設的規則和權限范圍內,自主作出決策並采取行動,縮短決策鏈路,提高作戰的反應速度和靈活性。當作戰末端具備更強智能自主能力時,甚至可以實現作戰方案自生成、自評估、自調整,突破人的反應能力局限,形成更具適應性的作戰指揮。

很多實驗證明,基於海量作戰數據的積累和大數據分析技術的增強,人工智能技術可在模擬條件下對作戰籌劃全程進行精確計算,助力指揮員預先精准分析態勢、綜合研判趨勢、合理規劃走勢,進而通過作戰仿真、模擬推演等方式,虛擬開展參戰力量需求計算、戰法行動優化優選等活動,進而在籌劃過程中科學動態調整作戰方案策略,形成最佳選項,為作戰指揮提供更可靠的參考依據,提升指揮控制精確性。

提高作戰協同質量

隨著人工智能技術深度融入作戰體系,各作戰要素在戰場上的反應能力不斷提高,響應時間逐步縮短,適應水平日漸增強,作戰協同質量不斷提升。

西方國家一些軍事專家認為,未來戰場將呈現跨域、網絡化、非線性等特點,人工智能可以通過高效的算法,打破各作戰域、各作戰要素之間的界限,使不同作戰力量之間的協同更加緊密和高效。基於人工智能技術,可實現有人無人作戰力量編組之間的自主協同配合,使得有人無人作戰力量相互補充、相得益彰,顯著提升作戰效能。而且,無人作戰系統的應用越來越廣泛,人工智能技術可以對大量無人作戰平台進行集群控制和協同管理,實現它們之間的高效配合和任務分配,提高無人作戰的整體效能和安全性。

中國軍網 國防部網

2025年2月11日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-02-11&paperNumber=07&articleid=949008889

Analyzing the New Features of Chinese Military Intelligent Warfare

中國軍事智能化戰爭新特徵解析

現代英語:

China Military Network Ministry of National Defense NetworkThursday, November 14, 2024

Intelligent warfare is the latest form of warfare development. Under intelligent warfare conditions, the battle rhythm changes rapidly, humans and machines are deeply integrated, and complex elements are interconnected, presenting new characteristics on the battlefield.

The combat tempo changes rapidly. The combat tempo refers to the phenomenon that in the course of combat, different participating forces, under different combat missions, actions, and spaces, synchronously complete their respective established tasks at specified time nodes according to the combat phase division. In essence, the combat tempo is the effect of the confrontational interaction between the military systems of all parties in a common external environment. It is a regular phenomenon that appears periodically or non-periodically. It is objective due to the interaction, and uncertain due to the active role played by the opposing parties based on their respective perspectives. In war, the combat tempo represents not only the speed of time and speed, but also the embodiment of the comprehensive effect of multiple factors such as time, space, purpose, goal, and opponent. With the continuous expansion of the battlefield and the improvement of battlefield cognitive decision-making capabilities, the future intelligent battlefield may gradually change from the simple “quick kill” type of simple use of the one-dimensionality of time to a comprehensive game and mixed confrontation in multiple dimensional fields such as politics, economy, diplomacy and multiple time and space cycles. Combat is a game between the enemy and us, and the quality of our combat rhythm depends largely on the opponent as a reference system. The combat rhythm should always focus on the opponent, and by changing the enemy and our power comparison in various forms in various dimensions, we can gain an “asymmetric” advantage, so that the battlefield situation can continue to develop in a direction that is beneficial to us in a variety of states between the active “using our own capabilities to control the enemy’s inability” and “suppressing the enemy’s capabilities when we are unable to do so.”

Humans and machines achieve deep integration. In a broad sense, human-machine integration refers to the state and process in which all humans and machines work closely together based on their respective characteristics and advantages. With the emergence of artificial intelligence technology, especially multimodal large models represented by ChatGPT, the foundation has been laid for the knowledge-level interaction between humans and machines, which has brought new opportunities for combat planning and combat command invisibly. As intelligent creatures, humans have creativity and thoughtfulness that other objects cannot match. Compared with humans, machines have obvious advantages in storage, computing and other capabilities, and have the characteristics of fast response speed and strong environmental adaptability. Under current technical conditions, the dominance of humans in human-machine fusion intelligence determines the basic mode of human-machine fusion operations. Machines are only tools and means of implementation for operations. To a certain extent, they become the main body of operations together with operators. The interactive output is also limited to the predictable changes defined by several major variables, and is closely related to the professional ability and experience of the operators themselves. As technology continues to improve, the positioning of people may gradually shift to macro-control, focusing on controlling strategic key contents and nodes such as the timing of launching a war, the scale level, the style intensity, the process development, and the ending time. The combination of human and machine does not mean a hard coupling between the two in terms of spatial position and physics, but through the mechanism and engineering of business processes and operating procedures, they play to their respective strengths and achieve dynamic adaptive operation.

Complex elements are interconnected. Modern warfare is a complex giant system, especially in the current era of global, cross-domain, and distributed operations. Focusing on the construction of the “kill network” and element-level coordination, the widely distributed combat force entities, combat platforms, sensors, weapons, etc. are further decoupled, and the combat system is gradually developing towards “decentralization”. Focusing on the combat purpose and combat objectives, in the combat system, various functional combat elements that are three-dimensionally networked are quickly reorganized and aggregated in a self-organizing and self-adaptive manner to dynamically form a closed kill chain. It is difficult to discover, identify, and calibrate the landmark nodes of the opponent’s system one by one in the various links of “detection, control, attack, and evaluation” as before, and then achieve system destruction. This “black box” state in the organization and operation of forces makes the logical causal relationship of the combat behaviors of all parties more “inexplicable” and the “incomprehensible war” effect more prominent. War is largely a confrontation of human thinking, and thanks to the help of intelligent decision-making systems, the uncertainty of combat intentions in future wars will be further increased in the fierce confrontation of broader cognitive and information domains. From the initial combat purpose to the final combat means, combat methods, and force application, “misalignment” may occur. Therefore, future wars will place more emphasis on finding a balance in active changes at the battle tactical level, which puts higher demands on better realizing “you fight yours, I fight mine” and exerting one’s own advantages.

現代國語:

關 宇

智能化戰爭是戰爭發展的最新形態。智慧化戰爭條件下,作戰節奏快速變化、人機實現深度融合、複雜要素相互關聯,戰場呈現新的特點。

作戰節奏快速變化。作戰節奏是指在作戰過程中,不同參戰力量在作戰任務、行動、空間各不相同情況下,依照作戰階段劃分,在規定的若干時間節點同步完成各自既定任務的現象。從本質上講,作戰節奏是一種在共同外部環境下各方軍事系統間對抗性交互產生的效果,週期或非週期顯現的一種規律性現象,其因交互作用而呈現客觀性,又因對抗各方基於各自視角所進行的能動作用而具有不確定性。在戰爭中,作戰節奏所代表的並不僅僅是時間和速度的快慢,而是時間、空間、目的、目標、對手等多種因素綜合作用的體現。隨著作戰域的不斷拓展以及戰場認知決策能力的提升,未來智能化戰場可能由單純「快速秒殺」式的對時間一維性的簡單運用,逐步向政治、經濟、外交等多個維度領域和多個時空週期的綜合博弈、混合對抗轉變。作戰是敵我雙方的博弈,己方作戰節奏的好壞很大程度上要以對手為參照系。作戰節奏應始終聚焦對手,透過在各維域以各種形式改變敵我力量對比,獲取「不對稱」優勢,使得戰局形勢在能動的「以己之能製敵不能」和「己不能時抑敵之能」間的多種狀態下不斷向有利於我方的方向發展。

人機實現深度融合。從廣義上講,人機融合泛指一切人與機器根據各自特點優勢,密切協同開展作業的狀態和過程。隨著人工智慧技術特別是以ChatGPT為代表的多模態大模型的出現,為人機間的知識層面互動奠定了基礎,這在無形之中為作戰籌劃和作戰指揮帶來了新的機會。人作為智慧生物,具有其他器物無法比擬的創造性和思想性。相較於人類,機器的儲存、計算等能力則優勢明顯,具有響應速度快、環境適應性強等特徵。在當前技術條件下,人機融合智能中人的主導性,決定了人機融合作業的基本模式。機器只是作業的工具和實現手段,在一定程度上與作業人員共同成為作業主體,交互輸出也局限於幾個主要變量所限定的可預測變化,且與作業人員自身專業能力和經驗密切相關。隨著技術不斷完善,人的定位或將逐漸轉向宏觀控制,重點掌控戰爭發起時機、規模層次、樣式強度、進程發展、結束時機等戰略性關鍵內容和節點。人機融合的編組並不意味著二者在空間位置和物理上的硬耦合,而是透過機制化、工程化的業務流程和作業程序,圍繞發揮各自所長,實現動態自適應運行。

複雜要素相互關聯。現代戰爭是一個複雜巨系統,特別是在全局作戰、跨域作戰、分散式作戰的當下,圍繞著「殺傷網」的構建和要素級協同,廣域分佈的作戰力量實體、作戰平台、傳感器、武器等進一步解耦,作戰體系逐漸向「去中心」化發展。圍繞作戰目的,聚焦作戰目標,作戰體系中,立體網狀關聯的各種功能性作戰要素,以自組織、自適應方式快速重組聚合,動態形成閉合殺傷鏈。很難如從前一樣,在「偵、控、打、評」的各環節上逐一發現、識別和標定對手體系各標志性節點進而實現體系破擊。這種在力量組織和運行實施中的“黑盒”狀態,使得各方作戰行為的邏輯因果關系更趨“不可解釋性”,“看不懂的戰爭”效應更加凸顯。戰爭在很大程度上是人類思維的對抗,得益於智慧化決策系統的助力,未來戰爭在更廣闊的認知和資訊領域激烈對抗中,作戰意圖的不確定性進一步增大。從最初始的作戰目的,直至末端的作戰手段、作戰方式、力量運用等各方面,都可能出現「錯置」。因此,未來戰爭在戰役戰術層面將更加強調在主動變化中求得平衡,這對更好實現“你打你的,我打我的”,發揮己方優勢提出了更高要求。

2024年11月14日 星期四

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-11-14&paperNumber=07&articleid=943398881

Operational Window: Chinese Military New Perspectives for Implementing Cross-Domain Collaborative Operations

作戰窗口:中國軍隊實施跨域協同作戰的新視角

現代英語:

The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.

Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations

The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.

Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.

Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.

Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.

Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation

The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.

Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.

Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.

Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.

Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations

The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.

Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.

Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.

Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.

現代國語:

劉 陽 李志華

引言

作戰窗口,是指為激發體係作戰週期效能而選擇的有利於聯合作戰力量實施跨域協同作戰的時空範圍。作戰窗口概念來自戰機,是戰機在新局勢下聯合作戰指揮理論的創新發展,在作戰指揮活動中將比戰機應用更廣泛。能否將聯合作戰力量體系對抗中戰機的選擇看作「作戰窗口」的形式,直接影響了指揮的眼界。在複雜多變的資訊化戰場環境下,作戰窗口逐漸成為聯合作戰力量實施跨域協同作戰的新基點,對奪取戰場主動,塑造有利態勢,具有重要意義。

構設作戰窗口,突顯跨域協同作戰準備的全面性

戰區聯指應緊貼作戰任務、戰鬥對手、作戰環境,牢牢掌握戰略戰役主動權,加強聯合作戰資源預設,積極優化戰場環境,為構設作戰窗口創造條件。

圍繞作戰窗口實施周密持續的聯合偵察。作戰窗口的時空範圍包括打擊敵目標的時間區間與打擊地幅。其中,打擊地幅一般以打擊目標為中心,指能調控體係作戰力量持續維持局部戰場綜合控制權、適合打擊敵節點目標的相對密閉空間。為確保在作戰窗口區順利實施作戰,其外圍可區分為警戒巡邏區、攔截阻殲區與防禦作戰區等為其提供支撐保障。聯指機關應圍繞作戰窗口優先情報告警信息的提報需求,綜合運用諸軍兵種偵察預警力量和手段,為獲取作戰窗口區及其外圍區域的情報告警信息實施周密持續有重點的聯合偵察。必要時可協調戰略偵察預警力量提供情報支援,消除作戰窗口時空的偵察預警盲區,確保情報告警信息從獲取至運用的流轉過程高效穩定。

預測作戰窗口及時調整任務部隊戰備訓練的週期計畫。諸軍兵種任務部隊保持高度戒備狀態的規模強度極大限製作戰窗口的時空範圍。週期性保持高度戒備狀態,要求諸軍兵種任務部隊依照臨戰狀態進行管理運作,是體現任務部隊戰鬥力高低的重要標誌。當前任務部隊應依照戰備、訓練、整備三種狀態進行日常管理和訓練,目的是確保相當規模的能戰兵力可隨時遂行作戰窗口任務並不斷提高實行水平,非能戰兵力應統籌資源集中精力進行系統作戰能力的生成訓練。整備期則處於戰備訓練間隙,應機動靈活組織作戰人員休息、裝備維修和必要訓練,為轉入訓練週期或戰備週期創造條件。戰區聯指透過預測作戰窗口,及時調整較大規模任務部隊戰備訓練的周期計劃,使其有節奏、規律地處於高度戒備狀態,為實施窗口作戰提供力量基礎。

聚焦作戰視窗滾動組織跨域協同作戰方案計畫的聯動作業。由於作戰窗口往往稍縱即逝,圍繞作戰窗口應急制定的諸軍兵種跨域協同作戰方案計劃的完備性可能會大打折扣。因此戰區聯指應凝聚指揮員及其指揮機關的集體智慧,依靠指揮資訊系統,透過體系化、程序化、專業化的快速指揮聯動作業,滾動組織擬制跨域協同作戰方案計劃。指揮聯動作業涉及上下級指揮機構聯動作業、偵控打保評全流程聯動作業及人機交互聯動作業等。實施指揮聯動作業應統一作戰意圖,聚焦作戰窗口,利用態勢共享的指揮作業平台,聯動展開平行作業,進行週期性的作戰規劃,隨時開展研判態勢,跟進提出作戰構想,增強推演評估的可信度,同步擬制並日臻完善跨域協同作戰的方案計劃。實施聯動作業有助於縮短跨域協同作戰方案計畫的製定時間,提高方案計畫的可行性,儘早掌握作戰窗口的先機。

應用作戰窗口,突顯跨域協同作戰體系對抗的效能性

戰區聯指應針對不同作戰目的任務,不同作戰對手屬性,不同作戰類型樣式,在精心籌劃和全面準備的基礎上,果斷決策發起作戰,迅速奪取作戰窗口的戰場主動權。

疊加作戰體系效能。諸軍兵種任務部隊在作戰窗口時空範圍內密切協同,整體聯動,聚焦作戰任務形成體係作戰效果。目前隨著軍事科技的快速發展與新銳作戰力量不斷調整優化,精確化、自動化、智慧化、無人化的武器裝備應用越來越廣泛,在特定的作戰窗口範圍內,幾乎每個軍兵種都或多或少地具備遠程多域精確打擊敵目標的手段。即使是陸戰型任務部隊,也具備較遠距離的精確遠火打擊能力與近海兵力投送能力,這就使得諸軍兵種任務部隊在作戰窗口內實施複合打擊,成為聯合作戰打擊敵目標的首選方式。多軍兵種複合打擊與單一軍兵種相比,將會產生更猛、更準、更穩、更快的複合打擊效能。諸軍兵種任務部隊的複合打擊效能在作戰窗口範圍內聚焦作戰目標,將促使跨域協同作戰效能的量值陡增,疊加效果更加顯現。

匯聚作戰保障資源。作戰保障資源是影響作戰窗口選擇應用的物質因素,涉及偵察情報保障、資訊保障與後裝保障等諸多資源。戰時對本戰區實施匯聚式支援保障是應用作戰窗口的關鍵。友鄰戰區的作戰支援將使任務部隊保持較高的戰備水平,指揮官將具有更多的作戰選擇性;戰略支援部隊提供的航天資訊支援、網路作戰支援將是聯合偵察情報、資訊作戰領域的重要支撐;而聯勤保障部隊是實施聯勤保障和戰略戰役支援保障的主要力量,戰區任務部隊作戰能力的波動性很大程度上受此制約。對此,透過明確作戰保障力量的使命任務、指揮權限、體制機制與法規制度等約束激勵手段,主動圍繞作戰窗口匯聚作戰保障資源,實施一體化綜合高效保障,大力提升跨域協同作戰的體系效能。

調控作戰波動週期。聯指機關指揮諸軍兵種任務部隊對敵目標實施打擊行動,其行動前需進行戰備等級轉換、協同演練與機動展開至待機地域等。即使任務部隊打擊準備速度再快,打擊方法再熟練,打擊流程再優化,也需要在相應的時間週期內完成。同時指揮與戰鬥人員會受到作戰疲勞的影響,造成指揮決策效率、打擊效能大幅降低,極大限製作戰持續時間的延長,使得任務部隊作戰能力的波動週期更加明顯。而打擊行動結束後,作戰人員的補充休整,武器裝備的保養修理,作戰經驗教訓的總結檢討,均需要一個調整週期。指揮員需根據諸軍兵種作戰方式與武器裝備毀傷機理的不同,及時調控任務部隊打擊能力的變化波動週期,明確任務部隊的能戰閾值,盡可能減少作戰波動幹擾,從而大幅提升跨域協同作戰能力。

維持作戰窗口,突顯跨域協同作戰戰場管控的穩定性

戰區聯指應嚴格控制窗口作戰的規模強度,加強連動管控,嚴控作戰成本,提升作戰效益,積極塑造有利戰場態勢,避免作戰被動,防止將窗口作戰擴大成全面作戰。

加強戰場聯動管控。諸軍兵種戰場管控對塑造穩定的作戰態勢,加強多域空間管制,維持作戰窗口有重要作用。加強跨域協同作戰戰場空間的管控,包括陸地、海洋、空中、太空、網路等戰場空間,以及電磁頻譜與時空基準戰場空間等。其中,戰場管控區域重點劃分為各領域的作戰窗口區、戰略支撐區、警戒隔離區、前沿預警區以及友鄰支援區等,諸軍兵種任務部隊在指揮員及指揮機關的統一指揮控制下,釐清跨域協同管控的主次關係,明確管控規則、機製與紀律,採用多種管控方法,綜合用級管控法

全面評估作戰效果。指揮機構應緊貼作戰窗口跨域協同作戰方案計畫的製定流程,緊貼協同控制指令,緊貼任務部隊協同動作,緊貼協同保障實際,在窗口作戰過程中實施快速、高效、持續的績效與效力評估。圍繞作戰目的的達成,適應全局聯動的窗口作戰特點,綜合運用多種作戰評估工具和手段,集成系統評估的算法、數據與能力於一體,優化作戰效益主導、流程管理、資訊支撐、人在迴路的評估體系,形成作戰命令、行動、效果的相互匹配,績效與效力時效力時相互結合的評估模式,從而提高作戰後效性指標的準確性和時效性指標的準確性和效能性指標。從而提高作戰時效性指標。

主動塑造戰場新態。經過平時持續對敵軍事鬥爭準備、互動懾控以及作戰窗口內有限的打擊較量後,敵我雙方在作戰力量對比、部署和行動等方面形成的狀態和形勢表現相對穩定,從而形成塑造了新形勢下的戰場態勢,其發展趨勢也顯得可預測、可期望。指揮者及其指揮機關對本戰略方向的敵情、我情與戰場環境的特點規律不斷深度掌握,對未來鬥爭形勢的基本輪廓走向就有了清晰認識,就能明確今後的作戰目標舉措,打贏自信也會逐步增強,為確定下一輪的作戰窗口創造了條件。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/06/content_222435888.htm

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

What is the Hotly Debated “Military Metaverse”? Chinese Military Intelligent Warfare Team Explains

備受爭議的「軍事元宇宙」是什麼?中國軍事智慧作戰團隊解讀

現代英語:

As if overnight, “metaverse” suddenly became a hot word, and related concepts formed many hot topics.

With the development of technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, blockchain, and the iteration of terminal devices, the construction and evolution of the “metaverse” may far exceed people’s expectations, and a new Internet form of multi-dimensional, full-sensory, immersive human-computer interaction will hopefully become a reality.

Unveiling the Metaverse

The “Metaverse” allows users to freely travel between the real world and the virtual world. Produced by Lu Xintong

What is the Metaverse?

The term “Metaverse” comes from the 1992 science fiction novel Snow Crash. In the novel, humans live in a virtual three-dimensional world through “Avatars” (digital virtual incarnations). The author calls this space “Metaverse”.

From science fiction to reality, people have not yet reached an absolute consensus on what the metaverse is. Due to the evolution of the times and technological changes, the metaverse is still an evolving concept. Different participants are constantly enriching its definition in their own ways, and the characteristics and forms of the metaverse are also constantly changing. However, we can explore a little through the current presentation of the metaverse.

At present, “metaverse” concept products are mainly concentrated in online games, VR/AR, social networking and other fields.

Online games are widely considered by the industry to be the most likely field to realize the “metaverse” because they themselves have virtual scenes and players’ virtual avatars. Today, game functions have gone beyond the game itself, and the boundaries of games are expanding, and they are no longer just games.

A well-known singer held a virtual concert in the game “Fortress Night” with a virtual image, attracting more than 12 million players from all over the world to participate, breaking the boundary between entertainment and games; due to the impact of the epidemic, the University of California, Berkeley and the School of Animation and Digital Arts of Communication University of China coincidentally rebuilt their campuses in the sandbox game “Minecraft”. Students gathered together with virtual avatars to complete the “cloud graduation ceremony”, realizing the integration of virtual games and real social interactions.

The new generation of “VR social (virtual offline social)” has been gradually developing and becoming popular. It is a fusion of offline social (face-to-face in real life) and online social (through social software such as WeChat). Some well-known VR social platforms provide a free community environment, which not only becomes a place for players to conduct online activities and virtual face-to-face gatherings, but also becomes a social and cultural phenomenon closely related to the current concept of “metaverse”.

The above “metaverse slices” are all important explorations into the construction of the “metaverse”, and they explain in a variety of visible and tangible ways how the “metaverse” will change our real life.

In common research, the following consensus has been formed: “Metaverse” is a new type of Internet application and social form that integrates multiple new technologies and integrates virtual and real. It provides immersive experience based on extended reality technology, generates virtual scenes based on digital twins and 3D rendering technology, builds basic software and hardware services based on cloud computing, artificial intelligence and high-speed networks, and builds an economic system based on blockchain technology, closely integrating the virtual world with the real world in economic system, social system and identity system. At the same time, it allows each user to produce and edit content, and has complete self-driving and iteration capabilities.

The development direction of the “metaverse”

Today’s mobile Internet is actually still in a flat information interaction state, presented on mobile terminals through text, sound, pictures, and videos. Although news information, e-commerce, social chat, live video, etc. meet people’s needs for using the Internet, it is obviously impossible to achieve the effect of face-to-face communication and full sensory experience in real life through the mobile phone screen. With the development of society, people need more native and richer experience and interaction.

The COVID-19 pandemic has caused people to move their lives from offline to online. This forced change has made people think more, discuss more, and pay more attention to the “metaverse”. In particular, the core feature of the “metaverse” is the immersive experience, which can turn a plane into a three-dimensional, multi-dimensional, real-time interactive space, greatly enriching and restoring the real physical world and various human relationships. Therefore, the “metaverse” is highly anticipated.

Looking at the development of information technology and media in the past, humans have constantly changed the way they perceive the world, and later began to consciously transform and reshape the world. From the newspaper era, the radio and television era, to the Internet era, and the mobile Internet era, the tools and platforms under the concept of “metaverse” are becoming increasingly complete, and the path to the “metaverse” is gradually becoming clearer.

Since 2020, Internet giants around the world have been closely planning around cutting-edge technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, and blockchain, and the door to the ultimate closed-loop ecosystem of the “metaverse” has been opened little by little. Today, when the “bonus” of mobile Internet users has reached its peak, many experts and scholars have stated that the “metaverse” will be the ultimate form of the next generation of the Internet.

Just as it was difficult to accurately predict the development of the Internet 20 years ago, people cannot accurately predict the future form of the “metaverse”. However, combined with the current development trends of related industries, we can see that: the Internet has changed human life and digitized communication between people, while the “metaverse” will digitize the relationship between people and society; the technologies related to the “metaverse” will show gradual development, and single-point technological innovations will continue to appear and merge, approaching the ultimate form of the “metaverse” from all aspects of the industry; the “metaverse” will surge with massive user-generated content, while revealing the value of digital assets.

In a nutshell, the “metaverse” will profoundly change the organization and operation of the existing society in a way that integrates the virtual and the real, forming a new lifestyle that combines the virtual and the real, giving birth to a new social relationship that integrates online and offline, and giving new vitality to the real economy from a virtual dimension.

The future physical “metaverse” will be similar to the scene described in the science fiction movie “Ready Player One”: one day in the future, people can switch identities at any time and anywhere, freely shuttle between the real world and the virtual world, and study, work, make friends, shop, travel, etc. in the “metaverse”. Through immersive experience, the virtual world will be closer to and integrated into the real world.

In this virtual world, there will be self-evolving content and economic systems that always remain safe and stable, meeting the social needs of individuals.

The mediating role of the “metaverse”

“Imagine the ‘metaverse’ as a physical Internet, where you are not just watching content, but you are in it as a whole.” This is a vivid description. However, as it stands, the content of these “metaverses” that allow “everyone to be in it” is relatively scarce. It needs more content that can be independent, self-iterative, and multi-dimensional to attract users to participate in the experience and even creation.

The “metaverse” is bound to become a new platform for media content production. Content producers can transform the “micro-universe” into the “macro-universe” through rich content production. In the short term, the breakthrough of the “metaverse” is immersive content. With the development and penetration of the concept of “metaverse”, the integration of immersive virtual content (such as games, cartoons, etc.) and immersive physical content (such as media, social networking, film and television, etc.) will become higher and higher. In other words, the “metaverse” will play a greater role as a medium.

In September this year, Yu Guoming, a professor at the School of Journalism and Communication of Beijing Normal University, pointed out at the release conference of the “2020-2021 “Metaverse” Development Research Report” released by the New Media Research Center of the School of Journalism of Tsinghua University: “Today, the role played by the media is generally the provision of cognitive information, but the role of the media is completing a process from providing cognition to providing experience. The entire media and technology development from cognition to experience is a huge transformation. Once the goal of “metaverse” is established, it will play a directional role in communication technology, communication form, communication methods and even communication effects.” If the “metaverse” is the ultimate form of the next generation of the Internet, then it is a super media channel that will show the ultimate form of media convergence and provide the best immersive experience.

Theoretically, the best communication experience must be based on real scenes. For example, when watching a football game, the ideal situation is to watch it in person on the field. In the “metaverse”, with the development of display interaction, high-speed communication and computing technology, it will become a reality to construct a communication scene that is infinitely close to reality. Users can become “witnesses” and “on-site observers” of news events in a three-dimensional, multi-sensory reception situation.

Therefore, “metaverse” media can realize true “multimediaization”, and various human senses such as vision, smell, hearing, taste, touch, etc. can play a role, and even fully develop and cooperate with each other to realize “immersive” media applications.

Today, media content is constantly evolving and innovating, and its development trend seems to be moving towards the concept of “metaverse”. Media content will no longer be limited to flat presentation methods such as TV, computer, and mobile phone screens. Media content production will consider holographic presentation more, focusing on creating an on-site environment and atmosphere to make users feel as if they are in the scene. Social interaction will no longer be limited to text comments. People can express their feelings in real time with voice and body movements, and communicate virtually face to face on the spot.

Imagine if news reports could restore the war scene and create a “battlefield metaverse” so that people could feel as if they were there and experience in real time the tremendous damage that war has caused to human civilization. This shock would further stimulate human society’s desire and yearning for peace, and media content would have a stronger influence and communication power.

現代國語:

來源:解放軍報 作者:戴斌 熊雄 孫浩 責任編輯:王鳳 2021-11-26 09:19:57
彷彿在一夜之間,「元宇宙」突然成為熱詞,相關概念形成許多熱點話題。

隨著擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡、區塊鍊等技術的發展及終端設備的迭代,「元宇宙」建設和演變可能遠超人們的預期,多維度、全感官、沉浸式的人機交互新互聯網形態,將有望成為現實。

揭開「元宇宙」面紗

■戴斌 熊雄 孫浩

「元宇宙」可讓使用者自由穿梭於現實世界和虛擬世界。 呂欣彤 制

何為“元宇宙”

“元宇宙”,英文為“Metaverse”。該字出自1992年的科幻小說《雪崩》。小說中,人類透過“Avatar”(數字虛擬化身),在一個虛擬三維世界中生活,作者稱這個空間為“Metaverse”,即“元宇宙”。

從科幻走進現實,人們對「元宇宙是什麼」還未能達成一個絕對標準的共識。因為時代的演變、技術的變革,“元宇宙”仍是一個不斷發展的概念,“一千個人眼中就有一千個哈姆雷特”,不同參與者以自己的方式不斷豐富著它的定義,“元宇宙”特徵和形態的可能性也在不斷變化。不過,我們可透過「元宇宙」現有的呈現形態來探究一二。

目前,「元宇宙」概念產品主要集中在網路遊戲、VR/AR、社交等領域。

網絡遊戲被業界普遍認為是最有可能實現「元宇宙」的領域,因為它本身就具有虛擬場景和玩家的虛擬化身。如今,遊戲功能已超越遊戲本身,遊戲邊界正在擴展,甚至不只是遊戲了。

知名歌手在遊戲《堡壘之夜》中,以虛擬形象舉辦一場虛擬演唱會,吸引了全球超過1200萬玩家參與其中,打破了娛樂與遊戲的邊界;因為疫情影響,美國加州大學伯克利分校、中國傳媒大學動畫與數字學院不約而同地在沙盤遊戲《我的世界》裡重建校園,學生們以虛擬化身齊聚一遊戲,實現虛擬化身和社交的現實主義。

新一代「VR社交(虛擬線下社交)」已逐漸發展和流行。它是線下社交(現實面對面)、線上社交(透過微信等社交軟件)的融合產物。一些知名VR社交平台,提供自由的社區環境,不僅成為玩家在線活動與虛擬面對面聚會的場所,也成了一種與目前「元宇宙」概念密切相關的社會文化現象。

以上這些“元宇宙切片”,都是對構建“元宇宙”的重要探索,用多種看得見、摸得著的方式,詮釋了“元宇宙”將如何改變我們的現實生活。

在通常研究中,一般形成了這樣的共識:「元宇宙」是整合多種新技術而產生的新型虛實融合的互聯網應用和社會形態。它基於擴展現實技術提供沉浸式體驗,基於數字孿生和3D渲染技術生成虛實場景,基於雲計算、人工智慧和高速網絡構建基礎軟件硬體服務,基於區塊鏈技術構建經濟體系,將虛擬世界與現實世界在經濟系統、社交系統、身份系統上密切融合。同時,允許每個用戶進行內容生產和編輯,並具備完整的自我驅動和迭代能力。

「元宇宙」發展走向

當今的移動互聯網,實際上仍是平面資訊互動狀態,透過文字、聲音、圖片、視頻方式在移動終端進行呈現。新聞資訊、電子商務、社群聊天、影片直播等形態,雖然滿足了人們使用網路的需求,但隔著手機螢幕,顯然無法達到現實生活中面對面交流、全感官體驗所能達到的效果。隨著社會發展,人們需要更原生和豐富的體驗與互動。

新冠疫情讓人們生活場景從線下更多地移到線上。這種被迫的轉變,讓大家對「元宇宙」有了更多思考、討論和關注。特別是「元宇宙」最核心的特徵,在於沉浸式體驗,它可將一個平面變成一個立體、多維、實時的交互空間,極大地豐富、還原真實物理世界和人類各種關系。因此,「元宇宙」被人們寄予厚望。

縱觀過往資訊科技和媒介的發展歷程,人類不斷改變認知世界的方法,乃至於後來開始有意識地改造和重塑世界。從報業時代、廣播電視時代,到互聯網時代、移動互聯網時代,「元宇宙」概念下的工具和平台日益完備,通往「元宇宙」的路徑逐漸清晰。

自2020年以來,各國互聯網大廠圍繞擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡和區塊鍊等前沿科技,展開緊密佈局,通往「元宇宙」終極閉環生態的大門被一點點打開。在移動互聯網用戶「紅利」已經見頂的今天,不少專家學者表示,「元宇宙」將是下一代互聯網的終極形態。

如同20年前難以精準預測互聯網的發展一樣,人們也無法精準預判未來「元宇宙」的形態。但是,結合當今相關產業發展趨勢可以看到:互聯網改變人類生活,將人與人交流數字化,而「元宇宙」將把人與社會關係數字化;「元宇宙」相關技術將呈現漸進式發展,單點技術創新將不斷出現和融合,從產業各方面向「元宇宙」終極資產形態顯現;「元宇宙」將海量用戶創造內容,同時湧現價值。

概括地說,「元宇宙」將以虛實融合的方式,深刻改變現有社會的組織與運作,形成虛、實兩極的新型生活方式,催生線上、線下一體的新型社會關系,並從虛擬維度賦予實體經濟新的活力。

未來實體化的「元宇宙」,將類似於科幻電影《一級玩家》裡描述的場景:在未來的某一天,人們可隨時隨地切換身份,自由穿梭於現實世界和虛擬世界,在「元宇宙」中學習、工作、交友、購物、旅遊等。透過沉浸式體驗,讓虛擬世界進一步接近並融入現實世界。

在這個虛擬世界裡,將有自我不斷發展的內容和經濟系統,並且始終保持安全穩定運行,滿足個體的社會需求。

「元宇宙」的媒介作用

「把『元宇宙』想像為一個實體互聯網,你在那裡不只是觀看內容,整個人都身在其中。」這是一個圖像描述。可就現狀而言,這些能讓“整個人都身在其中”的“元宇宙”,內容是相對匱乏的。它需要更多可以獨立成篇、自我迭代、多維立體地吸引用戶參與體驗甚至參與創作的內容。

「元宇宙」勢必成為媒體內容生產的嶄新平台。內容生產者透過豐富的內容生產,可將「小宇宙」演變成「大宇宙」。短期內,「元宇宙」的突破口是沉浸式內容。隨著「元宇宙」概念的發展與滲透,沉浸式虛擬內容(如遊戲、卡通等)與沉浸式實體內容(如媒體、社交、影視等)的融合程度將會越來越高。換句話說,「元宇宙」將發揮出更大的媒介作用。

今年9月,北京師範大學新聞與傳播學院教授喻國明在由清華大學新聞學院新媒體研究中心發布的《2020-2021年「元宇宙」發展研究報告》發布會議上指出:「如今給予所發揮的作用大體上都是認知方面的信息給予,但媒介的作用正在完成一個從給予整個認知體驗的過程。媒介和技術從認知發展到體驗是個巨大轉換,『元宇宙』這個目標一經確立,對傳​​播技術、傳播形態、傳播方法甚至傳播效果,都能起到一個定向作用。」如果說「元宇宙」是下一代互聯網的終極形態,那麼它就是一個超級媒體渠道,將展現媒體融合的終極形式,並給予最佳的沉浸式體驗。

從理論上講,最好的傳播體驗必然是基於真實場景。如看球賽,理想情形是在球場上親身觀看。在「元宇宙」裡,隨著顯示互動、高速通訊和計算技術的發展,建構無限逼近真實的傳播場景將成為現實,用戶能在立體化、多感官接收情境中,成為新聞事件的「目擊者」和「實地觀察者」。

因而,“元宇宙”媒體可實現真正的“多媒體化”,人類的各種感官如視覺、嗅覺、聽覺、味覺、觸覺等,都能發揮作用,甚至完全展開、相互配合,實現“沉浸式”的媒體應用。

當今媒體內容不斷進化和創​​新,其發展趨勢也似乎正在向「元宇宙」概念靠攏。媒體內容將不再侷限在電視、電腦、手機螢幕等平面式的呈現方式,媒體內容製作將更考慮全像呈現,重視營造現場環境氛圍,讓用戶有身臨其境之感。社交也將不再侷限於文字留言評論,可即時以語音、肢體動作來表達感受,現場虛擬化面對面交流。

設想一下,如果新聞報道能還原戰爭現場,打造“戰場元宇宙”,使人如身臨其境,實時感受到戰爭對於人類文明造成的巨大創傷,這份震撼會更能刺激人類社會對於和平的渴望與嚮往,媒體內容將具備更加強大的影響力和傳播力。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jt_214147/4899728888.html?big=fan

Chinese Metaverse-enabled Military Training On the Rise

中國元宇宙軍事訓練正在興起

現代英語:

The metaverse is an artificial online virtual world that is born out of, parallel to, and independent of the real world. It is parallel to the real world, reacts to the real world, and integrates a variety of high technologies. These are the three major characteristics of the future metaverse. The operation of the metaverse conforms to the natural laws of human understanding and transformation of the world, and provides a new way of thinking to understand and discover the operating behavior, state, and laws of complex real systems, as well as a new means to explore objective laws and transform nature and society. Researching the application of the metaverse in the field of foreign military training and analyzing the opportunities and challenges that the metaverse brings to the field of military training have important theoretical and practical value in solving the key problems that need to be solved in military training in the intelligent era, promoting scientific and technological training, and promoting the innovative development of military training models.

Background of Cognitive Metaverse Empowered Military Training

The scientific and technological revolution has given rise to a new ecology of military training. Driven by the new scientific and technological revolution and the industrial revolution, cutting-edge technologies such as artificial intelligence, big data, cloud computing, and the Internet of Things have accelerated their development. Technology giants have laid out the metaverse, and human real life has migrated to the virtual world more rapidly. The metaverse integrates a variety of emerging technologies, thus generating new Internet applications and new social forms that integrate the virtual and the real. Perception technology supports the integration of the virtual and the real in the metaverse, “AI+” technology supports the social nature of the metaverse, data transmission technology supports the real-time nature of the metaverse, electronic game technology supports the diversity of the metaverse, digital twin technology supports the sustainability of the metaverse, and blockchain technology supports the security of the metaverse. The future metaverse, where virtual and real are highly interconnected, is born out of, parallel to, and independent of the real world. It integrates all elements such as the Internet, virtual reality, immersive experience, blockchain, and digital twins to build a new basic ecology for intelligent military training.

The evolution of war has dominated the transformation and upgrading of military training. With the advent of the intelligent era, the war situation has accelerated its evolution towards informationization and intelligence. The informationized warfare system with “information acquisition and utilization as the core” will gradually transition to the intelligent warfare system with “intelligent simulation and expansion as the core”. The trend of long-range precision, intelligence, stealth, and unmanned weapons and equipment has become more obvious, and intelligent warfare has surfaced. At the same time, combat elements represented by artificial intelligence such as “AI, cloud, network, group, and terminal” and their diversified combinations have formed a new battlefield ecology. The metaverse has constructed a new battlefield space where virtual and real are integrated and parallel interactions occur. The traditional war winning mechanism is being profoundly changed. The development and changes in the form of intelligent warfare have compulsorily driven the transformation and reshaping of the military’s thinking and concepts, requiring the accelerated transformation and upgrading of military training, greater attention to the impact of technological development and changes on warfare, and the use of the “new engine” of training and warfare to achieve “accelerated” preparations.

Foreign militaries explore breakthroughs in military training models. In order to seize the strategic commanding heights of military intelligence, the world’s military powers attach great importance to the innovation of military training models. Some countries have begun to try to apply the metaverse and related technologies to military training. For example, the United States has successively released the National Security Strategy, the National Defense Strategy and the Department of Defense Transformation Plan, focusing on building an “all-round army” and forming a “full spectrum advantage”. It has also simultaneously formulated the Training Transformation Strategic Plan and the Training Transformation Implementation Plan, and proposed the concept of a comprehensive training environment (STE), the core of which is immersive and integrated virtual training, which intends to integrate real-time, virtual, constructive and gaming environments into a comprehensive training environment. Russia also attaches great importance to the development of virtual training systems. Almost all of its advanced weapons and equipment are equipped with corresponding virtual training systems, and are moving towards universalization and embedding. The United Kingdom, Germany, South Korea, etc. are also actively developing various professional military training virtual environments. Intelligent training supported by technologies such as artificial intelligence, virtual reality and augmented reality is gradually becoming the mainstream of military training research in powerful countries.

Clarifying the Advantages of Metaverse-Enabled Military Training

The emergence of new concepts in military training. Only by leading the opponent in thought can we gain the upper hand in action. The emergence of disruptive technologies will inevitably rewrite the current military training rules and systems, and will also innovate the existing military training thinking concepts. On the one hand, the metaverse has set off a hurricane-like “brainstorm”, and the training thinking led by “intelligence” has organically connected training with actual combat, and upgraded to intelligent military training thinking. On the other hand, new technologies and new means represented by the metaverse empower military training, strengthen the concept of winning by science and technology and intelligent drive, and greatly improve the scientific and technological content of military training, in order to control the initiative in future wars. In the future, the metaverse will create more impossible possibilities by constructing a virtual battlefield space, designing wars and evolving wars.

Innovate new theories of military training. War is the area that needs innovation the most. Military training must adapt to the development of intelligent warfare, and theoretical innovation and training practice must be driven by both. Training transformation will not happen automatically. It requires not only a sharp and profound foresight to grasp the general trend, but also a scientific, powerful and solid theory to drive forward. On the one hand, by keeping up with the development of the times and starting from new concepts and new cognition, we can build a scientific theoretical system for metaverse-enabled military training. On the other hand, by following the laws of combat-training coupling, we can establish an innovative model of intelligent military training theory with the characteristics of the times, allowing the metaverse to empower and improve the efficiency of promoting the iterative development of military training transformation.

Transform the new military training model. The combat style determines the training mode, and intelligent warfare changes the “rules of the game”. Military training for the next war must adapt to the requirements of future wars by changing the training mode. First, it can build an intelligent blue army with “both form and spirit”. With the help of optimized AI technology, powerful computing power support, and realistic performance simulation, the Metaverse follows the evolutionary process of “knowing the enemy, imitating the enemy, surpassing the enemy, and defeating the enemy” to create an intelligent blue army with platform support and data empowerment, and carry out “real” confrontation training and effect evaluation in the Metaverse space. Second, it can carry out new domain and new quality combat training. The metaverse expands the practical application path with new domains and new types of combat forces as the leading elements, highlights the research and development of training methods and tactics that are compatible with advanced combat concepts and winning mechanisms, and creates new forms of training such as unmanned and seamless human-machine collaboration, becoming a new point of combat power growth. Third, it can cultivate new types of military talents. At present, the educational metaverse has led the intelligent transformation of education. In the future, the military metaverse will accelerate the realization of intelligent interaction between people and equipment, deep integration between people and systems, and adaptive evolution between people and the environment, and promote the integrated development of “commanders” and “fighters” into “scientists” and “technicians.”

Reshape the new ecology of military training. The multi-dimensional perception, virtual-real integration, free creativity, and open development of the metaverse will make the future metaverse a fully immersive, time-transcending, self-creating and developing space. First, create a digital twin “battlefield metaverse”. The “battlefield metaverse” will be a typical manifestation of the metaverse in the military field, with stricter security and confidentiality standards, stronger simulation computing capabilities, and more real-time and detailed interaction requirements. Secondly, create a full-dimensional three-dimensional metaverse training environment. The metaverse uses technologies such as virtual reality, augmented reality, and mixed reality to create an immersive and complex scene environment; using powerful data and network support, it builds a full-dimensional space such as land, sea, air, space, electricity, and the Internet. Furthermore, a Metaverse verification platform for weapons and equipment will be built. The platform will have functions such as new weapon and equipment design demonstration, weapon and equipment performance test, weapon and equipment compatibility test, and weapon system combat effectiveness test. In the future, the Metaverse will greatly shorten the timeline for weapons and equipment to go from “weak intelligence” to “strong intelligence” and then to “super intelligence”, realizing the intelligence multiplication effect of weapons and equipment.

Grasping the Key Points of Metaverse-Enabled Military Training

Focus on top-level design. From the perspective of the development of things, the metaverse is a new thing, and its maturity has yet to be verified. Intelligent military training is also a complex, arduous and long-term system engineering, which requires strengthening strategic planning and top-level layout. We should pay close attention to the development trends and technological trends of the metaverse, and scientifically formulate the development plan of the “training metaverse”. In the context of the integration of intelligence, informatization and mechanization, we should give full play to the outstanding advantages of the metaverse, such as enabling trainees to undergo immersive experiential training, so that the metaverse can not only be a display platform for virtual technology, but also a practical platform for improving the effectiveness of military training.

Strengthen technology research and development. From a technical perspective, the Metaverse has reintegrated existing technologies in the information and intelligent technology group, proposed an overall innovative concept, and provided comprehensive application scenarios, thereby giving birth to new vitality. To accelerate the development of the “training Metaverse”, we must speed up the research on basic software and hardware technologies such as algorithm engines and network communications, strengthen the research and development capabilities of core technologies such as artificial intelligence, digital twins, blockchain, and the Internet of Things, and at the same time strengthen the overall technical design and research and development of the Metaverse, such as immersion, sociality, openness, collaboration, and decentralization.

Create training types. From the perspective of time and space, the metaverse may create a vast virtual war space, recreate the war environment, present the war process, and virtualize the future of war. An intelligent military training operation system based on the metaverse should be built, military training concepts should be updated in a timely manner, and innovations in military training models, management support, and legal mechanisms should be deepened. A dynamic and high-level combat-oriented military training environment based on the metaverse should be built to fully support strategic, campaign, and tactical training as well as war simulations. At the same time, in the process of “intelligent adaptation” of military training, we will achieve the expansion of wisdom and intelligent evolution towards the unknown space of military training with “innovation, openness, diversified iteration, and new intelligent ecology”.

Attach importance to risk prevention and control. From the perspective of safety and controllability, the concept and technology of the Metaverse brings innovative opportunities to intelligent military training, but the potential risks associated with the technology itself cannot be ignored. The Metaverse is a huge technology group, and its system architecture, key technologies, and application environment are still in the development and implementation stage. The supporting protection system, safety technology, and management standards will bring security risks. In addition, the integrated application of various emerging technologies in the construction process, the complexity and confidentiality in the application process will be the unknown factors for the key prevention and risk challenges of the Metaverse in military training.

現代國語:

侯春牧 王 勇

閱讀提示

元宇宙是脫胎於、平行、獨立於現實世界的人造線上虛擬世界,與現實世界平行、反作用於現實世界、多種高技術綜合,是未來元宇宙的三大特徵。元宇宙運行符合人類認識世界、改造世界的自然規律,提供了理解和發現現實復雜系統運行行為、狀態和規律的全新思維方式和探知客觀規律、改造自然和社會的新手段。研究元宇宙在外軍軍事訓練領域的運用,剖析元宇宙為軍事訓練領域帶來的機遇與挑戰,對破解智能化時代軍事訓練亟待解決的關鍵問題,推動科技強訓,促進軍事訓練模式創新發展,具有重要理論與實踐價值。

認知元宇宙賦能軍事訓練的背景

科技革命催生軍事訓練嶄新生態。在新科技革命和產業革命推動下,人工智慧、大數據、雲端計算、物聯網等前沿科技加速發展,科技巨頭紛紛佈局元宇宙,人類現實生活更快速向虛擬世界遷移。元宇宙整合多種新興技術,從而產生出虛實相融的互聯網新應用與社會新形態。感知技術支撐元宇宙的虛實相融性,「AI+」技術支撐元宇宙的社會性,數據傳輸技術支撐元宇宙的實時性,電子遊戲技術支撐元宇宙的多樣性,數字孿生技術支撐元宇宙的可持續性,區塊鏈技術支撐元宇宙的安全性。虛擬與現實高度互通的未來元宇宙,脫胎於、平行於、獨立於現實世界,將互聯網、虛擬現實、沉浸式體驗、區塊鍊及數字孿生等全要素融合,為智能化軍事訓練構建起全新基礎生態。

戰爭演進主導軍事訓練轉型升級。智能化時代到來,戰爭形態加速向資訊化智能化演變,以「資訊獲取利用為內核」的資訊化戰爭體系,將逐漸過渡至以「智慧模擬與拓展為內核」的智能化戰爭體系,武器裝備遠程精確化、智能化、隱身化、無人化趨勢更加明顯,智能化作戰浮出水面。同時,以「AI、雲、網、群、端」等人工智慧為代表的作戰要素及其多樣化組合,構成了新的戰場生態,元宇宙構建出虛實融生、平行互動的戰場新空間,傳統的戰爭制勝機理正在被深刻改變。智慧化戰爭形態發展變化,強制性驅動軍隊思維理念的變革重塑,要求加快實現軍事訓練轉型升級,更加重視科技發展變化對戰爭的影響,以練戰「新引擎」跑出備戰「加速」。

外軍探索開啟軍事訓練模式突破。為搶佔軍事智慧化戰略制高點,世界軍事強國高度重視軍事訓練模式創新,有的國家開始嘗試應用元宇宙及相關技術運用在軍事訓練方面。如美國先後發布《國家安全戰略》《國家防務戰略》和《國防部轉型計劃》,圍繞打造“全能型軍隊”、形成“全頻譜優勢”,同步製定了《訓練轉型戰略計劃》和《訓練轉型實施計劃》,並提出了綜合訓練環境(STE)理念,其內核是沉浸式、集成虛擬訓練,擬將實時、虛擬、建設性和環境到綜合培訓環境到綜合培訓中。俄羅斯也高度重視虛擬訓練系統開發,其先進武器裝備幾乎都配有相應虛擬訓練系統,並且正朝著通用化和嵌入化方向發展。英國、德國、韓國等也都積極開發各種專業軍事訓練虛擬環境。以人工智慧、虛擬現實與增強現實等技術為支撐的智慧化訓練,正逐漸成為強國軍隊訓練研究的主流。

明晰元宇宙賦能軍事訓練的優勢

萌發軍事訓練新理念。在思想上領先對手,才能在行動上贏得先機。顛覆性技術的出現必將改寫現行的軍事訓練規則制度,也必將革新現有的軍事訓練思維理念。一方面,元宇宙掀動颶風式的“頭腦風暴”,以“智”引領的練兵思維將訓練與實戰有機銜接起來,升級成智能化軍事訓練思維。另一方面,以元宇宙為代表的新技術新手段賦能軍事訓練,強化科技制勝、智慧驅動理念,大幅提升軍事訓練科技含量,以期掌控未來戰爭主動權。未來元宇宙透過構設虛擬戰場空間,設計戰爭並演化戰爭,將創造出更多不可能的可能性。

創新軍事訓練新論。戰爭是最需要創新的領域。軍事訓練要順應智慧化戰爭發展,理論創新與訓練實踐必須雙輪驅動。訓練轉型不會自動發生,既需要敏銳而深邃的前瞻性眼光把握大勢,更需要科學而強大的堅實理論驅動前行。一方面,緊跟時代發展,從新觀念新認知出發,可以建構元宇宙賦能軍事訓練的科學理論體系。另一方面,遵循戰訓耦合規律,可以建立具有時代特色的智慧化軍事訓練理論創新模式,讓元宇宙為推進軍事訓練轉型迭代發展賦能提效。

變革軍事訓練新模式。作戰樣式決定著訓練模式,智慧化戰爭改變著“遊戲規則”,預演下一場戰爭的軍事訓練必須通過變革訓練模式,來適應未來戰爭要求。一是能夠建造「形神兼備」的智慧藍軍。元宇宙藉由優化的AI技術、強大的算力支撐、逼真的效能仿真,依照「知敵、像敵、超敵、勝敵」的演化進程,打造以平台支撐、數據賦能等綜合集成的智能藍軍,並在元宇宙空間開展「真實」的對抗訓練和效果評估。二是能夠開展新域新質作戰研練。元宇宙拓展新域新質作戰力量為主導要素的實戰化運用路徑,突顯與先進作戰概念、制勝機理相適應的訓法戰法的研練,開創無人化、人機無縫協同等新樣式訓練,成為新的戰鬥力增長點。第三是能夠培養新型軍事人才。當前,教育元宇宙已經引領了教育智慧化變革。未來軍事元宇宙將加速實現人與裝備智慧互動、人與體系深度融合、人與環境適應進化,推動「指揮者」「戰鬥員」向「科學家」與「技術家」融合發展。

重塑軍事訓練新生態。元宇宙的多維感知性、虛實融合性、自由創造性、開放發展性等特點,使未來元宇宙將成為完全沉浸式的、超越時空的、自我創造發展的空間。首先,打造數字孿生的「戰場元宇宙」。 「戰場元宇宙」將是元宇宙在軍事領域的典型表現形態,具有更嚴格的安全保密標準、更強大的仿真計算能力、更實時的精細交互要求。其次,創造全維立體的元宇宙訓練環境。元宇宙運用虛擬現實、增強現實以及混合現實等技術,創造沉浸複雜的場景環境;利用強大的數據、網絡支撐,搭建起陸、海、空、天、電、網等全維空間。再者,建造武器裝備的元宇宙驗證平台。該平台將具備新型武器裝備設計論證、武器裝備性能試驗、武器裝備相容性試驗、武器系統體係作戰效能檢驗等功能。未來元宇宙將大幅縮短武器裝備從「弱智」到「強智」再到「超智」的時間軸,以實現武器裝備的智慧倍增效應。

掌握元宇宙賦能軍事訓練的重點

著重頂層設計。從事物發展上看,元宇宙作為新生事物,發展成熟尚待驗證。智慧化軍事訓練又是一項複雜、艱巨且長期的系統工程,需要加強戰略籌劃與頂層佈局。應密切關注元宇宙發展動向與技術趨勢,科學制定「訓練元宇宙」的發展規劃,在智慧化、資訊化、機械化「三化」融合的現實背景下,充分發揮元宇宙能讓受訓者沉浸式體驗式訓練等突出優勢,讓元宇宙不能只是虛擬技術的展示平台,而應成為提高軍事訓練效益的實踐平台。

加強技術研發。從技術意義上看,元宇宙把資訊化智能化技術群中已有的技術重新整合到了一起,提出了整體性創新性概念,給出了綜合性的應用場景,從而煥發出了新的生命力。加速「訓練元宇宙」的發展,要加速演算法引擎、網路通訊等基礎軟硬體技術研究,強化人工智慧、數字孿生、區塊鏈、物聯網等核心技術的研發能力,同時也要加強沉浸性、社交性、開放性、協作性、去中心化等元宇宙整體性技術設計與研發。

創設訓練種類。從時空視角來看,元宇宙可能構造出龐大無比的虛擬戰爭空間,重現戰爭環境,呈現戰爭進程,虛擬戰爭未來。應建構基於元宇宙的智慧化軍訓運行體系,及時更新軍事訓練思維理念,深化軍事訓練模式、管理保障、法規機制等創新。建構基於元宇宙的動態高階的實戰化軍事訓練環境,全面支持戰略、戰役和戰術訓練以及戰爭推演。同時,在軍事訓練「智適應」運作過程中,實現拓展生慧,向「創新開放、多元迭代、新智生態」的軍事訓練未知空間智能演進。

重視風險防控。從安全可控上看,元宇宙概念與技術為智慧化軍事訓練帶來創新機遇,但不容忽視的是技術本身伴生的潛在風險。元宇宙龐大的技術群,其體系架構、關鍵技術和應用環境等尚處於開發落地階段,配套防護體系、安全技術、管理標準等都會帶來安全風險,加上建設過程中多種新興技術的集成運用,運用過程中的復雜性與保密性,都將是軍事訓練元宇宙重點防範和風險挑戰的未知數。

中國原創軍事資源:http://www.81.cn/yw_208727/16280522888.html

Chinese Military Laws to Follow to Win Intelligent Warfare

打贏智慧化戰爭的中國軍事法規

現代英語:

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan Feiyi

Editor-in-charge: Wang Feng

无命题8

2021-03-16 10:xx

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

現代國語:

无命题8

資料來源:解放軍報作者:郝敬東 牛玉俊 段非易責任編輯:王鳳2021-03-16 10:xx
要點提示

●認識智慧化戰爭規律,要抓住智慧化和自主化這個基礎,抓住建構戰爭知行體系這個關鍵,抓住戰爭力量內涵發生改變這個實質。

●戰爭指導者須動態地檢視智慧化戰爭,敏銳捕捉智慧化戰爭孕育的新質要素,正確分析新質要素之間關係的變化,不斷對智慧化戰爭進行再認識。

習主席指出,要認真研究軍事、研究戰爭、研究打仗,掌握現代戰爭規律和戰爭指導規律。今天,戰爭的智慧化特徵日益凸顯,智慧化戰爭已經展現出早期形態的樣貌。要掌握未來智慧化戰爭主動權,就應積極追蹤現代戰爭發展,緊貼現實軍事鬥爭準備,前瞻認識智能化戰爭規律,深刻把握其指導規律,著力回答「是什麼」、解決 「怎麼做」等問題,不斷創新戰爭和戰略指導。

回答“是什麼”,前瞻認識智慧化戰爭規律

毛澤東同志指出:“戰爭的規律——這是任何指導戰爭的人不能不研究和不能不解決的問題。”今天,在智能化戰爭初顯端倪之際,應前瞻認識智能化戰爭“是什麼”,否則就不能解決“怎麼做”,更不可能駕馭未來戰爭。

智慧化戰爭規律是戰爭知行體系的重建。智慧化戰爭規律,和冷兵器戰爭、熱兵器戰爭、機械化戰爭、資訊化戰爭的規律一樣,是戰爭諸要素間內在的、本質的聯繫,不同之處在於它有新質的要素和新的要素間的構成模式,本質上是基於智能化革命所引發的戰爭知行體系的重建。今天,認識智慧化戰爭規律,要抓住智慧化和自主化這個基礎,抓住建構戰爭知行體系這個關鍵,抓住戰爭力量內涵發生改變這個實質。掌握這些規律,就能克服未來戰爭中的紛亂和不確定性,從中找出條理和確定性,這是應對智慧化戰爭的客觀要求。

智慧化戰爭規律是戰爭指導規律的依據。毛澤東在《中國革命戰爭的戰略問題》中,首先分析了中國革命戰爭的特點,揭示了戰爭規律,然後“由此產生我們的戰略戰術”,即戰爭指導規律;在《論持久戰》中,他首先說明了“是什麼”,再轉到研究“怎麼做”的問題上,體現了一種認識過程的邏輯順序。今天,研究智慧化戰爭仍應遵循此順序,既不能本末倒置,顛倒順序;也不能增加、減少或更換環節。要在掌握智能自主這項根本規律的基礎上,揭示自主感知、自主規劃、自主實施、自主連結、自主評估等戰爭指導規律。

不懂得智慧化戰爭規律,就不能指導戰爭。 《孫臏兵法》指出:「知道,勝」「不知道,不勝」。道是戰爭規律,掌握它、行動符合它,就能取勝;反之,則敗。毛澤東也強調:「不知道戰爭的規律,就不知道如何指導戰爭,就不能打勝仗。」同樣,掌握智慧化戰爭規律,是正確指導智能化戰爭的前提。否則,就難免被智慧化戰爭的表面現象所迷惑。今天,要透過分析智能化技術群對戰爭的基礎性、長遠性和顛覆性影響,研究智能化戰爭是什麼樣子?有哪些規律?該怎麼打?這些都是智慧化戰爭指導必須回答的重大議題。

解決“怎麼做”,揭示掌握智慧化戰爭指導規律

智慧化戰爭指導規律是運用智慧化戰爭規律指導實踐的中介,扮演「橋」和「船」的角色。應在回答「是什麼」的基礎上解決「怎麼做」的問題,提出智能化戰爭的「游泳術」。

智慧化戰爭指導規律是運用戰爭規律的規律。認識戰爭規律的目的在於應用。馬克思指出:「哲學家們只是用不同的方式解釋世界,而問題在於改變世界。」同樣,智慧化戰爭本身迫使指揮者不發現規律則已,一旦發現,就會結合能動性,利用規律為打贏戰爭服務,這就必然導致智能化戰爭指導規律的產生。今天,戰爭是政治的繼續仍是智能化戰爭規律,由此得出智能化戰爭必須服從服務於政治的指導規律;兵民是勝利之本仍是智能化戰爭規律,由此得出最廣泛地動員民眾的指導規律,等等。這些智慧化戰爭指導規律是戰爭規律衍生出來的,是「智慧化戰爭大海中的游泳術」。

充分發揮人在智慧化戰爭中的能動作用。恩格斯說:「贏得戰鬥勝利的是人而不是槍。」智慧化戰爭指導規律是實踐規律、使用規律。它不是對智慧化戰爭規律的簡單“移用”“照搬”,而是加上人的主觀能動性,才能轉化為戰爭指導規律。今天,掌握人工智慧的軍事人才,不僅是智慧化武器的操控者,更是人工智慧的創造者。人在智慧化人機系統中仍處於主體地位,是智慧化戰爭勝負的決定性因素。指揮者應在掌握智慧化戰爭規律的基礎上,充分發揮能動性,堅持「技術+謀略」的作戰理論生成模式,才能由回答「是什麼」轉變為解決「怎麼做」。

智慧化戰爭指導規律是不斷發展的。戰爭是一條「變色龍」。智慧化戰爭本身也會經歷萌芽、發展、成熟等不同階段,必然帶來智慧化戰爭指導規律的發展。戰爭指導者須動態地檢視智能化戰爭,敏銳捕捉智慧化戰爭孕育的新質要素,正確分析新質要素之間關係的變化,不斷對智慧化戰爭進行再認識。要緊跟戰爭形態向智能化加速邁進的歷史進程,把握智能化戰爭發展方向和時代脈搏,把對智能化戰爭指導規律的研究推向新境界,在未來戰場佔據戰略主動和先機。

緊盯“主動權”,不斷創新智慧化戰爭和戰略指導

兵無常勢,水無常形。在智慧化戰爭已然來臨之際,要在遵循智能化戰爭規律和指導規律的基礎上,緊貼現實軍事鬥爭準備,加強對手研究、敵情研究,主動設計“在什麼時間”“在什麼地點”“和誰打仗”,創新戰爭和戰略指導,牢牢掌握未來戰爭的戰略主動權。

你打你的,我打我的。戰爭指導藝術的最高境界,就是你打你的、我打我的。 「各打各的」要求指揮在未來智能化戰爭中,無論處於怎樣複雜、困難的環境,首先要立足自身實際,獨立自主地使用自己的力量。特別是擁有高技術裝備之敵,可能造成暫時的局部的敵之主動、我之被動的局面,這時要透過政治、經濟、外交等綜合手段,以總體有利態勢彌補武器上的劣勢,迅速扭轉這一局面,恢復主動地位。如果被戰略對手牽著鼻子走,就可能吃大虧。

把握時機,因時用兵。 《六韜》指出:「用之在於機。」若米尼強調:「全部戰爭藝術就在於善於待機而動。」一方面,時不至,不可強動。要持重時機,時機未到,應有極大耐心,防止策略盲動。另一方面,時不再來,機不可失。要善於把握時機,一旦遇上有利時機,就要堅決利用,防止畏首畏尾。需要指出的是,要辯證地看待時機成熟問題。未來智慧化戰爭瞬息萬變,要求快速決策,而面對不確定性因素,必須謹慎決策。有時及早定下決心,比明天下達更完善的決心也許更有效。因此,要敢於冒一點風險,不然會坐視成功機會的喪失。

各域有別,因地運籌。克勞塞維茨指出:「戰爭不像長滿莊稼的田地,而像長滿大樹的土地。收割莊稼時不需要考慮每棵莊稼的形狀,收割得好壞取決於鐮刀的好壞;而用斧頭砍伐大樹時,就必須注意到每棵大樹的形狀和方向。」戰略空間不同,戰爭就不同,戰爭指導也不一樣。目前,戰場空間不斷由陸海空等傳統空間向太空、網路等新型空間拓展,戰爭指導者應根據​​多域性、立體性、網路性等特點,探索新的智慧化戰爭規律和指導規律。

瞄準對手,因敵制勝。 《孫子兵法》指出:「踐墨隨敵,以決戰事。」約米尼也說:「不管是誰,如果不了解敵人,怎能知道自己應該如何行動呢?」著眼未來,聰明的戰略家應根據輕重、緩急程度,把作戰對象區分為主要作戰對象和一般作戰對象、現實作戰對象和潛在作戰對象,全面客觀地了解不同作戰對象的戰略意圖、兵力部署、作戰構想等,提出能充分發揮己方戰力優長的新的智能化戰爭指導規律,實施正確的戰爭行動。

總之,智慧化戰爭規律是認識過程中的規律,解決「是什麼」;指導規律是實踐過程中的規律,解決「怎麼做」。二者辯證統一,不可分割,構成了認識和指導智能化戰爭的完整鏈。 「戰勝不復,而應形於無窮。」今天,戰爭和戰略指導者應基於客觀情況,深入探索和靈活運用智能化戰爭規律和戰爭指導規律,與時俱進創新戰爭和戰略指導。

(作者單位:軍事科學學院戰爭研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f888

China’s Military Meeting Challenges of Intelligent Warfare with New Concepts

中國軍隊以新概念應對智慧化戰爭挑戰

現代英語:

Preface

The breakthrough achievements of artificial intelligence technology marked by deep learning and its application in various fields have pushed intelligence to a new high in the global wave and become the focus of attention from all parties. In the military field, which has never been willing to lag behind in technological innovation and application, a new revolution is also being actively nurtured. We must accurately grasp the evolution of intelligent warfare and analyze the inner essence of intelligent warfare in order to welcome and control intelligent warfare with a brand new look.

How far are we from intelligent warfare?

Intelligent warfare is a war that is mainly supported by artificial intelligence technology. It has been the dream of people for thousands of years to endow weapon platforms with human intelligence and replace humans in the battlefield. With the powerful impact brought to the world by artificial intelligence systems represented by AlphaGo and Atlas, and the emergence of new combat concepts and new platforms such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The law of historical development indicates that intelligent warfare will inevitably enter the battlefield. The progress of science and technology promotes the evolution of weapons and equipment, triggers fundamental changes in military organization, combat methods and military theories, and ultimately forcibly promotes historical changes in the form of war. The arrival of intelligent warfare also conforms to this inevitable law of historical development. Looking back at the evolution of human warfare, every major progress in science and technology has promoted major changes in the military. The invention of black powder has made human warfare evolve to the era of hot weapons. Infantry and cavalry formations were completely wiped out under the line-of-gun warfare. The use of steam engines in the military has made human warfare evolve to the mechanized era, and has further given rise to large-scale mechanized warfare led by armored ships, tanks, and airplanes. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, and once again set off major changes in the military. Intelligent warfare will inevitably enter the war stage.

The development of artificial intelligence technology determines the pace of intelligent warfare. The continuous development and widespread application of artificial intelligence technology have pushed intelligent warfare from chaos to reality. It has begun to sprout, grow gradually, and come to us step by step. To truly enter intelligent warfare, artificial intelligence technology needs to reach four levels. The first level is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near-real-time computing power and storage capacity, which is far beyond the reach of large computers and huge servers. The widespread application of cloud computing has steadily brought humans to the first level. The second level is perceptual intelligence, which means that the machine can understand what it hears, see what it sees, distinguish what is true, and recognize what it knows clearly, and can communicate directly with people. Natural language understanding, image and graphic recognition, and biometric recognition technologies based on big data have allowed humans to reach the second level. The third level is cognitive intelligence, which means that the machine can understand human thinking, think and reason like humans, and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms have allowed humans to strive to move towards the third level. The fourth stage is human-machine fusion enhanced intelligence, which is to combine the perception, reasoning, induction, and learning that humans are good at with the search, calculation, storage, and optimization that machines are good at, to complement each other’s advantages and interact in a two-way closed loop. Virtual reality enhancement technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humans can move towards the fourth stage. When humans stepped onto the second stage, intelligent warfare began to approach us; when we step onto the fourth stage, the era of intelligent warfare will be fully opened.

Self-learning growth accelerates the sudden arrival of intelligent warfare changes. The ability to “learn” is the core ability of artificial intelligence. Once a machine can learn by itself, its learning speed is amazing. Once a machine has the ability to self-learn, it will enter a rapid growth track of “improving intelligence and accelerating evolution” repeatedly. All technical difficulties in the direction of intelligent warfare will be solved as “learning” deepens. The era of intelligent warfare is likely to arrive suddenly in a way that people can’t imagine!

What will intelligent warfare change?

Intelligent warfare will break through the limits of traditional time and space cognition. In intelligent warfare, artificial intelligence technology can collect, calculate, and push all kinds of action information of all forces in combat in real time and in all domains, enabling humans to break through the logical limits of thinking, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space, and being able to accurately control all actions of all forces in real time, and to achieve rapid jump, gathering, and attack of superior combat resources in multi-dimensional space and multi-dimensional domains. Any space at any time may become a time and space point for winning the war.

Intelligent warfare will reconstruct the relationship between humans and weapons and equipment. With the rapid advancement of intelligent technology and the continuous improvement of the level of intelligence, weapon platforms and combat systems can not only passively and mechanically execute human instructions, but also can, based on deep understanding and deep prediction, super-amplify through the calculation, storage, and query that machines are good at, so as to autonomously and actively perform specific tasks in a certain sense. It can be said that weapon platforms and combat systems can also actively exert human consciousness to a certain extent, even beyond the scope of human cognition, and complete combat tasks autonomously and even creatively according to specific procedures. The distinction between humans and weapons and equipment in the traditional sense has become blurred, and it is even difficult to distinguish whether it is humans or machines that are playing a role. People exclaimed that “humans and weapons and equipment will become a partnership.” Therefore, in intelligent warfare, although humans are still the most important factor in combat effectiveness, the change in the way humans and weapons and equipment are combined has enriched the connotation of combat effectiveness, and the traditional relationship between humans and weapons and equipment will also be reconstructed on this basis.

Intelligent warfare will give rise to the emergence of new combat methods. The epoch-making progress of science and technology will inevitably bring about revolutionary changes in combat methods; major progress in intelligent technology will inevitably bring about an active period of change in combat methods. On the one hand, the continuous emergence of new technologies in the fields of deep cognition, deep learning, deep neural network, etc. driven by computing, data, algorithms, and biology, as well as the cross-integration of achievements in the fields of information, biology, medicine, engineering, manufacturing, etc., will inevitably promote the emergence of new combat methods. On the other hand, the fierce confrontation between intelligent weapon platforms and combat systems will inevitably become the goal and driving force of innovative combat methods. In war, the more intelligent the parts are, the more they become the focus of confrontation. The differences in advantages in terms of space-time cognitive limits, massive information storage and computing capabilities, and neural network organization generation capabilities will bring about new areas of “blinding”, “deafening”, and “paralyzing” combat methods.

Intelligent warfare will incubate a completely new command and control method. The advantages of command and control are the focus of attention in the field of warfare, and intelligent warfare calls for a completely new command and control method. First, human-machine collaborative decision-making has become the main command and decision-making method in intelligent warfare. In previous wars, command and decision-making were all led by commanders, with technical means as auxiliary decision-making. In intelligent warfare, intelligent auxiliary decision-making systems will actively urge or urge commanders to make decisions based on new battlefield situation changes. This is because in the face of massive and rapidly changing battlefield situation information data, the human brain can no longer quickly accommodate and efficiently process it, and human senses can no longer withstand the extraordinary speed of change. In this case, decisions made solely by commanders are likely to be late and useless. Only human-machine collaborative decision-making driven by intelligent decision-making assistance systems can make up for the time and space differences and the machine-computer differences and ensure the command decision-making advantage. Second, brain neural control has become the main command control method in intelligent warfare. In previous wars, commanders issued commands to command and control troops step by step through documents, radios, and telephones in the form of documents or voice. In intelligent warfare, commanders use intelligent brain-like neurons to issue commands to troops through the neural network combat system platform, which reduces the conversion process of command expression forms, shortens the conversion time of commands across media, and is faster and more efficient. When the combat system platform is partially damaged by an attack, this command and control method can autonomously repair or reconstruct the neural network, quickly restore the main function or even all functions, and have stronger anti-attack capabilities.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content to lag behind, but must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Use breakthroughs in intelligent technology to promote the leap in the effectiveness of intelligent combat systems. Although the development of intelligent technology has made great progress in neural network algorithms, intelligent sensing and networking technology, data mining technology, knowledge graph technology, etc., it is still in the weak intelligence stage overall and is far from reaching the advanced stage of strong intelligence. There is still broad room for development in the future. We must strengthen basic research on artificial intelligence, follow the laws of scientific and technological development, scientifically plan the direction of intelligent technology development, select technical breakthroughs, and strengthen key core technologies of artificial intelligence, especially basic research that plays a supporting role. Highlight research on key military technologies. Guided by military needs, we will develop intelligent reconnaissance and perception systems, command and control systems, weapon equipment systems, combat support systems and other weapons and equipment around key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support. We will focus on military-civilian scientific and technological collaborative innovation, give full play to the advantages of civilian intelligent technology development, rely on the superior resources of the military and the local area, strengthen military-civilian strategic cooperation, build a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the joint connection of general standards between the military and the local area, and form a new situation of open, integrated, innovative and development of intelligent combat technology.

Leading innovation in combat methods with the concept of intelligent warfare. To meet the arrival of intelligent warfare, changing concepts is a prerequisite. Concepts are the forerunner of action. If our concepts remain at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has undergone profound changes in technical support, combat power, and winning mechanisms. We must first establish the concept of intelligent warfare and use it to lead the innovation of our army’s future combat methods. First, we must strengthen the competition for “intellectual property rights.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to use intelligence in combat and maintaining the freedom of one’s own intelligence use are the basis for ensuring the smooth implementation of intelligent warfare. The armies of developed Western countries are exploring various means such as electromagnetic interference, electronic suppression, high-power microwave penetration and takeover control to block the opponent’s intelligent application capabilities, seize “intelligence control”, and thus seize battlefield advantages. Second, innovate intelligent combat methods. We must focus on giving full play to the overall effectiveness of the intelligent combat system, strengthen the research on new intelligent combat methods such as human-machine collaborative intelligent combat, intelligent robot combat, and intelligent unmanned swarm combat, as well as the processes and methods of intelligent combat command and intelligent combat support. Focus on effectively responding to the enemy’s intelligent combat threats and study strategies to defeat the enemy, such as intelligent blocking warfare and intelligent disruption warfare.

Use intelligent training innovation to promote the transformation of combat power generation mode. Intelligent warfare will be a war jointly implemented by humans and machines, and combat forces with intelligent unmanned combat systems as the main body will play an increasingly important role. It is necessary to adapt to the new characteristics of the intelligent warfare force system, innovate and develop intelligent training concepts, and explore new models for the generation of intelligent warfare combat power. On the one hand, it is necessary to strengthen the training of “people” driving intelligent systems. Relying on big data, cloud computing, VR technology, etc., create a new training environment, continuously improve people’s intelligent literacy, improve the quality of human-machine cognition, understanding, and interaction, and enhance the ability of people to drive intelligent combat systems. On the other hand, it is necessary to explore a new training model with “machines” as the main object. In the past, training was basically human-centered, focusing on people’s proficiency in mastering and using weapons and equipment in a specific environment to improve combat effectiveness. In order to adapt to the new characteristics of the intelligent warfare force system, the training object should change the traditional human-centered training organization concept and model, focus on improving the self-command, self-control, and self-combat capabilities of the intelligent combat system, make full use of the characteristics of the intelligent system’s ability to self-game and self-grow, and form a training system, training environment, and training mechanism specifically for the intelligent combat system, so that the intelligent combat system can obtain a geometric leap in combat capability after a short period of autonomous reinforcement training.

現代國語:

來源:解放軍報 作者:李始江 楊子明 陳分友 責任編輯:喬楠楠 2018-07-26 08:23:16
前言

以深度學習為標志的人工智慧技術突破性成果及其在各領域的應用,將智慧化推上了全球浪潮的新高,也成為各方關注的焦點。在科技創新與應用從未甘落後的軍事領域,也正在積極孕育一場新的變革。我們必須準確把握智能化戰爭的演進脈搏,透析智能化戰爭的內在本質,才能以嶄新的面貌迎接和駕馭智能化戰爭。

智慧化戰爭究竟離我們有多遠?

智能化戰爭,是以人工智慧技術為主要支撐的戰爭。賦予武器平台以人的智慧並取代人在戰場上廝殺,是千百年來人們夢寐以求的願望。隨著AlphaGo和Atlas為代表的人工智慧系統帶給世人的強大沖擊,蜂群作戰、飛行航空母艦等作戰新概念、新平台的初露端倪,智慧化戰爭大門彷彿正在悄然打開。

歷史發展規律預示著智慧化戰爭必將走上戰爭舞台。科學技術的進步推動武器裝備的演進,引發軍隊編成、作戰方式和軍事理論的根本性變化,並最終強制推動戰爭形態的歷史性變革。智能化戰爭的到來也符合這個歷史發展的必然規律。回顧人類戰爭的演變歷程,每一次科學技術的重大進步,都推動著軍事上的重大變革。黑火藥的發明使人類戰爭進化到熱兵器時代,步兵方陣、騎兵方陣在火槍線式作戰方式下被消滅的蕩然無存;蒸汽機在軍事上的運用使人類戰爭進化到機械化時代,並進而催生了以裝甲艦、坦克、飛機引領的大規模機械化戰爭。智慧化技術的出現與應用,必將深刻改變人類認知、戰爭思維與作戰方式,再一次掀起軍事上的重大變革,智慧化戰爭必將走上戰爭舞台。

人工智慧技術的發展進程決定著智慧化戰爭邁進的腳步。人工智慧技術的不斷發展與廣泛應用,推動智慧化戰爭從混沌走向現實,開始萌芽、逐漸成長,一步一步向我們走來。真正進入到智慧化戰爭,人工智慧技術需要邁上四階。第一級台階是計算智能,即突破計算能力的限制、突破存儲空間的限制,實現近乎實時的計算能力和存儲能力,這種能力是大型計算機和龐大服務器遠遠不可比擬的。雲計算的廣泛應用已經將人類穩穩地送上了第一級台階。第二級台階是感知智能,即機器能夠聽得懂、看得懂、辨得真、識得清,能夠與人進行直接交流對話。以大數據為基礎的自然語言理解、圖像圖形認知、生物特徵識別技術,讓人類走上了第二級台階。第三級台階是認知智能,即機器能夠理解人類的思維,能夠像人類一樣進行思考與推理,像人類一樣進行判斷和決策。以深度學習演算法為驅動的知識挖掘、知識圖譜、人工神經網絡、決策樹技術,讓人類努力邁向第三級台階。第四級台階是人機融合式增強型智能,即將人類擅長的感知、推理、歸納、學習,與機器擅長的搜尋、計算、儲存、優化,進行優勢互補、雙向閉環互動。虛擬現實增強技術、類腦認知技術、類腦神經網絡技術,正在探索人類如何邁向第四級。當人類走上第二級台階,智慧化戰爭開始向我們走來;當我們踏上第四級台階時,智慧化戰爭的時代就將全面開啟。

自我學習成長加速著智慧化戰爭變革的突然降臨。 「學習」能力是人工智慧最核心的能力,一旦機器能夠自我學習,其學習速度是驚人的。機器一旦具備自我學習的能力,就會進入一個不斷反復的「提升智慧、加快進化」的快速成長軌道,邁向智慧化戰爭的所有技術困難將隨著「學習」的深入迎刃而解,智能化戰爭時代很可能會以人們意想不到的方式突然降臨!

智能化戰爭究竟會改變什麼?

智能化戰爭將突破傳統時空認知的極限。在智慧化戰爭中,人工智慧技術能夠全時、全局對作戰中全部力量的各種行動信息,進行實時收集、實時計算、實時推送,使人類能夠突破思維的邏輯極限、感官的生理極限和存在的物理極限,大大提高對時間空間的認知範疇,能夠實時精準地掌控所有力量的所有行動,能夠在多維空間、多維空間、多維領域的優勢

智慧化戰爭將重構人與武器裝備的關系。隨著智慧化技術的快速進步,智慧化程度的不斷提升,武器平台和作戰體係不僅能夠被動、機械地執行人的指令,而且能夠在深度理解和深度預測的基礎上,通過機器擅長的算、存、查進行超級放大,從而在一定意義上自主、能動地執行特定任務。可以說,武器平台和作戰體係也可以在某種程度上主動地發揮出人的意識,甚至是超出人類的認識範疇,根據特定程序自主地、甚至是創造性地完成作戰任務,傳統意義上人與武器裝備的區別變得模糊,甚至難以區分是人在發揮作用還是機器在發揮作用,人們驚呼“人與武器裝備將成為夥伴關系”。因此,在智慧化戰爭中,人雖然仍是戰鬥力中最主要的因素,但人與武器裝備結合方式的改變豐富了戰鬥力的內涵,人與武器裝備的傳統關係也將在此基礎上進行重構。

智慧化戰爭將催生新型作戰方式的湧現。科學技術劃時代的進步,必然使作戰方式發生革命性的變化;智慧化技術的重大進步,必然帶來作戰方式變革的活躍期。一方面,以計算、數據、演算法、生物為驅動力的深度認知、深度學習、深度神經等領域不斷湧現的新技術,以及與資訊、生物、醫學、工程、製造等領域成果的交叉融合,必然推動新型作戰方式井噴式的湧現。另一方面,智慧化武器平台與作戰體系的激烈對抗,必然成為創新作戰方式的目標與動力。戰爭中智慧化技術程度越高的部位,越成為對抗中的焦點,時空認知極限、海量資訊存儲計算能力、神經網絡組織生成能力等方面的優勢差,將會帶來新領域的「致盲」「致聾」「致癱」作戰方式。

智慧化戰爭將孵化全新的指揮控制方式。指揮控制的優勢是戰爭領域的關注焦點,智慧化戰爭呼喚全新的指揮控制方式。一是人機協同決策成為智慧化戰爭中主要的指揮決策方式。以往戰爭中的指揮決策,都是以指揮為主導,牽引技術手段的輔助決策。在智慧化戰爭中,智慧輔助決策系統將根據新的戰場態勢變化,主動督促或催促指揮員做出決策。這是因為面對海量的、瞬息萬變的戰場態勢資訊數據,人的大腦已經無法快速容納和高效處理、人的感官已經無法承受超常規的變化速度。在這種情況下,單純依靠指揮員形成的決策很可能是遲到的、無用的決策。只有在智慧化輔助決策系統推動下的人機協同決策,才能夠彌補時空差和機腦差,確保指揮決策優勢。二是腦神經控製成為智慧化戰爭中主要的指令控制方式。以往戰爭中,指揮員透過文件、電台、電話,以文書或語音的形式,逐級下達指令指揮控制部隊。在智慧化戰爭中,指揮員用智慧化類腦神經元,透過神經網絡作戰體系平台向部隊下達指令,減少了指令表現形式的轉換過程,縮短了指令跨媒體的轉換時間,節奏更快、效率更高。當作戰體系平台遭到攻擊部分破壞時,這種指揮控制方式能夠自主修復或自主重構神經網絡,迅速恢復主體功能甚至全部功能,抗打擊能力更強。

我們應該如何迎接智能化戰爭?

在智慧化作戰的研究與探索中,絕不能甘於落後追隨,必須瞄準打贏未來戰爭,要以更主動的姿態、先進的理念、積極的行動,迎接智慧化戰爭的挑戰。

以智慧化技術突破推動智慧化作戰體系效能躍升。智慧化技術的發展目前雖然在神經網絡演算法、智慧傳感與組網技術、數據挖掘技術、知識圖譜技術等方面有了較大進展,但總體而言仍處於弱智能階段,遠未達到強智能高級階段,未來仍有廣闊的發展空間。要強化人工智慧基礎研究,遵循科學技術發展的規律,科學規劃智慧化技術發展方向,選好技術突破口,加強人工智慧關鍵核心技術,特別是起支撐作用的基礎性研究。突出軍用關鍵技術研究。以軍事需求為牽引,圍繞智慧感知、智慧決策、智慧控制、智慧打擊、智慧保障等軍用關鍵技術,發展智慧化偵察感知系統、指揮控制系統、武器裝備系統、作戰保障系統等武器裝備。抓好軍民科技協同創新,充分發揮民用智慧技術發展優勢,依托軍地優勢資源,強化軍地戰略協作,搭建人工智慧科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成智慧化作戰科技開放融合創新發展新局面。

以智能化作戰理念引領作戰方式創新。迎接智能化戰爭的到來,轉變觀念才是前提。觀念是行動的先導,如果我們的觀念還停留在傳統層面,就難以適應智慧化戰爭的需要。智慧化戰爭在技術支撐、作戰力量、制勝機理等方面都發生了深刻變化,要求我們必須先確立智慧化戰爭理念,並以此引領我軍未來作戰方式創新。一是要強化「制智權」爭奪。人工智慧是智慧化戰爭的基礎,作戰中剝奪和削弱對手智慧運用能力,保持己方智慧運用的自由,是確保智慧化作戰順利實施的基礎。西方發達國家軍隊正探索通過電磁幹擾、電子壓制、高功率微波穿透和接管控制等多種手段,阻斷對手的智能運用能力,奪取“制智權”,從而奪取戰場優勢。二是創新智能化作戰方式方法。要著眼於充分發揮智慧化作戰體系整體效能,加強人機協同智慧作戰、智慧化機器人作戰、智慧無人群聚作戰等的新的智慧化作戰方式方法研究,以及智慧化作戰指揮、智慧化作戰保障的流程與方式方法等。著眼有效應對敵智能化作戰威脅,研究克敵制勝之策,如智慧阻斷戰、智慧擾亂戰等。

以智慧化訓練創新催生戰鬥力生成模式轉變。智慧化戰爭將是人機結合共同實施的戰爭,以智慧化無人作戰系統為主體的作戰力量將發揮越來越重要的作用。必須適應智慧化戰爭力量體系新特點,創新發展智慧化訓練概念,探索智慧化戰爭戰鬥力生成新模式。一方面,要強化「人」駕馭智慧系統訓練。依託大數據、雲計算、VR技術等創設新型訓練環境,不斷提升人的智慧化素養,改善人機認知、理解、互動品質,提升人駕馭智慧化作戰系統的能力。另一方面,要探索以「機」為主體對象的新型訓練模式。過去的訓練基本是以人為主體對象的訓練,聚焦於人在特定環境下熟練掌握和使用武器裝備提高作戰效能。適應智慧化戰爭力量體系構成新特點,在訓練的對像上改變傳統訓練中以人為中心的訓練組織理念和模式,聚焦於智能化作戰系統自我指揮、自我控制、自我作戰能力的提升,充分利用智能化系統能夠自我博弈、自我成長的特點,形成專門針對智能化作戰系統訓練體系、訓練環境和訓練機制,從而使智能化作戰系統獲得短期的自主訓練即可升躍獲得短期能力強化的倍數。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/482056188.html?

China’s position paper on regulating military applications of artificial intelligence

中國關於規範人工智慧軍事應用的立場文件

現代英語:

The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.

AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.

Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.

Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.

We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.

To this end, we call for:

– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.

– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.

– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values ​​of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.

– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.

– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.

– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.

——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.

– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.

現代國語:

人工智慧技術的快速發展及其廣泛應用,正深刻改變人類生產和生活方式,為世界帶來巨大機會的同時,也帶來難以預測的安全挑戰。特別值得關注的是,人工智慧技術的軍事應用,在戰略安全、治理規則、道德倫理等方面可能產生深遠影響和潛在風險。

人工智慧安全治理是人類面臨的共同課題。隨著人工智慧技術在各領域的廣泛應用,各方普遍對人工智慧軍事應用甚至武器化風險感到擔憂。

在世界和平與發展面臨多元挑戰的背景下,各國應秉持共同、綜合、合作、可持續的全球安全觀,透過對話與合作,就如何規範人工智慧軍事應用尋求共識,建構有效的治理機制,避免人工智慧軍事應用為人類帶來重大損害甚至災難。

加強對人工智慧軍事應用的規範,預防和管控可能引發的風險,有利於增進國家間互信、維護全球戰略穩定、防止軍備競賽、緩解人道主義關切,有助於打造包容性和建設性的安全夥伴關係,在人工智慧領域實踐建構人類命運共同體理念。

我們歡迎各國政府、國際組織、技術企業、科研院校、民間機構和公民個人等各主體秉持共商共建共享的理念,協力共同促進人工智慧安全治理。

為此,我們呼籲:

——戰略安全上,各國尤其是大國應本著慎重負責的態度在軍事領域研發和使用人工智慧技術,不謀求絕對軍事優勢,防止加劇戰略誤判、破壞戰略互信、引發衝突升級、損害全球戰略平衡與穩定。

——在軍事政策上,各國在發展先進武器裝備、提高正當國防能力的同時,應銘記人工智慧的軍事應用不應成為發動戰爭和追求霸權的工具,反對利用人工智慧技術優勢危害他國主權和領土安全的行為。

——法律倫理上,各國研發、部署和使用相關武器系統應遵循人類共同價值觀,堅持以人為本,秉持「智能向善」的原則,遵守國家或地區倫理道德準則。各國應確保新武器及其作戰手段符合國際人道法和其他適用的國際法,努力減少附帶傷亡、降低人員財產損失,避免相關武器系統的誤用惡用,以及由此引發的濫殺。

——在技術安全上,各國應不斷提昇人工智慧技術的安全性、可靠性和可控性,增強對人工智慧技術的安全評估和管控能力,確保相關武器系統永遠處於人類控制之下,保障人類可隨時中止其運作。人工智慧資料的安全必須得到保證,應限制人工智慧資料的軍事化使用。

——研發作業上,各國應加強對人工智慧研發活動的自我約束,在綜合考慮作戰環境和武器特性的基礎上,在武器全生命週期實施必要的人機互動。各國應時常堅持人類是最終責任主體,建立人工智慧問責機制,對操作人員進行必要的訓練。

——風險管控上,各國應加強對人工智慧軍事應用的監管,特別是實施分級、分類管理,避免使用可能產生嚴重負面後果的不成熟技術。各國應加強對人工智慧潛在風險的研判,包括採取必要措施,降低人工智慧軍事應用的擴散風險。

——規則制定上,各國應堅持多邊主義、開放包容的原則。為追蹤科技發展趨勢,防範潛在安全風險,各國應進行政策對話,加強與國際組織、科技企業、技術社群、民間機構等各主體交流,增進理解與協作,致力於共同規範人工智慧軍事應用並建立普遍參與的國際機制,推動形成具有廣泛共識的人工智慧治理框架和標準規範。

——國際合作上,已開發國家應協助發展中國家提升治理水平,考慮到人工智慧技術的軍民兩用性質,在加強監管和治理的同時,避免採取以意識形態劃線、泛化國家安全概念的做法,消除人為製造的科技壁壘,確保各國充分享有技術發展與和平利用的權利。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjb_673085/zzjg_673183/jks_674633/zclc_674645/rgzn/202206/t20220614_1070283888.shtml