Category Archives: #Chinese #Space #Warfare

Concept of future human-machine integrated forces

中國未來人機一體化軍事構想

現代英語:

At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.

The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.

USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.

On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.

The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.

On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.

According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.

In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment

The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.

Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).

It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.

In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.

On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.

Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.

Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.

Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.

On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.

The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.

At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.

It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force

With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.

In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”

In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.

The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.

Source: China Aviation News Author: Wei Yuejiang Editor-in-charge: Wu Xingjian 2021-03-26 08:0x

現代國語:

目前,從世界上主要國家編制體制改革發展情況看,軍隊正向精干、小型、高效、智能、“人機(機器人無人機)”一體方向發展,謀求機器人士兵、無人機與人類戰士一起並肩協同、聯合作戰。據統計,目前全球超過60個國家的軍隊已裝備了軍用機器人,種類超過150種。預計到2040年,世界軍事強國可能會有一半的成員是機器人。除美、俄、英、法、日、以色列、土耳其、伊朗等國家已相繼推出各自的機器人戰士外,其他國家也投入到這場無人化武器的研制與開發中去。

世界軍事強國將掀起組建無人作戰部隊爭鋒熱潮所謂無人作戰部隊,就是作戰機器人或者戰場殺人機器人系統的統稱。隨著各類信息化、精確化、數據化武器裝備的發展,智能化平台成為預先設計戰場的推手,作戰機器人成為戰場的主力軍,人機結合對抗成為克敵制勝的關鍵,未來戰場空間力量將凸顯陸海空三維無人化發展趨勢。

《今日美國報》曾發表的《新型機器人把戰爭帶入下一個層次:無人戰爭》一文中,這樣描述無人化戰爭:無人機編隊蜂擁而來,用精密的儀器探測、偵察與反偵察,它們鎖定目標後,從容地發射導彈;自動編程的無人潛艇,執行水下搜索、偵察、排除水雷等多種任務;地面戰場上,機器人負責彈藥、醫療補給和食物的配送……未來戰爭中,這些或許將成為現實。

在陸地,能執行特定任務的各種機器人,就是機械化、信息化、智能化高度融合的機動打擊平台。如:無人坦克,就是以自身程序控制為主的無人化履帶式裝甲平台,可讓士兵們遠程控制,以遠距離攻擊型智能化武器、信息化武器為主導,能自動裝載彈藥和自主發射,實施遠程間接精確打擊,有效降低士兵傷亡率。在海洋,各種無人潛艇、無人戰艦等,可航行數千英裡,無需船上人員操控就能執行各種海上作戰任務。在空中,實戰部署的人為控制操作的無人機系統,就是一種具有自己偵察判斷、人為控制、察打一體、自主攻擊、人機協同的無人機系統平台。

無人機武器在戰爭中的運用凸顯其作戰能力,必然牽引世界各國軍隊緊鑼密鼓組建無人作戰部隊。在伊拉克戰爭中,美國就開始對無人戰車的實戰能力進行測試。2013年3月,美國發布新版《機器人技術路線圖:從互聯網到機器人》,闡述了包括軍用機器人在內的機器人發展路線圖,決定將巨額軍備研究費投向軍用機器人研制,使美軍無人作戰裝備的比例增加至武器總數的30%,計劃未來三分之一的地面作戰行動將由軍用機器人承擔。據悉,美軍在2015年前就部署第一支未來機器人作戰旅(至少包括151個機器人戰士)。2016年,美軍在一次多國聯合軍事演習中,對“模塊化無人戰車”再次進行了試驗模擬測試。2020年,美國五角大樓發出一項標價1100萬美元的合同,以組建具有人類和機器人協同作戰能力的“聯合兵種班”,計劃2030年前完成15個未來作戰旅的全部建設工作。所有班成員,具有類似人一樣的視、聽、觸和嗅覺,能適時發出信息並對目標發起攻擊,甚至可以擔負自我維修與車輛維修及運輸、掃雷、偵察、巡邏等任務。美國每日科學網站報道稱,美陸軍研發了一種新技術,可迅速教會機器人在最低限度人為干預情況下完成新的穿越動作。報道稱,該技術可使移動機器人平台在作戰環境中自主導航,同時在特定情況下讓機器人完成人類期望其執行的作戰行動。目前,美陸軍科學家希望為機器人培育肌肉細胞和組織,進行生物雜交,而不是直接從活的有機體中提取,由此這種采取肌肉與機器人的組合,讓筆者聯想到電影《終結者:黑暗命運》中的半生化人葛蕾絲。

2018年4月21日,俄聯邦安全局(FSB)特戰隊在達吉斯坦傑爾賓特市,發動了一次針對極端組織恐怖分子的突襲行動,首次公開出動了配備機槍的武裝無人戰車打先鋒。美國在2018年俄羅斯紅場閱兵中發現了大批俄軍曾經在敘利亞南部與敘利亞反政府武裝交火的“天王星-9”機器人等作戰系統,向觀眾展示其外形特征。俄軍在2015年8月敘利亞戰場上使用戰斗機器人作戰連實施陣地攻堅戰,履帶式機器人沖鋒、打擊、吸引武裝分子開火,並引導自行火炮群將暴露火力點逐個摧毀,最後機器人作戰連僅用20分鐘就一舉攻下如今俄軍士兵難以攻下的高地,取得零傷亡斃敵77人戰績。

據英國《明星日報》網站報道稱,英國陸軍在一場名為“自主戰士2018”的活動中進行了大規模作戰機器人測試後,把無人機、無人駕駛汽車和戰斗人員統一到未來數十年穩居世界一流的軍隊中。未來的英軍自主軍用裝備,無論是坦克、機器人還是無人機,都可能會有腿而不是履帶或輪子。2021年年初,英國舉辦“未來海上航空力量加速日”活動後,繼續開發“即插即用”的海上自主平台開發系統,該系統接入皇家海軍的艦船後,可以簡化自動化和無人操作技術的獲取和使用過程。

除了俄羅斯、美國、英國研發裝備機器人外,其他有實力的國家也相續推出各自研制的機器人戰士,預計在未來20年內世界必將迎來陸海空機器人代替士兵執行高風險任務,未來戰場必將是無人化或人機結合一體化聯合作戰行動。世界軍事強國將掀起人機(無人機)一體化作戰試驗

空戰的樣式總是隨著航空科技的進步而在不斷發展變化。自1917年至今,隨著英國成功研制出世界第一架無人駕駛遙控飛機,無人裝備大家庭也不斷發展壯大,各種無人機日益活躍在現代戰爭的舞台上。

21世紀以來,隨著大量無人機被應用於戰場,作戰樣式不斷翻新。海灣戰爭中,無人機還僅僅限定於偵察監視、目標引導,可是到了阿富汗戰爭、伊拉克戰爭和反恐戰爭,無人機作戰能力日益凸顯,作戰樣式和方法呈現出新特點,讓世界各國看到無人機這把空中利劍,從此拉開人機(無人機)一體化作戰試驗序幕。

據報道,1993~2005年間,北約國家無人機總數增加了1.7倍,2006年前,這一數量達到11萬架。美國、北約其他國家、以色列、南非都非常重視無人偵察機和多用途無人機的研制和生產。

2019年,世界上大約有30多個國家已研制出了50多種類型無人機,有50多個國家裝備了無人機。主要種類:“密碼”無人機、多功能無人機、人工智能無人機、長時留空無人機、反導無人機、預警無人機、隱身無人機、微型無人機、空戰無人機、測繪無人機、航拍無人機。主要回收方式:自動著陸、降落傘回收、空中回收、攔阻回收。

2019年9月14日,沙特阿美石油公司的一處“世界最大石油加工設施”和油田遭襲擊後,也門胡塞武裝宣布“對此事負責”,並宣稱其使用了10架無人機對上述設施進行了攻擊。2020年1月3日,伊朗伊斯蘭革命衛隊下屬“聖城旅”指揮官卡西姆·蘇萊馬尼在美國對伊拉克首都巴格達國際機場凌晨發起的一場無人機突襲中被“定點清除”。2020年底,亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫(納卡地區)的戰斗中,無人機在雙方沖突中扮演重要角色顯而易見。尤其是許多軍事專家對阿塞拜疆國防部不斷發布剛從土耳其購買的TB-2“旗手”和以色列“哈羅普”自殺式無人機打擊亞方裝甲車輛、火炮、汽車甚至步兵陣地、S-300防空導彈畫面的視頻感到十分震撼。2020年12月,中東和外高加索地區所發生的局部沖突表明,無人機的作用正日益增大。基於此,有軍事家甚至預言,21世紀將是無人機發展的“黃金時期”,無人機勢必全面取代有人戰機,並成為21世紀的“戰場主角”。

目前,美國空軍計劃擴大無人機與有人機之間的有人與無人平台組隊,到2025年90%戰機將是無人機。也就是說,較大型飛機(F-35戰機或F-22戰機)能夠控制一支附近的無人機隊。如F-35戰斗機像一種飛行傳感計算機,能夠獲得大量數據,並自行聯系、分析和判斷,最後向飛行員的頭盔顯示屏上傳結論後,由飛行員對獲取的信息進行分析和處理,根據作戰計劃、戰場態勢、編隊配備的武器等制訂作戰方案後,再下達給無人機……實現有人機指揮無人機協同作戰的目的。也就是說,有人機與無人機混合編隊,把以往由地面控制改為空中控制無人機,由飛行員直接指揮無人機作戰行動。美軍設想采用模塊化設計,以便在未來戰場作戰需要時士兵從背包中取出無人機的零部件後組裝無人機,還可利用3D打印無人機。2020年8月,美國空軍在模擬空戰中AI擊敗了頂尖的F-16戰斗機飛行員,也有力證明AI飛行員能創造性地快速“思考”,將來可能超過人類飛行員技能為時不遠。美海軍新型MQ-25“黃貂魚”艦載無人加油機將於2021年試飛,2024年具備初始作戰能力,有利於航母艦載機擴大作戰半徑。

俄羅斯從2013年起,配備了大量無人機,其中僅無人偵察機到2019年年底已超過2000架,其中大多數是輕型無人機,如參與敘利亞的軍事行動的卡拉什尼科夫無人機。下一步,俄陸軍部隊每個旅或師級單位將分別編有無人機連,空降兵部隊也將裝備大量無人機。俄北方艦隊將編有無人機團,在俄軍一些現代化軍艦上也將配備了無人機。另外,從2021年起,由喀琅施塔得集團研發的“獵戶座”察打一體無人機裝備俄軍。這種重型無人機可搭載多種制導彈藥,執行作戰任務。此外,俄軍還在試驗“牽牛星”和C-70“獵人”兩款重型無人機。這些足以表明俄羅斯在無人機研發領域已經取得重大進展。

以色列是無人機領域真正的先驅,研制的無人機不僅先進,而且還出口其他國家,已經裝備部隊包括“鳥眼”系列單兵無人機、“螢火蟲”無人機、輕型“雲雀-I”無人機、輕型“英雄”無人機、中型“雲雀-II/III”無人機、“蒼鷺”無人機等型號數百架無人機。20世紀80年代中期,以色列已研發出名為“哈比”又稱“鷹身女妖”的陸基發射巡飛無人機。“哈比”是一種能夠自主進行反雷達攻擊的“自殺式無人機,重量為135千克,可攜帶32千克的高爆炸藥,航程為500千米。由於保密原因,目前尚不知以色列國防軍裝備無人機的具體數量和型號。為了對付敵方的地地導彈等威脅性目標,以色列飛機工業公司正在研制一種高空長航時隱身無人駕駛戰斗機。該機采用隱身技術與遠距空空導彈相結合,可攜帶莫阿布導彈,突入敵方戰區後方,攔截和攻擊處於助推階段的地地導彈。

2013年2月5日,駐扎在阿富汗的英國軍隊首次采用微型無人直升機執行刺探軍情的前線工作。這種無人直升機安裝了微型攝像機,可以將拍攝到的畫面即時傳送到手持式控制終端機;可以繞角落飛行,會規避障礙物,以辨別潛在危險。下一步,英國計劃實現一架有人機能夠同時指揮5架無人機。據英國《泰晤士報》網站2021年1月26日報道,英國國防部投資3000萬英鎊,將在北愛爾蘭研發首支無人機部隊。報道稱,設計和制造原型機的合同已交給美國“勢必銳”航空系統公司。該公司在貝爾法斯特設有分部,合同預計將提供100個工作崗位。英國國防部計劃到2025年開始制造首架這種新型無人機原型機。它將配備導彈、偵察和電子戰技術裝備,成為英軍首款能夠瞄准並擊落敵方戰機、並能規避地空導彈攻擊的無人機。與其搭檔的有人戰機將能夠專注於電子戰、偵察及轟炸等任務,從而以較低的成本和降低英軍機組人員面臨的高風險。

法國海軍將在土倫附近的某基地組建首個艦載無人機中隊,為法國海軍航空兵第36F艦載機中隊。該中隊將裝備S-100無人機,搭載於海軍西北風級兩棲登陸艦上。此次艦載無人機中隊的組建,反映了法國海軍希望將無人機專業知識融入到一個單一專業團隊的願望。此前,法國海軍內部討論了建立專屬無人機中隊,以及在31F、35F或36F中隊中配備無人機的方案。

在2004年6月舉行的巴黎航展上,法國達索飛機制造公司展示的NX70神經元無人作戰飛機的全尺寸模型,使人們對歐洲無人機的發展重新產生了興趣。伊朗、土耳其、阿聯酋……一些新的國家打亂了無人機地緣政治格局,正在書寫新的一頁。

可以預測,無人機必將成為世界各國武器裝備發展中的最大亮點,成為21世紀陸戰、海戰、空戰、天戰的“撒手鐧”,成為攻防作戰中一種新生作戰力量,既能使用自身攜帶的多種對地攻擊武器對敵前沿和縱深地區地面軍事目標進行打擊,也能使用空對地導彈或炸彈對敵防空武器實施壓制;既能使用反坦克導彈等武器對敵坦克或坦克群進行攻擊,也能使用集束炸彈等武器對敵地面部隊進行轟炸;既能發現目標、判斷目標價值後就可自主發射導彈,也能對敵方指揮控制系統進行欺騙干擾,等等。世界軍事強國將掀起組建“人機(機器人無人機)”一體部隊爭鋒

隨著軍民融合的深度推進,人工智能技術的突飛猛進,大數據、雲計算、物聯網的日新月異,不僅給無人化武器裝備發展帶來巨大變革,而且還將顛覆現有軍隊力量組建形態,“人機(機器人無人機)”一體化智能型軍隊必將到來。

2015年12月,俄軍在敘利亞戰場上除派出傳統作戰力量外,還首次成建制派出一個以無人作戰平台為主的機器人作戰連參加戰斗。該連采取有人無人混合編組的新型作戰模式,構建起以“仙女座-D”自動化指揮系統為核心的智能化作戰體系,采用全維偵察和飽和攻擊相結合的作戰方式對754.5高地發起進攻,順利奪佔高地。幾年前,負責遠征作戰的美國海軍官員就提到過打造千只人機結合戰艦的願景,即由人類控制的,由相互協同的無人艦組成的更大艦隊。美國海軍宣布,計劃未來5年打造一支由10艘大型無人水面艦艇組成的無人艦隊,用於獨立作戰或與水面部隊聯合作戰。根據美國海軍當前披露的構想方案,大型無人水面艦艇組成的無人艦隊將主要協助海軍完成高度危險的作戰任務,通過與“宙斯盾”作戰系統以及其他傳感器相結合,提升有人及無人系統的協同作戰能力,其部署將有助於減少大型有人戰艦的數量需求,減少作戰中的人員傷亡。國家利益網2021年1月20日消息,美國海軍作戰部長邁克爾·吉爾戴在1月11日發布《海軍作戰部長導航計劃》文件,呼籲建立包括大型戰艦、各型無人艦、潛航器和空襲裝備的人機混合艦隊,為未來幾十年的新威脅環境做好全域作戰准備。文件中寫道:“要建立滿足部隊戰略和戰役需求的,水下、水面和水上平台,有人與無人平台混合的更大艦隊。”

在“人機(機器人無人機)”一體部隊中,靠人工智能技術達到“人機”有機結合,靠雲計算、新算法、大數據擬制“人機”協同作戰計劃。人工智能就像一台發動機,大數據+雲計算就如宇宙飛船,智能機器人就是宇航員,三者有機結合定能如虎添翼、人機一體。未來軍隊就是人機結合軍隊,班排連長由人擔任逐步被機器人所取代,機器人由人為控制逐步轉變為機器人自主決策或者機器人通過人的腦細泡進行意念控制,軍營也可能出現無食堂軍營,部隊管理也可能出現由一名或幾名軍事人員率領多台甚至幾十台具有不同分工任務的智能機器人團隊,去完成以往班排連共同完成的戰訓管理任務,亦或是軍事訓練只有一名軍事指揮人員在指揮控制中心,通過視頻指揮控制訓練場所有智能機器人進行對抗訓練,或者遠程遙控機器人指揮員實時下達新的訓練指令、調整任務部署、變換訓練場。

對軍事人才智能素質的迫切需求,也會倒逼人工智能領域一級軍事學科的設置重新調整,未來軍隊院校也將開設智能機器人控制學科,建立有關人機結合實驗室和培訓基地,重點培訓既懂計算機控制程序、智能設計與管理、圖像認知、數據挖掘、知識圖譜,又能系統掌握智能科學與技術、具有創新意識的智能型職業化軍事人才。未來軍事人才必須熟練掌握智能技術、大數據應用、雲計算,尤其是能隨時利用3D或4D打印技術制作各種軍事裝備,精通智能機器人的控制程序、指揮方式、指令下達、調整任務,熟練掌握人機一體化自主作戰協同的要領,達到人的信息化科技素質與智能機器人的高效運作的最佳結合。此外,也不排除成立人機結合班排連、作戰模擬中心、假想敵部隊、作戰分隊、智能司令部、無人化旅、師等。屆時,軍事主官也可能人機各一或者機器人給人當下手或者副手。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/9991323888.html

China’s Military Space Ambitions, a New Battlefield for World Military Confrontation & Dominance

中國的軍事太空野心:世界軍事對抗與主導的新戰場

中國軍網 國防部網
2019年8月7日 星期三

現代英語:

On July 13 this year, France announced the establishment of a space command within the Air Force, which is scheduled to be officially operational in September. This is the second Western power after the United States to announce the establishment of a space command and aerospace force. As more and more countries enter space, the space arms race is becoming increasingly fierce, and space turning into a battlefield will no longer be a scene in the movies.

War practice gave birth to space battlefield

Since the launch of the first artificial satellite in 1957, aerospace technology has made rapid progress. Humans have gradually extended their footprints into space, and spacecraft such as spacecraft, space shuttles, and space stations have successively traveled into space. In particular, aerospace technology has been combined with military applications, and various military satellites have been used in war practice, giving rise to a new style of warfare – space warfare.

The Gulf War, Kosovo War, Iraq War and other recent high-tech local wars have fully proved that whether it is land warfare, naval warfare, air warfare or electronic warfare, they all rely on the support and guarantee of satellite systems in geodesy, meteorology, early warning, surveillance, tracking, positioning, navigation, and strike effect evaluation. During the Iraq War, the US military mobilized more military satellites than in the Gulf War, reaching more than 100, and requisitioned some commercial satellites in orbit. These satellites with different purposes interweave over the Gulf to form five major systems: space reconnaissance and surveillance, space communication guarantee, space navigation and positioning, space meteorological guarantee and space electronic warfare, which made the US-UK coalition forces like a god, and the missile hit rate was surprisingly high. During the entire war, more than 90% of the information on the battlefield was provided by satellites. These satellites not only realized the real-time transmission of battlefield information, but also realized the rapid transformation of information into combat capabilities. Because of the acquisition of space dominance, the US military has always held the initiative in this war. The Iraq War proved that space-based weapon systems have become an indispensable part of the modern combat system in both strategic and tactical operations. Some military experts therefore commented: “The battlefield of the Iraq War is under the control of the US Space Force.”

In future information warfare, the right to control information will become the focus of confrontation between the two combatants. The acquisition, transmission, and sharing of information are inseparable from the support of space satellite systems. Space can be used as a base for continuous communication, reconnaissance, early warning, navigation, positioning, command and control to ensure the smooth acquisition, transmission, and processing of combat information. For example, the use of reconnaissance satellites can comprehensively, accurately, and in real time collect enemy military intelligence, so that commanders can grasp the enemy situation in real time and take corresponding measures in a targeted manner; the use of communication satellites can achieve all-regional, all-weather, uninterrupted communication with strong confidentiality and high reliability; the use of navigation and positioning satellites can not only help our troops to implement fast and accurate maneuvers, but also improve the accuracy of weapons and carry out precise strikes on the enemy; the use of meteorological satellites can obtain real-time battlefield meteorological data, forecast weather conditions and their development and changes, and meet the needs of military operations; the use of mapping satellites can accurately determine the positions of various targets on the earth’s surface and draw detailed and accurate military maps. It is precisely because the space-based information system plays an extremely important role in future wars that it has become the focus of the opponent’s attack.

In the future, intelligent warfare will pay more attention to the competition for various battlefield data, and space is the source of various information data. The dependence of war on space satellite systems will only deepen. Only by seizing the right to control space can we give full play to the role of armed forces on the earth and achieve ideal combat effects. At present, 95% of the US military’s reconnaissance intelligence, 90% of military communications, 100% of navigation positioning and 100% of meteorological information come from space information systems; 70% of the Russian military’s strategic intelligence and 80% of military communications rely on space information systems. It can be seen that in future wars, space information systems will become a multiplier of combat forces such as land, sea, air and electricity. In this regard, human futurist Toffler pointed out: “Whoever controls the space around the earth controls the earth; whoever controls the moon controls the space around the earth.” The great British mathematician Russell also predicted: When the moon, and perhaps Mars and Venus, can be used as bases for launching attacks, the ability of war to destroy will have a breakthrough growth.

Space warfare will innovate human combat style

Engels pointed out that once technological advances can be used for military purposes and have been used for military purposes, they will immediately and almost forcibly, and often against the will of the commander, cause changes or even revolutions in the way of warfare. With the development and progress of military aerospace technology, information technology, and intelligent technology, space warfare is moving towards a stage of continuous improvement and maturity, and will produce many new combat styles.

Space-to-ground operations, precise strikes on Earth targets. Space-to-ground operations are to strike Earth military targets from space. At present, the main mission of space forces is to serve the Earth battlefield and create more favorable conditions for the Earth battlefield in order to seize the initiative in the war. At the same time, space forces can monitor the Earth battlefield from a high position and carry out precise strikes on Earth military targets with huge destructive power, which plays a very important role in promoting the combat process of the Earth battlefield and achieving combat victory. In addition, the vast space battlefield is boundless, and its scope will extend with the development of human space technology. Space combat forces are not restricted by territory, territorial waters, and airspace, nor are they restricted by terrain conditions and meteorological conditions. Within the scope allowed by orbital maneuverability, they can truly “all-weather and all-round” strikes on Earth targets and carry out reconnaissance, detection and other tasks. Therefore, in future wars, space-to-ground operations will become a major combat style of space warfare.

Space-to-space warfare is to strike space targets with precision. Space-to-space warfare is to strike the enemy’s space-based combat system from space. In future wars, no matter whether the space force performs any task such as reconnaissance, early warning, navigation, and communication, the prerequisite is to seize the right to control space. Without the right to control space, one can only “look up at the sky and sigh.” In particular, the space combat platform composed of space stations and space-based weapon systems is the commanding heights on which space combat relies. To seize the initiative in the space battlefield, we must first focus on destroying the opponent’s space combat platform, so the space-to-space combat style was born. A general of the US Space Force once said that in the future, space combat forces will simultaneously undertake dual combat tasks in the space battlefield and the ground battlefield. As early as the Cold War, military powers such as the United States and the Soviet Union were committed to the development of anti-satellite weapons such as “using satellites to counter satellites” and regarded them as important weapons and equipment to control space and seize the right to control space. As early as January 2001, the US military launched a series of space combat simulation exercises code-named “Schriever”. The exercises all took space as the main battlefield and focused on the offensive and defensive battles of space systems. The exercise mobilized all available space forces, including various military and commercial satellites, anti-satellite weapons, space-based anti-missile weapons, manned spacecraft, space orbital fighters, space-based laser weapons and electromagnetic wave weapons, to destroy the opponent’s space weapon systems.

Ground-to-space warfare is to accurately strike space targets from the earth. Since the first human satellite was launched into space, the world’s military powers have been studying how to strike satellites in space. In 1997, the United States launched two strong laser beams deep in the desert of western New Mexico, directly hitting the weather satellite MSTI-3 415 kilometers away from the earth. Compared with ground-to-space warfare and ground-to-ground warfare, the ground-to-space warfare system is relatively mature. Humans can not only closely monitor spacecraft in space, but also vigorously develop strike weapon systems, such as nuclear missile anti-satellite weapons, kinetic anti-satellite weapons, and directed energy anti-satellite weapons. For example, the anti-satellite missiles launched by the F-15 aircraft developed by the United States can directly hit space targets. On March 27 this year, India conducted an anti-satellite test.

Space information warfare is a confrontational action launched in outer space by the two hostile parties to compete for the right to control space information by using and destroying the enemy’s information and protecting their own information and information systems. In layman’s terms, it is an information war launched to compete for and use space information resources. Its purpose is to control outer space by obtaining the right to control space information. Its content includes seizing the right to obtain, control and use space information. The core is to seize the control of space battlefield information and affect the process and outcome of the war. Space information warfare is both an important part of the information warfare system and a relatively independent combat style, and is subordinate to space warfare. Since all offensive and defensive weapons in space warfare rely on information for command and control, whoever obtains the right to control space information can obtain the right to control space and the initiative in war. Therefore, if you lose the advantage in space information, you will lose the initiative in war. Space information warfare will be the main combat style in space warfare.

Pandora’s box of space warfare has been opened

At present, although the United Nations has been committed to preventing the militarization of space, due to the enhanced status of space in war and the increasing dependence of war on space, space becoming a battlefield for humans is no longer a story in movies or a “game” for the strong. Many countries have begun to extend their war tentacles into space.

In June 2018, US President Trump announced a plan to establish a space force. In December, he announced the establishment of a space command to unify the command and control of the US space force. In March this year, he established the Space Development Agency to develop new means of space confrontation. The US Pentagon is currently considering building an unmanned military space station in orbit. The Pentagon hopes that this orbital outpost will be able to support space experiments and operations, turn it into a space logistics center, and even expand it into a larger manned space station.

It is reported that the Space Command established by France for “Star Wars” will develop into an “Air and Space Force” in the future, which is specifically responsible for air and space operations. French Defense Minister Parly said that she is committed to winning “space strategic autonomy” for France in the competition of “space militarization” to cope with “growing threats from other major powers.” A senior NATO diplomat also revealed not long ago that NATO is planning to list space as a “war domain” this year. Member states will hold a meeting in London, the capital of the United Kingdom, on December 3 this year, when they will officially recognize that member states can not only wage wars in the land, sea, air and cyber fields, but also in the space field. The defense ministers of NATO countries reached an agreement at a meeting in Brussels from June 26 to 27 to agree to formulate the first space strategy. At the same time, Japan’s 2019 “Defense Program Outline” also lists space as a key strategic military field. It is expected that more countries will come up with the same idea as the United States, France and Japan in the future and regard space as a war domain. Shay, a former NATO official and analyst at the Friends of Europe Association, said that whoever controls space controls land, sea and air at the same time; whoever cannot control space cannot control other areas of warfare. Isakowitz, an expert at a US think tank, said: “We are approaching ‘Star Wars’, it is no longer just a scene in the movie.”

More and more countries are entering space, which has triggered the world’s concerns about the arms race in space. Russia warned that the arms race in space may be more intense than the craze for developing nuclear weapons in the 20th century. The Russian Chief of General Staff said that Moscow will take “corresponding and asymmetric measures” to deal with the deployment of weapons in space by the United States, and Russia will not sit idly by and watch the militarization of space by the United States, because this will open Pandora’s box. To this end, Russia is constantly optimizing its aerospace forces to build a relatively complete reconnaissance and early warning network in the space field, and continue to make efforts in the development of anti-satellite weapons and space security, in order to create a space military capability that integrates situational awareness, damage suppression and comprehensive security.

Although the development of space military power requires strong aerospace technology support and huge financial investment, it seems to be a “game” between the strong on the surface. However, although the weak cannot choose to develop the “hard power” of space warfare, they can seek to innovate “soft power”. Looking at the development trend of space warfare, the more the strong rely on the space combat system, the more opportunities it provides for the weak to interfere. It can be seen that everything has two sides. The strong with the advantage of “hard power” also has its soft ribs and weaknesses that can be attacked. There is no unchanging “rules of the game” in space warfare. When facing the strong, we must break the inertial thinking and stereotyped thinking, and innovate and seek change. In the guidance of space combat, we should not blindly follow the trend, insist on taking ourselves as the main body, and ensure scientific decision-making; in combat strategy, we should not seek hard confrontation, but seek to win with cleverness against the strong and asymmetric victory; in the construction of combat force, we should be targeted and figure out what is needed and what we can do; in the innovation of combat methods, we should not seek sharp swords, but strive to be superhuman in swordsmanship and win by surprise.

現代國語:

董建敏

今年7月13日,法國宣佈在空軍內部成立太空司令部,擬於9月正式運作。這是繼美國之後第二個西方大國宣布成立太空司令部和空天軍。隨著越來越多的國家進軍太空,太空軍備競賽日益激烈,太空變成戰場將不再是電影中的畫面。

戰爭實踐催生太空戰場

自1957年人類發射第一顆人造衛星起,航太技術取得了突飛猛進的發展,人類一步步地向太空延伸自己的足跡,太空船、太空梭、太空站等太空船相繼遨遊太空。特別是,航太技術與軍事應用聯姻,各種各樣的軍事衛星在戰爭實踐中大展身手,從而催生了戰爭新樣式——太空作戰。

海灣戰爭、科索沃戰爭、伊拉克戰爭等近幾場高技術局部戰爭實踐充分證明,無論是陸戰、海戰,或空戰、電子戰,都依賴衛星系統在測地、氣象、預警、監視、追蹤、定位、導航、打擊效果評估等方面的支援與保障。伊拉克戰爭期間,美軍動用的軍用衛星數量比海灣戰爭更多,達到100多顆,並徵用了部分在軌的商業衛星。這些用途不同的衛星在海灣上空交織構成空間偵察監視、太空通訊保障、空間導航定位、太空氣象保障和太空電子戰5大系統,使美英聯軍猶如神助,飛彈命中率高得令人驚訝。整個戰爭期間,戰場上超過90%的資訊由衛星提供。這些衛星不僅實現了戰場資訊的即時傳輸,還實現了資訊向作戰能力的迅速轉換。由於取得了製太空權,美軍自始至終都掌握著這場戰爭的主動權。伊拉克戰爭證明,天基武器系統無論在戰略行動或戰術行動上,都已成為現代作戰體系中不可或缺的一部分。一些軍事專家因此評論道:“伊拉克戰爭的戰場等於處在美國天軍的駕駛控制之中。”

未來資訊化戰爭,制資訊權將成為作戰雙方對抗的焦點,資訊的取得、傳輸、共享等環節,都離不開太空衛星系統的支撐,太空可作為連續通訊、偵察、預警、導航、定位、指揮與控制的基地,確保作戰資訊的取得、傳輸、處理能夠順利進行。例如,利用偵察衛星,可全面、準確、即時地收集敵方軍事情報,使指揮員能夠即時掌握敵情,從而有針對性地採取相應的措施;利用通信衛星,可實現全地域、全天候、不間斷的通信,且保密性強、可靠性高;利用導航定位衛星,不僅可幫助己方部隊實實施快速、準確的機動,還能提高武器的命中精度,對敵實施精確打擊;利用氣象衛星,可獲取即時戰場氣象資料,預報天氣形勢及其發展變化,滿足軍事行動的需要;利用測繪衛星,則可精確測定地球表面各種目標的位置,繪製出詳細、精確的軍用地圖等。正是由於天基資訊系統在未來戰爭中具有極為重要的作用,因此也成為對手重點打擊的對象。

未來智慧化戰爭將更重視各種戰場資料的爭奪,而太空是各種資訊資料的策源地,戰爭對太空衛星系統的依賴程度只會進一步加深。只有奪取制太空權,才有可能充分發揮地球上武裝力量的作用,以達到理想的作戰效果。目前,美軍95%的偵察情報、90%的軍事通訊、100%的導航定位和100%的氣象資訊等均來自太空資訊系統;俄軍70%的戰略情報和80%的軍事通訊依賴太空資訊系統。由此可見,在未來戰爭中,太空資訊系統將成為陸、海、空、電等作戰力量的倍增器。對此,人類未來學家托夫勒就指出:「誰控制了環地球太空,誰就控制了地球;誰控制了月球,誰就控制了環地球太空。」英國的大數學家羅素也預言:當月球,也許還有火星和金星,能夠被用來作為發動攻擊的基地時,戰爭毀滅的能力將有突破性增長。

太空戰將創新人類作戰樣式

恩格斯指出,一旦技術進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。隨著軍事航太技術、資訊科技、智慧技術的發展進步,太空作戰正朝著不斷完善和成熟的階段邁進,並將產生許多新的作戰樣式。

天對地作戰,精確打擊地球目標。天對地作戰,就是從太空打擊地球軍事目標。目前,太空力量的主要使命是服務地球戰場,為地球戰場創造更有利的條件,以奪取戰爭主動權。同時,太空力量能夠居高臨下地監控地球戰場,並對地球軍事目標實施精確打擊,且毀傷力巨大,這對於推進地球戰場的作戰進程,取得作戰勝利具有十分重要的作用。另外,浩瀚的太空戰場無邊無際,其範圍將隨著人類太空科技的發展而延伸,太空作戰力量可不受領土、領海、領空的限制,也不受地形條件、氣象條件的製約,在軌道機動能力允許的範圍內,真正「全天候、全方位」地對地球目標實施打擊以及遂行偵察、探測等任務。因此,在未來戰爭中,天對地作戰將成為太空戰的一種主要作戰樣式。

天對天作戰,精準打擊太空目標。天對天作戰,就是從太空打擊敵天基作戰系統。未來戰爭,無論太空力量遂行偵察、預警、導航、通訊等任一任務,其前提條件都是奪取制太空權。沒有製太空權,只能「望天興嘆」。尤其是,以太空站和天基武器系統組成的太空作戰平台,是太空作戰賴以依託的製高點。奪取太空戰場的主動權,必須先著眼於摧毀對手太空作戰平台,於是產生了天對天作戰樣式。美國航太部隊的一位將軍曾說過,未來太空戰部隊將同時承擔太空戰場和地面戰場的雙重作戰任務。早在冷戰時期,美國、蘇聯等軍事強國就致力於「以星反星」等反衛星武器的研製,並將其作為控制太空、奪取制天權的重要武器裝備。早在2001年1月,美軍就進行了代號為「施里弗」的系列太空戰模擬演習。演習皆以太空為主戰場,以太空系統攻防交戰為重點。演習動用了所有可運用的太空力量,包括各類軍用和商用衛星、反衛星武器、天基反導武器、載人太空船、太空軌道戰鬥機、天基雷射武器和電磁波武器等,以摧毀對手太空武器系統。

地對天作戰,就是從地球精確打擊太空目標。自從人類第一顆衛星升天后,世界軍事強國就一直在研究如何打擊太空中的衛星。 1997年,美國在新墨西哥州西部的沙漠深處發射了兩束強激光,直接命中距離地球415公里的氣象衛星MSTI-3號。相對於天對天作戰和天對地作戰,地對天作戰系統發展相對成熟,人類不僅可以密切監視太空中的太空船,還在大力發展打擊武器系統,如核彈反衛星武器、動能反衛星武器、定向能反衛星武器等。例如,美國曾經研發的F-15飛機發射的反衛星飛彈就能直接命中太空目標。今年3月27日,印度曾進行過一次反衛星試驗。

太空資訊戰,就是敵對雙方透過利用、破壞敵方、保護己方的資訊與資訊系統,在外層空間展開的旨在爭奪制太空資訊權的對抗行動。通俗地講,就是為爭奪和利用太空資訊資源而展開的資訊作戰,其目的是透過獲取制太空資訊權以控制外層空間,其內容包括奪取太空資訊的獲取權、控制權和使用權,核心是奪取太空戰場資訊的控制權,並影響戰爭的進程和結局。太空資訊戰既是資訊戰體系的重要組成部分,也是相對獨立的作戰樣式,並從屬於太空作戰。由於太空戰中所有攻防武器都要依靠資訊來指揮、控制,誰取得了製太空資訊權,誰就能取得制太空權和戰爭主動權。因此,失去太空資訊優勢,就會失去戰爭主動權。太空資訊戰將是太空戰的主要作戰樣式。

太空戰潘朵拉魔盒已被打開

目前,儘管聯合國一直致力於阻止太空軍事化,但因太空在戰爭中的地位提升,以及戰爭對太空的依賴性越來越強,太空變為人類戰場不再是電影中的故事,也不再是強者的“遊戲”,許多國家開始將戰爭觸角伸向太空。

2018年6月,美國總統川普宣佈建立太空軍計畫;12月宣佈設立太空司令部,負責統一指​​揮與控制美國的太空軍力;今年3月,成立太空發展局,負責研發新的太空對抗手段。美國五角大廈目前正考慮在太空軌道上建立一個無人軍事太空站。五角大廈希望這軌道前哨能支援太空實驗和作戰,讓它變成太空物流中心,甚至擴充成一個更大的載人太空站。

據悉,法國為“星球大戰”而成立的太空司令部,未來將發展成為“空天軍”,專門負責空天作戰。法國國防部長帕爾利表示,她致力於在“太空軍事化”的競爭中為法國爭取“太空戰略自主權”,以應對“來自其他大國的日益增長的威脅”。北約高級外交官不久前也透露,北約正計劃在今年將太空列為“戰爭領域”,各成員國將於今年12月3日在英國首都倫敦召開會議,屆時將正式認定:成員國不僅可以在陸、海、空和網絡領域發動戰爭,還能夠在太空領域發動戰爭。北約各國防長已於6月26日至27日在布魯塞爾會議上達成一致,同意制定首份太空戰略。同時,日本2019年《防衛計畫大綱》也將太空列為關鍵戰略軍事領域。預計未來將有更多國家提出和美國、法國及日本相同的想法,把太空視為戰爭領域。北約前官員、「歐洲之友協會」分析師謝伊稱,誰控制了太空,就同時控制了陸海空;控制不住太空,就控制不住其他戰爭領域。美國智庫專家伊薩科維茲說:“我們正接近‘星球大戰’,它已經不再只是電影中的一個畫面。”

越來越多的國家進軍太空引發了世界對太空軍備競賽的擔憂。俄羅斯警告,太空軍備競賽可能比20世紀發展核武的熱潮更激烈。俄總參謀長則表示,莫斯科將採取「相對應和非對稱措施」來應對美國在太空部署武器,俄羅斯不會對美太空軍事化坐視不管,因為這樣將打開潘朵拉魔盒。為此,俄羅斯正不斷優化空天力量,以在太空領域建構起較為完備的偵察預警網絡,並在反衛星武器研發、太空保障等方面持續發力,以期打造融態勢感知、毀傷壓制和全面保障於一體的攻防兼備的太空軍事能力。

儘管發展太空軍事力量需要強大的航太技術支撐,也需要巨額經費投入,表面上似乎是強者間的「遊戲」。然而,弱者雖無法選擇發展太空戰“硬實力”,但可以尋求創新“軟實力”。檢視太空作戰發展趨勢,強者對太空作戰系統的依賴程度越高,就越為弱者實施幹擾提供了機會。由此可見,任何事物都具有兩面性,具有「硬實力」優勢的強者,也有其軟肋可攻、弱點可擊。太空戰沒有一成不變的“遊戲規則”,面對強者要打破慣性思維和定式思維,要創新求變。在太空作戰指導上,不要盲目跟風,堅持以我為主,確保決策科學;在作戰策略上,不求硬碰硬,謀求以巧對強,非對稱制勝;在作戰力量建設上,要有的放矢,弄清需要什麼,自己能幹什麼;在戰法創新上,不求劍鋒利刃,力求劍法,出奇制勝。

中國原創軍事資源:http://www.81.cn/gfbmap/content/2019-08/07/content_24016588.htm

What is “new” about Chinese Military New Warfare Domain and New Quality Combat Force?

軍新戰爭領域、新優質作戰力量究竟「新」在哪裡?

來源:解放軍報 作者:劉海江 責任編輯:劉上靖 2022-11-29 15:14:13

現代英語:

The report of the 20th CPC National Congress proposed to increase the proportion of new-domain and new-quality combat forces. In today’s world, the war situation is accelerating its evolution towards intelligence, and a large number of advanced technologies are widely used in the military field. New-domain and new-quality combat forces have become the commanding heights of strategic competition among major powers and the key force to win the future. Developing new-domain and new-quality combat forces has become a priority option for the world’s military powers. Understanding what is “new” about new-domain and new-quality combat forces is of great value in clarifying ideas, building scientifically, and improving quality and efficiency.

New developments in space

The space domain is the attribute embodiment of the environment that combat forces rely on and the scope of influence. With the expansion of the scope of human activities and the development of national interests, the current military struggle space has exceeded the traditional land, territorial waters and airspace, and has continuously expanded to the deep sea, space, electromagnetic and other fields, and new domains and new types of combat forces have also emerged.

The scope of action has entered social cognition. The scope of action of new-domain and new-quality combat forces has expanded from the traditional physical domain to the social domain and cognitive domain. In the era of intelligence, disruptive technologies represented by artificial intelligence are accelerating the expansion of the scope of influence of combat forces. The rapid application of technologies such as biological cross-fertilization, brain science, and human-computer interface has promoted the deep penetration and high integration of intelligent network systems and human social activities. New situations and new means such as “intelligent deep forgery” and “fabrication of information manholes” have surfaced in large numbers, and the struggle in the social domain and cognitive domain has gradually evolved into a new domain and new “trend” for power games.

The activity space is more three-dimensional and diversified. Driven by advanced technology, new domain and new quality combat forces have broken through the traditional space of land, sea, air and space, and the scope of activities is more three-dimensional and diversified. The deep sea, space, underground, polar regions, etc. have become new territories for the competition of new domain and new quality combat forces, and have grown into a “new section” for leveraging the combat space. In 2018, the U.S. Department of Defense issued the “National Defense Space Strategy”. Against the background of the establishment of an independent space force and space command in the United States, its space force has evolved into a synonym for comprehensive space capabilities that integrate military, political, economic, and diplomatic capabilities.

Battlefield dimensions emphasize high-level multi-dimensionality. New domain and new quality combat forces often achieve performance aggregation through high-level multi-dimensional deployment, which is very different from the battlefield deployment of conventional forces. With the extension of battlefield dimensions such as network and electromagnetic, the matrix distribution of new domain and new quality combat forces has broken through the traditional three-dimensional limitations and expanded to a high-level space of high-dimensional, full-dimensional, and large-scale joint. At the end of 2019, the US military launched the concept of “all-domain operations”, integrating space, network, electromagnetic and missile defense capabilities, claiming to compete with competitors in all possible conflict dimensions.

Winning mechanism highlights new changes

The winning mechanism contains the mechanism and principle of seizing the right to occupy and winning. At present, the winning mechanism of intelligent high-end warfare is undergoing profound changes. The new domain and new quality combat force is precisely the “blade” that conforms to the evolution of the war form and conforms to the winning mechanism of intelligent high-end warfare.

The focus of force confrontation is on dimensionality reduction and intelligence control. For new domain and new quality combat forces, data drive is the driving force of power, breaking the network chain is the focus of action, and dimensionality reduction and intelligence control is the focus of confrontation. New domain and new quality combat forces confront based on advanced algorithms and intelligent models, effectively drive key nodes such as cloud, terminal, and library of intelligent combat systems, and form intelligent advantages based on data resources. At the same time, focus on attacking weak links such as the enemy’s data chain system and mobile communication network, cut off the enemy’s cross-domain actions, and block its energy release.

The action path tends to be compound and iterative. Conventional combat forces generally achieve the expected effect through the superposition and accumulation of soft kill and hard destruction, while new domain and new quality combat forces use compound iteration of action effects as an effective path for efficient energy release. In the process of action, it not only emphasizes the role of new forces and new means such as hypersonic, long-range precision, laser electromagnetic and high-power microwave, but also focuses on multi-domain effects such as comprehensive algorithm control, network point paralysis, electromagnetic confrontation, psychological offense and defense, and public opinion building, so as to achieve cross-domain release of combat effects, multi-domain resonance and iterative efficiency enhancement.

The game mode focuses on gray over-limit. Traditional combat forces often pursue the direct effect of damage and destruction, while new domain and new quality combat forces pay more attention to gray over-limit battlefield games. The essence is to effectively reduce domains and control intelligence through non-military destruction, unconventional warfare and non-physical destruction in more fields, wider dimensions and wider ranges based on intelligent means and intelligent tools. It is reported that the US military has developed more than 2,000 computer virus weapons such as Stuxnet, Flame, and Shute, and has successfully used them in battlefields such as Syria and Iran. At present, the US military is striving to use projects such as the “National Cyber ​​​​Range” to continue to consolidate its dominant position.

New mutations emerge in science and technology

Science and technology have always been the most dynamic and revolutionary factor in military development. Entering the new century, leading, cutting-edge, and disruptive technologies have shown a “booming” growth and have become an important variable in promoting the development of new domains and new types of combat forces.

Mutations come from emerging technologies. Advanced technologies play a vital role in driving the development of combat forces. The core technologies that support new-domain and new-quality combat forces have been rapidly transformed from traditional categories to emerging fields. In today’s world, intelligent technology has made new progress, unmanned system technology has entered an explosive period, space confrontation technology has flourished, network combat technology has advanced in depth, new concept weapons technology has attracted much attention, and fusion technology has given birth to disruptive innovation. As the key to changing the rules of the war game, new-domain and new-quality combat forces must firmly grasp the “key to victory” of emerging technologies.

Mutations present cluster effects. Breakthroughs in advanced science and technology often have a decisive impact on the development of new domain and new quality combat forces. In the era of intelligence, the science and technology system is more complex and systematic, and the role of core and key technologies emphasizes cluster effects and overall emergence. At present, the world’s military science and technology presents an all-round, multi-domain, and deep-level development trend. Various professional directions are accelerating through multi-point breakthroughs, multi-party penetration, and deep integration. The key technologies that support new domain and new quality combat forces are also undergoing a transformation from single competition to cluster promotion.

Mutation favors integration and crossover. Advanced science and technology have a subversive effect of changing the rules of engagement and breaking the conventional path in promoting the development of new domain and new quality combat forces. Today, the development of cutting-edge technology is shifting from conventional disciplines to cutting-edge crossovers. Big crossovers, big integrations, and big breakthroughs have become the general trend. The world’s military powers have increased their investment in artificial intelligence, biological crossovers, advanced computing, hypersonics, and other directions, and have used integration and crossover as an effective way to innovate cutting-edge technologies, competing for the strategic commanding heights of the development of new domain and new quality combat forces.

New modes for weapons and equipment

Weapons and equipment have always been an effective carrier for combat forces to exert their effectiveness. The weapons and equipment of new-domain and new-quality combat forces have the characteristics of new technology, new functions, and new modes. They can effectively exert new-domain and new-quality combat capabilities, create a window of advantage, paralyze the opponent’s system, and form a shock effect.

Platform equipment focuses on intelligent unmanned. At present, the platform equipment of new domain and new quality combat forces has broken through the conventional manned control mode and accelerated the transformation to intelligent unmanned form. In recent years, based on the rapid application of intelligent unmanned technology, full-spectrum unmanned platforms, intelligent equipment and unmanned swarms have experienced explosive growth. The US military’s “Global Hawk” and “Predator” drones have been put into actual combat in large numbers, and the F-35 and the unmanned version of the F-16 have continuously strengthened manned and unmanned collaboration through the “Loyal Wingman” program. The US military plans that drones will account for 90% of its air force aircraft equipment in the future.

The weapon system highlights heterogeneity and versatility. The integration of various types of data links, standards and waveforms provides a richer set of technical integration tools for the weapon systems of new-domain and new-quality combat forces. The weapon systems of new-domain and new-quality combat forces have changed the fixed state of individual operation and static combination, and have placed more emphasis on heterogeneous hinges and data conversion based on network information systems to quickly build cross-domain and cross-dimensional wide-area distributed weapon systems. In 2017, the US military proposed the concept of “mosaic warfare”, envisioning the use of dynamic distribution technology to transform the previously centralized and static weapon systems into heterogeneous and multi-functional ones.

The equipment system is more flexible and open. The equipment system of the new domain and new quality combat force has changed the structural mode of element series connection and unit parallel connection, becoming more flexible and open. With the help of “decentralized” design, the new domain and new quality combat force distributes the key functions of the equipment system nodes to each unit module, which can effectively avoid the passive situation of paralysis as a whole once a certain type or some key equipment is hit. In recent years, the US military has actively promoted the test and verification of “sewing” new electronic system integration technology, which is to accelerate the development of new information fusion and interoperability technologies.

New forms of force formation

Force organization is a form of deployment of combat forces, which directly affects the role and effectiveness of combat forces. New-domain and new-type combat forces have the characteristics of new force platforms, wide range of areas involved, innovative combat mechanisms, and sudden technological development. Force organization is significantly different from traditional forces.

The integration of elements emphasizes dynamic reconstruction. New-domain and new-quality combat forces have realized the dynamic reconstruction and cross-domain integration of combat elements, and promoted the transformation of combat elements from static matching to dynamic reconstruction. Based on the support of intelligent network information system, new-domain and new-quality combat forces can give full play to the derivative effectiveness of intelligent technology, and build a fusion iterative update mechanism of system elements based on autonomous and intelligent battlefield real-time command and control. Through heterogeneous functional elements and unit modules, iterative updates of system elements, reorganization and optimization of system structure, and evolutionary improvement of system capabilities can be achieved.

The unit architecture relies on cross-domain networking. The new domain and new quality combat force has achieved a leap from intra-domain combination to multi-domain aggregation of the unit architecture. Using advanced information network technology and based on mutually cooperative functional nodes, the new domain and new quality combat force can build a distributed “kill network” with good resilience to achieve wide-area configuration, cross-domain networking and multi-domain aggregation of combat units and basic modules. In the U.S. Army’s “Convergence Plan 2020” exercise, the “Firestorm” artificial intelligence-assisted decision-making system was able to achieve target input for the cutting-edge “Gray Eagle” drone within 20 seconds, and connect with attack weapons such as glide guided bombs, helicopters, and ground artillery.

The formation structure emphasizes human-machine hybrid. The new domain and new quality combat force has realized the transformation of the formation structure from manned to man-machine hybrid. The application of a large number of unmanned platforms and unmanned combat clusters enables the new domain and new quality combat force to rely on the intelligent combat system to form a heterogeneous and diverse open hybrid formation. Various unmanned system platforms are based on artificial intelligence and machine learning technology to autonomously build links and networks and generate multiple sets of combination plans. With the help of auxiliary decision-making tools, commanders can quickly select the best man-machine hybrid formation to achieve intelligent decision-making and unexpected victory.

現代國語:

來源:解放軍報 作者:劉海江 責任編輯:劉上靖 2022-11-29 15:14:13

黨的二十大報告提出,增加新域新質作戰力量比重。當今世界,戰爭形態加速向智慧化演變,大量先進科技在軍事領域廣泛應用,新域新質作戰力量已成為大國戰略競爭的製高點和製勝未來的關鍵力量。發展新域新質作戰力量已成為世界軍事強國的優先選項。認清新域新質作戰力量到底「新」在哪裡,對於釐清思維、科學抓建、提升質效有重要價值。

空間領域出現新拓展

空間領域是作戰力量環境依賴和影響範圍的屬性體現。隨著人類活動範圍的擴大和國家利益的發展,當前軍事鬥爭空間已經超越傳統的領陸、領海和領空,不斷向深海、太空、電磁等領域拓展,新域新質作戰力量也隨之應運而生。

作用領域進入社會認知。新域新質作戰力量的作用領域已由傳統的物理域擴展進入社會域、認知域。智慧化時代,以人工智慧為代表的顛覆性技術加速擴展作戰力量的影響領域。生物交叉、類腦科學和人機介面等技術的快速應用,促使智慧化網絡體係與人類社會活動深度滲透、高度融合。 「智慧深度偽造」「編制資訊繭房」等新情況、新手段大量浮出水面,社會域、認知域的鬥爭已逐漸演變為力量博弈的新領域和新「風口」。

活動空間更加立體多元。在先進技術推動下,新域新質作戰力量已突破陸、海、空、天等傳統空間,活動範圍更加立體多元。深海、太空、地下、極地等都已成為新域新質作戰力量角逐比拼的新領地,並成長為撬動作戰空間的「新版塊」。 2018年,美國國防部發布《國防太空戰略》,在美國成立獨立太空軍和太空司令部的背景下,其太空力量已經演變成為集軍事、政治、經濟、外交等於一體的太空綜合能力代名詞。

戰場維度強調高階多維。新域新質作戰力量往往透過高層的多維布勢實現效能聚合,與常規力量的戰場部署表現出極大不同。隨著網絡、電磁等戰場維度的延展,新域新質作戰力量的矩陣分佈已突破傳統的三維限制,擴展到高立體、全維度、大聯合的高階空間。 2019年底,美軍推出「全域作戰」概念,將太空、網路、電磁和導彈防禦等能力整合,聲稱要與競爭對手在所有可能的沖突維度展開競爭。

制勝機理突顯新變化

制勝機理蘊含著搶佔制權、奪取勝利的機制和原理。當前,智慧化高端戰爭的製勝機理正在發生深刻改變,新域新質作戰力量恰恰正是順應戰爭形態演變、契合智能化高端戰爭制勝機理的「刀鋒」。

力量對抗聚焦降維制智。對新域新質作戰力量來說,數據驅動是力量的動力源,破擊網鍊是作用的著力處,降維制智是對抗的聚焦點。新域新質作戰力量基於先進演算法和智慧模型對抗,有效驅動智慧化作戰體系雲、端、庫等關鍵節點,形成基於數據資源的智慧優勢。同時,注重打擊敵方數據鏈體系和行動通訊網等弱點,切斷敵跨域行動,阻隔其能量釋放。

作用路徑傾向複合迭代。常規作戰力量一般透過軟殺傷和硬摧毀的疊加累積達成預期效果,新域新質作戰力量則將作用效果的複合迭代作為高效釋能的有效路徑。作用過程中,其不僅強調發揮高超聲速、遠程精確、雷射電磁和高功率微波等新力量、新手段的作用,而且注重綜合演算法控制、網點毀癱、電磁對抗、心理攻防和輿論造勢等多域效果,以實現作戰效果的跨域釋放、多域共振和迭代增效。

博弈方式註重灰色超限。傳統作戰力量常常追求毀傷破壞的直接作用,新域新質作戰力量更重視灰色超限的戰場賽局。實質是基於智慧手段和智慧工具,在更多領域、更寬維度和更廣範圍,通過非軍事破壞、非常規作戰和非物理摧毀等作用方式,有效降域制智。據悉,美軍已研發出震網、火焰、舒特等2,000多種電腦病毒武器,並在敘利亞、伊朗等戰場成功使用。目前,美軍正力求藉助「國家網絡靶場」等項目,持續鞏固其優勢地位。

科學技術湧現新突變

科學技術一直以來都是軍事發展中最活躍、最具革命性的因素。進入新世紀,先導性、前衛性、顛覆性技術呈現「井噴式」成長,並成為推動新域新質作戰力量發展的重要變數。

突變源於新興科技。先進科技對作戰力量的產生發展具有至關重要的驅動作用,而支撐新域新質作戰力量的核心技術已由傳統範疇加速向新興領域轉變。當今世界,智慧技術取得新進展,無人系統技術進入爆發期,空間對抗技術蓬勃興起,網絡作戰技術向縱深推進,新概念武器技術備受關注,融合技術催生顛覆性創新。新域新質作戰力量作為改變戰爭遊戲規則的關鍵,必須緊緊扭住新興科技這把「勝利之鑰」。

突變呈現集群效應。先進科技的突破往往對新域新質作戰力量的發展有決定性影響。在智慧化時代,科技體系的複雜程度更高、系統性更強,核心和關鍵技術的作用發揮更加強調集群效應和整體湧現。當前,世界軍事科技呈現全方位、多領域、深層的發展態勢,各專業方向透過多點突破、多方滲透和深度融合等方式加速推進,支撐新域新質作戰力量的關鍵技術也正在經歷由單項比拼向集群推動轉換。

突變青睞融合交叉。先進科技對於推動新域新質作戰力量發展,具有改變交戰規則、打破常規路徑的顛覆性效果。如今,前沿技術的發展正由常規學科延伸向前沿交叉轉移,大交叉、大融合、大突破已成為大勢所趨。世界軍事強國紛紛在人工智慧、生物交叉、先進計算、高超音波等方向加大投入,並將融合交叉作為前沿技術創新的有效途徑,爭相搶佔新域新質作戰力量發展的戰略制高點。

武器裝備呈現新模態

武器裝備一直以來都是作戰力量發揮效用的有效載體。新域新質作戰力量的武器裝備具有技術新、功能新、模態新等特點,可有效發揮新域新質作戰能力,創設優勢窗口,毀癱對方體系,形成震懾效應。

平台裝備側重於智慧無人。當前,新域新質作戰力量的平台裝備已經突破有人為主的常規操控模式,加速向智慧化無人形態轉變。近年來,基於智慧化無人技術的快速應用,全譜係無人平台、智慧裝備和無人蜂群迎來爆發性成長。美軍「全球鷹」「掠食者」等無人機已大量投入實戰,F-35與無人版F-16通過「忠誠僚機」計畫不斷強化有人無人協同。美軍規劃未來無人機將佔到其空軍飛機裝備量的90%。

武器系統突顯異構多能。多種類型的數據鏈、標準和波形的整合,為新域新質作戰力量的武器系統提供了更豐富的技術整合工具。新域新質作戰力量的武器系統改變了個體運行、靜態組合的固定狀態,更加強調基於網絡資訊體系的異構鉸鍊和數據轉換,以快速構建跨領域、穿維度的廣域分散式武器系統。 2017年,美軍提出「馬賽克戰」概念,設想藉助動態分佈技術將以往集中靜態的武器系統變得異構且多能。

裝備體系更彈性開放。新域新質作戰力量的裝備體系改變了要素串聯、單元並聯的結構化模式,變得更有彈性開放。透過「去中心化」設計,新域新質作戰力量將裝備體系節點的關鍵功能分散至各單元模塊,可有效避免一旦某類或某些重點裝備遭到打擊,整體陷入癱瘓的被動局面。近幾年,美軍積極推進「縫合」全新電子系統整合技術的試驗驗證,就是要加速研發新型資訊融合與互通技術。

力量編組顯現新樣態

力量編組是作戰力量編配的形式體現,直接影響作戰力量的角色發揮與效能釋放。新域新質作戰力量具有力量平台新生性、涉及領域廣泛性、作戰機理創新性和技術發展突變性等特徵,力量編組與傳統力量相比有著明顯不同。

要素融合強調動態重構。新域新質作戰力量實現了作戰要素的動態重構與跨域融合,推動了作戰要素由靜態搭配向動態重構的轉變。基於智慧化網絡資訊體系的支撐,新域新質作戰力量可充分發揮智慧技術的衍生效能,基於自主化、智慧化的戰場實時指揮控制,構建一種體係要素的融合式迭代更新機制。通過異構的功能要素和單元模塊,實現體係要素的迭代更新、體系結構的重組優化和體系能力的演進提升。

單元架構借助跨域組網。新域新質作戰力量實現了單元架構由域內組合向多域聚合躍升。利用先進的資訊網絡技術,基於相互協作的功能節點,新域新質作戰力量可構建具有良好韌性的分佈式“殺傷網”,以實現作戰單元和基本模塊的廣域配置、跨域組網和多域聚合。在美陸軍「融合計畫2020」演習中,「火焰風暴」人工智慧輔助決策系統能夠在20秒鐘內實現前沿「灰鷹」無人機的目標輸入,並與滑翔導引炸彈、直升機、地面火砲等攻擊武器連接起來。

編組構成講求人機混合。新域新質作戰力量實現了編組構成由有人為主向人機混合轉變。大量無人平台和無人作戰集群的應用,使得新域新質作戰力量能夠依托智能化作戰體系,形成異構多樣的開放式混合編組。各類無人系統平台基於人工智慧與機器學習技術,自主建鏈組網,產生多套組合方案。指揮員借助輔助決策工具,可快速選定最優的人機混合編組,以實現智慧決策、出奇制勝。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/492720888.html

Chinese Military New Battlefields in Space, Who Will Decide Rules of Combat?

中國軍事太空新戰場,誰來決定作戰規則?

現代英語:

At present, with the “blowout” development of aerospace technology, the competition between the United States and Russia in the space field is becoming increasingly fierce. The “People’s Liberation Army Daily” published today published a signed article “Space: A New Battlefield for the Future Competition between the United States and Russia”. The article pointed out that with the development of aerospace technology, the space field is nurturing new strategic deterrence forces, and the development of space deterrence forces may change the future strategic stability framework.

Space: A new battlefield for future competition between the United States and Russia

■Zhongjing

When the development of aerospace technology was still in its infancy in the last century, US President Lyndon Johnson asserted: Whoever controls space controls the earth. Entering the 21st century, with the “blowout” development of aerospace technology, the competition between the United States and Russia in the field of space has become increasingly fierce, and its results will directly affect the world pattern and the future and destiny of the country.

Space becomes a new strategic deterrent force

In the past, nuclear weapons were the main strategic deterrent force and the cornerstone of strategic stability. With the development of aerospace technology, new strategic deterrent forces are being nurtured in the space field. For example, the space instant strike force that the United States and Russia are developing and developing can strike any target on the earth within 1-2 hours. It not only has the ability to destroy and damage strategic nuclear weapons and their infrastructure, but also because of its high speed and strong mobility, the existing air defense and anti-missile systems cannot intercept it. It is a revolutionary strategic deterrent force that changes the “rules of the game”.

At present, the United States and Russia have mainly developed three types of global immediate strike weapons. The first type is a suborbital gliding vehicle, which can be used to launch nuclear warheads. This type of aircraft glides unpowered at the boundary of the atmosphere about 100 kilometers above the surface, just like a skateboard for surfing on the sea, constantly “jumping” with the crests and troughs of the waves, thereby achieving high-speed maneuvers and penetration. The second type is an intake hypersonic aircraft, which uses a scramjet engine to achieve hypersonic flight. The third type is an aerospace plane, which has space-based to space-based combat capabilities. It is usually used to perform space reconnaissance, cruising, satellite protection, repair and other tasks. In wartime, it can carry out space control, capture, destruction and other military operations against enemy targets.

The development of space deterrence will likely change the future strategic stability framework, interweaving and integrating with nuclear deterrence and cyber deterrence to form a new strategic stability framework. Taking the relationship between space deterrence and cyber deterrence as an example, the key nodes of the network are located in space, and space routers ensure the data flow of the Internet and the global information grid. The success or failure of cyber deterrence depends on space; almost all space activities rely on the network, and cyber deterrence will further enhance the ability to control space.

Achieving global combat force integration

The uniqueness of space is that it is not restricted by traditional land, sea, and air flight restrictions, and is naturally global and cross-domain. The field of view of a geosynchronous orbit satellite can cover about 1/3 of the earth’s surface, and three geosynchronous orbit satellites can cover the entire earth.

Globalization is to use the space system to connect the world’s combat forces and means to form a complete combat system, and realize global information support and global strikes. At present, space-based satellites rely on access to the ground grid information network to achieve connection, namely the “sky-star-ground network”. In the future, space-based satellites will also form a network themselves and form a “sky-ground integrated network” with the ground network. Combat forces and means at any location in the world can be connected through the “sky-ground integrated network” to form an integrated combat force system. In 2016, the United States proposed the concept of establishing a space Internet. One of the plans is to consist of 648 small satellites, operating in an orbit 1,200 kilometers above the ground. Once the Internet is moved to space, it can make up for some “blind spots” of the ground network, such as oceans and remote areas, achieve global Internet coverage, and promote the integration of global combat forces.

In 2013, the U.S. military’s “Space Operations” doctrine first proposed to establish a space application network in combat units at all levels of the military services and use space forces for cross-domain coordination. Based on the recognition of the cross-domain nature of space, Russia merged the Air Force and the Aerospace Defense Force into the Aerospace Force. The Aerospace Force is composed of the Air Force, the Space Force, and the Air Defense and Anti-Missile Force. It integrates aerospace, air defense, and space defense, and has the combat capabilities of aviation, near-space, and space orbit, realizing cross-domain operations in air and space.

Space power is a force multiplier

When space forces intervene and penetrate into other areas, it will catalyze the rapid increase of combat effectiveness. John Hyten, commander of the U.S. Space Command, said: “Because of space, we can strike any target on the earth at any time, any place, and any weather conditions; on the contrary, if we cannot use space, the U.S. military will return to the World War II model and the war of the industrial age.”

Space power penetrates land, sea, air, electricity and the Internet, which is conducive to selecting the best target, using the most appropriate means, and achieving the best combat effect at the best time and place, thus forming a combat power multiplier effect. For example, the “Dove Swarm” satellite launched by Planetary Laboratories of the United States consists of 95 small satellites, which work “24 hours online” and can take images all the time without instructions, continuously obtain data, and achieve real-time global monitoring.

The United States and Russia attach great importance to the development of small satellites because of their low cost, fast launch and fast networking. Low-orbit small satellites have the ability to continuously cover the world and update data in real time. Tactical communication small satellites can provide communication support for grassroots combat troops. Small satellites are also particularly suitable for space target monitoring and space attack and defense, which can double combat effectiveness.

Opening up new areas of covert confrontation

The United States and Russia believe that compared with military struggles in other fields, space operations are more concealed. The concealment of space operations is mainly reflected in the concealment of interference sources, locations, and functions.

The source of interference is hidden, which means that it is difficult to accurately determine the source of interference to spacecraft. For example, when jamming a communication satellite, it is difficult to accurately determine the source of the attack.

Hidden location. According to the regulations of international organizations, in order to ensure the efficient use of the geostationary orbit and reduce congestion, when the life of the geostationary orbit satellite ends, it should give up the orbital position and be pushed to the graveyard orbit. Because there are a large number of abandoned satellites in the graveyard orbit, it is not easy to be discovered with the current space situational awareness capabilities. The United States once proposed to deploy attack forces in the graveyard orbit, which is 200 to 300 kilometers higher than the geostationary orbit.

Hidden functions. Since 95% of aerospace technologies are dual-use, it is difficult to clearly distinguish whether a certain space technology or means is for military or civilian purposes. Military powers often take advantage of this and use civilian purposes to cover up their combat potential. For example, the “Phoenix” program implemented by the US Defense Advanced Research Projects Agency launched the “Cell Star” in 2015. In wartime, space robots can grab payloads such as antennas and solar panels from retired satellites and install them on the Cell Star to make it combat-capable. The “Dragonfly” project, a follow-up to the “Phoenix” plan, is to disassemble large satellites that are difficult to launch into components, store them in orbit for a long time, and quickly assemble them to form combat capabilities when needed.

現代國語:

来源:中国军网综合作者:仲晶责任编辑:姚远

當下,伴隨航太科技「井噴」式發展,美俄對太空領域的競爭日益激烈。今天出版的《解放軍報》刊登署名文章《太空:未來美俄角逐的新戰場》,文章指出,伴隨航太技術的發展,太空領域正孕育新的戰略威懾力量,太空威懾力量的發展將可能改變未來戰略穩定架構。

太空:未來美俄角逐的新戰場

■仲晶

當上個世紀航太技術的發展還處於萌芽狀態時,美國總統林登·約翰遜斷言:誰控制了太空,誰就能控制地球。進入21世紀,伴隨航太技術「井噴」式發展,美俄對太空領域的競爭日益激烈,其結果將直接影響世界格局與國家未來命運。

太空成為新型戰略威懾力量

以往,核武是主要的戰略威懾力量,也是戰略穩定的基石。伴隨航太科技的發展,太空領域正孕育新的戰略威懾力量。例如,美俄正在研發發展的太空即時打擊力量,能在1—2小時內打擊地球上任何目標,不僅具備摧毀和破壞戰略核武及其基礎設施的能力,而且由於速度快、機動能力強,現有防空反導系統都不能實施攔截,是改變「遊戲規則」的革命性戰略威懾力量。

目前,美俄主要研發了三類全球即時打擊武器。第一類是亞軌道滑翔飛行器,可用於投射核彈頭。這種飛行器在距地表100千米左右大氣層邊界做無動力滑翔,就像海上衝浪的滑板不斷隨波峰波谷“跳躍”,從而實現高速機動與突防。第二類是吸入式高超音波速飛行器,其使用超燃沖壓發動機,實現高超音波飛行。第三類是空天飛機,具有天基對天基作戰能力,平時用於執行太空偵察、巡航、衛星防護、修理等任務,戰時可對敵國目標實施太空控制、捕獲、摧毀等軍事行動。

太空威懾力量的發展將可能改變未來戰略穩定架構,與核威懾、網路威懾交織融合,共同構成新的戰略穩定架構。以太空威懾與網路威懾關係為例,網路的關鍵節點位於太空,太空路由器確保互聯網、全球資訊柵格的資料流動,網路威懾的成敗取決於太空;幾乎所有的太空活動都依賴於網絡,網路威懾會進一步增強掌控太空的能力。

實現全球作戰力量一體化

太空的獨特之處,在於不受傳統的陸地、海上、空中飛越限制,具有天然的全球性和跨域性。 1顆地球同步軌道衛星,視野可覆蓋約1/3的地球表面,3顆地球同步軌道衛星可覆蓋整個地球。

全球性,是利用太空系統將全球的作戰力量和手段連接形成完整的作戰體系,實現全球範圍資訊支援和全球打擊。目前,天基衛星依賴接取地面柵格資訊網實現連接,即「天星地網」。未來天基衛星本身也會組網,與地面網路形成「天地一體網」。全球任何地點的作戰力量和手段都能透過「天地一體網」連結起來,形成一體化作戰力量體系。 2016年,美國提出建立太空網際網路構想,其中一個方案就是由648顆小衛星組成,在距地面1,200千米軌道上運行。一旦互聯網搬到太空,可以彌補地網一些“死角”,例如海洋與偏遠地區,實現互聯網全球覆蓋,促進全球作戰力量一體化。

2013年,美軍《太空作戰》條令首次提出,在軍兵種各級作戰單元建立太空應用網絡,利用太空力量進行跨域協同。基於對太空跨域性的認識,俄羅斯將空軍與空天防禦部隊合併為空天軍。空天軍由空軍、航太部隊和防空反導部隊組成,集航空航太、防空防天於一體,具備航空、臨近空間、太空軌道的作戰能力,實現空天跨域作戰。

太空力量是戰鬥力倍增器

當太空力量介入並滲透到其他領域,將催化戰鬥力迅速增強。美航天司令部司令約翰·海頓說:“正因為有太空,我們可以在任何時間、任何地點、任何氣象條件下打擊地球上任何一個目標;相反,不能利用太空,美軍將回到二戰模式和工業時代的戰爭。”

太空力量滲透於陸、海、空、電、網之中,有利於選擇最優目標、運用最合適手段、在最佳時間和地點達成最佳作戰效果,從而形成戰鬥力倍增效應。例如,美國行星實驗室公司發射的「鴿群」衛星由95顆小衛星組成,「24小時線上」工作,不需要指令就可以全時拍攝成像,不間斷獲取數據,做到全球即時監測。

由於小衛星具有成本低、發射快、組網快的特點,美俄非常重視小衛星發展。低軌小衛星具備全球持續覆蓋和數據即時更新的能力,戰術通訊小衛星可以為基層作戰部隊提供通訊支援。小衛星也特別適合太空目標監視和太空攻防,使戰鬥力倍增。

開闢隱蔽對抗新領域

美俄認為,太空領域與其他領域軍事鬥爭相比,呈現更強的隱密性。太空行動的隱蔽性,主要體現在幹擾源隱蔽、位置隱密和功能隱密等。

幹擾源隱蔽,是指對太空船的干擾很難準確判斷幹擾來源。例如,對通訊衛星實施幹擾,難以準確判斷其攻擊來源。

位置隱蔽。根據國際組織規定,為確保地球靜止軌道的高效運用、減少擁擠,地球靜止軌道衛星壽命終結時,應讓出軌道位置,被推到墓地軌道。由於墓地軌道有大量廢棄的衛星,以目前的太空態勢感知能力不容易被發現。美曾提出,將攻擊力量部署在墓地軌道,其比地球靜止軌道高200~300千公尺。

功能隱蔽。由於95%的航太技術都具有軍民兩用性,很難明確區分某種太空技術或手段是軍事用途還是民用目的。軍事強國往往利用這一點,以民用目的掩蓋其具備的作戰潛能。例如,美國防高級研究計劃局實施的“鳳凰”計劃,在2015年發射了“細胞星”,戰時可由太空機器人從退役衛星上抓取天線和太陽能電池板等載荷,安裝在細胞星上,讓其具備作戰功能。 「鳳凰」後續計畫的「蜻蜓」項目,則是將整件發射難度高的大型衛星分解成組件,長期貯藏在軌道上,一旦需要就可快速組裝形成戰鬥力。

中國原創軍事資源:http://www.81.cn/jskj/2017-02/03/content_7474214_28.htm