Recently, the U.S. Air Force released a new version of the Cyber Warfare Doctrine (hereinafter referred to as the Doctrine). The U.S. Air Force has thus become the first military service to publish a new version of the Doctrine after the release of a series of strategic documents by the Cyberspace Command. The U.S. military’s arms expansion in the invisible battlefield is being fully rolled out.
Seeking cyber warfare advantage
The new version of the directive is the second time that the US Air Force has issued a programmatic document in the field of cyberspace, following the first version in 2010 and the revised version in 2011. The directive is mainly divided into three parts, including the threats and challenges faced by the US Air Force in cyberspace, the main functions of cyber warfare forces, and the force structure.
The new version of the order points out that the threats currently faced by the US Air Force are divided into “malicious acts that intentionally damage the Air Force’s network information system” and “unintentional but damaging network activities that cause impacts”, and proposes four challenges in the medium and long term, namely, the commercial technology and outsourced products currently in use have security vulnerabilities, attacks launched in cyberspace are difficult to trace, network connections have security risks of being invaded, and network infrastructure has weaknesses. Foreign media said that the US Air Force deliberately exaggerated the inherent security risks of the network in order to provide an excuse for strengthening the construction of cyber warfare forces and conducting military operations in this field.
The new version of the regulations further clarifies the main functions of the US Air Force’s cyber warfare forces. The new version of the regulations states that the US Air Force’s cyber warfare forces should not only support the US Air Force in conducting cyber warfare offensive and defensive operations in wartime or quasi-wartime states to gain competitive and operational advantages in this field, but also play a role in peacetime non-armed conflict military activities.
The U.S. Air Force’s cyber warfare style is mainly cyberspace offensive and defensive operations and the operation and maintenance of the U.S. Department of Defense information network. Its main combat force is the 16th Air Force. The unit is formed by the merger of the 24th Air Force responsible for cyberspace and the 25th Air Force responsible for global intelligence, surveillance and reconnaissance. It not only undertakes the U.S. Air Force’s cyber warfare and electronic warfare tasks, but also serves as the air force branch of the U.S. Cyber Command.
The new version of the regulations states that according to the U.S. military’s institutional structure of separation of military, political and command, the 16th Air Force is commanded by the U.S. Cyber Command, and the process of carrying out combat operations is formulated by the command. In addition, in order to clarify the relationship between the military forces and functional commands, the Air Force has set up the 616th Operations Command Center, which is responsible for converting the tasks assigned by the U.S. Cyber Command and the needs and cooperation matters of the supported theater into the plans, programs and goals of the Air Force Cyber Warfare Task Force, and connecting with subsequent evaluation work.
Integration into the joint combat system
In addition to the three main parts, the new version of the order also emphasizes that the US Air Force’s cyber warfare forces should be integrated into the “integrated deterrence” and joint combat system. Among them, the 16th Air Force will integrate intelligence reconnaissance and surveillance, electronic warfare and information warfare forces to create an “information environment advantage” for US Air Force operations in order to gain the upper hand in armed conflicts.
The new version of the regulations points out that the US Air Force’s military operations and combat plans in cyberspace should be integrated into the joint force’s combat plans, fully considering cross-agency cooperation, the linkage effects of the physical and cyber domains of the battlefield, and information sharing supported by the national intelligence system.
In order to better integrate into joint operations, the new version of the regulations clarifies the military terminology of the US Air Force’s cyber warfare forces and divides the evaluation of cyberspace combat effectiveness into tactics, campaigns and strategies to reflect the target effects of combat operations at different levels. According to the joint operations regulations of the US Joint Chiefs of Staff, the “blue”, “red” and “gray” combat opponent marking terms are introduced to represent allies, opponents and neutral parties in cyberspace respectively. “Cyberspace key terrain” is used to refer to cyberspace areas that can provide absolute advantages for cyber warfare mission units.
The concept of “cyberspace control” applies the “command and control” of the US military’s joint operations to new areas, and divides the control level into three levels from low to high: “balance”, “advantage” and “dominance” based on the degree of influence on the opponent’s network information field. This is slightly different from the three combat indicators of the US military’s joint forces: “weak”, “medium” and “strong”.
Foreign media said that under the guidance of the U.S. Cyber Command’s “dominate the cyber domain” principle, the U.S. Air Force cyber warfare forces can “match” the terminology and concepts in the joint combat system, which will enable service commanders and joint force commanders to better use the “hybrid warfare” force of cyber warfare forces.
Strengthen construction in multiple areas
With the release of the new version of the regulations, the U.S. Air Force became the first service branch of the U.S. military to revise its cyber warfare guidelines, which also indicates that the U.S. military has extended its efforts to strengthen cyberspace armaments to combat forces.
The report said that at the same time as the US Air Force issued a new version of the regulations, the US Navy announced the strength of the 10th Fleet under the Cyber Command, which has 14,000 active, civilian and reserve personnel, 28 active commands, 40 cyber mission forces and 27 reserve commands around the world. The US Navy’s cyber warfare force is the largest among all branches of the US military, and the US Air Force may follow the Navy’s system to build the force structure of this branch. A series of actions by the US military in the field of cyberspace will contribute to the expansion of arms in this field.
Since the beginning of this year, the U.S. Cyber Command has successively released a series of documents, including the “Mission Statement of the Department of Defense Information Network Joint Force Command” and the “Mission Statement of the Coast Guard Cyber Command”, to enrich the development plan of cyber warfare forces.
The U.S. Cyber Command plans to invite the U.S. Department of Defense’s Joint Interoperability Test Command to serve as the testing agency for the “Joint Cyberspace Operations Architecture” to improve joint combat capabilities in the cyberspace field, and plans to take the lead in hosting the NATO “Locked Shield” cybersecurity joint military exercise in late April. At the same time, the United States also invites India and South Korea to conduct military research in the cyberspace and digital policy field.
In addition, the U.S. Air Force has also implemented the goal of improving cyber warfare capabilities in military academies. The U.S. Air Force University Cyber Academy requires students to take at least three courses related to information and cyberspace, and the Air Force War College has formally incorporated cyber warfare and other teaching content into its general courses.
China Military Network Ministry of National Defense Network Friday, February 24, 2023
The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.
The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.
At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.
Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.
Satellite navigation becomes a “standard” element of the intelligent battlefield
The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.
Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.
The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.
Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.
Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.
Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”
Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.
Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.
In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.
Intelligent battlefield requires satellite navigation to have new “responsibilities”
As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.
In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.
Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.
For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.
The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.
The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.
Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system
Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.
The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:
The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.
The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.
The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.
The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.
(The author is an academician of the Chinese Academy of Engineering)
Above: Schematic diagram of satellite navigation system supporting operations.
Friday, November 12, 2021 // China Military Network Ministry of National Defense Network
The opening of each combat domain will inevitably lead to a new round of changes in combat methods. Driven by the new round of scientific and technological revolution and industrial revolution characterized by intelligence, ubiquity and integration, emerging combat domains such as space, cyberspace, electromagnetic spectrum, and cognitive space have an increasing impact on future operations. The concept of “multi-domain combat” has emerged through cross-domain collaboration with traditional land, sea, and air combat domains to achieve complementary advantages and system efficiency, and is becoming a new combat theory that adapts to the evolution of war forms.
The concept of “multi-domain combat” was first proposed by the US military. Subsequently, the United Kingdom, France, and other NATO member states have developed the concept of “multi-domain combat” in different forms. Israel was the first to apply the concept of “multi-domain operations” in actual combat. The Russian army innovatively proposed its own “multi-domain operations” theory from the perspective of its opponents. At present, the concept of “multi-domain operations” has become an important concept that triggers a new round of changes and transformations in foreign military operations.
The concept of “multi-domain operations” is a new operational concept first proposed by the US Army and jointly promoted by other services based on the changes in operational methods in the information age.
The US military believes that the winning mechanism of the concept of “multi-domain operations” is to form multiple advantages in a specific time window through the rapid and continuous integration of all war domains (land, sea, air, space, and cyberspace) and force the enemy into a dilemma. The U.S. Army proposed to be guided by the idea of ”global integrated operations” and the concept of “cross-domain collaboration”, and strive to form an asymmetric advantage in future wars through “multi-domain operations”. The multi-domain task force (brigade level) will be the core combat force of the U.S. Army to implement multi-domain operations, integrating artillery, land-based tactical missiles, land aviation, cyberspace, electromagnetic spectrum, space and air defense forces, and forming multi-domain combat capabilities through cross-domain mixed formations. The U.S. Air Force actively responded to the concept of “multi-domain operations”, focused on building a joint combat command and control system, proposed the concept of multi-domain command and control, and focused on developing advanced combat management systems, sinking multi-domain operations to the tactical level to improve the agility and cross-domain collaboration capabilities of future operations. The U.S. Navy has absorbed the core idea of the “multi-domain combat” concept, proposed to build an “integrated global maritime military force”, focused on developing the “distributed lethality” combat concept, and proposed to strengthen the design and exercise of global combat.
The U.S. Department of Defense and the Joint Chiefs of Staff have gathered the ideas and mechanisms of the new combat concept of “multi-domain combat” of the military services, and proposed the top-level concept of “global combat”, aiming to form a new round of asymmetric advantages, lead the transformation of combat methods and military transformation. The global combat concept is centered on joint global command and control, aiming to integrate traditional combat domains with space, cyberspace, electromagnetic spectrum, air defense and anti-missile and cognitive domain capabilities, and compete with global competitors in a full-spectrum environment. It is reported that the concept is still in its infancy and is undergoing theoretical deepening, experimental verification, exercise evaluation and doctrine transformation, and is constantly enriching its conceptual core through multiple work lines. Among them, the US Joint Chiefs of Staff leads the transformation of concepts into policies, doctrines and requirements; the Air Force promotes the concept to maturity by developing advanced combat management systems, the Army by implementing the “Convergence Project”, and the Navy by launching the “Transcendence Project”. The US theater supports the development of multi-domain combat concepts and multi-domain combat modes through war games, project demonstrations and joint exercises.
Based on the perspective of reference and integration, NATO countries such as the United Kingdom actively participated in the development and testing of the US military’s “multi-domain operations” concept, and revised the operational concept in combination with actual conditions.
The British Ministry of Defense proposed the concept of “multi-domain integration”, which is consistent with the concept mechanism of the US military’s “multi-domain operations”, focusing on integrating operations in different domains and at different levels, preparing for the development of a joint force and maintaining competitive advantages in 2030 and beyond. The British Ministry of Defense pointed out that “integrating capabilities in different domains and at different levels through information systems, creating and utilizing synergies to gain relative advantages is the winning mechanism of the multi-domain integration concept.” The concept emphasizes gaining information advantages, shaping strategic postures, building a multi-domain combat environment, and creating and utilizing synergies. The concept raises four specific issues: how to provide an advantage over rivals by 2030 and beyond through “multi-domain integration”; how to achieve cross-domain integration of the Ministry of Defense in cooperation with allies, governments and civilian departments; how to solve the policy issues involved in the concept of “multi-domain integration”; how to promote research on defense concepts, capabilities and war development. With this as a starting point, the British Army has launched a multi-faceted, step-by-step, and systematic military transformation.
Other NATO countries are also jointly developing and innovatively applying the concept of “multi-domain operations” to varying degrees, and promoting the transformation and implementation of the concept of “multi-domain operations” in the form of joint exercises and allied cooperation. In 2019, the US Army led the “Joint Operational Assessment (2019)” exercise, which aimed to assess the combat capabilities of the Indo-Pacific Command’s multi-domain task force. Forces from France, Canada, Australia, New Zealand and other countries formed a multinational task force to participate in the exercise, which assessed the multi-domain combat concepts, formations and capabilities in the combat environment from 2025 to 2028. In October 2019, the NATO Joint Air Power Competition Center held a meeting on “Shaping NATO’s Future Multi-Domain Combat Posture”. In order to shape NATO’s future multi-domain combat posture, it explored and studied military thinking, multi-domain combat forces, multi-domain combat operations and training joint forces. In June 2020, the NATO Command and Control Center of Excellence released a white paper on the Multi-Domain Operations Command and Control Demonstration Platform, which aims to respond to threats and challenges in multiple operational domains with a decentralized, data-driven integrated environment by bridging the command and control gap between technology and operators, tactics and campaign levels, and academia and the military.
Based on the perspective of its opponents, the Russian army seeks a way to crack it on the one hand, and on the other hand, based on the winning mechanism of “cross-domain operations”, it combines its own characteristics to innovate combat theories
After the US military proposed the concept of “multi-domain operations”, the Russian army actively sought a way to crack it based on its own security interests. In December 2020, the Russian magazine “Air and Space Power Theory and Practice” published an article titled “Argument for the Use of Aviation Power to Break the Enemy’s Large-Scale Joint Air Strikes in Multi-Domain Operations”, which stated that large-scale joint air strikes are the initial stage for NATO countries to implement multi-domain operations. Large-scale coordinated operations will be carried out against Russia’s most important key facilities, creating conditions for subsequent decisive actions by NATO joint armed forces. The Russian army must comprehensively use the reconnaissance and strike system composed of the aviation forces of the theater forces to cause unbearable losses to the enemy, break its large-scale joint air strikes, and force NATO’s initial stage goals of multi-domain operations to fail to be achieved, causing NATO’s political and military leadership to abandon the attempt to continue to implement multi-domain operations.
On the other hand, the Russian army proposed the “military unified information space” theory for the new combat method of “cross-domain combat”. Its core idea is: to use modern information technology to establish a networked command and control system to achieve the deep integration of the army’s command, communication, reconnaissance, firepower, support and other elements, thereby improving the battlefield situation perception capability and combat command efficiency. The Russian military continues to promote theoretical development around the realization of cross-domain combat capabilities: first, relying on the unified information space of the army to establish a network-centric command model; second, introducing artificial intelligence into the command and control system to achieve the unification of the physical domain and the cognitive domain; third, developing network, space and underwater combat forces to gain advantages in emerging combat fields; fourth, establishing a unified military standard system to enhance the interoperability of forces and weapons. The Russian military has not completely absorbed the Western concept of “multi-domain combat”, nor has it completely denied the beneficial elements of the Western “multi-domain combat”, but has combined its own absorption of some advanced combat ideas of “multi-domain combat” to enrich its own unique combat theory.
Based on the perspective of combat needs, Israel took the lead in applying the concept of “multi-domain combat” on the Gaza battlefield, and used the multi-domain combat force “Ghost” as the main combat force.
The Israeli army believes that multi-domain joint combat is an inevitable trend in the development of future wars. For Israel, which mainly relies on ground combat, by integrating land, air, cyberspace, electromagnetic spectrum and sea elite forces, it can quickly identify, track and destroy enemy targets, and further improve the lethality of the Israeli army. This concept is in line with the concept of “multi-domain combat” proposed by the US Army. Under the guidance of this concept, the Israeli army formed the “Ghost” force and took the lead in actual combat testing on the Gaza battlefield. In the Israeli-Palestinian conflict in May 2021, Israel used the “Ghost” combat battalion for the first time to implement multi-domain operations in the code-named “Wall Guardian” operation against Hamas, which was called the world’s first “artificial intelligence war”. The Israeli army mainly relied on machine learning and data collection in this war, and artificial intelligence became a key component of combat and a force multiplier for the first time. In the operation to clear the Hamas tunnel network, the Israeli army used big data fusion technology to pre-identify and target, and then dispatched 160 fighter jets to carry out precise strikes, which greatly destroyed the Hamas tunnel network and achieved air control over the ground; in the attack on Hamas rocket launchers, the Israeli fighter pilots, ground intelligence forces and naval forces used command and control systems to quickly find targets and carry out real-time precise strikes, quickly shaping a favorable battle situation.
According to the Israeli army, the “Ghost” force is very different from traditional forces in terms of combat organization, weapon configuration and combat methods. The unit is temporarily organized under the 98th Paratrooper Division of Israel, including the brigade reconnaissance battalion, the ground forces of the Paratrooper Brigade, the armored brigade, the engineering corps, the special forces, the F-16 squadron and the Apache helicopter, as well as the “Heron” drone and other multi-domain combat forces. Through the use of multi-domain sensors and precision strike weapons, cross-domain maneuvers and strikes are achieved, “changing the battlefield situation in a very short time”. The battalion was established in July 2019. Although it is a ground force, it integrates multi-domain combat forces such as air strikes, network reconnaissance, precision firepower, electronic confrontation, intelligence interconnection and maritime assault. It is a battalion-level combat unit with division-level combat capabilities. After its establishment, the unit has continuously improved its multi-domain integration and cross-domain strike capabilities through exercises, and has quickly exerted two major functions with the support of the newly developed artificial intelligence technology platform: one is to serve as an elite weapon on the battlefield and fight in an asymmetric manner; the other is to serve as a test unit to continuously innovate and develop new combat concepts, combat theories and technical equipment, and to promote successful experiences to other units at any time.
The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.
Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations
The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.
Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.
Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.
Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.
Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation
The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.
Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.
Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.
Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.
Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations
The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.
Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.
Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.
Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.
Operational coordination is a key element in achieving systemic operations, releasing overall effectiveness, and achieving operational objectives in modern warfare. In recent years, with the breakthrough progress of military science and technology represented by artificial intelligence, the enabling and efficiency-enhancing role of science and technology has become more prominent. While profoundly changing the form of war and combat style, it has also spawned a new mode of operational coordination – autonomous coordination. At present, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development trend of autonomous coordination, and thus promote the accelerated transformation and upgrading of combat methods.
Transforming towards intelligent empowerment and autonomous collaboration
Future wars will be all-round confrontations between the two sides using “people + intelligent equipment”. Limited by military technology, system platforms, combat capabilities, etc., traditional combat coordination has been difficult to adapt to the modern battlefield where opportunities are fleeting due to limitations such as periodic solidification and low fault tolerance. With the strong support of advanced technical means such as artificial intelligence and big data, the autonomy and automation level of combat coordination will be greatly improved, and autonomous coordination under intelligent empowerment will also become the key to defeating the enemy.
Wide-area ubiquitous collaboration. In recent years, the in-depth development of communication technology and intelligent technology, the accumulation of data, algorithms, and computing power have promoted the interconnection and aggregation of people, machines, objects, and energy, and extended the military Internet of Things to many fields such as situational awareness, command and control, information and fire strikes, and after-sales support. While promoting the iterative upgrade of combat capabilities, it also provides more options for modern combat collaboration. It can be foreseen that the military Internet of Things will shine on future battlefields. It is not only a key infrastructure to support combat operations, but also a joint hub to maintain combat collaboration. With this as a basis, it will give rise to ubiquitous operations with wide-area dispersion of forces, organizational modules, and highly coordinated actions, which are omnipresent, ubiquitous, and uncontrolled and autonomous.
Deep collaboration between humans and machines. In the Nagorno-Karabakh conflict, the Azerbaijani army built a strong battlefield advantage with the advantage of drones, and to some extent, it also announced the debut of “robot war”. In future wars, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are accelerating from backstage support and guarantee to front-line combat, and are beginning to play the “protagonist” of the battlefield. Compared with traditional combat coordination, manned and unmanned intelligent coordination presents the characteristics of “decentralization” of combat command, “de-division of labor” in the combat process, high-end skill operation, and fuzzification of the front and rear, and emphasizes human-machine collaboration and algorithm victory. Especially in recent years, intelligent unmanned clusters have emerged and begun to strongly impact the modern battlefield. In the face of these new situations and changes, cluster formation algorithms, formation control algorithms, and complex scene optimization algorithms should be used in a coordinated manner to promote unmanned and manned networking communications and intelligent coordination, promote the integrated operation of intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerate the generation of precise enemy comprehensive combat capabilities.
Digital intelligence drives collaboration. The traditional combat coordination model under progressive command is no longer able to adapt to the multi-dimensional fast pace of modern warfare. In future wars, intelligence is the key and data is king. The deep integration of big data, cloud computing, and artificial intelligence has realized the storage, analysis, integration, and application of massive battlefield data, making command and control more scientific and combat coordination more efficient. With powerful resource integration, computing processing, and data analysis capabilities, battlefield intelligence can be quickly integrated, battlefield situation can be perceived in real time, coordination plans can be efficiently formulated, and threat levels can be instantly assessed. The prediction of combat operations, the dissection of typical scenarios, the deployment of combat forces, and the allocation of combat resources can be coordinated as a whole, thereby comprehensively improving the comprehensive quality and efficiency of command and control, firepower strikes, and comprehensive support, and promoting revolutionary changes in combat coordination.
Evolving towards multi-domain linkage and autonomous collaboration
In future wars, the participating forces will be complex and diverse, weapons and equipment will be matched at different levels, and combat methods will be used in a mixed manner, showing distinct characteristics such as intelligent dynamic dispersion of combat command, intelligent wide-area deployment of combat forces, and intelligent dynamic differentiation of combat tasks. It can be foreseen that multi-domain linkage and autonomous coordination will become an important component of combat coordination.
System self-reshapes coordination. In future wars, the multi-domain battlefield space will be a combination of virtual and real, various military operations will interact, and constraints and collaboration will be randomly transformed. Only by adopting an engineered and systematic organizational model can we adapt to the complex multi-domain coordination needs. The essence of this coordination model is to form a wide-area holographic support framework for system self-reshape coordination. Specifically, it is to highlight the concept of system combat, and to solve the practical contradictions such as organizational system construction, institutional mechanism establishment, and coordination rule formulation from an overall perspective; to pay more attention to the system integration effect, and to achieve beyond-visual-range combat and cross-domain coordinated combat of combat units from a wide area; to emphasize efficient and flexible command, to refine the command relationship from various dimensions, and to clarify the command responsibilities; to pay more attention to data precision drive, to integrate network system platforms at all levels, and to establish a dynamic optimization network for detection, control, attack, evaluation and protection tasks. Once this coordination model is formed, it will undoubtedly be able to study and predict typical confrontation scenarios, dynamically select action coordination links, and plan combat operations in various fields in an integrated manner according to the combat environment, combat opponents, and combat tasks.
Tactical adaptive coordination. Local wars and conflicts in recent years have repeatedly shown that the complexity and systemicity of combat coordination have increased exponentially due to the extension of combat data information to the tactical level. Only by achieving efficient processing, integration and sharing of combat data information can adaptive and autonomous coordination between combat users be guaranteed. This coordination model pays more attention to scientific planning and innovative means to form a universal battlefield situation map with full-dimensional coverage, support hierarchical, leapfrog and cross-domain sharing and collaboration among users of all levels and types deployed in a wide area, realize the common perception of battlefield situation by command elements and combat units, and ensure self-synchronous operations within the framework of unified strategic intent, campaign guidance and coordination plan. This coordination model emphasizes the vertical integration of strategy, campaign and tactics, and the horizontal integration of land, sea, air, space and electricity, provides strong information sharing services in detection, early warning and surveillance, and relies on information media to promote the extension of campaign-level joint to tactical-level joint. This coordination model highlights the standardized operation of command operation and force application, and promotes the connection of combat command levels, cross-domain linkage, element interaction and situation sharing with the help of cutting-edge technologies such as big data and cloud computing, realizes intelligent coordination between command systems, weapon platforms and sensors, and implements the key to winning by defeating slowness with speed.
Advantages and intelligence complement and synergy. In future wars, combat operations in space, network and other fields will be deeply integrated into the traditional battlefield space, requiring higher standards and higher requirements for planning and design of the overall combat situation. Only by clarifying the complementary relationship of advantages in various combat domains and the proportion of input and effectiveness, and then sorting out the operational relationship of cross-domain coordination, can we bridge the gap in field operations and achieve complementary advantages on the multi-dimensional battlefield. In essence, this is also a concentrated reflection of the view of war efficiency. From another perspective, in a war, when the local advantage of the battlefield is not obvious or there is a hidden crisis, by gaining local advantages in other fields to make up for it and achieve comprehensive advantages, the overall goal of winning can also be achieved. In the future information-based and intelligent wars, this point will be more prominent and more complex, requiring comprehensive measures in the fields of military, politics, public opinion, legal theory, psychology, diplomacy, etc., and leveraging each other to fully release the maximum combat effectiveness; requiring traditional forces and new forces to work closely together, relying on the network information system to build an integrated combat system, and maximizing overall effectiveness through advantage synergy.
Transition to Dynamically Coupled Autonomous Collaboration
In the era of artificial intelligence, along with the profound changes in information technology and weapons and equipment, combat operations place more emphasis on breaking up traditional force groupings, connecting traditional platform functions, breaking traditional offensive and defensive boundaries, and achieving full-time dynamic control of combat operations through dynamic coupling and autonomous coordination.
Dynamic focal point coordination. In future wars, the enemy-to-enemy confrontation will be more intense, and the battlefield situation will be more changeable. The previous static, extensive, and step-by-step coordination methods will be difficult to adapt. It is necessary to pay close attention to the key nodes of the operation. On the basis of keeping a close eye on the overall situation, anchoring the combat mission, and focusing on the combat objectives, we must assess the situation and seize the opportunity. According to the predetermined coordination rules, we can flexibly change the coordination objects, flexibly adjust the coordination strategies, and autonomously negotiate and coordinate actions. It should be noted that this coordination method based on key combat nodes particularly emphasizes that combat forces transcend structural barriers and organically aggregate combat effectiveness. Through the flexible structure of the collaborative organization, self-coupling and autonomous elimination of contradictions and conflicts, bridging combat gaps, and promoting the precise release of the combined forces of the combat system.
Dynamic control and coordination. The battlefield situation in future wars is changing rapidly, and the combat process is often difficult to advance according to the predetermined combat plan, and combat operations have great uncertainty. Invisibly, this also requires us to break through traditional combat thinking, keep a close eye on the changes in the battlefield situation, and implement immediate, flexible and autonomous coordination of the combat process. This collaborative method, through real-time assessment of battlefield situation changes, the degree of damage to enemy targets, and the scale and efficiency of combat operations, can achieve rapid command and control, precise coordination in force projection, fire support, and comprehensive support, and always grasp the initiative on the battlefield. This collaborative method requires relying on advanced intelligent auxiliary means to quickly divide the combat phase, predict the duration of combat operations, analyze the overall deployment of combat forces, calculate the allocation of combat operation resources, and accurately control the decision-making cycle and combat rhythm, and accurately coordinate the actions of troops and the combat process to ensure that various randomness and uncertainties in combat can be effectively dealt with.
Dynamic response coordination. The operational mechanism of future wars is unpredictable. The deep effects of asymmetric operations, hybrid games, and system emergence will inevitably lead to various emergencies in the implementation of the planned operational plans. To this end, dynamic coordination for emergencies is an effective strategy to resolve the above-mentioned contradictions. This coordination method emphasizes the dynamic adjustment of coordinated actions according to different situations. When an emergency occurs on a local battlefield or in a local action, which has little impact on the overall operation and has sufficient time, the combat system automatically responds, partially adjusts the combat deployment and combat operations, and ensures the achievement of the expected combat objectives. When multiple urgent and slow situations coexist on the battlefield and partially affect the battlefield situation, the combat actions are dynamically and immediately coordinated according to the principle of first urgent and then slow according to the specific situation, so as to promote the development of the war in a direction that is beneficial to me. When there are multiple major unexpected situations or unexpected changes in the overall development of the war situation, coordination is carried out according to the principle of first major direction and then minor direction, and new coordinated disposal measures are quickly generated to effectively respond to various emergencies on the battlefield.
Since the 21st century, with the deepening of the world’s new military revolution, the world’s military powers have put forward a series of new operational concepts and continuously improved them in war practice, thus driving the accelerated evolution of war. With the rapid development of information technologies such as cloud computing, blockchain, artificial intelligence, and big data, and their widespread application in the military field, people’s understanding of war has gradually changed from summarizing actual combat experience to studying and judging future wars. At present, as the source of military capability building, the strength of operational concept development capabilities will directly affect the seizure of victory opportunities. In particular, the vigorous development of the world’s new military revolution is calling for innovation in operational theory all the time. Only by developing new operational concepts and designing future wars with a forward-looking vision can we gain the initiative in military struggle preparation.
The concept of combat fundamentally solves the problem of how to fight a war.
First-rate armies design wars, second-rate armies respond to wars, and third-rate armies follow wars. The so-called “real wars happen before wars” means that before a war starts, the theory, style, and method of fighting have already been designed. How can we not win if we fight according to the designed war? The key to designing a war is to design and develop new combat concepts based on understanding the characteristics and laws of war, promote innovation in combat styles and tactics, and fundamentally solve the problem of “how to fight a war.”
In designing wars, theories come first. In recent years, the U.S. military has proposed new concepts such as “network-centric warfare”, “air-sea integrated warfare” and “hybrid warfare”, and the Russian military has proposed theories such as “non-nuclear containment strategy”, “strategic air-space campaign” and “national information security doctrine”, reflecting that the world’s military powers are vigorously studying operational theories and seizing military commanding heights. To a certain extent, operational concepts are the “organizational cells” for the formation of operational theories. Without a perfect concept generation capability, it is difficult to give birth to advanced theories. When an operational theory is proposed, it is necessary to develop relevant operational concepts so that the operational theory can be “sunk” and visualized, and better improved and transformed into military practice. When there is no operational theory concept, operational concept innovation can provide “raw materials” for the study of operational theories. The military field is the most uncertain field, and people’s understanding of war is constantly evolving. However, operational theory innovation cannot wait for the understanding to mature before starting, but needs to be based on the existing understanding, through active development and innovation of operational concepts, constructing future operational scenarios, exploring future winning mechanisms, and guiding and guiding military practice, in order to seize the initiative in war. Therefore, operational concept innovation is becoming a strategic fulcrum and lever for military construction and development.
The development of operational concepts focuses on designing core operational concepts. The core operational concept is the nucleus and embryo of the operational concept, which reflects the essential requirements of operations and contains the “genetic genes” for the growth of operational concepts. The entire concept system is derived and developed from this. At present, the understanding of the winning mechanism of informationized and intelligent warfare is becoming clearer, and it is time to focus the design of war on the development of major operational theories and key operational concepts.
Operational concept is an abstract expression of operational thinking.
The term “operational concept” originated from the US military. It is a description of how to fight in the future and is increasingly becoming an important tool for promoting the development of the military. The US Army Training and Doctrine Command Concept Development Guide points out that the operational concept is a concept, idea, and overall understanding. It is based on the inference of specific events in the combat environment. In the broadest sense, it outlines what will be done and describes how to fight in more specific measures. The US Marine Corps Combat Development Command Operations Development and Integration Directive points out that the operational concept is an expression of how to fight, used to describe future combat scenarios and how to use military art and scientific capabilities to meet future challenges. The US Air Force Operational Concept Development Directive points out that the operational concept is a conceptual description at the level of war theory, which realizes the established operational concept and intention through the orderly organization of combat capabilities and combat tasks.
In summary, the operational concept can be understood as an abstract cognition of operational ideas and action plans that is refined for specific operational problems at present or in the future. Generally speaking, the operational concept includes three parts: the first is the description of the operational problem, that is, the background of the operational concept, the operational environment, the operational opponent, etc.; the second is the description of the solution, that is, the concept connotation, application scenario, action style, winning mechanism, capability characteristics and advantages, etc.; the third is the description of capability requirements, that is, the equipment technology, basic conditions, and implementation means required to implement the operational concept. It can be seen that the operational concept should have the characteristics of pertinence, scientificity, adaptability and feasibility, and its connotation and extension will be constantly adjusted with the changes in factors such as strategic background, military policy, threat opponent, time and space environment, and capability conditions.
In a sense, operational concepts are actually transitional forms of operational theories, and their ultimate value is to guide military practice. The purpose and destination of developing new operational concepts is to tap into and enhance the combat effectiveness of the military. Only by transforming operational concepts into operational regulations and operational plans can their value be fully realized.
Innovation in combat concepts drives changes in combat styles
Since the beginning of the 21st century, the world’s military powers have, in accordance with national strategic requirements and in response to new threats and challenges, developed new operational concepts as a key means of transforming military capabilities, promoting changes in operational styles, and seeking to gain the upper hand in future battlefields. In order to further strengthen their military advantages, the world’s military powers are accelerating the introduction of a series of new operational concepts.
The US military has actively seized the opportunities brought about by scientific and technological progress, comprehensively used cutting-edge technologies such as new-generation information technology, artificial intelligence technology, unmanned autonomous technology, and proposed a series of new combat concepts such as mosaic warfare, multi-domain warfare, distributed lethality, decision-center warfare, and joint global command and control, promoting fundamental changes in combat thinking, combat style, combat space, and combat systems.
Unlike the U.S. military, the Russian military has achieved iterative innovation in operational concepts in military practice. Recently, the Russian military has been committed to promoting the construction of joint combat capabilities, accelerating the development and deployment of new unmanned equipment, focusing on building advantages in the network information battlefield, and constantly enriching the connotation of its traditional operational concepts, integrating them with new operational concepts such as hybrid warfare and mental warfare to guide war practice.
In general, in recent years, the new operational concepts proposed by the world’s military powers are driving profound changes in combat styles. Their capabilities, characteristics and advantages are mainly reflected in the following five aspects: First, the unmanned combat equipment. The proportion of unmanned equipment systems based on the new operational concept has increased significantly, and manned-unmanned collaborative combat has become one of the main combat styles, forming an advantage of unmanned over manned; second, the deployment method is decentralized. The force deployment based on the new operational concept is distributed, and the systems are interconnected and interoperable, forming an advantage of division over combination; third, the kill network is complicated. The kill network based on the new operational concept has more diverse functions. A single system can perform multiple tasks, and its failure has little impact on the combat system, forming an advantage of many over single; fourth, the response time is agile. The new operational concept emphasizes quick battles and quick decisions, taking the initiative to catch the enemy off guard, forming an advantage of fast over slow; fifth, the combat field is multidimensional. The new operational concept pays more attention to multi-domain linkage, expanding the battlefield from the traditional land, sea and air to the electromagnetic, network and cognitive domains, forming an advantage of invisible over visible.
The development of combat concepts should adhere to the systematic design approach
Using operational concepts to guide military force construction is a common practice among the world’s military powers. In comparison, the US military’s operational concept development mechanism is relatively complete, and a relatively complete operational concept development system has been established, consisting of concept types, organizational structures, normative standards, and support means.
In terms of concept types, the U.S. military’s combat concepts can basically be divided into three categories: First, a series of combat concepts developed by each service, mainly from the perspective of the service, to study potential enemies and future battlefields, redefine combat styles, and seek new ways to win. Second, a series of joint combat concepts developed by the Joint Chiefs of Staff, mainly composed of three levels: top-level concepts, action concepts, and supporting concepts. Third, combat concepts developed by academia, think tanks, etc., the number of such combat concepts is not as large as the first two categories, but it is still an important part of the combat concept system. Through this system, the U.S. military has implemented the grand military strategy through combat concepts layer by layer into various combat operations, various combat capabilities, and various types of weapons and equipment performance for the troops, guiding the construction of joint forces and various services.
In terms of organizational structure, taking the development of joint operational concepts as an example, the US military has established a working system consisting of five types of institutions. The first is the Joint Concept Working Group, whose main responsibility is to review the overall issues of the concept outline and concept development; the second is the Joint Concept Steering Committee, whose main responsibility is to supervise and guide the concept development plan; the third is the core writing team, whose main responsibility is to transform the original ideas in the concept outline into joint operational concepts; the fourth is the concept development team, whose main responsibility is to provide operational concept development methods and plans; the fifth is the independent red team, whose main responsibility is to conduct independent evaluations to judge the rigor and scientificity of the concept.
In terms of norms and standards, the U.S. military has a complete system of institutions to constrain and guide the development of joint operational concepts, making them standardized, standardized, and procedural, so as to manage the entire chain of concept development, which is mainly reflected in a series of directives of the Chairman of the Joint Chiefs of Staff and joint publications. For example, the “Joint Concept Development and Implementation Guide” aims to establish a governance structure for joint concept development, clarify the framework for joint operational concept planning, execution, and evaluation, and promote the implementation of joint operational concepts; the “Joint Regulations Preparation Process” aims to standardize the preparation process of joint regulations and provide a clear process framework for converting operational concepts into operational regulations.
In terms of support means, the design, development and verification of operational concepts is a systematic project that cannot be separated from the support of various development tools and means. For example, tools such as the DODAF2.0 model, IDEFO model and SYSML modeling language can provide standardized structured analysis models and logical description models for operational concept designers; model-based system engineering methods can provide operational concept designers and evaluation and verification personnel with capability models of equipment elements in operational concepts for designing and building operational concept frameworks. The U.S. military’s joint operational concept development uses network-based digital software with strong interconnection capabilities. All institutions involved in the development can share information in real time to improve development efficiency.
The development of combat concepts requires collaboration among multiple parties
Developing operational concepts is a multidisciplinary and multi-field task that involves many fields such as military science, philosophy, operations research, and systems science. It requires collaboration among multiple parties to ensure that it is both advanced and forward-looking in theory and applicable and feasible in practice.
Establish a small core and large peripheral research team. The department initiating the development of the operational concept should give full play to its leading role, coordinate and dispatch the research work from a global perspective; establish a joint research and development team, give full play to the collective wisdom, and widely obtain various new ideas, new methods and new viewpoints on the research of operational concepts from all parties; establish a cross-domain and cross-departmental expert committee to supervise, review and guide related work from multiple angles.
Form a multi-departmental working mechanism. To ensure smooth communication and efficient operation among departments, we must first clarify their respective tasks and responsibilities. For example, the concept initiating department is responsible for overall planning and implementation, the laboratory is responsible for technical verification, the industrial department is responsible for equipment research and development, and the combat troops are responsible for actual combat testing. Secondly, relevant normative documents should be formulated to ensure that all work has rules to follow and is carried out in an orderly manner, providing institutional guarantees for the development of combat concepts. Finally, it is also necessary to establish demand traction mechanisms, collaborative research mechanisms, iterative feedback mechanisms, etc., to open up the link from research and development to practical application of combat concepts.
Promote the organic combination of theory and practice. Only through the iterative cycle of “design research-deduction verification-actual troop test” can the operational concept be gradually adjusted, optimized and improved, and the development of war theory can be driven. Therefore, the development of operational concepts should pay special attention to the combination of theoretical innovation and practical application, and achieve the fundamental purpose of driving the generation of new quality combat power through the mutual drive of theory and practice. Specific methods include timely incorporating mature operational concepts into operational regulations, compiling training outlines or teaching materials accordingly, and gradually promoting them to troops for use; organizing relevant exercises or tests to test the maturity and feasibility of operational concepts under conditions close to actual combat, and finding and solving problems; using the capability indicators determined by the operational concept as a reference for equipment demand demonstration, driving the development of equipment technology, and promoting the improvement of combat capabilities.
The rapid development of science and technology in the new era has brought many new opportunities and challenges to the construction of military capabilities. The development of new operational concepts will help us to seize the military opportunities brought by scientific and technological progress, actively respond to the threats and challenges formed by scientific and technological development, and timely grasp the direction and laws of the evolution of war forms, which can provide important support for leading future war styles and seizing the first chance to win. At present, the international security situation is complex and changeable. To win the future information war, we need to take the development of operational concepts as the origin of national defense and military construction, actively carry out military technological innovation, promote the upgrading of weapons and equipment, achieve leapfrog development, and thus lead the trend of the new military revolution.
(Author’s unit: Second Academy of China Aerospace Science and Industry Corporation)
At present, the new military is exciting the rapid development of scientific and technological revolution and revolution. Revolutionary technologies represented by artificial intelligence promote the transformation of war forms to intelligent warfare with artificial intelligence. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. Military training, as a pre-practice of military warfare, should promptly mark new goals, realize the transformation to “intelligence”, accelerate “intelligence” training, continuously improve the military science and technology level and “intelligence content”, and comprehensively upgrade combat capabilities to accelerate generation.
Keep up with the changes in the form of war and upgrade the concept of transformation
As the scale of the military and the number of equipment are no longer the key to victory in war, upgrading war thinking and training concepts is imperative. We should take a more proactive attitude and a more open vision, keep up with the trend of focus development, and strive to create a new thinking for military victory.
Grasp the inherent cause and effect of intelligent manufacturing victory. The winning chart is a manifestation of the inherent laws of war. Driven by the intelligent revolution, driven by strategic competition, and driven by war practice, the advantages of information-generated intelligence and intelligence-enabled are increasingly evident, reflected in various links such as actuarial and joint systems. A certain flow chart, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, further training thinking remains at the mechanization level. We should use the courage of self-revolution to trigger a “headache storm”, upgrade standardized combat, strengthen the theoretical research of standardized training, and use “intelligence” soldiers to deal with mechanized, informationized, and standardized combat issues, organically connect with fighting, design wars with technology, and practice wars with intelligent means, so as to clarify the fog of war.
At present, the military implements training mobilization with a focus on transformation, trying to further widen the generation gap in combat power with other countries’ armies. Once the generation gap in the military is widened, it will be difficult to recover. If you can’t keep up with it, you may be completely controlled by others. Only by keeping an eye on the opponent can you surpass the opponent. We must stand out in military training, and improve the level of military transformation and non-target combat capabilities in training.
Strengthen the target positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat effectiveness has leaped from mechanical energy type and information energy type to type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and the cutting-edge competition in high-end and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological armament, it will only be at the forefront of low-level intelligence. Therefore, we should firmly establish the goal of winning by science and technology, firmly grasp the “life gate” and “key point” of winning future wars, greatly improve the connotation of military science and technology, increase the practical application of new means such as artificial intelligence, cloud computing, and big data, unveil the mysterious veil of focusing on war, and control the initiative of future wars.
Keep up with the changes in scientific and technological development and build strong conditions for automation transformation
Automation training conditions are the basic training support for organizing and implementing automation training, and are directly related to the quality and effectiveness of automation training. To build an automated training environment, we need to focus on the development of intelligent concepts, intelligent technology, and automated operations, and continue to work hard in building environments, innovating training methods, and cultivating new talents.
Construct a battlefield environment. Modified operations, training space is more convenient, the field is wider, and the methods are more diverse. The battlefield environment construction under easy mechanization and information conditions can no longer support the needs of modified training. We should highlight the elite confrontation, rapid confrontation, and linkage confrontation supported by the modification conditions, tap into the existing existing training equipment and field functions, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and network. For example, digital maps, virtual reality and other technologies are used to simulate and display visualized three-dimensional landforms, weather and complex combat scenes, and build rich and rich combat scenes.
Develop advanced training methods. Advanced training methods help improve training results. Transformation of military training should transform the key factor of “data-centric” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration to form a “pool” covering strategy, campaign, and tactics, and immediately command organizations to end individual soldiers; develop data intelligent analysis tools, use training cloud computing, artificial intelligence and other advanced technologies to integrate and mine data operations; develop intelligent training systems, increase the construction of simulation methods such as simulation, war game confrontation, network confrontation, and intelligent judgment, and overall promote the transformation and upgrading of military methods to “technology +” and “intelligence +”.
Cultivate new military talents. No matter how the war evolves, people are always the real controllers and final decision-makers of war. The quality of the standardization level of military personnel must determine the quality of customized training. To win the information-based local war with standardized characteristics, we should accurately meet the future military needs, strengthen the transformation of traditional combat talents, make good use of the power resources of “technology +”, “maker +” and “think tank +”, promote the integrated development of “commanders”, “combatants” and “scientists” and “technologists”, form a professional and standardized new military talent group, and realize the intelligent interaction between people and equipment, the deep integration of people and environment, and the extensive adaptation of people and environment.
At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream. On the one hand, they support standardized military training, and on the other hand, they are constantly tested and improved. To this end, we should make full use of the war-building and preparation strengthening mechanism, vigorously promote the “+ intelligence” of existing equipment and the “intelligence +” construction of the new generation of equipment, adhere to the research, construction, use and modification, break through the customization level of weapon upgrades and equipment through training practice, and finally make efforts to achieve a multiplier effect. The entire weapon equipment goes from “weak intelligence” to “strong intelligence” and then to “super intelligence” to better support standardized military training.
Keep up with the changes in war practice and innovate customized training models
The military style training model has been developed many times and has moved from theoretical exploration to battlefield practice. In recent local wars, standardized operations have begun to show their edge, and thus have shown the potential to change the “rules of the game” of war. The combat style has changed, and the training model must also change accordingly and actively change. We must keep a close eye on the characteristics of war, innovate military training models, and fully rehearse the next war in military training.
We must base ourselves on the basic point of fighting high-end wars with strong enemies, highlight the essence of breaking high-end wars, continue to deepen research on strong enemies, and use the development of new combat concepts and training theories as a starting point to clarify the laws of war development and key points for winning. Predict future wars and design combat styles from the perspective of intelligence and innovation to study the unique and wonderful ways to defeat the enemy. Emphasize key actions such as joint anti-missile defense, organize strategic and campaign training tactics to defeat the enemy with disadvantages, organize non-combat training to win, and organize training to fight against new domains such as the far sea and the far domain. Seize the high position of future wars in innovative training and form a combat capability of “superior intelligence” and “superior skills” against powerful enemies.
Emphasize the research and training of new quality forces. The transformation of war from winning by force and equipment to winning by intelligence has made new combat forces a new growth pole of combat effectiveness. According to information, the US military plans to standardize 60% of ground combat platforms by 2030, and the Russian army expects that more than 30% of key weapons and equipment will be used in the battlefield by 2025. As the army’s new equipment with intelligent attributes increases, it is necessary to take the path of actual combat training with new combat forces as the leading element, highlight the formation and combat use of new combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and victory, strengthen new styles of training such as unmanned combat, promote the combat system of new combat forces, and make new combat power resources move and come alive.
Highlight intelligent command research and training. How to change the form of war and command, ability is always the key ability to win the battle. As the degree of war continues to increase, planning and commanding based on experience and personal wisdom alone can no longer adapt to any rapidly changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, planning, command and control. Commanders and command organizations are the key to the system of operations. We need to make breakthroughs in the scientificity, accuracy and timeliness of command planning. We rely on new technologies such as “big data” and “artificial intelligence algorithms” and new means such as “engineering” and “one network” to promote the upgrade of command planning from “human intelligence” training to “human intelligence + intelligence” training. We can judge the enemy situation, establish plans and determine actions in the process of actuarial calculations, so as to achieve the goal of defeating the slow with the fast and taking the lead.
For some time, driven by technological progress and military needs, the world’s military powers have been actively developing and deploying various weapons autonomy projects to enable them to perceive, learn, and make decisions autonomously with the help of artificial intelligence.
In May this year, 2024, US Air Force Secretary Frank Kendall publicly tested an AI-controlled F-16 fighter jet (X-62A) at Edwards Air Force Base, which attracted widespread attention. Analysts believe that AI-enabled autonomous weapons will not only change the shape of future wars, but will also have a new impact on the current international security situation, and the risk of their loss of control will become a problem that human society cannot ignore.
Accelerate the development of war weapons
In the eyes of the US military, artificial intelligence, unlike the next generation of weapon platforms and advanced ammunition, has the potential to change almost all aspects of the battlefield, one of the important areas of which is to accelerate the autonomy of weapons. The US military has invested a lot of resources in this regard, and the X-62A that Kendall rode is a landmark achievement. During the approximately 1-hour flight, all the actions of the fighter were completed autonomously by artificial intelligence. In addition, the “collaborative combat aircraft” being developed by the US Air Force will be equipped with the “Sky Borg” unmanned autonomous core system, and will form a formation with manned fighters in combat, taking on multiple tasks such as surveillance, attack, electronic interference, and acting as bait, to maximize the safety and combat capability of the formation.
On the naval side, in the reports “Autonomous Underwater Vehicle Requirements in 2025” and “Future Fleet Platform Alternatives”, the United States plans to realize the concept of a distributed fleet by 2030, equipped with 183 medium-sized unmanned submarines and 48 large unmanned submarines that can be carried by nuclear submarines, capable of performing anti-submarine, reconnaissance, surveillance and other missions for tens of days in ports, international waters and major waterways.
Russia also started research on artificial intelligence early. The Russian Ministry of Defense established an artificial intelligence weapons research department in 2022 to strengthen the use of artificial intelligence technology and develop new special equipment. The “Depesha” and “Baji” multi-functional unmanned systems developed by the Russian State Technology Group can not only transport goods and wounded, but also strike enemy positions and manpower. It was previously reported that the Russian military’s “Lancet”-3 cruise missile uses a convolutional neural network, which can analyze the collected image and video data to achieve precise detection and strike.
Germany, Israel and other countries have also increased their research and development efforts in related fields. With the support of NATO, Germany’s ARX Robotics is developing a series of unmanned ground vehicles. With the help of artificial intelligence, these vehicles can operate autonomously on the battlefield and communicate with each other, and can also be remotely controlled when necessary. Analysts believe that this move means that NATO has started the process of “building an autonomous robot force.” The Israeli Army’s M-RCV unmanned combat vehicle has a high level of intelligence and can perform a variety of tasks such as highly autonomous frontier reconnaissance, firepower strikes, and transporting and recovering drones without human intervention.
The Coming Military Revolution
Autonomous weapons powered by artificial intelligence have already appeared in regional conflicts. In the 2020 Libyan military conflict, the Turkish-produced Kaguya-2 drone tracked and attacked the retreating “Libyan National Army” without relying on an operator. This may be the first recorded case in history of a drone attacking a person without human command. In the Russian-Ukrainian conflict, the Ukrainian army not only obtained a large number of drones powered by artificial intelligence from the United Kingdom, the United States and other countries, but also actively carried out related research. In this round of Israeli-Palestinian conflict, artificial intelligence has also been applied. When Israel attacked Gaza, it used an artificial intelligence system called “Lavender” to help identify Hamas militants.
Autonomous weapons powered by artificial intelligence are changing the face of warfare. Last September, the X-62A successfully completed an aerial dogfight with an F-16 fighter jet piloted by a human pilot. This is considered a “transformative moment in the history of aerospace,” indicating that future operations will be partially or completely controlled by artificial intelligence. Unmanned system clusters, which are basically composed of unmanned combat units such as various types of drones, unmanned vehicles, unmanned boats and unmanned submarines, will account for an increasingly large proportion of future combat force systems, and may even reach a position of driving side by side with manned combat systems. With the improvement of autonomy and intelligence, unmanned system clusters will increasingly become the “protagonists” in war. Researchers believe that collaborative combat with manned systems is only the initial stage of autonomous combat for unmanned systems, and the ultimate goal is to achieve fully autonomous combat for unmanned systems.
Autonomous weapons empowered by artificial intelligence impact geopolitical stability. Geopolitical stability depends on the relative balance of regional military power. However, the large-scale use of unmanned autonomous weapons will inevitably impact the original pattern, leading to a new arms race. Taking individual hegemonic countries as an example, once autonomous weapons empowered by artificial intelligence are put into use on a large scale, their concerns about launching regional military interventions will be reduced, and the threshold for external military action will be lowered. The security and stability of the relevant regions will face great challenges. In addition, more and more non-state actors will master autonomous weapons technology and use it for lethal purposes, which will also have an impact on the regional situation.
The risk of abuse cannot be ignored
“Humanity is standing at a crossroads, and autonomous weapon systems will soon fill the world’s battlefields. This is the ‘Oppenheimer moment’ of our generation,” said Austrian Foreign Minister Schallenberg at the International Conference on Autonomous Weapons held in Vienna this year. Although artificial intelligence can help with precision strikes, differentiated operations, and reduced material losses, due to its inherent “black box mechanism” and “machine illusion”, future unmanned warfare will face unavoidable risks and challenges.
Risk of command disorder. Over-reliance on the autonomy of weapons can easily increase the risk of the command and control system losing control. In a simulated test by the US military, a drone that was performing an air defense suppression mission chose to “kill” the operator who prevented it from scoring in order to score points in the test. When it was “told” that it would lose points for killing the operator, it attacked the communication tower to cut off the operator’s contact with itself to seize autonomy. In the real battlefield of the future, the risk of autonomous weapons losing control cannot be completely ruled out, and the consequences will be even more difficult to control.
Risk of uncontrolled violence. The combination of artificial intelligence and weapons means that the difficulty of killing is significantly reduced, while the efficiency and intensity of killing are greatly increased, which can easily lead to the expansion and escalation of armed conflict. However, the machine learning algorithms that artificial intelligence relies on are inherently unpredictable, and there are still some unexplained parts of the internal mechanism. In extreme cases, humans may even completely lose control of autonomous weapons, and the resulting humanitarian disaster will be difficult to estimate. It is precisely in recognition of this problem that the United Nations is calling on various parties to formulate common norms and guidelines for autonomous weapon systems and to complete relevant negotiations as soon as possible.
Risk of ethical anomie. Lethal autonomous weapons automatically select and attack targets without human intervention, which means that the right to deprive natural people of their lives is handed over to cold-blooded robots. Some experts said that after the battlefield is handed over to autonomous weapons, human perception of the cruelty of war will drop sharply, resulting in the consequence of “game-like war”, which will lead to excessive use of force. This is not only a “lack of moral responsibility”, but also poses a serious challenge to international humanitarian law and international peace and security, which is “unbearable” for human beings.
The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.
The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.
At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.
Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.
Satellite navigation becomes a “standard” element of the intelligent battlefield
The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.
Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.
The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.
Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.
Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.
Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”
Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.
Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.
In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.
Intelligent battlefield requires satellite navigation to have new “responsibilities”
As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.
In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.
Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.
For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.
The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.
The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.
Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system
Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.
The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:
The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.
The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.
The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.
The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.
(The author is an academician of the Chinese Academy of Engineering)
Above: Schematic diagram of satellite navigation system supporting operations.
The prelude to the era of intelligent warfare has begun. Command information systems with intelligent characteristics will become the “central nerve” of future intelligent combat command and control, and are the supporting means of intelligent combat command and control. Accelerating the construction of intelligent command information systems is an inherent requirement for the development of military intelligence. Only by clarifying the development essentials of intelligent command information systems, grasping the key points of intelligent command information system research and development, and exploring the key points of intelligent command information system development can we better promote the construction and development of intelligent command information systems and gain the upper hand in future intelligent combat.
Clarify the key points of developing intelligent command information system
Intelligent command information system is the inevitable choice for the development of war form towards information-based intelligent warfare, the inevitable result of the development of scientific and technological revolution, and the era’s call for the development of military intelligence. Clarifying the development essentials of intelligent command information system will help to guide the construction direction of intelligent command information system and establish the long-term goal of system development.
Promote the intelligent evolution of war. In the future intelligent warfare, the battlefield situation is changing rapidly and the battlefield environment is complex and severe. In order to take the initiative on the battlefield, “control of intelligence” has become a new commanding height, and the intelligent command information system is undoubtedly an important means of supporting future combat command and action. Its intelligent development can promote the evolution of war to intelligence, and is an important support for intelligent warfare to gain the initiative and seek victory.
Support intelligent innovation of combat concepts. Future intelligent combat requires a combat command concept that is compatible with it, and the intelligent command information system is an important support for the practical application of the combat command concept, and is the soil for the innovation and development of the intelligent combat command concept. New intelligent combat command concepts such as human-machine hybrid command formation, data-driven command activities, open development command mode, and intelligent force-focused command process are inseparable from the support of the intelligent command information system. The intelligent command information system will serve as the extension of the human brain, breaking through the physiological limits of the human body and realizing the organic integration of combat command art and intelligent technology.
Promote the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about major changes in the combat victory mechanism. Intelligence has surpassed firepower and information power and has become the primary factor in determining the outcome of a war. The construction and development of intelligent command information systems will promote the transformation of combat methods to intelligence, making the combat methods change from “combat networks + precision-guided weapons” in the information age to “intelligent Internet of Things + manned/unmanned combat platforms” in the intelligent age, and the basic combat style will evolve from “network-centric warfare” to “cognitive-centric warfare” accordingly.
Grasp the key points of intelligent command information system research and development
The command information system is a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent combat winning mechanisms, the intelligent upgrade of the command information system is imminent. We should highlight the key points of functional research and development and create a new intelligent command information system.
“Super-brainization” assists decision-making. In the future intelligent warfare, the amount of battlefield information data is huge and complex and changeable. Commanders are easily trapped in the “sea of information” during the command process, resulting in information confusion and affecting command decisions. With the emergence of intelligent decision-making technology and “cloud brain” and “digital staff”, a new decision-making model based on the collaboration of “human brain + artificial intelligence” is quietly taking shape. The intelligent command information system will break through the limits of human intelligence, as an extension of the human brain, assist the commander’s work, and develop war decisions from simple human brain decisions to “human brain + artificial intelligence” super-brainized command decisions.
“Full-dimensional” situational awareness. In future intelligent combat, the space will be multi-dimensional, the forces will be diversified, the styles will be diverse, and the pace will be accelerated. Comprehensive and flexible grasp of battlefield situations will become the basis for commanders to make decisions, and multi-domain integration and intelligent dynamic presentation of full-dimensional battlefield situations will become an inevitable requirement for the construction and development of command information systems. The command information system’s perception, understanding, integration and prediction of battlefield situations such as target identification, threat level estimation, combat action prediction and future war situation prediction are expanding from land, sea, air, space, electromagnetic, network and other spaces to cognitive and social domains, realizing “full-dimensional” situational awareness.
“Intelligent” network communication. In the future, intelligent warfare will use a large number of intelligent command and control platforms and intelligent weapon platforms, and the intelligent information and communication system must be connected to the command and control platform and the weapon platform. Like the nerves and blood vessels of the human body, the intelligent information and communication system plays a linking and lubricating role in intelligent warfare. Therefore, it is necessary to establish an intelligent information network with full-dimensional coverage and uninterrupted communication to support the connection and control of intelligent equipment, form intelligent optimization of network structure, intelligent reorganization of network anti-destruction, and intelligent anti-interference capabilities, so as to ensure intelligent collaborative operations between platforms and exert the best overall combat effectiveness.
“Unmanned” autonomous collaboration. In recent local conflicts around the world, drones have been used in large numbers and have played an important role in determining the direction of war, which has attracted widespread attention from all parties. Unmanned weapons and equipment are the material basis of intelligent warfare, and have formed disruptive combat styles based on this, such as invasive lone wolf warfare, manned/unmanned collaborative system sabotage warfare, unmanned system formation independent warfare, and drone swarm cluster warfare. Although unmanned warfare is led by humans, machines are given a certain degree of autonomous action authority in the background, thereby realizing unmanned combat operations on the front line. However, the unmanned battlefield is changing rapidly, and the destruction of human-machine collaboration will become the norm. The command and control system of the unmanned intelligent equipment platform must be more intelligent and be able to conduct autonomous and coordinated combat according to the purpose of the operation.
“Active” information defense. Intelligent warfare will inevitably face all-dimensional and diverse information attacks from powerful enemies. The level of information security protection capabilities directly affects the outcome of the “intellectual power” struggle on the battlefield and is a key link in the construction of intelligent command information systems. Therefore, we should take the initiative to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of high-tech information security technologies, strengthen the anti-interference and anti-intervention capabilities of various wireless transmission methods, and strengthen intelligent traceability and countermeasure capabilities to effectively curb information attacks.
Exploring the key to the development of intelligent command information system
The development of intelligent command information system is not only a technological innovation, but also requires further emancipation of mind and updating of concepts. To promote the development of intelligent command information system, we must change the traditional idea of adding hardware, building a large “network”, collecting and storing various types of data, break through the inherent hierarchical settings, create an open and service-oriented system, aim at the needs of intelligent combat command and action, and explore and study the key points of the development of intelligent command information system.
Innovative concepts. Adhere to the guidance of innovative thinking concepts, learn from the development ideas of intelligent command information systems of military powers, combine actual needs, and explore a development path with its own characteristics. We must break the traditional “building chimneys” approach, adhere to the top-level design and overall planning of command information systems, unify interfaces, protocols and standards, and form an open and sustainable system architecture layout; adhere to the system development ideas that combine research, construction and use, formulate short-term, medium-term and long-term development strategies, and standardize the direction of system construction and development; adhere to iterative upgrades and optimization and improvement strategies, and continuously improve the intelligence level of various subsystems such as command control, intelligence reconnaissance, communications, information confrontation and comprehensive support, to ensure the continuous and healthy development of intelligent command information systems.
Focus on the key. Focusing on the construction of key capabilities of intelligent command information systems is an important support for intelligent warfare to gather intelligence and win with intelligence, and is the key to intelligent warfare to gain the “right to win”. Algorithms, computing power, and data are not only the internal driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command information systems. The development of intelligent command information systems must adhere to algorithm innovation research to improve the system’s cognitive advantages, speed advantages, and decision-making advantages; accelerate the research and development of the next generation of computers represented by quantum computers to provide stronger computing power support for intelligent command information systems; deeply explore the deeper and wider dimensional information value in massive combat data resources to seek the initiative to win.
Gather wisdom to tackle key problems. The construction and development of intelligent command information systems is one of the main projects of military intelligence. It is a multi-domain, multi-disciplinary, multi-departmental and multi-unit integrated and coordinated project. The construction and development of intelligent command information systems must adhere to the spirit of collective wisdom, collective wisdom, pioneering and innovation, aiming at strategic forward-looking fields such as sensors, quantum information, network communications, integrated circuits, key software, big data, artificial intelligence, and blockchain, and insist on high-tech promotion and intelligent combat demand. Carry out in-depth research and exchanges in multiple fields, multiple levels, and multiple forms, continuously break through innovation, iterative upgrades, and make the intelligent command information system more complete and more intelligent.
Collaborative development. To further promote the construction and development of intelligent command information systems, we must fully absorb local advanced technological achievements and integrate into the era of innovation and development of artificial intelligence in the world. At present, the world’s artificial intelligence technology is booming, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application and broad prospects for the transformation and application of technological achievements. It is an important way to achieve the construction and development of intelligent command information systems. We must study and formulate general technical standards, remove barriers, break the ice, facilitate military-civilian cooperation, and realize the sharing and linkage of technological achievements. We must cultivate and shape new military talents through collaboration, so that they can constantly adapt to the needs of various positions under intelligent conditions and give full play to the effectiveness of intelligent command information systems.