Tag Archives: Chinese Military Informationization Trends – Cyber Integrated Battlefield

Research on Chinese Military Affairs, Studying War丨Brief Analysis of China’s Winning Mechanisms of Intelligent Warfare

研究中國軍事,研究戰爭丨中國智慧化戰爭制勝機制淺析

現代英語:

President Xi pointed out that the core of studying combat issues is to clarify the characteristic rules and winning mechanisms of modern warfare. In today’s world, major changes unseen in a century are accelerating. Disruptive technologies represented by artificial intelligence are developing rapidly and widely used in the military field, accelerating the evolution of war forms towards intelligence. The corresponding war winning mechanism is also changing. “ Victory tends to smile at those who can foresee changes in the characteristics of war, rather than at those who wait for changes to occur before adapting”. Only by discovering changes in a timely manner, proactively responding to changes, and actively adapting to changes can we better grasp the initiative in future wars and remain invincible in future wars.

Outwitted

In the “intelligent warfare confrontation”, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. Global multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build combat systems according to mission requirements, and independently implement coordinated operations, the mission ends and quickly returns to a state of readiness for war, showing a trend of intelligent autonomy. Whoever possesses the empowerment and gain advantage of intelligent technology in the combat system can design wars, lead the development of the battlefield, master battlefield initiative, and achieve “using wisdom to defeat clumsiness”. First, algorithms, computing power, and data determine system operational capabilities. Relying on intelligent algorithms and powerful computing power, it can quickly and efficiently analyze targets and match resource means, solve high-frequency cross-domain collaboration problems, achieve coordinated planning, parallel actions, and real-time evaluation, and greatly improve system operating speed and strike efficiency. Second, intelligent networks support cross-domain all-in-one action. The intelligent network information system provides basic support and link links for the combat system. Combat units and combat elements in different combat domains can be integrated into the entire combat system at any time “plug and play” to achieve rapid information transmission and sharing. Again, an intelligent weapon platform enables autonomous and flexible strikes. Intelligent technology achieves the organic combination of human strategy and machine’s autonomous perception, autonomous decision-making, and autonomous action by empowering weapon platforms, elements, and forces. Through “software defines the combat system structure and functions, and uses software to empower weapon platforms and ammunition, the platform can independently select and attack targets, and flexibly build a kill chain”.

Gathering is better than scattering

With the support of the “intelligent network information system”, the combat system has become an organic whole with a high degree of autonomous coordination, allowing the overall linkage of combat operations and the operational effectiveness index to be magnified, relying on the overall power of the system to win. First, the multiple elements of information, firepower, military power and cognition are linked together to release energy. With the injection of intelligent factors into the combat system, information, firepower, force and cognition will be given new quality capabilities, and based on the support of intelligent network information systems, software and hardware capabilities will be organically combined and physical and intangible means will be closely integrated to achieve combat effectiveness. maximize. Secondly, the multi-spatial multi-directional linkage of land, sea, air, space, network, electricity and other forces gathers forces to release energy. The seizure and control of battlefield control will rely more on the integrated linkage and cross-domain coordination of multi-domain space operations. By dispersing various combat forces deployed in a vast space, they will immediately gather advantages, forming a multi-domain, multi-directional energy release advantage for dimensionality reduction attacks in one domain, thereby taking control of battlefield initiative. Again, the multi-link linkage of detection, control, and evaluation gathers strength to release energy. Through the “ubiquitous Internet network”, cross-domain response to combat operations, cross-domain sharing of combat information, and cross-domain complementation of combat functions can be realized, and anti-virus networks can be dynamically adjusted or constructed according to the enemy’s circumstances and circumstances to achieve rapid system operation and concentrated energy release.

“Exquisite” is better than coarse

Intelligent warfare must be reasonably invested, effectively regulate combat forces, and be used as a means of warfare to achieve the goal of “refining the rough” and winning at the lowest cost. First, a precise target-information-driven system operates efficiently. Relying on various intelligent sensing platforms covering multi-dimensional and wide-area deployment, it detects and locates obstacles or targets in the battlefield environment. Precisely control the flow, flow, and velocity of information to achieve rational allocation of combat resources, coordinated and orderly combat operations, and precise release of combat energy. Second, precise breaching operations achieve a rapid transition between good and bad. The application of big data, big model analysis algorithms and other technologies can accurately analyze and judge combat systems “weak spots ”“ Achilles’ heel”, accurately guide the use of weapons and high-energy weapons such as lasers and hypersonic speeds, make the choice of precise strike methods more diverse, and can make the enemy Combat systems are instantly disabled. Again, precise strike evaluation supports the optimal superposition of combat effects. The target damage effect is accurately obtained through intelligent channels and means, and the conclusion is revised based on the human-computer interaction evaluation system. The commander can compare, interact, feedback, and correct the damage effect assessment conclusions with the information stored in the system knowledge base and his or her own professional knowledge to achieve the purpose of accurately assessing the impact effect of the target.

Faster than Slow

“The main speed of military intelligence”, the rapid development of military intelligence has greatly improved the speed of information transmission and the accuracy of weapon strikes, greatly reduced the time for reconnaissance and early warning, intelligence processing, command and decision-making, fire strike, and damage assessment, and accelerated “OODA” kill chain Cycle, new rapid-fire weapons such as hypersonic missiles, laser weapons, microwave weapons, and electromagnetic pulse weapons further push the rhythm of war to “instant kill”. Hybrid human-machine decision-making becomes the key to enemy action first. On the one hand, the new model of human-machine hybrid cloud-brain decision-making is based on the intelligent “network, cloud, terminal” system and integrates intelligent battlefield perception, decision-making and weapon control systems to quickly select combat plans and achieve instant decision-making advantages. On the other hand, the speed at which the kill chain is constructed becomes the basic yardstick for system confrontation. Under the empowerment of “intelligent technology”, the acquisition, processing and transmission time of battlefield information is greatly shortened. The intelligent platform uses algorithms to analyze battlefield spatial situations and target information in real time, and the time of the kill chain is shortened to seconds, thus achieving “destroy upon discovery”.

Toughness is better than crispness

War is not only a military contest, but also a competition between the country’s human, material and financial resources. Maintaining the lasting resilience of the combat system has become a key factor affecting the outcome of the operation. First, the large-scale use of low-cost unmanned intelligence platforms has become a completely new way of fighting. Unmanned intelligence platforms, micro-intelligent robot autonomous combat clusters, etc., dispersed to more small and low-cost combat platforms, can enhance the recovery speed and overall penetration of the combat system after damage, and achieve maximum combat benefits at a smaller cost. Secondly, the continued guarantee of intelligent resources becomes the key to the operation of the combat system. Various new weapons and new means such as unmanned combat platforms, intelligent algorithms, and cyber attacks are constantly emerging. Powerful computing power, advanced algorithms, and accurate data support have become the guarantee for the continued and stable operation of the system, and intelligent resources “timely, appropriately, applicable, and appropriately” continue to be effective. Guarantee has become an important influencing factor in the victory of intelligent warfare. Again, the operational system’s requirements for balance of offensive and defensive capabilities are getting higher and higher. The local area network, wide area network and even brain network behind the network and digitalization of the combat system leave room for opponents to launch attacks; the “cloud— network —end” structure of the combat system intelligent network information system, its data center, supercomputing center and other network infrastructure It will also be an important hub for opponents to focus on attacking and destroying.

Heart is better than things

Intelligent warfare is different from traditional warfare in which the main purpose is to eliminate the enemy’s effective power. It will pay more attention to weakening the enemy’s morale, disintegrating the enemy’s will, and destroying the enemy’s psychology. Smart technology has become a new way to influence the minds of all employees at all times. First of all, intelligent new media, new technologies and new means have created new ways for the psychological influence of public opinion. Enhanced consciousness and the development of information editing and other technologies have made the methods of conscious attack and defense more diverse, the methods of confrontation more varied, and the technological content higher. Use “intelligent weapons, intelligent technology and intelligent information struggle methods to carry out information attacks on the enemy, thereby forming psychological deterrence”. Secondly, intelligent and deep interaction makes obtaining data richer and more complete. Technologies such as AI face-changing, holographic projection, and audio-visual synthesis provide new means to implement intelligent manufacturing and confuse facts. Again, smart models, massive amounts of data, and high-performance servers provide new tools for quickly concocting information ammunition. Mental guidance and control can be closely coordinated with military, economic, and diplomatic forces to amplify the deterrent effect, constantly create pressure from public opinion to force the enemy to compromise, form psychological deterrence and make them hesitate to give in, change the enemy’s cognition through differentiation of value identity, and achieve subjugation without fighting.

More than single

The rapid development of science and technology has opened up new space for activities and interests for human society, but new security threats and challenges have followed suit, promoting the corresponding expansion of battlefield space and confrontation fields. Currently, wars are constrained and influenced by many factors such as politics, economy, diplomacy, military, technology, geography, and psychology. Unconventional mixed wars supported by military capabilities have become more intense. The competition space for hybrid warfare has extended to various fields such as politics, economy, diplomacy, culture, and military. It emphasizes the comprehensive use of national strategic resources and strategic tools to achieve traditional war goals and transcend traditional war methods. It has a special status and role. As intelligent technology matures, the threshold for intelligent warfare will show a downward trend. Participating parties may adopt an undeclared war approach to launch a variety of integrated economic warfare, diplomatic warfare, cyber warfare, public opinion warfare, psychological warfare, legal warfare, etc. Mixed warfare, mixed victory means giving priority to politics, economy, diplomacy, etc. on the basis of comparing the advantages and disadvantages of the opponent and one’s own side in all aspects Public opinion and other non-military tools and means that can use strengths and avoid weaknesses, use four taels to move a thousand pounds, pursue “no war” or “less war ”“small war” and subjugate others. As long as we deeply understand and accurately grasp the characteristic rules and operating mechanisms of future hybrid warfare, and creatively use clever and efficient strategic techniques, we can fully achieve the expected strategic results.

現代國語:

羅振華 鑫 言

引 言

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。當今世界,百年未有之大變局加速演進,以人工智能為代表的顛覆性技術迅猛發展,並廣泛應用於軍事領域,使戰爭形態向智能化加速演變,與之相應的戰爭制勝機理也正在發生嬗變。“勝利往往向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生後才去適應的人微笑”。及時發現變化,主動應對變化,積極適應變化,才能夠更好地把握未來戰爭主動權,在未來戰爭中立於不敗之地。

智勝於拙

在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,全域多維、各種類型的智能化作戰平台能夠快速耦合作戰力量,根據任務需求構建作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智能自主趨勢。誰佔有智能技術對作戰體系的賦能增益優勢,誰就能據此設計戰爭、主導戰局發展,掌握戰場主動,實現“以智制拙”。首先,算法、算力和數據決定體系作戰能力。依托智能算法和強大算力,可以快速高效地分析目標、匹配資源手段,解決高頻次跨域協同難題,實現協調規劃、並行行動、即時評估,大幅提高體系運行速度和打擊效能。其次,智能網絡支撐跨域一體行動。智能網絡信息系統為作戰體系提供基礎支撐和鏈接紐帶,不同作戰域的作戰單元、作戰要素,隨時可“即插即用”融入整個作戰體系,實現信息快速傳遞共享。再次,智能化武器平台實現自主靈活打擊。智能技術通過賦能武器平台、要素和力量,達到人的謀略與機器的自主感知、自主決策、自主行動有機結合。通過軟件定義作戰體系結構和功能,用軟件賦能武器平台和彈藥,可實現平台自主選擇和打擊目標,靈活構建殺傷鏈。

聚勝於散

在智能化網絡信息系統支撐下,作戰體系成為具有高度自主協調力的有機整體,使得作戰行動整體聯動、作戰效能指數級放大,靠系統湧現的整體威力制勝。首先,信息、火力、兵力和認知等多要素聯動聚力釋能。隨著作戰體系注入智能因素,信息、火力、兵力和認知都將賦予新質能力,並基於智能化網絡信息系統的支撐,實現軟硬能力有機復合、有形無形手段緊密融合,達成作戰效能最大化。其次,陸海空天網電等多空間多方向聯動聚力釋能。戰場制權的奪控,將更加依賴多域空間行動的一體聯動和跨域協同,通過分散部署在廣闊空間的各種作戰力量即時聚優,形成多域多向對一域降維打擊的釋能優勢,從而掌握戰場主動。再次,偵控打評等多環節聯動聚力釋能。通過泛在互聯網絡,實現作戰行動跨域響應、作戰信息跨域共享、作戰功能跨域互補,因敵因情因勢動態調整或構建殺傷網,實現體系快速運轉和聚力釋能。

精勝於粗

智能化戰爭必須合理投入、有效調控作戰力量,恰當選用作戰手段,達成“以精制粗”,以最小代價取勝的目的。首先,精准的目標信息驅動體系高效運行。依托覆蓋全域多維、廣域部署的各種智能感知平台,探測、定位戰場環境中的障礙或目標。精確控制信息的流向、流量、流速,實現作戰資源的合理分配、作戰行動的協調有序和作戰能量的精確釋放。其次,精准的破擊行動實現快速優劣轉化。大數據、大模型分析算法等技術的運用,可精確分析判斷作戰體系“軟肋”“死穴”,精確制導武器和激光、高超聲速等高能武器的使用,讓精確打擊的手段選擇更加多樣,可使敵作戰體系瞬時失能。再次,精准的打擊評估支撐作戰效果最優疊加。通過智能化途徑和手段准確獲取目標毀傷效果,依托人機交互評估系統對結論進行修正。指揮員可將毀傷效果評估結論與系統知識庫儲存的信息以及自身專業知識進行比對、交互、反饋、修正,達到精准評估目標打擊效果的目的。

快勝於慢

“兵之情主速”,軍事智能化的飛速發展大大提升了信息傳遞速度和武器打擊精度,大幅縮減了偵察預警、情報處理、指揮決策、火力打擊、毀傷評估的時間,加速“OODA”殺傷鏈循環,高超聲速導彈、激光武器、微波武器、電磁脈沖武器等新型快速殺傷武器進一步將戰爭節奏推向“秒殺”。人機混合決策成為先敵行動的關鍵。一方面,人機混合的雲腦決策的全新模式,以智能“網、雲、端”體系為依托,集智能化戰場感知、決策和武器控制系統於一體,可快速優選作戰方案,實現即時決策優勢。另一方面,殺傷鏈構建速度成為體系對抗的基本衡量標准。在智能技術賦能作用下,戰場信息的獲取、處理和傳輸時間極大縮短,智能平台利用算法可對戰場空間態勢和目標信息實時分析,殺傷鏈的時間縮短至秒級,從而實現“發現即摧毀”。

韌勝於脆

戰爭不但是軍事的較量,更是國家人力物力財力的比拼。保持作戰體系持久韌性,成為影響作戰勝負的關鍵因素。首先,低成本無人智能平台的規模化運用成為全新作戰方式。無人智能平台、微型智能機器人自主作戰集群等,分散到更多小型廉價作戰平台的做法,可增強作戰體系受損後的恢復速度和整體突防力,以較小代價取得最大作戰效益。其次,智能資源的持續保障成為作戰體系運行的關鍵。無人作戰平台、智能算法、網絡攻擊等各種新武器、新手段不斷湧現,強大算力、先進算法和精准數據支撐成為體系持續穩定運行的保證,“適時、適地、適用、適量”的智能資源持續有效保障,成為智能化戰爭制勝的重要影響因素。再次,作戰體系的攻防一體能力平衡性要求越來越高。作戰體系網絡化、數字化背後的局域網、廣域網甚至腦聯網,給對手發起攻擊留下空間;作戰體系的“雲—網—端”結構智能網信系統,其數據中心、超算中心等網絡基礎設施也將是對手重點攻擊破壞的重要樞紐。

心勝於物

智能化戰爭與傳統戰爭中以消滅敵人有生力量為主要目的不同,將更加注重削弱敵方的士氣,瓦解敵方的意志,摧毀敵方的心理。智能科技已成為全時全域影響全員心智的全新方式。首先,智能化的新媒體、新技術和新手段,為輿論心理影響開創了新方式。意識增強、信息編輯等技術的發展,使得意識攻防手段更加多樣、對抗方式更加多變、科技含量更高。運用智能武器、智能技術和智能信息斗爭的方法,對敵實施信息打擊,從而形成心理威懾。其次,智能化的深度互動,使得獲取數據更為豐富,要素更加齊全。AI換臉、全息投影、影音合成等技術,為實施智能制造、混淆事實真相提供了新手段。再次,智能模型、海量數據和高性能服務器,為快速炮制信息彈藥提供了新工具。心智導控可與軍事、經濟、外交密切配合,放大震懾效應,不斷制造輿論壓力迫敵妥協,形成心理震懾使其遲疑退讓,通過價值認同分化改變敵認知,實現不戰而屈人之兵。

多勝於單

科學技術的迅猛發展,為人類社會打開了新的活動空間和利益空間,但新的安全威脅和挑戰也隨之而來,推動了戰場空間和對抗場域的相應拓展。當前,戰爭受到政治、經濟、外交、軍事、技術、地理、心理等諸多因素的制約和影響,以軍事能力為支撐的非常規的混合戰爭反而更加激烈。混合戰爭的角逐空間已經延伸至政治、經濟、外交、文化、軍事等各領域,強調綜合運用國家戰略資源和戰略工具聚合發力,既能夠實現傳統戰爭目標,又能夠超越傳統戰爭手段,地位作用特殊。隨著智能技術的發展成熟,智能化戰爭的門檻將呈現下降趨勢,參戰方可能采取不宣而戰的方式發起融合經濟戰、外交戰、網絡戰、輿論戰、心理戰、法律戰等多種樣式的混合戰爭,混合制勝就是要在對比敵手和己方各方面優勢劣勢的基礎之上,優先選擇政治、經濟、外交、輿論等能揚長避短的非軍事類工具和手段,以四兩撥千斤,追求“不戰”或“少戰”“小戰”而屈人之兵。只要深刻認識和准確把握未來混合戰爭的特點規律、運行機理,創造性地運用巧妙、高效的策略手法,完全能夠達到預期戰略效果。

中國原創軍事資源:http://www.81.cn/yw_208727/16393427.html

Military Intelligence Drives Accelerated Development of Chinese Army Cyberspace Operations

軍事情報推動中國軍隊網路空間作戰加速發展

現代英語:

The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.

Military intelligence leads to accelerated development of cyberspace operations

■Respect the soldiers Zhou Dewang and Huang Anwei

Three major technologies support the intelligence of cyberspace weapons

Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.

Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.

Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.

The intelligent trend of network-controlled weapons has become increasingly prominent

Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.

In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.

Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.

Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.

Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.

Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.

Intelligent command information system changes traditional combat command methods

Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.

In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.

To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.

In the future battlefield, fighting courage requires more fighting “wisdom”

■Yang Jian and Zhao Lu

At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.

Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.

It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.

In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.

現代國語:

資料來源:中國軍網綜合作者:敬兵 周德旺 皇安偉 等責任編輯:胡雪珂

黨的十九大報告指出,要「加速軍事智慧化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。今天的《解放軍報》刊發文章指出,軍事智能化是機械化、資訊化之後軍事領域發展的新趨勢和新方向,我們要在現有機械化和資訊化基礎上發展智能化,同時用智能化牽引機械化和信息化向更高水平、更高層次發展。網路空間作為新型作戰領域,是科技含量高、最具創新活力的新領域,在軍事智慧化的牽引下,正迎來快速發展的機會期。

軍事智慧化牽引網路空間作戰加速發展

■敬兵 週德旺 皇安偉

三大技術支撐網路空間武器智慧化

智能是一種智慧和能力,是一切有生命週期的系統對規律的感應、認知與運用,智能化就是把這種智慧和能力固化下來,成為一種狀態。網路空間武器是網路空間遂行作戰任務的武器,其形態以軟體和程式碼為主,本質上是一段資料。網路空間武器的智慧化主要體現在以下三個方面:

一是智慧化漏洞挖掘。漏洞是網路武器設計的基礎,今年5月在全球傳播的勒索病毒軟體,就是利用了微軟作業系統漏洞,為網路安全界帶來了巨大震動。漏洞價格昂貴,零日漏洞價值幾萬到幾十萬美元不等。過去漏洞的發現,主要依靠有經驗的駭客,利用軟體工具對程式碼進行檢查和分析。今年中國網路安全大會期間舉辦的國際網路安全技術對抗聯賽總決賽中,參賽人員示範由智慧機器人現場進行漏洞挖掘,然後透過漏洞編寫網路程式碼,形成網路武器,攻破目標系統,奪取旗幟。這項變化,意味著漏洞挖掘進入了智慧化時代。

二是智能化訊號分析和密碼破譯。訊號是網路資料傳輸的載體,密碼是網路資料安全的最後屏障,訊號分析和密碼破解是網路空間作戰的核心技術,突破訊號和密碼是進入網路空間的基本路徑,也是網路武器攻擊的首要目標。智慧化訊號分析將訊號的協定分析、調變辨識、個體辨識等問題,透過大數據、雲端運算、深度學習等技術來解決。密碼破解是計算科學“皇冠上的明珠”,智能化密碼破譯通過對密碼數據樣本的積累,不斷學習、尋找規律,能找到破譯的鑰匙,從而打開網絡數據“保險櫃”的最後一扇門,解決網絡入侵和接入的關鍵環節。

三是智慧化武器平台設計。美軍在2009年提出「網路飛行器」項目,為網路空間作戰提供像戰車、艦艇、飛機這樣的平台,可以實現在網路空間裡自動偵察、載入網路武器、自主協同、自主攻擊,受到威脅時自我銷毀、清除痕跡,具備了一定的智慧化特徵。未來「網路飛行器」載入的武器,不是軟體人員編好的程式碼,而是根據偵察結果直接對發現的漏洞,現場即時進行智慧化網路武器設計,實現「訂購式」開發,從而大大提高網路空間作戰的針對性。

網控武器的智慧化趨勢愈加凸顯

受網路空間控制的武器簡稱網路武器,是透過網路連接,接受網路空間指令,執行跨域任務,在實體空間達成作戰效果的武器。未來的各種作戰武器平台,大多是聯網的武器平台,這樣軍事資訊網本質上就是物聯網,上聯衛星、雷達、無人機等網路實體,從感知到發現、追蹤、定位、打擊都可透過網路空間控制,網控武器的智慧化已在陸海空天電等戰場蓬勃發展。

2015年,敘利亞利用俄羅斯機器人軍團擊潰武裝分子,行動採用了包括6個履帶式機器人、4個輪式機器人、1個自動化火砲群、數架無人機和1套指揮系統。指揮官透過指揮系統調度無人機偵察發現武裝分子,機器人向武裝分子發動衝鋒,同時伴隨火砲和無人機攻擊力量支援,對武裝分子進行了致命打擊。這只是一場小規模的戰鬥,卻開啟了機器人「組團」作戰的先河。

海空戰場網控智慧武器正在大量研發驗證。 2014年,美國海軍使用13艘無人水面艇,示範驗證無人艇集群攔截敵方艦艇,主要透過交換感測器數據,取得了不錯的效果。 2016年再次試驗時,新增了協同任務分配、戰術配合等功能,「蜂群意識」成為其智慧化的顯著特徵。

用於空中作戰的小微型無人機蜂群也正在快速發展。近年來,美國國防部多次試驗「山銻」微型無人機,可一次投放數十架乃至上百架,透過提升其執行偵察任務時的協同能力,在無人機編隊、指揮、控制、智慧化管理等方面都取得了進展。

空天網控武器越來越「聰明」。空天領域主要包含偵察和打擊兩類網控武器,各種功能的衛星主要執行偵察任務,是典型的偵察感測器。隨著各種小微衛星群的出現,使衛星表現出新的特徵:體積小、發射快、數量多、更聰明。小微衛星群在執行偵察和通訊任務時,有了更大的彈性和可靠性,目前世界衛星強國都在積極制定覆蓋範圍更廣的小微衛星群計畫。

各種高超音速打擊武器在空天巡航,彷彿懸在人們頭頂的利劍。美國空軍研究室稱「高速打擊武器」將在2018年前後啟動飛行試驗,其它各國也正積極研發類似武器。這類武器最大的特色是速度快、航程遠、智能化程度高。

智慧化指揮資訊系統改變傳統作戰指揮方式

網路空間武器和受網路空間控制的武器,是智慧化戰爭的“拳頭”,而指揮這些武器運用的指揮資訊系統是智慧化戰爭的“大腦”,網路空間作戰指揮資訊系統要同步跟上智慧化的進程。目前,幾乎全球的指揮資訊系統都面臨著「智慧滯後」的難題,未來戰爭需要快速決策、自主決策,這對智慧輔助系統提出了更高要求。

2007年,美國國防部高級研究計劃局啟動關於指揮控制系統的研發計劃——“深綠色計劃”,以期能實現計算機輔助指揮官快速決策贏得制勝先機。這是一個戰役戰術級的指揮資訊系統,其研發目的是將該系統嵌入美國陸軍旅級C4ISR戰時指揮資訊系統中去,實現指揮官的智慧化指揮。直到今天,美軍也沒有放鬆對智慧化指揮資訊系統的發展。

在網路空間作戰中,網路目標表現為一個接取網路的IP位址,數量眾多導致人工難以有效率操作,作戰更需要智慧化指揮資訊系統的輔助支撐。目前,智慧化指揮資訊系統需要實現智慧情報分析、智慧感知、智慧導航定位、智慧輔助決策、智慧協同、智慧評估、智慧化無人作戰等功能,尤其是實現對無人網控系統的集群作戰操控,這都對智慧化指揮資訊系統提出了迫切需求,需要加快相應關鍵技術的研發和運用。

綜上所述,智慧化的網路武器和網路控制武器,透過智慧化的資訊系統調度,將形成巨大的作戰能力,基本能遂行現行作戰樣式中的所有行動。未來戰爭,從指揮力量編組、到目標選擇、行動方式、戰法運用等,都將在智能化的背景下展開,戰爭「遊戲化」的特徵將更顯著,作戰指揮方式也將發生重大變化。

未來戰場 鬥勇更需鬥“智”

■楊建 趙璐

目前,人工智慧發展進入嶄新階段,並開始向各個領域加速滲透。受此一進程的影響,各國圍繞智慧化的軍事競爭已揭開序幕。我軍歷來是一支英勇頑強、敢打必勝的人民軍隊,未來戰場上應繼續發揚光榮傳統,同時要更加廣泛地掌握和利用最新的科技成果,研製出更多智能化的武器裝備,在未來戰場上掌握制勝先機。

智慧化是人類社會發展的趨勢,智慧化戰爭正加速到來。正是由於超越原有體系結構計算模型的成功創新、奈米製造技術的逐步普及,以及對人腦機制研究的突破性進展,軍事智慧化發展才擁有了堅實的基礎。因此,智慧化武器裝備的表現日益突出,並在情報分析、戰鬥反應等方面開始超越並取代人類。此外,在人力需求、綜合保障、運作成本等方面,智慧化武器裝備也具有明顯的優勢,日益成為戰爭的主導力量。

事實證明,智慧化武器裝備的發展應用,拓展了軍事行動的能力範圍,大幅提升了部隊的作戰效能。在阿富汗和伊拉克戰場上,無人機已承擔了大部分偵察、情報、監視等作戰保障任務,並承擔了約三分之一的空中打擊任務。近兩年,俄羅斯在敘利亞戰場上也曾多次使用較高智慧化程度的無人偵察機、戰鬥機器人等裝備。智慧化武器裝備正愈來愈地展現出超越傳統武器的重要價值。

未來戰爭中,作戰體系智能化的較量將是高手過招、巔峰對決的勝利關鍵。隨著以科技為支撐的軍事手段發展的不平衡性越來越大,誰先具備實施智能化作戰的能力,誰就更能掌握戰場的主動權,擁有技術代差優勢的強者會盡可能將戰爭成本降到最低,而弱者必然遭受巨大損失,付出慘重代價。我們不僅要加緊核心技術創新、武器裝備研製,還要研究探索適應軍事智能化發展的組織結構、指揮方式和運用模式,更要培養一支能夠擔起推進軍事智能化發展、鍛造智能化作戰能力的人才隊伍,充分發揮我軍作戰體系的整體效能,在與對手的較量中,以更加“智慧”的方式贏得戰爭。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841895888.htm

Chinese Military Higher Education During an Era of Intelligent Warfare

智慧戰爭時代的中國軍事高等教育

現代英語:

“Military academies were born and built for war”. At the opening ceremony of the 2019 military academy principals training camp, President Xi proposed a new era of military education policy, pointing out the direction for the military academies to cultivate high-quality, professional new military talents. At present, the form of war is accelerating towards informatization and intelligence. What kind of soldiers are needed to win future intelligent wars, and how military higher education can cultivate talents to adapt to intelligent wars are major issues before us.

The war form is accelerating towards intelligence

The form of war is a staged expression and state of war history that is mainly marked by the technical attributes of main battle weapons. So far, after experiencing cold weapon wars, hot weapon wars, and mechanized wars, war forms are accelerating their development towards information-based and intelligent wars. The increasingly widespread application of advanced technologies such as big data, the Internet of Things, artificial intelligence, biotechnology, and brain science in the military field is becoming an important driver of the new military revolution, giving birth to new unmanned, autonomous, and intelligent warfare forms, and changing the traditional The winning mechanism of war. In 2014, a foreign military think tank released a research report titled “War in the 20YY∶ Robot Era”, believing that a storm of military change marked by intelligent armies, autonomous equipment, and unmanned warfare is coming, and it will develop intelligent combat platforms, information systems and decision-making support systems, as well as new weapons such as directional energy, hypersonic speed, bionic, genetic, and nanometer By 2035, an intelligent combat system will be initially built, and by 2050, it will develop to an advanced stage, fully realizing intelligent or even unmanned combat platforms, information systems, and command and control. New weapons such as bionics, genes, and nanometers will enter the battlefield, and combat space will be further expanded. Expand to biological space, nanospatial space, and intelligent space.

In recent years, as people’s research on the human brain continues to deepen, brain-computer interface technology is becoming increasingly mature. In the future, the exchange of information between humans and the external world will no longer be limited to the senses. Direct information exchange between the brain and the outside world can also be achieved through chips. People and people, people and things are fully interconnected, and humans may transcend the Internet and the Internet of Things and enter the intelligent era supported by the Internet of Things. In the era of brain networking, soldiers’ brains are directly connected to combat platforms, information systems, and decision-making support systems. With the assistance of technologies such as quantum computing and cloud platforms, decisions will be made. The targets of attack will expand to human thoughts and actions, matter, energy, information and The mind is integrated. Some domestic experts believe that under the influence of artificial intelligence technology, the winning mechanism of future wars will shift from information-based warfare “information-led, system confrontation, precise strike, joint victory” to intelligent warfare “intelligent-led, autonomous confrontation, traceability Strike, cloud brain victory” transformation, following matter, energy, and information, cloud intelligence that integrates humans and machines becomes the key to determining the outcome of a war. The transformation of this “intelligent war form” is accelerating, and any hesitation may have unimaginable consequences.

However, it should be noted that man is always the most fundamental element, no matter how the war develops. The intelligent war form will promote changes in the functional role of military personnel, and will put forward higher requirements for military personnel’s ability quality. Cognitive ability may surpass knowledge and skills and become the core ability of military personnel.

Intelligent warfare requires military personnel to upgrade and reconstruct their comprehensive quality

According to the “talent growth cycle”, soldiers who are currently receiving higher education will become the main force in military combat training in more than 10 years, and will also become the first main force to meet the challenges of intelligent warfare. At present, our military’s higher education still has some shortcomings in the design of talent training goals. It does not pay enough attention to the ability to adapt to future changes in the intelligent battlefield. There is still a certain gap between talent training goals and the demand for intelligent warfare. On July 23, 2020, when President Xi inspected the Air Force Aviation University, he emphasized the need to adhere to cultivating people with moral integrity, educating people for war, strengthening military spirit education, strengthening the fighting spirit, and comprehensively laying a solid foundation for the ideological and political, military professional, scientific and cultural, and physical and psychological qualities of pilot students. Base. Implementing President Xi’s important instructions and benchmarking against the needs of future intelligent warfare, there is an urgent need to build a higher-level military talent training goal with thinking as the core, and accelerate the upgrading and reconstruction of the comprehensive quality of military personnel.

Intelligent warfare is a complex giant system that integrates multiple fields. Its intelligence-based characteristics and iterative and changeable development trends are changing the role of soldiers in war. Soldiers may gradually move from the front desk of the war to the backstage, from direct face-to-face combat to human-machine coordinated combat, and from front-line charging to back-end planning and design of the war. To be competent in functional roles such as human-machine collaboration, planning and designing wars, in addition to ideological, political and physical psychology requirements, in terms of military profession and science and culture, soldiers should focus on improving their knowledge and ability in the following five aspects: First, multi-disciplinary Integrate the knowledge structure, master the core principles of multiple intelligent war-related disciplines such as nature, military, cognitive psychology, and network intelligence, and be able to integrate knowledge across disciplines Guide military practice; the second is strong cognitive ability, with logical thinking, critical thinking, and systematic thinking abilities, and the ability to use scientific methods to analyze and infer combat problems; the third is human-machine collaboration ability, deeply grasp the characteristics and rules of intelligent warfare, and be proficient in operating Combat platforms, command and control systems, and decision-making support systems can control a variety of intelligent weapons and equipment to achieve efficient human-machine collaboration; fourth, innovative capabilities Have keen scientific and technological perception and strong creativity, and be able to grasp the forefront of science and technology, innovate combat styles, and master the laws of war development; fifth, self-growth ability, be able to accurately recognize oneself, reasonably plan military career, and freely use information means to acquire new knowledge, new technologies, new methods, constantly improve the knowledge structure, improve cognitive abilities, and better adapt to the complex and ever-changing development of military revolutions.

Find the focus of “paramilitary higher education reform”

At present, the superimposed advancement of informatization and intelligence has brought greater complexity to the talent training work of military academies. It is necessary to not only meet the needs of real-life information operations, but also lay the foundation for adapting to intelligent warfare. The following should be focused on Work.

Reconstructing the curriculum system. The curriculum system supports the formation of the talent knowledge structure. In order to “cultivate military talents that meet the needs of intelligent warfare and achieve the training goals of military major, science and culture, we should break the practice of designing curriculum systems with a single major as the background and establish a “general + direction” curriculum system”. General courses are based on existing natural science and public courses, adding courses such as mathematical logic, mathematical modeling, critical thinking, network basics, artificial intelligence, cognitive neuroscience, systems engineering, etc., and establishing a cross-field and cross-disciplinary horizontal course system, expand students’ knowledge, build the knowledge structure urgently needed for intelligent warfare, and lay a broad knowledge foundation for their lifelong growth. Direction courses are to establish a subject professional direction, set up a vertical course system of mathematical science, professional foundation, and professional positions, build a solid professional background, and cultivate students’ ability to use professional theories to solve complex combat training problems.“ The general knowledge +direction” curriculum system helps build a “T”-shaped knowledge structure to meet the needs of military talents to adapt to diverse and intelligent warfare.

Deepen classroom reform. Educational neuroscience believes that education is the reshaping of students’ brains, and classrooms are the main position for reshaping students’ neural networks. They play an irreplaceable role in the formation of high-level cognitive abilities required for intelligent warfare. Continuously deepening classroom reform is The current key task of military higher education. You have to see that a classroom with only knowledge understanding is far from a good classroom. All human behaviors, thoughts and emotions are controlled by the brain, and every knowledge, thought and emotion corresponds to the specific neural network of the brain. Therefore, classroom reform should focus on students’ learning and follow the cognitive laws of the human brain to attract and maintain attention as the starting point, establish a scientific thinking framework, and mobilize students to think proactively. Usually, the teaching method pointing to higher-order abilities has a general model —— problem-driven inspired teaching. Commonly used problem teaching methods, project teaching methods, and inquiry teaching methods all belong to this model. Therefore, the main way to promote classroom reform is to develop unknown, novel and questions and stories that students are interested in, design a thinking framework that points to logical reasoning, critical thinking, reflective ability, creative ability and learning ability, and inspire students to be guided by the framework. Actively think, supplemented by the output process of speaking and writing, and finally achieve the goal of internalizing knowledge understanding and forming high-level abilities.

Promoting comprehensive education. Modern educational theory not only regards the classroom as an important position in education, but also regards all time and space outside the classroom as an important resource for cultivating students. The time and space outside these classes not only support classroom teaching and promote the formation of intellectual abilities, but are also important places for cultivating non-intellectual abilities. Colleges and universities should make full use of these times and spaces, clarify specific training goals, and scientifically design education and training plans with a focus on going deep into the army, being close to actual combat, and highlighting practicality and creativity. Pay attention to giving full play to the management and education advantages of military academies, explore the establishment of student management models, and promote the cultivation of students’ leadership and management capabilities; continuously enrich the second classroom, build an innovation platform, create more independent practice opportunities, and enhance students’ innovative abilities; make full use of various large-scale activities, cultivate students’ competitive awareness and team collaboration capabilities; strengthen the construction of management cadre teams, improve scientific management and training capabilities, and be able to effectively guide students in time management and goal management Emotional management, psychological adjustment, habit development, etc., help students improve their self-management and independent learning abilities.

In short, education is a systematic project. The above are only three aspects that break through the shortcomings of talent training in the intelligent era. To truly solve the problem, military academies need to carry out systematic reforms in strategic planning, quality management, personnel quality, and teaching conditions. It can effectively support the achievement of talent training goals in all aspects, and this requires us to continue to explore and innovate, and continuously improve the level of running schools and educating people Efforts have been made to create a new situation in the construction and development of military academies.

(Author’s unit: Air Force Aviation University)

現代國語:

“軍隊院校因打仗而生、為打仗而建”。在2019年全軍院校長集訓開班式上,習主席提出新時代軍事教育方針,為全軍院校培養高素質、專業化新型軍事人才指明了方向。當前,戰爭形態正加速向信息化、智能化發展,打贏未來智能化戰爭需要什麼樣的軍人,軍事高等教育如何培養適應智能化戰爭的人才等,是擺在我們面前的重大課題。

戰爭形態加速向智能化發展

戰爭形態是以主戰兵器技術屬性為主要標志的、戰爭歷史階段性的表現形式和狀態。迄今為止,戰爭形態在經歷了冷兵器戰爭、熱兵器戰爭、機械化戰爭之後,正加速向信息化、智能化戰爭發展。大數據、物聯網、人工智能、生物技術、腦科學等先進科技在軍事領域日益廣泛的應用,正成為新軍事革命的重要推手,催生新的無人化、自主化、智能化戰爭形態,改變著傳統戰爭制勝機理。2014年,外軍智庫發布名為《20YY∶機器人時代的戰爭》的研究報告,認為以智能化軍隊、自主化裝備和無人化戰爭為標志的軍事變革風暴正在來臨,其將通過發展智能化作戰平台、信息系統與決策支持系統,以及定向能、高超聲速、仿生、基因、納米等新型武器,到2035年初步建成智能化作戰體系,到2050年將發展到高級階段,全面實現作戰平台、信息系統、指揮控制智能化甚至無人化,仿生、基因、納米等新型武器走上戰場,作戰空間進一步向生物空間、納米空間、智能空間拓展。

近年來,隨著人們對人腦研究的不斷深入,腦機接口技術正日趨成熟,未來人類與外部世界的信息交換將不再局限於感官,還可以通過芯片實現大腦與外界直接的信息交流,人與人、人與物充分互聯互通,人類或將超越互聯網、物聯網,進入腦聯網支持的智能時代。腦聯網時代,軍人的大腦與作戰平台、信息系統、決策支持系統直接相聯,在量子計算和雲平台等技術輔助下開展決策,打擊的對象將拓展到人的思想和行動,物質、能量、信息與心智融為一體。國內有專家認為,在人工智能技術的作用下,未來戰爭的制勝機理將由信息化戰爭的“信息主導、體系對抗、精確打擊、聯合制勝”,向智能化戰爭的“智能主導、自主對抗、溯源打擊、雲腦制勝”轉變,繼物質、能量、信息之後,人機融合的雲智能成為決定戰爭勝負的關鍵。這一智能化戰爭形態的轉變正在加速到來,任何遲疑都可能帶來難以想象的後果。

但應該看到,無論戰爭如何發展,人始終是最根本的要素。智能化戰爭形態將促使軍人的職能作用發生變化,對軍人的能力素質將提出更高的要求,認知能力或將超越知識、技能成為軍人的核心能力。

智能化戰爭要求軍人綜合素質升級重構

根據人才成長周期,目前正在接受高等教育的軍人,10多年後將成為部隊作戰訓練主體力量,也將成為迎接智能化戰爭挑戰的第一批主力軍。當前,我軍高等教育在人才培養目標設計上尚存在一些不足,對適應未來多變的智能化戰場能力關注不夠,人才培養目標與智能化戰爭需求還有一定差距。2020年7月23日,習主席視察空軍航空大學時,強調要堅持立德樹人、為戰育人,加強軍魂教育,強化戰斗精神,全面打牢飛行學員思想政治、軍事專業、科學文化、身體心理等素質基礎。貫徹習主席重要指示,對標未來智能化戰爭需求,迫切需要構建以思維力為核心的更加高階的軍事人才培養目標,加快軍人綜合素質升級重構。

智能化戰爭是整合多個領域的復雜巨系統,其智力為本的特點和迭代多變的發展趨勢,正在改變軍人在戰爭中的角色。軍人或將逐步由戰爭前台走向幕後,由直接面對面作戰轉變為人機協同作戰,由前線沖鋒陷陣轉變為後端籌劃設計戰爭。要勝任人機協同、籌劃設計戰爭等職能作用,除思想政治和身體心理必須達到要求外,在軍事專業和科學文化方面,軍人應重點提升以下五個方面的知識能力素質:一是多學科融合的知識結構,掌握自然、軍事、認知心理、網絡智能等多個智能化戰爭相關學科領域的核心原理,能夠跨學科整合知識,指導軍事實踐;二是強大的認知能力,具有邏輯思維、審辨思維、系統思維能力,能夠運用科學方法分析推理解決作戰問題;三是人機協作能力,深刻把握智能化戰爭特點規律,熟練運用作戰平台、指揮控制系統、決策支持系統,能夠操控多樣化智能武器裝備,實現人機高效協同;四是創新能力,具有敏銳的科技感知力和強大的創造力,能夠把握科技前沿,創新作戰樣式,掌握戰爭發展規律;五是自我成長能力,能夠准確認知自我,合理規劃軍事職業生涯,自如運用信息手段獲取新知識、新技術、新方法,不斷完善知識結構,提升認知能力,較好地適應復雜多變的軍事革命發展。

找准軍事高等教育改革著力點

當前,信息化與智能化的疊加推進,給軍隊院校人才培養工作帶來更大復雜性,既要滿足現實的信息化作戰需要,同時又要為適應智能化戰爭奠定基礎,應著重抓好以下幾項工作。

重構課程體系。課程體系支撐著人才知識結構的形成。為培養滿足智能化戰爭需要的軍事人才,達成軍事專業、科學文化兩個方面的培養目標,應打破以單一專業為背景設計課程體系的做法,建立“通識+方向”的課程體系。通識課程是在現有自然科學和公共類課程基礎上,增加數理邏輯、數學建模、批判性思維、網絡基礎、人工智能、認知神經科學、系統工程等課程,建立跨領域跨學科的橫向課程體系,拓展學員的知識面,搭建智能化戰爭急需的知識結構,為其終身成長奠定廣博的知識基礎。方向課程是確立一個學科專業方向,設置數理科學、專業基礎、專業崗位的縱向課程體系,構建厚實的專業背景,培養學員運用專業理論解決復雜作戰訓練問題的能力。“通識+方向”的課程體系,有助於構建“T”形知識結構,滿足軍事人才適應多樣多變智能化戰爭的需要。

深化課堂改革。教育神經科學認為,教育是對學生大腦的重塑,而課堂是重塑學生神經網絡的主陣地,特別對於智能化戰爭所需要的高階認知能力形成具有不可替代的作用,持續深化課堂改革是軍事高等教育當前的關鍵任務。要看到,只有知識理解的課堂遠遠不是一個好課堂。人的一切行為、思想和情感全部由大腦控制,每個知識、思維和情緒都與大腦的特定神經網絡相對應,因此,課堂改革要以學生的學習為中心,遵循人腦的認知規律,以吸引和保持注意力為起點,建立科學的思維框架,調動學員主動思考。通常,指向高階能力的教學方法具有一個通用模式——問題驅動的啟發式教學,常用的問題式教學法、項目式教學法、探究式教學法都屬於這一模式。所以,推進課堂改革的主要路徑是開發未知、新奇和學生感興趣的問題和故事,設計指向邏輯推理、審辨思維、反思能力、創造能力以及學習能力的思維框架,啟發學員在框架的指引下主動思考,再輔以講出來、寫出來的輸出過程,最後達成知識理解內化和高階能力形成的目標。

推動全面育人。現代教育理論不僅把課堂作為教育的重要陣地,還把課堂之外的所有時間和空間都視作培養學生的重要資源。這些課堂以外的時間和空間不僅支撐課堂教學、促進知識能力形成,還是培育非智力能力的重要場所。院校應充分利用這些時間和空間,明確具體的培養目標,以深入部隊、貼近實戰、突出實踐性和創造性為重點,科學設計教育訓練計劃。注重發揮軍隊院校管理育人優勢,探索建立學員管理模式,促進學員領導管理能力的培養;不斷豐富第二課堂,搭建創新平台,創造更多自主實踐機會,提升學員的創新能力;充分利用各種大型活動,培養學員競爭意識和團隊協作能力;加強管理干部隊伍建設,提高科學管訓能力,能夠有效輔導學員開展時間管理、目標管理、情緒管理、心理調節、習慣養成等,幫助學員提升自我管理和自主學習能力。

總而言之,教育是一個系統工程,以上僅是突破智能化時代人才培養短板的三個方面,真正解決問題還需要軍隊院校進行系統化改革,在戰略規劃、質量管理、人員素質、教學條件等諸方面都能夠有效支撐人才培養目標的達成,而這需要我們持續不斷地探索與創新,不斷提高辦學育人水平,努力開創軍事院校建設發展新局面。

(作者單位:空軍航空大學)

來源:解放軍報 作者:唐維忠 責任編輯:王鳳 2021-05-13 10:24:xx

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jsyxgfs/4885203888.html?big=fan

China Advancing Digital Intelligence of Defence Mobilization – Informatization to Intelligentization

中國推進國防動員數位化智能化-從資訊化走向智慧化

現代英語:

With the accelerated evolution of the new round of scientific and technological revolution, military revolution and industrial revolution, the form of war has made great strides towards intelligence, and the field of national defense mobilization has undergone profound changes. In-depth analysis of the new characteristics of national defense mobilization in the intelligent era, exploration of intelligent national defense mobilization methods, and promotion of digital intelligence of national defense mobilization are urgent practical issues facing national defense mobilization work.

Digital intelligence technology is widely used in social production and life, and the target areas, means, training exercises, etc. of national defense mobilization have also undergone profound changes, showing many new characteristics. First, the targets of national defense mobilization have expanded from traditional fields to emerging areas of intelligence. Currently, the world’s major military powers have stepped up efforts to tap and utilize the country’s smart resources. The U.S. military has launched a flagship project for the application of artificial intelligence technology “Project Mavin”, and many U.S. private technology companies such as Parantil and Amazon have participated in research and development. It is worth noting that as the role of digital intelligence technology in seizing and maintaining multi-domain competitive advantages becomes increasingly prominent, the global battle for artificial intelligence talents is intensifying, and defense mobilization is focusing on advantageous universities and key institutions engaged in artificial intelligence research. The second is the in-depth transformation of defense mobilization methods from multi-chain decentralization to intelligent dynamic matching. Through the use of intelligent means such as large models, the docking of national defense mobilization potential will be automatically matched according to professional mobilization algorithm rules. The efficiency of the transformation of national defense mobilization potential will be greatly improved. The docking of supply and demand will be changed from “offline to online”, and the transportation of mobilization materials will be handed over. It will be quickly transported to the front through intelligent dispatch, which can be achieved “direct access from the factory to the battlefield”. Under the integration of the “intelligent charging platform”, the mobilization and command method that integrates network, information and intelligence, and integrates air, space and earth allows “command chain” and “mobilization chain” to be accurately connected, agile and efficient, and can achieve plan generation “one-click” and test evaluation “Modelization”, command control “visualization”, comprehensive management “platformization”. Third, defense mobilization training has developed in depth from simple and inefficient to digital and intellectual empowerment. By using augmented reality and virtual reality technologies to construct a practical simulation confrontation environment, it can not only enhance the sense of technology, interactivity, and fun of teaching and training, but also help enhance the practicality of training, allowing trainees to “immersive” Improve training effectiveness and speed up training progress. For example, foreign military forces use interactive virtual courses in the metaverse to help soldiers master equipment maintenance and repair skills, and use augmented reality equipment to assist in the repair of some equipment. At the same time, the training and evaluation system constructed using digital twin technology will minimize the factors of human interference, squeeze the training water, provide real and objective evaluation conclusions for the training level of trainees, and promote military training from empirical management to scientific management.

To promote the digital intelligence of national defense mobilization, we must aim to win future wars, adhere to innovation-driven and technological victory, and gather superior resources in all aspects. 1. “We must focus on gathering excellence in wisdom and building new areas and new quality forces!”. Find out the high-end digital intelligence potential of national defense mobilization, tap out high-end talents, high-tech and other new resources in new fields and new fields hidden in the public and enterprises, deepen cooperation with artificial intelligence specialized new enterprises and related scientific research institutes and universities, and update them in a timely manner Potential catalog opens up new space for high-end potential support. Focusing on the expansion of support and support objects into multi-dimensional battlefields, focusing on the joint combat system “to make up for weaknesses” and multi-dimensional space “to make up for blindness”, relying on digital and intellectual potential resources to build a strong new domain and new quality defense mobilization team to provide strong support for the joint combat system. Second, we must focus on digital intelligence empowerment and improve efficient institutional mechanisms. Improve the military demand reporting and docking mechanism, unify the military demand indicator system, build a “clearly” demand reporting catalog list for both military and civilian parties, and consolidate the data foundation for collaboration and linkage. Improve the potential information system to realize functions such as intelligent matching of demand and potential, real-time statistics of stock and consumption, and form a close collaboration model between supply and demand that is data-driven, accurately matched, and trusted to interact. Third, we must focus on intellectual and brain assistance and build a strong command and coordination platform. Open up data barriers between systems to achieve information sharing, data interaction, and intelligent office. Accelerate the construction of a national defense mobilization command platform that integrates and connects combat command systems, connects grassroots defense mobilization units, and horizontally connects different types of mobilization units, using “big data + big model + cloud platform” technology to establish a relationship between “command chain” and “implementation chain” A human-machine collaborative decision-making model that presents situations, handles needs, assists planning, and regulates actions Improving the quality and effectiveness of defence mobilization command. Fourth, we must focus on outsmarting the future and accelerating technological innovation and transformation. Improve the mechanism to support joint military-civilian scientific and technological innovation, expand participation channels for local scientific and technological enterprises, universities and institutes, and achieve two-way promotion and efficient integration of new quality productivity and new quality combat effectiveness. Improve the agile response and rapid transformation mechanism of advanced technology, accelerate the development of new combat capabilities, and enhance the victory contribution rate of digital intelligence in national defense mobilization.

現代國語:

吳子穆

隨著新一輪科技革命、軍事革命和產業革命的加速演進,戰爭形態朝向智慧化闊步邁進,國防動員領域發生深刻變化。深入研究智慧化時代防衛動員的新特點,探討智慧化國防動員辦法,推進國防動員數智化,是國防動員工作面臨的緊迫現實課題。

數智技術在社會生產生活中廣泛應用,國防動員的對象領域、手段方法、訓練演練等也隨之發生深刻改變,呈現諸多新的特點。一是國防動員對象由傳統領域向智慧新興領域深入擴展。當前,世界主要軍事強國均加強了對國家智慧資源的挖掘利用。美軍啟動了人工智慧技術應用旗艦項目“梅文計畫”,帕蘭蒂爾、亞馬遜等多家美國民間科技企業參與研發。值得注意的是,隨著數智技術對奪取並維持多域競爭優勢的作用愈發凸顯,全球人工智慧人才爭奪戰愈演愈烈,國防動員正在向優勢高校和從事人工智慧研究的重點院所聚焦。二是國防動員手段由多鏈分散向智慧動態匹配深入轉變。通過大模型等智慧化手段的運用,國防動員潛力對接將按專業的動員算法規則進行自動匹配,國防動員潛力轉化的效率將大大提升,供需對接將由“線下轉為線上”,動員物資運輸交接將通過智能化派單方式快速運抵前方,可實現“工廠直達戰場”。在智慧化指控平台整合下,網信智融合、空天地一體的動員指揮手段,讓「指揮鏈」與「動員鏈」精準銜接、敏捷高效,能夠實現預案生成「一鍵化」、試驗評估「模型化」、指揮控制「可視化」、綜合管理「平台化」。第三是國防動員訓練由簡單低效向數智孿生賦能深入發展。透過運用增強現實與虛擬現實技術,構設實戰化的模擬對抗環境,既能提升教學組訓的科技感、互動性、趣味性,也有助於增強訓練實戰性,讓參訓人員在「沉浸式」訓練中提高訓練成效,加快訓練進度。例如,外軍運用元宇宙中的互動式虛擬課程幫助士兵掌握裝備維護和修理技能,借助增強現實設備協助完成一些裝備的維修工作。同時,運用數字孿生技術所構設的訓練評鑑系統,將最大限度減少人為乾擾的因素,擠壓訓練水分,為參訓人員的訓練水準提供真實客觀的評估結論,推動軍事訓練由經驗式管理走向科學化管理。

推動防衛動員數智化,必須瞄準打贏未來戰爭,堅持創新驅動、科技制勝,凝聚各方面優勢資源。一要著眼向智聚優,建強新域新質力量。摸清國防動員高端數智潛力,把蘊藏在民眾與企業中的高端人才、高新科技等新域新質資源挖掘出來,深化與人工智慧專精特新企業及相關科研院所、高校的合作,及時更新潛力目錄,為高端潛力援戰開拓新空間。著眼支援保障對象向多維戰場拓展,聚焦為聯戰體系“補弱”、多維空間“補盲”,依托數智潛力資源編優建強新域新質國防動員隊伍,為聯合作戰體系提供有力支撐。二要著眼數智賦能,健全高效制度機制。健全軍事需求提報對接機制,統一軍事需求指標體系,構建軍地雙方都「看得明白」的需求提報目錄清單,夯實協同聯動的數據基礎。完善潛力資訊系統,實現需求與潛力智慧匹配、存量與消耗實時統計等功能,形成數據驅動、精準匹配、可信互動的供需兩端密切協作模式。三要著眼智腦輔助,建強指揮協調平台。打通系統之間的數據壁壘,實現資訊共享、數據互動、智慧辦公。加速建立上融聯合作戰指揮體系、下接基層國防動員單位、橫向貫通不同類型動員單位的國防動員指揮平台,運用「大數據+大模型+雲平台」技術,在「指揮鏈」與「落實鏈」之間建立態勢呈現、需求處理、輔助規劃、調控行動的人機協同決策模式,提升國防指揮質效。四要著眼智勝未來,加速科技創新與轉化。完善支持軍地聯合科技創新體制機制,拓展地方科技企業、大學院所參與管道,實現新質生產力與新質戰鬥力的雙向拉動、高效融合。健全先進技術敏捷響應與快速轉化機制,加速發展新質戰鬥力,提升國防動員數智化的勝戰貢獻率。

中國軍網 國防網
2025年3月20日 星期四

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index888.html?paperName=jfjb&paperDate=2025-03-20&paperNumber=07&articleid=951582

Chinese Military Adhering to Integrated Development of Mechanization, Informatization & Intelligence

中國軍隊堅持機械化、資訊化、智慧化融合發展

現代英語:

Adhere to the integrated development of mechanized informatization and intelligence

——Seriously study, publicize and implement the spirit of the 20th National Congress of the Communist Party of China

The report to the 20th CPC National Congress emphasized “upholding the integrated development of mechanization, informatization, and intelligence,” elevating the requirement for the integrated development of mechanization, informatization, and intelligence (hereinafter referred to as the “three modernizations”) to a new strategic level. To thoroughly study, publicize, and implement the spirit of the 20th CPC National Congress and strive to achieve the goals of the PLA’s centenary, we must focus on understanding and grasping the primary characteristics, profound mechanisms, basic principles, and strategic measures of the integrated development of the “three modernizations,” and effectively promote their implementation.

Recognize the main characteristics of the integrated development of the “three transformations”

Mechanization, informatization, and intelligence are progressive and interdependent. From a chronological perspective, the three transformations did not originate simultaneously. Without the prerequisites and foundations of the previous transformations, the subsequent transformations could not occur and develop. For example, without mechanization, there would be no informatization. Informatization requires the physical substance provided by mechanization. Without mechanized combat platforms and ammunition as carriers of information nodes, the “connectivity” of informatization would be lost. Informatization is the nucleus of intelligence. Without the sufficient computing power and data provided by advanced informatization, the next generation of artificial intelligence cannot achieve the chain breakthroughs it promises. Without a solid foundation of mechanization, a military cannot advance informatization, and without a solid foundation of mechanization and informatization, it cannot effectively advance intelligence.

Based on this understanding, it’s difficult to leapfrog mechanization and informatization to embrace intelligence. Generally speaking, the latter can only replace the former in specific areas, not completely replace or surpass it. If the foundation of the former’s core technologies, foundational areas, and key stages is not solid, bottlenecks and shortcomings will be difficult to address quickly. Not only will these bottlenecks be difficult to address with the latter, but their weak foundation will also hinder the latter’s development, hindering overall development. If we skip mechanization and informatization and shift our focus entirely to intelligence, haste may lead to failure.

Mechanization, informatization, and intelligence will overlap and coexist for a long time. The term “basic mechanization” generally refers to the fact that mechanization has reached a late stage of development, with its contribution to combat effectiveness having already experienced diminishing returns. Further investment in mechanization will significantly reduce the cost-effectiveness. This does not mean that there will be no more mechanization construction tasks; it simply means that the proportion of investment in informatization and intelligence will gradually decrease compared to informatization and intelligence. Informatization is not the end of mechanization; a certain degree of mechanization will continue during the informatization process. Similarly, intelligence is not the end of mechanization and informatization; a certain degree of informatization and mechanization will continue during the intelligence process. Each of the “three transformations” is only a construction focus for a specific historical period; no one “transformation” is exclusive to any given period.

Based on this understanding, we cannot pursue a “starting from scratch” approach, overthrowing mechanization and informatization in favor of intelligentization. The “three transformations” cannot be viewed in isolation. They are meant to be inclusive, integrated, and mutually exclusive, not selective. The subsequent transformation does not negate or terminate the previous one, nor does it mean discarding the achievements of the previous one and starting over with a new one. We must ensure a smooth transition and gradual upgrade of the combat system from mechanization to informatization and then to intelligentization. Taking intelligentization as an example, intelligentization does not mean completely overthrowing the existing informatized combat system and establishing a completely new, independent intelligent combat system.

Intelligent informationization uses the virtual to control the real, empowering and increasing efficiency in mechanization. The “real” here primarily refers to “hardware,” represented by physical entities such as combat platforms and ammunition, while the “virtual” primarily refers to “software,” centered around combat data and algorithms. While mechanization primarily relies on hardware development, informationization and intelligentization primarily rely on software development, optimizing and upgrading hardware and increasing its efficiency through software. In terms of development priorities, payloads surpass platforms, software surpasses payloads, and algorithms surpass software. Software costs in informationization and intelligentization far exceed hardware costs.

Based on this understanding, we must not pursue development that prioritizes hardware over software or creates a disconnect between the virtual and the real. In the era of intelligence, if the supporting software and core algorithms that serve as the “brains” of weapons and equipment lag behind, even the highest hardware performance indicators will be merely “inflated,” and it will be difficult to realize its combat potential in actual combat. Military combat practice demonstrates that in the era of intelligence, we should prioritize the development of general-purpose chips and core algorithms for military intelligence technology from the outset to avoid being caught in a passive position.

Clarify the profound mechanism of the integrated development of the “three transformations”

The integrated development of the “three transformations” is not a simple mixing, combination, or compounding of the “three transformations,” but rather a process of mutual inclusion, mutual penetration, and mutual promotion. From “you are you, I am me” to “you are in me, I am in you,” and then to “you are me, I am you,” achieving a seamless blend and unity, generating cumulative, aggregate, and multiplier effects, and achieving a qualitative leap in overall combat effectiveness. The integrated development of the “three transformations” primarily follows the following mechanisms:

Advantage-overlaying mechanism. Whether mechanization, informatization, or intelligentization, the supporting technology clusters for each “transformation” will give rise to a series of new weaponry and equipment, generate new combat forces, and ultimately form new combat capabilities with different operational mechanisms. The combined advantages of these new combat capabilities with existing combat capabilities can produce a systemic emergence effect, greatly enhancing the overall combat capability of the military; it can enrich one’s own combat means, methods, and approaches, and put the enemy in a dilemma of multiple difficulties.

Upgrade and expansion mechanism. Informatization, through the digital transformation and networking of various mechanized combat platforms, aggregates and upgrades mechanized combat systems into informationized combat systems, resulting in a qualitative leap in combat effectiveness. Intelligence can also be integrated with mechanization and informatization through upgrades and expansions. On the one hand, intelligent technologies are used to upgrade the control systems of mechanized combat platforms, continuously enhancing the autonomous combat capabilities of individual weapons and equipment. On the other hand, intelligent technologies are used to optimize and upgrade informationized combat systems, significantly enhancing their capabilities in information acquisition, transmission, processing, sharing, and security, and comprehensively improving the combat capabilities of the system.

A mechanism for addressing shortcomings and replacing them. The history of military development shows that as a particular “industry” develops, it often encounters bottlenecks that are difficult to resolve with its own technological system alone. This necessitates the urgent need for innovative solutions using the technical means and development strategies of other “industries.” Currently, machinery is becoming increasingly sophisticated and complex, making its design and control increasingly difficult. Informatization has led to an “information explosion,” making it increasingly difficult to quickly translate this information into decision-making information. These problems are difficult to effectively address within the technological systems of mechanization and informatization alone. However, the application of intelligent technology can effectively overcome bottlenecks in mechanical control and information processing capabilities. Furthermore, technological breakthroughs in the first “industry” can offset the shortcomings of the second. For example, hypersonic missiles can outpace the response capabilities of networked and informationized defense systems, enabling rapid penetration, which to some extent offsets an adversary’s information advantage.

Grasp the basic principles of the integrated development of the “three transformations”

In promoting the integrated development of the “three transformations”, we should focus on the following basic principles:

The principle of mutual promotion and symbiosis. Each “transformation” differs fundamentally in its combat effectiveness generation mechanisms and development goals. The simultaneous and parallel development of the three transformations presents both favorable conditions for mutual enhancement, mutual promotion, and mutual support, but also unfavorable factors such as competition over development areas, resource allocation, and investment volume. We must ensure that the three transformations form a healthy symbiotic relationship within the overall development process, avoiding conflicts, frictions, and constraints that could lead to a situation where 1+1+1 is less than 3, and strive to achieve systemic emergence and synergistic effects.

The principle of overall coordination. The importance of the “three transformations” is not ranked in order of importance. We should not emphasize one at the expense of the others. Instead, the three transformations should be considered as a system, coordinated and advanced as a whole. While informatization and intelligentization appear more advanced and complex, we should not assume that mechanization is low-end, simple, and easy to implement, or that the importance of mechanization can be ignored with the advent of informatization and intelligentization. On the one hand, if mechanization is not fully implemented, it will hinder progress and become a bottleneck restricting overall development. Similarly, without the sufficient computing power and data provided by full informatization, the next generation of artificial intelligence cannot achieve a series of breakthroughs. On the other hand, mechanization also has high-end cutting-edge fields such as hypersonic aircraft and deep-sea submersibles that can have a disruptive effect.

The principle of prioritizing key areas. Total investment in national defense and military development is limited. Given a relatively fixed overall budget, investing more in one area will inevitably result in less investment in others. We should accurately assess the contribution of each area to combat effectiveness over the coming period, identify the area that will most significantly increase combat effectiveness as the priority for development, rationally allocate resources in a prioritized manner, and scientifically determine the direction and amount of investment. Failure to prioritize the development of the “three areas” and applying a “sprinkle pepper” approach to each area can easily result in a low input-output ratio and may even cause military development to stray from its correct trajectory.

Strengthening strategic measures for the integrated development of “three transformations”

In practice, we should strive to change the inertial thinking of relying on latecomer advantages and unconsciously falling into the habit of following development, strive to get out of the passive catch-up development model, and turn to the pursuit of concurrent advantages and first-mover advantages. We should develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to drive mechanization and informatization to a higher level. We should use the integrated development of the “three transformations” as a powerful engine to promote the transformation and development of the military and achieve a comprehensive leap in the overall construction level.

We must effectively strengthen top-level design and overall coordination for the integrated development of the “three transformations.” We must fully recognize the long-term, complex, and arduous nature of the integrated development of the “three transformations,” adhere to the unity of technological and conceptual integration, and avoid simply applying the existing mechanization and informatization construction model to the integrated development of the “three transformations.” We must also avoid generalization and labeling of the “three transformations.” We must strengthen top-level design and overall coordination with strong organizational leadership, streamline multiple relationships, pool the strengths of all parties, and create a positive synergy.

Proactively plan key areas for the integrated development of the three transformations. First, address areas where one transformation affects and constrains the development of others. Quickly identify technical bottlenecks within each transformation, compile a list of these bottlenecks, and increase investment in focused research to address these shortcomings as quickly as possible. Second, address areas where one transformation could potentially offset the achievements of others. During the integrated development of the three transformations, even after one has become dominant, we should still prioritize developing new operational mechanisms within the others, potentially disrupting the strategic balance and generating disruptive impacts, potentially even offsetting the achievements of the others. Third, address areas where the three transformations intersect and intersect. The “edge zones, intersections, and junctions” of the three transformations are also crucial for rapidly generating new qualitative combat capabilities. Currently, we should particularly proactively plan for areas such as “ubiquitous network plus” and “artificial intelligence plus.”

(Author’s unit: Academy of Military Science, Institute of War Studies)

中國軍網 國防部網
2022年11月10日 星期四

現代國語:

黨的二十大報告強調“堅持機械化信息化智能化融合發展”,把機械化信息化智能化(以下簡稱“三化”)融合發展要求提升到新的戰略高度。深入學習宣傳貫徹黨的二十大精神,奮力實現建軍一百年奮鬥目標,應著力認清把握「三化」融合發展的主要特徵、深刻機理、基本原則和戰略舉措,切實推動「三化」融合發展落地落實。

認清「三化」融合發展的主要特徵

機械化資訊化智能化逐次遞進有序依存。從時序來看,「三化」不是同時起源的,沒有前一「化」作為前提和基礎,就沒有後一「化」的發生和發展。例如,沒有機械化就沒有資訊化。資訊化建設需要機械化建設提供物理實體,沒有機械化作戰平台和彈藥作為資訊節點的載體,資訊化的「聯」就失去了物件。資訊化是智慧化的孕育母體。沒有高度資訊化提供足夠的算力和數據,新一代人工智慧也不可能產生鍊式突破。一支軍隊沒有一定的機械化基礎,就無法推進資訊化,沒有一定的機械化資訊化基礎,也無法很好地推進智慧化。

基於這個認識,我們難以跨越機械化資訊化直接擁抱智慧化。通常說來,後一「化」對前一「化」只有在個別領域可以替代,而不可能全局替代或全面跨越。如果前一「化」的核心技術、基礎領域和關鍵階段的「底子」打得不牢,出現瓶頸和短板時將無法在短時間內彌補,不但難以被後一「化」解決,反而會因基礎不牢影響後一「化」發展,進而拖累整體發展。如果跳過機械化、資訊化,把建設重點全面轉向智慧化,可能欲速則不達。

機械化資訊化智能化相互​​交疊長期並存。通常所說的基本實現機械化,意思是機械化發展到後期,其戰鬥力貢獻已經產生了邊際遞減效應,繼續加大機械化投入,效費比將大大降低。但這並不意味著此後就沒有任何機械化建設任務了,只是與資訊化、智慧化相比對其投入比重將逐步降低。資訊化不是機械化的終結,資訊化過程中還有一定的機械化,智能化也不是機械化、資訊化的終結,智能化過程中還有一定的資訊化、機械化。 「三化」中的每一「化」都只是某一歷史時期的建設重點,不存在某一時期被某一「化」排他性獨佔的情況。

基於這個認識,我們不能搞推翻機械化資訊化,專搞智慧化的「另起爐灶」式發展。不能以割裂的觀點看待“三化”,“三化”是“三合一”式的兼容並蓄,不是“三選一”式的互斥排他。後一「化」不是對前一「化」的否定和終結,不是摒棄前一「化」所取得的發展成果推倒重來另搞一套,必須確保作戰體係由機械化到資訊化再到智能化的平滑過渡和漸進升級。以智慧化為例,智慧化絕不是顛覆性地推倒原有資訊化作戰體系,另建一個全新的獨立的智慧化作戰體系。

智慧化資訊化對機械化以虛控實、賦能增效。這裡所說的“實”主要是指以作戰平台、彈藥等物理實體為代表的“硬體”,“虛”主要是指以作戰數據、演算法等為核心的“軟體”。機械化以硬體建置為主,資訊化和智慧化則以軟體建置為主,透過軟體對硬體進行最佳化升級和賦能增效。在建置優先順序上,載重超越平台、軟體超越載重、演算法超越軟體,資訊化和智慧化建設中的軟體成本遠超硬體成本。

基於這個認識,我們不能搞「重硬輕軟」或「虛實脫節」式發展。進入智能化時代,如果作為武器裝備“大腦”的配套軟體和核心演算法落後,其硬體性能指標再高都只是“虛高”,實戰中很難發揮出作戰潛能。軍事鬥爭實踐表明,進入智慧化時代,應在一開始就注重軍事智慧技術的通用晶片和核心演算法研發,避免陷入被動。

明晰「三化」融合發展的深刻機理

「三化」融合發展,不是「三化」簡單的混合、化合或複合,而是相互包容、相互滲透、相互促進。從“你是你、我是我”變成“你中有我、我中有你”,進而變成“你就是我、我就是你”,達到水乳交融、合而為一的程度,並產生疊加效應、聚合效應和倍增效應,實現整體戰鬥力質的躍升。 「三化」融合發展主要遵循以下機制:

優勢疊加機理。不管是機械化、資訊化或智慧化,每一「化」的支援技術群都會催生出一系列新型武器裝備,產生新型作戰力量,最終形成具有不同作戰機理的新質作戰能力。這些新質作戰能力與原有作戰能力綜合運用優勢疊加,能夠產生系統湧現效應,大大提升軍隊整體作戰能力;能夠豐富己方作戰手段、作戰方式和方法,使敵方陷入顧此失彼的多重困境。

升級拓展機理。資訊化透過對各類機械化作戰平台進行數位化改造和網路化鏈接,將機械化作戰體系聚合升級為資訊化作戰體系,催生戰鬥力產生質的飛躍。智慧化也可透過升級拓展方式,與機械化、資訊化融為一體。一方面,運用智慧技術升級機械化作戰平台的操控系統,不斷提升其單件武器裝備的自主作戰能力。另一方面,運用智慧技術優化升級資訊化作戰體系,使其資訊取得、傳輸、處理、共享、安全等能力均大幅增強,體係作戰能力全面提升。

補短替代機理。從軍隊建設歷史來看,某一「化」在深化發展過程中,往往會出現僅靠自身技術體系難以解決的瓶頸問題,迫切需要其他「化」的技術手段和發展思路另闢蹊徑來解決。目前,機械越來越精密複雜,設計和控制難度越來越大;資訊化導致“資訊爆炸”,快速轉化為決策資訊的難度越來越大,這些問題在機械化、資訊化自身技術體系內難以得到有效解決,而運用智慧技術可有效突破機械操控能力、資訊處理能力的瓶頸。此外,前一「化」所產生的技術突破也可能抵消後一「化」的不​​足。如高超音波飛彈速度可以超出網路化資訊化防禦體系的反應能力實現快速突防,這在一定程度上抵消了對手的資訊優勢。

掌握「三化」融合發展的基本原則

在推動「三化」融合發展過程中,應著重於以下基本原則:

互促共生原則。各「化」在戰鬥力生成機制、建設發展目標等方面有著本質不同,「三化」同時並行發展,既存在著相互提升、相互促進、相互支撐的有利條件,也可能存在著發展領域方向、資源投向投量之爭等不利因素。應確保「三化」在建設全局形成良性共生關係,避免相互衝突、摩擦、掣肘造成1+1+1<3的不良後果,力求產生系統湧現及協同效應。

整體協調原則。 “三化”的重要性並不分高下,不能只強調某一“化”,而忽視其他“化”,應把“三化”視為一個體系整體協調推進。雖然資訊化、智慧化似乎更為高級和複雜,但不能認為機械化就是低端、簡單和易於實現的,或者說有了資訊化和智慧化,機械化的重要性就可以忽略。一方面,如果機械化完成度不高,就會拖後腿,成為限制整體發展的瓶頸。同樣,沒有充分資訊化後提供的足夠算力和數據,新一代人工智慧也不可能產生鍊式突破。另一方面,機械化也存在高超音波速飛行器、深海潛水器等可產生顛覆性效果的高端前緣領域。

突出重點原則。國防和軍隊建設的總投入是有限的,在「大盤子」相對固定的情況下,在某一「化」上投入得多,必然在其他「化」上投入得少。應準確評估今後一段時期每一「化」對戰力的貢獻率,把最能提升戰鬥力增量的一「化」確定為建設重點,有主有次地合理分配資源,科學確定投向投量。 「三化」建設重點不突出,對各「化」建設採取「撒胡椒麵」式平均用力,容易造成投入產出比不高,甚至可能導致軍隊建設偏離正確的發展方向。

強化「三化」融合發展的策略性舉措

實踐中,應努力轉變依賴後發優勢、不自覺陷入跟隨發展的慣性思維,努力走出被動追趕的發展模式,轉向追求並發優勢、先發優勢,在現有機械化和信息化基礎上來發展智能化,同時用智能化牽引機械化和信息化向更高層次發展,把“三化”集成發展作為軍隊發展的強躍水平,實現整體建設的整體水平的全面建設。

切實加強「三化」融合發展的頂層設計和統籌協調。應充分認識「三化」融合發展的長期性複雜性艱鉅性,堅持技術融合與理念融合相統一,防止簡單套用機械化資訊化原有建設模式抓「三化」融合發展,避免「三化」融合被「泛化」和「貼標籤」。應以強而有力的組織領導加強頂層設計和統籌協調,理順多重關係,匯聚各方力量,形成正向合力。

前瞻佈局「三化」融合發展重點領域。一是某一「化」影響限制其他「化」發展的短板弱項領域。盡快整理各「化」中的技術瓶頸,拉出「卡脖子」技術清單,並加大投入集中攻關,盡快補齊短板。二是某一「化」可能抵銷其他「化」建設成果的質變顛覆領域。在「三化」融合發展過程中,當某一「化」成為主導後,仍應高度注重發展其他「化」中採用新的作戰機理,可能打破戰略平衡並產生顛覆性影響,甚至可能在一定程度上抵消其他「化」建設成果的技術領域。三是「三化」相互交叉鄰接領域。 「三化」的「邊緣帶、交叉點、接合部”,同樣也是快速催生新質戰鬥力的重要領域,當前尤其應前瞻佈局「泛在網路+」和「人工智慧+」等領域。

(作者單位:軍事科學學院戰爭研究院)

中國軍網 國防部網
2022年11月10日 星期四

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4926673.html

China’s Military Effectively Creating a Solid Foundation for Informatization Warfare Construction

我軍切實打造資訊化戰爭建設堅實基礎

現代英語:

Effectively lay a solid foundation for informatization

■Li Zhanliang

The report of the 20th National Congress of the Communist Party of China emphasized that we should adhere to the integrated development of mechanization, informatization and intelligence. From the perspective of the relationship between mechanization, informatization and intelligence, mechanization is the foundation of informatization, and intelligence is the sublimation of informatization. Without mechanization there is no informatization, and without adequate informatization, no major breakthrough in intelligence is possible. At present, to vigorously promote military intelligence, we must first effectively lay a solid foundation for informatization construction and strive to improve the level of informatization of our troops.

Solidifying the material base. “It’s hard for a clever woman to make a meal without rice”. In order to shorten the gap with powerful enemies “system gap”, information construction should closely follow the mission and tasks, keep up with cutting-edge technology, do a good job in top-level design, and promote peace and war in an integrated manner. First, upgrade and improve all types of information systems. It is necessary to “focus on the construction of the accusation center and use information infrastructure as a platform to coordinate the construction of sub-systems and the linkage construction of various systems, promote the construction of all elements and systems in areas such as command and control, and realize the integration of information networks in each sub-domain.” Real-time command and control. Secondly, we should build a good operational database. In accordance with the principles of “integration of peacetime and wartime, overall planning, and classified implementation”, we will build a comprehensive combat database to achieve information sharing, data support, and auxiliary decision-making, and support “command chain” with “information flow”. Again, a preset backup mobile command post. We should actively draw on the useful practices of foreign military forces and vigorously strengthen civil defence projects, so as to form a mobile command capability with a multi-point layout, complementary movements and static forces, and rapid configuration.

Build a “strong team”. To win local information wars with intelligent characteristics, building a strong information force is an important guarantee. On the whole, efforts should be made to train four types of talents: first, information command talents. Frontline mid – and senior-level commanders should study information and data like troops, the construction of information systems like battle breakthroughs, and the use of electromagnetic spectrum like ammunition performance. Second, information warfare talent. Cultivate a group of intelligent staff officers, operational planners, cognitive operations and other talents who are competent in information-based operations. Third, information security talents. With the “information assurance department and information assurance operation and maintenance professional technical team personnel” as the main targets, we will continue to increase professional training and improve network management, system use, inspection and maintenance capabilities. Fourthly, information research and development talents. Adopt methods such as “invite in, go out, etc., let go of burdens, and hand in tasks, cultivate a group of expert technical talents with strong system research and development capabilities, establish an information-based high-end talent mobile station, and form “not for me, but for me”” Use a virtuous cycle.

Change command philosophy. Modern warfare is about system, and joint combat command is a key part of it. In order to respond to real threats and challenges, it is necessary to establish a new concept of command that is compatible with future wars. First, the establishment of a solid integrated command concept. Overcoming the narrow concept of command of a single service and arms, comprehensively coordinating multi-dimensional battlefield operations such as land, sea, air, space, electricity, and networks, and integrating various combat elements to effectively improve the combat effectiveness of overall victory and joint victory. Second, establish a solid digital command concept. Transform from “extensive to precise command”, concretize and refine mission distinction, force use, time and space division, goal determination, etc., standardize the command procedures, command methods, command content and other processes of joint combat forces, and standardize reconnaissance intelligence, weapons The platform, command and control and other networked and real-time operations shorten the command process and improve the command timeliness. Third, we need to establish a solid and intelligent command concept. Actively explore the systematic application of artificial intelligence technology, accelerate the development and application of new technologies such as intelligent decision-making, digital twins, big data, and cloud computing, improve the level of complex information processing on the battlefield, and enable commanders to control combat units and various types of weapons with the support of intelligent cloud brains. Task-based command of the platform.

Advancing innovative practices. In order to adapt to changes in science and technology, changes in war, and changes in opponents, we should speed up the construction of “three systems” to win the information war. First, the system of innovative tactics. In-depth study of the real strategies of preventing enemy information attacks, resisting enemy information interference, and counterattacking enemy information in the case of all-round information strikes and firepower destruction by powerful enemy opponents, and strive to achieve precise enemy control. Secondly, the system of innovative training. Focusing on “strong enemy opponents and combat tasks, set up an information combat environment, conduct in-depth research and training on command coordination, tactical application, system construction, comprehensive support and other topics, and promote actual combat deployment and application”. Innovation management systems again. Adhere to the integration of peacetime and wartime management and the combination of virtual and real management, establish a demand-driven mechanism, a plan-led mechanism, and an inspection and evaluation mechanism led by war, create an independent and controllable industrial chain, supply chain, and guarantee chain, and ensure “peace management ”“wartime Use” seamless connection to help continuously improve information combat capabilities.

(Author’s unit: Central Theater Command)

現代國語:

切實打牢資訊化建設基礎

■李佔良

黨的二十大報告強調,堅持機械化資訊化智慧化融合發展。從機械化、資訊化和智慧化之間的關係來看,機械化是資訊化的基礎,智能化是資訊化的昇華。沒有機械化就沒有資訊化,沒有充分的資訊化,智慧化也不可能有重大突破。目前,大力推動軍事智慧化,首先必須切實打牢資訊化建設基礎,著力提升部隊資訊化水準。

夯實物質基礎。巧婦難為無米之炊。為縮短與強敵的“體系差”,資訊化建設應緊貼使命任務,緊跟前沿科技,搞好頂層設計,平戰一體推進。首先,升級完善各類資訊系統。要以指控中心建設為重點,以資訊基礎設施為平台,統籌抓好分系統建設及諸系統聯動建設,全要素、成體系推進指揮控制等領域建設,實現各分域資訊網路一體化、指揮控制即時化。其次,建好用好作戰資料庫。依照「平戰一體、統籌規劃、分類實施」的原則,建好作戰綜合資料庫,實現資訊共享、資料支援、輔助決策,以「資訊流」支援「指揮鏈」。再次,預置備份機動指揮所。積極借鏡外軍有益做法,大力加強人防工程,形成多點佈局、動靜互補、快速配置的機動指揮能力。

建強力量隊伍。打贏具有智慧化特徵的資訊化局部戰爭,建強資訊力量隊伍是重要保證。綜合來看,應著力培養四類人才:一是資訊指揮人才。一線中高級指揮員,應該像研究用兵一樣研究資訊與數據,像研究戰役突破口一樣研究資訊系統的構建,像研究彈藥性能一樣研究電磁頻譜的使用。二是資訊作戰人才。培養一批勝任資訊化作戰的智慧參謀、作戰規劃、認知作戰等人才。三是資訊保障人才。以資訊保障部門及資訊保障維運專業技術分隊人員為主要對象,持續加強專業訓練力度,提升網路管理、系統使用、偵測維修等能力。四是資訊研發人才。採取請進來、走出去等方式,放手壓擔子、交任務,培養一批具有較強系統研發能力的專家型技術人才,建立資訊化高端人才流動站,形成「不為我有、但為我用」的良性循環。

變革指揮理念。現代戰爭拼的是體系,聯合作戰指揮是其中關鍵一環。為因應現實威脅挑戰,需確立與未來戰爭相適應的新型指揮觀。一是樹牢一體化指揮觀。克服狹隘的單一軍兵種指揮觀,全面協調陸、海、空、天、電、網等多維戰場行動,綜合整合各種作戰要素,實際提升整體制勝、聯合製勝的作戰效能。二是樹牢數位化指揮觀。由粗放式向精確化指揮轉變,將任務區分、力量使用、時空劃分、目標確定等具體化精細化,將聯合作戰力量的指揮程序、指揮方法、指揮內容等流程化標準化,將偵察情報、武器平台、指揮控制等網絡化實時化,縮短指揮流程,提高指揮時效。三是樹牢智能化指揮觀。積極探索人工智慧技術成體系應用,加速智慧決策、數位孿生、大數據、雲端運算等新型技術開發運用,提升戰場複雜資訊處理水平,實現指揮者在智慧雲腦支撐下對作戰分隊及各類武器平台的任務式指揮。

推進創新實踐。為適應科技之變、戰爭之變、對手之變,應加速建構打贏資訊化戰爭的「三個體系」。首先是創新戰法體系。在深入研討強敵對手全方位資訊打擊與火力硬破壞的情況下,防敵資訊攻擊、抗敵訊息幹擾、對敵訊息反擊的真招實策,努力實現精準制敵。其次是創新訓法體系。圍繞強敵對手及作戰任務,設置資訊作戰環境,深度研練指揮協同、戰法運用、體系建構、綜合保障等課題,推動實戰化部署運用。再次是創新管理體系。堅持平戰一體管、虛實結合管,建立以戰領建的需求牽引機制、計畫主導機制、檢驗評估機制,打造自主可控的產業鏈、供給鏈、保障鏈,確保「平時管」「戰時用」無縫銜接,助力資訊化作戰能力不斷提升。

(作者單位:中部戰區)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4926263888.html

Artificial Intelligence is Driving Profound Changes in Chinese Warfare

人工智慧正在推動中國戰爭發生深刻變化

現代英語:

In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.

Reshaping the combat force

These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.

From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.

From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.

From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.

Enhance combat system effectiveness

Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.

At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.

During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.

Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.

Improving combat command effectiveness

At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.

Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.

With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.

Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.

Improve the quality of combat coordination

As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.

Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.

China Military Network Ministry of National Defense Network

Tuesday , February 11, 2025

現代國語:

黃永剛

近年來,隨著人工智能技術的迅猛發展及其在軍事領域的廣泛運用,戰爭形態和作戰樣式不斷發生嬗變。國外一些學術文章認為,人工智能正在重塑作戰力量形態、增強作戰體系效能、提升作戰指揮實效、提高作戰協同質量,推動作戰活動發生深刻變化。

重塑作戰力量形態

這些學術文章指出,作戰力量主要由作戰人員、武器裝備及編組方式等整體構成,受人工智能技術影響,正發生著巨大變化。

從人員結構上看,隨著人工智能技術及相關裝備系統在軍事領域的廣泛應用,對具備人工智能技術研發、管理、使用和維護能力的專業人才需求大幅上升,技術人員在作戰力量中的佔比將不斷提高。一線作戰人員不再只是武器的直接操作者,而是逐漸向戰場監控者、系統指揮員和人機協同作戰中的關鍵決策者轉變,對其科技素養和信息處理能力的要求大大提高。

從裝備體系上看,無人機、無人戰車、智能導彈等智能武器裝備將大量出現,並成為裝備體系的重要組成部分。這些裝備具有高度的精確性和靈活性,自主作戰能力更強,能夠獨立完成偵察、打擊等任務,極大地改變了傳統的裝備結構和作戰模式。此外,傳統武器裝備也將通過加裝智能傳感器、通信模塊和自動控制系統等,加速進行智能化改造,以具備與人工智能系統互聯互通和協同作戰的能力。如老式坦克通過升級改造,可以實現自動駕駛、自動瞄准和智能彈藥裝填等功能,提升整體作戰效能。

從作戰單元編成上看,無人作戰系統憑借其在高風險、高強度作戰環境中的獨特優勢,將逐漸從輔助作戰力量發展為獨立的作戰單元並進行編組。西方國家一些智庫的研究報告認為,無人機集群作戰部隊、無人戰車營等將成為常見的作戰編制,它們可以完成偵察監視、情報分析、火力打擊等多種任務。為了充分發揮人工智能與人類戰士的各自優勢,人機混合編隊也將成為未來作戰力量的主要編成形式。在這種編隊中,人類戰士與智能武器裝備緊密配合,共同完成作戰任務。

增強作戰體系效能

從演進趨勢看,智能化技術跨域集成無人裝備、賦能傳統作戰平台,將成為未來體系作戰的“賦能器”。

目前,西方國家很多軍事專家認為,人工智能可以對作戰體系的各個要素進行全面分析和評估,找出體系中的薄弱環節和優化空間,為作戰體系的建設和調整提供科學依據。通過優化作戰體系的結構和功能,可以提高作戰體系的整體效能和穩定性,使其在面對多變戰場環境和強大作戰體系時更具競爭力。

在作戰過程中,人工智能可實時分析作戰雙方的作戰體系,預測對方的可能行動和薄弱點,提出針對性的體系對抗策略,並根據作戰過程中的實際情況不斷調整和優化,以實現己方作戰體系的高效運行,提升作戰體系對抗質效。

西方國家軍隊認為,基於人工智能賦能優勢,可以大大增強安全風險防御能力,通過自動預測、識別、發現、處置復雜安全風險,自主化保護人員、裝備、物資免受各類攻擊,能夠提升全領域、全方位防衛能力,確保作戰體系的安全性和穩定性。

提升作戰指揮實效

當前,人工智能已深度融入作戰指揮的各個環節,影響著作戰指揮的外在表現形式及主要活動方式。人工智能技術支撐下的人機智聯融合控制,將成為作戰行動控制的基本形態。

國外一些研究機構發現,人工智能系統可以根據實時戰場態勢和大量歷史數據,快速分析態勢,生成多種作戰方案,並及時推演評估方案、調整優化行動,為指揮員提供更科學合理的決策建議,高效指導計劃執行,讓作戰籌劃跟上快速變化的戰場節奏。尤其是在面對瞬息萬變的戰場情況時,能夠幫助指揮員更快地作出准確判斷。

隨著人工智能技術的不斷發展,一些智能作戰系統具備了一定的自主決策能力。在特定情況下,如面對突發的威脅或臨時出現的戰機,基於人工智能輔助的作戰指揮系統可以在預設的規則和權限范圍內,自主作出決策並采取行動,縮短決策鏈路,提高作戰的反應速度和靈活性。當作戰末端具備更強智能自主能力時,甚至可以實現作戰方案自生成、自評估、自調整,突破人的反應能力局限,形成更具適應性的作戰指揮。

很多實驗證明,基於海量作戰數據的積累和大數據分析技術的增強,人工智能技術可在模擬條件下對作戰籌劃全程進行精確計算,助力指揮員預先精准分析態勢、綜合研判趨勢、合理規劃走勢,進而通過作戰仿真、模擬推演等方式,虛擬開展參戰力量需求計算、戰法行動優化優選等活動,進而在籌劃過程中科學動態調整作戰方案策略,形成最佳選項,為作戰指揮提供更可靠的參考依據,提升指揮控制精確性。

提高作戰協同質量

隨著人工智能技術深度融入作戰體系,各作戰要素在戰場上的反應能力不斷提高,響應時間逐步縮短,適應水平日漸增強,作戰協同質量不斷提升。

西方國家一些軍事專家認為,未來戰場將呈現跨域、網絡化、非線性等特點,人工智能可以通過高效的算法,打破各作戰域、各作戰要素之間的界限,使不同作戰力量之間的協同更加緊密和高效。基於人工智能技術,可實現有人無人作戰力量編組之間的自主協同配合,使得有人無人作戰力量相互補充、相得益彰,顯著提升作戰效能。而且,無人作戰系統的應用越來越廣泛,人工智能技術可以對大量無人作戰平台進行集群控制和協同管理,實現它們之間的高效配合和任務分配,提高無人作戰的整體效能和安全性。

中國軍網 國防部網

2025年2月11日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-02-11&paperNumber=07&articleid=949008889

Exploring the Laws of Chinese Military Intelligent Warfare Design

探索中國軍事智慧戰爭設計規律

現代英語:

At present, with the widespread application of disruptive technology groups represented by artificial intelligence technology, the form of warfare is accelerating its evolution towards intelligence. Scientific planning and proactive design of intelligent warfare has become an issue of the times facing war preparation. To truly organize intelligent warfare design well, we must accurately grasp the characteristics and laws of intelligent warfare design, clarify its position and role in war planning and preparation, so as to better serve winning the war.

Focus on development and make reasonable foresight

Correct decisions come from correct judgments, and correct judgments come from scientific foresight for the future. Scientific prediction is the prerequisite for operational design, and operational design is the application of prediction results. Tomorrow’s war will not be a replica of today’s war, but its shadow can be found in today’s war. Therefore, the design of intelligent warfare should be based on a full assessment and scientific prediction of future war forms and ways to win, and the forms, styles, methods, and means of intelligent warfare should be predicted through today’s wars.

In a battlefield full of uncertainty and ambiguity, in order to make war design more realistic, we must focus on the development and changes of intelligent weapons and equipment of both sides in the future, the updating of combat theories, the development of combat capabilities, and the innovation of winning methods. We must make scientific and reasonable predictions, estimates, and analyses of the timing of launching intelligent warfare, scale and level, style and intensity, development process, outcome of war, and other various complex situations that may arise, and on this basis, make systematic concepts and advance plans.

Be proactive and prioritize shaping

Sun Tzu said, “Victorious troops first win and then seek battle.” Intelligent warfare design focuses on grasping the characteristics, laws, and development trends of war. Based on possible enemy situations, our own situations, and battlefield environment, it prioritizes creating a favorable situation, and strives to lead and control wars by studying, designing, and planning wars, so as to achieve the goal of deterring war and defeating the enemy without fighting.

The battlefield space of intelligent warfare is a multi-dimensional and multi-domain space that combines reality and virtuality, providing war designers with a stage to give full play to their intelligence, implement autonomy and creativity. As the initiative in initiating wars increases, the initiative and creativity in war design also increase accordingly. War designers can proactively design intelligent warfare based on future war forms. When designing it, we focus on both responding to current urgent threats and targeting future operations. To this end, we should firmly grasp the characteristics of the era of intelligent warfare design, take proactive actions, enhance the ability of active design and dynamic design in various links such as concepts, plans, and construction, take the initiative, fight proactively, ensure that we can always adapt to the rapid changes in the situation, make the war develop in the designed direction as much as possible, and strive for the initiative in war preparation.

Based on the existing situation, innovate and change

Intelligent warfare design is an original combination of the war designer’s cognitive concepts, cognitive levels, guiding ideas, and operational strategies. The courage to innovate is the soul of intelligent warfare design. To this end, the entire process, all fields, and aspects of intelligent warfare design should focus on innovation-led design.

Intelligent warfare design is a research based on the development predictions of intelligent warfare military theories, weapons and equipment, battlefield construction, etc. It is an expansion and innovation based on the existing situation. Due to the development and evolution of war forms, some combat methods that have been successful in history may become ineffective in intelligent warfare; and some unprecedented combat rules that are adapted to the combat theories and weapons and equipment of intelligent warfare need to be created. Intelligent warfare design understands, conceives and describes complex problems through critical and creative thinking, so as to help war designers more deeply understand and grasp the winning rules and guiding rules of intelligent warfare operations, discover the key points and deep-seated reasons that restrict the combat progress, and thus creatively propose solutions to the problems.

Various forms, eclectic

Comrade Mao Zedong pointed out in “On Protracted War”: “The ancients said that ‘the secret of applying the strategy lies in one’s heart’. We call this ‘secret’ flexibility, which is the product of a smart commander.”

The flexibility of intelligent warfare design is determined by the differences in combat operations and the variability, uncertainty and contingency of situations and tasks. Appropriate reasoning and decisions must be made based on different situations. War design methods are quite diverse and eclectic. Traditional research and prediction methods include Markov method, Delphi method, brainstorming method, scenario analysis method, etc. When designing intelligent warfare, we should combine it with actual combat research and flexibly adopt different methods. At present, with the widespread application of cloud computing, big data and other technologies in the military field, computer simulation, modeling and simulation, war game confrontation and other methods are increasingly becoming important forms of combat exercises and confrontation simulation training, and are also commonly used methods in intelligent warfare design.

Reverse thinking, strategic confrontation

War is a confrontation between the comprehensive strength of two hostile parties, but also a confrontation between the strategies and wisdom of the commanders of both sides. Antagonism is one of the basic characteristics of intelligent warfare design, and it is also the main feature that distinguishes warfare design from design activities in other fields.

The main object of intelligent warfare design is the combat activities carried out by the hostile parties on the battlefield. These activities are “live” confrontation actions between people, supported by information-based intelligent weapons and equipment and technical means. They are inseparable from the battle of wits and courage between the war designers of the hostile parties. Therefore, designers of intelligent warfare must not only be familiar with their own situation, but also stand in the opponent’s position and think from the opponent’s perspective about how the intelligent warfare will start, control, and end, and what specific combat actions will be taken to organize and implement it. Before the war, they must conduct a comprehensive analysis and prediction of various situations that may arise during the implementation of the combat, and then propose effective countermeasures. Only in this way can the designed war be targeted and can they take the initiative in confrontational combat activities.

Multi-domain linkage, comprehensive system

Intelligent warfare design is a complex systematic project involving various fields such as military, politics, diplomacy, and economy. The specific methods involve knowledge from many disciplines such as military science, political science, and operations research. The battlefield involves multi-dimensional spaces such as land, sea, air, space, and power grids.

Intelligent warfare design is neither a simple listing of all war-related content nor specific planning and preparation for an impending war. Rather, it is an all-round, full-system, and full-element conception and design of the content covered by intelligent warfare in a certain period of time in the future. In terms of content, it includes the combat scenarios, combat objectives, combat scale, combat direction, battlefield environment, possible combat styles, combat methods, etc. of intelligent warfare; in terms of time, it is the whole process from the time when the war designers conceive or plan the operation to the planning, preparation, implementation, and end of the operation. To design intelligent warfare, we must not only conduct in-depth research on the characteristics, laws and winning mechanisms of intelligent warfare, study the situation of combat opponents, the war environment, and weapons and equipment; we must also study many scientific fields such as war science, system science, and modern engineering science, and predict the impact of scientific and technological development on future wars and operations, so that we can scientifically design the combat theories and processes of intelligent warfare.

Overall planning, multiple case selection

Clausewitz said: “War is the kingdom of uncertainty, and three-quarters of the factors on which war depends are more or less surrounded by a fog of uncertainty.”

Intelligent warfare design is a general plan and conception of intelligent warfare operations. It is a creative thinking activity based on the wisdom and strategy of the designer, and is imaginative and challenging. The design of intelligent warfare only knows the approximate area and method of launching an operation, but there is no specific clarification on the scale and action style of the participating forces. The combat objectives and combat indicators are not specific. It is necessary to make rough plans and bold assumptions about the combat objectives, scale, action style, etc. of intelligent warfare based on the tasks undertaken and the threats faced in peacetime, and on the basis of comprehensive analysis and prediction, without sticking to the existing stereotyped thinking. The objectives and scale of intelligent warfare operations can be large or small, and the action composition can be flexible and diverse. The design results of intelligent warfare should include multiple cases coexisting, multiple cases being compared, and multiple methods being demonstrated to enhance the pertinence and reliability of the results.

Iterative development, rolling improvement

Intelligent warfare design is a long-term and complex system engineering project, which cannot be achieved overnight or once and for all. The probability of war itself, the uncertainty of factors affecting victory or defeat, and the complexity of confrontation in intelligent warfare combat systems all determine the complexity and variability of intelligent warfare design. At the same time, when designing the opponent, one is also being designed by the opponent. Any negligence or carelessness may lead to a complete loss in one wrong move. It is not easy to carry out accurate war design.

With the continuous development of science and technology, the continuous evolution of war forms, and the ever-changing strategic threats and security environment faced in the future, intelligent warfare design should also keep pace with the development of the situation and tasks, and pay more attention to iterative development and design. In line with this, various operational concepts, operational plans, operational regulations, etc. should also be revised in a timely manner, continuously updated, and improved to adapt to the ever-changing new situations.

現代國語:

探尋智慧化戰爭設計規律

■陳建社

引言

當前,隨著以人工智慧技術為代表的顛覆性技術群的廣泛運用,戰爭形態加速向智能化演進,科學籌劃並主動設計智能化戰爭成為戰爭準備面臨的時代課題。要真正組織好智慧化戰爭設計,就要準確把握智慧化戰爭設計的特點規律,弄清楚其在戰爭籌劃和準備中的地位作用,從而更好地為打贏戰爭服務。

著眼發展,合理預見

正確的決策來源於正確的判斷,而正確的判斷來源於對未來所做的科學預見。科學預測是作戰設計的前提,作戰設計是預測結果的運用。明天的戰爭,不會是今天戰爭的翻版,卻可以在今天的戰爭中找到影子。因此,進行智慧化戰爭設計,應以對未來戰爭形態和製勝方式的充分研判和科學預測為前提,通過今天的戰爭預測智能化戰爭的形態、樣式、方法、手段等。

在充滿不確定性和模糊性的戰場上,要使戰爭設計更加符合實際,就要著眼未來一個時期敵我雙方智能化武器裝備的發展變化、作戰理論的更新、作戰能力的發展、制勝途徑的創新等因素,對智能化戰爭的發起時機、規模層次、樣式烈度、發展進程、戰爭結局和其他可能出現的各種復雜情況,進行科學合理預測、此構想等,

積極主動,優先塑造

孫子曰:「勝兵先勝而後求戰。」智能化戰爭設計著眼於把握戰爭的特點、規律和發展趨勢,基於可能的敵情、我情和戰場環境,優先塑造有利態勢,力爭通過研究戰爭、設計戰爭、謀劃戰爭,從而主導和控制戰爭,達到以止止戰、不戰而屈懾人之兵的目的。

智慧化戰爭的戰場空間是現實和虛擬結合的多維多域空間,為戰爭設計者提供了一個充分發揮聰明才智、實施自主與創造的舞台。戰爭發起的主動性增強,戰爭設計的主動性、創造性也隨之提升,戰爭設計者可根據未來的戰爭形態,主動對智慧化戰爭進行超前設計。設計時,既注重應對當前緊迫威脅,也著重於瞄準未來作戰。為此,應緊緊把準智慧化戰爭設計的時代特徵,積極主動作為,在概念、預案、建設等各個環節,增強主動設計、動態設計能力,下好先手棋,打好主動仗,確保始終適應情況的快速變化,盡可能使戰爭按照所設計的方向發展,爭取戰爭準備的主動。

立足現有,創新求變

智慧化戰爭設計是對戰爭設計者認識理念、認知層次、指導思想、運籌謀略等的原創性組合,勇於創新是智慧化戰爭設計的靈魂。為此,智慧化戰爭設計全過程、諸領域、各方面都應著重以創新引領設計。

智慧化戰爭設計是建立在對智慧化戰爭軍事理論、武器裝備、戰場建設等發展預測基礎上的研究,是在立足現有情況基礎之上的拓展創新。由於戰爭形態的發展演進,一些歷史上曾經成功的作戰方法,在智能化戰爭中可能會失效;而一些前所未有,適應智能化戰爭作戰理論和武器裝備的戰法則需要被創造出來。智慧化戰爭設計透過批判性和創造性思維,理解、構想和描述復雜問題,以幫助戰爭設計者更深入地理解把握智能化戰爭作戰的製勝規律和指導規律,發現制約作戰進程的關鍵點及深層原因,從而創造性地提出解決問題的辦法。

形式多樣,不拘一格

毛澤東同志在《論持久戰》中指出:“古人所謂‘運用之妙,存乎一心’,這個‘妙’,我們叫做靈活性,這是聰明的指揮員的出產品。”

智慧化戰爭設計的靈活性,是由作戰行動的差異性以及形勢任務的變化性、不確定性和偶然性決定的,要根據不同的情況進行相應的推理和決斷。戰爭設計方法比較多樣,不拘一格,傳統的研究預測方法有馬爾可夫法、德爾菲法、頭腦​​風暴法、情境分析法等。進行智慧化戰爭設計時,應結合作戰研究實際,靈活採用不同的方法。當前,隨著雲計算、大數據等技術在軍事領域的廣泛運用,計算機模擬、建模模擬、兵棋對抗等方法,正日益成為作戰演習及對抗模擬訓練的重要形式,也是智能化戰爭設計普遍採用的方法。

逆向思維,謀略對抗

戰爭是敵對雙方綜合實力的對抗,更是雙方指揮員謀略和智慧的對抗。對抗性是智慧化戰爭設計的基本特點之一,也是戰爭設計區別於其他領域設計活動的主要特徵。

智慧化戰爭設計的主要對象,是敵對雙方在戰場上進行的作戰活動,這些活動是人與人之間,在資訊化智慧化武器裝備及技術手段支撐下「活」的對抗行動,是與敵對雙方戰爭設計者的鬥智鬥勇分不開的。因此,智慧化戰爭設計者不僅要熟悉掌握己方情況,還要站在對手的立場,從對手的角度來思考智能化戰爭會以什麼樣的方式開局、控局、收局,會具體採取什麼樣式的作戰行動來組織實施,要在戰前對作戰實施過程中可能出現的各種情況進行全面分析預測,進而提出有效的對策措施,這樣主動設計的戰爭才有針對性,也能在戰鬥中掌握戰爭的活動中才有針對性。

多域聯動,系統全面

智慧化戰爭設計是一項複雜的系統性工程,涉及軍事、政治、外交、經濟等各個領域,具體方法涉及軍事學、政治學、運籌學等諸多學科領域知識,戰場涉及陸海空天電網等多維空間。

智慧化戰爭設計既不是簡單羅列與戰爭相關的所有內容,也不是對即將發生的戰爭進行具體籌劃和準備,而是對未來一定時期智能化戰爭所涵蓋內容的全方位、全系統、全要素構想和設計。從內容上講,包括智慧化戰爭的作戰場景、作戰目的、作戰規模、作戰方向、戰場環境、可能採取的作戰樣式、作戰方法等;從時間上講,是從戰爭設計者構思或謀劃作戰開始,一直到作戰籌劃、作戰準備、作戰實施、作戰結束的全過程。進行智慧化戰爭設計,不僅要深入研究智能化戰爭的特點、規律和製勝機理,研究作戰對手情況、戰爭環境情況、武器裝備情況;而且要研究戰爭科學、系統科學和現代工程科學等眾多科學領域,並要預測科學技術發展對未來戰爭和作戰的影響,進而對智能化戰爭的作戰理論、作戰進程等進行科學設計。

概略謀劃,多案優選

克勞塞維茨說:“戰爭是不確定性的王國,戰爭所依據的四分之三的因素或多或少地被不確定性的迷霧包圍著。”

智慧化戰爭設計是對智慧化戰爭作戰的概略性籌劃與設想,是建立在設計者智慧與謀略基礎之上的一種創造性思維活動,富有想像力與挑戰力。智慧化戰爭設計只知道作戰發起的概略區域和方式,但對參戰力量的規模、行動樣式等沒有具體明確,作戰目標和作戰指標都不具體,需要根據平時所擔負的任務和麵臨的威脅,在綜合分析預測的基礎上,對智能化戰爭的作戰目的、作戰規模、行動樣式等進行略籌和設想,不拘化和設想,不拘化思維,不拘化思維。智能化戰爭作戰目的和規模可大可小,行動構成靈活多樣,智能化戰爭設計結果應多案並存、多案對比、多法論證,增強結果的針對性和可靠性。

迭代開發,滾動完善

智慧化戰爭設計是一項長期的複雜系統工程,不是一蹴可幾、一勞永逸的事。戰爭本身的蓋然性和勝負影響因素的不確定性以及智能化戰爭作戰體系對抗的複雜性等,都決定了智能化戰爭設計的復雜多變。與此同時,己方在設計對手時,也在被對手設計,任何疏忽或大意都可能導致一著不慎,滿盤皆輸,進行準確的戰爭設計絕非易事。

隨著科學技術的不斷發展、戰爭形態的不斷演變,以及未來面臨的戰略威脅和安全環境的不斷變化,智慧化戰爭設計也應隨著形勢任務的發展而與時俱進,更加註重迭代開發設計。與之相適應,各種作戰構想、作戰概念、作戰預案、作戰條令等也應適時修訂,不斷更新、滾動完善,以適應不斷發展變化的新情況。

中國原創軍事資源:http://www.81.cn/ll_208543/1634673288.html

Chinese Military Era of Intelligent Integration Calls for Smart Transformation Training

中国军事智能化时代呼唤智能转型训练

現代英語:

At present, the new military is exciting the rapid development of scientific and technological revolution and revolution. Revolutionary technologies represented by artificial intelligence promote the transformation of war forms to intelligent warfare with artificial intelligence. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. Military training, as a pre-practice of military warfare, should promptly mark new goals, realize the transformation to “intelligence”, accelerate “intelligence” training, continuously improve the military science and technology level and “intelligence content”, and comprehensively upgrade combat capabilities to accelerate generation.

Keep up with the changes in the form of war and upgrade the concept of transformation

As the scale of the military and the number of equipment are no longer the key to victory in war, upgrading war thinking and training concepts is imperative. We should take a more proactive attitude and a more open vision, keep up with the trend of focus development, and strive to create a new thinking for military victory.

Grasp the inherent cause and effect of intelligent manufacturing victory. The winning chart is a manifestation of the inherent laws of war. Driven by the intelligent revolution, driven by strategic competition, and driven by war practice, the advantages of information-generated intelligence and intelligence-enabled are increasingly evident, reflected in various links such as actuarial and joint systems. A certain flow chart, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, further training thinking remains at the mechanization level. We should use the courage of self-revolution to trigger a “headache storm”, upgrade standardized combat, strengthen the theoretical research of standardized training, and use “intelligence” soldiers to deal with mechanized, informationized, and standardized combat issues, organically connect with fighting, design wars with technology, and practice wars with intelligent means, so as to clarify the fog of war.

At present, the military implements training mobilization with a focus on transformation, trying to further widen the generation gap in combat power with other countries’ armies. Once the generation gap in the military is widened, it will be difficult to recover. If you can’t keep up with it, you may be completely controlled by others. Only by keeping an eye on the opponent can you surpass the opponent. We must stand out in military training, and improve the level of military transformation and non-target combat capabilities in training.

Strengthen the target positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat effectiveness has leaped from mechanical energy type and information energy type to type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and the cutting-edge competition in high-end and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological armament, it will only be at the forefront of low-level intelligence. Therefore, we should firmly establish the goal of winning by science and technology, firmly grasp the “life gate” and “key point” of winning future wars, greatly improve the connotation of military science and technology, increase the practical application of new means such as artificial intelligence, cloud computing, and big data, unveil the mysterious veil of focusing on war, and control the initiative of future wars.

Keep up with the changes in scientific and technological development and build strong conditions for automation transformation

Automation training conditions are the basic training support for organizing and implementing automation training, and are directly related to the quality and effectiveness of automation training. To build an automated training environment, we need to focus on the development of intelligent concepts, intelligent technology, and automated operations, and continue to work hard in building environments, innovating training methods, and cultivating new talents.

Construct a battlefield environment. Modified operations, training space is more convenient, the field is wider, and the methods are more diverse. The battlefield environment construction under easy mechanization and information conditions can no longer support the needs of modified training. We should highlight the elite confrontation, rapid confrontation, and linkage confrontation supported by the modification conditions, tap into the existing existing training equipment and field functions, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and network. For example, digital maps, virtual reality and other technologies are used to simulate and display visualized three-dimensional landforms, weather and complex combat scenes, and build rich and rich combat scenes.

Develop advanced training methods. Advanced training methods help improve training results. Transformation of military training should transform the key factor of “data-centric” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration to form a “pool” covering strategy, campaign, and tactics, and immediately command organizations to end individual soldiers; develop data intelligent analysis tools, use training cloud computing, artificial intelligence and other advanced technologies to integrate and mine data operations; develop intelligent training systems, increase the construction of simulation methods such as simulation, war game confrontation, network confrontation, and intelligent judgment, and overall promote the transformation and upgrading of military methods to “technology +” and “intelligence +”.

Cultivate new military talents. No matter how the war evolves, people are always the real controllers and final decision-makers of war. The quality of the standardization level of military personnel must determine the quality of customized training. To win the information-based local war with standardized characteristics, we should accurately meet the future military needs, strengthen the transformation of traditional combat talents, make good use of the power resources of “technology +”, “maker +” and “think tank +”, promote the integrated development of “commanders”, “combatants” and “scientists” and “technologists”, form a professional and standardized new military talent group, and realize the intelligent interaction between people and equipment, the deep integration of people and environment, and the extensive adaptation of people and environment.

At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream. On the one hand, they support standardized military training, and on the other hand, they are constantly tested and improved. To this end, we should make full use of the war-building and preparation strengthening mechanism, vigorously promote the “+ intelligence” of existing equipment and the “intelligence +” construction of the new generation of equipment, adhere to the research, construction, use and modification, break through the customization level of weapon upgrades and equipment through training practice, and finally make efforts to achieve a multiplier effect. The entire weapon equipment goes from “weak intelligence” to “strong intelligence” and then to “super intelligence” to better support standardized military training.

Keep up with the changes in war practice and innovate customized training models

The military style training model has been developed many times and has moved from theoretical exploration to battlefield practice. In recent local wars, standardized operations have begun to show their edge, and thus have shown the potential to change the “rules of the game” of war. The combat style has changed, and the training model must also change accordingly and actively change. We must keep a close eye on the characteristics of war, innovate military training models, and fully rehearse the next war in military training.

We must base ourselves on the basic point of fighting high-end wars with strong enemies, highlight the essence of breaking high-end wars, continue to deepen research on strong enemies, and use the development of new combat concepts and training theories as a starting point to clarify the laws of war development and key points for winning. Predict future wars and design combat styles from the perspective of intelligence and innovation to study the unique and wonderful ways to defeat the enemy. Emphasize key actions such as joint anti-missile defense, organize strategic and campaign training tactics to defeat the enemy with disadvantages, organize non-combat training to win, and organize training to fight against new domains such as the far sea and the far domain. Seize the high position of future wars in innovative training and form a combat capability of “superior intelligence” and “superior skills” against powerful enemies.

Emphasize the research and training of new quality forces. The transformation of war from winning by force and equipment to winning by intelligence has made new combat forces a new growth pole of combat effectiveness. According to information, the US military plans to standardize 60% of ground combat platforms by 2030, and the Russian army expects that more than 30% of key weapons and equipment will be used in the battlefield by 2025. As the army’s new equipment with intelligent attributes increases, it is necessary to take the path of actual combat training with new combat forces as the leading element, highlight the formation and combat use of new combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and victory, strengthen new styles of training such as unmanned combat, promote the combat system of new combat forces, and make new combat power resources move and come alive.

Highlight intelligent command research and training. How to change the form of war and command, ability is always the key ability to win the battle. As the degree of war continues to increase, planning and commanding based on experience and personal wisdom alone can no longer adapt to any rapidly changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, planning, command and control. Commanders and command organizations are the key to the system of operations. We need to make breakthroughs in the scientificity, accuracy and timeliness of command planning. We rely on new technologies such as “big data” and “artificial intelligence algorithms” and new means such as “engineering” and “one network” to promote the upgrade of command planning from “human intelligence” training to “human intelligence + intelligence” training. We can judge the enemy situation, establish plans and determine actions in the process of actuarial calculations, so as to achieve the goal of defeating the slow with the fast and taking the lead.

(Author’s unit: Central Theater Command)

現代國語:

曾海清

引言

目前,新軍事激動科技革命和革命快速發展,以人工智慧為代表的革命性技術,以人工智慧推動戰爭形態向智慧化戰爭轉型,打贏智慧化戰爭逐漸成為強國軍事競爭的焦點。軍事訓練作為軍事戰爭的預實踐,應及時邁開標記新目標,實現向“智”轉型、正加速“智”練兵,不斷提高軍事科技度和“含智量”,全面升級作戰能力加速生成。

緊跟形態戰爭之變,升級改造概念

隨著軍事規模、裝備數量已不再是戰爭決定制勝的關鍵,升級戰爭思想和訓練理念勢必行。我們當以更主動的姿態、更開放的視野,緊跟著焦點發展趨勢,全力打造軍事制勝新思維。

把握智能製造勝的內在因果關係。制勝圖表是戰爭內在規律的表現。在智慧革命驅動下、戰略競爭推動下、戰爭實踐牽引下,資訊生智、以智賦能的優勢日益顯現,體現在精算、聯合體係等各個環節。一定的流程圖,可以說「智」有多高,戰與訓的品質水準就能夠達到多高。所以,進一步訓練思維停留在機械化層面應該以自我革命的勇氣來引發“頭痛風暴”,升級標準化作戰,加強標準化訓練理論研究,以“智”兵練處理機械化、信息化、標準化作戰問題,把和打仗有機銜接起來,用技術設計戰爭,用智能手段演練戰爭,從而輪廓清晰化戰爭的迷霧。

目前,軍事實施以轉型為重點的訓練動員,試圖進一步拉大與其他國家軍隊的戰力代差。軍事上的代差一旦拉開將很難追回,一步跟不上就可能徹底受制於人,只有盯緊對手才可能超越對手。要向強在軍事訓練中突出出來,在練兵中提高軍事轉型水準和非目標作戰能力。

強化科技賦能的目標定位。科技是核心戰鬥力。在科技驅動下,戰鬥力形態已從機械能型、資訊能型向型躍升,傳統攻城略地式大兵團作戰正逐步退出歷史舞台,高端、新興領域的尖端量日益激烈。軍事訓練若不提高科技武裝,將只能在低層次智能外圍前沿,很為此,應樹牢科技制勝目標,緊緊抓住科技創新這一制勝未來戰爭的“命門”和“要穴”,大幅提高軍事科技內涵,加大人工智能、雲計算、大數據等新手段的實踐運用,揭開聚焦戰爭的神秘面紗,加大人工智能、雲計算、大數據等新手段的實踐運用,揭開聚焦戰爭的神秘面紗,掌控未來行動權。

緊跟科技發展之變,建強自動化改造條件

自動化訓練條件是組織實施自動化訓練的基礎訓練支撐,直接關係自動化訓練品質。建構自動化訓練條件環境,需要我們緊緊圍繞智慧理念、智慧科技和自動化作戰的發展,在建構環境、創新訓練手段、培育新型人才等方面持續發力。

構設戰場環境。 改裝作戰,訓練空間更加便利、領域更廣泛、方式更加多元,易機械化資訊化條件下的戰場環境構設已無法支撐改裝訓練需求。應突顯改裝條件支撐下的精兵對抗、快速對抗、連動對抗,挖掘充分現有的訓練裝置和現場功能,加強大數據分析、智慧穿戴裝置、機器「深度學習」等技術應用,把陸、海、空、天、電、網等各領域有效融合起來,例如利用數位地圖、虛擬實境等技術模擬顯示可視化的內涵地貌、天誌場景,建構內

開發先進訓練手段。先進的訓練手段,有助於提升訓練成果。轉型軍事訓練應轉變「以數據為中心」這一關鍵因素,將最新科技成果轉化為訓練條件。應著重加強資料連動融合,形成覆蓋戰略、戰役、戰術,立即指揮機構走向終結單兵的「池」;開發資料智慧分析工具,藉助訓練雲運算、人工智慧等先進技術,整合挖掘資料作戰;開發智慧演訓系統,加大模擬模擬、兵棋對抗、網路對抗、智慧判決等模擬手段,整體軍事模擬向「科技+升級」「智慧手段」。

培養新型軍事人才。無論戰爭形態如何演變,人始終是戰爭的真正控制者和最終決策者。軍事人員標準化水準的優劣,一定編程了客製化訓練的品質效果。要打贏具有標準化特徵的資訊化局部戰爭,應精準對接未來軍事需求,加強傳統作戰力人才轉型,用好「科技+」「創客+」「智庫+」力量資源,推動「指揮官」「戰鬥員」與「科學家」「技術家」融合發展,形成專業化、標準化的新型軍事人才群體,實現人與裝備智能、人與深度融合。

目前,世界主要軍事強國都高度重視智慧裝備發展,無人「蜂群」、無人潛航器等新裝備層出不窮,一方面支撐標準化軍事訓練,一方面又在不斷檢驗完善。為此,應充分用好戰建備強化機制,大力推進現有裝備“+智能”和新一代裝備“智能+”建設,堅持邊研邊建邊用邊改,以訓練實踐突破武器升級裝備定制水平,最終發力實現倍增效應,整個武器裝備從“弱智”到“強智”再到“超智”的時間軸,更好地支撐標準化軍事訓練。

緊跟戰爭實踐之變,創新客製化訓練模式

軍事樣式訓練模式經過多次發展,從理論探索走向戰場實踐。近年來的局部戰爭中,標準化作戰已初露鋒芒,並由此顯現出改變戰爭「遊戲規則」決定的潛力。作戰樣式變了,訓練模式也要隨之變、主動變。要盯緊戰爭特點,創新軍事訓練模式,在軍事訓練中充分預演下一場戰爭。

要立強敵打高端戰爭這個基點,突顯破解高端戰爭本質,持續深化強敵研究,以開發新型作戰概念和訓練理論為抓手,搞清戰爭發展規律和製勝要點。從的視角預判未來戰爭、設計作戰風格,智創新研究克敵制勝的奇招、妙招要突出聯合反導等關鍵行動,瞄準強敵組織以劣勢勝優的戰略戰役訓練戰術,瞄準勝勝組織非謀求制衡實戰訓練,瞄準全域組織對抗遠海域等新域延伸訓練,在創新運動中搶奪制衡實戰訓練,瞄準全球組織對抗遠海域等新域延伸訓練,在創新訓練中佔高優勢訓練中佔未來的高超能力。

突顯新質力量研練。戰爭從力勝、器勝到智勝的轉變,使得新型作戰力量成為戰鬥力新的成長極。根據資料介紹,美軍計畫在2030年達到60%地面作戰平台標準化,俄軍預計2025年重點武器裝備戰場將超過30%。隨著軍隊具有智慧屬性的新裝備增多,要走開以新質作戰力量為主導要素的實戰化練兵路子,突顯新質作戰力量編成、作戰運用,開展與新域作戰理念、制勝相適應的訓法戰法,加強無人作戰等新樣式訓練,推動新質作戰力量作戰體系,讓新質戰鬥力資源動起來、活起來。

突顯智能指揮研練。戰爭形態如何轉變指揮,能力始終是能打勝仗的關鍵能力。隨著戰爭程度不斷提高,僅憑經驗和個人智慧進行規劃和指揮已不能適應任何瞬息萬變的戰場局勢,人工智慧決策訓練已成為提升作戰任務規劃、規劃、指揮控制效率的必然趨勢。指揮員和指揮機構這一體係作戰關鍵,在指揮謀劃科學性、精確性、時效性上求突破,依托「大數據」「人工智慧演算法」新技術和「工程化」「一張網」新手段,推動指揮謀劃由「人智」訓練向「人智+機智」訓練升級,在精算學、先定階段中求敵情、先定階段。

(作者單位:中部戰區)

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/ll/1017241088.html?

Chinese Military Review: Intelligent Warfare is coming to us (China)

現代英語:

2001年3月7日 09:06 解放军报

Liu Aimin

  Intelligent warfare makes its debut

  The organic combination of modern combat requirements of “fast, accurate and efficient” and electronic information technology has given birth to a new generation of combat weapons – intelligent weapons. The continuous emergence and frequent use of high-tech weapons with considerable intelligence on the battlefield will inevitably result in the emergence of intelligent combat styles. In the Gulf War, the US military used a large number of drones with intelligent control devices to conduct aerial reconnaissance, with a total of 522 sorties. The 282 “Tomahawk” cruise missiles launched by the US military attacked targets within 450-2600 kilometers, with a hit rate of more than 90%. The Kosovo War was even more of a “demonstration of results” of weapons with intelligent characteristics. Although precision-guided munitions only accounted for 35% of ground attack munitions in combat, the number of targets destroyed accounted for 74% of the total.

  Intelligent technology is a marginal discipline that studies the relationship between electronic computers, human brains and intelligence. Intelligent weapons refer to high-tech weapons and equipment that have some (specific) functions of the human brain, such as reconnaissance, search, identification, aiming, and attacking targets, without manual operation and control, and can be independently completed without manual operation and control. Compared with precision-guided weapons, intelligent weapons can “consciously” find and identify targets to be attacked, and some of them have the ability to distinguish natural language. They are a “thinking” weapon system. In future combat, whoever masters advanced intelligent weapons and means will have stronger combat effectiveness and more initiative.

  In terms of weapon intelligence, the key technologies currently under development include: robots; expert systems; intelligent machines and intelligent interfaces; machine vision and image understanding; speech recognition and natural language theory; weapon precision control and smart weapons; automatic target recognition; unmanned vehicles; neural networks and their applications, etc. According to scientific predictions, these technologies will have major breakthroughs in the 21st century and bring about a revolution in intelligent technology.

  Scientists predict that intelligent weapons, military expert systems and military robot forces will occupy an important position in the future military field.

  Characteristics of Intelligent Warfare

  Intelligent warfare is a high-tech warfare form that uses intelligent weapons and means under information warfare conditions to achieve efficient command and control and implement precise and smart strikes. In essence, it is the radiation and extension of human “intelligence” to the information battlefield and weapon systems. From the perspective of combat procedures and means, intelligent warfare includes two major aspects: one is intelligent command and control warfare; the other is the offensive and defensive confrontation of intelligent weapons. The main signs of intelligent warfare are the emergence of intelligent weapon groups and intelligent means and their use on future battlefields. Future intelligent warfare has four significant characteristics.

  ———Command efficiency. During the Kosovo War, NATO commanded more than 38,000 flight missions to coordinate attacks on the Federal Republic of Yugoslavia from different airports, directions, altitudes, and times. Without the support of the C4I system, it would be impossible to rely on manual command. The amount of information on future battlefields will expand unprecedentedly, and it will be necessary to coordinate the combat forces of multiple services and complex weapon systems in full-dimensional space, which is even more inseparable from the support of advanced intelligent computers. In the future, four changes will be achieved in intelligent command and control: computers will shift from calculation, storage, transmission, and execution of commands to thinking and reasoning; information processing will shift to knowledge processing; the extension of hand functions will shift to the extension of brain functions; electronic warfare, psychological warfare, entity destruction, information deception, and military confidentiality in command and control operations will mainly shift to network operations, ultimately achieving a high degree of intelligence in command and control operations.

  ———Strike precision. In precision-guided weapons, no matter which guidance method is used, it is inseparable from the key control device with high-speed signal processing and feedback capabilities. It is mainly used to process a large amount of information in real time at high speed, determine the flight direction of the weapon, and control the tracking actuator to guide the weapon to the target. After adopting microcomputer control, each combat vehicle and weapon platform can be connected to the battlefield C4I system, which will further improve the accuracy of missile hits and combat performance. Precision warfare has become an important combat idea and principle of the 21st century military.

  ———Automated operation. Looking forward to the development of the 21st century, various advanced weapons will be equipped with various types of micro-intelligent computers in the future, various aircraft and ships will be equipped with machine (ship) intelligent computers, tanks will be equipped with vehicle-mounted intelligent computers, artillery systems will be equipped with fire control intelligent computers, anti-missile weapon systems will be equipped with large weapon control intelligent computers, unmanned aircraft known as the “air suicide squad” and unmanned autonomous tanks, tanks and other intelligent weapons will be fully implemented with computer intelligent control, achieving a high degree of automation and intelligence.

  ———Behavior intelligence. The behavior intelligence of weapons and equipment mainly refers to their “intelligence” such as self-memory, self-searching, self-selection, self-tracking, and self-identification, which greatly improves the combat performance and combat effectiveness of weapons and equipment. In the future, there will be many types of intelligent weapons, which can be divided into lethal intelligent weapons and non-lethal intelligent weapons. Among them, lethal intelligent weapons include soft kill and hard kill. At present and in the future, military intelligent weapons and equipment mainly include intelligent missiles, intelligent ground (water) mines, intelligent combat vehicles, intelligent aircraft, intelligent ships, intelligent C4I systems and intelligent robots, etc. Military robots will play an important role in future high-tech wars. The United States has included more than 100 types of military robots in its development plan. Some US military units have begun to equip application-oriented robots. For example, the 7 mine-sweeping robots of the US First Armored Division have cleared more than 1,000 mines without any casualties.

  It can be foreseen that in addition to robot warfare, the 21st century will see the emergence of intelligent missile warfare, intelligent command and control warfare, intelligent network warfare, intelligent drone warfare, intelligent tank warfare, intelligent mine warfare, and so on.

  The impact of intelligent warfare

  This has led to a qualitative change in the form of war. With reference to the “heat energy” form of energy release in the industrial era, the energy release form of intelligent warfare in the information era is prominently manifested in the following ways: targeted energy release, or the controlled release of energy to make it more consistent with the purpose of war; intelligent energy release forms that combine man and machine, such as weapons that can automatically search, robot soldiers, and intelligent combat vehicles; and systematic energy release forms, which solve the technical problems of intelligent command and control, ensure the integration of joint combat command, and give full play to the overall combat effectiveness of various forces.

  Changing the traditional principles of “concentration” and “mobility”. In the future, intelligent warfare will be able to achieve the effects of “point-to-point” and “1+1”, that is, a weapon platform launches a bomb to accurately destroy a target. Intelligent command and control will be able to concentrate various combat forces at the most favorable time and place, and strike the enemy reasonably and effectively. Therefore, intelligent warfare will make the connotation of “concentration” and “mobility” new. Concentration of troops and firepower will be changed to concentration of combat effectiveness; troop mobility will be changed to firepower mobility, so that future combat will develop in the direction of precision, dexterity, and economy.

  Give new content to the relationship between people and weapons. No matter how “brave” intelligent weapons are, they cannot change the fundamental fact that people are the main body of war. Intelligent weapons and means are ultimately the extension and development of human capabilities. Compared with other weapons, intelligent weapons are also subject to various human and natural factors. The higher the degree of intelligence, the more it depends on system work. However, we cannot ignore the important role of intelligent weapons in future wars.

  Meeting the Challenges of Intelligent Warfare

  Develop 21st century combat theory. Our army has always had traditional advantages in military theory, but in the face of future operations, we still have shortcomings in combining combat guidance theory with practice. At present, the primary issue is to further break the old framework, change old concepts, enhance information combat awareness, intelligent combat awareness, strengthen the research of new combat theories in the future, and innovate military theories at all levels of strategy, campaign and tactics.

  Develop intelligent technology and weapon systems. To win future wars, we must develop weapons that can win in the future, strive to be the vanguard in key technologies, use intelligent technology as a breakthrough, focus on solving the problems of “sharp eyes, smart brains, long legs, and accurate shooting” in weapon systems, highlight the construction of command automation systems, especially military expert systems, and strengthen the intelligent transformation of existing weapons.

  Develop the organization and high-quality talent team of our army. Future intelligent warfare can be said to be a war of knowledge, strategy, technology, and talent. Intelligence will inevitably promote the leanness of the army and put forward higher requirements for the quality of talents. Abstract intelligent weapons are useless. Only by effectively combining well-trained personnel and intelligent weapons can we defeat the enemy. In terms of organizational structure, we should adapt to the needs of future operations, increase the proportion of information technology talents, command and control talents, and new combat forces (military robots, computer protection soldiers, etc.), optimize the combination, and obtain the maximum combat organization function. In terms of talent development, we should update the talent quality structure and knowledge structure, advance the cultivation of talents urgently needed for future operations, and comprehensively improve our army’s ability to win.

現代國語:

劉愛民

智能化作戰粉墨登場

「快速、精確、高效」的現代作戰需求和電子資訊技術的有機結合,催生了新一代作戰兵器———智能化武器,具有相當智能的高技術武器的不斷出現和頻繁運用於戰場,其結果必然是智慧化作戰樣式的產生。在海灣戰爭中,美軍大量使用有智慧控制裝置的無人機實施空中偵察,共出動522架次。美軍發射的282枚「戰斧」巡弋飛彈攻擊450-2600公里內的目標,命中率達90%以上。科索沃戰爭更是具有智慧特性武器的“成果演示”,作戰中雖然精確導引彈藥只佔對地攻擊彈藥的35%,但其摧毀的目標數量卻佔總數的74%。

智能技術是研究電子計算機、人腦和智能三者之間關係的一門邊緣學科。智慧化武器是指不用人工操作和控制,以人工智慧技術的“物化”實現武器裝備的“智化”,自主完成偵察、搜索、識別、瞄準、攻擊目標等具有人腦部分(特定)功能的高技術武器裝備。與精確導引武器相比,智慧武器可以「有意識」地尋找、辨別需要打擊的目標,​​有的還具有辨別自然語言的能力,是一種「會思考」的武器系統。未來作戰,誰掌握先進的智慧化武器及手段,誰將擁有更強的戰鬥力和更多的主動權。

在武器智慧方面,目前主要發展的關鍵技術有:機器人;專家系統;智慧型機及智慧型介面;機器視覺與影像理解;語音辨識與自然語言理論;武器精密控制與靈巧武器;目標自動辨識;無人駕駛載體;神經網路及其應用等。根據科學預測,這些技術在21世紀必將有重大突破,並帶來一場智慧科技革命。

科學家預測,智慧化武器、軍事專家系統和軍用機器人部隊,將在未來軍事領域佔有重要地位。

智能化作戰的特徵

智能化作戰,就是在資訊作戰條件下,運用智慧化武器和手段,以實現高效指揮控制和實施精確與靈巧打擊為主旨的高技術作戰形式。從本質上講,它是人的「智慧」向資訊戰場和武器系統的輻射和延伸。從作戰程序和手段來看,智慧化作戰包括兩大面向:一是智慧化的指揮控制戰;二是智慧化武器的攻防對抗。智慧化作戰的主要標誌是智慧化武器群體、智慧化手段的出現並使用於未來戰場。未來的智能化作戰有四個顯著特徵。

———指揮高效化。科索沃戰爭中北約指揮3.8萬多架次飛行任務,從不同機場、不同方向、不同高度、不同時間對南聯盟進行協調一致的打擊,沒有C4I系統的支持,靠人工指揮是根本不可能的。未來戰場資訊量空前擴大,需要在全維度空間協調多軍(兵)種作戰力量和複雜的武器系統,更離不開先進智慧電腦的支援。在未來智慧化指揮控制方面將實現四個轉變:電腦將由運算、儲存、傳遞、執行命令轉向思維、推理;資訊處理將轉向知識處理;手功能的延伸將轉向腦功能的延伸;指揮控製作戰的電子戰、心理戰、實體摧毀、資訊欺騙和軍事保密將主要轉向網路作戰,最終實現指揮控製作戰的高度智慧化。

———打擊精確化。在精確制導武器中,無論採用哪種制導方式,都離不開關鍵的具有高速信號處理和反饋能力的控制裝置,它主要用以高速實時處理大量信息,確定武器飛行方向,並控制跟踪執行機構,把武器引向目標。採用微電腦控制後,可使每個戰鬥車輛、武器平台與戰場C4I系統聯網,也將進一步提升飛彈命中的精度與戰鬥性能。精確戰已成為21世紀軍隊的重要作戰思想與原則。

———操作自動化。展望21世紀的發展,未來各種先進武器上都將裝載各種類型的微型智能計算機,各類飛機、艦艇上將裝有有機(艦)載智能計算機,戰車上將裝有車載智能計算機,火砲系統將裝有火控智慧型計算機,反導武器系統中將裝有大型武器控制智能計算機,被稱為“空中敢死隊”的無人駕駛飛機以及無人駕駛自主式坦克、戰車等智能武器,將全面實行電腦智慧控制,實現其高度自動化、智慧化。

———行為智能化。武器裝備行為智能化,主要是指其具有自記憶、自尋找、自選擇、自跟踪、自識別等“智能”,從而極大地提高武器裝備的戰鬥性能和戰鬥力。未來智慧化武器將有多種類型,可分為殺傷性智慧化武器和非殺傷性智慧化武器,其中殺傷性智慧化武器又包括軟殺傷和硬殺傷兩個面向。在當前和未來一個時期,軍用智慧化武器裝備主要有智慧飛彈、智慧地(水)雷、智慧戰車、智慧飛機、智慧艦艇、智慧C4I系統和智慧機器人等等。軍用機器人將在未來高技術戰爭中發揮重要作用。美國列入研發計畫的軍用機器人達100多種,美軍一些部隊已經開始裝備應用型機器人,如美第一裝甲師7台掃雷機器人,已排除引爆地雷1000餘枚而無一傷亡。

可以預見,除機器人戰爭外,21世紀將會出現智慧飛彈戰、智慧指揮控制戰、智慧網路戰、智慧無人機戰、智慧坦克戰、智慧地雷戰等等。

智能化作戰的影響

導致戰爭形態發生質的變化。以工業時代戰爭能量釋放形態「熱能」為參照,資訊時代智能化作戰的能量釋放形態,突出地表現為:有針對性地能量釋放形態,或者說使能量有控制地釋放,使之與戰爭的目的更符合;人機結合的智慧的能量釋放形態,如可以自動尋的武器、機器人士兵、智慧戰車等;系統化的能量釋放形態,即解決了智慧指揮控制的技術問題,保證聯合作戰指揮的一體化,使各種力量整體作戰效能得以充分發揮。

改變傳統的「集中」、「機動」原則。未來智慧化作戰將能達成「點對點」、「1+1」的效果,即一個武器平台發射一枚炸彈準確擊毀一個目標。智慧化指揮控制將能夠實現在最有利的時間、地點集中各種作戰力量,合理有效地打擊敵方。因此,智慧化作戰將使「集中」、「機動」的內涵變新。變集中兵力、火力為集中戰力效能;變兵力機動為火力機動,使未來作戰朝向精確化、靈巧化、節約化方向發展。

賦予人與武器關係新的內容。不論智能化武器如何“神勇”,都不能改變人是戰爭主體這一根本,智能化武器和手段歸根到底是人的能力的延伸和發展。智慧化武器與其他兵器比較,同樣要受到人和自然各種因素的限制。智能化程度越高越依賴系統工作。但是,我們不能因此忽略智慧化武器在未來戰爭中的重要角色。

迎接智慧化作戰挑戰

發展21世紀作戰理論。我軍歷來有軍事理論上的傳統優勢,但面對未來作戰,我們在作戰指導理論與實踐的結合上仍有不足。目前,首要的問題是進一步打破舊框框、改變舊觀念,增強資訊作戰意識、智慧化作戰意識,加強未來新型作戰理論的研究,從戰略、戰役和戰術各個層次創新軍事理論。

發展智慧化技術與武器系統。要贏得未來戰爭,必須發展未來能夠制勝的武器,力爭在關鍵技術上當排頭兵,以智能技術為突破,著重解決武器系統的“眼明、腦靈、腿長、打準”的問題,突出指揮自動化系統特別是軍事專家系統建設,加強現有武器的智慧化改造。

發展我軍的組織編制和高素質人才隊伍。未來智能化作戰,可以說是知識戰、謀略戰、科技戰、人才戰。智能化必然促進軍隊編成的精乾化,對人才素質也提出了更高的要求。抽象的智慧武器毫無作用,只有把訓練有素的人員和智慧化武器有效地結合起來,才能克敵制勝。在組織架構上,應該適應未來作戰的需要,加大資訊科技人才、指揮控制人才、新型作戰力量(軍用機器人、電腦防護兵等)的編配比例,優化組合,取得最大的戰鬥組織功能。在人才建構上,應更新人才素質結構、知識結構,超前培養未來作戰急需人才,全面提升我軍的打贏能力。

中國原創軍事資源:https://mil.news.sina.com.cn/2001-03-07/14708888.html

#智慧化戰爭