Category Archives: #USArmy

Chinese Military Research on US Army’s Network-Centric Warfare

中國軍方對美軍網路中心戰的研究

現代英語:

Several local wars in the 1990s showed that information networks play an increasingly important role in modern warfare, and the U.S. military’s combat mode began to change from platform-centric warfare to network-centric warfare. For example, in the Afghanistan War, the U.S. military’s digital and broadcast communication network connected various command posts, sensors, and shooters spread all over the country, allowing weapon platforms to play a greater role. Digital networks enable ” Predator ” drones to provide real-time target data and images to combat aircraft and guide combat aircraft to strike targets. This is a major development compared to the Kosovo War, when ” Predator ” drones were only used for information collection.

1  Overview of the US Army’s Network-Centric Warfare

1.1  Main Features of Network-Centric Warfare — Effects-Based

In the war in Afghanistan, the information network enabled an average of two targets to be attacked by one US Air Force aircraft when performing a single mission, while in the Gulf War in 1991 , an average of 10 aircraft were required to attack one target. This shows that network-centric warfare is not a platform-based operation, but an effect-based operation. Each weapon platform can attack multiple targets, rather than multiple weapon platforms attacking one target. Network-centric warfare realizes information sharing, and combat forces and their weapon platforms, including aircraft, armored vehicles, artillery, ships and even individual soldiers, are integrated regardless of their positions. The networking of sensor platforms, weapon platforms and command posts enables air or ground forces to use more accurate situational awareness information to attack targets more quickly, cooperate with each other and selectively, so the effect of network-centric warfare is that the whole is greater than the sum of its parts. For example, a networked fighter must be superior to an equal number of non-networked fighters of the enemy, because each pilot of a networked fighter can not only see the images captured by the aircraft’s radar on the digital cockpit display, but also the images captured by the companion aircraft’s radar. The pilot of a non-networked fighter can only see the images captured by the aircraft’s radar.

1.2  Network-centric warfare environment – Global Information Grid

The U.S. military’s Joint Vision 2020 points out that the development of the Global Information Grid (GIG) concept will provide a network-centric environment that enables information to be distributed globally. The U.S. Department of Defense has begun developing GIG as a broadband network , including the development of space-based laser communication systems and land-based multi-channel fiber-optic networks. Space-based laser communication systems can connect aircraft and ground stations to military satellites, while land-based multi-channel fiber-optic networks are suitable for 100 different network entities, such as major national or regional military commands. In the future, GIG will consist of information grids related to computers and communications, sensor / reconnaissance grids related to space-based, air-based, land-based, sea-based and cyberspace sensors , and command and control grids related to initiating and controlling operations at all levels. In the next 10 years, the U.S. military will spend $ 5-10 billion on GIG construction. It is expected that in the next two years, it will cost $ 1 billion to build a land-based GIG infrastructure, which will become the basis of network-centric warfare; it will cost billions of dollars to build a UHF satellite system, which will expand the GIG infrastructure to all parts of the world. The development of GIG involves many new technologies, such as fiber multiplexing and space laser communication. In the U.S. defense budget for fiscal year 2003 , $ 2.5 billion will be spent on space laser communication technology, which is said to have the ability to provide fiber- quality broadband secure communications to U.S. forces operating anywhere, at any time.

1.3  The main obstacle to network-centric warfare : incompatibility

The widespread incompatibility between the U.S. military’s communications equipment and the architecture of related systems of various services is the main obstacle to the realization of the concept of full network-centric warfare. The Command, Control, Communications and Computers Directorate of the Joint Chiefs of Staff is responsible for overcoming this obstacle, one of the measures is to ensure that the systems purchased now are compatible with both the original systems and the future systems.

2  Research Progress of Network-Centric Warfare in the U.S. Military

2.1 US Navy Cooperative Engagement Capability (CEC) Network

The anti-jamming CEC system, centered on the Aegis ship , can connect air defense command and control systems, sensors, weapon platforms, and other nearby platforms. The CEC sensor grid provides the Navy with an overall picture of its forces. It can fuse target recognition and tracking data from a variety of airborne and shipborne sensors, greatly improving the Navy’s situational awareness and combat capabilities on the battlefield. The CEC combat grid uses fused data to locate missiles launched by air defense combat aircraft and ships, allowing them to intercept multiple incoming missiles at a safe distance from the combat group.  CEC is not only an important contribution to network-centric warfare, but also lays a good foundation for generating an integrated air picture between all theater forces. In April 2001 , the US Department of Defense approved the connection of CEC with the US Army’s Patriot air defense missile system. It is said that CEC can also be connected to the US Air Force’s early warning aircraft to provide seamless joint theater air defense capabilities. In addition, the US Navy also plans to establish a global naval Internet, an information grid that can collect, process and distribute battlefield data between naval forces around the world.

2.2  US Air Force Intelligent Tanker and Multi-mission Command and Control Aircraft

The US Air Force is implementing the Smart Tanker Program, which aims to develop the next generation of aerial refueling aircraft and make them serve as information receiving and relay nodes. Smart tankers are the best choice for realizing airborne Internet because they usually fly at high altitudes near the war zone, and this function can be realized after the installation of relevant electronic equipment. Through the information transmission device between data links, the tanker can seamlessly receive and send data between different systems, such as the Navy CEC system and the Army’s improved position determination reporting system. The smart tanker will be equipped with an electronic scanning array, thus becoming a long-range antenna for the ” Rivet ” joint electronic reconnaissance aircraft, collecting information from multiple locations in the war zone, and then forwarding the information to the ” Rivet ” joint electronic reconnaissance aircraft, which will be processed and distributed by the latter. The intelligence of the aerial refueling aircraft is mainly to install the ROBE communication terminal on the KC-135 tanker .  ROBE is an expandable modular airborne relay terminal that can be used for data relay to realize line-of-sight / beyond-line-of-sight communication between members in the network, such as communication between the commander of the air and space operations center and the commander of the war zone, or to provide important data to soldiers more quickly so as to make decisions quickly and strike time-sensitive targets. ROBE can also expand the communication range, so that all soldiers can share situational awareness information. In October 2002 , the U.S. Air Force successfully demonstrated the concept of smart tanker. A KC-135 tanker equipped with ROBE flew from Eglin Air Force Base to Hanscomo Air Force Base, successfully transmitting all tactical data from F-15 and ” Joint Star ” to the operations center of Hanscomo Air Force Base, and the staff reset the ROBE system from time to time to verify that the system can be remotely controlled from the ground.

The US Air Force is also developing a multi-mission command and control aircraft, the MC2A . It is envisioned that the MC2A is not only a sensor node, but also a decision node. In the future, it will replace the E-8C Joint Surveillance Target Attack Radar System, the Airborne Early Warning and Control System aircraft, and other command, control, and communication aircraft, and will perform many functions of the Air Operations Center. The project is implemented in three phases: Develop the next generation of air-to-ground radar before 2010 ; Develop air search radar and advanced battlefield management system around 2015 ; Equip signal and intelligence equipment in 2020. The main technical challenge is to perform both ground moving target indication and air moving target indication tasks at the same time. In April 2002 , the MC2A-X made its first flight, mainly to check the communication equipment, including internal communication equipment, tactical common data links, and receiving and transmitting equipment for communicating with other airborne sensors and space-based sensors. The first MC2A aircraft is scheduled to be delivered in 2012 .

2.3  Network Construction of the U.S. Army and Marine Corps

The U.S. Army and Marine Corps are developing doctrine and strategy for a ” discontinuous battlefield , ” a battlefield without front lines that will allow the Army and Marine Corps to leverage the power of smaller, more mobile, and more information-dominant forces.

The Gulf War in 1991 exposed the shortcomings of the U.S. Army’s communication system, mainly the FM radio communication system, and the lack of situational awareness and coordination capabilities of combat troops. As a result, the U.S. Army began the digitalization process and achieved satisfactory results. In a battlefield exercise in 1994 , a new network-centric mechanized infantry battalion effortlessly defeated non-network opponents. The U.S. Army expects that in a network-centric environment, each weapon system will have more functions and the number required will be less. In 2001 , the U.S. Army began to develop the Future Combat System, with the goal of equipping non-traditional weapon platforms with advanced sensors and communication equipment to make them large network-centric systems.

The Marine Corps is an integrated land, sea and air force. As early as the Gulf War in 1991 , the Marine Corps began to digitally network the force through e-mail to improve situational awareness. Currently, the Marine Corps is in the process of expanding information networks to grassroots levels such as platoons and classes, and is developing the Marine Corps Enterprise Network, which will eventually develop into a digital Internet composed of ground grids, air grids and space grids. In the war in Afghanistan, the Marine Corps conducted the first large-scale joint operation, with air and ground special forces traveling 640km inland from an amphibious sea base and immediately engaging the enemy without any disconnection. Relying on various communication networks, the special forces contacted the command posts, logistics support forces and allied forces at sea and in Bahrain to coordinate operations and logistics. This is a typical example of effects-based operations, that is, connecting various forces through the network to carry out the most powerful strike on the target.

現代國語:

90年代的幾場局部戰爭表明,資訊網路在現代戰爭中的作用越來越重要,美國部隊的作戰方式開始由平台中心戰轉變為網路中心戰。例如在阿富汗戰爭中,美軍數位與廣播通訊網路將各種不同的、遍布各地的指揮所、感測器以及射手連接起來,使武器平台發揮了更大的作用。數位網路使”掠奪者”無人機能夠向作戰飛機提供即時目標資料與影像,並導引作戰飛機打擊目標。這與科索沃戰爭中”捕食者”無人機僅用於資訊收集相比有了重大發展。

1 美軍網路中心戰概述

1.1 網路中心戰的主要特徵–以效果為基礎

在阿富汗戰爭中,資訊網路讓美空軍一架飛機在執行單獨任務時平均可攻擊兩個目標,而在1991年海灣戰爭中攻擊一個目標平均需要10架飛機。這顯示網路中心戰不是基於平台的作戰,而是基於效果的作戰,每一個武器平台可以攻擊多個目標,而非多個武器平台攻擊一個目標。網路中心戰實現了資訊共享,作戰部隊及其武器平台,包括飛機、裝甲車、火砲、艦艇甚至單兵,不管處於什麼位置,均被集為一體。感測器平台、武器平台以及指揮所的網路化使得空中或地面部隊利用更準確的態勢感知訊息,更迅速、彼此協作並有選擇地攻擊目標,所以網路中心戰的效果是整體大於部分之和。例如,連網戰鬥機一定優於敵方同等數量的非連網戰鬥機,因為連網戰鬥機的每個飛行員不但可以從數位座艙顯示器上看到本機雷達捕捉的影像,而且可以看到同伴飛機雷達捕捉的影像。而非連網戰鬥機的飛行員只能看到本機雷達捕捉的影像。

1.2 網路中心戰的環境–全球資訊柵格

美軍《聯合構想2020》指出,全球資訊柵格(GIG)概念的發展將提供網路中心環境,使資訊能夠在全球範圍內分發。美國國防部已經開始開發作為寬頻網路的GIG,包括發展天基雷射通訊系統和陸基多路光纖網路。天基雷射通訊系統可以使飛機、地面站與軍事衛星相連,陸基多路光纖網則適用於100個不同的網路實體,如國家或地區主要軍事指揮部。未來,GIG將由有關電腦與通訊的資訊柵格,有關天基、空基、陸基、海基以及網路空間感測器的感測器/偵察柵格,以及有關發起與控制各層級作戰的指揮與控制柵格組成。未來10年,美軍將耗資50-100億美元用於GIG建設。預計未來兩年將耗資10億美元建構陸基GIG基礎設施,它將成為網路中心戰的基礎;耗資數十億美元建設特高頻衛星系統,它將使GIG基礎設施擴展到世界各地。發展GIG涉及許多新技術,如光纖多路復用、空間雷射通訊等技術。在美國2003財年國防預算中,將有25億美元用於太空雷射通訊技術,據稱該技術”具有在任何時間、向在任何地方作戰的美國部隊提供光纖質量的寬頻安全通訊的能力。”

1.3 網路中心戰的主要障礙–不相容性

美國軍方的通訊設備以及各軍種有關係統體系結構間普遍存在的不相容性是實現完全網路中心戰概念的主要障礙。參聯會的指揮、控制、通訊與電腦部負責克服此障礙,措施之一是確保現在採購的系統既與原有系統相容,也與未來系統相容。

2 美國各軍種網路中心戰研究進展

2.1美海軍協同作戰能力(CEC)網

中心設在”宙斯盾”艦上的抗干擾CEC系統,能夠將防空作戰指揮與控制系統、感測器、武器平台以及附近的其它平台連接在一起。 CEC感測器柵格為海軍提供了一幅兵力整體影像,它能夠融合來自多種機載感測器與艦載感測器的目標識別與追蹤數據,極大地提高海軍對戰場的態勢感知能力以及作戰能力。 CEC作戰柵格利用融合資料定位由防空作戰飛機以及艦艇發射的飛彈,使其在離作戰群安全的距離上攔截多個來襲飛彈。 CEC不僅是對網路中心戰的一個重要貢獻,而且為在所有戰區部隊間生成一體化空中圖像奠定了良好基礎。 2001年4月,美國國防部批准將CEC與美陸軍”愛國者”防空飛彈系統連結。據稱,CEC還可與美國空軍的預警機相連,以提供無縫的聯合戰區防空能力。另外,美海軍還計劃建立全球海軍因特網,這是一個能在世界範圍內的海軍部隊之間蒐集、處理與分發戰場數據的資訊柵格。

2.2 美國空軍智慧加油機及多任務指揮與控制飛機

美空軍正在實施智慧加油機計劃,目的是發展下一代空中加油飛機,並使之兼作資訊接收與中繼節點。智慧加油機是實現空中因特網的最佳選擇,因為它們通常是在戰區附近的高空飛行,加裝有關電子設備後即可實現此功能。透過資料鏈間的資訊傳輸裝置,加油機能夠在不同系統,如海軍CEC系統與陸軍改進型位置確定報告系統之間無縫接收與發送資料。智慧加油機將安裝電子掃描陣列,從而成為”鉚釘”聯合電子偵察飛機的遠程天線,從戰區內的多個地點蒐集信息,然後將信息轉發給”鉚釘”聯合電子偵察飛機,由後者進行處理與分發。空中加油機的智慧化主要是在KC-135加油機上加裝ROBE通訊終端。 ROBE是一種可擴展的模組化機載中繼終端,可用於數據中繼,實現網絡中成員間的視距/超視距通信,如實現空中與太空作戰中心指揮人員與戰區指揮人員之間的通信,或更快地向士兵提供重要數據,以便迅速做出決策以及打擊時間敏感目標。 ROBE還能擴大通訊範圍,讓所有士兵分享態勢感知資訊。 2002年10月,美空軍成功展示了智慧加油機概念。裝備ROBE的KC -135加油機從埃格林空軍基地飛向漢斯科莫空軍基地,成功地將來自F-15以及”聯合星”的所有戰術數據傳輸到漢斯科莫空軍基地的作戰中心,而且工作人員不定期對ROBE系統進行復位,以驗證系統可以從地面進行遙控。

美空軍也正在開發多任務指揮與控制飛機,即MC2A飛機。按設想,MC2A不但是感測器節點,也是決策節點,未來將取代E -8C聯合監視目標攻擊雷達系統、機載預警與控制系統飛機以及其它指揮、控制、通信飛機,並將執行空中作戰中心的許多功能。本計畫分三個階段實施:2010年以前開發下一代空-地雷達;2015年左右開發空中搜索雷達和先進戰場管理系統;2020年裝備訊號與情報設備。主要技術挑戰是同時執行地面動目標指示與空中動目標指示兩項任務。 2002年4月,MC2A-X進行了首次飛行,目的主要是檢查通訊設備,包括內部通訊設備、戰術通用資料鏈路以及與其它機載感測器、天基感測器進行通訊的接收與發送設備。首架MC2A飛機預定2012年交付。

2.3 美陸軍與海軍陸戰隊網路建設

美陸軍與海軍陸戰隊正在發展有關”非連續戰場”的學說與策略。非連續戰場是一種沒有前線的戰場,這將使陸軍與海軍陸戰隊充分發揮更小型、更機動以及更具資訊優勢的部隊的威力。

1991年的海灣戰爭暴露了美陸軍通訊系統,主要是調頻無線電通訊系統有缺點,而且作戰部隊的態勢感知與協調能力不足。於是,美陸軍開始了數位化進程,並且取得了滿意的結果。在1994年的一次戰場演習中,一個新型的網路中心機械化步兵營毫不費力地戰勝了非網路對手。美陸軍預計,在網路中心環境中每個武器系統所具有的功能更多,所需數量將更少。 2001年,美陸軍開始開發未來戰鬥系統,目標是為非傳統武器平台裝備先進的感測器與通訊設備,使其成為網路中心化的大系統。

海軍陸戰隊是一體化的陸、海、空部隊。早在1991年海灣戰爭期間,海軍陸戰隊就開始透過電子郵件使部隊實現數位網路化,提高態勢感知能力。目前,海軍陸戰隊正處於向諸如排級、班級等基層擴大資訊網路的過程中,正在開發海軍陸戰隊企業網,該網最終將發展為由地面柵格、空中柵格和太空柵格組成的數位因特網。在阿富汗戰爭中,海軍陸戰隊實施了第一次大規模聯合作戰,空中和地面特種部隊從兩棲海上基地向內地行進長達640km,並立即與敵人交火,沒有任何脫節。依靠各種通訊網絡,特種部隊與在海上和在巴林的指揮所、後勤支援部隊以及盟軍進行聯繫,協調作戰與後勤。這是基於效果作戰的典型範例,透過網路將各種部隊連接在一起,對目標實施威力最大的打擊。

中國原創軍事資源:http://www.81it.com/2012/1127/3320888.html