Category Archives: Chinese Military Intelligentization

Chinese Military Laws Necessary for Winning Intelligent Warfare

中國軍事法規是贏得智慧化戰爭的必要條件

現代英語:

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12

現代國語:

认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。

●战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。

习主席指出,要认真研究军事、研究战争、研究打仗,把握现代战争规律和战争指导规律。今天,战争的智能化特征日益凸显,智能化战争已经展现出早期形态的样貌。要想掌握未来智能化战争主动权,就应积极跟踪现代战争发展,紧贴现实军事斗争准备,前瞻认识智能化战争规律,深刻把握其指导规律,着力回答“是什么”、解决 “怎么做”等问题,不断创新战争和战略指导。

回答“是什么”,前瞻认识智能化战争规律

毛泽东同志指出:“战争的规律——这是任何指导战争的人不能不研究和不能不解决的问题。”今天,在智能化战争初显端倪之际,应前瞻认识智能化战争“是什么”,否则就不能解决“怎么做”,更不可能驾驭未来战争。

智能化战争规律是战争知行体系的重建。智能化战争规律,和冷兵器战争、热兵器战争、机械化战争、信息化战争的规律一样,是战争诸要素间内在的、本质的联系,不同之处在于它有新质的要素和新的要素间的构成模式,本质上是基于智能化革命所引发的战争知行体系的重建。今天,认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。掌握这些规律,就能克服未来战争中的纷乱和不确定性,从中找出条理和确定性,这是应对智能化战争的客观要求。

智能化战争规律是战争指导规律的依据。毛泽东在《中国革命战争的战略问题》中,首先分析了中国革命战争的特点,揭示了战争规律,然后“由此产生我们的战略战术”,即战争指导规律;在《论持久战》中,他首先说明了“是什么”,再转到研究“怎么做”的问题上,体现了一种认识过程的逻辑顺序。今天,研究智能化战争仍应遵循这一顺序,既不能本末倒置,颠倒顺序;也不能增加、减少或更换环节。要在掌握智能自主这一根本规律的基础上,揭示自主感知、自主规划、自主实施、自主联动、自主评估等战争指导规律。

不懂得智能化战争规律,就不能指导战争。《孙膑兵法》指出:“知道,胜”“不知道,不胜”。道是战争规律,掌握它、行动符合它,就能取胜;反之,则败。毛泽东也强调:“不知道战争的规律,就不知道如何指导战争,就不能打胜仗。”同样,掌握智能化战争规律,是正确指导智能化战争的前提。否则,就难免要被智能化战争的表面现象所迷惑。今天,要通过分析智能化技术群对战争的基础性、长远性和颠覆性影响,研究智能化战争是个什么样子?有哪些规律?应该怎么打?这些都是智能化战争指导必须回答的重大课题。

解决“怎么做”,揭示掌握智能化战争指导规律

智能化战争指导规律是运用智能化战争规律指导实践的中介,起到“桥”和“船”的作用。应在回答“是什么”的基础上解决“怎么做”的问题,提出智能化战争的“游泳术”。

智能化战争指导规律是运用战争规律的规律。认识战争规律的目的在于应用。马克思指出:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”同样,智能化战争本身迫使指挥员不发现规律则已,一旦发现,就会结合能动性,利用规律为打赢战争服务,这就必然导致智能化战争指导规律的产生。今天,战争是政治的继续仍是智能化战争规律,由此得出智能化战争必须服从服务于政治的指导规律;兵民是胜利之本仍是智能化战争规律,由此得出最广泛地动员民众的指导规律,等等。这些智能化战争指导规律是战争规律派生出来的,是“智能化战争大海中的游泳术”。

充分发挥人在智能化战争中的能动作用。恩格斯说过:“赢得战斗胜利的是人而不是枪。”智能化战争指导规律是实践规律、使用规律。它不是对智能化战争规律的简单“移用”“照搬”,而是加上人的主观能动性,才能转化为战争指导规律。今天,掌握人工智能的军事人才,不仅是智能化武器的操控者,更是人工智能的创造者。人在智能化人机系统中仍处于主体地位,是智能化战争胜负的决定性因素。指挥员应在掌握智能化战争规律的基础上,充分发挥能动性,坚持“技术+谋略”的作战理论生成模式,才能由回答“是什么”向解决“怎么做”转变。

智能化战争指导规律是不断发展的。战争是一条“变色龙”。智能化战争本身也会经历萌芽、发展、成熟等不同阶段,这就必然带来智能化战争指导规律的发展。战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。要紧跟战争形态向智能化加速迈进的历史进程,把握智能化战争发展方向和时代脉搏,把对智能化战争指导规律的研究推向新境界,在未来战场占据战略主动和先机。

紧盯“主动权”,不断创新智能化战争和战略指导

兵无常势,水无常形。在智能化战争已然来临之际,要在遵循智能化战争规律和指导规律的基础上,紧贴现实军事斗争准备,加强对手研究、敌情研究,主动设计“在什么时间”“在什么地点”“和谁打仗”,创新战争和战略指导,牢牢掌握未来战争的战略主动权。

你打你的,我打我的。战争指导艺术的最高境界,就是你打你的、我打我的。“各打各的”要求指挥员在未来智能化战争中,无论处于怎样复杂、困难的环境,首先要立足自身实际,独立自主地使用自己的力量。特别是拥有高技术装备之敌,可能造成暂时的局部的敌之主动、我之被动的局面,这时要通过政治、经济、外交等综合手段,以总体有利态势弥补武器上的劣势,迅速扭转这一局面,恢复主动地位。如果被战略对手牵着鼻子走,就可能吃大亏。

把握时机,因时用兵。《六韬》指出:“用之在于机。”若米尼强调:“全部战争艺术就在于善于待机而动。”一方面,时不至,不可强动。要持重时机,时机未到,应有极大耐心,防止战略盲动。另一方面,时不再来,机不可失。要善于把握时机,一旦遇上有利时机,就要坚决利用,防止畏首畏尾。需要指出的是,要辩证地看待时机成熟问题。未来智能化战争瞬息万变,要求快速决策,而面对不确定性因素,又必须慎重决策。有时及早定下决心,比明天下达更完善的决心也许更有效。因此,要敢于冒一点风险,不然则会坐视成功机会的丧失。

各域有别,因地运筹。克劳塞维茨指出:“战争不像长满庄稼的田地,而像长满大树的土地。收割庄稼时不需要考虑每棵庄稼的形状,收割得好坏取决于镰刀的好坏;而用斧头砍伐大树时,就必须注意到每棵大树的形状和方向。”战略空间不同,战争就不同,战争指导也不一样。当前,战场空间不断由陆海空等传统空间向太空、网络等新型空间拓展,战争指导者应根据多域性、立体性、网络性等特点,探索新的智能化战争规律和指导规律。

瞄准对手,因敌制胜。《孙子兵法》指出:“践墨随敌,以决战事。”约米尼也说过:“不管是谁,如果不了解敌人,怎能知道自己应该如何行动呢?”着眼未来,聪明的战略家应根据轻重、缓急程度,把作战对象区分为主要作战对象和一般作战对象、现实作战对象和潜在作战对象,全面客观地了解不同作战对象的战略意图、兵力部署、作战构想等,提出能充分发挥己方战力优长的新的智能化战争指导规律,实施正确的战争行动。

总之,智能化战争规律是认识过程中的规律,解决“是什么”;指导规律是实践过程中的规律,解决“怎么做”。二者辩证统一,不可分割,构成了认识和指导智能化战争的完整链条。“战胜不复,而应形于无穷。”今天,战争和战略指导者应基于客观情况,深入探索和灵活运用智能化战争规律和战争指导规律,与时俱进创新战争和战略指导。

(作者单位:军事科学院战争研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f8888

Chinese Military Review of the Strategic Game Among Major Powers Within Context of Military Intelligence

軍事情報視野下的大國戰略博弈-中國軍事評論

現代英語:

In today’s world, the new military revolution has entered a critical qualitative change stage. Intelligent warfare with ubiquitous intelligence, interconnectedness, human-machine integration, and full-domain collaboration is accelerating. In order to consolidate its position as the world’s hegemon, the United States actively promotes the third “offset strategy” to “change the future war situation”, formulates an artificial intelligence development strategy, accelerates the actual combat testing and exercises of artificial intelligence, and regards intelligent technology as the core of a “disruptive technology group” that can change the “rules of the game”. Military powers such as Russia, Britain, and Israel are unwilling to lag behind and are also stepping up to improve their respective strategic layouts in the field of artificial intelligence. As competition among major powers intensifies, military intelligence will become the new commanding heights of the arms race.

    【Key words】military conflict, artificial intelligence strategy, AI war 【Chinese Library Classification Number】D81 【Document Identification Code】A

    In 2017, Master, known as the evolved version of “AlphaGo”, swept the top Go players on the online Go platform and won 60 consecutive games; in 2019, in the StarCraft II man-machine competition, two top human players were defeated with a score of 1:10; in 2020, in the “Alpha” air combat competition held by the Defense Advanced Research Projects Agency of the United States Department of Defense, the F-16 piloted by the US military ace pilot was completely defeated by the artificial intelligence fighter with a score of 0:5. These events show that the era of artificial intelligence that humans both look forward to and fear has quietly arrived.

    Engels said, “Once technological advances can be used for military purposes and have been used for military purposes, they will immediately and almost forcibly, and often against the will of the commander, cause reforms or even changes in the way of warfare.” At present, the militarized application of artificial intelligence has caused “the winning mechanism of war to undergo an unprecedented transformation, and the center of gravity of combat power generation is undergoing a historic shift.” A new round of scientific and technological revolution, industrial revolution and military revolution provides support for the intelligent era of “controlling energy with intelligence.”

    Military artificial intelligence demonstrates its powerful power in modern warfare

    The drive of the arms race among the major powers is triggering a chain of changes in the military field. In recent years, the world situation has been in a turbulent period, which has triggered a series of geopolitical crises. The concept of “hybrid warfare” has entered the war stage, and military artificial intelligence has entered a new stage of development. The rapid development and comprehensive integration of technologies such as artificial intelligence, big data, cloud computing, and reconnaissance and strike drones have demonstrated their powerful power in modern warfare. Whether it is the physical domain of firepower strikes, the interest domain of economic sanctions, or the cognitive domain of public opinion and psychological control, it makes people deeply feel that military artificial intelligence is becoming popular.

    Assassinating senior Iranian officials, AI becomes a “killing tool” for the US military. On January 3, 2020, then-US President Trump ordered the US military to launch an airstrike on Baghdad International Airport in Iraq without the consent of the US Congress. This airstrike directly killed Iranian senior official Soleimani. Soleimani is the top commander of the “Quds Brigade” of the Iranian Revolutionary Guard. Why was he successfully assassinated by the United States in the capital of Iraq? It is reported that the “Reaper” drone carried out this mission, which “targeted and eliminated” Soleimani by projecting “Hellfire” missiles. The operation was very secretive and could not be detected by radar. Even the US spy satellites did not know the location of the “Reaper” at the time. It should be emphasized that the assassination of Soleimani was an illegal and brutal act of the United States using terrorist means, “one of the war crimes committed by the United States by abusing force”, and its so-called “rules-based international order” is a pure whitewash, and its essence is a true manifestation of hegemony.

    In the Israeli-Palestinian conflict, Israel launched the “first AI war”. In May 2021, Israel launched “Operation Rampart” against Hamas. During the 11-day battle in the Gaza Strip, Israel relied on advanced information collection technology, analytical algorithms and AI-led decision support systems to quickly and effectively select attack targets and use the most appropriate ammunition as needed. Through hundreds of intensive and precise strikes from multiple combat platforms, it paralyzed Hamas and the Palestinian Islamic Jihad Organization’s rocket positions, rocket manufacturing plants, ammunition depots, military intelligence agencies, senior commanders’ residences and other key facilities, destroyed several autonomous GPS-guided submarines of the Hamas Maritime Commando, and killed Bassem Issa and other Hamas senior commanders and senior agents.

    It has been disclosed that the artificial intelligence system used in the war is an algorithm system developed by an elite team code-named 8200. The three systems “Alchemist”, “Gospel” and “Deep Wisdom” hatched by the team were all used in this military operation. The “Alchemist” system can analyze the enemy’s attempt to launch an attack and provide real-time warnings through the communication device carried by individual soldiers. The information fed back by the soldiers will also be collected again and evaluated for the next attack; the “Gospel” system can generate target strike suggestions and mark target information in real time. Commanders can flexibly select important targets and implement strikes based on battlefield conditions; the “Deep Wisdom” system can accurately draw a map of the tunnel network of Hamas armed organizations in the Gaza Strip through intelligence collection and big data fusion such as signal intelligence, visual intelligence, personnel intelligence, and geographic intelligence, forming a situation map that fully reflects the conflict area scenario. The use of these technologies has greatly enhanced the Israeli army’s battlefield situation awareness capabilities. A senior intelligence official of the Israel Defense Forces said that this is “the first time that AI has become a key component and combat power amplifier in fighting the enemy.” The Israeli military believes that the use of AI has brought “super cognitive ability” and even directly calls it “the first artificial intelligence war.”

    In order to seize the technological commanding heights, countries are stepping up their strategic layout of military intelligence

    Artificial intelligence is regarded as a key strategic technology in the Fourth Industrial Revolution. In order to gain the upper hand in the new round of disruptive technology competition, the world’s military and technological powers, led by the United States, have stepped up their strategic layout around military intelligence, and are working intensively and spare no effort.

    The United States attempts to rely on artificial intelligence to maintain its military hegemony. Since 2016, the U.S. Department of Defense has successively issued documents such as “Preparing for the Future of Artificial Intelligence”, “National Artificial Intelligence Research and Development Strategic Plan”, and “Department of Defense Artificial Intelligence Strategy”, which have elevated the development of artificial intelligence to the national strategic level. In order to establish its own “rules of war”, the Pentagon has successively formulated artificial intelligence technology research and development plans, key project concepts, and technical standards and specifications, and focused on building a research and development production and combat application system. In summary, the U.S. military’s layout for the future development of artificial intelligence can be roughly divided into three stages: near, medium, and long. In the first stage, before 2025, with unmanned, stealth, and remote combat platforms as the development focus, a “global surveillance and strike system” will be built, and unmanned systems will become the main means of military intervention by the U.S. military. In the second stage, before 2035, with intelligent combat platforms, information systems, and command and decision-making systems as the development focus, an intelligent combat system will be initially established, and unmanned systems will surpass manned systems and occupy a dominant position in combat. The third stage, before 2050, will focus on the development of technologies such as strong artificial intelligence, nanorobots, and brain networking, fully realize the intelligence of combat platforms, information systems, and command and control, promote the expansion of combat space to biospace, nanospace, and intelligent space, and strive to seek the intelligent combat system to enter the advanced stage.

    The various branches of the U.S. military have also launched and continuously updated their artificial intelligence development plans. The ground unmanned autonomous system has the “U.S. Ground Unmanned System Roadmap” and the “U.S. Robot Development Roadmap”, etc., and plans to achieve intelligent formations and coordinated actions of manned and unmanned by 2030, and realize the mobility of synthetic forces by 2040. The aerial unmanned autonomous system has a special drone development plan, and the long-term goal is to form a complete aerial unmanned equipment system covering high, medium and low altitudes, large, medium, small and micro, ordinary and long flight time. The maritime unmanned autonomous system is divided into two directions. One is to create a new underwater combat system, using multiple unmanned submarines to form a mobile integrated reconnaissance, detection, and strike network, and form an “advanced underwater unmanned fleet”; the other is to accelerate the development of surface unmanned ships and make breakthroughs in the “human-machine cooperation” of surface unmanned ships. In addition, the U.S. Department of Defense has also established partnerships with industry, academia and allies to ensure access to the most advanced artificial intelligence technology support.

    Russia has also put forward its own strategic plan in the field of artificial intelligence. In recent years, Russian President Vladimir Putin has attached great importance to the development of artificial intelligence. He proposed that artificial intelligence is the future for both Russia and all mankind. Whoever becomes a leader in this field will stand out and gain a huge competitive advantage. Artificial intelligence is related to the future of the country. Russian Chief of General Staff Gerasimov said that the Russian army is “developing non-nuclear strategic deterrence forces” through artificial intelligence equipment. Russian Defense Minister Sergei Shoigu said that the Russian army is stepping up the research and development and deployment of military robots, and combat robots will be put into mass production.

    As early as November 2014, Russia adopted a plan to develop combat robots by 2025, proposing that robot systems will account for 30% of the entire weapons and military technology system by 2025. In December 2015, Putin signed a presidential decree to “establish a national robotics technology development center”, providing institutional support for the development of artificial intelligence from a strategic level. In recent years, Russia has successively issued strategic plans such as “Future Russian Military Robot Application Concept”, “National Artificial Intelligence Development Strategy by 2030”, and “Russian Federation Defense Plan 2021-2025”, carried out war games in various complex combat environments, studied the impact of artificial intelligence on various levels such as strategy, campaign and tactics, and strived to build a multi-level and multi-dimensional unmanned intelligent combat system that is interconnected.

    From the perspective of medium- and long-term goals, attacking unmanned equipment is the focus of Russia’s development. In 2019, Russian President Vladimir Putin proposed at the Russian Federation Security Conference that in the next 10 years, the Russian army will vigorously develop combat robot systems that can perform tasks on the battlefield. The short-term goal is to build a multifunctional combat robot force with certain autonomous control capabilities by 2025. According to information, the force will be composed of 5 types of robots, each of which can be independently divided into combat units and can basically complete battlefield combat tasks without or with very little human intervention. At present, the Russian army has started the experimental design work of the heavy and light robot “assault” and “comrade” systems. Some experts analyzed that the combat robot force may become an independent and brand-new branch of the Russian army.

    The United States is wooing its allies to prepare for AI wars, and the AI ​​arms race is intensifying. In recent years, in order to maintain its absolute leading position in the field of artificial intelligence, the United States has stepped up its own AI militarization construction while trying to win over its allies to jointly develop a joint operation AI system in the name of serving the alliance combat system. According to the U.S. “Defense News” website, in September 2020, the U.S. Joint Artificial Intelligence Center has launched the “Defense Partnership Program”, which covers the United Kingdom, France, Israel, Japan, South Korea, Australia, Canada, Finland, Norway, Sweden and other countries. It aims to develop an AI system that is interconnected with the above-mentioned allies and lay the foundation for joint operations in intelligent warfare. It is reported that relevant defense representatives of the United States and its allies have held several meetings around this plan. The United States also claimed that this defense cooperation will “open the door” to more interested U.S. allies.

    The United States’s push will undoubtedly intensify the AI ​​arms race among the world’s major military powers. Among the United States’ many allies, Israel’s AI level is the best. Israel is the world’s largest exporter of military drones; it has the world’s first controllable autonomous unmanned vehicle, the Guardian, which has been equipped to the troops; it is the only country in the world, except the United States, equipped with unmanned surface vessels, and has many types of unmanned surface vessels such as the Protector, Stingray, and Seagull.

    Other major countries are also stepping up their layout in the field of artificial intelligence. The United Kingdom has formulated an artificial intelligence development path of “universities as the source, military-civilian integration”, and issued the “National Artificial Intelligence Strategy” and the “Robots and Artificial Intelligence” strategic plan. France has formulated the “French Artificial Intelligence Strategy” and the “French Artificial Intelligence Plan”. Since 2018, it has increased its defense budget year by year and continuously increased investment in the research and development of artificial intelligence weapons. Germany has the world’s largest artificial intelligence research center. In 2018, it issued the “Artificial Intelligence Strategy” and planned to create an “Artificial Intelligence Made in Germany” brand by 2025. Japan has successively issued the “Artificial Intelligence Strategy”, “New Robot Strategy” and “Comprehensive Science and Technology Innovation Strategy”, and established the “Innovative Intelligence Comprehensive Research Center” to focus on the development of artificial intelligence-related technologies. In January 2021, the Australian Department of Defense issued the “Fighting the Artificial Intelligence War: Operational Concepts for Future Intelligent Warfare”. This document focuses on how to apply artificial intelligence to land, sea and air combat.

    As some experts have said, “Intelligent technology is a double-edged sword. While it promotes the evolution of warfare to intelligent warfare, it also brings about a series of new war ethics issues and dilemmas in the law of war.” What changes will artificial intelligence bring to human society? This issue deserves in-depth thinking and continued attention.

    (The author is the director of the News Research Department of Guangming Daily)

    【References】

    ①Wu Mingxi: Intelligent Warfare—AI Military Vision, Beijing: National Defense Industry Press, January 2020.

    ②Guo Ming: “Basic Understanding of Intelligent Warfare”, “People’s Forum·Academic Frontier”, Issue 10, 2021.

    ③ Ding Ning and Zhang Bing: “Development of Intelligent Weapons and Equipment of Major Military Powers in the World”, “Military Digest”, Issue 1, 2019.

    ④ Ge Yan and Jia Zhenzhen: “Future Combat Concepts and Combat Styles under Military Transformation”, “Military Digest”, Issue 15, 2020.

    ⑤He Fuchu: “The Future Direction of the New World Military Revolution”, Reference News, August 23, 2017.

    ⑥Ma Junyang: “Russian-made unmanned intelligent weapons debut in Syria”, People’s Liberation Army Daily, December 30, 2019.

Geng HaijunPeople’s Forum (July 1, 2022, Issue 03)

現代國語:

當今世界,新軍事變革進入關鍵性變遷階段,智慧泛在、萬物互聯、人機共融、全局協同的智慧化戰爭正加速演進。為鞏固世界霸主地位,美國積極推行“改變未來戰局”的第三次“抵消戰略”,制定人工智能發展戰略,加速人工智能實戰檢驗和演習,將智能科技視作可改變“遊戲規則”的“顛覆性技術群”的核心。俄羅斯、英國、以色列等軍事強國不甘落後,也加緊完善各自在人工智慧領域的戰略佈局。大國競爭加劇,軍事智慧化將成為新的軍備競賽制高點。

【關鍵字】軍事衝突 人工智慧戰略 AI戰爭 【中圖分類號】D81 【文獻識別碼】A

2017年,被稱為進化版「阿爾法狗」的Master在圍棋網路平台橫掃圍棋界頂尖高手,豪取60連勝;2019年,星際爭霸Ⅱ遊戲人機對抗賽中,兩位人類頂尖選手以1:10的比數慘敗;2020年,在美國國防部高級研究計畫局舉辦的「阿爾法」空中格鬥競賽中,由美軍王牌飛行員駕駛的F-16以0:5完敗於人工智慧戰鬥機。這些事件表明,人類既期待又畏懼的人工智慧時代已經悄悄到來。

恩格斯說,「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改革甚至變革」。當下,人工智慧的軍事化應用使「戰爭的致勝機制正在發生前所未有的嬗變,戰鬥力生成的重心正發生歷史性的位移」。新一輪科技革命、產業革命和軍事革命為「以智地」的智慧化時代提供了支撐。

軍事人工智慧在現代戰爭中展現出強大威力

大國軍備競賽的驅動,正引發軍事領域鍊式變革。近年來,世界局勢處於動盪不安時期,由此引發了一系列地緣政治危機,「混合戰爭」概念登上戰爭舞台,軍事人工智慧進入發展新階段。人工智慧、大數據、雲端運算、察打一體無人機等技術的快速發展、全面融合,在現代戰爭中展現出強大威力。無論是火力打擊的物理域、經濟制裁的利益域,或是輿情心理控制的認知域,無不使人深刻感受到軍事人工智慧正在大行其道。

刺殺伊朗高官,AI成為美軍「殺人工具」。 2020年1月3日,時任美國總統川普未經美國國會同意,下令讓美軍空襲伊拉克巴格達國際機場。這次空襲,直接殺死了伊朗高官蘇萊曼尼。蘇萊曼尼是伊朗革命衛隊「聖城旅」最高指揮官,為何會被美國在伊拉克首都暗殺成功?有消息透露,實施這項任務的是「收割者」無人機,它透過投射「地獄火」飛彈,對蘇萊曼尼進行了「定點清除」。這次行動十分隱秘,雷達無法偵測到,連美軍間諜衛星都不知道這架「收割者」當時的位置。需要強調的是,刺殺蘇萊曼尼,是美國動用恐怖主義手段的非法和殘暴行徑,“是美國濫用武力犯下的戰爭罪行之一”,其所謂的“基於規則的國際秩序”是純粹的粉飾,本質是霸權主義的真實表露。

在巴以衝突中,以色列打響了「第一次AI戰爭」。 2021年5月,以色列對哈馬斯發起「城牆衛兵行動」。在加薩地帶11天的戰鬥中,以色列依靠先進的資訊收集技術、分析演算法和人工智慧主導的決策支援系統,快速有效地選擇攻擊目標並根據需要使用最合適的彈藥,透過數百次多種作戰平台的密集、精確打擊,癱瘓了哈馬斯和巴勒斯坦伊斯蘭聖戰組織的火箭陣地、火箭製造廠、彈藥倉庫、軍事情報機構、高級指揮官住所等關鍵設施,摧毀了哈馬斯海上突擊隊多艘自主GPS制導潛艇,擊殺了巴塞姆·伊薩等多名哈馬斯高級指揮官和高級特工。

有資訊揭露,此次應用於戰爭的人工智慧系統,是由一支代號8200的精英小組所開發的演算法系統。由該小組孵化的「煉金術士」「福音」「深度智慧」三個系統,全部被用於這次軍事行動。 「煉金術士」系統可對敵方發動攻擊的企圖進行分析,並透過單兵攜帶的通訊裝置即時預警,而士兵回饋的訊息也會被重新收集並對下一次攻擊作出評估;「福音」系統可產生目標打擊建議,並即時標記目標訊息,指揮人員結合戰場情況可靈活選擇重要目標並實施打擊;「深度智慧」系統透過訊號情報、視覺情報、人員情報、地理情報等情報收集和大數據融合,可精確繪製哈馬斯武裝組織在加薩地帶的地道網絡圖,形成了全面反映衝突區域情景的態勢圖。這些技術的運用,大大提升了以軍的戰場態勢感知能力。以色列國防軍一名高級情報官員表示,這是「AI第一次成為與敵人作戰的關鍵組成部分和戰力放大器」。以色列軍方認為,使用AI帶來了“超認知能力”,甚至直接稱其為“第一場人工智慧戰爭”。

各國為搶佔技術制高點,加緊軍事智慧化戰略佈局

人工智慧被視為第四次工業革命的關鍵性戰略技術,為謀求在新一輪顛覆性技術爭奪中獨佔鰲頭,以美國為首的世界軍事科技強國圍繞軍事智能化加緊戰略佈局,可謂緊鑼密鼓、不遺餘力。

美國企圖依賴人工智慧維持其軍事霸權。自2016年以來,美國防部連續推出《為人工智慧的未來做好準備》《國家人工智慧研究與發展戰略規劃》《國防部人工智慧戰略》等文件,將人工智慧發展提升至國家戰略層面。五角大廈為確立由自己主導的“戰爭規則”,相繼制定了人工智慧技術研發規劃、重點專案設想和技術標準規範等,著力建構研發生產和作戰運用體系。概括起來看,美軍對未來人工智慧發展的佈局大致可分為近、中、遠三個階段。第一階段,2025年前,以無人化、隱身化、遠程化作戰平台為發展重點,建構“全球監視打擊體系”,無人系統成為美軍軍事幹預的主要手段。第二階段,2035年前,以智慧化作戰平台、資訊系統、指揮決策系統為發展重點,初步建成智慧化作戰體系,無人系統將超過有人系統,居於作戰的主導地位。第三階段,2050年前,以強人工智慧、奈米機器人、腦聯網等技術為發展重點,全面實現作戰平台、資訊系統、指揮控制智慧化,推動作戰空間向生物空間、奈米空間、智慧空間拓展,努力尋求智慧化作戰體系進入高階階段。

美軍各軍種也相繼推出並不斷更新其人工智慧發展規劃。地面無人自主系統有《美國地面無人系統路線圖》《美國機器人發展路線圖》等,計畫在2030年實現有人與無人的智慧編隊、協同行動,2040年實現合成兵力機動。空中無人自主系統有專項的無人機發展規劃,長遠目標是形成覆蓋高、中、低空,大、中、小微型,普通與長航時完備的空中無人裝備體系。海上無人自主系統分兩個方向,一個是打造新型水下作戰體系,利用多個無人潛航器組成機動式一體化偵察、偵測、打擊網絡,組成「先進水下無人艦隊」;另一個是加速發展水面無人艦艇,在水面無人艇「人機合作」方面取得突破。此外,美國防部也與工業界、學術界和盟國建立夥伴關係,確保獲得最先進的人工智慧技術支援。

俄羅斯在人工智慧領域也提出了自己的戰略計畫。近年來,俄羅斯總統普丁高度重視人工智慧發展,他提出,無論對俄羅斯或全人類,人工智慧都是未來,誰成為這個領域的領導者,誰就會脫穎而出,進而獲得巨大的競爭優勢,人工智慧關係國家未來。俄總參謀長格拉西莫夫稱,俄軍正透過人工智慧裝備「發展非核手段戰略威懾力量」。俄國國防部長紹伊古則表示,俄軍正加緊進行軍用機器人的研發、列裝工作,戰鬥機器人將投入量產。

早在2014年11月,俄羅斯就通過了2025年前發展作戰機器人計劃,提出2025年機器人系統將佔整個武器和軍事技術系統的30%。 2015年12月,普丁簽署「成立國家機器人技術發展中心」總統令,從戰略層面為人工智慧的發展提供了體制支撐。近幾年,俄羅斯先後推出了《未來俄軍用機器人應用構想》《2030年前人工智慧國家發展戰略》《2021—2025年俄聯邦國防計畫》等戰略規劃,開展了各種複雜作戰環境下的兵棋推演,研究人工智慧對戰略、戰役和戰術等各層面的影響,努力建構多層次相互智能化、相互智能化體系的無個人化作戰。

從中長目標來看,攻擊無人裝備是俄羅斯發展的重點。 2019年,俄羅斯總統普丁在俄聯邦安全會議上提出,未來10年俄軍將大力發展能在戰場上執行任務的戰鬥機器人系統。近期目標,是2025年建造具有一定自主控制能力的多功能戰鬥機器人部隊。根據資料介紹,該部隊將由5種機器人組成,每種機器人都可以獨立劃分為作戰單元,可在無需人工或僅需很少人工幹預下,基本完成戰場作戰任務。目前,俄軍已啟動重型和輕型機器人「突擊」及「戰友」系統的試驗設計工作。有專家分析,戰鬥機器人部隊或將成為俄獨立的、具有全新意義的兵種。

美國拉攏盟友備戰AI戰爭,人工智慧軍備競賽加劇。近年來,美國為維持在人工智慧領域的絕對領先地位,在加緊推進自身人工智慧軍事化建設的同時,也以服務聯盟作戰體系為名,試圖拉攏盟友共同開發聯合操作人工智慧系統。根據美國「防務新聞」網站報道,2020年9月,美聯合人工智慧中心已啟動“防務夥伴關係計畫”,該計畫涵蓋英國、法國、以色列、日本、韓國、澳洲、加拿大、芬蘭、挪威、瑞典等國,旨在開發與上述盟國互聯互通的人工智慧系統,為智能化戰爭聯合作戰奠定基礎。有報導稱,圍繞這個計劃,美國及其盟友的相關國防代表已多次召開會議。美國還聲稱,這個國防合作將向更多感興趣的美國盟友「敞開大門」。

美國的助推,無疑將使全球主要軍事大國間的人工智慧軍備競賽愈演愈烈。在美國眾多盟友中,以色列的人工智慧水準獨領風騷。以色列是世界最大的軍用無人機出口國;擁有世界上第一種可控的自主式無人車——“守護者”,並已裝備部隊;是世界上除美國之外僅有的裝備了無人水面艇的國家,擁有“保護者”“黃貂魚”“海鷗”等多型無人水面艇。

其他大國也加緊佈局人工智慧領域。英國制定了「高校為源、軍民融合」的人工智慧發展路徑,推出了《國家人工智慧戰略》《機器人與人工智慧》戰略規劃。法國制定有《法國人工智慧戰略》《法國人工智慧計畫》,從2018年起逐年增加國防預算,不斷增加人工智慧武器研發投資力道。德國擁有世界上最大的人工智慧研究中心,2018年發布了《人工智慧戰略》,計畫2025年前打造「人工智慧德國製造」品牌。日本先後推出《人工智慧戰略》《新機器人戰略》《科技創新綜合戰略》,成立“革新智慧綜合研究中心”,集中開發人工智慧相關技術。 2021年1月,澳洲國防部發表《打好人工智慧戰爭:未來智慧化戰爭之作戰構想》。這份文件著重探討如何將人工智慧應用到陸、海、空作戰領域。

正如一些專家所言:「智慧科技是一把雙面刃,在推動戰爭形態向智慧化戰爭演變的同時,也帶來一系列全新的戰爭倫理問題和戰爭法困境。」人工智慧將為人類社會帶來哪些變革?這一問題值得深入思考並持續關注。

(作者為光明日報社新聞研究部主任)

【參考文獻】

①吳明曦:《智能化戰爭-AI軍事暢想》,北京:國防工業出版社,2020年1月。

②郭明:《關於智慧化戰爭的基本認知》,《人民論壇‧學術前線》,2021年第10期。

③丁寧、張兵:《世界主要軍事強國的智慧化武器裝備發展》,《軍事文摘》,2019年第1期。

④葛妍、賈珍珍:《軍事變遷下的未來作戰概念與作戰樣式》,《軍事文摘》,2020年第15期。

⑤賀福初:《世界新軍事革命未來走向》,《參考消息》,2017年8月23日。

⑥馬浚洋:《俄製無人智慧武器亮相敘利亞》,《解放軍報》,2019年12月30日。

中國原創軍事資源:https://paper.people.com.cn/rmlt/html/2022-07/01/content_2593935188.htm

Concept of future human-machine integrated forces

中國未來人機一體化軍事構想

現代英語:

At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.

The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.

USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.

On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.

The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.

On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.

According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.

In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment

The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.

Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).

It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.

In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.

On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.

Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.

Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.

Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.

On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.

The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.

At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.

It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force

With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.

In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”

In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.

The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.

Source: China Aviation News Author: Wei Yuejiang Editor-in-charge: Wu Xingjian 2021-03-26 08:0x

現代國語:

目前,從世界上主要國家編制體制改革發展情況看,軍隊正向精干、小型、高效、智能、“人機(機器人無人機)”一體方向發展,謀求機器人士兵、無人機與人類戰士一起並肩協同、聯合作戰。據統計,目前全球超過60個國家的軍隊已裝備了軍用機器人,種類超過150種。預計到2040年,世界軍事強國可能會有一半的成員是機器人。除美、俄、英、法、日、以色列、土耳其、伊朗等國家已相繼推出各自的機器人戰士外,其他國家也投入到這場無人化武器的研制與開發中去。

世界軍事強國將掀起組建無人作戰部隊爭鋒熱潮所謂無人作戰部隊,就是作戰機器人或者戰場殺人機器人系統的統稱。隨著各類信息化、精確化、數據化武器裝備的發展,智能化平台成為預先設計戰場的推手,作戰機器人成為戰場的主力軍,人機結合對抗成為克敵制勝的關鍵,未來戰場空間力量將凸顯陸海空三維無人化發展趨勢。

《今日美國報》曾發表的《新型機器人把戰爭帶入下一個層次:無人戰爭》一文中,這樣描述無人化戰爭:無人機編隊蜂擁而來,用精密的儀器探測、偵察與反偵察,它們鎖定目標後,從容地發射導彈;自動編程的無人潛艇,執行水下搜索、偵察、排除水雷等多種任務;地面戰場上,機器人負責彈藥、醫療補給和食物的配送……未來戰爭中,這些或許將成為現實。

在陸地,能執行特定任務的各種機器人,就是機械化、信息化、智能化高度融合的機動打擊平台。如:無人坦克,就是以自身程序控制為主的無人化履帶式裝甲平台,可讓士兵們遠程控制,以遠距離攻擊型智能化武器、信息化武器為主導,能自動裝載彈藥和自主發射,實施遠程間接精確打擊,有效降低士兵傷亡率。在海洋,各種無人潛艇、無人戰艦等,可航行數千英裡,無需船上人員操控就能執行各種海上作戰任務。在空中,實戰部署的人為控制操作的無人機系統,就是一種具有自己偵察判斷、人為控制、察打一體、自主攻擊、人機協同的無人機系統平台。

無人機武器在戰爭中的運用凸顯其作戰能力,必然牽引世界各國軍隊緊鑼密鼓組建無人作戰部隊。在伊拉克戰爭中,美國就開始對無人戰車的實戰能力進行測試。2013年3月,美國發布新版《機器人技術路線圖:從互聯網到機器人》,闡述了包括軍用機器人在內的機器人發展路線圖,決定將巨額軍備研究費投向軍用機器人研制,使美軍無人作戰裝備的比例增加至武器總數的30%,計劃未來三分之一的地面作戰行動將由軍用機器人承擔。據悉,美軍在2015年前就部署第一支未來機器人作戰旅(至少包括151個機器人戰士)。2016年,美軍在一次多國聯合軍事演習中,對“模塊化無人戰車”再次進行了試驗模擬測試。2020年,美國五角大樓發出一項標價1100萬美元的合同,以組建具有人類和機器人協同作戰能力的“聯合兵種班”,計劃2030年前完成15個未來作戰旅的全部建設工作。所有班成員,具有類似人一樣的視、聽、觸和嗅覺,能適時發出信息並對目標發起攻擊,甚至可以擔負自我維修與車輛維修及運輸、掃雷、偵察、巡邏等任務。美國每日科學網站報道稱,美陸軍研發了一種新技術,可迅速教會機器人在最低限度人為干預情況下完成新的穿越動作。報道稱,該技術可使移動機器人平台在作戰環境中自主導航,同時在特定情況下讓機器人完成人類期望其執行的作戰行動。目前,美陸軍科學家希望為機器人培育肌肉細胞和組織,進行生物雜交,而不是直接從活的有機體中提取,由此這種采取肌肉與機器人的組合,讓筆者聯想到電影《終結者:黑暗命運》中的半生化人葛蕾絲。

2018年4月21日,俄聯邦安全局(FSB)特戰隊在達吉斯坦傑爾賓特市,發動了一次針對極端組織恐怖分子的突襲行動,首次公開出動了配備機槍的武裝無人戰車打先鋒。美國在2018年俄羅斯紅場閱兵中發現了大批俄軍曾經在敘利亞南部與敘利亞反政府武裝交火的“天王星-9”機器人等作戰系統,向觀眾展示其外形特征。俄軍在2015年8月敘利亞戰場上使用戰斗機器人作戰連實施陣地攻堅戰,履帶式機器人沖鋒、打擊、吸引武裝分子開火,並引導自行火炮群將暴露火力點逐個摧毀,最後機器人作戰連僅用20分鐘就一舉攻下如今俄軍士兵難以攻下的高地,取得零傷亡斃敵77人戰績。

據英國《明星日報》網站報道稱,英國陸軍在一場名為“自主戰士2018”的活動中進行了大規模作戰機器人測試後,把無人機、無人駕駛汽車和戰斗人員統一到未來數十年穩居世界一流的軍隊中。未來的英軍自主軍用裝備,無論是坦克、機器人還是無人機,都可能會有腿而不是履帶或輪子。2021年年初,英國舉辦“未來海上航空力量加速日”活動後,繼續開發“即插即用”的海上自主平台開發系統,該系統接入皇家海軍的艦船後,可以簡化自動化和無人操作技術的獲取和使用過程。

除了俄羅斯、美國、英國研發裝備機器人外,其他有實力的國家也相續推出各自研制的機器人戰士,預計在未來20年內世界必將迎來陸海空機器人代替士兵執行高風險任務,未來戰場必將是無人化或人機結合一體化聯合作戰行動。世界軍事強國將掀起人機(無人機)一體化作戰試驗

空戰的樣式總是隨著航空科技的進步而在不斷發展變化。自1917年至今,隨著英國成功研制出世界第一架無人駕駛遙控飛機,無人裝備大家庭也不斷發展壯大,各種無人機日益活躍在現代戰爭的舞台上。

21世紀以來,隨著大量無人機被應用於戰場,作戰樣式不斷翻新。海灣戰爭中,無人機還僅僅限定於偵察監視、目標引導,可是到了阿富汗戰爭、伊拉克戰爭和反恐戰爭,無人機作戰能力日益凸顯,作戰樣式和方法呈現出新特點,讓世界各國看到無人機這把空中利劍,從此拉開人機(無人機)一體化作戰試驗序幕。

據報道,1993~2005年間,北約國家無人機總數增加了1.7倍,2006年前,這一數量達到11萬架。美國、北約其他國家、以色列、南非都非常重視無人偵察機和多用途無人機的研制和生產。

2019年,世界上大約有30多個國家已研制出了50多種類型無人機,有50多個國家裝備了無人機。主要種類:“密碼”無人機、多功能無人機、人工智能無人機、長時留空無人機、反導無人機、預警無人機、隱身無人機、微型無人機、空戰無人機、測繪無人機、航拍無人機。主要回收方式:自動著陸、降落傘回收、空中回收、攔阻回收。

2019年9月14日,沙特阿美石油公司的一處“世界最大石油加工設施”和油田遭襲擊後,也門胡塞武裝宣布“對此事負責”,並宣稱其使用了10架無人機對上述設施進行了攻擊。2020年1月3日,伊朗伊斯蘭革命衛隊下屬“聖城旅”指揮官卡西姆·蘇萊馬尼在美國對伊拉克首都巴格達國際機場凌晨發起的一場無人機突襲中被“定點清除”。2020年底,亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫(納卡地區)的戰斗中,無人機在雙方沖突中扮演重要角色顯而易見。尤其是許多軍事專家對阿塞拜疆國防部不斷發布剛從土耳其購買的TB-2“旗手”和以色列“哈羅普”自殺式無人機打擊亞方裝甲車輛、火炮、汽車甚至步兵陣地、S-300防空導彈畫面的視頻感到十分震撼。2020年12月,中東和外高加索地區所發生的局部沖突表明,無人機的作用正日益增大。基於此,有軍事家甚至預言,21世紀將是無人機發展的“黃金時期”,無人機勢必全面取代有人戰機,並成為21世紀的“戰場主角”。

目前,美國空軍計劃擴大無人機與有人機之間的有人與無人平台組隊,到2025年90%戰機將是無人機。也就是說,較大型飛機(F-35戰機或F-22戰機)能夠控制一支附近的無人機隊。如F-35戰斗機像一種飛行傳感計算機,能夠獲得大量數據,並自行聯系、分析和判斷,最後向飛行員的頭盔顯示屏上傳結論後,由飛行員對獲取的信息進行分析和處理,根據作戰計劃、戰場態勢、編隊配備的武器等制訂作戰方案後,再下達給無人機……實現有人機指揮無人機協同作戰的目的。也就是說,有人機與無人機混合編隊,把以往由地面控制改為空中控制無人機,由飛行員直接指揮無人機作戰行動。美軍設想采用模塊化設計,以便在未來戰場作戰需要時士兵從背包中取出無人機的零部件後組裝無人機,還可利用3D打印無人機。2020年8月,美國空軍在模擬空戰中AI擊敗了頂尖的F-16戰斗機飛行員,也有力證明AI飛行員能創造性地快速“思考”,將來可能超過人類飛行員技能為時不遠。美海軍新型MQ-25“黃貂魚”艦載無人加油機將於2021年試飛,2024年具備初始作戰能力,有利於航母艦載機擴大作戰半徑。

俄羅斯從2013年起,配備了大量無人機,其中僅無人偵察機到2019年年底已超過2000架,其中大多數是輕型無人機,如參與敘利亞的軍事行動的卡拉什尼科夫無人機。下一步,俄陸軍部隊每個旅或師級單位將分別編有無人機連,空降兵部隊也將裝備大量無人機。俄北方艦隊將編有無人機團,在俄軍一些現代化軍艦上也將配備了無人機。另外,從2021年起,由喀琅施塔得集團研發的“獵戶座”察打一體無人機裝備俄軍。這種重型無人機可搭載多種制導彈藥,執行作戰任務。此外,俄軍還在試驗“牽牛星”和C-70“獵人”兩款重型無人機。這些足以表明俄羅斯在無人機研發領域已經取得重大進展。

以色列是無人機領域真正的先驅,研制的無人機不僅先進,而且還出口其他國家,已經裝備部隊包括“鳥眼”系列單兵無人機、“螢火蟲”無人機、輕型“雲雀-I”無人機、輕型“英雄”無人機、中型“雲雀-II/III”無人機、“蒼鷺”無人機等型號數百架無人機。20世紀80年代中期,以色列已研發出名為“哈比”又稱“鷹身女妖”的陸基發射巡飛無人機。“哈比”是一種能夠自主進行反雷達攻擊的“自殺式無人機,重量為135千克,可攜帶32千克的高爆炸藥,航程為500千米。由於保密原因,目前尚不知以色列國防軍裝備無人機的具體數量和型號。為了對付敵方的地地導彈等威脅性目標,以色列飛機工業公司正在研制一種高空長航時隱身無人駕駛戰斗機。該機采用隱身技術與遠距空空導彈相結合,可攜帶莫阿布導彈,突入敵方戰區後方,攔截和攻擊處於助推階段的地地導彈。

2013年2月5日,駐扎在阿富汗的英國軍隊首次采用微型無人直升機執行刺探軍情的前線工作。這種無人直升機安裝了微型攝像機,可以將拍攝到的畫面即時傳送到手持式控制終端機;可以繞角落飛行,會規避障礙物,以辨別潛在危險。下一步,英國計劃實現一架有人機能夠同時指揮5架無人機。據英國《泰晤士報》網站2021年1月26日報道,英國國防部投資3000萬英鎊,將在北愛爾蘭研發首支無人機部隊。報道稱,設計和制造原型機的合同已交給美國“勢必銳”航空系統公司。該公司在貝爾法斯特設有分部,合同預計將提供100個工作崗位。英國國防部計劃到2025年開始制造首架這種新型無人機原型機。它將配備導彈、偵察和電子戰技術裝備,成為英軍首款能夠瞄准並擊落敵方戰機、並能規避地空導彈攻擊的無人機。與其搭檔的有人戰機將能夠專注於電子戰、偵察及轟炸等任務,從而以較低的成本和降低英軍機組人員面臨的高風險。

法國海軍將在土倫附近的某基地組建首個艦載無人機中隊,為法國海軍航空兵第36F艦載機中隊。該中隊將裝備S-100無人機,搭載於海軍西北風級兩棲登陸艦上。此次艦載無人機中隊的組建,反映了法國海軍希望將無人機專業知識融入到一個單一專業團隊的願望。此前,法國海軍內部討論了建立專屬無人機中隊,以及在31F、35F或36F中隊中配備無人機的方案。

在2004年6月舉行的巴黎航展上,法國達索飛機制造公司展示的NX70神經元無人作戰飛機的全尺寸模型,使人們對歐洲無人機的發展重新產生了興趣。伊朗、土耳其、阿聯酋……一些新的國家打亂了無人機地緣政治格局,正在書寫新的一頁。

可以預測,無人機必將成為世界各國武器裝備發展中的最大亮點,成為21世紀陸戰、海戰、空戰、天戰的“撒手鐧”,成為攻防作戰中一種新生作戰力量,既能使用自身攜帶的多種對地攻擊武器對敵前沿和縱深地區地面軍事目標進行打擊,也能使用空對地導彈或炸彈對敵防空武器實施壓制;既能使用反坦克導彈等武器對敵坦克或坦克群進行攻擊,也能使用集束炸彈等武器對敵地面部隊進行轟炸;既能發現目標、判斷目標價值後就可自主發射導彈,也能對敵方指揮控制系統進行欺騙干擾,等等。世界軍事強國將掀起組建“人機(機器人無人機)”一體部隊爭鋒

隨著軍民融合的深度推進,人工智能技術的突飛猛進,大數據、雲計算、物聯網的日新月異,不僅給無人化武器裝備發展帶來巨大變革,而且還將顛覆現有軍隊力量組建形態,“人機(機器人無人機)”一體化智能型軍隊必將到來。

2015年12月,俄軍在敘利亞戰場上除派出傳統作戰力量外,還首次成建制派出一個以無人作戰平台為主的機器人作戰連參加戰斗。該連采取有人無人混合編組的新型作戰模式,構建起以“仙女座-D”自動化指揮系統為核心的智能化作戰體系,采用全維偵察和飽和攻擊相結合的作戰方式對754.5高地發起進攻,順利奪佔高地。幾年前,負責遠征作戰的美國海軍官員就提到過打造千只人機結合戰艦的願景,即由人類控制的,由相互協同的無人艦組成的更大艦隊。美國海軍宣布,計劃未來5年打造一支由10艘大型無人水面艦艇組成的無人艦隊,用於獨立作戰或與水面部隊聯合作戰。根據美國海軍當前披露的構想方案,大型無人水面艦艇組成的無人艦隊將主要協助海軍完成高度危險的作戰任務,通過與“宙斯盾”作戰系統以及其他傳感器相結合,提升有人及無人系統的協同作戰能力,其部署將有助於減少大型有人戰艦的數量需求,減少作戰中的人員傷亡。國家利益網2021年1月20日消息,美國海軍作戰部長邁克爾·吉爾戴在1月11日發布《海軍作戰部長導航計劃》文件,呼籲建立包括大型戰艦、各型無人艦、潛航器和空襲裝備的人機混合艦隊,為未來幾十年的新威脅環境做好全域作戰准備。文件中寫道:“要建立滿足部隊戰略和戰役需求的,水下、水面和水上平台,有人與無人平台混合的更大艦隊。”

在“人機(機器人無人機)”一體部隊中,靠人工智能技術達到“人機”有機結合,靠雲計算、新算法、大數據擬制“人機”協同作戰計劃。人工智能就像一台發動機,大數據+雲計算就如宇宙飛船,智能機器人就是宇航員,三者有機結合定能如虎添翼、人機一體。未來軍隊就是人機結合軍隊,班排連長由人擔任逐步被機器人所取代,機器人由人為控制逐步轉變為機器人自主決策或者機器人通過人的腦細泡進行意念控制,軍營也可能出現無食堂軍營,部隊管理也可能出現由一名或幾名軍事人員率領多台甚至幾十台具有不同分工任務的智能機器人團隊,去完成以往班排連共同完成的戰訓管理任務,亦或是軍事訓練只有一名軍事指揮人員在指揮控制中心,通過視頻指揮控制訓練場所有智能機器人進行對抗訓練,或者遠程遙控機器人指揮員實時下達新的訓練指令、調整任務部署、變換訓練場。

對軍事人才智能素質的迫切需求,也會倒逼人工智能領域一級軍事學科的設置重新調整,未來軍隊院校也將開設智能機器人控制學科,建立有關人機結合實驗室和培訓基地,重點培訓既懂計算機控制程序、智能設計與管理、圖像認知、數據挖掘、知識圖譜,又能系統掌握智能科學與技術、具有創新意識的智能型職業化軍事人才。未來軍事人才必須熟練掌握智能技術、大數據應用、雲計算,尤其是能隨時利用3D或4D打印技術制作各種軍事裝備,精通智能機器人的控制程序、指揮方式、指令下達、調整任務,熟練掌握人機一體化自主作戰協同的要領,達到人的信息化科技素質與智能機器人的高效運作的最佳結合。此外,也不排除成立人機結合班排連、作戰模擬中心、假想敵部隊、作戰分隊、智能司令部、無人化旅、師等。屆時,軍事主官也可能人機各一或者機器人給人當下手或者副手。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/9991323888.html

Artificial Intelligence is Driving Profound Changes in Chinese Warfare

人工智慧正在推動中國戰爭發生深刻變化

現代英語:

In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.

Reshaping the combat force

These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.

From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.

From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.

From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.

Enhance combat system effectiveness

Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.

At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.

During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.

Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.

Improving combat command effectiveness

At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.

Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.

With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.

Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.

Improve the quality of combat coordination

As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.

Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.

China Military Network Ministry of National Defense Network

Tuesday , February 11, 2025

現代國語:

黃永剛

近年來,隨著人工智能技術的迅猛發展及其在軍事領域的廣泛運用,戰爭形態和作戰樣式不斷發生嬗變。國外一些學術文章認為,人工智能正在重塑作戰力量形態、增強作戰體系效能、提升作戰指揮實效、提高作戰協同質量,推動作戰活動發生深刻變化。

重塑作戰力量形態

這些學術文章指出,作戰力量主要由作戰人員、武器裝備及編組方式等整體構成,受人工智能技術影響,正發生著巨大變化。

從人員結構上看,隨著人工智能技術及相關裝備系統在軍事領域的廣泛應用,對具備人工智能技術研發、管理、使用和維護能力的專業人才需求大幅上升,技術人員在作戰力量中的佔比將不斷提高。一線作戰人員不再只是武器的直接操作者,而是逐漸向戰場監控者、系統指揮員和人機協同作戰中的關鍵決策者轉變,對其科技素養和信息處理能力的要求大大提高。

從裝備體系上看,無人機、無人戰車、智能導彈等智能武器裝備將大量出現,並成為裝備體系的重要組成部分。這些裝備具有高度的精確性和靈活性,自主作戰能力更強,能夠獨立完成偵察、打擊等任務,極大地改變了傳統的裝備結構和作戰模式。此外,傳統武器裝備也將通過加裝智能傳感器、通信模塊和自動控制系統等,加速進行智能化改造,以具備與人工智能系統互聯互通和協同作戰的能力。如老式坦克通過升級改造,可以實現自動駕駛、自動瞄准和智能彈藥裝填等功能,提升整體作戰效能。

從作戰單元編成上看,無人作戰系統憑借其在高風險、高強度作戰環境中的獨特優勢,將逐漸從輔助作戰力量發展為獨立的作戰單元並進行編組。西方國家一些智庫的研究報告認為,無人機集群作戰部隊、無人戰車營等將成為常見的作戰編制,它們可以完成偵察監視、情報分析、火力打擊等多種任務。為了充分發揮人工智能與人類戰士的各自優勢,人機混合編隊也將成為未來作戰力量的主要編成形式。在這種編隊中,人類戰士與智能武器裝備緊密配合,共同完成作戰任務。

增強作戰體系效能

從演進趨勢看,智能化技術跨域集成無人裝備、賦能傳統作戰平台,將成為未來體系作戰的“賦能器”。

目前,西方國家很多軍事專家認為,人工智能可以對作戰體系的各個要素進行全面分析和評估,找出體系中的薄弱環節和優化空間,為作戰體系的建設和調整提供科學依據。通過優化作戰體系的結構和功能,可以提高作戰體系的整體效能和穩定性,使其在面對多變戰場環境和強大作戰體系時更具競爭力。

在作戰過程中,人工智能可實時分析作戰雙方的作戰體系,預測對方的可能行動和薄弱點,提出針對性的體系對抗策略,並根據作戰過程中的實際情況不斷調整和優化,以實現己方作戰體系的高效運行,提升作戰體系對抗質效。

西方國家軍隊認為,基於人工智能賦能優勢,可以大大增強安全風險防御能力,通過自動預測、識別、發現、處置復雜安全風險,自主化保護人員、裝備、物資免受各類攻擊,能夠提升全領域、全方位防衛能力,確保作戰體系的安全性和穩定性。

提升作戰指揮實效

當前,人工智能已深度融入作戰指揮的各個環節,影響著作戰指揮的外在表現形式及主要活動方式。人工智能技術支撐下的人機智聯融合控制,將成為作戰行動控制的基本形態。

國外一些研究機構發現,人工智能系統可以根據實時戰場態勢和大量歷史數據,快速分析態勢,生成多種作戰方案,並及時推演評估方案、調整優化行動,為指揮員提供更科學合理的決策建議,高效指導計劃執行,讓作戰籌劃跟上快速變化的戰場節奏。尤其是在面對瞬息萬變的戰場情況時,能夠幫助指揮員更快地作出准確判斷。

隨著人工智能技術的不斷發展,一些智能作戰系統具備了一定的自主決策能力。在特定情況下,如面對突發的威脅或臨時出現的戰機,基於人工智能輔助的作戰指揮系統可以在預設的規則和權限范圍內,自主作出決策並采取行動,縮短決策鏈路,提高作戰的反應速度和靈活性。當作戰末端具備更強智能自主能力時,甚至可以實現作戰方案自生成、自評估、自調整,突破人的反應能力局限,形成更具適應性的作戰指揮。

很多實驗證明,基於海量作戰數據的積累和大數據分析技術的增強,人工智能技術可在模擬條件下對作戰籌劃全程進行精確計算,助力指揮員預先精准分析態勢、綜合研判趨勢、合理規劃走勢,進而通過作戰仿真、模擬推演等方式,虛擬開展參戰力量需求計算、戰法行動優化優選等活動,進而在籌劃過程中科學動態調整作戰方案策略,形成最佳選項,為作戰指揮提供更可靠的參考依據,提升指揮控制精確性。

提高作戰協同質量

隨著人工智能技術深度融入作戰體系,各作戰要素在戰場上的反應能力不斷提高,響應時間逐步縮短,適應水平日漸增強,作戰協同質量不斷提升。

西方國家一些軍事專家認為,未來戰場將呈現跨域、網絡化、非線性等特點,人工智能可以通過高效的算法,打破各作戰域、各作戰要素之間的界限,使不同作戰力量之間的協同更加緊密和高效。基於人工智能技術,可實現有人無人作戰力量編組之間的自主協同配合,使得有人無人作戰力量相互補充、相得益彰,顯著提升作戰效能。而且,無人作戰系統的應用越來越廣泛,人工智能技術可以對大量無人作戰平台進行集群控制和協同管理,實現它們之間的高效配合和任務分配,提高無人作戰的整體效能和安全性。

中國軍網 國防部網

2025年2月11日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-02-11&paperNumber=07&articleid=949008889

Advanced Military Satellite Navigation for China’s Intelligent Battlefield

先進軍用衛星導航協助中國智慧戰場

現代英語:

The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.

The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.

At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.

Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.

Satellite navigation becomes a “standard” element of the intelligent battlefield

The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.

Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.

The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.

Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.

Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.

Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”

Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.

Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.

In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.

Intelligent battlefield requires satellite navigation to have new “responsibilities”

As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.

In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.

Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.

For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.

The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.

The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.

Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system

Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.

The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:

The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.

The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.

The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.

The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.

(The author is an academician of the Chinese Academy of Engineering)

Above: Schematic diagram of satellite navigation system supporting operations.

Friday, November 12, 2021 // China Military Network Ministry of National Defense Network

現代國語:

衛星導航系統,即全球衛星導航系統,是能在地球表面或近地空間任何地點,為使用者提供全天候三維座標和速度以及時間資訊的空基無線電導航定位系統。

衛星導航系統是人類重要的太空基礎設施,堪稱一個國家安全和經濟社會發展不可或缺的重器,對戰爭形態、作戰樣式和人們生產生活方式有深遠影響。

目前,全球有四大全球衛星導航系統,分別是美國的GPS、俄羅斯的格洛納斯、歐洲的伽利略和中國的北斗,衛星導航技術全球競爭日益激烈。

站在世界軍事深刻變革的新起點,瞭望資訊化智能化高度融合的未來戰場,智慧導航體系將應運而生,並發揮重要作用。

衛星導航成為智慧化戰場的「標配」要素

未來智慧化戰場,將呈現資訊化條件下綜合運用智慧化武器和手段、實現高效指揮控制及實施精確靈巧打擊的高技術作戰特性。衛星導航技術,能高精度、全天候、大範圍、多用途地為陸、海、空、天各種物件提供定位、導航、授時服務。

為體系化作戰提供統一時空基準。對於智慧化戰場來說,連結要素多、情況瞬息萬變,要求對作戰單元進行準確定位,實現統一時空基準下的情報偵察、指揮控制、戰場機動、攻防行動、支援保障,確保整個戰場各類要素形成統籌協調的有機整體。

衛星導航的基本功能是,為各個作戰要素提供精確的時空基準。如果沒有精確統一的時空基準,聯合作戰精準指揮可能失調,作戰行動就可能失控,情報融合、目標辨識就無法實現。時間誤差百分之一秒,十幾部雷達鎖定的一個目標就會變成十幾個目標,精準防禦反擊將無法實現。

在統一標準時間與地理座標系下,衛星導航提供各類武器平台精確導引,給予電子戰武器精細校頻,給予作戰單兵全天候定位導航,顯著提升聯合火力打擊的協同程度、打擊效能。

為作戰指揮控制提供態勢同步認知。準確掌握戰場態勢,是指揮官靈活準確實施指揮控制的前提與基礎。衛星導航系統為戰場態勢感知提供了強大支撐。

美軍從1990年代開始,研發以GPS和衛星通訊為基礎的「藍軍追蹤」系統,用來建構精確化指揮控制系統。 「藍軍追蹤」系統有力支撐著美軍形成地面戰場網路化資訊優勢,有效解決了「我、友、敵在哪裡」的難題。

軍隊依托全球衛星網路的導航定位和位置報告兩大服務,實現了戰場態勢監視共享,成為軍隊「知己」的重要手段。同時,優化了作戰行動流程,實現了作戰指令分秒下達,加速了軍隊指揮控制方式向「一體化」「扁平化」方向發展。

為武器彈藥精準打擊提供增效利器。在智慧化戰場上,精確導引武器已成為關乎勝負的「撒手鐧」。使用衛星導航系統,能對飛彈的飛行過程進行全程修正,確保命中精度。可以說,衛星導航系統是武器平台精準打擊的增效利器。

在近幾場局部戰爭中,美軍GPS精確導引武器比例不斷攀升:1991年海灣戰爭為7.6%,1999年科索沃戰爭為35%,2001年阿富汗戰爭為60%,2003年伊拉克戰爭為68.3%,2018年敘利亞戰爭達100%。

智慧化戰場需要衛星導航有新的“擔當”

現代衛星導航系統作為精確統一時空體系的核心與基石,面向未來智慧化戰場的發展需求,要有新的「擔當」。

智能化時代,以「AI、雲、網、群、端」為代表的全新作戰要素,將重建戰場生態,完全改變戰爭的勝利機制。衛星導航服務,需要適應智慧化戰場維度更廣、精準度更高、系統更強的特性。

導航定位授時範圍更廣精度更高。目前的衛星導航系統,實現了地球表面覆蓋。但在智慧化戰場上,需要向深空、海下延伸。作戰時域空域更廣,要求建構覆蓋陸海空天、基準統一、高效智慧的綜合服務體系,形成無時不有、無所不在的時空資訊覆蓋,實現更強大、更安全、更可靠的時空服務能力。

如智慧化戰場上,無人化作戰成為基本形態。無人車自動駕駛、無人機精密進場、智慧飛彈陣地測量等,都迫切需要在現有導航精度基礎上再提升一個量級,確保導航完好性更高、首次定位時間更快、陸海空天跨域能力更強。

軍事導航對抗體系更全更給力。資訊時代的導航對抗手段,是以訊號能量增強與幹擾攻擊為主的簡單對抗形態。智慧時代的導航與探測、感知、通訊、指揮、決策相互交織影響,需要全球任意區域、功率更高、生效更快的導航能力水平,需要導航訊號智慧調整能力,需要發展量子導航、脈衝星導航、深海導航等多元導航手段,把不同原理、不同方式、不同載體的導航方法融合在一起,實現體系級、系統級的導航對抗能力。

導航資訊互動頻寬更大存取更廣。智慧時代的網路空間,在作戰體系中地位作用逐步上升,並與導航時空體系合為一體。提供時空位置的導航資訊與網路空間系統,將把分散的作戰力量、作戰要素連結為一個整體,形成網路化體系化作戰能力。這就需要支援泛在感知、左右協作、可信賴的導航能力,支援高可靠、強抗干擾、隨遇接取的訊號通道,及時取得所需的地理、地圖和影像等導航輔助資訊。在此基礎上,實現真正意義上的通訊導航一體化,達到「一域作戰、多域支援」效果。

適應軍事智慧化發展需要推動智慧導航體系建設

從世界軍事強國發展趨勢來看,面向未來智慧化戰場,智慧導航系統在逐步建構天地一體化的時空基準網和導航資訊服務網,以天基化、體系化、按需化、雲端化為主要特徵,形成基準統一、覆蓋無縫、安全可信、高效便捷、實戰性強的綜合導航定位授時體系。

從基本導航系統轉變為智慧導航系統,其核心是從“定位導航服務”升級為“智慧導航服務”,並專注於以下4個面向轉變:

時空基準依賴地面系統維持轉變為時空基準天基自主維持。地面系統時空基準維持設備將逐步向星上轉移,衛星將配置更高精度的光鐘、天文測量設備,透過高精度錨固和雷射星間測量,形成更穩定可靠的天基空間基準。智慧導航系統的使用,可使一般導航定位精度達到亞米級,授時精度將提升5倍左右,精密定位服務達到快速收斂的公分精度。智慧導航可完整支撐作戰平台跨域融合、分散式殺傷武器效能倍增、空天一體無人機從巡航到精密進場的全過程精準導航。

衛星功率對抗模式向導航體系化對抗轉變。在導航對抗服務方面,傳統的衛星功率對抗模式將不再滿足智慧化戰場需求,導航體系化對抗是智慧裝備發展的必經之路,以便提升部隊快速適應戰場環境能力。具體包括導航性能精準釋放、星座異構備份、全球熱點機動,主要特徵是導航訊號智能化、戰區增援靈活化。基於可控制點波束能量增強技術,實現熱點區域能量傳遞、增強區域擴展、欺騙或阻塞幹擾、數傳服務保障。在高幹擾阻塞環境下,確保服務連續性和精確度,並隨著戰事進程逐步釋放實力。

通訊導航簡單整合向通導一體按需服務轉變。將提供更深更廣的導航資訊服務,深度融入軍事資訊網絡,向陸、海、空、天用戶的高、中、低速分類分層次導航資訊服務。重複利用導航衛星全球多重連續覆蓋的有利條件,滿足用戶在全球範圍、任意姿態的通導需求,實現高可靠性、抗強幹擾的搜救、位置報告、信令傳輸。導航衛星天基網路與地面網路資訊交互,建構星間、星地高速骨幹網路。透過小型化雷射終端和增強型空間路由器,形成穩定可靠的空間網絡,裝載完備、標準統一的協議體系,支援混合星座網絡自主智慧運作。

載重模組運算資源分離向星座運算資源雲端化轉變。將提供更智慧的天基雲端運算服務,為智慧武器平台提供可信賴的天基智慧支撐。主要特徵是,星載硬體資源虛擬化、任務負載平衡化。透過導航衛星配置公用的星載運算模組、大容量儲存單元、高速匯流排網絡,形成泛在的空間網路共享資源池。強大的資料處理能力,在支撐天基時空基準自主建立與維持、導航訊號品質智慧維持、空間網路自主管理等任務功能的同時,可為天、空、地、海各類高階用戶,提供空間位置等複雜資訊的運算、推播與儲存服務。

(作者係中國工程院院士)

上圖:衛星導航系統支援作戰示意圖。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2021-11/12/content_302917888.htm

Chinese Military Combat Management System: Core of Modern Combat Command & Control

中國軍事作戰管理系統:現代作戰指揮控制的核心

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan

2022-04-22 06:42

Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.

Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.

Combat Management System: The Core of Modern Combat System

Schematic diagram of the combat management system

Past and present life

Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.

The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.

After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”

At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.

The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.

For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.

Features

The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).

The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.

For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.

Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.

The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.

Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.

With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”

The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.

Future Development

Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.

The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.

The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.

For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.

The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.

The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.

(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)

現代國語:

作戰管理,是打贏現代化戰爭的基礎,是現代化作戰體系的核心,也是作戰過程中對人員、裝備、資訊、資源和時空等要素進行的規劃、組織、協調與控制活動。

作戰管理系統,指用來支撐作戰管理活動的指揮資訊系統,包括情報採集、資訊傳輸、目標識別、威脅判斷、分配武器、任務規劃等。其隨戰爭演化、技術進步而逐步發展。

作戰管理系統:現代化作戰體系核心

■楊蓮珍

作戰管理系統示意圖

前世今生

對作戰行動實施適時精確的指揮控制和作出及時果斷的作戰決策,是不同戰爭時期指揮員始終追求的目標與夢想。在科學管理產生前,戰爭中並無作戰管理這一概念,自然談不上作戰管理系統。但樸素的作戰管理活動和系統一直與戰爭相伴、融合發展。

作戰管理的核心是保證指揮員與部隊能順暢地交換資訊和指示。在古代作戰指揮號令系統中,金、鼓、旗號稱為“三官”,“言不相聞,故為之金鼓;視不相見,故為之旌旗”,目視耳聽是原始的指揮控製手段。

電報、電話、無線電發明後,作戰命令和戰鬥訊息的遠距離快速傳輸成為現實,作戰管理範圍由平面走向立體,「運籌帷幄、決勝千裡」的戰爭決策不再是神話。當然,傳統的戰場管理手段並非完全失去作用,例如在抗美援朝戰場上,我軍因通信條件受限,連以下分隊仍在通過軍號傳遞作戰命令,與作戰相關的號聲就有20餘種。 “四面邊聲連角起”,朝鮮戰場上的軍號曾讓美軍聞風喪膽。李奇微在回憶錄裡寫道:“只要它一響,中共軍隊就如著了魔法一般,全部不要命地撲向聯軍。這時,聯軍總被打得如潮水般潰退。”

20世紀初,科學管理的概念逐漸升溫,軍隊迅速將其應用於作戰。 「作戰管理」一詞,最早出現在美國空軍,其編成內的作戰管理員,基於雷達探測情況向戰機進行遠程目標指示和話音引導。作戰核心組織則稱為BM/C3系統,即作戰管理(Battle Management)和指揮、控制、通訊(Command,Control,Communication)。 1946年,第一台電子計算機「埃尼阿克」研製成功,軍隊開始使用計算機存儲和處理有關作戰的各種數據。 1958年,美軍建成世界上第一個半自動化作戰管理系統-「賽其」防空指揮控制系統,使用電腦首次實現了資訊擷取、處理、傳輸和指揮決策過程部分作業的自動化。同年,蘇軍建成「天空1號」半自動化防空指揮控制系統。作戰管理系統開始登上戰爭舞台,人機協作決策逐漸成為指揮主要的作戰決策形式。越戰中的「滾雷」戰役,美軍指揮5,000多架飛機出動129萬架次,投彈775萬噸,如果單靠人工指揮是不可能實現的。

作戰管理系統經歷了以武器為中心、以平台為中心、以網絡為中心和以體係為中心的建設階段,逐步能夠接收、處理來自多域的傳感器和其他來源信息,實時感知並生成作戰態勢圖,自動對兵力及裝備實施指揮控制,智能輔助指揮員決策,涉及陸、海、空等軍兵種。

如以色列陸軍的「統治者」作戰管理系統,單兵數字化裝置連接通道狀態資訊設備,用於為執行戰術作戰、火力支援等部隊提供即時態勢感知和指揮控制資訊。美國海軍的「宙斯盾」作戰系統,採用多任務訊號處理器整合防空與反導能力,實現艦載相控陣雷達、指揮決策、武器控制等一體化整合。北約空軍的ACCSLOC1系統,基於網路分散部署,整合40種型號的雷達和3000多個物理接口,承擔任務規劃、作戰指揮和戰鬥監督等空中行動。從發動第一次海灣戰爭到利比亞戰爭,美軍從傳感器獲取資訊到開火,時間由24小時縮短至2.5分鐘。

功能特徵

作戰管理系統是一個迅速發展並不斷完善的分散式操作系統,主要通過收集、處理傳感器數據,暢通各類信息傳輸和融合,進行態勢識別和預測,生成作戰方案,完成行動評估與選擇,下發作戰指令給武器平台和射手。其本質是實現高效率的作戰「觀察-判斷-決策-行動」循環(OODA環)。

作戰管理系統廣泛使用態勢評估與預測、作戰時空分析、線上即時規劃、作戰資源管控和作戰管理引擎技術等,採用基於資訊技術的「雲+網+端」的技術架構。

如美軍率先運用資訊技術,建構了集指揮、控制、計算機、通訊、情報、監視和偵察於一體的C4ISR系統,為作戰管理系統打下了基礎。阿富汗戰爭中,C4ISR系統首次實現作戰資訊近實時傳輸到作戰平台。隨著傳感器、網絡和人工智慧的不斷成熟,智能態勢理解和預測、智慧資訊推送、智慧任務規劃、智慧協同控制、智慧快速重構和智慧平行指控等技術,正在對作戰管理系統產生越來越重大的影響。

作戰管理系統通常支援態勢感知、任務規劃、交戰管理、通訊、建模及模擬與分析、試驗訓練等功能。如導彈防禦作戰管理系統,主要包括指揮控制、交戰管理及通訊等功能構成。指揮控制功能,實現對戰前的作戰規劃及對戰場態勢的感知;交戰管理功能,實現輔助作戰決策和分配反導武器並完成打擊任務;通信功能,實現系統各反導單元情報、數據的傳輸和共享。

作戰管理系統是一個開放的複雜系統。結構決定功能,不同的系統結構,決定不同系統的功能拓展:艦艇自防禦作戰管理系統通過自動化武器控制條令、協同交戰管理系統和戰術數據鍊等,使艦艇具備了強大的自防禦能力;電磁作戰管理系統通過融合並顯示戰場電磁頻譜數據,提高電磁戰兵器規劃能力、共享電磁力和單兵作戰力量;

作戰管理系統普遍具有一體化、自動化、最優化、即時化等特徵。現代戰爭作戰模式複雜、戰場規模擴大,對力量管控、資源整合和任務調度要求的提高,必須實現系統一體化整合。法國陸軍的「蝎子」系統,就將坦克、裝甲車、步兵戰車、無人地面車輛、無人機與攻擊直升機完整整合到同一個作戰群,並連結任務群中的所有平台和作戰單元。

現代戰爭作戰要素增加、戰場感知空間擴大,對人依賴較高的指揮自動化系統已無法完全適應,必須實現系統自動化運作。巴基斯坦作戰管理火砲控制系統所有操作功能全部自動化,「為準備、協調、傳遞、執行和修改火力支援計畫與射擊方案提供了自動化解決方案」。

現代戰爭作戰節奏加快、戰場數據海量,需要快速掌握狀況、有效率定下決心,必須實現系統最優化決策。各軍事強國正將人工智慧、雲端運算、物聯網與大數據技術結合起來,以利在多域作戰中更快決策。

未來發展

傳統作戰管理系統,更強調基於事先制定的交戰序列、作戰規則。但未來戰爭更突出體係與體系之間的對抗,不可能預先窮盡各種情況,需要掌握的戰場資訊也更趨複雜、海量。為此,各國軍隊開始摒棄傳統上為各作戰域單獨開發作戰管理系統的方法,以網絡為中心、以人工智能為支撐,力圖幫助指揮員更迅速作出作戰決策,實現各作戰域的傳感器與任意射手的實時連接。

作戰管理系統將推動作戰概念落地。美國空軍開發的“先進作戰管理系統”,規劃將各軍種及其武器平台實時連接在一個軍事物聯網中,其核心是將各類情報偵察平台、指揮控制平台、打擊平台和作戰管理平台與各種跨域能力無縫鏈接,把情報和目標指示數據轉化為及時、可用的信息,縮短“發現-定位-跟踪-瞄準-打擊-評估”速度,以執行對手的速度執行。俄羅斯軍隊提出“軍隊統一資訊空間”理論,組織開發陸海空網絡一體化聯合作戰“自動控制系統”,通過建立網絡中心指揮模式,試圖將全軍指揮、通信、偵察、火力、保障等進行融合,實現真正意義上的跨域作戰,提升戰場態勢感知能力與作戰指揮效率。

作戰管理系統將依賴人工智慧技術。人工智慧的應用不僅引起武器系統能力的倍增,也將從根本上改變OODA環的實現。未來的作戰管理系統,人工智慧技術將成為核心支撐和驅動引擎,關鍵因素是演算法的品質。系統將內置可升級的人工智慧,人們將處於監督或協同狀態的位置,最大限度地減少人工輸入,對作戰環境中的威脅目標進行自發識別分類、自主評估權衡和自動分配武器,從而提供自適應的作戰優勢和決策可選性。

如2021年7月美海軍發布的“智能自主系統戰略”,旨在通過高度分佈式的指揮和控制架構,加速智能平台的開發和部署,綜合無人系統、人工智能和自動駕駛等技術,實現由智能自主系統促成的未來作戰決策。俄軍在研的人工智慧項目超過150個,其重點之一是將人工智慧引入指揮控制系統,為不同武器平台適配智慧軟件,實現物理域與認知域的統一,以智慧賦能的方式實現戰鬥力倍增。

作戰管理系統將實現跨域能力突破。軍隊作戰管理能力正向陸、海、空、天、電、網和認知域、社會域等全域協同轉變。適應全局環境,作戰管理系統需要具備以下功能:有彈性和冗餘的通信系統,靈活安全的數據運行;人工智能和機器學習直接從傳感器中提取、處理數據,並進行去中心化集成、共享;根據保密級別分段訪問,滿足感知、理解和行動需要。在此基礎上,還需具備向部隊提供偵察監視、戰術通訊、數據處理、網路指控等能力。

未來的作戰管理系統,將聚焦安全處理、連通性、數據管理、應用、傳感器整合和效果整合等能力,優化全作戰域的數據共享、協同作戰和指揮控制,支援從戰術級到戰略級的決策優勢。其目的只有一個:賦予指揮員超越對手的能力。

(作者係武警指揮學院訓練管理系副主任、教授)

中國原創軍事資源:http://www.81.cn/yw_208727/10149663888.html

Chinese Military Evaluation of Foreign Armed Forces Perspectives on Multi-domain Operations

中國軍方對外軍多域作戰觀點的評估

現代英語:

The opening of each combat domain will inevitably lead to a new round of changes in combat methods. Driven by the new round of scientific and technological revolution and industrial revolution characterized by intelligence, ubiquity and integration, emerging combat domains such as space, cyberspace, electromagnetic spectrum, and cognitive space have an increasing impact on future operations. The concept of “multi-domain combat” has emerged through cross-domain collaboration with traditional land, sea, and air combat domains to achieve complementary advantages and system efficiency, and is becoming a new combat theory that adapts to the evolution of war forms.

The concept of “multi-domain combat” was first proposed by the US military. Subsequently, the United Kingdom, France, and other NATO member states have developed the concept of “multi-domain combat” in different forms. Israel was the first to apply the concept of “multi-domain operations” in actual combat. The Russian army innovatively proposed its own “multi-domain operations” theory from the perspective of its opponents. At present, the concept of “multi-domain operations” has become an important concept that triggers a new round of changes and transformations in foreign military operations.

The concept of “multi-domain operations” is a new operational concept first proposed by the US Army and jointly promoted by other services based on the changes in operational methods in the information age.

The US military believes that the winning mechanism of the concept of “multi-domain operations” is to form multiple advantages in a specific time window through the rapid and continuous integration of all war domains (land, sea, air, space, and cyberspace) and force the enemy into a dilemma. The U.S. Army proposed to be guided by the idea of ​​”global integrated operations” and the concept of “cross-domain collaboration”, and strive to form an asymmetric advantage in future wars through “multi-domain operations”. The multi-domain task force (brigade level) will be the core combat force of the U.S. Army to implement multi-domain operations, integrating artillery, land-based tactical missiles, land aviation, cyberspace, electromagnetic spectrum, space and air defense forces, and forming multi-domain combat capabilities through cross-domain mixed formations. The U.S. Air Force actively responded to the concept of “multi-domain operations”, focused on building a joint combat command and control system, proposed the concept of multi-domain command and control, and focused on developing advanced combat management systems, sinking multi-domain operations to the tactical level to improve the agility and cross-domain collaboration capabilities of future operations. The U.S. Navy has absorbed the core idea of ​​the “multi-domain combat” concept, proposed to build an “integrated global maritime military force”, focused on developing the “distributed lethality” combat concept, and proposed to strengthen the design and exercise of global combat.

The U.S. Department of Defense and the Joint Chiefs of Staff have gathered the ideas and mechanisms of the new combat concept of “multi-domain combat” of the military services, and proposed the top-level concept of “global combat”, aiming to form a new round of asymmetric advantages, lead the transformation of combat methods and military transformation. The global combat concept is centered on joint global command and control, aiming to integrate traditional combat domains with space, cyberspace, electromagnetic spectrum, air defense and anti-missile and cognitive domain capabilities, and compete with global competitors in a full-spectrum environment. It is reported that the concept is still in its infancy and is undergoing theoretical deepening, experimental verification, exercise evaluation and doctrine transformation, and is constantly enriching its conceptual core through multiple work lines. Among them, the US Joint Chiefs of Staff leads the transformation of concepts into policies, doctrines and requirements; the Air Force promotes the concept to maturity by developing advanced combat management systems, the Army by implementing the “Convergence Project”, and the Navy by launching the “Transcendence Project”. The US theater supports the development of multi-domain combat concepts and multi-domain combat modes through war games, project demonstrations and joint exercises.

Based on the perspective of reference and integration, NATO countries such as the United Kingdom actively participated in the development and testing of the US military’s “multi-domain operations” concept, and revised the operational concept in combination with actual conditions.

The British Ministry of Defense proposed the concept of “multi-domain integration”, which is consistent with the concept mechanism of the US military’s “multi-domain operations”, focusing on integrating operations in different domains and at different levels, preparing for the development of a joint force and maintaining competitive advantages in 2030 and beyond. The British Ministry of Defense pointed out that “integrating capabilities in different domains and at different levels through information systems, creating and utilizing synergies to gain relative advantages is the winning mechanism of the multi-domain integration concept.” The concept emphasizes gaining information advantages, shaping strategic postures, building a multi-domain combat environment, and creating and utilizing synergies. The concept raises four specific issues: how to provide an advantage over rivals by 2030 and beyond through “multi-domain integration”; how to achieve cross-domain integration of the Ministry of Defense in cooperation with allies, governments and civilian departments; how to solve the policy issues involved in the concept of “multi-domain integration”; how to promote research on defense concepts, capabilities and war development. With this as a starting point, the British Army has launched a multi-faceted, step-by-step, and systematic military transformation.

Other NATO countries are also jointly developing and innovatively applying the concept of “multi-domain operations” to varying degrees, and promoting the transformation and implementation of the concept of “multi-domain operations” in the form of joint exercises and allied cooperation. In 2019, the US Army led the “Joint Operational Assessment (2019)” exercise, which aimed to assess the combat capabilities of the Indo-Pacific Command’s multi-domain task force. Forces from France, Canada, Australia, New Zealand and other countries formed a multinational task force to participate in the exercise, which assessed the multi-domain combat concepts, formations and capabilities in the combat environment from 2025 to 2028. In October 2019, the NATO Joint Air Power Competition Center held a meeting on “Shaping NATO’s Future Multi-Domain Combat Posture”. In order to shape NATO’s future multi-domain combat posture, it explored and studied military thinking, multi-domain combat forces, multi-domain combat operations and training joint forces. In June 2020, the NATO Command and Control Center of Excellence released a white paper on the Multi-Domain Operations Command and Control Demonstration Platform, which aims to respond to threats and challenges in multiple operational domains with a decentralized, data-driven integrated environment by bridging the command and control gap between technology and operators, tactics and campaign levels, and academia and the military.

Based on the perspective of its opponents, the Russian army seeks a way to crack it on the one hand, and on the other hand, based on the winning mechanism of “cross-domain operations”, it combines its own characteristics to innovate combat theories

After the US military proposed the concept of “multi-domain operations”, the Russian army actively sought a way to crack it based on its own security interests. In December 2020, the Russian magazine “Air and Space Power Theory and Practice” published an article titled “Argument for the Use of Aviation Power to Break the Enemy’s Large-Scale Joint Air Strikes in Multi-Domain Operations”, which stated that large-scale joint air strikes are the initial stage for NATO countries to implement multi-domain operations. Large-scale coordinated operations will be carried out against Russia’s most important key facilities, creating conditions for subsequent decisive actions by NATO joint armed forces. The Russian army must comprehensively use the reconnaissance and strike system composed of the aviation forces of the theater forces to cause unbearable losses to the enemy, break its large-scale joint air strikes, and force NATO’s initial stage goals of multi-domain operations to fail to be achieved, causing NATO’s political and military leadership to abandon the attempt to continue to implement multi-domain operations.

On the other hand, the Russian army proposed the “military unified information space” theory for the new combat method of “cross-domain combat”. Its core idea is: to use modern information technology to establish a networked command and control system to achieve the deep integration of the army’s command, communication, reconnaissance, firepower, support and other elements, thereby improving the battlefield situation perception capability and combat command efficiency. The Russian military continues to promote theoretical development around the realization of cross-domain combat capabilities: first, relying on the unified information space of the army to establish a network-centric command model; second, introducing artificial intelligence into the command and control system to achieve the unification of the physical domain and the cognitive domain; third, developing network, space and underwater combat forces to gain advantages in emerging combat fields; fourth, establishing a unified military standard system to enhance the interoperability of forces and weapons. The Russian military has not completely absorbed the Western concept of “multi-domain combat”, nor has it completely denied the beneficial elements of the Western “multi-domain combat”, but has combined its own absorption of some advanced combat ideas of “multi-domain combat” to enrich its own unique combat theory.

Based on the perspective of combat needs, Israel took the lead in applying the concept of “multi-domain combat” on the Gaza battlefield, and used the multi-domain combat force “Ghost” as the main combat force.

The Israeli army believes that multi-domain joint combat is an inevitable trend in the development of future wars. For Israel, which mainly relies on ground combat, by integrating land, air, cyberspace, electromagnetic spectrum and sea elite forces, it can quickly identify, track and destroy enemy targets, and further improve the lethality of the Israeli army. This concept is in line with the concept of “multi-domain combat” proposed by the US Army. Under the guidance of this concept, the Israeli army formed the “Ghost” force and took the lead in actual combat testing on the Gaza battlefield. In the Israeli-Palestinian conflict in May 2021, Israel used the “Ghost” combat battalion for the first time to implement multi-domain operations in the code-named “Wall Guardian” operation against Hamas, which was called the world’s first “artificial intelligence war”. The Israeli army mainly relied on machine learning and data collection in this war, and artificial intelligence became a key component of combat and a force multiplier for the first time. In the operation to clear the Hamas tunnel network, the Israeli army used big data fusion technology to pre-identify and target, and then dispatched 160 fighter jets to carry out precise strikes, which greatly destroyed the Hamas tunnel network and achieved air control over the ground; in the attack on Hamas rocket launchers, the Israeli fighter pilots, ground intelligence forces and naval forces used command and control systems to quickly find targets and carry out real-time precise strikes, quickly shaping a favorable battle situation.

According to the Israeli army, the “Ghost” force is very different from traditional forces in terms of combat organization, weapon configuration and combat methods. The unit is temporarily organized under the 98th Paratrooper Division of Israel, including the brigade reconnaissance battalion, the ground forces of the Paratrooper Brigade, the armored brigade, the engineering corps, the special forces, the F-16 squadron and the Apache helicopter, as well as the “Heron” drone and other multi-domain combat forces. Through the use of multi-domain sensors and precision strike weapons, cross-domain maneuvers and strikes are achieved, “changing the battlefield situation in a very short time”. The battalion was established in July 2019. Although it is a ground force, it integrates multi-domain combat forces such as air strikes, network reconnaissance, precision firepower, electronic confrontation, intelligence interconnection and maritime assault. It is a battalion-level combat unit with division-level combat capabilities. After its establishment, the unit has continuously improved its multi-domain integration and cross-domain strike capabilities through exercises, and has quickly exerted two major functions with the support of the newly developed artificial intelligence technology platform: one is to serve as an elite weapon on the battlefield and fight in an asymmetric manner; the other is to serve as a test unit to continuously innovate and develop new combat concepts, combat theories and technical equipment, and to promote successful experiences to other units at any time.

現代國語:

褚 睿 劉瑤琦

每一個作戰域的開闢,必將引發新一輪作戰方式的變革。在以智慧、泛在、融合為特點的新一輪科技革命和產業革命的加速推動下,太空、網絡空間、電磁頻譜、認知空間等新興作戰域對未來作戰影響日益增大,透過與傳統陸、海、空作戰域跨域協同實現優勢互補、體系增效的「多域作戰理論」概念應而生,正成為適應戰爭形態演進的新型作戰理論。

「多域作戰」概念最早由美軍提出。隨後,英國、法國以及其他北約成員國均以不同形式發展「多域作戰」概念。以色列率先將「多域作戰」概念運用於實戰。俄軍從對手視角創新提出了自己的「多域作戰」理論。當前,「多域作戰」概念已成為引發外軍新一輪作戰方式變革轉型的重要概念。

「多域作戰」概念是基於資訊時代作戰方式變革,由美陸軍率先提出、其他軍種協力推進的新型作戰概念

美軍認為,透過所有戰爭領域(陸、海、空、太空、網路空間)快速且持續的整合,在特定時間窗口形成多重優勢,迫使敵人陷入困境是「多域作戰」概念的製勝機理。美陸軍提出以「全球一體化作戰」思想和「跨域協同」理念為指導,力求透過「多域作戰」方式形成未來戰爭非對稱優勢。多域特遣部隊(旅級)將是美陸軍實施多域作戰的核心作戰力量,集砲兵、陸基戰術導彈、陸航、網絡空間、電磁頻譜、太空以及防空力量於一身,通過跨域混合編組形成多域作戰能力。美空軍積極響應「多域作戰」概念,著眼於建構聯合作戰指揮與控制體系,提出多域指揮與控制概念,聚力開發先進作戰管理系統,將多域作戰向戰術級下沉,以提高未來作戰的敏捷性和跨域協同能力。美國海軍吸納“多域作戰”概念的核心思想,提出打造“一體化全局海上軍事力量”,重點開發“分佈式殺傷”作戰概念,提出加強全局作戰設計和演習。

美國國防部和參聯會匯集軍種「多域作戰」新型作戰概念的思想與機理,提出了「全局作戰」頂層概念,旨在瞄準形成新一輪非對稱優勢,牽引作戰方式變革與軍事轉型。全局作戰概念以聯合全局指揮與控制為核心,旨在將傳統作戰域與太空、網絡空間、電磁頻譜、防空反導和認知領域等能力整合在一起,與全球性競爭對手在全頻譜的環境中競爭。據悉,該概念目前尚處於萌芽期,正在進行理論深化、試驗驗證、演習評估和條令轉化,並通過多條工作線,不斷豐富其概念內核。其中美軍參聯會領導概念向政策、條令和需求轉化;空軍通過開發先進作戰管理系統、陸軍通過實施“融合項目”、海軍通過啟動“超越項目”共同推動該概念走向成熟。美戰區透過兵棋推演、項目展示和聯合演習等形式支援多域作戰概念和多域作戰模式開發。

英國等北約國家基於借鑑與融入視角,積極參與美軍「多域作戰」概念的發展與試驗,並結合實際修訂作戰概念

英國國防部提出了「多域融合」概念,與美軍「多域作戰」概念機理相一致,著重於整合不同領域和不同層次的作戰,為2030年及以後發展一支聯合部隊、保持競爭優勢做準備。英國國防部指出,「透過資訊系統整合不同領域和不同層級的能力,創造和利用協同效應,以獲得相對優勢,是多域融合概念的製勝機理。」該概念強調奪取資訊優勢、塑造戰略態勢、構設多域作戰環境、創造和利用協同效應。該概念提出4個具體問題:如何透過「多域融合」為2030年及以後提供超越對手的優勢;如何實現國防部與盟友、政府和民事部門合作的跨域融合;如何解決「多域融合」概念涉及的政策問題;如何促進國防概念、能力和戰爭發展方面的研究。以此為抓手,英軍開啟了多面向、分步驟、體系化的軍事轉型。

其他北約國家也正在不同程度地聯合開發和創新運用「多域作戰」概念,並以聯合演習、盟國協作等形式推動「多域作戰」概念轉化落地。 2019年美陸軍領導開展的、旨在評估印太司令部多域特遣部隊作戰能力的「聯合作戰評估(2019)」演習中,法國、加拿大、澳大利亞、新西蘭等國部隊組成多國任務組織參與其中,評估了2025-2028年作戰環境下的多域作戰概念、編組、能力。 2019年10月,北約聯合空中力量競爭中心召開了「塑造北約未來的多域作戰態勢」會議,為塑造北約未來多域作戰態勢,從軍事思想、多域作戰力量、多域作戰行動和訓練聯合部隊等方面進行了探索和研究。 2020年6月,北約指揮控制卓越中心發布了多域作戰指揮控制演示平台白皮書,旨在通過彌合技術和作戰人員、戰術和戰役層面、學術界和軍方之間的指揮控制鴻溝,以分散、數據驅動的綜合環境來應對多個作戰域的威脅與挑戰。

俄軍基於對手視角,一方面尋求破解之道,另一方面基於「跨域作戰」制勝機理,結合自身特點創新作戰理論

美軍提出「多域作戰」概念後,俄軍基於自身安全利益考量,積極尋求破解之道。 2020年12月,俄羅斯《空天力量理論與實踐》雜志刊發《論證運用航空力量打破敵方多域作戰中大規模聯合空襲》的文章,認為大規模聯合空襲是北約國家實施多域作戰的初始階段,將對俄羅斯最為重要的關鍵設施實施大規模協同作戰,為北約聯合武裝力量後續決定性行動創造條件。俄軍必須綜合運用戰區部隊的航空力量組成的偵察打擊系統,給敵造成無法承受的損失,打破其大規模聯合空襲,迫使北約多域作戰初始階段目標無法實現,致使北約政治軍事領導層放棄繼續實施多域作戰的企圖。

另一方面,俄軍針對「跨域作戰」這種新型作戰方式,提出了「軍隊統一資訊空間」理論,其核心思想是:利用現代資訊技術建立網絡化的指揮控制系統,以實現全軍指揮、通信、偵察、火力、保障等要素的深度融合,進而提升戰場態勢感知能力與作戰指揮效率。圍繞實現跨域作戰能力,俄軍持續推進理論開發:一是依托軍隊統一資訊空間,建立網絡中心指揮模式;二是將人工智慧引入指揮控制系統,實現物理域與認知域的統一;三是發展網絡、太空和水下作戰力量,爭取新興作戰領域優勢;四是建立統一的軍事標準體系,提升兵力兵器互操作能力。俄軍沒有全盤吸收西方「多域作戰」概念,也沒有全盤否定西方「多域作戰」有益成分,而是結合自身將「多域​​作戰」的一些先進作戰思想吸收,充實自身特色的作戰理論。

以色列基於作戰需求視角,率先運用「多域作戰」概念於加薩戰場,將多域作戰力量「幽靈」部隊作為主要作戰力量

以軍認為,多域聯合作戰是未來戰爭發展的必然趨勢,對於以地面作戰為主的以色列而言,透過整合陸上、空中、網絡空間、電磁頻譜和海上精銳力量,迅速識別、追踪和摧毀敵方目標,能夠進一步提高以軍的殺傷力。這一理念與美陸軍提出的「多域作戰」概念一脈相承。在這一理念的指導下,以軍組建了「幽靈」部隊,並率先在加薩戰場上進行了實戰檢驗。在2021年5月的巴以沖突中,以色列在對哈馬斯的代號為「城牆衛士」行動中首次運用「幽靈」戰鬥營實施了多域作戰,被稱為世界上第一場「人工智慧戰爭」。以軍在這場戰爭中主要依靠機器學習和數據收集,人工智慧首次成為作戰的關鍵組成部分和力量倍增器。在對哈馬斯地道網的清除行動中,以軍通過大數據融合技術進行預先識別和瞄準,而後出動戰機160架次進行精確打擊,極大破壞了哈馬斯的地道網,實現以空制地;在對哈馬斯火箭發射裝置的打擊中,以軍戰鬥機飛行員、地面情報部隊和海軍部隊之間使用和控制系統,快速指揮目標

根據以軍的說法,「幽靈」部隊在作戰編成、武器配置和作戰方式等方面與傳統部隊迥然不同。該部隊編制暫屬以色列第98傘兵師,包括旅偵察營、傘兵旅的地面部隊,裝甲旅、工程兵、特種部隊,F-16中隊和阿帕奇直升機,以及“蒼鷺”無人機等多域作戰力量,通過使用多域傳感器和精確打擊武器,實現跨域機動與打擊,“在極短時間內改變戰場局勢”。該營成立於2019年7月,雖然是一支地面部隊,但它整合了空中打擊、網絡偵防、精確火力、電子對抗、情報互聯以及海上突擊等多域作戰力量,是具備師旅級作戰能力的營級作戰單元。該部隊組建以後,不斷通過演習提升多域融合和跨域打擊能力,並在新開發的人工智能技術平台的支撐下迅速發揮兩大功能:一是在戰場上作為精兵利器,以非對稱方式作戰;二是作為試驗部隊,不斷創新和發展新型作戰概念、作戰理論和技術裝備,隨時將成功經驗推廣到其他部隊。

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/ll/10068139888.html

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

What is the Hotly Debated “Military Metaverse”? Chinese Military Intelligent Warfare Team Explains

備受爭議的「軍事元宇宙」是什麼?中國軍事智慧作戰團隊解讀

現代英語:

As if overnight, “metaverse” suddenly became a hot word, and related concepts formed many hot topics.

With the development of technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, blockchain, and the iteration of terminal devices, the construction and evolution of the “metaverse” may far exceed people’s expectations, and a new Internet form of multi-dimensional, full-sensory, immersive human-computer interaction will hopefully become a reality.

Unveiling the Metaverse

The “Metaverse” allows users to freely travel between the real world and the virtual world. Produced by Lu Xintong

What is the Metaverse?

The term “Metaverse” comes from the 1992 science fiction novel Snow Crash. In the novel, humans live in a virtual three-dimensional world through “Avatars” (digital virtual incarnations). The author calls this space “Metaverse”.

From science fiction to reality, people have not yet reached an absolute consensus on what the metaverse is. Due to the evolution of the times and technological changes, the metaverse is still an evolving concept. Different participants are constantly enriching its definition in their own ways, and the characteristics and forms of the metaverse are also constantly changing. However, we can explore a little through the current presentation of the metaverse.

At present, “metaverse” concept products are mainly concentrated in online games, VR/AR, social networking and other fields.

Online games are widely considered by the industry to be the most likely field to realize the “metaverse” because they themselves have virtual scenes and players’ virtual avatars. Today, game functions have gone beyond the game itself, and the boundaries of games are expanding, and they are no longer just games.

A well-known singer held a virtual concert in the game “Fortress Night” with a virtual image, attracting more than 12 million players from all over the world to participate, breaking the boundary between entertainment and games; due to the impact of the epidemic, the University of California, Berkeley and the School of Animation and Digital Arts of Communication University of China coincidentally rebuilt their campuses in the sandbox game “Minecraft”. Students gathered together with virtual avatars to complete the “cloud graduation ceremony”, realizing the integration of virtual games and real social interactions.

The new generation of “VR social (virtual offline social)” has been gradually developing and becoming popular. It is a fusion of offline social (face-to-face in real life) and online social (through social software such as WeChat). Some well-known VR social platforms provide a free community environment, which not only becomes a place for players to conduct online activities and virtual face-to-face gatherings, but also becomes a social and cultural phenomenon closely related to the current concept of “metaverse”.

The above “metaverse slices” are all important explorations into the construction of the “metaverse”, and they explain in a variety of visible and tangible ways how the “metaverse” will change our real life.

In common research, the following consensus has been formed: “Metaverse” is a new type of Internet application and social form that integrates multiple new technologies and integrates virtual and real. It provides immersive experience based on extended reality technology, generates virtual scenes based on digital twins and 3D rendering technology, builds basic software and hardware services based on cloud computing, artificial intelligence and high-speed networks, and builds an economic system based on blockchain technology, closely integrating the virtual world with the real world in economic system, social system and identity system. At the same time, it allows each user to produce and edit content, and has complete self-driving and iteration capabilities.

The development direction of the “metaverse”

Today’s mobile Internet is actually still in a flat information interaction state, presented on mobile terminals through text, sound, pictures, and videos. Although news information, e-commerce, social chat, live video, etc. meet people’s needs for using the Internet, it is obviously impossible to achieve the effect of face-to-face communication and full sensory experience in real life through the mobile phone screen. With the development of society, people need more native and richer experience and interaction.

The COVID-19 pandemic has caused people to move their lives from offline to online. This forced change has made people think more, discuss more, and pay more attention to the “metaverse”. In particular, the core feature of the “metaverse” is the immersive experience, which can turn a plane into a three-dimensional, multi-dimensional, real-time interactive space, greatly enriching and restoring the real physical world and various human relationships. Therefore, the “metaverse” is highly anticipated.

Looking at the development of information technology and media in the past, humans have constantly changed the way they perceive the world, and later began to consciously transform and reshape the world. From the newspaper era, the radio and television era, to the Internet era, and the mobile Internet era, the tools and platforms under the concept of “metaverse” are becoming increasingly complete, and the path to the “metaverse” is gradually becoming clearer.

Since 2020, Internet giants around the world have been closely planning around cutting-edge technologies such as augmented reality, digital twins, 3D rendering, cloud computing, artificial intelligence, high-speed networks, and blockchain, and the door to the ultimate closed-loop ecosystem of the “metaverse” has been opened little by little. Today, when the “bonus” of mobile Internet users has reached its peak, many experts and scholars have stated that the “metaverse” will be the ultimate form of the next generation of the Internet.

Just as it was difficult to accurately predict the development of the Internet 20 years ago, people cannot accurately predict the future form of the “metaverse”. However, combined with the current development trends of related industries, we can see that: the Internet has changed human life and digitized communication between people, while the “metaverse” will digitize the relationship between people and society; the technologies related to the “metaverse” will show gradual development, and single-point technological innovations will continue to appear and merge, approaching the ultimate form of the “metaverse” from all aspects of the industry; the “metaverse” will surge with massive user-generated content, while revealing the value of digital assets.

In a nutshell, the “metaverse” will profoundly change the organization and operation of the existing society in a way that integrates the virtual and the real, forming a new lifestyle that combines the virtual and the real, giving birth to a new social relationship that integrates online and offline, and giving new vitality to the real economy from a virtual dimension.

The future physical “metaverse” will be similar to the scene described in the science fiction movie “Ready Player One”: one day in the future, people can switch identities at any time and anywhere, freely shuttle between the real world and the virtual world, and study, work, make friends, shop, travel, etc. in the “metaverse”. Through immersive experience, the virtual world will be closer to and integrated into the real world.

In this virtual world, there will be self-evolving content and economic systems that always remain safe and stable, meeting the social needs of individuals.

The mediating role of the “metaverse”

“Imagine the ‘metaverse’ as a physical Internet, where you are not just watching content, but you are in it as a whole.” This is a vivid description. However, as it stands, the content of these “metaverses” that allow “everyone to be in it” is relatively scarce. It needs more content that can be independent, self-iterative, and multi-dimensional to attract users to participate in the experience and even creation.

The “metaverse” is bound to become a new platform for media content production. Content producers can transform the “micro-universe” into the “macro-universe” through rich content production. In the short term, the breakthrough of the “metaverse” is immersive content. With the development and penetration of the concept of “metaverse”, the integration of immersive virtual content (such as games, cartoons, etc.) and immersive physical content (such as media, social networking, film and television, etc.) will become higher and higher. In other words, the “metaverse” will play a greater role as a medium.

In September this year, Yu Guoming, a professor at the School of Journalism and Communication of Beijing Normal University, pointed out at the release conference of the “2020-2021 “Metaverse” Development Research Report” released by the New Media Research Center of the School of Journalism of Tsinghua University: “Today, the role played by the media is generally the provision of cognitive information, but the role of the media is completing a process from providing cognition to providing experience. The entire media and technology development from cognition to experience is a huge transformation. Once the goal of “metaverse” is established, it will play a directional role in communication technology, communication form, communication methods and even communication effects.” If the “metaverse” is the ultimate form of the next generation of the Internet, then it is a super media channel that will show the ultimate form of media convergence and provide the best immersive experience.

Theoretically, the best communication experience must be based on real scenes. For example, when watching a football game, the ideal situation is to watch it in person on the field. In the “metaverse”, with the development of display interaction, high-speed communication and computing technology, it will become a reality to construct a communication scene that is infinitely close to reality. Users can become “witnesses” and “on-site observers” of news events in a three-dimensional, multi-sensory reception situation.

Therefore, “metaverse” media can realize true “multimediaization”, and various human senses such as vision, smell, hearing, taste, touch, etc. can play a role, and even fully develop and cooperate with each other to realize “immersive” media applications.

Today, media content is constantly evolving and innovating, and its development trend seems to be moving towards the concept of “metaverse”. Media content will no longer be limited to flat presentation methods such as TV, computer, and mobile phone screens. Media content production will consider holographic presentation more, focusing on creating an on-site environment and atmosphere to make users feel as if they are in the scene. Social interaction will no longer be limited to text comments. People can express their feelings in real time with voice and body movements, and communicate virtually face to face on the spot.

Imagine if news reports could restore the war scene and create a “battlefield metaverse” so that people could feel as if they were there and experience in real time the tremendous damage that war has caused to human civilization. This shock would further stimulate human society’s desire and yearning for peace, and media content would have a stronger influence and communication power.

現代國語:

來源:解放軍報 作者:戴斌 熊雄 孫浩 責任編輯:王鳳 2021-11-26 09:19:57
彷彿在一夜之間,「元宇宙」突然成為熱詞,相關概念形成許多熱點話題。

隨著擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡、區塊鍊等技術的發展及終端設備的迭代,「元宇宙」建設和演變可能遠超人們的預期,多維度、全感官、沉浸式的人機交互新互聯網形態,將有望成為現實。

揭開「元宇宙」面紗

■戴斌 熊雄 孫浩

「元宇宙」可讓使用者自由穿梭於現實世界和虛擬世界。 呂欣彤 制

何為“元宇宙”

“元宇宙”,英文為“Metaverse”。該字出自1992年的科幻小說《雪崩》。小說中,人類透過“Avatar”(數字虛擬化身),在一個虛擬三維世界中生活,作者稱這個空間為“Metaverse”,即“元宇宙”。

從科幻走進現實,人們對「元宇宙是什麼」還未能達成一個絕對標準的共識。因為時代的演變、技術的變革,“元宇宙”仍是一個不斷發展的概念,“一千個人眼中就有一千個哈姆雷特”,不同參與者以自己的方式不斷豐富著它的定義,“元宇宙”特徵和形態的可能性也在不斷變化。不過,我們可透過「元宇宙」現有的呈現形態來探究一二。

目前,「元宇宙」概念產品主要集中在網路遊戲、VR/AR、社交等領域。

網絡遊戲被業界普遍認為是最有可能實現「元宇宙」的領域,因為它本身就具有虛擬場景和玩家的虛擬化身。如今,遊戲功能已超越遊戲本身,遊戲邊界正在擴展,甚至不只是遊戲了。

知名歌手在遊戲《堡壘之夜》中,以虛擬形象舉辦一場虛擬演唱會,吸引了全球超過1200萬玩家參與其中,打破了娛樂與遊戲的邊界;因為疫情影響,美國加州大學伯克利分校、中國傳媒大學動畫與數字學院不約而同地在沙盤遊戲《我的世界》裡重建校園,學生們以虛擬化身齊聚一遊戲,實現虛擬化身和社交的現實主義。

新一代「VR社交(虛擬線下社交)」已逐漸發展和流行。它是線下社交(現實面對面)、線上社交(透過微信等社交軟件)的融合產物。一些知名VR社交平台,提供自由的社區環境,不僅成為玩家在線活動與虛擬面對面聚會的場所,也成了一種與目前「元宇宙」概念密切相關的社會文化現象。

以上這些“元宇宙切片”,都是對構建“元宇宙”的重要探索,用多種看得見、摸得著的方式,詮釋了“元宇宙”將如何改變我們的現實生活。

在通常研究中,一般形成了這樣的共識:「元宇宙」是整合多種新技術而產生的新型虛實融合的互聯網應用和社會形態。它基於擴展現實技術提供沉浸式體驗,基於數字孿生和3D渲染技術生成虛實場景,基於雲計算、人工智慧和高速網絡構建基礎軟件硬體服務,基於區塊鏈技術構建經濟體系,將虛擬世界與現實世界在經濟系統、社交系統、身份系統上密切融合。同時,允許每個用戶進行內容生產和編輯,並具備完整的自我驅動和迭代能力。

「元宇宙」發展走向

當今的移動互聯網,實際上仍是平面資訊互動狀態,透過文字、聲音、圖片、視頻方式在移動終端進行呈現。新聞資訊、電子商務、社群聊天、影片直播等形態,雖然滿足了人們使用網路的需求,但隔著手機螢幕,顯然無法達到現實生活中面對面交流、全感官體驗所能達到的效果。隨著社會發展,人們需要更原生和豐富的體驗與互動。

新冠疫情讓人們生活場景從線下更多地移到線上。這種被迫的轉變,讓大家對「元宇宙」有了更多思考、討論和關注。特別是「元宇宙」最核心的特徵,在於沉浸式體驗,它可將一個平面變成一個立體、多維、實時的交互空間,極大地豐富、還原真實物理世界和人類各種關系。因此,「元宇宙」被人們寄予厚望。

縱觀過往資訊科技和媒介的發展歷程,人類不斷改變認知世界的方法,乃至於後來開始有意識地改造和重塑世界。從報業時代、廣播電視時代,到互聯網時代、移動互聯網時代,「元宇宙」概念下的工具和平台日益完備,通往「元宇宙」的路徑逐漸清晰。

自2020年以來,各國互聯網大廠圍繞擴展現實、數字孿生、3D渲染、雲計算、人工智慧、高速網絡和區塊鍊等前沿科技,展開緊密佈局,通往「元宇宙」終極閉環生態的大門被一點點打開。在移動互聯網用戶「紅利」已經見頂的今天,不少專家學者表示,「元宇宙」將是下一代互聯網的終極形態。

如同20年前難以精準預測互聯網的發展一樣,人們也無法精準預判未來「元宇宙」的形態。但是,結合當今相關產業發展趨勢可以看到:互聯網改變人類生活,將人與人交流數字化,而「元宇宙」將把人與社會關係數字化;「元宇宙」相關技術將呈現漸進式發展,單點技術創新將不斷出現和融合,從產業各方面向「元宇宙」終極資產形態顯現;「元宇宙」將海量用戶創造內容,同時湧現價值。

概括地說,「元宇宙」將以虛實融合的方式,深刻改變現有社會的組織與運作,形成虛、實兩極的新型生活方式,催生線上、線下一體的新型社會關系,並從虛擬維度賦予實體經濟新的活力。

未來實體化的「元宇宙」,將類似於科幻電影《一級玩家》裡描述的場景:在未來的某一天,人們可隨時隨地切換身份,自由穿梭於現實世界和虛擬世界,在「元宇宙」中學習、工作、交友、購物、旅遊等。透過沉浸式體驗,讓虛擬世界進一步接近並融入現實世界。

在這個虛擬世界裡,將有自我不斷發展的內容和經濟系統,並且始終保持安全穩定運行,滿足個體的社會需求。

「元宇宙」的媒介作用

「把『元宇宙』想像為一個實體互聯網,你在那裡不只是觀看內容,整個人都身在其中。」這是一個圖像描述。可就現狀而言,這些能讓“整個人都身在其中”的“元宇宙”,內容是相對匱乏的。它需要更多可以獨立成篇、自我迭代、多維立體地吸引用戶參與體驗甚至參與創作的內容。

「元宇宙」勢必成為媒體內容生產的嶄新平台。內容生產者透過豐富的內容生產,可將「小宇宙」演變成「大宇宙」。短期內,「元宇宙」的突破口是沉浸式內容。隨著「元宇宙」概念的發展與滲透,沉浸式虛擬內容(如遊戲、卡通等)與沉浸式實體內容(如媒體、社交、影視等)的融合程度將會越來越高。換句話說,「元宇宙」將發揮出更大的媒介作用。

今年9月,北京師範大學新聞與傳播學院教授喻國明在由清華大學新聞學院新媒體研究中心發布的《2020-2021年「元宇宙」發展研究報告》發布會議上指出:「如今給予所發揮的作用大體上都是認知方面的信息給予,但媒介的作用正在完成一個從給予整個認知體驗的過程。媒介和技術從認知發展到體驗是個巨大轉換,『元宇宙』這個目標一經確立,對傳​​播技術、傳播形態、傳播方法甚至傳播效果,都能起到一個定向作用。」如果說「元宇宙」是下一代互聯網的終極形態,那麼它就是一個超級媒體渠道,將展現媒體融合的終極形式,並給予最佳的沉浸式體驗。

從理論上講,最好的傳播體驗必然是基於真實場景。如看球賽,理想情形是在球場上親身觀看。在「元宇宙」裡,隨著顯示互動、高速通訊和計算技術的發展,建構無限逼近真實的傳播場景將成為現實,用戶能在立體化、多感官接收情境中,成為新聞事件的「目擊者」和「實地觀察者」。

因而,“元宇宙”媒體可實現真正的“多媒體化”,人類的各種感官如視覺、嗅覺、聽覺、味覺、觸覺等,都能發揮作用,甚至完全展開、相互配合,實現“沉浸式”的媒體應用。

當今媒體內容不斷進化和創​​新,其發展趨勢也似乎正在向「元宇宙」概念靠攏。媒體內容將不再侷限在電視、電腦、手機螢幕等平面式的呈現方式,媒體內容製作將更考慮全像呈現,重視營造現場環境氛圍,讓用戶有身臨其境之感。社交也將不再侷限於文字留言評論,可即時以語音、肢體動作來表達感受,現場虛擬化面對面交流。

設想一下,如果新聞報道能還原戰爭現場,打造“戰場元宇宙”,使人如身臨其境,實時感受到戰爭對於人類文明造成的巨大創傷,這份震撼會更能刺激人類社會對於和平的渴望與嚮往,媒體內容將具備更加強大的影響力和傳播力。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jt_214147/4899728888.html?big=fan

Develop Chinese Military Operational Concepts Design China’s Future War Success

發展中國軍事作戰理念,規劃中國未來戰爭勝利

中國軍網 國防部網
2022年6月22日 星期三

現代英語:

Since the 21st century, with the deepening of the world’s new military revolution, the world’s military powers have put forward a series of new operational concepts and continuously improved them in war practice, thus driving the accelerated evolution of war. With the rapid development of information technologies such as cloud computing, blockchain, artificial intelligence, and big data, and their widespread application in the military field, people’s understanding of war has gradually changed from summarizing actual combat experience to studying and judging future wars. At present, as the source of military capability building, the strength of operational concept development capabilities will directly affect the seizure of victory opportunities. In particular, the vigorous development of the world’s new military revolution is calling for innovation in operational theory all the time. Only by developing new operational concepts and designing future wars with a forward-looking vision can we gain the initiative in military struggle preparation.

The concept of combat fundamentally solves the problem of how to fight a war.

First-rate armies design wars, second-rate armies respond to wars, and third-rate armies follow wars. The so-called “real wars happen before wars” means that before a war starts, the theory, style, and method of fighting have already been designed. How can we not win if we fight according to the designed war? The key to designing a war is to design and develop new combat concepts based on understanding the characteristics and laws of war, promote innovation in combat styles and tactics, and fundamentally solve the problem of “how to fight a war.”

In designing wars, theories come first. In recent years, the U.S. military has proposed new concepts such as “network-centric warfare”, “air-sea integrated warfare” and “hybrid warfare”, and the Russian military has proposed theories such as “non-nuclear containment strategy”, “strategic air-space campaign” and “national information security doctrine”, reflecting that the world’s military powers are vigorously studying operational theories and seizing military commanding heights. To a certain extent, operational concepts are the “organizational cells” for the formation of operational theories. Without a perfect concept generation capability, it is difficult to give birth to advanced theories. When an operational theory is proposed, it is necessary to develop relevant operational concepts so that the operational theory can be “sunk” and visualized, and better improved and transformed into military practice. When there is no operational theory concept, operational concept innovation can provide “raw materials” for the study of operational theories. The military field is the most uncertain field, and people’s understanding of war is constantly evolving. However, operational theory innovation cannot wait for the understanding to mature before starting, but needs to be based on the existing understanding, through active development and innovation of operational concepts, constructing future operational scenarios, exploring future winning mechanisms, and guiding and guiding military practice, in order to seize the initiative in war. Therefore, operational concept innovation is becoming a strategic fulcrum and lever for military construction and development.

The development of operational concepts focuses on designing core operational concepts. The core operational concept is the nucleus and embryo of the operational concept, which reflects the essential requirements of operations and contains the “genetic genes” for the growth of operational concepts. The entire concept system is derived and developed from this. At present, the understanding of the winning mechanism of informationized and intelligent warfare is becoming clearer, and it is time to focus the design of war on the development of major operational theories and key operational concepts.

Operational concept is an abstract expression of operational thinking.

The term “operational concept” originated from the US military. It is a description of how to fight in the future and is increasingly becoming an important tool for promoting the development of the military. The US Army Training and Doctrine Command Concept Development Guide points out that the operational concept is a concept, idea, and overall understanding. It is based on the inference of specific events in the combat environment. In the broadest sense, it outlines what will be done and describes how to fight in more specific measures. The US Marine Corps Combat Development Command Operations Development and Integration Directive points out that the operational concept is an expression of how to fight, used to describe future combat scenarios and how to use military art and scientific capabilities to meet future challenges. The US Air Force Operational Concept Development Directive points out that the operational concept is a conceptual description at the level of war theory, which realizes the established operational concept and intention through the orderly organization of combat capabilities and combat tasks.

In summary, the operational concept can be understood as an abstract cognition of operational ideas and action plans that is refined for specific operational problems at present or in the future. Generally speaking, the operational concept includes three parts: the first is the description of the operational problem, that is, the background of the operational concept, the operational environment, the operational opponent, etc.; the second is the description of the solution, that is, the concept connotation, application scenario, action style, winning mechanism, capability characteristics and advantages, etc.; the third is the description of capability requirements, that is, the equipment technology, basic conditions, and implementation means required to implement the operational concept. It can be seen that the operational concept should have the characteristics of pertinence, scientificity, adaptability and feasibility, and its connotation and extension will be constantly adjusted with the changes in factors such as strategic background, military policy, threat opponent, time and space environment, and capability conditions.

In a sense, operational concepts are actually transitional forms of operational theories, and their ultimate value is to guide military practice. The purpose and destination of developing new operational concepts is to tap into and enhance the combat effectiveness of the military. Only by transforming operational concepts into operational regulations and operational plans can their value be fully realized.

Innovation in combat concepts drives changes in combat styles

Since the beginning of the 21st century, the world’s military powers have, in accordance with national strategic requirements and in response to new threats and challenges, developed new operational concepts as a key means of transforming military capabilities, promoting changes in operational styles, and seeking to gain the upper hand in future battlefields. In order to further strengthen their military advantages, the world’s military powers are accelerating the introduction of a series of new operational concepts.

The US military has actively seized the opportunities brought about by scientific and technological progress, comprehensively used cutting-edge technologies such as new-generation information technology, artificial intelligence technology, unmanned autonomous technology, and proposed a series of new combat concepts such as mosaic warfare, multi-domain warfare, distributed lethality, decision-center warfare, and joint global command and control, promoting fundamental changes in combat thinking, combat style, combat space, and combat systems.

Unlike the U.S. military, the Russian military has achieved iterative innovation in operational concepts in military practice. Recently, the Russian military has been committed to promoting the construction of joint combat capabilities, accelerating the development and deployment of new unmanned equipment, focusing on building advantages in the network information battlefield, and constantly enriching the connotation of its traditional operational concepts, integrating them with new operational concepts such as hybrid warfare and mental warfare to guide war practice.

In general, in recent years, the new operational concepts proposed by the world’s military powers are driving profound changes in combat styles. Their capabilities, characteristics and advantages are mainly reflected in the following five aspects: First, the unmanned combat equipment. The proportion of unmanned equipment systems based on the new operational concept has increased significantly, and manned-unmanned collaborative combat has become one of the main combat styles, forming an advantage of unmanned over manned; second, the deployment method is decentralized. The force deployment based on the new operational concept is distributed, and the systems are interconnected and interoperable, forming an advantage of division over combination; third, the kill network is complicated. The kill network based on the new operational concept has more diverse functions. A single system can perform multiple tasks, and its failure has little impact on the combat system, forming an advantage of many over single; fourth, the response time is agile. The new operational concept emphasizes quick battles and quick decisions, taking the initiative to catch the enemy off guard, forming an advantage of fast over slow; fifth, the combat field is multidimensional. The new operational concept pays more attention to multi-domain linkage, expanding the battlefield from the traditional land, sea and air to the electromagnetic, network and cognitive domains, forming an advantage of invisible over visible.

The development of combat concepts should adhere to the systematic design approach

Using operational concepts to guide military force construction is a common practice among the world’s military powers. In comparison, the US military’s operational concept development mechanism is relatively complete, and a relatively complete operational concept development system has been established, consisting of concept types, organizational structures, normative standards, and support means.

In terms of concept types, the U.S. military’s combat concepts can basically be divided into three categories: First, a series of combat concepts developed by each service, mainly from the perspective of the service, to study potential enemies and future battlefields, redefine combat styles, and seek new ways to win. Second, a series of joint combat concepts developed by the Joint Chiefs of Staff, mainly composed of three levels: top-level concepts, action concepts, and supporting concepts. Third, combat concepts developed by academia, think tanks, etc., the number of such combat concepts is not as large as the first two categories, but it is still an important part of the combat concept system. Through this system, the U.S. military has implemented the grand military strategy through combat concepts layer by layer into various combat operations, various combat capabilities, and various types of weapons and equipment performance for the troops, guiding the construction of joint forces and various services.

In terms of organizational structure, taking the development of joint operational concepts as an example, the US military has established a working system consisting of five types of institutions. The first is the Joint Concept Working Group, whose main responsibility is to review the overall issues of the concept outline and concept development; the second is the Joint Concept Steering Committee, whose main responsibility is to supervise and guide the concept development plan; the third is the core writing team, whose main responsibility is to transform the original ideas in the concept outline into joint operational concepts; the fourth is the concept development team, whose main responsibility is to provide operational concept development methods and plans; the fifth is the independent red team, whose main responsibility is to conduct independent evaluations to judge the rigor and scientificity of the concept.

In terms of norms and standards, the U.S. military has a complete system of institutions to constrain and guide the development of joint operational concepts, making them standardized, standardized, and procedural, so as to manage the entire chain of concept development, which is mainly reflected in a series of directives of the Chairman of the Joint Chiefs of Staff and joint publications. For example, the “Joint Concept Development and Implementation Guide” aims to establish a governance structure for joint concept development, clarify the framework for joint operational concept planning, execution, and evaluation, and promote the implementation of joint operational concepts; the “Joint Regulations Preparation Process” aims to standardize the preparation process of joint regulations and provide a clear process framework for converting operational concepts into operational regulations.

In terms of support means, the design, development and verification of operational concepts is a systematic project that cannot be separated from the support of various development tools and means. For example, tools such as the DODAF2.0 model, IDEFO model and SYSML modeling language can provide standardized structured analysis models and logical description models for operational concept designers; model-based system engineering methods can provide operational concept designers and evaluation and verification personnel with capability models of equipment elements in operational concepts for designing and building operational concept frameworks. The U.S. military’s joint operational concept development uses network-based digital software with strong interconnection capabilities. All institutions involved in the development can share information in real time to improve development efficiency.

The development of combat concepts requires collaboration among multiple parties

Developing operational concepts is a multidisciplinary and multi-field task that involves many fields such as military science, philosophy, operations research, and systems science. It requires collaboration among multiple parties to ensure that it is both advanced and forward-looking in theory and applicable and feasible in practice.

Establish a small core and large peripheral research team. The department initiating the development of the operational concept should give full play to its leading role, coordinate and dispatch the research work from a global perspective; establish a joint research and development team, give full play to the collective wisdom, and widely obtain various new ideas, new methods and new viewpoints on the research of operational concepts from all parties; establish a cross-domain and cross-departmental expert committee to supervise, review and guide related work from multiple angles.

Form a multi-departmental working mechanism. To ensure smooth communication and efficient operation among departments, we must first clarify their respective tasks and responsibilities. For example, the concept initiating department is responsible for overall planning and implementation, the laboratory is responsible for technical verification, the industrial department is responsible for equipment research and development, and the combat troops are responsible for actual combat testing. Secondly, relevant normative documents should be formulated to ensure that all work has rules to follow and is carried out in an orderly manner, providing institutional guarantees for the development of combat concepts. Finally, it is also necessary to establish demand traction mechanisms, collaborative research mechanisms, iterative feedback mechanisms, etc., to open up the link from research and development to practical application of combat concepts.

Promote the organic combination of theory and practice. Only through the iterative cycle of “design research-deduction verification-actual troop test” can the operational concept be gradually adjusted, optimized and improved, and the development of war theory can be driven. Therefore, the development of operational concepts should pay special attention to the combination of theoretical innovation and practical application, and achieve the fundamental purpose of driving the generation of new quality combat power through the mutual drive of theory and practice. Specific methods include timely incorporating mature operational concepts into operational regulations, compiling training outlines or teaching materials accordingly, and gradually promoting them to troops for use; organizing relevant exercises or tests to test the maturity and feasibility of operational concepts under conditions close to actual combat, and finding and solving problems; using the capability indicators determined by the operational concept as a reference for equipment demand demonstration, driving the development of equipment technology, and promoting the improvement of combat capabilities.

The rapid development of science and technology in the new era has brought many new opportunities and challenges to the construction of military capabilities. The development of new operational concepts will help us to seize the military opportunities brought by scientific and technological progress, actively respond to the threats and challenges formed by scientific and technological development, and timely grasp the direction and laws of the evolution of war forms, which can provide important support for leading future war styles and seizing the first chance to win. At present, the international security situation is complex and changeable. To win the future information war, we need to take the development of operational concepts as the origin of national defense and military construction, actively carry out military technological innovation, promote the upgrading of weapons and equipment, achieve leapfrog development, and thus lead the trend of the new military revolution.

(Author’s unit: Second Academy of China Aerospace Science and Industry Corporation)

現代國語:

宋曉明

中國軍網 國防部網
2022年6月22日 星期三

自21世紀以來,隨著世界新軍事革命的深入推進,世界軍事強國提出了一系列新作戰概念,並在戰爭實踐中不斷改進,從而牽引戰爭加速演變。隨著雲端運算、區塊鏈、人工智慧、大數據等資訊科技的日新月異,以及在軍事領域的廣泛應用,人們理解戰爭的模式逐漸由歸納總結實戰經驗向研判未來戰爭轉變。目前,作為軍事能力建構源頭,作戰概念開發能力強弱,將直接影響勝戰先機的奪取。尤其是世界新軍事革命蓬勃發展,無時無刻不在呼喚作戰理論創新,只有以前瞻眼光開發新作戰概念、設計未來戰爭,才能獲得軍事鬥爭準備的主動權。

作戰概念從根本解決仗怎麼打

一流軍隊設計戰爭,二流軍隊應對戰爭,三流軍隊尾隨戰爭。所謂“真正的戰爭,發生在戰爭之前”,意思是戰爭開打之前,戰爭的理論、樣式、打法早已被設計出來。依照設計好的戰爭來打,豈有不勝之理?設計戰爭,關鍵在於摸清戰爭特徵規律的基礎上,設計發展新作戰概念,推動作戰樣式和戰法創新,從根本上解決「仗怎麼打」。

設計戰爭,理論先行。近年來,美軍先後提出「網路中心戰」「空海一體戰」等理論,反映了世界軍事強國都在大力研究作戰理論,搶佔軍事制高點。從某種程度上說,作戰概念是作戰理論形成的“組織細胞”,沒有完善的概念生成能力,很難催生先進的理論。當一個作戰理論提出時,需要發展相關作戰概念,才能使作戰理論「下沉」具象化,更好地完善並向軍事實踐轉化。當沒有作戰理論構想時,作戰概念創新可以為研究作戰理論提供「原料」。軍事領域是最具不確定性的領域,人們對戰爭的認知始終在不斷發展。但是,作戰理論創新不能坐等認識成熟後再起步,而是需要在現有認識的基礎上,透過主動開發、創新作戰概念,構設未來作戰圖景,探索未來制勝機理,牽引並指導軍事實踐,才能掌握戰爭主動權。因此,作戰概念創新,正成為軍隊建設與發展的戰略支點與槓桿。

作戰概念開發,重點在於設計核心作戰概念。核心作戰概念,是作戰概念的細胞核、胚胎,集中反映作戰本質要求,包含著作戰概念生長的“遺傳基因”,整個概念體係由此衍生與發展。目前,對資訊化、智慧化戰爭的致勝機理等的認識漸趨清晰,將設計戰爭的重心聚焦到主要作戰理論、關鍵作戰概念開發正當其時。

作戰概念是作戰思想的抽象表達

「作戰概念」一詞源自美軍,是對未來如何作戰的描述,正日益成為推進軍隊建設發展的重要抓手。美《陸軍訓練與條令司令部概念開髮指南》指出,作戰概念是理念、想法、總體認識,是依據作戰環境中具體事件的推斷,在最廣泛的意義上勾勒將要做什麼,在更具體的舉措上描述仗怎麼打。美《海軍陸戰隊作戰發展司令部作戰發展與一體化指令》指出,作戰概念是表達如何打仗,用來描述未來作戰景象及如何利用軍事藝術和科學能力迎接未來挑戰。美《空軍作戰概念發展條令》則指出,作戰概念是戰爭理論層面的概念描述,透過對作戰能力和作戰任務的有序組織,實現既定的作戰構想和意圖。

綜上所述,作戰概念可以理解為是針對當前或未來的具體作戰問題,提煉的對作戰思想與行動方案的抽象認知。一般而言,作戰概念包括三部分內容:一是對作戰問題的描述,即作戰概念的提出背景、作戰環境、作戰對手等;二是對解決方案的描述,即概念內涵、應用場景、行動樣式、制勝機理、能力特徵及優勢等;三是對能力需求的描述,即實施該作戰概念所需的裝備技術、基礎條件、實現手段等。可以看出,作戰概念應具備針對性、科學性、適應性與可行性等特徵,其內涵與外延會隨著戰略背景、軍事方針、威脅對手、時空環境、能力條件等因素的變化而不斷調整。

從某種意義上說,作戰概念其實是作戰理論的過渡形態,最終價值是指導牽引軍事實踐。發展新作戰概念的目的和歸宿,是挖掘和提升軍隊戰鬥力,只有把作戰概念轉化為作戰條令、作戰計劃,才能充分發揮其價值。

作戰概念創新牽引作戰樣式變革

進入21世紀以來,世界軍事強國根據國家戰略要求,針對新威脅挑戰,把開發新作戰概念作為軍事能力轉型的關鍵抓手,推動作戰樣式變革,謀求贏得在未來戰場中的製勝先機。為進一步強化軍事上的領先優勢,世界軍事強國正加速推出一系列新作戰概念。

美軍積極搶奪科技進步帶來的機遇,綜合運用新一代資訊科技、人工智慧技術、無人自主技術等尖端技術,提出馬賽克戰、多域作戰、分散式殺傷、決策中心戰、聯合全局指揮控制等一系列新作戰概念,推動作戰思想、作戰樣式、作戰空間和作戰體系發生根本性變化。

與美軍不同,俄軍是在軍事實踐中實現作戰概念的迭代創新。近期,俄軍致力於推動聯合作戰能力建設,加速發展部署新型無人裝備,注重打造網路資訊戰場優勢,不斷豐富其傳統作戰概念的內涵,並與混合戰爭、心智戰等新作戰概念相集成,用以指導戰爭實踐。

整體而言,近幾年,世界軍事強國提出的新作戰概念正牽引作戰樣式發生深刻變化,其能力特徵及優勢主要體現在以下五個方面:一是作戰裝備無人化,基於新作戰概念的無人裝備體系佔比顯著提高,有人無人協同作戰成為主要作戰樣式之一,形成以無人制有人的優勢;二是部署方式分散化,基於新作戰概念的力量部署呈分佈式,系統間互聯互通,具備互操作能力,形成以分制合的優點;三是殺傷網複雜化,基於新作戰概念的殺傷網功能更加多樣,單一系統可執行多種任務,且其失效對作戰體系影響較小,形成以多製單的優勢;四是響應時間敏捷化,新作戰概念更強調速戰速決,先發制人使敵方措手不及,形成以快製慢的優勢;五是作戰領域多維化,新作戰概念更注重多域聯動,將戰場從傳統的陸海空拓展到電磁、網絡和認知域,形成以無形制有形的優勢。

作戰概念開發應堅持體系化設計思路

以作戰概念指導軍事力量建設,是世界軍事強國的共同做法。比較而言,美軍的作戰概念開發機制較為完善,建構了相對完整的作戰概念開發體系,由概念類型、組織架構、規範標準、支撐手段等部分組成。

在概念類型方面,美軍作戰概念基本上可分為三類:一是各軍種主導開發的系列作戰概念,主要從本軍種角度出發,研判潛在敵人和未來戰場,對作戰樣式進行重新定義,謀求打贏的新途徑。二是參會主導開發的一系列聯合作戰概念,主要由頂層概念、行動概念和支持性概念等三個層次構成。三是學術界、智庫等主導開發的作戰概念,這類作戰概念的數量沒有前兩類那麼多,但仍是作戰概念體系的重要組成部分。透過此體系,美軍把宏大的軍事戰略透過作戰概念逐層落實為面向部隊的各類作戰行動、各種作戰能力、各型武器裝備性能,指導聯合部隊及各軍兵種建設。

在組織架構方面,以聯合作戰概念發展為例,美軍建立了由五類機構組成的工作體系。一是聯合概念工作小組,主要職責是審查概念大綱及概念研發的整體問題;二是聯合概念指導委員會,主要職責是對概念研發計畫進行監督指導;三是核心編寫團隊,主要職責是將概念大綱中原始理念轉化為聯合作戰概念;

在規範標準方面,針對聯合作戰概念的開發,美軍有完善的製度體系約束、指導,使其規範化、標準化、程序化,以便對概念開發進行全鏈條管理,主要體現在一系列參謀長聯席會議主席指令及聯合出版物中。例如,《聯合概念開發與實施指南》旨在為聯合概念發展建立治理結構,明確聯合作戰概念規劃、執行和評估的框架,推動聯合作戰概念落實;《聯合條令編制流程》旨在對聯合條令的編制流程進行規範,為把作戰概念轉化為作戰條令提供一個明確的流程框架。

在支撐手段方面,作戰概念的設計開發與驗證是一項系統工程,離不開各類開發工具與手段的支撐。例如,DODAF2.0模型、IDEFO模型及SYSML建模語言等工具,可為作戰概念設計人員提供規範的結構化分析模型與邏輯描述模型;基於模型的系統工程方法,可為作戰概念設計人員和評估驗證人員提供作戰概念中裝備要素的能力模型,用於設計並搭建作戰概念框架。美軍聯合作戰概念開發使用了基於網路的數位化軟體,具有較強的互聯互通能力,所有參與開發的機構都可以即時共享訊息,提高開發效率。

作戰概念開發成熟需要多方協同合作

發展作戰概念是一項多學科、多領域交叉的工作,涉及軍事學、哲學、運籌學、系統科學等諸多領域,需要多方協同合作,以確保其既在理論層面具備先進性、前瞻性,又在實踐層面具備適用性、可行性。

組成小核心大外圍研究團隊。作戰概念開發發起部門要充分發揮群體智慧作用,從全局角度出發,對研究工作進行統籌與調度;成立聯合研發團隊,充分發揮群體智慧作用,廣泛獲取各方對作戰概念研究的各種新方法與新觀點;設立跨領域、跨部門的專家委員會,多角度對相關工作進行監督、審查與指導。

形成多部門連動的工作機制。為確保各部門之間溝通順暢、運作高效,首先要明確各自的任務與職責。例如,概念發起部門負責總體計畫與實施、實驗室負責技術驗證、工業部門負責裝備研發、作戰部隊負責實戰檢驗。其次,要製定相關規範文件,確保各項工作有章可循、有序推進,為作戰概念研發提供製度保障。最後,還要建立需求牽引機制、協同攻關機制、迭代回授機制等,打通作戰概念從研發到實務運用的連結。

推動理論與實務有機結合。作戰概念只有透過「設計研究—推演驗證—實兵檢驗」的循環迭代,才能逐步調整、優化、完善,牽引戰爭理論發展。因此,作戰概念發展要特別注重理論創新與實務運用結合,透過理論與實務的相互驅動,達成牽引新質戰鬥力生成的根本目的。具體方式包括,將開發成熟的作戰概念及時納入作戰條令,相應地編寫訓練大綱或教材,逐步推廣至部隊使用;透過組織相關演訓或試驗,在貼近實戰條件下檢驗作戰概念的成熟度與可行性,查找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,尋找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,作戰能力提升。

新時代科技發展態勢迅猛,為軍事能力建設帶來許多新機會與新挑戰。發展新作戰概念,有助於敏銳抓住科技進步帶來的軍事機遇,積極應對科技發展形成的威脅與挑戰,及時掌握戰爭形態演進方向與規律,可為主導未來戰爭樣式、搶佔制勝先機提供重要支撐。當前,國際安全情勢複雜多變,打贏未來資訊化戰爭,需要我們把作戰概念開發作為國防和軍隊建設的原點,積極開展軍事技術創新,推進武器裝備更新換代,實現跨越式發展,從而引領新軍事革命潮流。

(作者單位:中國航太科工集團第二研究院)

中國原創軍事資源:http://www.81.cn/gfbmap/content/2022-06/22/content_31822288.htm