Category Archives: Chinese Military Cognitive Domain Operations

Chinese Military Combat Management System: Core of Modern Combat Command & Control

中國軍事作戰管理系統:現代作戰指揮控制的核心

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan

2022-04-22 06:42

Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.

Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.

Combat Management System: The Core of Modern Combat System

Schematic diagram of the combat management system

Past and present life

Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.

The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.

After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”

At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.

The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.

For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.

Features

The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).

The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.

For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.

Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.

The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.

Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.

With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”

The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.

Future Development

Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.

The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.

The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.

For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.

The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.

The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.

(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)

現代國語:

作戰管理,是打贏現代化戰爭的基礎,是現代化作戰體系的核心,也是作戰過程中對人員、裝備、資訊、資源和時空等要素進行的規劃、組織、協調與控制活動。

作戰管理系統,指用來支撐作戰管理活動的指揮資訊系統,包括情報採集、資訊傳輸、目標識別、威脅判斷、分配武器、任務規劃等。其隨戰爭演化、技術進步而逐步發展。

作戰管理系統:現代化作戰體系核心

■楊蓮珍

作戰管理系統示意圖

前世今生

對作戰行動實施適時精確的指揮控制和作出及時果斷的作戰決策,是不同戰爭時期指揮員始終追求的目標與夢想。在科學管理產生前,戰爭中並無作戰管理這一概念,自然談不上作戰管理系統。但樸素的作戰管理活動和系統一直與戰爭相伴、融合發展。

作戰管理的核心是保證指揮員與部隊能順暢地交換資訊和指示。在古代作戰指揮號令系統中,金、鼓、旗號稱為“三官”,“言不相聞,故為之金鼓;視不相見,故為之旌旗”,目視耳聽是原始的指揮控製手段。

電報、電話、無線電發明後,作戰命令和戰鬥訊息的遠距離快速傳輸成為現實,作戰管理範圍由平面走向立體,「運籌帷幄、決勝千裡」的戰爭決策不再是神話。當然,傳統的戰場管理手段並非完全失去作用,例如在抗美援朝戰場上,我軍因通信條件受限,連以下分隊仍在通過軍號傳遞作戰命令,與作戰相關的號聲就有20餘種。 “四面邊聲連角起”,朝鮮戰場上的軍號曾讓美軍聞風喪膽。李奇微在回憶錄裡寫道:“只要它一響,中共軍隊就如著了魔法一般,全部不要命地撲向聯軍。這時,聯軍總被打得如潮水般潰退。”

20世紀初,科學管理的概念逐漸升溫,軍隊迅速將其應用於作戰。 「作戰管理」一詞,最早出現在美國空軍,其編成內的作戰管理員,基於雷達探測情況向戰機進行遠程目標指示和話音引導。作戰核心組織則稱為BM/C3系統,即作戰管理(Battle Management)和指揮、控制、通訊(Command,Control,Communication)。 1946年,第一台電子計算機「埃尼阿克」研製成功,軍隊開始使用計算機存儲和處理有關作戰的各種數據。 1958年,美軍建成世界上第一個半自動化作戰管理系統-「賽其」防空指揮控制系統,使用電腦首次實現了資訊擷取、處理、傳輸和指揮決策過程部分作業的自動化。同年,蘇軍建成「天空1號」半自動化防空指揮控制系統。作戰管理系統開始登上戰爭舞台,人機協作決策逐漸成為指揮主要的作戰決策形式。越戰中的「滾雷」戰役,美軍指揮5,000多架飛機出動129萬架次,投彈775萬噸,如果單靠人工指揮是不可能實現的。

作戰管理系統經歷了以武器為中心、以平台為中心、以網絡為中心和以體係為中心的建設階段,逐步能夠接收、處理來自多域的傳感器和其他來源信息,實時感知並生成作戰態勢圖,自動對兵力及裝備實施指揮控制,智能輔助指揮員決策,涉及陸、海、空等軍兵種。

如以色列陸軍的「統治者」作戰管理系統,單兵數字化裝置連接通道狀態資訊設備,用於為執行戰術作戰、火力支援等部隊提供即時態勢感知和指揮控制資訊。美國海軍的「宙斯盾」作戰系統,採用多任務訊號處理器整合防空與反導能力,實現艦載相控陣雷達、指揮決策、武器控制等一體化整合。北約空軍的ACCSLOC1系統,基於網路分散部署,整合40種型號的雷達和3000多個物理接口,承擔任務規劃、作戰指揮和戰鬥監督等空中行動。從發動第一次海灣戰爭到利比亞戰爭,美軍從傳感器獲取資訊到開火,時間由24小時縮短至2.5分鐘。

功能特徵

作戰管理系統是一個迅速發展並不斷完善的分散式操作系統,主要通過收集、處理傳感器數據,暢通各類信息傳輸和融合,進行態勢識別和預測,生成作戰方案,完成行動評估與選擇,下發作戰指令給武器平台和射手。其本質是實現高效率的作戰「觀察-判斷-決策-行動」循環(OODA環)。

作戰管理系統廣泛使用態勢評估與預測、作戰時空分析、線上即時規劃、作戰資源管控和作戰管理引擎技術等,採用基於資訊技術的「雲+網+端」的技術架構。

如美軍率先運用資訊技術,建構了集指揮、控制、計算機、通訊、情報、監視和偵察於一體的C4ISR系統,為作戰管理系統打下了基礎。阿富汗戰爭中,C4ISR系統首次實現作戰資訊近實時傳輸到作戰平台。隨著傳感器、網絡和人工智慧的不斷成熟,智能態勢理解和預測、智慧資訊推送、智慧任務規劃、智慧協同控制、智慧快速重構和智慧平行指控等技術,正在對作戰管理系統產生越來越重大的影響。

作戰管理系統通常支援態勢感知、任務規劃、交戰管理、通訊、建模及模擬與分析、試驗訓練等功能。如導彈防禦作戰管理系統,主要包括指揮控制、交戰管理及通訊等功能構成。指揮控制功能,實現對戰前的作戰規劃及對戰場態勢的感知;交戰管理功能,實現輔助作戰決策和分配反導武器並完成打擊任務;通信功能,實現系統各反導單元情報、數據的傳輸和共享。

作戰管理系統是一個開放的複雜系統。結構決定功能,不同的系統結構,決定不同系統的功能拓展:艦艇自防禦作戰管理系統通過自動化武器控制條令、協同交戰管理系統和戰術數據鍊等,使艦艇具備了強大的自防禦能力;電磁作戰管理系統通過融合並顯示戰場電磁頻譜數據,提高電磁戰兵器規劃能力、共享電磁力和單兵作戰力量;

作戰管理系統普遍具有一體化、自動化、最優化、即時化等特徵。現代戰爭作戰模式複雜、戰場規模擴大,對力量管控、資源整合和任務調度要求的提高,必須實現系統一體化整合。法國陸軍的「蝎子」系統,就將坦克、裝甲車、步兵戰車、無人地面車輛、無人機與攻擊直升機完整整合到同一個作戰群,並連結任務群中的所有平台和作戰單元。

現代戰爭作戰要素增加、戰場感知空間擴大,對人依賴較高的指揮自動化系統已無法完全適應,必須實現系統自動化運作。巴基斯坦作戰管理火砲控制系統所有操作功能全部自動化,「為準備、協調、傳遞、執行和修改火力支援計畫與射擊方案提供了自動化解決方案」。

現代戰爭作戰節奏加快、戰場數據海量,需要快速掌握狀況、有效率定下決心,必須實現系統最優化決策。各軍事強國正將人工智慧、雲端運算、物聯網與大數據技術結合起來,以利在多域作戰中更快決策。

未來發展

傳統作戰管理系統,更強調基於事先制定的交戰序列、作戰規則。但未來戰爭更突出體係與體系之間的對抗,不可能預先窮盡各種情況,需要掌握的戰場資訊也更趨複雜、海量。為此,各國軍隊開始摒棄傳統上為各作戰域單獨開發作戰管理系統的方法,以網絡為中心、以人工智能為支撐,力圖幫助指揮員更迅速作出作戰決策,實現各作戰域的傳感器與任意射手的實時連接。

作戰管理系統將推動作戰概念落地。美國空軍開發的“先進作戰管理系統”,規劃將各軍種及其武器平台實時連接在一個軍事物聯網中,其核心是將各類情報偵察平台、指揮控制平台、打擊平台和作戰管理平台與各種跨域能力無縫鏈接,把情報和目標指示數據轉化為及時、可用的信息,縮短“發現-定位-跟踪-瞄準-打擊-評估”速度,以執行對手的速度執行。俄羅斯軍隊提出“軍隊統一資訊空間”理論,組織開發陸海空網絡一體化聯合作戰“自動控制系統”,通過建立網絡中心指揮模式,試圖將全軍指揮、通信、偵察、火力、保障等進行融合,實現真正意義上的跨域作戰,提升戰場態勢感知能力與作戰指揮效率。

作戰管理系統將依賴人工智慧技術。人工智慧的應用不僅引起武器系統能力的倍增,也將從根本上改變OODA環的實現。未來的作戰管理系統,人工智慧技術將成為核心支撐和驅動引擎,關鍵因素是演算法的品質。系統將內置可升級的人工智慧,人們將處於監督或協同狀態的位置,最大限度地減少人工輸入,對作戰環境中的威脅目標進行自發識別分類、自主評估權衡和自動分配武器,從而提供自適應的作戰優勢和決策可選性。

如2021年7月美海軍發布的“智能自主系統戰略”,旨在通過高度分佈式的指揮和控制架構,加速智能平台的開發和部署,綜合無人系統、人工智能和自動駕駛等技術,實現由智能自主系統促成的未來作戰決策。俄軍在研的人工智慧項目超過150個,其重點之一是將人工智慧引入指揮控制系統,為不同武器平台適配智慧軟件,實現物理域與認知域的統一,以智慧賦能的方式實現戰鬥力倍增。

作戰管理系統將實現跨域能力突破。軍隊作戰管理能力正向陸、海、空、天、電、網和認知域、社會域等全域協同轉變。適應全局環境,作戰管理系統需要具備以下功能:有彈性和冗餘的通信系統,靈活安全的數據運行;人工智能和機器學習直接從傳感器中提取、處理數據,並進行去中心化集成、共享;根據保密級別分段訪問,滿足感知、理解和行動需要。在此基礎上,還需具備向部隊提供偵察監視、戰術通訊、數據處理、網路指控等能力。

未來的作戰管理系統,將聚焦安全處理、連通性、數據管理、應用、傳感器整合和效果整合等能力,優化全作戰域的數據共享、協同作戰和指揮控制,支援從戰術級到戰略級的決策優勢。其目的只有一個:賦予指揮員超越對手的能力。

(作者係武警指揮學院訓練管理系副主任、教授)

中國原創軍事資源:http://www.81.cn/yw_208727/10149663888.html

Analyzing the New Features of Chinese Military Intelligent Warfare

中國軍事智能化戰爭新特徵解析

現代英語:

China Military Network Ministry of National Defense NetworkThursday, November 14, 2024

Intelligent warfare is the latest form of warfare development. Under intelligent warfare conditions, the battle rhythm changes rapidly, humans and machines are deeply integrated, and complex elements are interconnected, presenting new characteristics on the battlefield.

The combat tempo changes rapidly. The combat tempo refers to the phenomenon that in the course of combat, different participating forces, under different combat missions, actions, and spaces, synchronously complete their respective established tasks at specified time nodes according to the combat phase division. In essence, the combat tempo is the effect of the confrontational interaction between the military systems of all parties in a common external environment. It is a regular phenomenon that appears periodically or non-periodically. It is objective due to the interaction, and uncertain due to the active role played by the opposing parties based on their respective perspectives. In war, the combat tempo represents not only the speed of time and speed, but also the embodiment of the comprehensive effect of multiple factors such as time, space, purpose, goal, and opponent. With the continuous expansion of the battlefield and the improvement of battlefield cognitive decision-making capabilities, the future intelligent battlefield may gradually change from the simple “quick kill” type of simple use of the one-dimensionality of time to a comprehensive game and mixed confrontation in multiple dimensional fields such as politics, economy, diplomacy and multiple time and space cycles. Combat is a game between the enemy and us, and the quality of our combat rhythm depends largely on the opponent as a reference system. The combat rhythm should always focus on the opponent, and by changing the enemy and our power comparison in various forms in various dimensions, we can gain an “asymmetric” advantage, so that the battlefield situation can continue to develop in a direction that is beneficial to us in a variety of states between the active “using our own capabilities to control the enemy’s inability” and “suppressing the enemy’s capabilities when we are unable to do so.”

Humans and machines achieve deep integration. In a broad sense, human-machine integration refers to the state and process in which all humans and machines work closely together based on their respective characteristics and advantages. With the emergence of artificial intelligence technology, especially multimodal large models represented by ChatGPT, the foundation has been laid for the knowledge-level interaction between humans and machines, which has brought new opportunities for combat planning and combat command invisibly. As intelligent creatures, humans have creativity and thoughtfulness that other objects cannot match. Compared with humans, machines have obvious advantages in storage, computing and other capabilities, and have the characteristics of fast response speed and strong environmental adaptability. Under current technical conditions, the dominance of humans in human-machine fusion intelligence determines the basic mode of human-machine fusion operations. Machines are only tools and means of implementation for operations. To a certain extent, they become the main body of operations together with operators. The interactive output is also limited to the predictable changes defined by several major variables, and is closely related to the professional ability and experience of the operators themselves. As technology continues to improve, the positioning of people may gradually shift to macro-control, focusing on controlling strategic key contents and nodes such as the timing of launching a war, the scale level, the style intensity, the process development, and the ending time. The combination of human and machine does not mean a hard coupling between the two in terms of spatial position and physics, but through the mechanism and engineering of business processes and operating procedures, they play to their respective strengths and achieve dynamic adaptive operation.

Complex elements are interconnected. Modern warfare is a complex giant system, especially in the current era of global, cross-domain, and distributed operations. Focusing on the construction of the “kill network” and element-level coordination, the widely distributed combat force entities, combat platforms, sensors, weapons, etc. are further decoupled, and the combat system is gradually developing towards “decentralization”. Focusing on the combat purpose and combat objectives, in the combat system, various functional combat elements that are three-dimensionally networked are quickly reorganized and aggregated in a self-organizing and self-adaptive manner to dynamically form a closed kill chain. It is difficult to discover, identify, and calibrate the landmark nodes of the opponent’s system one by one in the various links of “detection, control, attack, and evaluation” as before, and then achieve system destruction. This “black box” state in the organization and operation of forces makes the logical causal relationship of the combat behaviors of all parties more “inexplicable” and the “incomprehensible war” effect more prominent. War is largely a confrontation of human thinking, and thanks to the help of intelligent decision-making systems, the uncertainty of combat intentions in future wars will be further increased in the fierce confrontation of broader cognitive and information domains. From the initial combat purpose to the final combat means, combat methods, and force application, “misalignment” may occur. Therefore, future wars will place more emphasis on finding a balance in active changes at the battle tactical level, which puts higher demands on better realizing “you fight yours, I fight mine” and exerting one’s own advantages.

現代國語:

關 宇

智能化戰爭是戰爭發展的最新形態。智慧化戰爭條件下,作戰節奏快速變化、人機實現深度融合、複雜要素相互關聯,戰場呈現新的特點。

作戰節奏快速變化。作戰節奏是指在作戰過程中,不同參戰力量在作戰任務、行動、空間各不相同情況下,依照作戰階段劃分,在規定的若干時間節點同步完成各自既定任務的現象。從本質上講,作戰節奏是一種在共同外部環境下各方軍事系統間對抗性交互產生的效果,週期或非週期顯現的一種規律性現象,其因交互作用而呈現客觀性,又因對抗各方基於各自視角所進行的能動作用而具有不確定性。在戰爭中,作戰節奏所代表的並不僅僅是時間和速度的快慢,而是時間、空間、目的、目標、對手等多種因素綜合作用的體現。隨著作戰域的不斷拓展以及戰場認知決策能力的提升,未來智能化戰場可能由單純「快速秒殺」式的對時間一維性的簡單運用,逐步向政治、經濟、外交等多個維度領域和多個時空週期的綜合博弈、混合對抗轉變。作戰是敵我雙方的博弈,己方作戰節奏的好壞很大程度上要以對手為參照系。作戰節奏應始終聚焦對手,透過在各維域以各種形式改變敵我力量對比,獲取「不對稱」優勢,使得戰局形勢在能動的「以己之能製敵不能」和「己不能時抑敵之能」間的多種狀態下不斷向有利於我方的方向發展。

人機實現深度融合。從廣義上講,人機融合泛指一切人與機器根據各自特點優勢,密切協同開展作業的狀態和過程。隨著人工智慧技術特別是以ChatGPT為代表的多模態大模型的出現,為人機間的知識層面互動奠定了基礎,這在無形之中為作戰籌劃和作戰指揮帶來了新的機會。人作為智慧生物,具有其他器物無法比擬的創造性和思想性。相較於人類,機器的儲存、計算等能力則優勢明顯,具有響應速度快、環境適應性強等特徵。在當前技術條件下,人機融合智能中人的主導性,決定了人機融合作業的基本模式。機器只是作業的工具和實現手段,在一定程度上與作業人員共同成為作業主體,交互輸出也局限於幾個主要變量所限定的可預測變化,且與作業人員自身專業能力和經驗密切相關。隨著技術不斷完善,人的定位或將逐漸轉向宏觀控制,重點掌控戰爭發起時機、規模層次、樣式強度、進程發展、結束時機等戰略性關鍵內容和節點。人機融合的編組並不意味著二者在空間位置和物理上的硬耦合,而是透過機制化、工程化的業務流程和作業程序,圍繞發揮各自所長,實現動態自適應運行。

複雜要素相互關聯。現代戰爭是一個複雜巨系統,特別是在全局作戰、跨域作戰、分散式作戰的當下,圍繞著「殺傷網」的構建和要素級協同,廣域分佈的作戰力量實體、作戰平台、傳感器、武器等進一步解耦,作戰體系逐漸向「去中心」化發展。圍繞作戰目的,聚焦作戰目標,作戰體系中,立體網狀關聯的各種功能性作戰要素,以自組織、自適應方式快速重組聚合,動態形成閉合殺傷鏈。很難如從前一樣,在「偵、控、打、評」的各環節上逐一發現、識別和標定對手體系各標志性節點進而實現體系破擊。這種在力量組織和運行實施中的“黑盒”狀態,使得各方作戰行為的邏輯因果關系更趨“不可解釋性”,“看不懂的戰爭”效應更加凸顯。戰爭在很大程度上是人類思維的對抗,得益於智慧化決策系統的助力,未來戰爭在更廣闊的認知和資訊領域激烈對抗中,作戰意圖的不確定性進一步增大。從最初始的作戰目的,直至末端的作戰手段、作戰方式、力量運用等各方面,都可能出現「錯置」。因此,未來戰爭在戰役戰術層面將更加強調在主動變化中求得平衡,這對更好實現“你打你的,我打我的”,發揮己方優勢提出了更高要求。

2024年11月14日 星期四

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-11-14&paperNumber=07&articleid=943398881

Operational Window: Chinese Military New Perspectives for Implementing Cross-Domain Collaborative Operations

作戰窗口:中國軍隊實施跨域協同作戰的新視角

現代英語:

The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.

Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations

The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.

Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.

Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.

Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.

Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation

The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.

Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.

Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.

Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.

Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations

The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.

Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.

Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.

Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.

現代國語:

劉 陽 李志華

引言

作戰窗口,是指為激發體係作戰週期效能而選擇的有利於聯合作戰力量實施跨域協同作戰的時空範圍。作戰窗口概念來自戰機,是戰機在新局勢下聯合作戰指揮理論的創新發展,在作戰指揮活動中將比戰機應用更廣泛。能否將聯合作戰力量體系對抗中戰機的選擇看作「作戰窗口」的形式,直接影響了指揮的眼界。在複雜多變的資訊化戰場環境下,作戰窗口逐漸成為聯合作戰力量實施跨域協同作戰的新基點,對奪取戰場主動,塑造有利態勢,具有重要意義。

構設作戰窗口,突顯跨域協同作戰準備的全面性

戰區聯指應緊貼作戰任務、戰鬥對手、作戰環境,牢牢掌握戰略戰役主動權,加強聯合作戰資源預設,積極優化戰場環境,為構設作戰窗口創造條件。

圍繞作戰窗口實施周密持續的聯合偵察。作戰窗口的時空範圍包括打擊敵目標的時間區間與打擊地幅。其中,打擊地幅一般以打擊目標為中心,指能調控體係作戰力量持續維持局部戰場綜合控制權、適合打擊敵節點目標的相對密閉空間。為確保在作戰窗口區順利實施作戰,其外圍可區分為警戒巡邏區、攔截阻殲區與防禦作戰區等為其提供支撐保障。聯指機關應圍繞作戰窗口優先情報告警信息的提報需求,綜合運用諸軍兵種偵察預警力量和手段,為獲取作戰窗口區及其外圍區域的情報告警信息實施周密持續有重點的聯合偵察。必要時可協調戰略偵察預警力量提供情報支援,消除作戰窗口時空的偵察預警盲區,確保情報告警信息從獲取至運用的流轉過程高效穩定。

預測作戰窗口及時調整任務部隊戰備訓練的週期計畫。諸軍兵種任務部隊保持高度戒備狀態的規模強度極大限製作戰窗口的時空範圍。週期性保持高度戒備狀態,要求諸軍兵種任務部隊依照臨戰狀態進行管理運作,是體現任務部隊戰鬥力高低的重要標誌。當前任務部隊應依照戰備、訓練、整備三種狀態進行日常管理和訓練,目的是確保相當規模的能戰兵力可隨時遂行作戰窗口任務並不斷提高實行水平,非能戰兵力應統籌資源集中精力進行系統作戰能力的生成訓練。整備期則處於戰備訓練間隙,應機動靈活組織作戰人員休息、裝備維修和必要訓練,為轉入訓練週期或戰備週期創造條件。戰區聯指透過預測作戰窗口,及時調整較大規模任務部隊戰備訓練的周期計劃,使其有節奏、規律地處於高度戒備狀態,為實施窗口作戰提供力量基礎。

聚焦作戰視窗滾動組織跨域協同作戰方案計畫的聯動作業。由於作戰窗口往往稍縱即逝,圍繞作戰窗口應急制定的諸軍兵種跨域協同作戰方案計劃的完備性可能會大打折扣。因此戰區聯指應凝聚指揮員及其指揮機關的集體智慧,依靠指揮資訊系統,透過體系化、程序化、專業化的快速指揮聯動作業,滾動組織擬制跨域協同作戰方案計劃。指揮聯動作業涉及上下級指揮機構聯動作業、偵控打保評全流程聯動作業及人機交互聯動作業等。實施指揮聯動作業應統一作戰意圖,聚焦作戰窗口,利用態勢共享的指揮作業平台,聯動展開平行作業,進行週期性的作戰規劃,隨時開展研判態勢,跟進提出作戰構想,增強推演評估的可信度,同步擬制並日臻完善跨域協同作戰的方案計劃。實施聯動作業有助於縮短跨域協同作戰方案計畫的製定時間,提高方案計畫的可行性,儘早掌握作戰窗口的先機。

應用作戰窗口,突顯跨域協同作戰體系對抗的效能性

戰區聯指應針對不同作戰目的任務,不同作戰對手屬性,不同作戰類型樣式,在精心籌劃和全面準備的基礎上,果斷決策發起作戰,迅速奪取作戰窗口的戰場主動權。

疊加作戰體系效能。諸軍兵種任務部隊在作戰窗口時空範圍內密切協同,整體聯動,聚焦作戰任務形成體係作戰效果。目前隨著軍事科技的快速發展與新銳作戰力量不斷調整優化,精確化、自動化、智慧化、無人化的武器裝備應用越來越廣泛,在特定的作戰窗口範圍內,幾乎每個軍兵種都或多或少地具備遠程多域精確打擊敵目標的手段。即使是陸戰型任務部隊,也具備較遠距離的精確遠火打擊能力與近海兵力投送能力,這就使得諸軍兵種任務部隊在作戰窗口內實施複合打擊,成為聯合作戰打擊敵目標的首選方式。多軍兵種複合打擊與單一軍兵種相比,將會產生更猛、更準、更穩、更快的複合打擊效能。諸軍兵種任務部隊的複合打擊效能在作戰窗口範圍內聚焦作戰目標,將促使跨域協同作戰效能的量值陡增,疊加效果更加顯現。

匯聚作戰保障資源。作戰保障資源是影響作戰窗口選擇應用的物質因素,涉及偵察情報保障、資訊保障與後裝保障等諸多資源。戰時對本戰區實施匯聚式支援保障是應用作戰窗口的關鍵。友鄰戰區的作戰支援將使任務部隊保持較高的戰備水平,指揮官將具有更多的作戰選擇性;戰略支援部隊提供的航天資訊支援、網路作戰支援將是聯合偵察情報、資訊作戰領域的重要支撐;而聯勤保障部隊是實施聯勤保障和戰略戰役支援保障的主要力量,戰區任務部隊作戰能力的波動性很大程度上受此制約。對此,透過明確作戰保障力量的使命任務、指揮權限、體制機制與法規制度等約束激勵手段,主動圍繞作戰窗口匯聚作戰保障資源,實施一體化綜合高效保障,大力提升跨域協同作戰的體系效能。

調控作戰波動週期。聯指機關指揮諸軍兵種任務部隊對敵目標實施打擊行動,其行動前需進行戰備等級轉換、協同演練與機動展開至待機地域等。即使任務部隊打擊準備速度再快,打擊方法再熟練,打擊流程再優化,也需要在相應的時間週期內完成。同時指揮與戰鬥人員會受到作戰疲勞的影響,造成指揮決策效率、打擊效能大幅降低,極大限製作戰持續時間的延長,使得任務部隊作戰能力的波動週期更加明顯。而打擊行動結束後,作戰人員的補充休整,武器裝備的保養修理,作戰經驗教訓的總結檢討,均需要一個調整週期。指揮員需根據諸軍兵種作戰方式與武器裝備毀傷機理的不同,及時調控任務部隊打擊能力的變化波動週期,明確任務部隊的能戰閾值,盡可能減少作戰波動幹擾,從而大幅提升跨域協同作戰能力。

維持作戰窗口,突顯跨域協同作戰戰場管控的穩定性

戰區聯指應嚴格控制窗口作戰的規模強度,加強連動管控,嚴控作戰成本,提升作戰效益,積極塑造有利戰場態勢,避免作戰被動,防止將窗口作戰擴大成全面作戰。

加強戰場聯動管控。諸軍兵種戰場管控對塑造穩定的作戰態勢,加強多域空間管制,維持作戰窗口有重要作用。加強跨域協同作戰戰場空間的管控,包括陸地、海洋、空中、太空、網路等戰場空間,以及電磁頻譜與時空基準戰場空間等。其中,戰場管控區域重點劃分為各領域的作戰窗口區、戰略支撐區、警戒隔離區、前沿預警區以及友鄰支援區等,諸軍兵種任務部隊在指揮員及指揮機關的統一指揮控制下,釐清跨域協同管控的主次關係,明確管控規則、機製與紀律,採用多種管控方法,綜合用級管控法

全面評估作戰效果。指揮機構應緊貼作戰窗口跨域協同作戰方案計畫的製定流程,緊貼協同控制指令,緊貼任務部隊協同動作,緊貼協同保障實際,在窗口作戰過程中實施快速、高效、持續的績效與效力評估。圍繞作戰目的的達成,適應全局聯動的窗口作戰特點,綜合運用多種作戰評估工具和手段,集成系統評估的算法、數據與能力於一體,優化作戰效益主導、流程管理、資訊支撐、人在迴路的評估體系,形成作戰命令、行動、效果的相互匹配,績效與效力時效力時相互結合的評估模式,從而提高作戰後效性指標的準確性和時效性指標的準確性和效能性指標。從而提高作戰時效性指標。

主動塑造戰場新態。經過平時持續對敵軍事鬥爭準備、互動懾控以及作戰窗口內有限的打擊較量後,敵我雙方在作戰力量對比、部署和行動等方面形成的狀態和形勢表現相對穩定,從而形成塑造了新形勢下的戰場態勢,其發展趨勢也顯得可預測、可期望。指揮者及其指揮機關對本戰略方向的敵情、我情與戰場環境的特點規律不斷深度掌握,對未來鬥爭形勢的基本輪廓走向就有了清晰認識,就能明確今後的作戰目標舉措,打贏自信也會逐步增強,為確定下一輪的作戰窗口創造了條件。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/06/content_222435888.htm

Chinese Military Analysis Development Trends of Combat Coordination During Era of Intelligence

中國軍事分析智能化時代作戰協同發展趨勢

現代英語:

Operational coordination is a key element in achieving systemic operations, releasing overall effectiveness, and achieving operational objectives in modern warfare. In recent years, with the breakthrough progress of military science and technology represented by artificial intelligence, the enabling and efficiency-enhancing role of science and technology has become more prominent. While profoundly changing the form of war and combat style, it has also spawned a new mode of operational coordination – autonomous coordination. At present, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development trend of autonomous coordination, and thus promote the accelerated transformation and upgrading of combat methods.

Transforming towards intelligent empowerment and autonomous collaboration

Future wars will be all-round confrontations between the two sides using “people + intelligent equipment”. Limited by military technology, system platforms, combat capabilities, etc., traditional combat coordination has been difficult to adapt to the modern battlefield where opportunities are fleeting due to limitations such as periodic solidification and low fault tolerance. With the strong support of advanced technical means such as artificial intelligence and big data, the autonomy and automation level of combat coordination will be greatly improved, and autonomous coordination under intelligent empowerment will also become the key to defeating the enemy.

Wide-area ubiquitous collaboration. In recent years, the in-depth development of communication technology and intelligent technology, the accumulation of data, algorithms, and computing power have promoted the interconnection and aggregation of people, machines, objects, and energy, and extended the military Internet of Things to many fields such as situational awareness, command and control, information and fire strikes, and after-sales support. While promoting the iterative upgrade of combat capabilities, it also provides more options for modern combat collaboration. It can be foreseen that the military Internet of Things will shine on future battlefields. It is not only a key infrastructure to support combat operations, but also a joint hub to maintain combat collaboration. With this as a basis, it will give rise to ubiquitous operations with wide-area dispersion of forces, organizational modules, and highly coordinated actions, which are omnipresent, ubiquitous, and uncontrolled and autonomous.

Deep collaboration between humans and machines. In the Nagorno-Karabakh conflict, the Azerbaijani army built a strong battlefield advantage with the advantage of drones, and to some extent, it also announced the debut of “robot war”. In future wars, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are accelerating from backstage support and guarantee to front-line combat, and are beginning to play the “protagonist” of the battlefield. Compared with traditional combat coordination, manned and unmanned intelligent coordination presents the characteristics of “decentralization” of combat command, “de-division of labor” in the combat process, high-end skill operation, and fuzzification of the front and rear, and emphasizes human-machine collaboration and algorithm victory. Especially in recent years, intelligent unmanned clusters have emerged and begun to strongly impact the modern battlefield. In the face of these new situations and changes, cluster formation algorithms, formation control algorithms, and complex scene optimization algorithms should be used in a coordinated manner to promote unmanned and manned networking communications and intelligent coordination, promote the integrated operation of intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerate the generation of precise enemy comprehensive combat capabilities.

Digital intelligence drives collaboration. The traditional combat coordination model under progressive command is no longer able to adapt to the multi-dimensional fast pace of modern warfare. In future wars, intelligence is the key and data is king. The deep integration of big data, cloud computing, and artificial intelligence has realized the storage, analysis, integration, and application of massive battlefield data, making command and control more scientific and combat coordination more efficient. With powerful resource integration, computing processing, and data analysis capabilities, battlefield intelligence can be quickly integrated, battlefield situation can be perceived in real time, coordination plans can be efficiently formulated, and threat levels can be instantly assessed. The prediction of combat operations, the dissection of typical scenarios, the deployment of combat forces, and the allocation of combat resources can be coordinated as a whole, thereby comprehensively improving the comprehensive quality and efficiency of command and control, firepower strikes, and comprehensive support, and promoting revolutionary changes in combat coordination.

Evolving towards multi-domain linkage and autonomous collaboration

In future wars, the participating forces will be complex and diverse, weapons and equipment will be matched at different levels, and combat methods will be used in a mixed manner, showing distinct characteristics such as intelligent dynamic dispersion of combat command, intelligent wide-area deployment of combat forces, and intelligent dynamic differentiation of combat tasks. It can be foreseen that multi-domain linkage and autonomous coordination will become an important component of combat coordination.

System self-reshapes coordination. In future wars, the multi-domain battlefield space will be a combination of virtual and real, various military operations will interact, and constraints and collaboration will be randomly transformed. Only by adopting an engineered and systematic organizational model can we adapt to the complex multi-domain coordination needs. The essence of this coordination model is to form a wide-area holographic support framework for system self-reshape coordination. Specifically, it is to highlight the concept of system combat, and to solve the practical contradictions such as organizational system construction, institutional mechanism establishment, and coordination rule formulation from an overall perspective; to pay more attention to the system integration effect, and to achieve beyond-visual-range combat and cross-domain coordinated combat of combat units from a wide area; to emphasize efficient and flexible command, to refine the command relationship from various dimensions, and to clarify the command responsibilities; to pay more attention to data precision drive, to integrate network system platforms at all levels, and to establish a dynamic optimization network for detection, control, attack, evaluation and protection tasks. Once this coordination model is formed, it will undoubtedly be able to study and predict typical confrontation scenarios, dynamically select action coordination links, and plan combat operations in various fields in an integrated manner according to the combat environment, combat opponents, and combat tasks.

Tactical adaptive coordination. Local wars and conflicts in recent years have repeatedly shown that the complexity and systemicity of combat coordination have increased exponentially due to the extension of combat data information to the tactical level. Only by achieving efficient processing, integration and sharing of combat data information can adaptive and autonomous coordination between combat users be guaranteed. This coordination model pays more attention to scientific planning and innovative means to form a universal battlefield situation map with full-dimensional coverage, support hierarchical, leapfrog and cross-domain sharing and collaboration among users of all levels and types deployed in a wide area, realize the common perception of battlefield situation by command elements and combat units, and ensure self-synchronous operations within the framework of unified strategic intent, campaign guidance and coordination plan. This coordination model emphasizes the vertical integration of strategy, campaign and tactics, and the horizontal integration of land, sea, air, space and electricity, provides strong information sharing services in detection, early warning and surveillance, and relies on information media to promote the extension of campaign-level joint to tactical-level joint. This coordination model highlights the standardized operation of command operation and force application, and promotes the connection of combat command levels, cross-domain linkage, element interaction and situation sharing with the help of cutting-edge technologies such as big data and cloud computing, realizes intelligent coordination between command systems, weapon platforms and sensors, and implements the key to winning by defeating slowness with speed.

Advantages and intelligence complement and synergy. In future wars, combat operations in space, network and other fields will be deeply integrated into the traditional battlefield space, requiring higher standards and higher requirements for planning and design of the overall combat situation. Only by clarifying the complementary relationship of advantages in various combat domains and the proportion of input and effectiveness, and then sorting out the operational relationship of cross-domain coordination, can we bridge the gap in field operations and achieve complementary advantages on the multi-dimensional battlefield. In essence, this is also a concentrated reflection of the view of war efficiency. From another perspective, in a war, when the local advantage of the battlefield is not obvious or there is a hidden crisis, by gaining local advantages in other fields to make up for it and achieve comprehensive advantages, the overall goal of winning can also be achieved. In the future information-based and intelligent wars, this point will be more prominent and more complex, requiring comprehensive measures in the fields of military, politics, public opinion, legal theory, psychology, diplomacy, etc., and leveraging each other to fully release the maximum combat effectiveness; requiring traditional forces and new forces to work closely together, relying on the network information system to build an integrated combat system, and maximizing overall effectiveness through advantage synergy.

Transition to Dynamically Coupled Autonomous Collaboration

In the era of artificial intelligence, along with the profound changes in information technology and weapons and equipment, combat operations place more emphasis on breaking up traditional force groupings, connecting traditional platform functions, breaking traditional offensive and defensive boundaries, and achieving full-time dynamic control of combat operations through dynamic coupling and autonomous coordination.

Dynamic focal point coordination. In future wars, the enemy-to-enemy confrontation will be more intense, and the battlefield situation will be more changeable. The previous static, extensive, and step-by-step coordination methods will be difficult to adapt. It is necessary to pay close attention to the key nodes of the operation. On the basis of keeping a close eye on the overall situation, anchoring the combat mission, and focusing on the combat objectives, we must assess the situation and seize the opportunity. According to the predetermined coordination rules, we can flexibly change the coordination objects, flexibly adjust the coordination strategies, and autonomously negotiate and coordinate actions. It should be noted that this coordination method based on key combat nodes particularly emphasizes that combat forces transcend structural barriers and organically aggregate combat effectiveness. Through the flexible structure of the collaborative organization, self-coupling and autonomous elimination of contradictions and conflicts, bridging combat gaps, and promoting the precise release of the combined forces of the combat system.

Dynamic control and coordination. The battlefield situation in future wars is changing rapidly, and the combat process is often difficult to advance according to the predetermined combat plan, and combat operations have great uncertainty. Invisibly, this also requires us to break through traditional combat thinking, keep a close eye on the changes in the battlefield situation, and implement immediate, flexible and autonomous coordination of the combat process. This collaborative method, through real-time assessment of battlefield situation changes, the degree of damage to enemy targets, and the scale and efficiency of combat operations, can achieve rapid command and control, precise coordination in force projection, fire support, and comprehensive support, and always grasp the initiative on the battlefield. This collaborative method requires relying on advanced intelligent auxiliary means to quickly divide the combat phase, predict the duration of combat operations, analyze the overall deployment of combat forces, calculate the allocation of combat operation resources, and accurately control the decision-making cycle and combat rhythm, and accurately coordinate the actions of troops and the combat process to ensure that various randomness and uncertainties in combat can be effectively dealt with.

Dynamic response coordination. The operational mechanism of future wars is unpredictable. The deep effects of asymmetric operations, hybrid games, and system emergence will inevitably lead to various emergencies in the implementation of the planned operational plans. To this end, dynamic coordination for emergencies is an effective strategy to resolve the above-mentioned contradictions. This coordination method emphasizes the dynamic adjustment of coordinated actions according to different situations. When an emergency occurs on a local battlefield or in a local action, which has little impact on the overall operation and has sufficient time, the combat system automatically responds, partially adjusts the combat deployment and combat operations, and ensures the achievement of the expected combat objectives. When multiple urgent and slow situations coexist on the battlefield and partially affect the battlefield situation, the combat actions are dynamically and immediately coordinated according to the principle of first urgent and then slow according to the specific situation, so as to promote the development of the war in a direction that is beneficial to me. When there are multiple major unexpected situations or unexpected changes in the overall development of the war situation, coordination is carried out according to the principle of first major direction and then minor direction, and new coordinated disposal measures are quickly generated to effectively respond to various emergencies on the battlefield.

現代國語:

■吳思亮 賈春傑 侯永紅

引言

作戰協同是現代戰爭中實現體係作戰、釋放整體效能、達成作戰目標的關鍵要素。近年來,隨著以人工智慧為代表的軍事科學技術取得突破性進展,科技的賦能增效作用進一步凸顯,在深刻改變戰爭形態、作戰樣式的同時,也催生出一種新的作戰協同模式——自主協同。當前,應科學掌握新軍事革命的機會挑戰,動態統籌好自主協同發展走向,從而推動作戰方式加速轉型升級。

向智能賦能自主協同蛻變

未來戰爭將是對抗雙方採用「人+智慧裝備」展開的全方位對抗。受軍事技術、系統平台、作戰能力等限制,傳統作戰協同因為存在周期固化、容錯率低等局限,已難以適應戰機轉瞬即逝的現代戰場。在人工智慧、大數據等先進技術手段的強力支撐下,作戰協同的自主性、自動化水準將極大提升,智慧賦能下的自主協同也將成為克敵制勝的關鍵。

廣域泛在協同。近年來,通訊技術、智慧技術的深度發展,數據、演算法、算力的累積疊加,促進了人、機、物、能的互聯聚合,將軍事物聯網延伸擴展至態勢感知、指揮控制、信火打擊、後裝保障等諸多領域,在促進作戰能力迭代升級的同時,也為現代作戰協同提供了更多選項。可以預見,軍事物聯網將在未來戰場上大放異彩,不僅是支撐作戰行動的關鍵性基礎設施,也是維繫作戰協同的關節樞紐。以此為依托,將催生出力量廣域分散、組織模塊構成、行動高度協同的泛在式作戰,無時不在、無處不在、無控自主。

人機深度協同。在納卡沖突中,阿塞拜疆軍隊憑借無人機優勢構建起強大戰場優勢,某種程度上也宣告「機器人戰爭」登場。未來戰爭,無人機、無人車、無人艦等無人作戰力量,正加速從後台支援保障走向一線作戰前台,開始擔當戰場「主角」。較之傳統作戰協同,有人無人智能協同呈現出作戰指揮「去中心化」、作戰過程「去分工化」、技能操作高端化、前沿與後方模糊化等特點,更加強調人機協同、演算法取勝。尤其是近年來,智慧無人集群異軍突起,開始強烈沖擊現代戰場。面對這些新情況新變化,應統籌運用集群編隊演算法、隊形控制演算法以及復雜場景優化演算法等,推動無人與有人組網通訊、智慧協同,促進情報鏈、指揮鏈、機動鏈、打擊鍊和保障鏈一體運轉,加快生成精確制敵綜合作戰能力。

數智驅動協同。逐層遞進指揮下的傳統作戰協同模式,已難以適應現代戰爭的多維度快節奏。未來戰爭,智能為要,數據為王。大數據、雲計算、人工智慧等深度融合,實現了對海量戰場數據的儲存、分析、融合和運用,從而使得指揮控制更加科學、作戰協同更有效率。透過強大的資源整合、計算處理和數據分析能力,可以快速融合戰場情報、實時感知戰場態勢、高效製定協同計劃、瞬時評估威脅等級,將預測作戰行動、解剖典型場景、布勢作戰力量和配置作戰資源一體統籌,從而全面提升指揮控制、火力打擊、綜合保障等方面的綜合質效,推動作戰協同革命性變革。

向多域聯動自主協同演進

未來戰爭,參戰力量複雜多元、武器裝備高低搭配、作戰方法混合運用,呈現作戰指揮智能動態分散、作戰力量智聯廣域部署、作戰任務智配動態區分等鮮明特徵。可以預見,多域聯動自主協同將成為作戰協同的重要組成。

體係自重塑協同。未來戰爭多域戰場空間虛實結合、多樣軍事行動交互作用,約束與協作隨機轉化,只有採取工程化、系統化的組織模式,才能適應龐雜的多域協同需求。這種協同模式,其實質是要形成體係自重塑協同的廣域全像支撐架構。具體來看,就是更突顯體係作戰理念,從整體上破解組織體系建構、制度機制設立、協同規則制訂等現實矛盾;更重視體系融合效應,從廣域上實現作戰單元超視距作戰、跨域協同作戰;更強調高效率靈活指揮,從諸維度細化指揮指揮、釐清指揮權責優化;這種協同模式一旦形成,無疑能夠針對作戰環境、作戰對手和作戰任務等,研判預測典型對抗態勢場景,動態選擇行動協同鏈路,一體規劃各領域作戰行動。

戰術自適應協同。近年來的局部戰爭沖突一再表明,由於作戰數據資訊向戰術層共享應用延伸,作戰協同的複雜性系統性呈指數級躍升。只有實現作戰數據資訊的高效處理、融合共享,才能保證作戰用戶間自適應、自主化協同。這種協同模式,更重視科學規劃、創新手段,形成全維覆蓋的通用戰場態勢圖,支持廣域分散部署的各級各類用戶間按級、越級、跨域共享協作,實現指揮要素、作戰單元共同感知戰場態勢,確保在統一的戰略意圖、戰役指導、協同計劃框架內自同步作戰。這種協同模式,更強調縱向貫通戰略、戰役、戰術,橫向融匯陸海空天電,在探測、預警、監視等方面提供強力資訊共享服務,依托資訊介質推動戰役級聯合向戰術級聯合延伸。這種協同模式,更加突出指揮運行、力量運用等的標準化運行,借助大數據、雲計算等前沿技術推動作戰指揮層級銜接、跨域聯動、要素交互、態勢共享,實現指揮系統、武器平台、傳感器間的智能化協同,落地落實以快製慢制勝關鍵。

優勢智互補協同。未來戰爭,太空、網路等領域作戰行動深度融入傳統戰場空間,要求對作戰全局實施更高標準更高要求的規劃設計。只有搞清各作戰域優勢互補關聯、投入成效比重,進而梳理出跨領域協同的運行關系,才能彌合領域作戰縫隙,實現多維戰場優勢互補。從本質上看,這也是戰爭效益觀的集中反映。從另一個視角來看,一場戰爭,當戰場局部優勢不明顯或暗藏危機時,透過在其他領域取得局部優勢予以彌補並達成綜合優勢,同樣可以實現整體制勝目的。未來資訊化智能化戰爭,這一點將體現得更為突出也更為復雜,要求針對軍事、政治、輿論、法理、心理、外交等領域綜合施策,相互借力充分釋放最大作戰效能;要求傳統力量、新質力量密切配合,依托網絡信息體系打造一體化作戰體系,通過優勢協同實現整體效能最大化。

向動態耦合自主協同變遷

人工智慧時代,伴隨資訊科技與武器裝備的深度變革,作戰行動更強調打散傳統力量編組、打通傳統平台功能、打破傳統攻防界限,透過動態耦合自主協同實現對作戰行動的全時動態可控。

動態聚點協同。未來戰爭敵我對抗更加激烈、戰場態勢更為多變,以往那種靜態粗放、按部就班的協同方式將難以適應。必須對作戰的關鍵節點給予高度關注,在緊盯整體態勢、錨定作戰任務、聚焦作戰目標的基礎上,審時度勢把握戰機,依據預定的協同規則,敏捷變換協同對象、靈活調整協同策略、自主協商協同行動。需要注意的是,這種基於關鍵作戰節點的協同方式,特別強調作戰力量跨越結構壁壘、有機聚合作戰效能,透過協同組織的彈性結構,自耦合自主化消解矛盾沖突、彌合作戰縫隙,促進作戰體系合力精準釋放。

動態調控協同。未來戰爭戰場態勢瞬息萬變,作戰進程往往難以依照預定作戰計畫推進,作戰行動有著極大的不確定性。在無形中,這也要求我們突破傳統作戰思維,緊盯戰場態勢變化對作戰進程實施即時靈活自主協同。這種協同方式,透過即時評估戰場態勢變化、敵方目標毀傷程度、作戰行動規模效益等,從而在力量投送、火力支援、綜合保障等方面實現快速指控、精準協同,始終把握戰場主動權。這種協同方式,要求依托智能輔助先進手段,快速切分作戰階段,預測作戰行動持續時間,研判作戰力量整體布勢,計算作戰行動資源分配,據此精準控制決策週期和作戰節奏,精準協調部隊行動和作戰進程,確保能夠有效應對作戰中的各種隨機性、不確定性。

動態響應協同。未來戰爭作戰機理變化莫測,非對稱作戰、混合賽局、體制湧現等的深層作用,使得預定作戰方案計劃在執行中必然遇到各類突發情況。為此,針對突發情況動態協同是解決上述矛盾問題的有效策略。這種協同方式,更強調依據不同情況動態調整協同行動。當局部戰場或局部行動出現突發情況,對作戰全局影響不大且時間充裕時,作戰體係自動響應,部分調整作戰部署和作戰行動,確保實現預期作戰目標。當戰場出現多個急緩並存情況且部分影響戰場態勢時,根據具體情況按照先急後緩原則動態即時協調作戰行動,推動戰局向著有利於我的方向發展。當戰局整體發展出現多個重大意外情況或出現未曾預想的變化時,按先主要方向、後次要方向的原則展開協同,快速生成新的協同處置措施,有效應對戰場各類突發情況。

中國原創軍事資源:http://www.81.cn/ll_208543/16378145888.html

What is the Hotly Debated “Military Metaverse”? Chinese Military Intelligent Warfare Team Explains

備受爭議的「軍事元宇宙」是什麼?中國軍事智慧作戰團隊解讀

現代英語:

As if overnight, “metaverse” suddenly became a hot word, and related concepts formed many hot topics.

With the development of technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, blockchain, and the iteration of terminal devices, the construction and evolution of the “metaverse” may far exceed people’s expectations, and a new Internet form of multi-dimensional, full-sensory, immersive human-computer interaction will hopefully become a reality.

Unveiling the Metaverse

The “Metaverse” allows users to freely travel between the real world and the virtual world. Produced by Lu Xintong

What is the Metaverse?

The term “Metaverse” comes from the 1992 science fiction novel Snow Crash. In the novel, humans live in a virtual three-dimensional world through “Avatars” (digital virtual incarnations). The author calls this space “Metaverse”.

From science fiction to reality, people have not yet reached an absolute consensus on what the metaverse is. Due to the evolution of the times and technological changes, the metaverse is still an evolving concept. Different participants are constantly enriching its definition in their own ways, and the characteristics and forms of the metaverse are also constantly changing. However, we can explore a little through the current presentation of the metaverse.

At present, “metaverse” concept products are mainly concentrated in online games, VR/AR, social networking and other fields.

Online games are widely considered by the industry to be the most likely field to realize the “metaverse” because they themselves have virtual scenes and players’ virtual avatars. Today, game functions have gone beyond the game itself, and the boundaries of games are expanding, and they are no longer just games.

A well-known singer held a virtual concert in the game “Fortress Night” with a virtual image, attracting more than 12 million players from all over the world to participate, breaking the boundary between entertainment and games; due to the impact of the epidemic, the University of California, Berkeley and the School of Animation and Digital Arts of Communication University of China coincidentally rebuilt their campuses in the sandbox game “Minecraft”. Students gathered together with virtual avatars to complete the “cloud graduation ceremony”, realizing the integration of virtual games and real social interactions.

The new generation of “VR social (virtual offline social)” has been gradually developing and becoming popular. It is a fusion of offline social (face-to-face in real life) and online social (through social software such as WeChat). Some well-known VR social platforms provide a free community environment, which not only becomes a place for players to conduct online activities and virtual face-to-face gatherings, but also becomes a social and cultural phenomenon closely related to the current concept of “metaverse”.

The above “metaverse slices” are all important explorations into the construction of the “metaverse”, and they explain in a variety of visible and tangible ways how the “metaverse” will change our real life.

In common research, the following consensus has been formed: “Metaverse” is a new type of Internet application and social form that integrates multiple new technologies and integrates virtual and real. It provides immersive experience based on extended reality technology, generates virtual scenes based on digital twins and 3D rendering technology, builds basic software and hardware services based on cloud computing, artificial intelligence and high-speed networks, and builds an economic system based on blockchain technology, closely integrating the virtual world with the real world in economic system, social system and identity system. At the same time, it allows each user to produce and edit content, and has complete self-driving and iteration capabilities.

The development direction of the “metaverse”

Today’s mobile Internet is actually still in a flat information interaction state, presented on mobile terminals through text, sound, pictures, and videos. Although news information, e-commerce, social chat, live video, etc. meet people’s needs for using the Internet, it is obviously impossible to achieve the effect of face-to-face communication and full sensory experience in real life through the mobile phone screen. With the development of society, people need more native and richer experience and interaction.

The COVID-19 pandemic has caused people to move their lives from offline to online. This forced change has made people think more, discuss more, and pay more attention to the “metaverse”. In particular, the core feature of the “metaverse” is the immersive experience, which can turn a plane into a three-dimensional, multi-dimensional, real-time interactive space, greatly enriching and restoring the real physical world and various human relationships. Therefore, the “metaverse” is highly anticipated.

Looking at the development of information technology and media in the past, humans have constantly changed the way they perceive the world, and later began to consciously transform and reshape the world. From the newspaper era, the radio and television era, to the Internet era, and the mobile Internet era, the tools and platforms under the concept of “metaverse” are becoming increasingly complete, and the path to the “metaverse” is gradually becoming clearer.

Since 2020, Internet giants around the world have been closely planning around cutting-edge technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, and blockchain, and the door to the ultimate closed-loop ecosystem of the “metaverse” has been opened little by little. Today, when the “bonus” of mobile Internet users has reached its peak, many experts and scholars have stated that the “metaverse” will be the ultimate form of the next generation of the Internet.

Just as it was difficult to accurately predict the development of the Internet 20 years ago, people cannot accurately predict the future form of the “metaverse”. However, combined with the current development trends of related industries, we can see that: the Internet has changed human life and digitized communication between people, while the “metaverse” will digitize the relationship between people and society; the technologies related to the “metaverse” will show gradual development, and single-point technological innovations will continue to appear and merge, approaching the ultimate form of the “metaverse” from all aspects of the industry; the “metaverse” will surge with massive user-generated content, while revealing the value of digital assets.

In a nutshell, the “metaverse” will profoundly change the organization and operation of the existing society in a way that integrates the virtual and the real, forming a new lifestyle that combines the virtual and the real, giving birth to a new social relationship that integrates online and offline, and giving new vitality to the real economy from a virtual dimension.

The future physical “metaverse” will be similar to the scene described in the science fiction movie “Ready Player One”: one day in the future, people can switch identities at any time and anywhere, freely shuttle between the real world and the virtual world, and study, work, make friends, shop, travel, etc. in the “metaverse”. Through immersive experience, the virtual world will be closer to and integrated into the real world.

In this virtual world, there will be self-evolving content and economic systems that always remain safe and stable, meeting the social needs of individuals.

The mediating role of the “metaverse”

“Imagine the ‘metaverse’ as a physical Internet, where you are not just watching content, but you are in it as a whole.” This is a vivid description. However, as it stands, the content of these “metaverses” that allow “everyone to be in it” is relatively scarce. It needs more content that can be independent, self-iterative, and multi-dimensional to attract users to participate in the experience and even creation.

The “metaverse” is bound to become a new platform for media content production. Content producers can transform the “micro-universe” into the “macro-universe” through rich content production. In the short term, the breakthrough of the “metaverse” is immersive content. With the development and penetration of the concept of “metaverse”, the integration of immersive virtual content (such as games, cartoons, etc.) and immersive physical content (such as media, social networking, film and television, etc.) will become higher and higher. In other words, the “metaverse” will play a greater role as a medium.

In September this year, Yu Guoming, a professor at the School of Journalism and Communication of Beijing Normal University, pointed out at the release conference of the “2020-2021 “Metaverse” Development Research Report” released by the New Media Research Center of the School of Journalism of Tsinghua University: “Today, the role played by the media is generally the provision of cognitive information, but the role of the media is completing a process from providing cognition to providing experience. The entire media and technology development from cognition to experience is a huge transformation. Once the goal of “metaverse” is established, it will play a directional role in communication technology, communication form, communication methods and even communication effects.” If the “metaverse” is the ultimate form of the next generation of the Internet, then it is a super media channel that will show the ultimate form of media convergence and provide the best immersive experience.

Theoretically, the best communication experience must be based on real scenes. For example, when watching a football game, the ideal situation is to watch it in person on the field. In the “metaverse”, with the development of display interaction, high-speed communication and computing technology, it will become a reality to construct a communication scene that is infinitely close to reality. Users can become “witnesses” and “on-site observers” of news events in a three-dimensional, multi-sensory reception situation.

Therefore, “metaverse” media can realize true “multimediaization”, and various human senses such as vision, smell, hearing, taste, touch, etc. can play a role, and even fully develop and cooperate with each other to realize “immersive” media applications.

Today, media content is constantly evolving and innovating, and its development trend seems to be moving towards the concept of “metaverse”. Media content will no longer be limited to flat presentation methods such as TV, computer, and mobile phone screens. Media content production will consider holographic presentation more, focusing on creating an on-site environment and atmosphere to make users feel as if they are in the scene. Social interaction will no longer be limited to text comments. People can express their feelings in real time with voice and body movements, and communicate virtually face to face on the spot.

Imagine if news reports could restore the war scene and create a “battlefield metaverse” so that people could feel as if they were there and experience in real time the tremendous damage that war has caused to human civilization. This shock would further stimulate human society’s desire and yearning for peace, and media content would have a stronger influence and communication power.

現代國語:

來源:解放軍報 作者:戴斌 熊雄 孫浩 責任編輯:王鳳 2021-11-26 09:19:57
彷彿在一夜之間,「元宇宙」突然成為熱詞,相關概念形成許多熱點話題。

隨著擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡、區塊鍊等技術的發展及終端設備的迭代,「元宇宙」建設和演變可能遠超人們的預期,多維度、全感官、沉浸式的人機交互新互聯網形態,將有望成為現實。

揭開「元宇宙」面紗

■戴斌 熊雄 孫浩

「元宇宙」可讓使用者自由穿梭於現實世界和虛擬世界。 呂欣彤 制

何為“元宇宙”

“元宇宙”,英文為“Metaverse”。該字出自1992年的科幻小說《雪崩》。小說中,人類透過“Avatar”(數字虛擬化身),在一個虛擬三維世界中生活,作者稱這個空間為“Metaverse”,即“元宇宙”。

從科幻走進現實,人們對「元宇宙是什麼」還未能達成一個絕對標準的共識。因為時代的演變、技術的變革,“元宇宙”仍是一個不斷發展的概念,“一千個人眼中就有一千個哈姆雷特”,不同參與者以自己的方式不斷豐富著它的定義,“元宇宙”特徵和形態的可能性也在不斷變化。不過,我們可透過「元宇宙」現有的呈現形態來探究一二。

目前,「元宇宙」概念產品主要集中在網路遊戲、VR/AR、社交等領域。

網絡遊戲被業界普遍認為是最有可能實現「元宇宙」的領域,因為它本身就具有虛擬場景和玩家的虛擬化身。如今,遊戲功能已超越遊戲本身,遊戲邊界正在擴展,甚至不只是遊戲了。

知名歌手在遊戲《堡壘之夜》中,以虛擬形象舉辦一場虛擬演唱會,吸引了全球超過1200萬玩家參與其中,打破了娛樂與遊戲的邊界;因為疫情影響,美國加州大學伯克利分校、中國傳媒大學動畫與數字學院不約而同地在沙盤遊戲《我的世界》裡重建校園,學生們以虛擬化身齊聚一遊戲,實現虛擬化身和社交的現實主義。

新一代「VR社交(虛擬線下社交)」已逐漸發展和流行。它是線下社交(現實面對面)、線上社交(透過微信等社交軟件)的融合產物。一些知名VR社交平台,提供自由的社區環境,不僅成為玩家在線活動與虛擬面對面聚會的場所,也成了一種與目前「元宇宙」概念密切相關的社會文化現象。

以上這些“元宇宙切片”,都是對構建“元宇宙”的重要探索,用多種看得見、摸得著的方式,詮釋了“元宇宙”將如何改變我們的現實生活。

在通常研究中,一般形成了這樣的共識:「元宇宙」是整合多種新技術而產生的新型虛實融合的互聯網應用和社會形態。它基於擴展現實技術提供沉浸式體驗,基於數字孿生和3D渲染技術生成虛實場景,基於雲計算、人工智慧和高速網絡構建基礎軟件硬體服務,基於區塊鏈技術構建經濟體系,將虛擬世界與現實世界在經濟系統、社交系統、身份系統上密切融合。同時,允許每個用戶進行內容生產和編輯,並具備完整的自我驅動和迭代能力。

「元宇宙」發展走向

當今的移動互聯網,實際上仍是平面資訊互動狀態,透過文字、聲音、圖片、視頻方式在移動終端進行呈現。新聞資訊、電子商務、社群聊天、影片直播等形態,雖然滿足了人們使用網路的需求,但隔著手機螢幕,顯然無法達到現實生活中面對面交流、全感官體驗所能達到的效果。隨著社會發展,人們需要更原生和豐富的體驗與互動。

新冠疫情讓人們生活場景從線下更多地移到線上。這種被迫的轉變,讓大家對「元宇宙」有了更多思考、討論和關注。特別是「元宇宙」最核心的特徵,在於沉浸式體驗,它可將一個平面變成一個立體、多維、實時的交互空間,極大地豐富、還原真實物理世界和人類各種關系。因此,「元宇宙」被人們寄予厚望。

縱觀過往資訊科技和媒介的發展歷程,人類不斷改變認知世界的方法,乃至於後來開始有意識地改造和重塑世界。從報業時代、廣播電視時代,到互聯網時代、移動互聯網時代,「元宇宙」概念下的工具和平台日益完備,通往「元宇宙」的路徑逐漸清晰。

自2020年以來,各國互聯網大廠圍繞擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡和區塊鍊等前沿科技,展開緊密佈局,通往「元宇宙」終極閉環生態的大門被一點點打開。在移動互聯網用戶「紅利」已經見頂的今天,不少專家學者表示,「元宇宙」將是下一代互聯網的終極形態。

如同20年前難以精準預測互聯網的發展一樣,人們也無法精準預判未來「元宇宙」的形態。但是,結合當今相關產業發展趨勢可以看到:互聯網改變人類生活,將人與人交流數字化,而「元宇宙」將把人與社會關係數字化;「元宇宙」相關技術將呈現漸進式發展,單點技術創新將不斷出現和融合,從產業各方面向「元宇宙」終極資產形態顯現;「元宇宙」將海量用戶創造內容,同時湧現價值。

概括地說,「元宇宙」將以虛實融合的方式,深刻改變現有社會的組織與運作,形成虛、實兩極的新型生活方式,催生線上、線下一體的新型社會關系,並從虛擬維度賦予實體經濟新的活力。

未來實體化的「元宇宙」,將類似於科幻電影《一級玩家》裡描述的場景:在未來的某一天,人們可隨時隨地切換身份,自由穿梭於現實世界和虛擬世界,在「元宇宙」中學習、工作、交友、購物、旅遊等。透過沉浸式體驗,讓虛擬世界進一步接近並融入現實世界。

在這個虛擬世界裡,將有自我不斷發展的內容和經濟系統,並且始終保持安全穩定運行,滿足個體的社會需求。

「元宇宙」的媒介作用

「把『元宇宙』想像為一個實體互聯網,你在那裡不只是觀看內容,整個人都身在其中。」這是一個圖像描述。可就現狀而言,這些能讓“整個人都身在其中”的“元宇宙”,內容是相對匱乏的。它需要更多可以獨立成篇、自我迭代、多維立體地吸引用戶參與體驗甚至參與創作的內容。

「元宇宙」勢必成為媒體內容生產的嶄新平台。內容生產者透過豐富的內容生產,可將「小宇宙」演變成「大宇宙」。短期內,「元宇宙」的突破口是沉浸式內容。隨著「元宇宙」概念的發展與滲透,沉浸式虛擬內容(如遊戲、卡通等)與沉浸式實體內容(如媒體、社交、影視等)的融合程度將會越來越高。換句話說,「元宇宙」將發揮出更大的媒介作用。

今年9月,北京師範大學新聞與傳播學院教授喻國明在由清華大學新聞學院新媒體研究中心發布的《2020-2021年「元宇宙」發展研究報告》發布會議上指出:「如今給予所發揮的作用大體上都是認知方面的信息給予,但媒介的作用正在完成一個從給予整個認知體驗的過程。媒介和技術從認知發展到體驗是個巨大轉換,『元宇宙』這個目標一經確立,對傳​​播技術、傳播形態、傳播方法甚至傳播效果,都能起到一個定向作用。」如果說「元宇宙」是下一代互聯網的終極形態,那麼它就是一個超級媒體渠道,將展現媒體融合的終極形式,並給予最佳的沉浸式體驗。

從理論上講,最好的傳播體驗必然是基於真實場景。如看球賽,理想情形是在球場上親身觀看。在「元宇宙」裡,隨著顯示互動、高速通訊和計算技術的發展,建構無限逼近真實的傳播場景將成為現實,用戶能在立體化、多感官接收情境中,成為新聞事件的「目擊者」和「實地觀察者」。

因而,“元宇宙”媒體可實現真正的“多媒體化”,人類的各種感官如視覺、嗅覺、聽覺、味覺、觸覺等,都能發揮作用,甚至完全展開、相互配合,實現“沉浸式”的媒體應用。

當今媒體內容不斷進化和創​​新,其發展趨勢也似乎正在向「元宇宙」概念靠攏。媒體內容將不再侷限在電視、電腦、手機螢幕等平面式的呈現方式,媒體內容製作將更考慮全像呈現,重視營造現場環境氛圍,讓用戶有身臨其境之感。社交也將不再侷限於文字留言評論,可即時以語音、肢體動作來表達感受,現場虛擬化面對面交流。

設想一下,如果新聞報道能還原戰爭現場,打造“戰場元宇宙”,使人如身臨其境,實時感受到戰爭對於人類文明造成的巨大創傷,這份震撼會更能刺激人類社會對於和平的渴望與嚮往,媒體內容將具備更加強大的影響力和傳播力。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jt_214147/4899728888.html?big=fan

Chinese Metaverse-enabled Military Training On the Rise

中國元宇宙軍事訓練正在興起

現代英語:

The metaverse is an artificial online virtual world that is born out of, parallel to, and independent of the real world. It is parallel to the real world, reacts to the real world, and integrates a variety of high technologies. These are the three major characteristics of the future metaverse. The operation of the metaverse conforms to the natural laws of human understanding and transformation of the world, and provides a new way of thinking to understand and discover the operating behavior, state, and laws of complex real systems, as well as a new means to explore objective laws and transform nature and society. Researching the application of the metaverse in the field of foreign military training and analyzing the opportunities and challenges that the metaverse brings to the field of military training have important theoretical and practical value in solving the key problems that need to be solved in military training in the intelligent era, promoting scientific and technological training, and promoting the innovative development of military training models.

Background of Cognitive Metaverse Empowered Military Training

The scientific and technological revolution has given rise to a new ecology of military training. Driven by the new scientific and technological revolution and the industrial revolution, cutting-edge technologies such as artificial intelligence, big data, cloud computing, and the Internet of Things have accelerated their development. Technology giants have laid out the metaverse, and human real life has migrated to the virtual world more rapidly. The metaverse integrates a variety of emerging technologies, thus generating new Internet applications and new social forms that integrate the virtual and the real. Perception technology supports the integration of the virtual and the real in the metaverse, “AI+” technology supports the social nature of the metaverse, data transmission technology supports the real-time nature of the metaverse, electronic game technology supports the diversity of the metaverse, digital twin technology supports the sustainability of the metaverse, and blockchain technology supports the security of the metaverse. The future metaverse, where virtual and real are highly interconnected, is born out of, parallel to, and independent of the real world. It integrates all elements such as the Internet, virtual reality, immersive experience, blockchain, and digital twins to build a new basic ecology for intelligent military training.

The evolution of war has dominated the transformation and upgrading of military training. With the advent of the intelligent era, the war situation has accelerated its evolution towards informationization and intelligence. The informationized warfare system with “information acquisition and utilization as the core” will gradually transition to the intelligent warfare system with “intelligent simulation and expansion as the core”. The trend of long-range precision, intelligence, stealth, and unmanned weapons and equipment has become more obvious, and intelligent warfare has surfaced. At the same time, combat elements represented by artificial intelligence such as “AI, cloud, network, group, and terminal” and their diversified combinations have formed a new battlefield ecology. The metaverse has constructed a new battlefield space where virtual and real are integrated and parallel interactions occur. The traditional war winning mechanism is being profoundly changed. The development and changes in the form of intelligent warfare have compulsorily driven the transformation and reshaping of the military’s thinking and concepts, requiring the accelerated transformation and upgrading of military training, greater attention to the impact of technological development and changes on warfare, and the use of the “new engine” of training and warfare to achieve “accelerated” preparations.

Foreign militaries explore breakthroughs in military training models. In order to seize the strategic commanding heights of military intelligence, the world’s military powers attach great importance to the innovation of military training models. Some countries have begun to try to apply the metaverse and related technologies to military training. For example, the United States has successively released the National Security Strategy, the National Defense Strategy and the Department of Defense Transformation Plan, focusing on building an “all-round army” and forming a “full spectrum advantage”. It has also simultaneously formulated the Training Transformation Strategic Plan and the Training Transformation Implementation Plan, and proposed the concept of a comprehensive training environment (STE), the core of which is immersive and integrated virtual training, which intends to integrate real-time, virtual, constructive and gaming environments into a comprehensive training environment. Russia also attaches great importance to the development of virtual training systems. Almost all of its advanced weapons and equipment are equipped with corresponding virtual training systems, and are moving towards universalization and embedding. The United Kingdom, Germany, South Korea, etc. are also actively developing various professional military training virtual environments. Intelligent training supported by technologies such as artificial intelligence, virtual reality and augmented reality is gradually becoming the mainstream of military training research in powerful countries.

Clarifying the Advantages of Metaverse-Enabled Military Training

The emergence of new concepts in military training. Only by leading the opponent in thought can we gain the upper hand in action. The emergence of disruptive technologies will inevitably rewrite the current military training rules and systems, and will also innovate the existing military training thinking concepts. On the one hand, the metaverse has set off a hurricane-like “brainstorm”, and the training thinking led by “intelligence” has organically connected training with actual combat, and upgraded to intelligent military training thinking. On the other hand, new technologies and new means represented by the metaverse empower military training, strengthen the concept of winning by science and technology and intelligent drive, and greatly improve the scientific and technological content of military training, in order to control the initiative in future wars. In the future, the metaverse will create more impossible possibilities by constructing a virtual battlefield space, designing wars and evolving wars.

Innovate new theories of military training. War is the area that needs innovation the most. Military training must adapt to the development of intelligent warfare, and theoretical innovation and training practice must be driven by both. Training transformation will not happen automatically. It requires not only a sharp and profound foresight to grasp the general trend, but also a scientific, powerful and solid theory to drive forward. On the one hand, by keeping up with the development of the times and starting from new concepts and new cognition, we can build a scientific theoretical system for metaverse-enabled military training. On the other hand, by following the laws of combat-training coupling, we can establish an innovative model of intelligent military training theory with the characteristics of the times, allowing the metaverse to empower and improve the efficiency of promoting the iterative development of military training transformation.

Transform the new military training model. The combat style determines the training mode, and intelligent warfare changes the “rules of the game”. Military training for the next war must adapt to the requirements of future wars by changing the training mode. First, it can build an intelligent blue army with “both form and spirit”. With the help of optimized AI technology, powerful computing power support, and realistic performance simulation, the Metaverse follows the evolutionary process of “knowing the enemy, imitating the enemy, surpassing the enemy, and defeating the enemy” to create an intelligent blue army with platform support and data empowerment, and carry out “real” confrontation training and effect evaluation in the Metaverse space. Second, it can carry out new domain and new quality combat training. The metaverse expands the practical application path with new domains and new types of combat forces as the leading elements, highlights the research and development of training methods and tactics that are compatible with advanced combat concepts and winning mechanisms, and creates new forms of training such as unmanned and seamless human-machine collaboration, becoming a new point of combat power growth. Third, it can cultivate new types of military talents. At present, the educational metaverse has led the intelligent transformation of education. In the future, the military metaverse will accelerate the realization of intelligent interaction between people and equipment, deep integration between people and systems, and adaptive evolution between people and the environment, and promote the integrated development of “commanders” and “fighters” into “scientists” and “technicians.”

Reshape the new ecology of military training. The multi-dimensional perception, virtual-real integration, free creativity, and open development of the metaverse will make the future metaverse a fully immersive, time-transcending, self-creating and developing space. First, create a digital twin “battlefield metaverse”. The “battlefield metaverse” will be a typical manifestation of the metaverse in the military field, with stricter security and confidentiality standards, stronger simulation computing capabilities, and more real-time and detailed interaction requirements. Secondly, create a full-dimensional three-dimensional metaverse training environment. The metaverse uses technologies such as virtual reality, augmented reality, and mixed reality to create an immersive and complex scene environment; using powerful data and network support, it builds a full-dimensional space such as land, sea, air, space, electricity, and the Internet. Furthermore, a Metaverse verification platform for weapons and equipment will be built. The platform will have functions such as new weapon and equipment design demonstration, weapon and equipment performance test, weapon and equipment compatibility test, and weapon system combat effectiveness test. In the future, the Metaverse will greatly shorten the timeline for weapons and equipment to go from “weak intelligence” to “strong intelligence” and then to “super intelligence”, realizing the intelligence multiplication effect of weapons and equipment.

Grasping the Key Points of Metaverse-Enabled Military Training

Focus on top-level design. From the perspective of the development of things, the metaverse is a new thing, and its maturity has yet to be verified. Intelligent military training is also a complex, arduous and long-term system engineering, which requires strengthening strategic planning and top-level layout. We should pay close attention to the development trends and technological trends of the metaverse, and scientifically formulate the development plan of the “training metaverse”. In the context of the integration of intelligence, informatization and mechanization, we should give full play to the outstanding advantages of the metaverse, such as enabling trainees to undergo immersive experiential training, so that the metaverse can not only be a display platform for virtual technology, but also a practical platform for improving the effectiveness of military training.

Strengthen technology research and development. From a technical perspective, the Metaverse has reintegrated existing technologies in the information and intelligent technology group, proposed an overall innovative concept, and provided comprehensive application scenarios, thereby giving birth to new vitality. To accelerate the development of the “training Metaverse”, we must speed up the research on basic software and hardware technologies such as algorithm engines and network communications, strengthen the research and development capabilities of core technologies such as artificial intelligence, digital twins, blockchain, and the Internet of Things, and at the same time strengthen the overall technical design and research and development of the Metaverse, such as immersion, sociality, openness, collaboration, and decentralization.

Create training types. From the perspective of time and space, the metaverse may create a vast virtual war space, recreate the war environment, present the war process, and virtualize the future of war. An intelligent military training operation system based on the metaverse should be built, military training concepts should be updated in a timely manner, and innovations in military training models, management support, and legal mechanisms should be deepened. A dynamic and high-level combat-oriented military training environment based on the metaverse should be built to fully support strategic, campaign, and tactical training as well as war simulations. At the same time, in the process of “intelligent adaptation” of military training, we will achieve the expansion of wisdom and intelligent evolution towards the unknown space of military training with “innovation, openness, diversified iteration, and new intelligent ecology”.

Attach importance to risk prevention and control. From the perspective of safety and controllability, the concept and technology of the Metaverse brings innovative opportunities to intelligent military training, but the potential risks associated with the technology itself cannot be ignored. The Metaverse is a huge technology group, and its system architecture, key technologies, and application environment are still in the development and implementation stage. The supporting protection system, safety technology, and management standards will bring security risks. In addition, the integrated application of various emerging technologies in the construction process, the complexity and confidentiality in the application process will be the unknown factors for the key prevention and risk challenges of the Metaverse in military training.

現代國語:

侯春牧 王 勇

閱讀提示

元宇宙是脫胎於、平行、獨立於現實世界的人造線上虛擬世界,與現實世界平行、反作用於現實世界、多種高技術綜合,是未來元宇宙的三大特徵。元宇宙運行符合人類認識世界、改造世界的自然規律,提供了理解和發現現實復雜系統運行行為、狀態和規律的全新思維方式和探知客觀規律、改造自然和社會的新手段。研究元宇宙在外軍軍事訓練領域的運用,剖析元宇宙為軍事訓練領域帶來的機遇與挑戰,對破解智能化時代軍事訓練亟待解決的關鍵問題,推動科技強訓,促進軍事訓練模式創新發展,具有重要理論與實踐價值。

認知元宇宙賦能軍事訓練的背景

科技革命催生軍事訓練嶄新生態。在新科技革命和產業革命推動下,人工智慧、大數據、雲端計算、物聯網等前沿科技加速發展,科技巨頭紛紛佈局元宇宙,人類現實生活更快速向虛擬世界遷移。元宇宙整合多種新興技術,從而產生出虛實相融的互聯網新應用與社會新形態。感知技術支撐元宇宙的虛實相融性,「AI+」技術支撐元宇宙的社會性,數據傳輸技術支撐元宇宙的實時性,電子遊戲技術支撐元宇宙的多樣性,數字孿生技術支撐元宇宙的可持續性,區塊鏈技術支撐元宇宙的安全性。虛擬與現實高度互通的未來元宇宙,脫胎於、平行於、獨立於現實世界,將互聯網、虛擬現實、沉浸式體驗、區塊鍊及數字孿生等全要素融合,為智能化軍事訓練構建起全新基礎生態。

戰爭演進主導軍事訓練轉型升級。智能化時代到來,戰爭形態加速向資訊化智能化演變,以「資訊獲取利用為內核」的資訊化戰爭體系,將逐漸過渡至以「智慧模擬與拓展為內核」的智能化戰爭體系,武器裝備遠程精確化、智能化、隱身化、無人化趨勢更加明顯,智能化作戰浮出水面。同時,以「AI、雲、網、群、端」等人工智慧為代表的作戰要素及其多樣化組合,構成了新的戰場生態,元宇宙構建出虛實融生、平行互動的戰場新空間,傳統的戰爭制勝機理正在被深刻改變。智慧化戰爭形態發展變化,強制性驅動軍隊思維理念的變革重塑,要求加快實現軍事訓練轉型升級,更加重視科技發展變化對戰爭的影響,以練戰「新引擎」跑出備戰「加速」。

外軍探索開啟軍事訓練模式突破。為搶佔軍事智慧化戰略制高點,世界軍事強國高度重視軍事訓練模式創新,有的國家開始嘗試應用元宇宙及相關技術運用在軍事訓練方面。如美國先後發布《國家安全戰略》《國家防務戰略》和《國防部轉型計劃》,圍繞打造“全能型軍隊”、形成“全頻譜優勢”,同步製定了《訓練轉型戰略計劃》和《訓練轉型實施計劃》,並提出了綜合訓練環境(STE)理念,其內核是沉浸式、集成虛擬訓練,擬將實時、虛擬、建設性和環境到綜合培訓環境到綜合培訓中。俄羅斯也高度重視虛擬訓練系統開發,其先進武器裝備幾乎都配有相應虛擬訓練系統,並且正朝著通用化和嵌入化方向發展。英國、德國、韓國等也都積極開發各種專業軍事訓練虛擬環境。以人工智慧、虛擬現實與增強現實等技術為支撐的智慧化訓練,正逐漸成為強國軍隊訓練研究的主流。

明晰元宇宙賦能軍事訓練的優勢

萌發軍事訓練新理念。在思想上領先對手,才能在行動上贏得先機。顛覆性技術的出現必將改寫現行的軍事訓練規則制度,也必將革新現有的軍事訓練思維理念。一方面,元宇宙掀動颶風式的“頭腦風暴”,以“智”引領的練兵思維將訓練與實戰有機銜接起來,升級成智能化軍事訓練思維。另一方面,以元宇宙為代表的新技術新手段賦能軍事訓練,強化科技制勝、智慧驅動理念,大幅提升軍事訓練科技含量,以期掌控未來戰爭主動權。未來元宇宙透過構設虛擬戰場空間,設計戰爭並演化戰爭,將創造出更多不可能的可能性。

創新軍事訓練新論。戰爭是最需要創新的領域。軍事訓練要順應智慧化戰爭發展,理論創新與訓練實踐必須雙輪驅動。訓練轉型不會自動發生,既需要敏銳而深邃的前瞻性眼光把握大勢,更需要科學而強大的堅實理論驅動前行。一方面,緊跟時代發展,從新觀念新認知出發,可以建構元宇宙賦能軍事訓練的科學理論體系。另一方面,遵循戰訓耦合規律,可以建立具有時代特色的智慧化軍事訓練理論創新模式,讓元宇宙為推進軍事訓練轉型迭代發展賦能提效。

變革軍事訓練新模式。作戰樣式決定著訓練模式,智慧化戰爭改變著“遊戲規則”,預演下一場戰爭的軍事訓練必須通過變革訓練模式,來適應未來戰爭要求。一是能夠建造「形神兼備」的智慧藍軍。元宇宙藉由優化的AI技術、強大的算力支撐、逼真的效能仿真,依照「知敵、像敵、超敵、勝敵」的演化進程,打造以平台支撐、數據賦能等綜合集成的智能藍軍,並在元宇宙空間開展「真實」的對抗訓練和效果評估。二是能夠開展新域新質作戰研練。元宇宙拓展新域新質作戰力量為主導要素的實戰化運用路徑,突顯與先進作戰概念、制勝機理相適應的訓法戰法的研練,開創無人化、人機無縫協同等新樣式訓練,成為新的戰鬥力增長點。第三是能夠培養新型軍事人才。當前,教育元宇宙已經引領了教育智慧化變革。未來軍事元宇宙將加速實現人與裝備智慧互動、人與體系深度融合、人與環境適應進化,推動「指揮者」「戰鬥員」向「科學家」與「技術家」融合發展。

重塑軍事訓練新生態。元宇宙的多維感知性、虛實融合性、自由創造性、開放發展性等特點,使未來元宇宙將成為完全沉浸式的、超越時空的、自我創造發展的空間。首先,打造數字孿生的「戰場元宇宙」。 「戰場元宇宙」將是元宇宙在軍事領域的典型表現形態,具有更嚴格的安全保密標準、更強大的仿真計算能力、更實時的精細交互要求。其次,創造全維立體的元宇宙訓練環境。元宇宙運用虛擬現實、增強現實以及混合現實等技術,創造沉浸複雜的場景環境;利用強大的數據、網絡支撐,搭建起陸、海、空、天、電、網等全維空間。再者,建造武器裝備的元宇宙驗證平台。該平台將具備新型武器裝備設計論證、武器裝備性能試驗、武器裝備相容性試驗、武器系統體係作戰效能檢驗等功能。未來元宇宙將大幅縮短武器裝備從「弱智」到「強智」再到「超智」的時間軸,以實現武器裝備的智慧倍增效應。

掌握元宇宙賦能軍事訓練的重點

著重頂層設計。從事物發展上看,元宇宙作為新生事物,發展成熟尚待驗證。智慧化軍事訓練又是一項複雜、艱巨且長期的系統工程,需要加強戰略籌劃與頂層佈局。應密切關注元宇宙發展動向與技術趨勢,科學制定「訓練元宇宙」的發展規劃,在智慧化、資訊化、機械化「三化」融合的現實背景下,充分發揮元宇宙能讓受訓者沉浸式體驗式訓練等突出優勢,讓元宇宙不能只是虛擬技術的展示平台,而應成為提高軍事訓練效益的實踐平台。

加強技術研發。從技術意義上看,元宇宙把資訊化智能化技術群中已有的技術重新整合到了一起,提出了整體性創新性概念,給出了綜合性的應用場景,從而煥發出了新的生命力。加速「訓練元宇宙」的發展,要加速演算法引擎、網路通訊等基礎軟硬體技術研究,強化人工智慧、數字孿生、區塊鏈、物聯網等核心技術的研發能力,同時也要加強沉浸性、社交性、開放性、協作性、去中心化等元宇宙整體性技術設計與研發。

創設訓練種類。從時空視角來看,元宇宙可能構造出龐大無比的虛擬戰爭空間,重現戰爭環境,呈現戰爭進程,虛擬戰爭未來。應建構基於元宇宙的智慧化軍訓運行體系,及時更新軍事訓練思維理念,深化軍事訓練模式、管理保障、法規機制等創新。建構基於元宇宙的動態高階的實戰化軍事訓練環境,全面支持戰略、戰役和戰術訓練以及戰爭推演。同時,在軍事訓練「智適應」運作過程中,實現拓展生慧,向「創新開放、多元迭代、新智生態」的軍事訓練未知空間智能演進。

重視風險防控。從安全可控上看,元宇宙概念與技術為智慧化軍事訓練帶來創新機遇,但不容忽視的是技術本身伴生的潛在風險。元宇宙龐大的技術群,其體系架構、關鍵技術和應用環境等尚處於開發落地階段,配套防護體系、安全技術、管理標準等都會帶來安全風險,加上建設過程中多種新興技術的集成運用,運用過程中的復雜性與保密性,都將是軍事訓練元宇宙重點防範和風險挑戰的未知數。

中國原創軍事資源:http://www.81.cn/yw_208727/16280522888.html

Promoting Chinese Military Integrated Development of The “Three Transformations” of Combat Training

推動中軍融合發展實戰化訓練“三個轉變”

現代英語:

Zhang Yingjie, Zhao Shihang, and She Hongle

中國軍網 國防部網
2023年2月22日,星期三

Adhering to the integrated development of mechanization, informationization and intelligence is an inherent requirement for national defense and military modernization, and is also an important means to accelerate the transformation and upgrading of military training. Promoting the integrated development of the “three transformations” of military training is a systematic project that requires both theoretical guidance and practical exploration; it is necessary to plan and design in line with the development of the times, and to boldly practice, dare to try and create, so as to realize the “three transformations” from sequential development to integrated progress, from point-line breakthroughs to system integration, and continuously improve the level and quality of military training.

Deepen theoretical research, guide practice and drive development by thoroughly understanding the mechanism, clarifying the principle and grasping the law. First, we must deepen the research on combat issues and thoroughly understand the future combat mechanism. In future wars, intelligent technology is an important factor in winning. We should explore the reason for winning and the way to win through the phenomenon. We can empower mechanized weapons, enhance the efficiency of informationized equipment and develop unmanned intelligent combat platforms through the power of intelligent technology, so that mechanization, informationization and intelligence coexist, the physical domain, information domain and cognitive domain are mixed, and power, will and land are seized in parallel. Second, we must deepen the research on technology-enhanced training and clarify the principle of technology empowerment and efficiency. Science and technology promote the development of military training, or indirectly affect the development of military training through technological progress to promote the reform of weapons and equipment, combat methods and organizational systems, or directly promote military training innovation through technology directly acting on training methods and management guarantees. In the process of iterative upgrading of mechanization, informationization and intelligence, the mechanized physical entity is the foundation and the “grafting” object of informationization and intelligence. The informationization and intelligence technology acts on mechanization, which is essentially the empowerment and efficiency enhancement of “virtual” control of “real”. Third, we must deepen the research on military training and grasp the law of combat effectiveness generation. The generation of combat effectiveness under mechanized conditions is to achieve a high degree of aggregation of material and energy flows through the superposition of combat platforms. Its generation mechanism is manifested in quantitative accumulation, hierarchical superposition, and linear growth. The generation of combat effectiveness under intelligent information conditions is to carry out a three-dimensional mesh integration of participating forces through the network information system and intelligent support. Its generation mechanism is manifested in information empowerment, network energy gathering, and intelligent energy enhancement. The integrated development of the “three transformations” of military training should shift from the linear step-by-step superposition of mechanized training to the criss-crossing and ascending of intelligent information training, and from simple training of people to training that emphasizes both human and machine learning.

Strengthen strategic management, set up a benchmark to guide development in clarifying the base point, planning and establishing rules and regulations. First, grasp the base point and recognize the coordinates of the times for the integrated development of the “three transformations” of military training. Since the 18th National Congress of the Communist Party of China, our army has adhered to actual combat training, joint combat training, science and technology training, and training in accordance with the law, and strengthened the training guiding ideology of reform and innovation, laying the foundation for the integrated development of the “three transformations”; the new round of national defense and military reform has established a joint training system, reconstructed the training leadership organs and special training institutions of the military services, and formulated military training laws and regulations, providing organizational and institutional guarantees for the integrated development of the “three transformations”; the exploration and practice of the mechanized and informationized compound development of military training has accumulated fresh experience for the integrated development of the “three transformations”; the construction of actual combat training, informationized training conditions and the implementation of the strategy of strengthening the army with science and technology have opened up new horizons for the integrated development of the “three transformations”. Second, top-level design, constructing a blueprint for the integrated development of the “three transformations” of military training. The top-level design of the integrated development of the “three transformations” of military training is an integrated plan of an open and complex system. It is constrained by many factors such as operational evolution and technological changes. At the same time, it is different from a single closed system design. It is difficult to achieve it in one go and make a final decision. We should grasp its characteristics of iterative updates and continuous adjustments and improvements. The integrated development of the “three transformations” of military training should formulate a plan that is compatible with the national defense and military construction development strategy, incorporate the integrated development plan of the “three transformations” of military training into the strategic plan for military construction, and focus on clarifying development goals, tasks, measures, etc. The third is to establish rules and regulations to standardize and guide the effective operation of the integrated development of the “three transformations” of military training. It is necessary to formulate the implementation measures for the integrated development of the “three transformations” of military training, unify the goals and tasks, division of responsibilities, content focus, methods and steps, and supporting measures, and ensure the implementation of regular order.

Focus on the transformation to intelligence, overcome difficulties and innovate in the optimization of content, innovation of methods and improvement of assessment. First, we must focus on “smart training” and optimize the content of military training. Research and practice machine deep learning, focusing on data screening, information input, confrontation game and iterative improvement training. Research and practice new domain and new quality combat forces, carry out new weapons and equipment training, new quality combat force formation and combat application training, new domain combat forces and traditional combat forces coordination training, and new domain and new quality forces into joint combat system training. Research and practice intelligent combat, carry out intelligent combat tactics research, command confrontation training based on intelligent network system, training to seize intellectual control and intelligent combat live-fire exercises. Second, we must focus on “intelligent training” and innovate military training methods. Develop intelligent simulation training methods, give full play to the virtual-real interaction, closed-loop feedback and parallel execution functions of intelligent simulation, upgrade existing electronic games and war game simulation systems, and support individual officers and soldiers or command organizations to carry out human-machine confrontation training based on intelligent simulation systems. On the basis of the existing real-life combat system, we should strengthen the material application of intelligent technology, and create an intelligent military exercise system that combines virtual and real, complements software and hardware, and is multi-domain linked as soon as possible to effectively support the development of real-life training. Third, we should focus on “intelligent testing” and improve precise assessment methods. Using virtual reality technology, relying on the three-dimensional virtual battlefield environment generated by computers, we can evaluate the operational skills and tactical application level of officers and soldiers immersed in it. Using augmented reality technology, human senses can directly obtain real-life experience in the augmented reality scene, which can be used to test and assess the technical training of officers and soldiers and the tactical training of squads. Using mixed reality technology, virtual digital objects are introduced into the real environment, which can support the construction of the environmental conditions of real-life test exercises and the inspection and evaluation of combat capabilities. Using the Internet of Things technology, sensors, data processing units and communication components are integrated into a sensor network to monitor the exercise situation in real time, and automatically collect, transmit, summarize and display exercise information data. Using big data technology to objectively evaluate combat capabilities and training quality, and realize automatic judgment of engagement results, statistical analysis of massive data, objective evaluation of combat capabilities and automatic evaluation of training results in data analysis and deep mining.

現代國語:

張英傑 趙士夯 佘紅樂

堅持機械化資訊智慧化融合發展,是國防和軍隊現代化的內在要求,也是加速推進軍事訓練轉型升級的重要抓手。推動軍事訓練「三化」融合發展,是一項系統工程,既需理論引領,更需實踐探索;既要順應時代發展搞好規劃設計,又要大膽實踐敢試敢創,實現「三化」由遞次發展向融合併進、由點線突破向體系集成,不斷提升軍事訓練水平和質量。

深化理論研究,在搞透機理弄清原理把握規律中引領實務牽引發展。一要深化作戰問題研究,搞透未來作戰機理。未來戰爭中,智慧科技是贏得勝利的重要因素,應透過現象探尋制勝之理、勝戰之道,可透過智慧科技之力賦能機械化武器、增效資訊化裝備和發展無人化智慧作戰平台,使得機械化、資訊化、智慧化並存,物理域、資訊域、認知域混融,奪權、奪志、奪志、奪權、奪志、奪地並行。二要深化科技強訓研究,釐清技術賦能增效原理。科技推動軍事訓練發展,或透過科技進步推動武器裝備、作戰方式、編制體制變革間接作用於軍事訓練發展,亦或科技直接作用於訓練手段和管理保障直接推動軍事訓練創新。在機械化、資訊化、智慧化迭代升級過程中,機械化的物理實體是基礎,是資訊化、智慧化的「嫁接」對象,資訊化、智慧化技術作用於機械化,實質上是以「虛」控「實」的賦能增效。三要深化軍事訓練研究,掌握戰鬥力生成規律。機械化條件下戰鬥力的生成,是透過作戰平台的疊加實現物質流和能量流的高度聚集,其生成機理表現為量變累積、層級疊加、線性增長。智慧化資訊化條件下戰力的生成,是透過網信系統和智慧支援對參戰力量進行網狀立體融合,其生成機製表現為資訊賦能、網路聚能、智慧增能。軍事訓練「三化」融合發展,應從機械化訓練的線性逐級疊加轉向智慧化資訊化訓練的縱橫交錯遞升,從單純對人的訓練轉向人與機器學習並重的訓練。

加強策略管理,在釐清基點規劃規劃建章立制中立起標桿指導發展。一是掌握基點,認清軍事訓練「三化」融合發展的時代座標。黨的十八大以來,我軍堅持實踐實踐、聯戰聯訓、科技強訓、依法治訓,強化改革創新的訓練指導思想,為「三化」融合發展奠定了基礎;新一輪國防和軍事改革,建立了聯合訓練體制,重構了軍兵種訓練領導機關和專制訓練機構,制定了軍事訓練法規制度,為「三化」融合發展提供了組織和製度保證;軍事訓練機械化資訊化複合發展的探索實踐,為「三化」融合發展累積了鮮活經驗;實戰化訓練、資訊化訓練條件建設和科技強軍戰略等的實施,為「三化」融合發展洞開了新天地。二是頂層設計,建構軍事訓練「三化」融合發展藍圖。軍事訓練「三化」融合發展的頂層設計,是開放的複雜系統的整合規劃,受作戰演化、技術變化等諸多因素的製約,同時區別於單一封閉系統設計,難以一次到位、一錘定音,應把握其迭代更新、不斷調整完善的特徵;軍事訓練「三化」融合行動應制定與國防建設和軍事發展目標三是建章立制,規範指導軍事訓練「三化」融合發展有效運作。要製定軍事訓練「三化」融合發展實施辦法,統一目標任務、職責分工、內容重點、方法步驟和配套措施,確保實施正規秩序。

聚焦向智轉型,在優化內容創新方法改進考評中攻堅克難創新發展。一要聚焦“訓智能化”,優化軍事訓練內容。研練機器深度學習,重點進行資料篩選、資訊輸入、對抗賽局和迭代提升訓練。研練新域新質作戰力量,進行新型武器裝備訓練、新質作戰力量編成與作戰運用訓練、新域作戰力量與傳統作戰力量協同訓練,以及新域新質力量融入聯合作戰體系訓練。研練智慧化作戰,進行智慧化作戰戰法研究、基於智慧網路系統指揮對抗訓練、奪取制智權訓練及智慧化作戰實兵演習等。二要聚焦“智能化訓”,創新軍事訓練方法。發展智慧模擬訓練方法,充分發揮智慧模擬虛實互動、閉環回饋與平行執行功能,升級現有電子遊戲與兵棋推演系統,支援官兵個體或指揮機構依托智慧模擬系統進行人機對抗訓練。在現有實兵交戰系統基礎上,加強智慧技術的物化應用,盡快創造虛實結合、軟硬互補、多域連結的智慧化演兵系統,有效支持實戰化訓練的發展。三要聚焦“智能化考”,改進精準評估手段。運用虛擬實境技術,依靠電腦生成的三維空間虛擬戰場環境,對沉浸其中的官兵操作技能和戰術應用水準實施考評。運用擴增實境技術,人體感官能夠直接在增強的現實場景中獲取實戰體驗,可對官兵技術訓練和分隊戰術訓練檢驗考核。運用混合實境技術,把虛擬數位物件引入現實環境,可支撐實兵檢驗性演習環境條件的架構與作戰能力檢驗評估。運用物聯網技術,將感測器、資料處理單元和通訊組件集成為一個感測器網絡,即時監控演練情況,自動擷取、傳輸、匯總和顯示演練資訊資料。運用大數據技術客觀評估作戰能力和訓練質量,在數據分析和深度挖掘中實現交戰結果自動裁決、海量數據統計分析、作戰能力客觀評估和訓練成績自動評定。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2023-02/22/content_33422088.htm

China’s Military Meeting Challenges of Intelligent Warfare with New Concepts

中國軍隊以新概念應對智慧化戰爭挑戰

現代英語:

Preface

The breakthrough achievements of artificial intelligence technology marked by deep learning and its application in various fields have pushed intelligence to a new high in the global wave and become the focus of attention from all parties. In the military field, which has never been willing to lag behind in technological innovation and application, a new revolution is also being actively nurtured. We must accurately grasp the evolution of intelligent warfare and analyze the inner essence of intelligent warfare in order to welcome and control intelligent warfare with a brand new look.

How far are we from intelligent warfare?

Intelligent warfare is a war that is mainly supported by artificial intelligence technology. It has been the dream of people for thousands of years to endow weapon platforms with human intelligence and replace humans in the battlefield. With the powerful impact brought to the world by artificial intelligence systems represented by AlphaGo and Atlas, and the emergence of new combat concepts and new platforms such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The law of historical development indicates that intelligent warfare will inevitably enter the battlefield. The progress of science and technology promotes the evolution of weapons and equipment, triggers fundamental changes in military organization, combat methods and military theories, and ultimately forcibly promotes historical changes in the form of war. The arrival of intelligent warfare also conforms to this inevitable law of historical development. Looking back at the evolution of human warfare, every major progress in science and technology has promoted major changes in the military. The invention of black powder has made human warfare evolve to the era of hot weapons. Infantry and cavalry formations were completely wiped out under the line-of-gun warfare. The use of steam engines in the military has made human warfare evolve to the mechanized era, and has further given rise to large-scale mechanized warfare led by armored ships, tanks, and airplanes. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, and once again set off major changes in the military. Intelligent warfare will inevitably enter the war stage.

The development of artificial intelligence technology determines the pace of intelligent warfare. The continuous development and widespread application of artificial intelligence technology have pushed intelligent warfare from chaos to reality. It has begun to sprout, grow gradually, and come to us step by step. To truly enter intelligent warfare, artificial intelligence technology needs to reach four levels. The first level is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near-real-time computing power and storage capacity, which is far beyond the reach of large computers and huge servers. The widespread application of cloud computing has steadily brought humans to the first level. The second level is perceptual intelligence, which means that the machine can understand what it hears, see what it sees, distinguish what is true, and recognize what it knows clearly, and can communicate directly with people. Natural language understanding, image and graphic recognition, and biometric recognition technologies based on big data have allowed humans to reach the second level. The third level is cognitive intelligence, which means that the machine can understand human thinking, think and reason like humans, and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms have allowed humans to strive to move towards the third level. The fourth stage is human-machine fusion enhanced intelligence, which is to combine the perception, reasoning, induction, and learning that humans are good at with the search, calculation, storage, and optimization that machines are good at, to complement each other’s advantages and interact in a two-way closed loop. Virtual reality enhancement technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humans can move towards the fourth stage. When humans stepped onto the second stage, intelligent warfare began to approach us; when we step onto the fourth stage, the era of intelligent warfare will be fully opened.

Self-learning growth accelerates the sudden arrival of intelligent warfare changes. The ability to “learn” is the core ability of artificial intelligence. Once a machine can learn by itself, its learning speed is amazing. Once a machine has the ability to self-learn, it will enter a rapid growth track of “improving intelligence and accelerating evolution” repeatedly. All technical difficulties in the direction of intelligent warfare will be solved as “learning” deepens. The era of intelligent warfare is likely to arrive suddenly in a way that people can’t imagine!

What will intelligent warfare change?

Intelligent warfare will break through the limits of traditional time and space cognition. In intelligent warfare, artificial intelligence technology can collect, calculate, and push all kinds of action information of all forces in combat in real time and in all domains, enabling humans to break through the logical limits of thinking, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space, and being able to accurately control all actions of all forces in real time, and to achieve rapid jump, gathering, and attack of superior combat resources in multi-dimensional space and multi-dimensional domains. Any space at any time may become a time and space point for winning the war.

Intelligent warfare will reconstruct the relationship between humans and weapons and equipment. With the rapid advancement of intelligent technology and the continuous improvement of the level of intelligence, weapon platforms and combat systems can not only passively and mechanically execute human instructions, but also can, based on deep understanding and deep prediction, super-amplify through the calculation, storage, and query that machines are good at, so as to autonomously and actively perform specific tasks in a certain sense. It can be said that weapon platforms and combat systems can also actively exert human consciousness to a certain extent, even beyond the scope of human cognition, and complete combat tasks autonomously and even creatively according to specific procedures. The distinction between humans and weapons and equipment in the traditional sense has become blurred, and it is even difficult to distinguish whether it is humans or machines that are playing a role. People exclaimed that “humans and weapons and equipment will become a partnership.” Therefore, in intelligent warfare, although humans are still the most important factor in combat effectiveness, the change in the way humans and weapons and equipment are combined has enriched the connotation of combat effectiveness, and the traditional relationship between humans and weapons and equipment will also be reconstructed on this basis.

Intelligent warfare will give rise to the emergence of new combat methods. The epoch-making progress of science and technology will inevitably bring about revolutionary changes in combat methods; major progress in intelligent technology will inevitably bring about an active period of change in combat methods. On the one hand, the continuous emergence of new technologies in the fields of deep cognition, deep learning, deep neural network, etc. driven by computing, data, algorithms, and biology, as well as the cross-integration of achievements in the fields of information, biology, medicine, engineering, manufacturing, etc., will inevitably promote the emergence of new combat methods. On the other hand, the fierce confrontation between intelligent weapon platforms and combat systems will inevitably become the goal and driving force of innovative combat methods. In war, the more intelligent the parts are, the more they become the focus of confrontation. The differences in advantages in terms of space-time cognitive limits, massive information storage and computing capabilities, and neural network organization generation capabilities will bring about new areas of “blinding”, “deafening”, and “paralyzing” combat methods.

Intelligent warfare will incubate a completely new command and control method. The advantages of command and control are the focus of attention in the field of warfare, and intelligent warfare calls for a completely new command and control method. First, human-machine collaborative decision-making has become the main command and decision-making method in intelligent warfare. In previous wars, command and decision-making were all led by commanders, with technical means as auxiliary decision-making. In intelligent warfare, intelligent auxiliary decision-making systems will actively urge or urge commanders to make decisions based on new battlefield situation changes. This is because in the face of massive and rapidly changing battlefield situation information data, the human brain can no longer quickly accommodate and efficiently process it, and human senses can no longer withstand the extraordinary speed of change. In this case, decisions made solely by commanders are likely to be late and useless. Only human-machine collaborative decision-making driven by intelligent decision-making assistance systems can make up for the time and space differences and the machine-computer differences and ensure the command decision-making advantage. Second, brain neural control has become the main command control method in intelligent warfare. In previous wars, commanders issued commands to command and control troops step by step through documents, radios, and telephones in the form of documents or voice. In intelligent warfare, commanders use intelligent brain-like neurons to issue commands to troops through the neural network combat system platform, which reduces the conversion process of command expression forms, shortens the conversion time of commands across media, and is faster and more efficient. When the combat system platform is partially damaged by an attack, this command and control method can autonomously repair or reconstruct the neural network, quickly restore the main function or even all functions, and have stronger anti-attack capabilities.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content to lag behind, but must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Use breakthroughs in intelligent technology to promote the leap in the effectiveness of intelligent combat systems. Although the development of intelligent technology has made great progress in neural network algorithms, intelligent sensing and networking technology, data mining technology, knowledge graph technology, etc., it is still in the weak intelligence stage overall and is far from reaching the advanced stage of strong intelligence. There is still broad room for development in the future. We must strengthen basic research on artificial intelligence, follow the laws of scientific and technological development, scientifically plan the direction of intelligent technology development, select technical breakthroughs, and strengthen key core technologies of artificial intelligence, especially basic research that plays a supporting role. Highlight research on key military technologies. Guided by military needs, we will develop intelligent reconnaissance and perception systems, command and control systems, weapon equipment systems, combat support systems and other weapons and equipment around key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support. We will focus on military-civilian scientific and technological collaborative innovation, give full play to the advantages of civilian intelligent technology development, rely on the superior resources of the military and the local area, strengthen military-civilian strategic cooperation, build a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the joint connection of general standards between the military and the local area, and form a new situation of open, integrated, innovative and development of intelligent combat technology.

Leading innovation in combat methods with the concept of intelligent warfare. To meet the arrival of intelligent warfare, changing concepts is a prerequisite. Concepts are the forerunner of action. If our concepts remain at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has undergone profound changes in technical support, combat power, and winning mechanisms. We must first establish the concept of intelligent warfare and use it to lead the innovation of our army’s future combat methods. First, we must strengthen the competition for “intellectual property rights.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to use intelligence in combat and maintaining the freedom of one’s own intelligence use are the basis for ensuring the smooth implementation of intelligent warfare. The armies of developed Western countries are exploring various means such as electromagnetic interference, electronic suppression, high-power microwave penetration and takeover control to block the opponent’s intelligent application capabilities, seize “intelligence control”, and thus seize battlefield advantages. Second, innovate intelligent combat methods. We must focus on giving full play to the overall effectiveness of the intelligent combat system, strengthen the research on new intelligent combat methods such as human-machine collaborative intelligent combat, intelligent robot combat, and intelligent unmanned swarm combat, as well as the processes and methods of intelligent combat command and intelligent combat support. Focus on effectively responding to the enemy’s intelligent combat threats and study strategies to defeat the enemy, such as intelligent blocking warfare and intelligent disruption warfare.

Use intelligent training innovation to promote the transformation of combat power generation mode. Intelligent warfare will be a war jointly implemented by humans and machines, and combat forces with intelligent unmanned combat systems as the main body will play an increasingly important role. It is necessary to adapt to the new characteristics of the intelligent warfare force system, innovate and develop intelligent training concepts, and explore new models for the generation of intelligent warfare combat power. On the one hand, it is necessary to strengthen the training of “people” driving intelligent systems. Relying on big data, cloud computing, VR technology, etc., create a new training environment, continuously improve people’s intelligent literacy, improve the quality of human-machine cognition, understanding, and interaction, and enhance the ability of people to drive intelligent combat systems. On the other hand, it is necessary to explore a new training model with “machines” as the main object. In the past, training was basically human-centered, focusing on people’s proficiency in mastering and using weapons and equipment in a specific environment to improve combat effectiveness. In order to adapt to the new characteristics of the intelligent warfare force system, the training object should change the traditional human-centered training organization concept and model, focus on improving the self-command, self-control, and self-combat capabilities of the intelligent combat system, make full use of the characteristics of the intelligent system’s ability to self-game and self-grow, and form a training system, training environment, and training mechanism specifically for the intelligent combat system, so that the intelligent combat system can obtain a geometric leap in combat capability after a short period of autonomous reinforcement training.

現代國語:

來源:解放軍報 作者:李始江 楊子明 陳分友 責任編輯:喬楠楠 2018-07-26 08:23:16
前言

以深度學習為標志的人工智慧技術突破性成果及其在各領域的應用,將智慧化推上了全球浪潮的新高,也成為各方關注的焦點。在科技創新與應用從未甘落後的軍事領域,也正在積極孕育一場新的變革。我們必須準確把握智能化戰爭的演進脈搏,透析智能化戰爭的內在本質,才能以嶄新的面貌迎接和駕馭智能化戰爭。

智慧化戰爭究竟離我們有多遠?

智能化戰爭,是以人工智慧技術為主要支撐的戰爭。賦予武器平台以人的智慧並取代人在戰場上廝殺,是千百年來人們夢寐以求的願望。隨著AlphaGo和Atlas為代表的人工智慧系統帶給世人的強大沖擊,蜂群作戰、飛行航空母艦等作戰新概念、新平台的初露端倪,智慧化戰爭大門彷彿正在悄然打開。

歷史發展規律預示著智慧化戰爭必將走上戰爭舞台。科學技術的進步推動武器裝備的演進,引發軍隊編成、作戰方式和軍事理論的根本性變化,並最終強制推動戰爭形態的歷史性變革。智能化戰爭的到來也符合這個歷史發展的必然規律。回顧人類戰爭的演變歷程,每一次科學技術的重大進步,都推動著軍事上的重大變革。黑火藥的發明使人類戰爭進化到熱兵器時代,步兵方陣、騎兵方陣在火槍線式作戰方式下被消滅的蕩然無存;蒸汽機在軍事上的運用使人類戰爭進化到機械化時代,並進而催生了以裝甲艦、坦克、飛機引領的大規模機械化戰爭。智慧化技術的出現與應用,必將深刻改變人類認知、戰爭思維與作戰方式,再一次掀起軍事上的重大變革,智慧化戰爭必將走上戰爭舞台。

人工智慧技術的發展進程決定著智慧化戰爭邁進的腳步。人工智慧技術的不斷發展與廣泛應用,推動智慧化戰爭從混沌走向現實,開始萌芽、逐漸成長,一步一步向我們走來。真正進入到智慧化戰爭,人工智慧技術需要邁上四階。第一級台階是計算智能,即突破計算能力的限制、突破存儲空間的限制,實現近乎實時的計算能力和存儲能力,這種能力是大型計算機和龐大服務器遠遠不可比擬的。雲計算的廣泛應用已經將人類穩穩地送上了第一級台階。第二級台階是感知智能,即機器能夠聽得懂、看得懂、辨得真、識得清,能夠與人進行直接交流對話。以大數據為基礎的自然語言理解、圖像圖形認知、生物特徵識別技術,讓人類走上了第二級台階。第三級台階是認知智能,即機器能夠理解人類的思維,能夠像人類一樣進行思考與推理,像人類一樣進行判斷和決策。以深度學習演算法為驅動的知識挖掘、知識圖譜、人工神經網絡、決策樹技術,讓人類努力邁向第三級台階。第四級台階是人機融合式增強型智能,即將人類擅長的感知、推理、歸納、學習,與機器擅長的搜尋、計算、儲存、優化,進行優勢互補、雙向閉環互動。虛擬現實增強技術、類腦認知技術、類腦神經網絡技術,正在探索人類如何邁向第四級。當人類走上第二級台階,智慧化戰爭開始向我們走來;當我們踏上第四級台階時,智慧化戰爭的時代就將全面開啟。

自我學習成長加速著智慧化戰爭變革的突然降臨。 「學習」能力是人工智慧最核心的能力,一旦機器能夠自我學習,其學習速度是驚人的。機器一旦具備自我學習的能力,就會進入一個不斷反復的「提升智慧、加快進化」的快速成長軌道,邁向智慧化戰爭的所有技術困難將隨著「學習」的深入迎刃而解,智能化戰爭時代很可能會以人們意想不到的方式突然降臨!

智能化戰爭究竟會改變什麼?

智能化戰爭將突破傳統時空認知的極限。在智慧化戰爭中,人工智慧技術能夠全時、全局對作戰中全部力量的各種行動信息,進行實時收集、實時計算、實時推送,使人類能夠突破思維的邏輯極限、感官的生理極限和存在的物理極限,大大提高對時間空間的認知範疇,能夠實時精準地掌控所有力量的所有行動,能夠在多維空間、多維空間、多維領域的優勢

智慧化戰爭將重構人與武器裝備的關系。隨著智慧化技術的快速進步,智慧化程度的不斷提升,武器平台和作戰體係不僅能夠被動、機械地執行人的指令,而且能夠在深度理解和深度預測的基礎上,通過機器擅長的算、存、查進行超級放大,從而在一定意義上自主、能動地執行特定任務。可以說,武器平台和作戰體係也可以在某種程度上主動地發揮出人的意識,甚至是超出人類的認識範疇,根據特定程序自主地、甚至是創造性地完成作戰任務,傳統意義上人與武器裝備的區別變得模糊,甚至難以區分是人在發揮作用還是機器在發揮作用,人們驚呼“人與武器裝備將成為夥伴關系”。因此,在智慧化戰爭中,人雖然仍是戰鬥力中最主要的因素,但人與武器裝備結合方式的改變豐富了戰鬥力的內涵,人與武器裝備的傳統關係也將在此基礎上進行重構。

智慧化戰爭將催生新型作戰方式的湧現。科學技術劃時代的進步,必然使作戰方式發生革命性的變化;智慧化技術的重大進步,必然帶來作戰方式變革的活躍期。一方面,以計算、數據、演算法、生物為驅動力的深度認知、深度學習、深度神經等領域不斷湧現的新技術,以及與資訊、生物、醫學、工程、製造等領域成果的交叉融合,必然推動新型作戰方式井噴式的湧現。另一方面,智慧化武器平台與作戰體系的激烈對抗,必然成為創新作戰方式的目標與動力。戰爭中智慧化技術程度越高的部位,越成為對抗中的焦點,時空認知極限、海量資訊存儲計算能力、神經網絡組織生成能力等方面的優勢差,將會帶來新領域的「致盲」「致聾」「致癱」作戰方式。

智慧化戰爭將孵化全新的指揮控制方式。指揮控制的優勢是戰爭領域的關注焦點,智慧化戰爭呼喚全新的指揮控制方式。一是人機協同決策成為智慧化戰爭中主要的指揮決策方式。以往戰爭中的指揮決策,都是以指揮為主導,牽引技術手段的輔助決策。在智慧化戰爭中,智慧輔助決策系統將根據新的戰場態勢變化,主動督促或催促指揮員做出決策。這是因為面對海量的、瞬息萬變的戰場態勢資訊數據,人的大腦已經無法快速容納和高效處理、人的感官已經無法承受超常規的變化速度。在這種情況下,單純依靠指揮員形成的決策很可能是遲到的、無用的決策。只有在智慧化輔助決策系統推動下的人機協同決策,才能夠彌補時空差和機腦差,確保指揮決策優勢。二是腦神經控製成為智慧化戰爭中主要的指令控制方式。以往戰爭中,指揮員透過文件、電台、電話,以文書或語音的形式,逐級下達指令指揮控制部隊。在智慧化戰爭中,指揮員用智慧化類腦神經元,透過神經網絡作戰體系平台向部隊下達指令,減少了指令表現形式的轉換過程,縮短了指令跨媒體的轉換時間,節奏更快、效率更高。當作戰體系平台遭到攻擊部分破壞時,這種指揮控制方式能夠自主修復或自主重構神經網絡,迅速恢復主體功能甚至全部功能,抗打擊能力更強。

我們應該如何迎接智能化戰爭?

在智慧化作戰的研究與探索中,絕不能甘於落後追隨,必須瞄準打贏未來戰爭,要以更主動的姿態、先進的理念、積極的行動,迎接智慧化戰爭的挑戰。

以智慧化技術突破推動智慧化作戰體系效能躍升。智慧化技術的發展目前雖然在神經網絡演算法、智慧傳感與組網技術、數據挖掘技術、知識圖譜技術等方面有了較大進展,但總體而言仍處於弱智能階段,遠未達到強智能高級階段,未來仍有廣闊的發展空間。要強化人工智慧基礎研究,遵循科學技術發展的規律,科學規劃智慧化技術發展方向,選好技術突破口,加強人工智慧關鍵核心技術,特別是起支撐作用的基礎性研究。突出軍用關鍵技術研究。以軍事需求為牽引,圍繞智慧感知、智慧決策、智慧控制、智慧打擊、智慧保障等軍用關鍵技術,發展智慧化偵察感知系統、指揮控制系統、武器裝備系統、作戰保障系統等武器裝備。抓好軍民科技協同創新,充分發揮民用智慧技術發展優勢,依托軍地優勢資源,強化軍地戰略協作,搭建人工智慧科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成智慧化作戰科技開放融合創新發展新局面。

以智能化作戰理念引領作戰方式創新。迎接智能化戰爭的到來,轉變觀念才是前提。觀念是行動的先導,如果我們的觀念還停留在傳統層面,就難以適應智慧化戰爭的需要。智慧化戰爭在技術支撐、作戰力量、制勝機理等方面都發生了深刻變化,要求我們必須先確立智慧化戰爭理念,並以此引領我軍未來作戰方式創新。一是要強化「制智權」爭奪。人工智慧是智慧化戰爭的基礎,作戰中剝奪和削弱對手智慧運用能力,保持己方智慧運用的自由,是確保智慧化作戰順利實施的基礎。西方發達國家軍隊正探索通過電磁幹擾、電子壓制、高功率微波穿透和接管控制等多種手段,阻斷對手的智能運用能力,奪取“制智權”,從而奪取戰場優勢。二是創新智能化作戰方式方法。要著眼於充分發揮智慧化作戰體系整體效能,加強人機協同智慧作戰、智慧化機器人作戰、智慧無人群聚作戰等的新的智慧化作戰方式方法研究,以及智慧化作戰指揮、智慧化作戰保障的流程與方式方法等。著眼有效應對敵智能化作戰威脅,研究克敵制勝之策,如智慧阻斷戰、智慧擾亂戰等。

以智慧化訓練創新催生戰鬥力生成模式轉變。智慧化戰爭將是人機結合共同實施的戰爭,以智慧化無人作戰系統為主體的作戰力量將發揮越來越重要的作用。必須適應智慧化戰爭力量體系新特點,創新發展智慧化訓練概念,探索智慧化戰爭戰鬥力生成新模式。一方面,要強化「人」駕馭智慧系統訓練。依託大數據、雲計算、VR技術等創設新型訓練環境,不斷提升人的智慧化素養,改善人機認知、理解、互動品質,提升人駕馭智慧化作戰系統的能力。另一方面,要探索以「機」為主體對象的新型訓練模式。過去的訓練基本是以人為主體對象的訓練,聚焦於人在特定環境下熟練掌握和使用武器裝備提高作戰效能。適應智慧化戰爭力量體系構成新特點,在訓練的對像上改變傳統訓練中以人為中心的訓練組織理念和模式,聚焦於智能化作戰系統自我指揮、自我控制、自我作戰能力的提升,充分利用智能化系統能夠自我博弈、自我成長的特點,形成專門針對智能化作戰系統訓練體系、訓練環境和訓練機制,從而使智能化作戰系統獲得短期的自主訓練即可升躍獲得短期能力強化的倍數。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/482056188.html?

China’s Military Ponders Integration Concept That Will be Adopted During Information Warfare

中國軍方思考資訊戰中將採用的一體化概念

現代英語:

The basic form of information warfare is system confrontation. Different from any form of warfare in history, information warfare is not a discrete confrontation or local decentralized warfare with the simple superposition of various combat units and elements, but a holistic confrontation between systems. The system integration capability of war determines the effectiveness of combat and the achievement of war objectives; achieving effective integration of various systems is the fundamental way to win information warfare.

Multi-space fusion

The battlefield space is the stage for the war hostile parties to compete. Due to the widespread use of high-tech weapons, the battlefield space of informationized warfare has been greatly expanded, forming a multi-dimensional battlefield space of land, sea, air, space, and information. Under the strong “bonding” of information technology, each battlefield space is integrated around a unified combat purpose. First, the three-dimensional, all-round reconnaissance and surveillance network covers the battlefield. Under the conditions of informatization, the military reconnaissance and surveillance capabilities have been unprecedentedly improved. The large-scale, three-dimensional, multi-means, and automated intelligence reconnaissance and surveillance network connects outer space, high altitude, medium altitude, low altitude, ground (sea), and underground (underwater) into one, thereby obtaining battlefield intelligence information in multiple fields. Second, long-range, high-precision informationized weapons are densely distributed and threaten the battlefield. The extraordinary combat capability of the informationized weapon system to cover and strike targets in the entire battlefield space has realized that discovery means destruction, and promoted the high integration of various battlefield spaces. In addition, the development of space and air power has made strikes more precise, means more flexible, and combat efficiency higher, and the battlefield space has become an integrated battlefield of sea, land, air, and space. This integrated battlefield structure has a high degree of integration of multiple spaces, and multiple spaces and multiple fields restrict each other. Third, the battlefield is restricted by electromagnetic and information competition in all time and space and throughout the entire process. The development of military information technology not only realizes the integration of tangible battlefields on land, sea, air and space through reconnaissance and strikes, but also opens up the competition for invisible battlefields in the electromagnetic and information fields. Electromagnetic and information are the soul of informationized warfare and the link between the battlefields on land, sea, air and space. They exist in the entire time and space of combat, act on all elements of war, run through the entire process of combat, and deeply affect the tangible battlefields on land, sea, air and space.

It can be seen that the informationized battlefield is precisely through the increasingly mature information technology, centering on the purpose of war and combat needs, closely integrating the multi-dimensional space of land, sea, air, space, information, etc., forming an inseparable and interdependent organic unity. Leaving any dimension of the battlefield space, or losing control of any dimension, will directly affect the overall combat effectiveness, thus leading to the failure of the war.

Fusion of multiple forces

War power is the protagonist of the battle between the two opposing sides of a war. The “integrated joint combat force” of system integration is a prominent feature of information warfare. Various participating forces in information warfare are highly integrated. Regardless of their affiliation and combat mission, they will be equal users and resources of the entire combat system and integrated into a unified large system. First, the participating forces are united. Information warfare is a joint operation in which the army, navy, air force, aerospace, special operations, information operations and other forces participate. Each participating force has advantages that other participating forces do not have or cannot replace. They communicate and connect through information technology to achieve “seamless connection” and form a force system that can play to its strengths and avoid its weaknesses and complement each other’s advantages, becoming an organic whole that combines “soft” strike and “hard” destruction capabilities, combat and support capabilities, mobility and assault capabilities, and attack and defense capabilities. Second, the participants are diversified. With the development of information networks, wars in the information age no longer have a distinction between the front and the rear, and the networking of combat systems can also make home a “battlefield”. In the industrial age, wars were “over, go home”; in the information age, wars can also be “go home and fight”. Participants in war are not limited to the military forces of countries and political groups. Non-governmental and group-based people can join the “battlefield” as long as they have high-tech knowledge and are proficient in computer applications. Third, the support force is socialized. With the development of science and technology, the mutual tolerance, intercommunication and compatibility of military and civilian technologies have been greatly enhanced. A large number of combat facilities and platforms will rely more on local basic resources. Not only does the material support in combat need to be socialized, but also the technical support and information support need to be socialized.

It can be seen that the victory or defeat of the informationized battlefield depends on the overall strength of the warring parties. Various combat forces are both interrelated and mutually influential, but any single force is difficult to determine the outcome of the war. Only when multiple forces work closely together and learn from each other’s strengths and weaknesses can the overall combat system benefits be brought into play and victory be ultimately achieved.

Multi-level integration

The war level is the pattern of the war between the two hostile parties. In information warfare, the distinction between strategy, campaign and battle is no longer as clear as in traditional warfare. Instead, there is a mutual integration of you and me, and the distinction between levels has become relatively vague. First, the war path is simplified. With the centralized use of a large number of informationized weapons and equipment and their information systems, the precision strike capability of the troops has been unprecedentedly improved. A small-scale combat operation and a high-efficiency information offensive operation can effectively achieve certain strategic goals. A battle, a campaign or a carefully planned information operation may be a war. The path to achieve the purpose of war is becoming simpler and the convergence of war, campaign and even battle in purpose and time and space is prominent. Second, command and control is real-time. The widespread use of automated command and control systems on the battlefield has greatly enhanced the command and control function. Campaign commanders and even the highest political and military leadership of the country can plan and command and control all participating forces and specific combat operations in a unified manner, and directly intervene in campaigns, battles and even the actions of individual soldiers or combat platforms in near real time. Combat and campaign operations are similar to strategic engagements. Third, the combat process is fast-tracked. Quick victory and quick decision are important features of information warfare. The combat time is showing a trend of shortening. There is no concept of time for all combat operations. More often, the participating forces at all levels are carried out simultaneously in different fields. The beginning and the end are closely linked. The combat operations in various battlefield spaces penetrate each other, are closely linked, and gradually merge into an integrated and coordinated system, which is difficult to distinguish at the level.

It can be seen that information warfare has a strong overall nature. Campaigns, as a bridge for achieving strategic and even war objectives, are gradually integrated into battles. Combat, as the most basic combat activity in war, is also gradually sublimated into strategies and campaigns. All levels are intertwined and serve to achieve the purpose of war. Only by comprehensively exerting the combat capabilities of all levels and achieving overall effects can we seize the initiative in the war.

Fusion of various styles

The combat style is the carrier for the war hostile parties to compete. Informationized warfare is a process of confrontation between multiple forces and multiple fields, and is manifested in multiple combat actions and confrontation styles. Various combat actions are inseparable from the overall combat situation, and various actions are closely linked, mutually conditional, coordinated, and integrated to form an overall combat power. The first is the unity of combat actions. The victory or defeat of informationized warfare is the result of the system confrontation between the two warring parties. Isolated and single combat actions are often difficult to work. This requires multiple military services to adopt a variety of combat styles in different combat spaces and combat fields, while the combat style dominated by a single military service can only “live” in the overall joint action as a sub-combat action, and all combat actions are unified in the system confrontation. The second is the integration of combat actions. Informationized warfare is a form of war that pursues high efficiency. Objectively, it requires that multiple combat styles and actions must be highly “integrated” from the perspective of system effectiveness. Comprehensively use a variety of combat styles and tactics, combine tangible combat actions with intangible combat actions, combine non-linear combat with non-contact combat and asymmetric combat, combine psychological warfare with public opinion warfare and legal warfare, combine regular combat with irregular combat, and combine soft strikes with hard destruction to form an overall advantage. The third is the mutation of combat actions. In information warfare, while integrating various combat resources and exerting overall power, both hostile parties strive to find the “center of gravity” and “joint points” of the other side. Once the enemy’s weak points are found, all combat forces and actions are linked as a whole and autonomously coordinated, and various styles and means of destruction are adopted to cause a sudden change in the enemy’s combat capability and a comprehensive “collapse” of the combat system, so as to achieve combat initiative and advantage.

It can be seen that information warfare is a practical activity in which various forces use a variety of combat styles and means to compete in multiple battlefield spaces and combat fields. Only when multiple combat styles and means cooperate, support and complement each other can a multiplier effect be produced, thereby exerting the maximum combat effectiveness of the entire system.

Multi-method integration

The means of war are methods used to achieve the purpose of war. In addition to powerful military means, information warfare must also use all available ways and means to cooperate with each other, organically integrate, and form a whole to achieve a favorable situation. First, the use of war means is comprehensive. All wars have a distinct political nature and serve certain political purposes. With the influence of factors such as the globalization of the world economy and the multipolarization of international politics, information warfare is more based on military means, and military means are used in combination with various means such as economy, diplomacy, culture, and technology. Second, the use of war means is gradient. With the development of the times, war as a means of maintaining and seeking power and interests has been increasingly restricted by international law and international public opinion. In addition, resorting to war requires a high price. Therefore, in the information age, the use of war means presents a gradual development gradient, usually starting from retaliation, display of force, and violent retaliation (strike) in the sense of international law, and finally developing into local or even large-scale wars. Third, the use of war means is systematic. Information warfare is a contest of the comprehensive national strength of the hostile parties. The victory of the war depends on the comprehensive and systematic use of various war means. In specific combat operations, various means of warfare have different functions and natures, occupying different positions and playing different roles in the war. Only by closely combining various effective means of warfare into an organic whole can we form a combat system that fully utilizes our strengths and avoids our weaknesses, and maximize the overall combat effectiveness.

It can be seen that information warfare is subject to more restrictive factors, simpler war objectives, and newer combat styles. In the process of decision-making and action, only by coordinating and integrating with struggle actions in other fields such as politics, economy, culture, and diplomacy can the overall goal of the war be achieved efficiently.

現代國語:

中國軍網 國防部網

2019年12月10日 星期二

張自廉 馬代武

資訊化戰爭的基本形式是體系對抗。與歷史上任何一種戰爭形態都不同,資訊化戰爭不是各作戰單元、要素簡單疊加的離散式對抗或局部分散式作戰,而是體系對體系的整體對抗。戰爭的體系融合能力,決定作戰效能的發揮和戰爭目的達成;實現各系統的有效融合,是打贏資訊化戰爭的根本途徑。

多空間融合

戰場空間是戰爭敵對雙方較量的舞台。由於高技術兵器的廣泛運用,資訊化戰爭戰場空間大為拓展,形成了陸、海、空、天、資訊等多維戰場空間。各戰場空間在資訊科技的強力「黏合」下,圍繞著統一的作戰目的融為一體。一是立體化、全方位的偵察與監視網覆蓋透視戰場。在資訊化條件下,軍事偵察與監視能力空前提高,大範圍、立體化、多手段、自動化的情報偵察與監視網,將外層空間、高空、中空、低空、地面(海上)、地下(水下)連為一體,進而獲取多領域的戰場情報資訊。二是遠射程、高精準度的資訊化武器密布威脅戰場。資訊化武器系統所具有的覆蓋和打擊戰場全空間目標的超常作戰能力,實現了發現即意味著摧毀,促進了各戰場空間的高度融合。加之太空和空中力量的發展,使打擊更精確,手段更靈活,作戰效益更高,戰場空間成為海陸空天一體化戰場。這種一體化的戰場結構,多空間高度融合,多空間、多領域相互制約。第三是全時空、全過程的電磁和資訊爭奪滲透制約戰場。軍事資訊科技的發展,不僅透過偵察、打擊等手段實現有形的陸海空天戰場一體化,也開闢了電磁和資訊領域無形戰場的爭奪。電磁和訊息是資訊化戰爭之魂,是連結陸海空天戰場的紐帶,存在於作戰的全時空,作用於戰爭的全要素,貫穿作戰的整個過程,深度影響著陸海空天各維有形的戰場。

可見,資訊化戰場正是透過日益成熟的資訊技術,圍繞著戰爭目的和作戰需要,把陸、海、空、天、資訊等多維空間緊密地融合在一起,形成不可分割、唇齒相依的有機統一體。離開了哪一維戰場空間,或是失去哪一維的控制權,都會直接影響全域作戰效能,進而導致戰爭失敗。

多力量融合

戰爭力量是戰爭敵對雙方較量的主角。體系融合的「一體化聯合作戰力量」是資訊化戰爭的突出特徵。資訊化戰爭各種參戰力量高度一體化,無論其隸屬關係如何、作戰任務如何,都將作為整個作戰系統的平等用戶和資源,融合成為一個統一的大系統。一是參戰部隊聯合化。資訊化戰爭是陸、海、空軍以及航太、特種作戰、資訊作戰等部隊參與的聯合作戰。各參戰部隊都具有其他參戰部隊所不具備或無法替代的優勢,它們通過信息技術溝通和聯繫,實現“無縫鏈接”,形成可以揚長避短、優勢互補的力量體系,成為具備“軟”打擊與“硬”摧毀能力、作戰與保障能力、機動與突擊能力、攻擊與防護能力相結合的有機整體。二是參加人員多元化。隨著資訊網路的發展,資訊時代的戰爭,不再有前方後方之分,作戰系統的網路化使家中也可能成為「戰場」。工業時代的戰爭,「結束了,回家去」;資訊時代的戰爭,也可以「回家,打仗去」。戰爭的參與者不僅只局限於國家和政治集團的軍事力量,非政府和團體性質的民眾,只要具有高技術知識就能投身“戰場”,只要熟練計算機應用都可能成為參與戰鬥的一員。三是保障力量社會化。科學技術的發展,軍用、民用技術的互容、互通和相容性大大增強,大量作戰設施和平台將更加依靠地方基礎資源,不僅作戰中的物資保障需要社會化,而且技術保障與資訊支援也需要社會化。

可見,資訊化戰場的勝負取決於交戰雙方整體力量的強弱,多種作戰力量既相互關聯,又相互影響,但其中任何單一的力量都難以決定戰爭的勝負。只有多種力量密切配合、取長補短,才能發揮整體作戰的系統效益,最終贏得勝利。

多層級融合

戰爭層級是戰爭敵對雙方較量的格局。在資訊化戰爭中,戰略、戰役、戰鬥之間已不再像傳統戰爭那樣涇渭分明,更多的是,你中有我,我中有你,層級區分變得相對模糊。一是戰爭途徑簡約化。大量資訊化武器裝備及其資訊系統的集中運用,部隊的精確打擊能力空前提高,一次小規模的作戰行動和高效益的資訊進攻行動,就能有效達成一定的戰略目的。一場戰鬥、一場戰役或一次周密計畫的資訊行動可能就是一場戰爭。達成戰爭目的的途徑不斷走向簡約,戰爭與戰役甚至戰鬥在目的和時空上的趨同性突出。二是指揮控制即時化。自動化指揮控制系統在戰場上的廣泛運用,指揮控制功能大大增強,戰役指揮員甚至國家最高政治、軍事領導層能夠對所有參戰力量和具體的作戰行動進行統一籌劃和指揮控制,近乎實時地直接幹預戰役、戰鬥甚至單兵或作戰平台的行動,戰鬥和戰役行動趨同於戰略交戰。三是作戰進程速決化。速戰速決是信息化戰爭的一個重要特徵,作戰時間呈現出縮短的趨勢,所有作戰行動已無時間上的概念,更多的是各層次的參戰力量在不同領域同時進行,開始與結束緊密相連,各戰場空間的作戰行動互相滲透、緊密聯繫、逐漸融合成一個整體聯動的綜合體系,難以作層級上的區分。

可見,資訊化戰爭整體性強,戰役作為戰鬥達成戰略乃至戰爭目的的橋樑,逐漸融合在戰鬥中;戰鬥作為戰爭中最基本的作戰活動,也逐漸昇華到戰略、戰役裡面,各層次之間,相互交融,共同為達成戰爭目的服務。只有綜合發揮各層級的作戰能力,達到整體效應,才能奪取戰爭的主動權。

多樣式融合

作戰樣式是戰爭敵對雙方較量的承載。資訊化戰爭是多力量、多領域實施對抗的過程,並表現為多種作戰行動和對抗樣式。各種作戰行動對於作戰全局來說都是不可分割的,各種行動之間也是緊密聯繫,互為條件,相互協調,融為一體,從而形成整體作戰威力。一是作戰行動的統一性。資訊化戰爭的勝負是交戰雙方體系對抗的結果,孤立、單一的作戰行動往往是難以發揮的。這就要求多個軍兵種在不同的作戰空間、作戰領域綜合採取多種作戰樣式,而單一軍兵種為主的作戰樣式將只能作為子作戰行動「棲身」於整體的聯合行動之中,所有的作戰行動統一於體系對抗之中。二是作戰行動的整合性。資訊化戰爭是追求高效益的戰爭形態,客觀上要求必須從系統效能出發,將多種作戰樣式和行動高度「整合」。綜合運用多種作戰樣式和戰法,把有形的作戰行動與無形的作戰行動結合起來,把非線式作戰與非接觸作戰、非對稱作戰結合起來,把心理戰與輿論戰、法律戰結合起來,把正規作戰與非正規作戰結合起來,把軟打擊與硬摧毀結合起來,形成整體優勢。三是作戰行動的突變性。在資訊戰爭中,敵對雙方在整合己方各種作戰資源、發揮整體威力的同時,都著力尋找對方“體系重心”“關節點”,一旦發現敵薄弱部位,所有作戰力量和行動通過整體聯動和自主協同,採取多樣式、多手段的破擊行動,造成敵作戰能力的突變和主動作戰體系的全面作戰,以實現“崩塌與優勢”,以崩潰與作戰能力的全面作戰。

可見,資訊化戰爭是各種力量在多個戰場空間、作戰領域中綜合運用多種戰鬥樣式和作戰手段同場競技的實踐活動。只有多種戰鬥樣式、作戰手段相互配合、相互支援、互補,才能產生倍增效應,進而發揮整個系統的最大作戰效能。

多手融合

戰爭手段是為達成戰爭目的而運用的方法。資訊化戰爭除了強大的軍事手段外,還必須動用一切可以動用的方式和手段,相互配合,有機融合,形成整體,以取得有利的態勢。一是戰爭手段運用綜合化。凡戰爭都有鮮明的政治性,都是為一定的政治目的服務的。隨著世界經濟全球化、國際政治多極化等因素的影響,資訊化戰爭更多的是以軍事手段為主,軍事手段與經濟、外交、文化、科技等多種手段的綜合運用。二是戰爭手段運用梯度化。隨著時代的發展,戰爭作為維護、謀求權力與利益的手段受到了國際法和國際輿論越來越多的限制,加上諸戰爭需付出高昂代價,所以信息化時代在戰爭手段運用上,呈現出逐步發展的梯度性,通常先由國際法意義上的報復、顯示武力、暴力性報復(打擊),最後發展至局部戰爭。三是戰爭手段運用的系統化。資訊化戰爭是敵對雙方綜合國力的較量,戰爭的取勝,有賴於各種戰爭手段綜合、系統運用。在具體的作戰行動中,各種戰爭手段因其功能、性質的不同,在戰爭中居於不同的地位,扮演不同的角色。只有把各種有效的戰爭手段緊密地結合成一個有機連結的整體,才能形成充分揚己之長、避己之短的作戰體系,最大限度地發揮整體作戰效能。

可見,資訊化戰爭受制因素增多、戰爭目的簡約、作戰樣式翻新,在決策與行動過程中,只有與政治、經濟、文化、外交等其他領域鬥爭行動互相配合,融為一體,才能高效地達成戰爭總體目標。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2019-12/10/content_24955988.htm

China’s Competition for Militarization of Artificial Intelligence Continues to Accelerate

中國人工智慧軍事化競爭持續加速

中國軍網 國防部網 // 2022年9月1日 星期四

現代英語:

Artificial intelligence is a general term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future war form, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.

With the rapid development of technology and the continuous acceleration of competition, major countries have launched their own artificial intelligence development plans, and accelerated the promotion of organizational mechanism reform, scientific and technological research and development, and tactical and combat innovation, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.

Accelerate organizational form innovation

Promote technology transformation and application

Unlike traditional technologies, the research and development and transformation of artificial intelligence have their own characteristics. The institutional settings and operation methods of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, breaking the institutional barriers in the process of artificial intelligence technology research and development, and accelerating the transformation and application of related technologies.

Emphasize “connection between the near and the far”. The United Kingdom, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Future Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative application of existing platforms in a “potential tapping and efficiency increase” manner, while buying time for the medium- and long-term technological innovation of the Defense Advanced Research Projects Agency, so as to effectively balance practical needs and long-term development.

Attach importance to “research and use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat selection, and other aspects. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements transformation, and promote the widespread application of artificial intelligence in the U.S. Department of Defense and various services.

Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Committee”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.

Highlight the “combination of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department, which fully demonstrates new technologies, new theories, and new concepts based on the specific effects of various systems organically integrated into various services and arms, so as to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of national defense technology innovation and application by re-establishing the position of Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, concepts, and methods, so as to select the focus of various technology research and development and the direction of strategic and tactical research, and achieve a benign interaction between technology development and theoretical innovation.

Project establishment for military needs

Seize the opportunity for future development

In recent years, various military powers have aimed at the research and development of cutting-edge artificial intelligence technologies, and have widely established projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, intending to seize the opportunity for future development.

Situational awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” with blurred peace and war, integration of soldiers and civilians, internal and external linkage, and full-domain integration, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use intelligent information analysis and data sharing platforms to improve the fire support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.

Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and operational advantages. Russia’s “Combat Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, and other aspects, and improving commanders’ ability to control complex battlefields and command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, using artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, event roots, and relationships behind the war; the “Marvin” project uses machine learning algorithms and face recognition technology to screen and sort out various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.

Unmanned combat field. In some technologically advanced countries, unmanned combat systems are becoming more mature and equipment types are becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and transport and recovery of drones in all-terrain and all-time conditions. The Russian military’s “Outpost-R” drone system, which has the ability to detect and strike in one, can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s effectiveness in performing combat missions such as reconnaissance and surveillance, auxiliary targeting, battle damage assessment, and communication relay.

Adapting to the transformation of future battlefields

Continuously exploring new tactics

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the participation efficiency of artificial intelligence in key military decisions and actions.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, fully utilizing the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side always leads the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the U.S. Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the U.S. military’s algorithmic warfare further moving towards actual combat.

Unmanned warfare, guided by low-cost attrition warfare of saturated quantity attack and system attack and defense operations, strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat mode. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”.

Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses shallow footprints, low-feature, fast-paced forces such as special forces to form small groups of multi-group mobile formations, disperse and infiltrate the combat area in a multi-directional and multi-domain manner, continuously break the enemy’s system shortcomings and chain dependence, and increase the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.

Fusion warfare, relying on network quantum communication and other means, builds an anti-interference, high-speed “combat cloud” to eliminate the technical barriers of data link intercommunication, interconnection and interoperability between military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break data barriers and greatly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information of various services, which improved the integration between services and enhanced the effectiveness of joint command and control.

(Author’s unit: National University of Defense Technology)

程柏华

現代國語:

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以「戰略能力辦公室」和「首席數位與人工智慧長」為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以「挖潛增效」方式加強現有平台的創新運用,同時為國防高級研究計劃局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新思想、新理念、新方法進行實踐檢驗,以選定各類技術研發焦點與戰略戰術攻關方向,實現技術發展與創新理論的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源信息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發製人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力和全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增大其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

(作者單位:國防科技大學)

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_32324488.htm