Category Archives: #Chinese #Quantum #technology

United States Continuing Promoting Use of Artificial Intelligence During Combat Operations

美國繼續推動在作戰行動中使用人工智慧

現代英語:

The US military is accelerating the application of artificial intelligence technology in actual combat.

According to foreign media reports, the US Department of Defense recently released a strategic planning document on artificial intelligence technology to strengthen top-level design and promote the rapid development of related technologies. At the same time, the US military has also continued to strengthen its combat use of artificial intelligence technology.

Release of strategic planning documents

Recently, U.S. Deputy Secretary of Defense Hicks signed the strategic document “Responsible Artificial Intelligence Strategy and Implementation Approach”, which clarified the basic principles and main framework for the U.S. Department of Defense to implement the artificial intelligence strategy. The main contents include the following two aspects.

Sort out the “demand side”. First, adjust the management structure and process, and continue to follow up on the development of artificial intelligence technology in the Ministry of National Defense. Second, pay attention to the research and development and procurement of artificial intelligence products, and adjust the speed of artificial intelligence technology development in a timely manner. Third, use the demand verification procedure to ensure that artificial intelligence capabilities are consistent with operational requirements.

Optimize the “R&D end”. First, create a trustworthy AI system and AI-enabled system. Second, promote a common understanding of the concept of “responsible AI” through domestic and international cooperation. Third, improve the theoretical and operational level of AI-related personnel in the Ministry of National Defense.

In addition to the military’s strategic planning report, American think tanks have recently made recommendations on the cooperation between the United States and its allies in the application of artificial intelligence technology. The Center for Security and Emerging Technologies at Georgetown University in the United States released a report stating that the U.S. government, universities, research institutions and the private sector should promote artificial intelligence technology research cooperation with Australia, India and Japan in various ways to achieve an open, accessible and secure technology ecosystem and improve the performance of relevant U.S. military weapons and equipment.

Accelerate the pace of technology application

In addition to formulating a “roadmap” for the development of artificial intelligence technology in top-level design, the US military has also taken a number of measures recently to try to apply relevant mature technologies to military practice.

From the perspective of military construction, the Army’s “Integration Plan”, the Navy’s “Winning Plan” and the Air Force’s “Advanced Combat Management System” are the three major artificial intelligence programs of the US military. All three programs are being promoted simultaneously. Recently, the US Army Contracting Command awarded a US military contractor Engineering and Computer Simulation a contract totaling $63.28 million to design and develop new artificial intelligence algorithms. Kitchener, commander of the US Navy’s surface forces, said that the US Navy’s surface forces will focus on integrating capabilities such as artificial intelligence and machine learning in the near future to significantly enhance their combat advantages. The US Air Force recently successfully demonstrated an artificial intelligence algorithm called Artuu, which can automatically manipulate U-2 reconnaissance aircraft to search for enemy missile launchers and generate real-time combat maps of cross-domain threats.

From the perspective of combat power generation, the U.S. military is accelerating the application of artificial intelligence technology in actual combat. The U.S. National Interest bimonthly website recently published an article saying that the U.S. Navy and Air Force are developing a new generation of training systems to help their fighters better deal with new air threats. This intelligent technology, called the “P5 Combat Training System,” can help U.S. military pilots conduct virtual training in high-threat, high-confrontation combat scenarios.

The Defense Advanced Research Projects Agency (DARPA) is busy verifying an “autonomous cyber attack system based on artificial intelligence chips”. It is reported that the system can generate a set of attack codes every 24 hours and dynamically adjust the attack program according to the real-time network environment. Since the attack code is newly generated, it is difficult for antivirus systems that rely on existing virus libraries and behavior recognition to identify it, and the code is highly concealed and destructive. The Defense Advanced Research Projects Agency (DARPA) believes that the system has extremely high application potential and can help the US military gain technological advantages in future cyber operations.

Triggering a cutting-edge military competition

Overall, the US military has been active in the development of artificial intelligence recently, and related developments may trigger a new round of global cutting-edge military competition.

On the one hand, the US military is promoting the idea of ​​”everything can be intelligent” internally. The US military claims that fighter jets, tanks, ground control stations and surface ships can not only serve as entities with combat capabilities, but also as nodes for monitoring battlefields and obtaining war information. To achieve this goal, artificial intelligence will play an irreplaceable role. Combined with the US military’s strategic planning documents, it is not difficult to see that in order to create more nodes, the US military will give full play to the enabling role of artificial intelligence in the next step to help various weapon platforms find and strike targets faster.

On the other hand, it will have an external impact on the global military development pattern. The US military and its allies are vigorously promoting the development of artificial intelligence technology, mainly to use these advanced technologies to suppress rival countries, and the backlash effect of related practices may be immediate. At present, many countries in the world are vigorously developing related technologies. It can be foreseen that with the rapid development and support of technologies such as artificial intelligence, the future battlefield will accelerate the transition to an intelligent and unmanned battlefield. Cross-domain collaborative operations such as land, sea, air, space, and the Internet will become the main combat style of future wars, driving the development and application of equipment technology, and promoting major changes in the global military development pattern.

現代國語:

據外媒報道,近期,美國國防部發布人工智能技術戰略規劃文件,強化頂層設計,推動相關技術快速發展。與此同時,美軍也持續加強對人工智能技術的作戰運用。

出台戰略規劃文件

近期,美國防部常務副部長希克斯簽署《負責任的人工智能戰略和實施途徑》戰略文件,明確美國防部實施人工智能戰略的基本原則和主體框架,主要內容包括以下兩個方面。

理順“需求端”。一是調整管理結構和流程,持續跟進國防部人工智能技術發展。二是關注人工智能產品的研發和采購,適時調整人工智能技術開發速度。三是使用需求驗證程序,確保人工智能能力與作戰需求保持一致。

優化“研發端”。一是創建可信的人工智能系統和人工智能賦能系統。二是通過國內、國際合作,促進對“負責任的人工智能”概念的共同理解。三是提高國防部人工智能相關人員的理論和操作水平。

除軍方的戰略規劃報告外,近期,美國智庫也對美國與盟友的人工智能技術應用合作提出建議。美國喬治城大學安全和新興技術中心發布報告稱,美國政府、大學、研究機構和私營部門應通過多種方式,促進與澳大利亞、印度和日本3國的人工智能技術研究合作,以實現開放、可訪問和安全的技術生態系統,提升美軍相關武器裝備性能。

加快技術應用步伐

除在頂層設計上為人工智能技術發展制定“路線圖”外,美軍近期還多措並舉,試圖將相關成熟技術運用於軍事實踐。

從軍種建設層面看,陸軍的“融合計劃”、海軍的“制勝計劃”和空軍的“先進作戰管理系統”是美軍當前三大人工智能計劃。三大計劃均在同步推進。近期,美陸軍合同司令部授予美軍事承包商工程與計算機模擬公司一份總金額6328萬美元的合同,以設計和開發新的人工智能算法。美海軍水面部隊指揮官基奇納表示,美海軍水面部隊近期將重點整合人工智能與機器學習等能力,以大幅提升作戰優勢。美空軍近期成功演示了一種名為Artuu的人工智能算法,能自動操縱U-2偵察機尋找敵方的導彈發射器,生成跨域威脅實時作戰圖。

從戰力生成層面看,美軍正在加速人工智能技術在實戰方面的應用。美國《國家利益》雙月刊網站近日刊文稱,美海軍和空軍正在研發新一代訓練系統,幫助其戰斗機更好地應對新的空中威脅。這種名為“P5作戰訓練系統”的智能技術,可幫助美軍飛行員進行高威脅、高對抗作戰場景下的虛擬訓練。

美國防高級研究計劃局則在忙於驗證一款“基於人工智能芯片的自主網絡攻擊系統”。據悉,該系統每24小時可生成一套攻擊代碼,並能根據網絡實時環境,對攻擊程序進行動態調整。由於攻擊代碼是全新生成的,因此,依托現有病毒庫和行為識別的防病毒系統難以識別,代碼的隱蔽性和破壞性強。美國防高級研究計劃局認為,該系統具有極高的應用潛力,能夠在未來的網絡作戰中幫助美軍獲得技術優勢。

引發前沿軍事競賽

總體來看,近期美軍在人工智能建設方面動作頻頻。相關動向或將引發新一輪全球前沿軍事競賽。

一方面,對內推動“萬物皆可智能”。美軍宣稱,無論是戰斗機、坦克、地面控制站還是水面艦船,不僅可作為一個具有作戰能力的實體,還可作為一個監視戰場和獲取戰爭信息的節點。要實現這個目標,人工智能將發揮不可替代的作用。結合美軍戰略規劃文件不難看出,為打造更多節點,美軍下一步將充分發揮人工智能的賦能作用,助力各類武器平台更快地發現和打擊目標。

另一方面,對外影響全球軍事發展格局。美軍及其盟友大力推動人工智能技術發展的做法,主要目的是利用這些先進技術打壓對手國家,相關做法的反噬效應或將立竿見影。目前,世界多國都在大力發展相關技術。可以預見,在人工智能等技術的快速發展和支撐下,未來戰場將加速向智能化、無人化戰場過渡,陸、海、空、天、網等跨域協同作戰,將成為未來戰爭的主要作戰樣式,牽引裝備技術發展和運用轉化,推動全球軍事發展格局發生重大變化。

來源:中國軍網-中國國防報 作者:傅 波 責任編輯:尚曉敏

中國原創軍事資源:http://www.81.cn/wj_208604/10169848888.html

China’s first optical quantum computer shows off its computing power comparable to top “supercomputers”

我國首台光量子電腦展現媲美頂級「超級電腦」的運算能力

現代英語:

In today’s era of rapid technological development, the technological competition between China and the United States is like a war without gunpowder, especially in cutting-edge technology fields such as lithography machines and chips. The United States has relied on its technological advantages to blockade and suppress my country, trying to curb the pace of my country’s technological rise. However, things suddenly turned around, and pressure can often be transformed into motivation. my country’s technology companies did not retreat, but instead accelerated the pace of independent research and development. Recently, the first appearance of a new generation of domestic optical quantum computers is undoubtedly a shining star in my country’s science and technology field, illuminating the road to future technological development.

Stunning debut, showing strength

This device, called “TurningQ Gen2 Large-Scale Programmable Optical Quantum Computing System”, attracted countless eyes. It looks like a double-door refrigerator, seemingly ordinary, but contains huge scientific and technological energy. The device is mainly composed of three core components: quantum light source unit, quantum computing unit, and detection unit. Each component embodies the hard work and wisdom of scientific researchers.

According to relevant persons in charge of Turing Quantum, this optical quantum computer has a quantum superiority level of 56 photons. When solving certain specific problems, its computing power is almost comparable to that of the top supercomputer, Tianhe-2. As an outstanding representative of my country’s supercomputers, Tianhe-2 has been ranked among the top in the global supercomputer rankings many times. Its powerful computing power has provided strong support for many scientific research and engineering fields. Today, the computing power of domestic optical quantum computers on specific problems is comparable to that of Tianhe-2, which is undoubtedly a major breakthrough in my country’s quantum computing field.

What is even more surprising is that compared with Tianhe-2, this optical quantum computer has obvious advantages in terms of floor space and energy consumption. Supercomputers usually require huge computer rooms and a large amount of energy supply to maintain operation, while optical quantum computers are only the size of a refrigerator, which greatly saves space and energy. This not only reduces the cost of use, but also makes it possible for the widespread application of quantum computers.

Key components, simultaneously unveiled

At the exhibition, the key device for the industrialization of this quantum computer, the photonic chip based on 110 nanometer technology, was also unveiled. The photonic chip is one of the core components of the optical quantum computer. It uses photons to transmit and process information and has the advantages of high speed and low energy consumption. The emergence of the photonic chip based on 110 nanometer technology marks that my country has made important progress in photonic chip manufacturing technology.

The development and production of photonic chips require high-precision manufacturing processes and advanced equipment. Through unremitting efforts, Chinese researchers have overcome technical difficulties one after another and successfully developed photonic chips based on 110-nanometer technology. This achievement not only lays a solid foundation for the industrialization of my country’s optical quantum computers, but also wins my country an advantage in the development of photonic chips.

Future prospects, unlimited potential

With the continuous advancement of quantum computing technology, the further optimization of CPO optoelectronic co-packaging and related micro-nano processing technologies, quantum computers are expected to significantly improve computing power while reducing their size to the size of a laptop computer. This prospect is exciting and will bring revolutionary changes to the popularization and application of quantum computers.

In the field of scientific research, quantum computers will provide powerful tools for solving complex scientific problems. For example, in the fields of quantum chemistry, materials science, biomedicine, etc., quantum computers can simulate the structure and properties of molecules and accelerate the process of new drug development and material design. In the financial field, quantum computers can be used for risk assessment, portfolio optimization, etc. to improve the accuracy and efficiency of financial decision-making. In the field of artificial intelligence, quantum computers can accelerate the training of machine learning and deep learning algorithms and promote the development of artificial intelligence technology.

In addition, the widespread application of quantum computers will also drive the development of related industries. From the manufacture of photon chips to the assembly and debugging of quantum computers, to the development and application of quantum computing software, a huge industrial chain will be formed. This will inject new impetus into my country’s economic development and create a large number of employment opportunities.

Independent innovation, forging ahead

The debut of the new generation of domestic optical quantum computers is another major achievement of my country’s independent scientific and technological innovation. In the face of the blockade and suppression of the United States, my country’s technology companies did not choose to rely on imports, but firmly embarked on the path of independent research and development. This spirit of independent innovation is the core driving force of my country’s scientific and technological development.

However, we must also be aware that there is still a certain gap between my country and the world’s advanced level in the field of quantum computing. In future development, we need to continue to increase investment in scientific research, cultivate more scientific and technological talents, strengthen international cooperation and exchanges, and continuously enhance my country’s core competitiveness in the field of quantum computing.

The debut of the new generation of domestic optical quantum computers is an important milestone in the history of my country’s scientific and technological development. It allows us to see the huge potential and broad prospects of my country in the field of quantum computing. I believe that in the near future, quantum computers will enter our lives and bring more surprises and changes to the development of human society. Let us look forward to the arrival of this day and work hard for the brilliant future of my country’s science and technology!

現代國語:

在當今科技快速發展的時代,中美之間的科技競爭猶如一場沒有硝煙的戰爭,在光刻機、晶片等前沿科技領域尤為激烈。美國憑藉其技術優勢對我國進行封鎖和打壓,試圖遏制我國科技崛起的腳步。然而,事情突然反轉了,壓力往往能轉化為動力,我國科技企業並未因此退縮,反而加快了自主研發的腳步。近日,國產新一代光量子電腦首次亮相,無疑是我國科技領域的璀璨明星,照亮了未來科技發展的道路。

驚艷首秀,實力彰顯

這台名為「TurningQ Gen2大規模可程式光量子計算系統」的設備吸引了無數目光。它外觀猶如一台對開門冰箱,看似普通,卻蘊含著巨大的科技能量。該設備主要由量子光源單元、量子計算單元、探測單元三大核心組件所構成,每個組件都凝聚著科研人員的心血與智慧。

據圖靈量子相關負責人介紹,這台光量子電腦具備56光子的量子優越性等級規模。在求解某些特定問題時,其運算能力幾乎可媲美頂尖超級電腦——天河二號。天河二號作為我國超算的傑出代表,曾多次在全球超算排行榜上名列前茅,其強大的運算能力為許多科學研究和工程領域提供了有力支持。而如今,國產光量子電腦在特定議題上的運算能力與之相當,這無疑是我國在量子運算領域的重大突破。

更令人驚訝的是,與天河二號相比,這台光量子電腦在佔地面積和能耗方面具有明顯優勢。超算通常需要龐大的機房和大量的能源供應來維持運行,而光量子電腦僅相當於一台冰箱的大小,大大節省了空間和能源。這不僅降低了使用成本,也為量子電腦的廣泛應用提供了可能。

關鍵裝置,同步亮相

在展會現場,與這台量子電腦實現產業化的關鍵裝置-基於110奈米製程的光子晶片也同步亮相。光子晶片是光量子電腦的核心元件之一,它利用光子進行資訊傳輸和處理,具有高速、低能耗等優點。基於110奈米製程的光子晶片的出現,標誌著我國在光子晶片製造技術上取得了重要進展。

光子晶片的研發和生產需要高精度的製造流程和先進的設備。我國科學研究人員經過不懈努力,攻克了一個又一個技術難題,成功研發了基於110奈米製程的光子晶片。這項成果不僅為我國光量子電腦的產業化奠定了堅實基礎,也為我國在光子晶片領域的發展贏得了先機。

未來展望,潛力無限

隨著量子運算技術的不斷進步,CPO光電共封裝以及相關微納加工製程的進一步優化,量子電腦有望在大幅提升運算能力的同時,將尺寸縮小到筆記型電腦大小。這一前景令人振奮,它將為量子電腦的普及和應用帶來革命性的變化。

在科學研究領域,量子電腦將為複雜科學問題的求解提供強大的工具。例如,在量子化學、材料科學、生物醫學等領域,量子電腦可以模擬分子的結構和性質,加速新藥研發和材料設計的進程。在金融領域,量子電腦可以用於風險評估、投資組合最佳化等,提高財務決策的準確性和效率。在人工智慧領域,量子電腦可以加速機器學習和深度學習演算法的訓練,推動人工智慧技術的發展。

此外,量子電腦的廣泛應用也將帶動相關產業的發展。從光子晶片的製造到量子電腦的組裝和調試,再到量子運算軟體的開發和應用,都將形成一個龐大的產業鏈。這將為我國經濟發展注入新的動力,創造大量的就業機會。

自主創新,砥礪前行

國產新一代光量子電腦的首秀,是我國科技自主創新的另一個重大成果。在面對美國的封鎖和打壓時,我國科技企業並沒有選擇依賴進口,而是堅定地走上了自主研發的道路。這種自主創新的精神是我國科技發展的核心動力。

然而,我們也要清醒地體認到,我國在量子運算領域與世界先進水準仍有一定的差距。在未來的發展中,我們需要持續加大科研投入,培養更多的科技人才,加強國際合作與交流,不斷提升我國在量子運算領域的核心競爭力。

國產新一代光量子電腦的首秀,是我國科技發展史上的重要里程碑。它讓我們看到了我國在量子運算領域的巨大潛力和廣闊前景。相信在不久的將來,量子電腦將走進我們的生活,為人類社會的發展帶來更多的驚喜和改變。讓我們共同期待這一天的到來,為我國科技的輝煌未來而奮鬥!

中國原創軍事資源:https://www.163.com/dy/article/K2OHRN700540MBP1888.html

Quantum Technology Has Great Potential For Future Chinese Warfare Success

量子科技對中國未來戰爭的成功有巨大潛力

現代英語:

On October 16, the Political Bureau of the CPC Central Committee held a collective study on the research and application prospects of quantum technology. General Secretary Xi Jinping emphasized that we must fully recognize the importance and urgency of promoting the development of quantum technology, strengthen the strategic planning and systematic layout of quantum technology development, grasp the general trend, and take the initiative.

As the mystery of quantum is unveiled, people are increasingly aware that quantum technology represents the future of human society, is a strategic field that concerns national security and high-quality social and economic development, is a major disruptive technological innovation that impacts and reconstructs the traditional technological system, and will lead a new round of scientific and technological revolution and industrial transformation. It has a bright future.

The United States, the European Union, Australia, Russia and other world powers and regional organizations have been conducting research on quantum technology for many years and have done a lot of preliminary work in the field of quantum information. my country has also pressed the “accelerator” in the development of quantum technology.

Quantum thinking opens up your mind

Do you think quantum technology is very high-end, sounds vague, and even a bit illusory? Not only do you think so, but even Niels Bohr, the founder of quantum physics, once said: “If someone is not confused by quantum mechanics, he does not understand it.”

In fact, we live in the quantum world every day. Quantum is the basic unit of matter: if you divide the physical quantity piece by piece until it is small enough that it cannot be divided any further, it is a quantum. For example, a photon is the basic unit of light energy and it is impossible to divide it into half a photon.

So why can’t we feel its existence at all, and even find it difficult to understand the phenomena of the quantum world? This is because the scale we are familiar with is too different from the quantum scale. For example, a table is on the meter scale, a hair is on the millimeter scale, and the object of quantum physics is tens of millions or even hundreds of millions times smaller than the scale of a hair. If a person is reduced to a size of tens of millions of times the diameter of a hair, then the world in which humans live will follow a completely different set of rules.

In the Newtonian classical thinking model that we are familiar with, “the world is accurately measurable”, everything is an objective, precise, mechanically connected, describable and quantifiable mathematical model, just like you can calculate and analyze the whole process of a wooden block sliding down a slope with a pen. However, several key words of quantum thinking may subvert all this:

Keyword 1: “Probability”. The world is jumpy, unpredictable, and uncertain, or in other words, it is extremely complex and interconnected like the butterfly effect.

Keyword 2: “Overlap”. The world is “plural”. Before we make a choice, the choices are infinite and changing. Only when we finally make a choice, other possibilities “collapse”. At the same time, this choice provides us with infinite options for the next choice.

Keyword three: “Observer”. This is even weirder – if you observe a quantum system, it changes immediately! In other words, the state of the quantum depends on the observer.

Einstein described the quantum world as “ghost-like”. There, many natural laws that people firmly believe in will become invalid, and the perspective of understanding the universe will be completely changed. Before opening the door to the quantum world, you need to abandon all the common sense you have acquired in the macroscopic world, replace it with quantum thinking, keep your mind open, and be ready to exclaim: “How is this possible?!”

A tiny quantum has brought about two revolutions

With quantum thinking, you may understand the two “unique skills” of quantum: one is “clone” – quantum superposition, a quantum can exist in several states at the same time; the other is “remote telepathy” – quantum entanglement, a pair of entangled quantum is like a pair of twins with telepathy. At the same time, quantum is also very “weird” – indivisible and non-cloneable.

It is precisely these magical properties that enable such tiny quantum to burst out with huge energy, setting off two technological waves in human history.

As early as 1900, German physicist Planck proposed the concept of quantum, which split the “hard core” of the real world and ushered in the quantum era. A group of talented scientists such as Heisenberg, Schrödinger, and Bohr basically completed the theoretical framework of quantum mechanics.

Quantum mechanics is one of the greatest scientific discoveries of the last century. Based on quantum mechanics, modern technologies such as transistors, lasers, nuclear fusion, mobile communications, and global positioning systems have emerged, allowing humans to enter the information age, and then developed into the ubiquitous computers and the Internet, creating further prosperity for society. This is the first quantum revolution.

In the 1980s, quantum information technology was born in the information field based on quantum mechanics. For example, quantum computers, quantum cryptography, quantum sensors, etc., not only are based on quantum mechanics, but the devices themselves also have quantum world characteristics such as superposition, entanglement, non-locality, and non-cloning, breaking through the physical limits of classical technology and finding new research directions. The birth of quantum information technology is called the second quantum revolution.

Quantum technology is one of the most cutting-edge technologies at present. It is moving out of the laboratory and achieving unprecedented leapfrog development in various fields. Some even predict that, like steam engines, electricity and computers, quantum technology will become the symbol of the fourth technological revolution.

“A pair of twin stars rises”

Academician Guo Guangcan of the University of Science and Technology of China once said vividly: “The computing power of quantum computers compared with electronic computers is equivalent to the computing power of electronic computers compared with abacus.” The computers we use use the two states of bits 0 and 1 as information processing units, and can only process a single state bit that is either 0 or 1 at a time; while the quantum computing processing unit is a quantum bit, which can process 0 and 1 at the same time due to the superposition effect, just like Sun Wukong can split into dozens of bodies to fight monsters. If a light quantum computer is made using quantum technology, the computing time of a classical computer that takes hundreds of thousands of years will be shortened to a few seconds.

Therefore, as the number of quantum bits continues to increase, the more “clones” there are, the faster the calculation will be. When the number of quantum bits reaches 50, that is, 250 states exist simultaneously, how huge is this number? Converted into the thickness of a 0.1 mm A4 paper folded in half 50 times, this number is 100 million kilometers, which is close to 3/4 of the distance from the earth to the sun. When a quantum computer can reach 100 bits, it may be 100 billion times faster than a supercomputer in some directions.

How should we use such powerful computing power?

First, large-scale, high-dimensional computing problems that were difficult or impossible to solve in the past can now be quickly solved, such as typical search problems and combinatorial optimization problems, such as optimal route selection, code cracking, network threat prediction, urban traffic planning, and so on.

Secondly, artificial quantum systems can be used to simulate natural quantum systems to explore the dynamic properties of molecules. For example, once we simulate and analyze the mechanism of high-temperature superconductivity, we can design some new superconducting materials. This will open a new door for drug design, new material exploration, weather forecasting, space exploration, chemical engineering and other fields, and has great economic and social value.

What is particularly worth looking forward to is that artificial intelligence and quantum technology will coexist and evolve at the same time, “rising like a pair of twin stars.”

Gordon Moore, the founder of Intel, proposed the famous Moore’s Law: Computer computing speed doubles every 18 months or so. Without the exponential growth of silicon transistors in chips and the increasing computing power, artificial intelligence would not have achieved such remarkable results in recent years. However, today, the size of a transistor is much smaller than a flu virus, approaching the physical limit, and computer computing speed is about to reach a “bottleneck”, and artificial intelligence may face a “cold winter”.

Scientists are convinced that only quantum computing, which goes beyond classical computing, can be a strong backing for artificial intelligence to break through its limits. In particular, machine learning technology, which relies on large-scale data processing, will benefit greatly from quantum computing and generate unlimited possibilities; at the same time, artificial intelligence technology can realize self-calibration and evaluation of quantum computing, and evolve with it.

In a foreseeable period, quantum computing will gradually transition from solving optimization problems, quantum encryption communications, and molecular structure research to integrating artificial intelligence, and infiltrating various industries such as smart manufacturing, smart logistics and smart retail, and smart finance. Cloud services will be a new form of service that quantum computing can provide.

Quantum communication “weaves” quantum internet

This is the most amazing phenomenon in the quantum world: independent particles can be completely “entangled” together. Even if the two particles are at the two ends of the universe, both sides can “sense” each other’s state; as long as the state of one of the particles changes, the state of the other particle will also change instantly.

At the same time, quantum is in multiple possible superposition states, and its true state cannot be determined before it is observed. We can achieve absolutely secure communication with subversive significance by constructing particles with quantum entanglement.

With the help of the magical properties of quantum, scientists have found an unbreakable code, the only unconditionally secure encryption method currently available to humans, and the most critical link in quantum communication – quantum key distribution.

Quantum keys use single photons as carriers. Once an eavesdropper takes action, the first layer of “firewall” will be triggered – the quantum state of particles will change. The eavesdropping behavior will be immediately discovered by the user transmitting the information, and the sender and receiver will immediately stop using the key to encrypt the information content. As a “spy”, since quantum state particles cannot be copied, can’t you just intercept and measure them directly? Sorry, doing so will trigger the second layer of “firewall” – the uncertainty principle. Even if you are intercepted by an eavesdropper, there is no way to get the correct information. Quantum satellites are the most promising way to achieve ultra-long-distance quantum communication. In August 2016, the world’s first quantum science experimental satellite “Mozi” was successfully launched in China.

Quantum communication technology and quantum resources have given rise to a new functional network – quantum Internet. It will bring about a leap forward in network security, computing and science, and has broad application prospects: in addition to achieving unconditional secure communication, it can also connect multiple quantum computers to build a distributed quantum computing system, forming a large-scale computing capability that a single quantum computer cannot achieve; forming a sensor network to increase the accuracy of navigation networks such as the global positioning system from the meter level to the millimeter level; connecting optical telescopes thousands of kilometers apart to obtain a resolution equivalent to that of a monocular telescope of the same diameter, and so on.

In May 2020, the European Union stated that it would promote the integration of quantum communications with traditional network infrastructure and applications, develop satellite-based quantum cryptography that can be used for global secure key distribution, and lay the foundation for the future “quantum internet” vision.

China Military Network Ministry of National Defense Network
Friday , November 13, 2020

現代國語:

10月16日,中共中央政治局就量子科技研究和應用前景舉行集體學習。習近平總書記強調,要充分認識推動量子科技發展的重要性和迫切性,加強量子科技發展戰略規劃和系統佈局,把握大趨勢,下好先手棋。

揭開量子的神秘面紗,人們愈來愈認識到,量子科技代表著人類社會未來,是事關國家安全和社會經濟高品質發展的戰略領域,是對傳統技術體系產生衝擊、進行重構的重大顛覆性技術創新,將引領新一輪科技革命和產業變革,可謂「前途」無量。

對於量子科技的研究,美國、歐盟、澳洲、俄羅斯等世界大國和區域組織已持續多年,在量子資訊領域都做了大量前期部署工作。我國在發展量子科技上,也按下了「加速鍵」。

量子思維讓腦洞大開

您是不是覺得量子科技非常高冷,聽起來似懂非懂,甚至有點亦真亦幻?不光您這麼想,連量子物理奠基人尼爾斯·玻爾都曾說過:“如果誰不對量子力學感到困惑,他就沒有理解它。”

其實,我們每天都生活在量子世界裡。量子是物質的基本單元:如果把物理量一份一份往下分,分到無法再分的小塊,就是量子。例如,光量子就是光能量的基本單元,不可能再分成半個光量子。

那麼,我們為何完全感覺不到它的存在,甚至很難理解量子世界的現象?這是因為我們熟悉的尺度和量子尺度相差太大。例如,一張桌子是米尺度,一根頭髮絲是毫米尺度,而量子物理學的研究對像比頭髮絲的尺度還小幾千萬倍甚至幾億倍。如果人類縮小成頭髮直徑的幾千萬分之一大小,那麼人類生活的世界將完全遵循另一套規則。

在我們熟知的牛頓經典思維模式下,“世界是測得準的”,一切都是客觀的、精準的、機械聯繫的、可描述可量化的數學模型,好比您提起筆就能計算分析出一個木塊從斜坡滑落的全過程。但量子思維的幾大關鍵字,可能顛覆這一切——

關鍵字一:「機率」。世界是跳躍的、不可預測的、測不準的,或者說是像蝴蝶效應那樣異常複雜關聯的。

關鍵字二:「重疊」。世界是「複數」的,在我們選定之前,選擇是無限的和變化的。直到最終選定了,其他可能性才「崩塌」。同時,這個選擇為我們下一次選擇又提供了無限的選項。

關鍵字三:「觀測者」。這個就更加詭異了——如果您去觀測測量子系統,它立刻就變了!換句話說,量子的狀態取決於觀測者。

愛因斯坦形容量子世界「如幽靈一般」。在那裡,人們堅信不疑的許多自然法則都會失效,理解宇宙的角度會徹底改變。在推開量子世界大門前,您需要拋棄在宏觀世界所獲得的一切常識,換上量子思維,保持腦洞大開狀態,並隨時準備驚呼:“這怎麼可能?!”

小小量子掀起兩次革命

有了量子思維,也許您就好理解量子所擁有的兩個「絕技」了:一是「分身術」——量子疊加,一個量子可同時存在好幾種狀態;另一個是「遠程心靈感應」——量子糾纏,一對糾纏的量子就好像一對有心靈感應的雙胞胎一樣。同時,量子還很「古怪」——不可分割和不可複製。

正是具備這些神奇特性,使如此微小的量子爆發出巨大能量,在人類歷史上掀起兩波科技浪潮。

早在1900年,德國物理學家普朗克提出量子概念,現實世界的「硬核」就此被劈開,隨之開啟量子時代。海森堡、薛丁格、玻爾等一群天才科學家基本上完成了量子力學的理論架構。

量子力學是上世紀最偉大的科學發現之一。基於量子力學,才有了晶體管、雷射、核融合、行動通訊、全球定位系統等現代技術,使人類進入資訊時代,繼而發展產生了當下無處不在的電腦和互聯網, 造就了社會進一步繁榮。這便是第一次量子革命。

在1980年代,基於量子力學,在資訊領域誕生了量子資訊技術。例如量子電腦、量子密碼、量子感測等,不僅其原理是量子力學,裝置本身也具備了疊加、糾纏、非局域性、不可複製性等量子世界特性,突破了經典技術的物理極限,找到了新的研究方向。量子資訊科技的誕生稱為第二次量子革命。

量子科技是目前最前沿的科技之一,它正走出實驗室,在各個領域實現前所未有的跨越式發展。甚至有人預言,就像蒸汽機、電力和電腦一樣,量子科技將成為第四次科技革命的象徵。

“升起一對雙子星”

中國科技大學郭光燦院士曾經形像地說:「量子電腦的運算能力同電子計算機相比,等同於電子計算機的運算能力同算盤相比。」我們所使用的計算機,是以比特0和1兩個狀態作為資訊處理單元,一次只能處理一個非0即1的單一狀態比特;而量子計算處理單元是量子比特,由於疊加效應,一次只能處理一個非0即1的單一狀態比特;而一個量子計算如果利用量子技術製造一台光量子計算機,那麼經典計算機幾十萬年的運算時間將縮短為幾秒鐘。

所以,當量子位元數不斷增加,「分身」就越多,運算速度就會呈指數級成長。當量子位元達到50個,也就是250種狀態同時存在時,這個數字究竟巨大到什麼程度?換算成一張0.1毫米的A4紙對折50次的厚度,這個數字是1億公里,接近從地球到太陽距離的3/4。當量子電腦能達到100個位元時,在某些方向就可能比超級電腦快百億億倍了。

這麼強大的算力我們該怎麼使用?

首先,過去很難或無法解決的大規模、高維度計算難題,這下可以快速解決了。例如典型的搜尋問題、組合最佳化問題,諸如最優路線選擇、密碼破解、網路威脅預測、城市交通規劃,等等。

其次,可利用人造量子系統模擬自然量子系統,進而探索分子的動力學性質。例如高溫超導現象,一旦我們把高溫超導的機制模擬分析出來,就能設計出一些超導新材料。這將為藥物設計、新材料探索、天氣預測、太空探索、化學等領域打開一扇新的大門,具有重大經濟和社會價值。

特別值得期待的是,人工智慧與量子科技將相生相伴、同時進化,「升起一對雙子星」。

英特爾的創辦人戈登·摩爾提出了著名的摩爾定律:每18個月左右,電腦的運算速度就會增加一倍。如果沒有晶片中矽電晶體的指數級成長、實現算力越來越強,近年來人工智慧不可能成績斐然。然而今天,一枚晶體管的尺寸已遠小於一個流感病毒,逼近物理極限,計算機計算速度即將陷入“瓶頸”,人工智能或將面臨“寒冬”。

科學家確信,只有超越經典計算的量子運算,才能成為人工智慧突破極限的強大後盾。特別是依賴大規模資料處理的機器學習技術,將大大受益於量子運算,產生無限可能;同時人工智慧技術可實現對量子計算的自校準評估,相伴進化發展。

在一個可預測的期間,量子運算將逐步從解決最佳化問題、量子加密通訊、分子結構研究,過渡到融入人工智慧,滲透進智慧製造、智慧物流與智慧零售、智慧金融等各產業。而雲端服務將是量子運算可提供的服務新形態。

量子通訊「編織」量子互聯網

這是量子世界最奇妙的現象:相互獨立的粒子可以完全「糾纏」在一起,就算這兩個粒子分別處於宇宙的兩端,雙方都能「感應」到對方的狀態;只要其中一個粒子的狀態發生變化,另一個粒子也會瞬間發生狀態改變。

同時,量子處於多種可能的疊加狀態,在對其觀測前,無法確定其真實狀態。我們可透過建構有著量子糾纏態的粒子,實現具有顛覆意義的絕對安全通訊。

借助量子的神奇特性,科學家們已尋找到無法被破解的密碼、人類目前唯一無條件安全的加密方式、量子通訊中最關鍵的一環——量子金鑰分發。

量子金鑰採用單光子作為載體,竊密者一旦行動,就會觸發第一層「防火牆」——量子態的粒子改變。竊聽行為馬上會被傳遞訊息的用戶發覺,收發雙方立即不再使用該金鑰來加密訊息內容。作為“竊取者”,既然量子態的粒子不能被複製,截取後直接測量不就可以了嗎?對不起,這麼做會觸發第二層「防火牆」——測不準原理。就算是被竊聽者截住,也沒有辦法得到正確資訊。量子衛星是實現超遠距離量子通訊最有希望的途徑。 2016年8月,世界首顆量子科學實驗衛星「墨子號」在中國發射成功。

量子通訊技術和量子資源,催生了新型功能網路—量子網路。它將帶來網路安全、計算以及科學上的飛躍,應用前景廣闊:除了可實現無條件安全通信外,還可連接多個量子計算機,構建分佈式量子計算系統,形成單個量子計算機無法實現的規模計算能力;形成傳感器網絡,將全球定位系統等導航網絡的精度從米級提高到毫米級;連接相距數千公里的光學望遠鏡,將全球定位系統等導航網絡的精度從米級提高到毫米級;連接相距數千公里的光學遠鏡,可獲得遠分辨率距,可獲得一個同等的望遠鏡等;連接相距數千公里的光學遠鏡,可獲得遠分辨率,可獲得遠1分辨率。

2020年5月,歐盟表示,將推動量子通訊與傳統網路基礎設施和應用結合,開發可用於全球安全金鑰分發、基於衛星的量子密碼,為未來「量子網路」遠景奠定基礎。

中國軍網 國防部網
2020年11月13日 星期五

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2020-11/13/content_275729888.htm