Tag Archives: #Cognitive Domain Operations Warfare

Develop Chinese Military Operational Concepts Design China’s Future War Success

發展中國軍事作戰理念,規劃中國未來戰爭勝利

中國軍網 國防部網
2022年6月22日 星期三

現代英語:

Since the 21st century, with the deepening of the world’s new military revolution, the world’s military powers have put forward a series of new operational concepts and continuously improved them in war practice, thus driving the accelerated evolution of war. With the rapid development of information technologies such as cloud computing, blockchain, artificial intelligence, and big data, and their widespread application in the military field, people’s understanding of war has gradually changed from summarizing actual combat experience to studying and judging future wars. At present, as the source of military capability building, the strength of operational concept development capabilities will directly affect the seizure of victory opportunities. In particular, the vigorous development of the world’s new military revolution is calling for innovation in operational theory all the time. Only by developing new operational concepts and designing future wars with a forward-looking vision can we gain the initiative in military struggle preparation.

The concept of combat fundamentally solves the problem of how to fight a war.

First-rate armies design wars, second-rate armies respond to wars, and third-rate armies follow wars. The so-called “real wars happen before wars” means that before a war starts, the theory, style, and method of fighting have already been designed. How can we not win if we fight according to the designed war? The key to designing a war is to design and develop new combat concepts based on understanding the characteristics and laws of war, promote innovation in combat styles and tactics, and fundamentally solve the problem of “how to fight a war.”

In designing wars, theories come first. In recent years, the U.S. military has proposed new concepts such as “network-centric warfare”, “air-sea integrated warfare” and “hybrid warfare”, and the Russian military has proposed theories such as “non-nuclear containment strategy”, “strategic air-space campaign” and “national information security doctrine”, reflecting that the world’s military powers are vigorously studying operational theories and seizing military commanding heights. To a certain extent, operational concepts are the “organizational cells” for the formation of operational theories. Without a perfect concept generation capability, it is difficult to give birth to advanced theories. When an operational theory is proposed, it is necessary to develop relevant operational concepts so that the operational theory can be “sunk” and visualized, and better improved and transformed into military practice. When there is no operational theory concept, operational concept innovation can provide “raw materials” for the study of operational theories. The military field is the most uncertain field, and people’s understanding of war is constantly evolving. However, operational theory innovation cannot wait for the understanding to mature before starting, but needs to be based on the existing understanding, through active development and innovation of operational concepts, constructing future operational scenarios, exploring future winning mechanisms, and guiding and guiding military practice, in order to seize the initiative in war. Therefore, operational concept innovation is becoming a strategic fulcrum and lever for military construction and development.

The development of operational concepts focuses on designing core operational concepts. The core operational concept is the nucleus and embryo of the operational concept, which reflects the essential requirements of operations and contains the “genetic genes” for the growth of operational concepts. The entire concept system is derived and developed from this. At present, the understanding of the winning mechanism of informationized and intelligent warfare is becoming clearer, and it is time to focus the design of war on the development of major operational theories and key operational concepts.

Operational concept is an abstract expression of operational thinking.

The term “operational concept” originated from the US military. It is a description of how to fight in the future and is increasingly becoming an important tool for promoting the development of the military. The US Army Training and Doctrine Command Concept Development Guide points out that the operational concept is a concept, idea, and overall understanding. It is based on the inference of specific events in the combat environment. In the broadest sense, it outlines what will be done and describes how to fight in more specific measures. The US Marine Corps Combat Development Command Operations Development and Integration Directive points out that the operational concept is an expression of how to fight, used to describe future combat scenarios and how to use military art and scientific capabilities to meet future challenges. The US Air Force Operational Concept Development Directive points out that the operational concept is a conceptual description at the level of war theory, which realizes the established operational concept and intention through the orderly organization of combat capabilities and combat tasks.

In summary, the operational concept can be understood as an abstract cognition of operational ideas and action plans that is refined for specific operational problems at present or in the future. Generally speaking, the operational concept includes three parts: the first is the description of the operational problem, that is, the background of the operational concept, the operational environment, the operational opponent, etc.; the second is the description of the solution, that is, the concept connotation, application scenario, action style, winning mechanism, capability characteristics and advantages, etc.; the third is the description of capability requirements, that is, the equipment technology, basic conditions, and implementation means required to implement the operational concept. It can be seen that the operational concept should have the characteristics of pertinence, scientificity, adaptability and feasibility, and its connotation and extension will be constantly adjusted with the changes in factors such as strategic background, military policy, threat opponent, time and space environment, and capability conditions.

In a sense, operational concepts are actually transitional forms of operational theories, and their ultimate value is to guide military practice. The purpose and destination of developing new operational concepts is to tap into and enhance the combat effectiveness of the military. Only by transforming operational concepts into operational regulations and operational plans can their value be fully realized.

Innovation in combat concepts drives changes in combat styles

Since the beginning of the 21st century, the world’s military powers have, in accordance with national strategic requirements and in response to new threats and challenges, developed new operational concepts as a key means of transforming military capabilities, promoting changes in operational styles, and seeking to gain the upper hand in future battlefields. In order to further strengthen their military advantages, the world’s military powers are accelerating the introduction of a series of new operational concepts.

The US military has actively seized the opportunities brought about by scientific and technological progress, comprehensively used cutting-edge technologies such as new-generation information technology, artificial intelligence technology, unmanned autonomous technology, and proposed a series of new combat concepts such as mosaic warfare, multi-domain warfare, distributed lethality, decision-center warfare, and joint global command and control, promoting fundamental changes in combat thinking, combat style, combat space, and combat systems.

Unlike the U.S. military, the Russian military has achieved iterative innovation in operational concepts in military practice. Recently, the Russian military has been committed to promoting the construction of joint combat capabilities, accelerating the development and deployment of new unmanned equipment, focusing on building advantages in the network information battlefield, and constantly enriching the connotation of its traditional operational concepts, integrating them with new operational concepts such as hybrid warfare and mental warfare to guide war practice.

In general, in recent years, the new operational concepts proposed by the world’s military powers are driving profound changes in combat styles. Their capabilities, characteristics and advantages are mainly reflected in the following five aspects: First, the unmanned combat equipment. The proportion of unmanned equipment systems based on the new operational concept has increased significantly, and manned-unmanned collaborative combat has become one of the main combat styles, forming an advantage of unmanned over manned; second, the deployment method is decentralized. The force deployment based on the new operational concept is distributed, and the systems are interconnected and interoperable, forming an advantage of division over combination; third, the kill network is complicated. The kill network based on the new operational concept has more diverse functions. A single system can perform multiple tasks, and its failure has little impact on the combat system, forming an advantage of many over single; fourth, the response time is agile. The new operational concept emphasizes quick battles and quick decisions, taking the initiative to catch the enemy off guard, forming an advantage of fast over slow; fifth, the combat field is multidimensional. The new operational concept pays more attention to multi-domain linkage, expanding the battlefield from the traditional land, sea and air to the electromagnetic, network and cognitive domains, forming an advantage of invisible over visible.

The development of combat concepts should adhere to the systematic design approach

Using operational concepts to guide military force construction is a common practice among the world’s military powers. In comparison, the US military’s operational concept development mechanism is relatively complete, and a relatively complete operational concept development system has been established, consisting of concept types, organizational structures, normative standards, and support means.

In terms of concept types, the U.S. military’s combat concepts can basically be divided into three categories: First, a series of combat concepts developed by each service, mainly from the perspective of the service, to study potential enemies and future battlefields, redefine combat styles, and seek new ways to win. Second, a series of joint combat concepts developed by the Joint Chiefs of Staff, mainly composed of three levels: top-level concepts, action concepts, and supporting concepts. Third, combat concepts developed by academia, think tanks, etc., the number of such combat concepts is not as large as the first two categories, but it is still an important part of the combat concept system. Through this system, the U.S. military has implemented the grand military strategy through combat concepts layer by layer into various combat operations, various combat capabilities, and various types of weapons and equipment performance for the troops, guiding the construction of joint forces and various services.

In terms of organizational structure, taking the development of joint operational concepts as an example, the US military has established a working system consisting of five types of institutions. The first is the Joint Concept Working Group, whose main responsibility is to review the overall issues of the concept outline and concept development; the second is the Joint Concept Steering Committee, whose main responsibility is to supervise and guide the concept development plan; the third is the core writing team, whose main responsibility is to transform the original ideas in the concept outline into joint operational concepts; the fourth is the concept development team, whose main responsibility is to provide operational concept development methods and plans; the fifth is the independent red team, whose main responsibility is to conduct independent evaluations to judge the rigor and scientificity of the concept.

In terms of norms and standards, the U.S. military has a complete system of institutions to constrain and guide the development of joint operational concepts, making them standardized, standardized, and procedural, so as to manage the entire chain of concept development, which is mainly reflected in a series of directives of the Chairman of the Joint Chiefs of Staff and joint publications. For example, the “Joint Concept Development and Implementation Guide” aims to establish a governance structure for joint concept development, clarify the framework for joint operational concept planning, execution, and evaluation, and promote the implementation of joint operational concepts; the “Joint Regulations Preparation Process” aims to standardize the preparation process of joint regulations and provide a clear process framework for converting operational concepts into operational regulations.

In terms of support means, the design, development and verification of operational concepts is a systematic project that cannot be separated from the support of various development tools and means. For example, tools such as the DODAF2.0 model, IDEFO model and SYSML modeling language can provide standardized structured analysis models and logical description models for operational concept designers; model-based system engineering methods can provide operational concept designers and evaluation and verification personnel with capability models of equipment elements in operational concepts for designing and building operational concept frameworks. The U.S. military’s joint operational concept development uses network-based digital software with strong interconnection capabilities. All institutions involved in the development can share information in real time to improve development efficiency.

The development of combat concepts requires collaboration among multiple parties

Developing operational concepts is a multidisciplinary and multi-field task that involves many fields such as military science, philosophy, operations research, and systems science. It requires collaboration among multiple parties to ensure that it is both advanced and forward-looking in theory and applicable and feasible in practice.

Establish a small core and large peripheral research team. The department initiating the development of the operational concept should give full play to its leading role, coordinate and dispatch the research work from a global perspective; establish a joint research and development team, give full play to the collective wisdom, and widely obtain various new ideas, new methods and new viewpoints on the research of operational concepts from all parties; establish a cross-domain and cross-departmental expert committee to supervise, review and guide related work from multiple angles.

Form a multi-departmental working mechanism. To ensure smooth communication and efficient operation among departments, we must first clarify their respective tasks and responsibilities. For example, the concept initiating department is responsible for overall planning and implementation, the laboratory is responsible for technical verification, the industrial department is responsible for equipment research and development, and the combat troops are responsible for actual combat testing. Secondly, relevant normative documents should be formulated to ensure that all work has rules to follow and is carried out in an orderly manner, providing institutional guarantees for the development of combat concepts. Finally, it is also necessary to establish demand traction mechanisms, collaborative research mechanisms, iterative feedback mechanisms, etc., to open up the link from research and development to practical application of combat concepts.

Promote the organic combination of theory and practice. Only through the iterative cycle of “design research-deduction verification-actual troop test” can the operational concept be gradually adjusted, optimized and improved, and the development of war theory can be driven. Therefore, the development of operational concepts should pay special attention to the combination of theoretical innovation and practical application, and achieve the fundamental purpose of driving the generation of new quality combat power through the mutual drive of theory and practice. Specific methods include timely incorporating mature operational concepts into operational regulations, compiling training outlines or teaching materials accordingly, and gradually promoting them to troops for use; organizing relevant exercises or tests to test the maturity and feasibility of operational concepts under conditions close to actual combat, and finding and solving problems; using the capability indicators determined by the operational concept as a reference for equipment demand demonstration, driving the development of equipment technology, and promoting the improvement of combat capabilities.

The rapid development of science and technology in the new era has brought many new opportunities and challenges to the construction of military capabilities. The development of new operational concepts will help us to seize the military opportunities brought by scientific and technological progress, actively respond to the threats and challenges formed by scientific and technological development, and timely grasp the direction and laws of the evolution of war forms, which can provide important support for leading future war styles and seizing the first chance to win. At present, the international security situation is complex and changeable. To win the future information war, we need to take the development of operational concepts as the origin of national defense and military construction, actively carry out military technological innovation, promote the upgrading of weapons and equipment, achieve leapfrog development, and thus lead the trend of the new military revolution.

(Author’s unit: Second Academy of China Aerospace Science and Industry Corporation)

現代國語:

宋曉明

中國軍網 國防部網
2022年6月22日 星期三

自21世紀以來,隨著世界新軍事革命的深入推進,世界軍事強國提出了一系列新作戰概念,並在戰爭實踐中不斷改進,從而牽引戰爭加速演變。隨著雲端運算、區塊鏈、人工智慧、大數據等資訊科技的日新月異,以及在軍事領域的廣泛應用,人們理解戰爭的模式逐漸由歸納總結實戰經驗向研判未來戰爭轉變。目前,作為軍事能力建構源頭,作戰概念開發能力強弱,將直接影響勝戰先機的奪取。尤其是世界新軍事革命蓬勃發展,無時無刻不在呼喚作戰理論創新,只有以前瞻眼光開發新作戰概念、設計未來戰爭,才能獲得軍事鬥爭準備的主動權。

作戰概念從根本解決仗怎麼打

一流軍隊設計戰爭,二流軍隊應對戰爭,三流軍隊尾隨戰爭。所謂“真正的戰爭,發生在戰爭之前”,意思是戰爭開打之前,戰爭的理論、樣式、打法早已被設計出來。依照設計好的戰爭來打,豈有不勝之理?設計戰爭,關鍵在於摸清戰爭特徵規律的基礎上,設計發展新作戰概念,推動作戰樣式和戰法創新,從根本上解決「仗怎麼打」。

設計戰爭,理論先行。近年來,美軍先後提出「網路中心戰」「空海一體戰」等理論,反映了世界軍事強國都在大力研究作戰理論,搶佔軍事制高點。從某種程度上說,作戰概念是作戰理論形成的“組織細胞”,沒有完善的概念生成能力,很難催生先進的理論。當一個作戰理論提出時,需要發展相關作戰概念,才能使作戰理論「下沉」具象化,更好地完善並向軍事實踐轉化。當沒有作戰理論構想時,作戰概念創新可以為研究作戰理論提供「原料」。軍事領域是最具不確定性的領域,人們對戰爭的認知始終在不斷發展。但是,作戰理論創新不能坐等認識成熟後再起步,而是需要在現有認識的基礎上,透過主動開發、創新作戰概念,構設未來作戰圖景,探索未來制勝機理,牽引並指導軍事實踐,才能掌握戰爭主動權。因此,作戰概念創新,正成為軍隊建設與發展的戰略支點與槓桿。

作戰概念開發,重點在於設計核心作戰概念。核心作戰概念,是作戰概念的細胞核、胚胎,集中反映作戰本質要求,包含著作戰概念生長的“遺傳基因”,整個概念體係由此衍生與發展。目前,對資訊化、智慧化戰爭的致勝機理等的認識漸趨清晰,將設計戰爭的重心聚焦到主要作戰理論、關鍵作戰概念開發正當其時。

作戰概念是作戰思想的抽象表達

「作戰概念」一詞源自美軍,是對未來如何作戰的描述,正日益成為推進軍隊建設發展的重要抓手。美《陸軍訓練與條令司令部概念開髮指南》指出,作戰概念是理念、想法、總體認識,是依據作戰環境中具體事件的推斷,在最廣泛的意義上勾勒將要做什麼,在更具體的舉措上描述仗怎麼打。美《海軍陸戰隊作戰發展司令部作戰發展與一體化指令》指出,作戰概念是表達如何打仗,用來描述未來作戰景象及如何利用軍事藝術和科學能力迎接未來挑戰。美《空軍作戰概念發展條令》則指出,作戰概念是戰爭理論層面的概念描述,透過對作戰能力和作戰任務的有序組織,實現既定的作戰構想和意圖。

綜上所述,作戰概念可以理解為是針對當前或未來的具體作戰問題,提煉的對作戰思想與行動方案的抽象認知。一般而言,作戰概念包括三部分內容:一是對作戰問題的描述,即作戰概念的提出背景、作戰環境、作戰對手等;二是對解決方案的描述,即概念內涵、應用場景、行動樣式、制勝機理、能力特徵及優勢等;三是對能力需求的描述,即實施該作戰概念所需的裝備技術、基礎條件、實現手段等。可以看出,作戰概念應具備針對性、科學性、適應性與可行性等特徵,其內涵與外延會隨著戰略背景、軍事方針、威脅對手、時空環境、能力條件等因素的變化而不斷調整。

從某種意義上說,作戰概念其實是作戰理論的過渡形態,最終價值是指導牽引軍事實踐。發展新作戰概念的目的和歸宿,是挖掘和提升軍隊戰鬥力,只有把作戰概念轉化為作戰條令、作戰計劃,才能充分發揮其價值。

作戰概念創新牽引作戰樣式變革

進入21世紀以來,世界軍事強國根據國家戰略要求,針對新威脅挑戰,把開發新作戰概念作為軍事能力轉型的關鍵抓手,推動作戰樣式變革,謀求贏得在未來戰場中的製勝先機。為進一步強化軍事上的領先優勢,世界軍事強國正加速推出一系列新作戰概念。

美軍積極搶奪科技進步帶來的機遇,綜合運用新一代資訊科技、人工智慧技術、無人自主技術等尖端技術,提出馬賽克戰、多域作戰、分散式殺傷、決策中心戰、聯合全局指揮控制等一系列新作戰概念,推動作戰思想、作戰樣式、作戰空間和作戰體系發生根本性變化。

與美軍不同,俄軍是在軍事實踐中實現作戰概念的迭代創新。近期,俄軍致力於推動聯合作戰能力建設,加速發展部署新型無人裝備,注重打造網路資訊戰場優勢,不斷豐富其傳統作戰概念的內涵,並與混合戰爭、心智戰等新作戰概念相集成,用以指導戰爭實踐。

整體而言,近幾年,世界軍事強國提出的新作戰概念正牽引作戰樣式發生深刻變化,其能力特徵及優勢主要體現在以下五個方面:一是作戰裝備無人化,基於新作戰概念的無人裝備體系佔比顯著提高,有人無人協同作戰成為主要作戰樣式之一,形成以無人制有人的優勢;二是部署方式分散化,基於新作戰概念的力量部署呈分佈式,系統間互聯互通,具備互操作能力,形成以分制合的優點;三是殺傷網複雜化,基於新作戰概念的殺傷網功能更加多樣,單一系統可執行多種任務,且其失效對作戰體系影響較小,形成以多製單的優勢;四是響應時間敏捷化,新作戰概念更強調速戰速決,先發制人使敵方措手不及,形成以快製慢的優勢;五是作戰領域多維化,新作戰概念更注重多域聯動,將戰場從傳統的陸海空拓展到電磁、網絡和認知域,形成以無形制有形的優勢。

作戰概念開發應堅持體系化設計思路

以作戰概念指導軍事力量建設,是世界軍事強國的共同做法。比較而言,美軍的作戰概念開發機制較為完善,建構了相對完整的作戰概念開發體系,由概念類型、組織架構、規範標準、支撐手段等部分組成。

在概念類型方面,美軍作戰概念基本上可分為三類:一是各軍種主導開發的系列作戰概念,主要從本軍種角度出發,研判潛在敵人和未來戰場,對作戰樣式進行重新定義,謀求打贏的新途徑。二是參會主導開發的一系列聯合作戰概念,主要由頂層概念、行動概念和支持性概念等三個層次構成。三是學術界、智庫等主導開發的作戰概念,這類作戰概念的數量沒有前兩類那麼多,但仍是作戰概念體系的重要組成部分。透過此體系,美軍把宏大的軍事戰略透過作戰概念逐層落實為面向部隊的各類作戰行動、各種作戰能力、各型武器裝備性能,指導聯合部隊及各軍兵種建設。

在組織架構方面,以聯合作戰概念發展為例,美軍建立了由五類機構組成的工作體系。一是聯合概念工作小組,主要職責是審查概念大綱及概念研發的整體問題;二是聯合概念指導委員會,主要職責是對概念研發計畫進行監督指導;三是核心編寫團隊,主要職責是將概念大綱中原始理念轉化為聯合作戰概念;

在規範標準方面,針對聯合作戰概念的開發,美軍有完善的製度體系約束、指導,使其規範化、標準化、程序化,以便對概念開發進行全鏈條管理,主要體現在一系列參謀長聯席會議主席指令及聯合出版物中。例如,《聯合概念開發與實施指南》旨在為聯合概念發展建立治理結構,明確聯合作戰概念規劃、執行和評估的框架,推動聯合作戰概念落實;《聯合條令編制流程》旨在對聯合條令的編制流程進行規範,為把作戰概念轉化為作戰條令提供一個明確的流程框架。

在支撐手段方面,作戰概念的設計開發與驗證是一項系統工程,離不開各類開發工具與手段的支撐。例如,DODAF2.0模型、IDEFO模型及SYSML建模語言等工具,可為作戰概念設計人員提供規範的結構化分析模型與邏輯描述模型;基於模型的系統工程方法,可為作戰概念設計人員和評估驗證人員提供作戰概念中裝備要素的能力模型,用於設計並搭建作戰概念框架。美軍聯合作戰概念開發使用了基於網路的數位化軟體,具有較強的互聯互通能力,所有參與開發的機構都可以即時共享訊息,提高開發效率。

作戰概念開發成熟需要多方協同合作

發展作戰概念是一項多學科、多領域交叉的工作,涉及軍事學、哲學、運籌學、系統科學等諸多領域,需要多方協同合作,以確保其既在理論層面具備先進性、前瞻性,又在實踐層面具備適用性、可行性。

組成小核心大外圍研究團隊。作戰概念開發發起部門要充分發揮群體智慧作用,從全局角度出發,對研究工作進行統籌與調度;成立聯合研發團隊,充分發揮群體智慧作用,廣泛獲取各方對作戰概念研究的各種新方法與新觀點;設立跨領域、跨部門的專家委員會,多角度對相關工作進行監督、審查與指導。

形成多部門連動的工作機制。為確保各部門之間溝通順暢、運作高效,首先要明確各自的任務與職責。例如,概念發起部門負責總體計畫與實施、實驗室負責技術驗證、工業部門負責裝備研發、作戰部隊負責實戰檢驗。其次,要製定相關規範文件,確保各項工作有章可循、有序推進,為作戰概念研發提供製度保障。最後,還要建立需求牽引機制、協同攻關機制、迭代回授機制等,打通作戰概念從研發到實務運用的連結。

推動理論與實務有機結合。作戰概念只有透過「設計研究—推演驗證—實兵檢驗」的循環迭代,才能逐步調整、優化、完善,牽引戰爭理論發展。因此,作戰概念發展要特別注重理論創新與實務運用結合,透過理論與實務的相互驅動,達成牽引新質戰鬥力生成的根本目的。具體方式包括,將開發成熟的作戰概念及時納入作戰條令,相應地編寫訓練大綱或教材,逐步推廣至部隊使用;透過組織相關演訓或試驗,在貼近實戰條件下檢驗作戰概念的成熟度與可行性,查找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,尋找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,作戰能力提升。

新時代科技發展態勢迅猛,為軍事能力建設帶來許多新機會與新挑戰。發展新作戰概念,有助於敏銳抓住科技進步帶來的軍事機遇,積極應對科技發展形成的威脅與挑戰,及時掌握戰爭形態演進方向與規律,可為主導未來戰爭樣式、搶佔制勝先機提供重要支撐。當前,國際安全情勢複雜多變,打贏未來資訊化戰爭,需要我們把作戰概念開發作為國防和軍隊建設的原點,積極開展軍事技術創新,推進武器裝備更新換代,實現跨越式發展,從而引領新軍事革命潮流。

(作者單位:中國航太科工集團第二研究院)

中國原創軍事資源:http://www.81.cn/gfbmap/content/2022-06/22/content_31822288.htm

Exploring the Laws of Chinese Military Intelligent Warfare Design

探索中國軍事智慧戰爭設計規律

現代英語:

At present, with the widespread application of disruptive technology groups represented by artificial intelligence technology, the form of warfare is accelerating its evolution towards intelligence. Scientific planning and proactive design of intelligent warfare has become an issue of the times facing war preparation. To truly organize intelligent warfare design well, we must accurately grasp the characteristics and laws of intelligent warfare design, clarify its position and role in war planning and preparation, so as to better serve winning the war.

Focus on development and make reasonable foresight

Correct decisions come from correct judgments, and correct judgments come from scientific foresight for the future. Scientific prediction is the prerequisite for operational design, and operational design is the application of prediction results. Tomorrow’s war will not be a replica of today’s war, but its shadow can be found in today’s war. Therefore, the design of intelligent warfare should be based on a full assessment and scientific prediction of future war forms and ways to win, and the forms, styles, methods, and means of intelligent warfare should be predicted through today’s wars.

In a battlefield full of uncertainty and ambiguity, in order to make war design more realistic, we must focus on the development and changes of intelligent weapons and equipment of both sides in the future, the updating of combat theories, the development of combat capabilities, and the innovation of winning methods. We must make scientific and reasonable predictions, estimates, and analyses of the timing of launching intelligent warfare, scale and level, style and intensity, development process, outcome of war, and other various complex situations that may arise, and on this basis, make systematic concepts and advance plans.

Be proactive and prioritize shaping

Sun Tzu said, “Victorious troops first win and then seek battle.” Intelligent warfare design focuses on grasping the characteristics, laws, and development trends of war. Based on possible enemy situations, our own situations, and battlefield environment, it prioritizes creating a favorable situation, and strives to lead and control wars by studying, designing, and planning wars, so as to achieve the goal of deterring war and defeating the enemy without fighting.

The battlefield space of intelligent warfare is a multi-dimensional and multi-domain space that combines reality and virtuality, providing war designers with a stage to give full play to their intelligence, implement autonomy and creativity. As the initiative in initiating wars increases, the initiative and creativity in war design also increase accordingly. War designers can proactively design intelligent warfare based on future war forms. When designing it, we focus on both responding to current urgent threats and targeting future operations. To this end, we should firmly grasp the characteristics of the era of intelligent warfare design, take proactive actions, enhance the ability of active design and dynamic design in various links such as concepts, plans, and construction, take the initiative, fight proactively, ensure that we can always adapt to the rapid changes in the situation, make the war develop in the designed direction as much as possible, and strive for the initiative in war preparation.

Based on the existing situation, innovate and change

Intelligent warfare design is an original combination of the war designer’s cognitive concepts, cognitive levels, guiding ideas, and operational strategies. The courage to innovate is the soul of intelligent warfare design. To this end, the entire process, all fields, and aspects of intelligent warfare design should focus on innovation-led design.

Intelligent warfare design is a research based on the development predictions of intelligent warfare military theories, weapons and equipment, battlefield construction, etc. It is an expansion and innovation based on the existing situation. Due to the development and evolution of war forms, some combat methods that have been successful in history may become ineffective in intelligent warfare; and some unprecedented combat rules that are adapted to the combat theories and weapons and equipment of intelligent warfare need to be created. Intelligent warfare design understands, conceives and describes complex problems through critical and creative thinking, so as to help war designers more deeply understand and grasp the winning rules and guiding rules of intelligent warfare operations, discover the key points and deep-seated reasons that restrict the combat progress, and thus creatively propose solutions to the problems.

Various forms, eclectic

Comrade Mao Zedong pointed out in “On Protracted War”: “The ancients said that ‘the secret of applying the strategy lies in one’s heart’. We call this ‘secret’ flexibility, which is the product of a smart commander.”

The flexibility of intelligent warfare design is determined by the differences in combat operations and the variability, uncertainty and contingency of situations and tasks. Appropriate reasoning and decisions must be made based on different situations. War design methods are quite diverse and eclectic. Traditional research and prediction methods include Markov method, Delphi method, brainstorming method, scenario analysis method, etc. When designing intelligent warfare, we should combine it with actual combat research and flexibly adopt different methods. At present, with the widespread application of cloud computing, big data and other technologies in the military field, computer simulation, modeling and simulation, war game confrontation and other methods are increasingly becoming important forms of combat exercises and confrontation simulation training, and are also commonly used methods in intelligent warfare design.

Reverse thinking, strategic confrontation

War is a confrontation between the comprehensive strength of two hostile parties, but also a confrontation between the strategies and wisdom of the commanders of both sides. Antagonism is one of the basic characteristics of intelligent warfare design, and it is also the main feature that distinguishes warfare design from design activities in other fields.

The main object of intelligent warfare design is the combat activities carried out by the hostile parties on the battlefield. These activities are “live” confrontation actions between people, supported by information-based intelligent weapons and equipment and technical means. They are inseparable from the battle of wits and courage between the war designers of the hostile parties. Therefore, designers of intelligent warfare must not only be familiar with their own situation, but also stand in the opponent’s position and think from the opponent’s perspective about how the intelligent warfare will start, control, and end, and what specific combat actions will be taken to organize and implement it. Before the war, they must conduct a comprehensive analysis and prediction of various situations that may arise during the implementation of the combat, and then propose effective countermeasures. Only in this way can the designed war be targeted and can they take the initiative in confrontational combat activities.

Multi-domain linkage, comprehensive system

Intelligent warfare design is a complex systematic project involving various fields such as military, politics, diplomacy, and economy. The specific methods involve knowledge from many disciplines such as military science, political science, and operations research. The battlefield involves multi-dimensional spaces such as land, sea, air, space, and power grids.

Intelligent warfare design is neither a simple listing of all war-related content nor specific planning and preparation for an impending war. Rather, it is an all-round, full-system, and full-element conception and design of the content covered by intelligent warfare in a certain period of time in the future. In terms of content, it includes the combat scenarios, combat objectives, combat scale, combat direction, battlefield environment, possible combat styles, combat methods, etc. of intelligent warfare; in terms of time, it is the whole process from the time when the war designers conceive or plan the operation to the planning, preparation, implementation, and end of the operation. To design intelligent warfare, we must not only conduct in-depth research on the characteristics, laws and winning mechanisms of intelligent warfare, study the situation of combat opponents, the war environment, and weapons and equipment; we must also study many scientific fields such as war science, system science, and modern engineering science, and predict the impact of scientific and technological development on future wars and operations, so that we can scientifically design the combat theories and processes of intelligent warfare.

Overall planning, multiple case selection

Clausewitz said: “War is the kingdom of uncertainty, and three-quarters of the factors on which war depends are more or less surrounded by a fog of uncertainty.”

Intelligent warfare design is a general plan and conception of intelligent warfare operations. It is a creative thinking activity based on the wisdom and strategy of the designer, and is imaginative and challenging. The design of intelligent warfare only knows the approximate area and method of launching an operation, but there is no specific clarification on the scale and action style of the participating forces. The combat objectives and combat indicators are not specific. It is necessary to make rough plans and bold assumptions about the combat objectives, scale, action style, etc. of intelligent warfare based on the tasks undertaken and the threats faced in peacetime, and on the basis of comprehensive analysis and prediction, without sticking to the existing stereotyped thinking. The objectives and scale of intelligent warfare operations can be large or small, and the action composition can be flexible and diverse. The design results of intelligent warfare should include multiple cases coexisting, multiple cases being compared, and multiple methods being demonstrated to enhance the pertinence and reliability of the results.

Iterative development, rolling improvement

Intelligent warfare design is a long-term and complex system engineering project, which cannot be achieved overnight or once and for all. The probability of war itself, the uncertainty of factors affecting victory or defeat, and the complexity of confrontation in intelligent warfare combat systems all determine the complexity and variability of intelligent warfare design. At the same time, when designing the opponent, one is also being designed by the opponent. Any negligence or carelessness may lead to a complete loss in one wrong move. It is not easy to carry out accurate war design.

With the continuous development of science and technology, the continuous evolution of war forms, and the ever-changing strategic threats and security environment faced in the future, intelligent warfare design should also keep pace with the development of the situation and tasks, and pay more attention to iterative development and design. In line with this, various operational concepts, operational plans, operational regulations, etc. should also be revised in a timely manner, continuously updated, and improved to adapt to the ever-changing new situations.

現代國語:

探尋智慧化戰爭設計規律

■陳建社

引言

當前,隨著以人工智慧技術為代表的顛覆性技術群的廣泛運用,戰爭形態加速向智能化演進,科學籌劃並主動設計智能化戰爭成為戰爭準備面臨的時代課題。要真正組織好智慧化戰爭設計,就要準確把握智慧化戰爭設計的特點規律,弄清楚其在戰爭籌劃和準備中的地位作用,從而更好地為打贏戰爭服務。

著眼發展,合理預見

正確的決策來源於正確的判斷,而正確的判斷來源於對未來所做的科學預見。科學預測是作戰設計的前提,作戰設計是預測結果的運用。明天的戰爭,不會是今天戰爭的翻版,卻可以在今天的戰爭中找到影子。因此,進行智慧化戰爭設計,應以對未來戰爭形態和製勝方式的充分研判和科學預測為前提,通過今天的戰爭預測智能化戰爭的形態、樣式、方法、手段等。

在充滿不確定性和模糊性的戰場上,要使戰爭設計更加符合實際,就要著眼未來一個時期敵我雙方智能化武器裝備的發展變化、作戰理論的更新、作戰能力的發展、制勝途徑的創新等因素,對智能化戰爭的發起時機、規模層次、樣式烈度、發展進程、戰爭結局和其他可能出現的各種復雜情況,進行科學合理預測、此構想等,

積極主動,優先塑造

孫子曰:「勝兵先勝而後求戰。」智能化戰爭設計著眼於把握戰爭的特點、規律和發展趨勢,基於可能的敵情、我情和戰場環境,優先塑造有利態勢,力爭通過研究戰爭、設計戰爭、謀劃戰爭,從而主導和控制戰爭,達到以止止戰、不戰而屈懾人之兵的目的。

智慧化戰爭的戰場空間是現實和虛擬結合的多維多域空間,為戰爭設計者提供了一個充分發揮聰明才智、實施自主與創造的舞台。戰爭發起的主動性增強,戰爭設計的主動性、創造性也隨之提升,戰爭設計者可根據未來的戰爭形態,主動對智慧化戰爭進行超前設計。設計時,既注重應對當前緊迫威脅,也著重於瞄準未來作戰。為此,應緊緊把準智慧化戰爭設計的時代特徵,積極主動作為,在概念、預案、建設等各個環節,增強主動設計、動態設計能力,下好先手棋,打好主動仗,確保始終適應情況的快速變化,盡可能使戰爭按照所設計的方向發展,爭取戰爭準備的主動。

立足現有,創新求變

智慧化戰爭設計是對戰爭設計者認識理念、認知層次、指導思想、運籌謀略等的原創性組合,勇於創新是智慧化戰爭設計的靈魂。為此,智慧化戰爭設計全過程、諸領域、各方面都應著重以創新引領設計。

智慧化戰爭設計是建立在對智慧化戰爭軍事理論、武器裝備、戰場建設等發展預測基礎上的研究,是在立足現有情況基礎之上的拓展創新。由於戰爭形態的發展演進,一些歷史上曾經成功的作戰方法,在智能化戰爭中可能會失效;而一些前所未有,適應智能化戰爭作戰理論和武器裝備的戰法則需要被創造出來。智慧化戰爭設計透過批判性和創造性思維,理解、構想和描述復雜問題,以幫助戰爭設計者更深入地理解把握智能化戰爭作戰的製勝規律和指導規律,發現制約作戰進程的關鍵點及深層原因,從而創造性地提出解決問題的辦法。

形式多樣,不拘一格

毛澤東同志在《論持久戰》中指出:“古人所謂‘運用之妙,存乎一心’,這個‘妙’,我們叫做靈活性,這是聰明的指揮員的出產品。”

智慧化戰爭設計的靈活性,是由作戰行動的差異性以及形勢任務的變化性、不確定性和偶然性決定的,要根據不同的情況進行相應的推理和決斷。戰爭設計方法比較多樣,不拘一格,傳統的研究預測方法有馬爾可夫法、德爾菲法、頭腦​​風暴法、情境分析法等。進行智慧化戰爭設計時,應結合作戰研究實際,靈活採用不同的方法。當前,隨著雲計算、大數據等技術在軍事領域的廣泛運用,計算機模擬、建模模擬、兵棋對抗等方法,正日益成為作戰演習及對抗模擬訓練的重要形式,也是智能化戰爭設計普遍採用的方法。

逆向思維,謀略對抗

戰爭是敵對雙方綜合實力的對抗,更是雙方指揮員謀略和智慧的對抗。對抗性是智慧化戰爭設計的基本特點之一,也是戰爭設計區別於其他領域設計活動的主要特徵。

智慧化戰爭設計的主要對象,是敵對雙方在戰場上進行的作戰活動,這些活動是人與人之間,在資訊化智慧化武器裝備及技術手段支撐下「活」的對抗行動,是與敵對雙方戰爭設計者的鬥智鬥勇分不開的。因此,智慧化戰爭設計者不僅要熟悉掌握己方情況,還要站在對手的立場,從對手的角度來思考智能化戰爭會以什麼樣的方式開局、控局、收局,會具體採取什麼樣式的作戰行動來組織實施,要在戰前對作戰實施過程中可能出現的各種情況進行全面分析預測,進而提出有效的對策措施,這樣主動設計的戰爭才有針對性,也能在戰鬥中掌握戰爭的活動中才有針對性。

多域聯動,系統全面

智慧化戰爭設計是一項複雜的系統性工程,涉及軍事、政治、外交、經濟等各個領域,具體方法涉及軍事學、政治學、運籌學等諸多學科領域知識,戰場涉及陸海空天電網等多維空間。

智慧化戰爭設計既不是簡單羅列與戰爭相關的所有內容,也不是對即將發生的戰爭進行具體籌劃和準備,而是對未來一定時期智能化戰爭所涵蓋內容的全方位、全系統、全要素構想和設計。從內容上講,包括智慧化戰爭的作戰場景、作戰目的、作戰規模、作戰方向、戰場環境、可能採取的作戰樣式、作戰方法等;從時間上講,是從戰爭設計者構思或謀劃作戰開始,一直到作戰籌劃、作戰準備、作戰實施、作戰結束的全過程。進行智慧化戰爭設計,不僅要深入研究智能化戰爭的特點、規律和製勝機理,研究作戰對手情況、戰爭環境情況、武器裝備情況;而且要研究戰爭科學、系統科學和現代工程科學等眾多科學領域,並要預測科學技術發展對未來戰爭和作戰的影響,進而對智能化戰爭的作戰理論、作戰進程等進行科學設計。

概略謀劃,多案優選

克勞塞維茨說:“戰爭是不確定性的王國,戰爭所依據的四分之三的因素或多或少地被不確定性的迷霧包圍著。”

智慧化戰爭設計是對智慧化戰爭作戰的概略性籌劃與設想,是建立在設計者智慧與謀略基礎之上的一種創造性思維活動,富有想像力與挑戰力。智慧化戰爭設計只知道作戰發起的概略區域和方式,但對參戰力量的規模、行動樣式等沒有具體明確,作戰目標和作戰指標都不具體,需要根據平時所擔負的任務和麵臨的威脅,在綜合分析預測的基礎上,對智能化戰爭的作戰目的、作戰規模、行動樣式等進行略籌和設想,不拘化和設想,不拘化思維,不拘化思維。智能化戰爭作戰目的和規模可大可小,行動構成靈活多樣,智能化戰爭設計結果應多案並存、多案對比、多法論證,增強結果的針對性和可靠性。

迭代開發,滾動完善

智慧化戰爭設計是一項長期的複雜系統工程,不是一蹴可幾、一勞永逸的事。戰爭本身的蓋然性和勝負影響因素的不確定性以及智能化戰爭作戰體系對抗的複雜性等,都決定了智能化戰爭設計的復雜多變。與此同時,己方在設計對手時,也在被對手設計,任何疏忽或大意都可能導致一著不慎,滿盤皆輸,進行準確的戰爭設計絕非易事。

隨著科學技術的不斷發展、戰爭形態的不斷演變,以及未來面臨的戰略威脅和安全環境的不斷變化,智慧化戰爭設計也應隨著形勢任務的發展而與時俱進,更加註重迭代開發設計。與之相適應,各種作戰構想、作戰概念、作戰預案、作戰條令等也應適時修訂,不斷更新、滾動完善,以適應不斷發展變化的新情況。

中國原創軍事資源:http://www.81.cn/ll_208543/1634673288.html

Chinese Military Era of Intelligent Integration Calls for Smart Transformation Training

中国军事智能化时代呼唤智能转型训练

現代英語:

At present, the new military is exciting the rapid development of scientific and technological revolution and revolution. Revolutionary technologies represented by artificial intelligence promote the transformation of war forms to intelligent warfare with artificial intelligence. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. Military training, as a pre-practice of military warfare, should promptly mark new goals, realize the transformation to “intelligence”, accelerate “intelligence” training, continuously improve the military science and technology level and “intelligence content”, and comprehensively upgrade combat capabilities to accelerate generation.

Keep up with the changes in the form of war and upgrade the concept of transformation

As the scale of the military and the number of equipment are no longer the key to victory in war, upgrading war thinking and training concepts is imperative. We should take a more proactive attitude and a more open vision, keep up with the trend of focus development, and strive to create a new thinking for military victory.

Grasp the inherent cause and effect of intelligent manufacturing victory. The winning chart is a manifestation of the inherent laws of war. Driven by the intelligent revolution, driven by strategic competition, and driven by war practice, the advantages of information-generated intelligence and intelligence-enabled are increasingly evident, reflected in various links such as actuarial and joint systems. A certain flow chart, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, further training thinking remains at the mechanization level. We should use the courage of self-revolution to trigger a “headache storm”, upgrade standardized combat, strengthen the theoretical research of standardized training, and use “intelligence” soldiers to deal with mechanized, informationized, and standardized combat issues, organically connect with fighting, design wars with technology, and practice wars with intelligent means, so as to clarify the fog of war.

At present, the military implements training mobilization with a focus on transformation, trying to further widen the generation gap in combat power with other countries’ armies. Once the generation gap in the military is widened, it will be difficult to recover. If you can’t keep up with it, you may be completely controlled by others. Only by keeping an eye on the opponent can you surpass the opponent. We must stand out in military training, and improve the level of military transformation and non-target combat capabilities in training.

Strengthen the target positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat effectiveness has leaped from mechanical energy type and information energy type to type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and the cutting-edge competition in high-end and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological armament, it will only be at the forefront of low-level intelligence. Therefore, we should firmly establish the goal of winning by science and technology, firmly grasp the “life gate” and “key point” of winning future wars, greatly improve the connotation of military science and technology, increase the practical application of new means such as artificial intelligence, cloud computing, and big data, unveil the mysterious veil of focusing on war, and control the initiative of future wars.

Keep up with the changes in scientific and technological development and build strong conditions for automation transformation

Automation training conditions are the basic training support for organizing and implementing automation training, and are directly related to the quality and effectiveness of automation training. To build an automated training environment, we need to focus on the development of intelligent concepts, intelligent technology, and automated operations, and continue to work hard in building environments, innovating training methods, and cultivating new talents.

Construct a battlefield environment. Modified operations, training space is more convenient, the field is wider, and the methods are more diverse. The battlefield environment construction under easy mechanization and information conditions can no longer support the needs of modified training. We should highlight the elite confrontation, rapid confrontation, and linkage confrontation supported by the modification conditions, tap into the existing existing training equipment and field functions, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and network. For example, digital maps, virtual reality and other technologies are used to simulate and display visualized three-dimensional landforms, weather and complex combat scenes, and build rich and rich combat scenes.

Develop advanced training methods. Advanced training methods help improve training results. Transformation of military training should transform the key factor of “data-centric” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration to form a “pool” covering strategy, campaign, and tactics, and immediately command organizations to end individual soldiers; develop data intelligent analysis tools, use training cloud computing, artificial intelligence and other advanced technologies to integrate and mine data operations; develop intelligent training systems, increase the construction of simulation methods such as simulation, war game confrontation, network confrontation, and intelligent judgment, and overall promote the transformation and upgrading of military methods to “technology +” and “intelligence +”.

Cultivate new military talents. No matter how the war evolves, people are always the real controllers and final decision-makers of war. The quality of the standardization level of military personnel must determine the quality of customized training. To win the information-based local war with standardized characteristics, we should accurately meet the future military needs, strengthen the transformation of traditional combat talents, make good use of the power resources of “technology +”, “maker +” and “think tank +”, promote the integrated development of “commanders”, “combatants” and “scientists” and “technologists”, form a professional and standardized new military talent group, and realize the intelligent interaction between people and equipment, the deep integration of people and environment, and the extensive adaptation of people and environment.

At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream. On the one hand, they support standardized military training, and on the other hand, they are constantly tested and improved. To this end, we should make full use of the war-building and preparation strengthening mechanism, vigorously promote the “+ intelligence” of existing equipment and the “intelligence +” construction of the new generation of equipment, adhere to the research, construction, use and modification, break through the customization level of weapon upgrades and equipment through training practice, and finally make efforts to achieve a multiplier effect. The entire weapon equipment goes from “weak intelligence” to “strong intelligence” and then to “super intelligence” to better support standardized military training.

Keep up with the changes in war practice and innovate customized training models

The military style training model has been developed many times and has moved from theoretical exploration to battlefield practice. In recent local wars, standardized operations have begun to show their edge, and thus have shown the potential to change the “rules of the game” of war. The combat style has changed, and the training model must also change accordingly and actively change. We must keep a close eye on the characteristics of war, innovate military training models, and fully rehearse the next war in military training.

We must base ourselves on the basic point of fighting high-end wars with strong enemies, highlight the essence of breaking high-end wars, continue to deepen research on strong enemies, and use the development of new combat concepts and training theories as a starting point to clarify the laws of war development and key points for winning. Predict future wars and design combat styles from the perspective of intelligence and innovation to study the unique and wonderful ways to defeat the enemy. Emphasize key actions such as joint anti-missile defense, organize strategic and campaign training tactics to defeat the enemy with disadvantages, organize non-combat training to win, and organize training to fight against new domains such as the far sea and the far domain. Seize the high position of future wars in innovative training and form a combat capability of “superior intelligence” and “superior skills” against powerful enemies.

Emphasize the research and training of new quality forces. The transformation of war from winning by force and equipment to winning by intelligence has made new combat forces a new growth pole of combat effectiveness. According to information, the US military plans to standardize 60% of ground combat platforms by 2030, and the Russian army expects that more than 30% of key weapons and equipment will be used in the battlefield by 2025. As the army’s new equipment with intelligent attributes increases, it is necessary to take the path of actual combat training with new combat forces as the leading element, highlight the formation and combat use of new combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and victory, strengthen new styles of training such as unmanned combat, promote the combat system of new combat forces, and make new combat power resources move and come alive.

Highlight intelligent command research and training. How to change the form of war and command, ability is always the key ability to win the battle. As the degree of war continues to increase, planning and commanding based on experience and personal wisdom alone can no longer adapt to any rapidly changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, planning, command and control. Commanders and command organizations are the key to the system of operations. We need to make breakthroughs in the scientificity, accuracy and timeliness of command planning. We rely on new technologies such as “big data” and “artificial intelligence algorithms” and new means such as “engineering” and “one network” to promote the upgrade of command planning from “human intelligence” training to “human intelligence + intelligence” training. We can judge the enemy situation, establish plans and determine actions in the process of actuarial calculations, so as to achieve the goal of defeating the slow with the fast and taking the lead.

(Author’s unit: Central Theater Command)

現代國語:

曾海清

引言

目前,新軍事激動科技革命和革命快速發展,以人工智慧為代表的革命性技術,以人工智慧推動戰爭形態向智慧化戰爭轉型,打贏智慧化戰爭逐漸成為強國軍事競爭的焦點。軍事訓練作為軍事戰爭的預實踐,應及時邁開標記新目標,實現向“智”轉型、正加速“智”練兵,不斷提高軍事科技度和“含智量”,全面升級作戰能力加速生成。

緊跟形態戰爭之變,升級改造概念

隨著軍事規模、裝備數量已不再是戰爭決定制勝的關鍵,升級戰爭思想和訓練理念勢必行。我們當以更主動的姿態、更開放的視野,緊跟著焦點發展趨勢,全力打造軍事制勝新思維。

把握智能製造勝的內在因果關係。制勝圖表是戰爭內在規律的表現。在智慧革命驅動下、戰略競爭推動下、戰爭實踐牽引下,資訊生智、以智賦能的優勢日益顯現,體現在精算、聯合體係等各個環節。一定的流程圖,可以說「智」有多高,戰與訓的品質水準就能夠達到多高。所以,進一步訓練思維停留在機械化層面應該以自我革命的勇氣來引發“頭痛風暴”,升級標準化作戰,加強標準化訓練理論研究,以“智”兵練處理機械化、信息化、標準化作戰問題,把和打仗有機銜接起來,用技術設計戰爭,用智能手段演練戰爭,從而輪廓清晰化戰爭的迷霧。

目前,軍事實施以轉型為重點的訓練動員,試圖進一步拉大與其他國家軍隊的戰力代差。軍事上的代差一旦拉開將很難追回,一步跟不上就可能徹底受制於人,只有盯緊對手才可能超越對手。要向強在軍事訓練中突出出來,在練兵中提高軍事轉型水準和非目標作戰能力。

強化科技賦能的目標定位。科技是核心戰鬥力。在科技驅動下,戰鬥力形態已從機械能型、資訊能型向型躍升,傳統攻城略地式大兵團作戰正逐步退出歷史舞台,高端、新興領域的尖端量日益激烈。軍事訓練若不提高科技武裝,將只能在低層次智能外圍前沿,很為此,應樹牢科技制勝目標,緊緊抓住科技創新這一制勝未來戰爭的“命門”和“要穴”,大幅提高軍事科技內涵,加大人工智能、雲計算、大數據等新手段的實踐運用,揭開聚焦戰爭的神秘面紗,加大人工智能、雲計算、大數據等新手段的實踐運用,揭開聚焦戰爭的神秘面紗,掌控未來行動權。

緊跟科技發展之變,建強自動化改造條件

自動化訓練條件是組織實施自動化訓練的基礎訓練支撐,直接關係自動化訓練品質。建構自動化訓練條件環境,需要我們緊緊圍繞智慧理念、智慧科技和自動化作戰的發展,在建構環境、創新訓練手段、培育新型人才等方面持續發力。

構設戰場環境。 改裝作戰,訓練空間更加便利、領域更廣泛、方式更加多元,易機械化資訊化條件下的戰場環境構設已無法支撐改裝訓練需求。應突顯改裝條件支撐下的精兵對抗、快速對抗、連動對抗,挖掘充分現有的訓練裝置和現場功能,加強大數據分析、智慧穿戴裝置、機器「深度學習」等技術應用,把陸、海、空、天、電、網等各領域有效融合起來,例如利用數位地圖、虛擬實境等技術模擬顯示可視化的內涵地貌、天誌場景,建構內

開發先進訓練手段。先進的訓練手段,有助於提升訓練成果。轉型軍事訓練應轉變「以數據為中心」這一關鍵因素,將最新科技成果轉化為訓練條件。應著重加強資料連動融合,形成覆蓋戰略、戰役、戰術,立即指揮機構走向終結單兵的「池」;開發資料智慧分析工具,藉助訓練雲運算、人工智慧等先進技術,整合挖掘資料作戰;開發智慧演訓系統,加大模擬模擬、兵棋對抗、網路對抗、智慧判決等模擬手段,整體軍事模擬向「科技+升級」「智慧手段」。

培養新型軍事人才。無論戰爭形態如何演變,人始終是戰爭的真正控制者和最終決策者。軍事人員標準化水準的優劣,一定編程了客製化訓練的品質效果。要打贏具有標準化特徵的資訊化局部戰爭,應精準對接未來軍事需求,加強傳統作戰力人才轉型,用好「科技+」「創客+」「智庫+」力量資源,推動「指揮官」「戰鬥員」與「科學家」「技術家」融合發展,形成專業化、標準化的新型軍事人才群體,實現人與裝備智能、人與深度融合。

目前,世界主要軍事強國都高度重視智慧裝備發展,無人「蜂群」、無人潛航器等新裝備層出不窮,一方面支撐標準化軍事訓練,一方面又在不斷檢驗完善。為此,應充分用好戰建備強化機制,大力推進現有裝備“+智能”和新一代裝備“智能+”建設,堅持邊研邊建邊用邊改,以訓練實踐突破武器升級裝備定制水平,最終發力實現倍增效應,整個武器裝備從“弱智”到“強智”再到“超智”的時間軸,更好地支撐標準化軍事訓練。

緊跟戰爭實踐之變,創新客製化訓練模式

軍事樣式訓練模式經過多次發展,從理論探索走向戰場實踐。近年來的局部戰爭中,標準化作戰已初露鋒芒,並由此顯現出改變戰爭「遊戲規則」決定的潛力。作戰樣式變了,訓練模式也要隨之變、主動變。要盯緊戰爭特點,創新軍事訓練模式,在軍事訓練中充分預演下一場戰爭。

要立強敵打高端戰爭這個基點,突顯破解高端戰爭本質,持續深化強敵研究,以開發新型作戰概念和訓練理論為抓手,搞清戰爭發展規律和製勝要點。從的視角預判未來戰爭、設計作戰風格,智創新研究克敵制勝的奇招、妙招要突出聯合反導等關鍵行動,瞄準強敵組織以劣勢勝優的戰略戰役訓練戰術,瞄準勝勝組織非謀求制衡實戰訓練,瞄準全域組織對抗遠海域等新域延伸訓練,在創新運動中搶奪制衡實戰訓練,瞄準全球組織對抗遠海域等新域延伸訓練,在創新訓練中佔高優勢訓練中佔未來的高超能力。

突顯新質力量研練。戰爭從力勝、器勝到智勝的轉變,使得新型作戰力量成為戰鬥力新的成長極。根據資料介紹,美軍計畫在2030年達到60%地面作戰平台標準化,俄軍預計2025年重點武器裝備戰場將超過30%。隨著軍隊具有智慧屬性的新裝備增多,要走開以新質作戰力量為主導要素的實戰化練兵路子,突顯新質作戰力量編成、作戰運用,開展與新域作戰理念、制勝相適應的訓法戰法,加強無人作戰等新樣式訓練,推動新質作戰力量作戰體系,讓新質戰鬥力資源動起來、活起來。

突顯智能指揮研練。戰爭形態如何轉變指揮,能力始終是能打勝仗的關鍵能力。隨著戰爭程度不斷提高,僅憑經驗和個人智慧進行規劃和指揮已不能適應任何瞬息萬變的戰場局勢,人工智慧決策訓練已成為提升作戰任務規劃、規劃、指揮控制效率的必然趨勢。指揮員和指揮機構這一體係作戰關鍵,在指揮謀劃科學性、精確性、時效性上求突破,依托「大數據」「人工智慧演算法」新技術和「工程化」「一張網」新手段,推動指揮謀劃由「人智」訓練向「人智+機智」訓練升級,在精算學、先定階段中求敵情、先定階段。

(作者單位:中部戰區)

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/ll/1017241088.html?

What is “new” about Chinese Military New Warfare Domain and New Quality Combat Force?

軍新戰爭領域、新優質作戰力量究竟「新」在哪裡?

來源:解放軍報 作者:劉海江 責任編輯:劉上靖 2022-11-29 15:14:13

現代英語:

The report of the 20th CPC National Congress proposed to increase the proportion of new-domain and new-quality combat forces. In today’s world, the war situation is accelerating its evolution towards intelligence, and a large number of advanced technologies are widely used in the military field. New-domain and new-quality combat forces have become the commanding heights of strategic competition among major powers and the key force to win the future. Developing new-domain and new-quality combat forces has become a priority option for the world’s military powers. Understanding what is “new” about new-domain and new-quality combat forces is of great value in clarifying ideas, building scientifically, and improving quality and efficiency.

New developments in space

The space domain is the attribute embodiment of the environment that combat forces rely on and the scope of influence. With the expansion of the scope of human activities and the development of national interests, the current military struggle space has exceeded the traditional land, territorial waters and airspace, and has continuously expanded to the deep sea, space, electromagnetic and other fields, and new domains and new types of combat forces have also emerged.

The scope of action has entered social cognition. The scope of action of new-domain and new-quality combat forces has expanded from the traditional physical domain to the social domain and cognitive domain. In the era of intelligence, disruptive technologies represented by artificial intelligence are accelerating the expansion of the scope of influence of combat forces. The rapid application of technologies such as biological cross-fertilization, brain science, and human-computer interface has promoted the deep penetration and high integration of intelligent network systems and human social activities. New situations and new means such as “intelligent deep forgery” and “fabrication of information manholes” have surfaced in large numbers, and the struggle in the social domain and cognitive domain has gradually evolved into a new domain and new “trend” for power games.

The activity space is more three-dimensional and diversified. Driven by advanced technology, new domain and new quality combat forces have broken through the traditional space of land, sea, air and space, and the scope of activities is more three-dimensional and diversified. The deep sea, space, underground, polar regions, etc. have become new territories for the competition of new domain and new quality combat forces, and have grown into a “new section” for leveraging the combat space. In 2018, the U.S. Department of Defense issued the “National Defense Space Strategy”. Against the background of the establishment of an independent space force and space command in the United States, its space force has evolved into a synonym for comprehensive space capabilities that integrate military, political, economic, and diplomatic capabilities.

Battlefield dimensions emphasize high-level multi-dimensionality. New domain and new quality combat forces often achieve performance aggregation through high-level multi-dimensional deployment, which is very different from the battlefield deployment of conventional forces. With the extension of battlefield dimensions such as network and electromagnetic, the matrix distribution of new domain and new quality combat forces has broken through the traditional three-dimensional limitations and expanded to a high-level space of high-dimensional, full-dimensional, and large-scale joint. At the end of 2019, the US military launched the concept of “all-domain operations”, integrating space, network, electromagnetic and missile defense capabilities, claiming to compete with competitors in all possible conflict dimensions.

Winning mechanism highlights new changes

The winning mechanism contains the mechanism and principle of seizing the right to occupy and winning. At present, the winning mechanism of intelligent high-end warfare is undergoing profound changes. The new domain and new quality combat force is precisely the “blade” that conforms to the evolution of the war form and conforms to the winning mechanism of intelligent high-end warfare.

The focus of force confrontation is on dimensionality reduction and intelligence control. For new domain and new quality combat forces, data drive is the driving force of power, breaking the network chain is the focus of action, and dimensionality reduction and intelligence control is the focus of confrontation. New domain and new quality combat forces confront based on advanced algorithms and intelligent models, effectively drive key nodes such as cloud, terminal, and library of intelligent combat systems, and form intelligent advantages based on data resources. At the same time, focus on attacking weak links such as the enemy’s data chain system and mobile communication network, cut off the enemy’s cross-domain actions, and block its energy release.

The action path tends to be compound and iterative. Conventional combat forces generally achieve the expected effect through the superposition and accumulation of soft kill and hard destruction, while new domain and new quality combat forces use compound iteration of action effects as an effective path for efficient energy release. In the process of action, it not only emphasizes the role of new forces and new means such as hypersonic, long-range precision, laser electromagnetic and high-power microwave, but also focuses on multi-domain effects such as comprehensive algorithm control, network point paralysis, electromagnetic confrontation, psychological offense and defense, and public opinion building, so as to achieve cross-domain release of combat effects, multi-domain resonance and iterative efficiency enhancement.

The game mode focuses on gray over-limit. Traditional combat forces often pursue the direct effect of damage and destruction, while new domain and new quality combat forces pay more attention to gray over-limit battlefield games. The essence is to effectively reduce domains and control intelligence through non-military destruction, unconventional warfare and non-physical destruction in more fields, wider dimensions and wider ranges based on intelligent means and intelligent tools. It is reported that the US military has developed more than 2,000 computer virus weapons such as Stuxnet, Flame, and Shute, and has successfully used them in battlefields such as Syria and Iran. At present, the US military is striving to use projects such as the “National Cyber ​​​​Range” to continue to consolidate its dominant position.

New mutations emerge in science and technology

Science and technology have always been the most dynamic and revolutionary factor in military development. Entering the new century, leading, cutting-edge, and disruptive technologies have shown a “booming” growth and have become an important variable in promoting the development of new domains and new types of combat forces.

Mutations come from emerging technologies. Advanced technologies play a vital role in driving the development of combat forces. The core technologies that support new-domain and new-quality combat forces have been rapidly transformed from traditional categories to emerging fields. In today’s world, intelligent technology has made new progress, unmanned system technology has entered an explosive period, space confrontation technology has flourished, network combat technology has advanced in depth, new concept weapons technology has attracted much attention, and fusion technology has given birth to disruptive innovation. As the key to changing the rules of the war game, new-domain and new-quality combat forces must firmly grasp the “key to victory” of emerging technologies.

Mutations present cluster effects. Breakthroughs in advanced science and technology often have a decisive impact on the development of new domain and new quality combat forces. In the era of intelligence, the science and technology system is more complex and systematic, and the role of core and key technologies emphasizes cluster effects and overall emergence. At present, the world’s military science and technology presents an all-round, multi-domain, and deep-level development trend. Various professional directions are accelerating through multi-point breakthroughs, multi-party penetration, and deep integration. The key technologies that support new domain and new quality combat forces are also undergoing a transformation from single competition to cluster promotion.

Mutation favors integration and crossover. Advanced science and technology have a subversive effect of changing the rules of engagement and breaking the conventional path in promoting the development of new domain and new quality combat forces. Today, the development of cutting-edge technology is shifting from conventional disciplines to cutting-edge crossovers. Big crossovers, big integrations, and big breakthroughs have become the general trend. The world’s military powers have increased their investment in artificial intelligence, biological crossovers, advanced computing, hypersonics, and other directions, and have used integration and crossover as an effective way to innovate cutting-edge technologies, competing for the strategic commanding heights of the development of new domain and new quality combat forces.

New modes for weapons and equipment

Weapons and equipment have always been an effective carrier for combat forces to exert their effectiveness. The weapons and equipment of new-domain and new-quality combat forces have the characteristics of new technology, new functions, and new modes. They can effectively exert new-domain and new-quality combat capabilities, create a window of advantage, paralyze the opponent’s system, and form a shock effect.

Platform equipment focuses on intelligent unmanned. At present, the platform equipment of new domain and new quality combat forces has broken through the conventional manned control mode and accelerated the transformation to intelligent unmanned form. In recent years, based on the rapid application of intelligent unmanned technology, full-spectrum unmanned platforms, intelligent equipment and unmanned swarms have experienced explosive growth. The US military’s “Global Hawk” and “Predator” drones have been put into actual combat in large numbers, and the F-35 and the unmanned version of the F-16 have continuously strengthened manned and unmanned collaboration through the “Loyal Wingman” program. The US military plans that drones will account for 90% of its air force aircraft equipment in the future.

The weapon system highlights heterogeneity and versatility. The integration of various types of data links, standards and waveforms provides a richer set of technical integration tools for the weapon systems of new-domain and new-quality combat forces. The weapon systems of new-domain and new-quality combat forces have changed the fixed state of individual operation and static combination, and have placed more emphasis on heterogeneous hinges and data conversion based on network information systems to quickly build cross-domain and cross-dimensional wide-area distributed weapon systems. In 2017, the US military proposed the concept of “mosaic warfare”, envisioning the use of dynamic distribution technology to transform the previously centralized and static weapon systems into heterogeneous and multi-functional ones.

The equipment system is more flexible and open. The equipment system of the new domain and new quality combat force has changed the structural mode of element series connection and unit parallel connection, becoming more flexible and open. With the help of “decentralized” design, the new domain and new quality combat force distributes the key functions of the equipment system nodes to each unit module, which can effectively avoid the passive situation of paralysis as a whole once a certain type or some key equipment is hit. In recent years, the US military has actively promoted the test and verification of “sewing” new electronic system integration technology, which is to accelerate the development of new information fusion and interoperability technologies.

New forms of force formation

Force organization is a form of deployment of combat forces, which directly affects the role and effectiveness of combat forces. New-domain and new-type combat forces have the characteristics of new force platforms, wide range of areas involved, innovative combat mechanisms, and sudden technological development. Force organization is significantly different from traditional forces.

The integration of elements emphasizes dynamic reconstruction. New-domain and new-quality combat forces have realized the dynamic reconstruction and cross-domain integration of combat elements, and promoted the transformation of combat elements from static matching to dynamic reconstruction. Based on the support of intelligent network information system, new-domain and new-quality combat forces can give full play to the derivative effectiveness of intelligent technology, and build a fusion iterative update mechanism of system elements based on autonomous and intelligent battlefield real-time command and control. Through heterogeneous functional elements and unit modules, iterative updates of system elements, reorganization and optimization of system structure, and evolutionary improvement of system capabilities can be achieved.

The unit architecture relies on cross-domain networking. The new domain and new quality combat force has achieved a leap from intra-domain combination to multi-domain aggregation of the unit architecture. Using advanced information network technology and based on mutually cooperative functional nodes, the new domain and new quality combat force can build a distributed “kill network” with good resilience to achieve wide-area configuration, cross-domain networking and multi-domain aggregation of combat units and basic modules. In the U.S. Army’s “Convergence Plan 2020” exercise, the “Firestorm” artificial intelligence-assisted decision-making system was able to achieve target input for the cutting-edge “Gray Eagle” drone within 20 seconds, and connect with attack weapons such as glide guided bombs, helicopters, and ground artillery.

The formation structure emphasizes human-machine hybrid. The new domain and new quality combat force has realized the transformation of the formation structure from manned to man-machine hybrid. The application of a large number of unmanned platforms and unmanned combat clusters enables the new domain and new quality combat force to rely on the intelligent combat system to form a heterogeneous and diverse open hybrid formation. Various unmanned system platforms are based on artificial intelligence and machine learning technology to autonomously build links and networks and generate multiple sets of combination plans. With the help of auxiliary decision-making tools, commanders can quickly select the best man-machine hybrid formation to achieve intelligent decision-making and unexpected victory.

現代國語:

來源:解放軍報 作者:劉海江 責任編輯:劉上靖 2022-11-29 15:14:13

黨的二十大報告提出,增加新域新質作戰力量比重。當今世界,戰爭形態加速向智慧化演變,大量先進科技在軍事領域廣泛應用,新域新質作戰力量已成為大國戰略競爭的製高點和製勝未來的關鍵力量。發展新域新質作戰力量已成為世界軍事強國的優先選項。認清新域新質作戰力量到底「新」在哪裡,對於釐清思維、科學抓建、提升質效有重要價值。

空間領域出現新拓展

空間領域是作戰力量環境依賴和影響範圍的屬性體現。隨著人類活動範圍的擴大和國家利益的發展,當前軍事鬥爭空間已經超越傳統的領陸、領海和領空,不斷向深海、太空、電磁等領域拓展,新域新質作戰力量也隨之應運而生。

作用領域進入社會認知。新域新質作戰力量的作用領域已由傳統的物理域擴展進入社會域、認知域。智慧化時代,以人工智慧為代表的顛覆性技術加速擴展作戰力量的影響領域。生物交叉、類腦科學和人機介面等技術的快速應用,促使智慧化網絡體係與人類社會活動深度滲透、高度融合。 「智慧深度偽造」「編制資訊繭房」等新情況、新手段大量浮出水面,社會域、認知域的鬥爭已逐漸演變為力量博弈的新領域和新「風口」。

活動空間更加立體多元。在先進技術推動下,新域新質作戰力量已突破陸、海、空、天等傳統空間,活動範圍更加立體多元。深海、太空、地下、極地等都已成為新域新質作戰力量角逐比拼的新領地,並成長為撬動作戰空間的「新版塊」。 2018年,美國國防部發布《國防太空戰略》,在美國成立獨立太空軍和太空司令部的背景下,其太空力量已經演變成為集軍事、政治、經濟、外交等於一體的太空綜合能力代名詞。

戰場維度強調高階多維。新域新質作戰力量往往透過高層的多維布勢實現效能聚合,與常規力量的戰場部署表現出極大不同。隨著網絡、電磁等戰場維度的延展,新域新質作戰力量的矩陣分佈已突破傳統的三維限制,擴展到高立體、全維度、大聯合的高階空間。 2019年底,美軍推出「全域作戰」概念,將太空、網路、電磁和導彈防禦等能力整合,聲稱要與競爭對手在所有可能的沖突維度展開競爭。

制勝機理突顯新變化

制勝機理蘊含著搶佔制權、奪取勝利的機制和原理。當前,智慧化高端戰爭的製勝機理正在發生深刻改變,新域新質作戰力量恰恰正是順應戰爭形態演變、契合智能化高端戰爭制勝機理的「刀鋒」。

力量對抗聚焦降維制智。對新域新質作戰力量來說,數據驅動是力量的動力源,破擊網鍊是作用的著力處,降維制智是對抗的聚焦點。新域新質作戰力量基於先進演算法和智慧模型對抗,有效驅動智慧化作戰體系雲、端、庫等關鍵節點,形成基於數據資源的智慧優勢。同時,注重打擊敵方數據鏈體系和行動通訊網等弱點,切斷敵跨域行動,阻隔其能量釋放。

作用路徑傾向複合迭代。常規作戰力量一般透過軟殺傷和硬摧毀的疊加累積達成預期效果,新域新質作戰力量則將作用效果的複合迭代作為高效釋能的有效路徑。作用過程中,其不僅強調發揮高超聲速、遠程精確、雷射電磁和高功率微波等新力量、新手段的作用,而且注重綜合演算法控制、網點毀癱、電磁對抗、心理攻防和輿論造勢等多域效果,以實現作戰效果的跨域釋放、多域共振和迭代增效。

博弈方式註重灰色超限。傳統作戰力量常常追求毀傷破壞的直接作用,新域新質作戰力量更重視灰色超限的戰場賽局。實質是基於智慧手段和智慧工具,在更多領域、更寬維度和更廣範圍,通過非軍事破壞、非常規作戰和非物理摧毀等作用方式,有效降域制智。據悉,美軍已研發出震網、火焰、舒特等2,000多種電腦病毒武器,並在敘利亞、伊朗等戰場成功使用。目前,美軍正力求藉助「國家網絡靶場」等項目,持續鞏固其優勢地位。

科學技術湧現新突變

科學技術一直以來都是軍事發展中最活躍、最具革命性的因素。進入新世紀,先導性、前衛性、顛覆性技術呈現「井噴式」成長,並成為推動新域新質作戰力量發展的重要變數。

突變源於新興科技。先進科技對作戰力量的產生發展具有至關重要的驅動作用,而支撐新域新質作戰力量的核心技術已由傳統範疇加速向新興領域轉變。當今世界,智慧技術取得新進展,無人系統技術進入爆發期,空間對抗技術蓬勃興起,網絡作戰技術向縱深推進,新概念武器技術備受關注,融合技術催生顛覆性創新。新域新質作戰力量作為改變戰爭遊戲規則的關鍵,必須緊緊扭住新興科技這把「勝利之鑰」。

突變呈現集群效應。先進科技的突破往往對新域新質作戰力量的發展有決定性影響。在智慧化時代,科技體系的複雜程度更高、系統性更強,核心和關鍵技術的作用發揮更加強調集群效應和整體湧現。當前,世界軍事科技呈現全方位、多領域、深層的發展態勢,各專業方向透過多點突破、多方滲透和深度融合等方式加速推進,支撐新域新質作戰力量的關鍵技術也正在經歷由單項比拼向集群推動轉換。

突變青睞融合交叉。先進科技對於推動新域新質作戰力量發展,具有改變交戰規則、打破常規路徑的顛覆性效果。如今,前沿技術的發展正由常規學科延伸向前沿交叉轉移,大交叉、大融合、大突破已成為大勢所趨。世界軍事強國紛紛在人工智慧、生物交叉、先進計算、高超音波等方向加大投入,並將融合交叉作為前沿技術創新的有效途徑,爭相搶佔新域新質作戰力量發展的戰略制高點。

武器裝備呈現新模態

武器裝備一直以來都是作戰力量發揮效用的有效載體。新域新質作戰力量的武器裝備具有技術新、功能新、模態新等特點,可有效發揮新域新質作戰能力,創設優勢窗口,毀癱對方體系,形成震懾效應。

平台裝備側重於智慧無人。當前,新域新質作戰力量的平台裝備已經突破有人為主的常規操控模式,加速向智慧化無人形態轉變。近年來,基於智慧化無人技術的快速應用,全譜係無人平台、智慧裝備和無人蜂群迎來爆發性成長。美軍「全球鷹」「掠食者」等無人機已大量投入實戰,F-35與無人版F-16通過「忠誠僚機」計畫不斷強化有人無人協同。美軍規劃未來無人機將佔到其空軍飛機裝備量的90%。

武器系統突顯異構多能。多種類型的數據鏈、標準和波形的整合,為新域新質作戰力量的武器系統提供了更豐富的技術整合工具。新域新質作戰力量的武器系統改變了個體運行、靜態組合的固定狀態,更加強調基於網絡資訊體系的異構鉸鍊和數據轉換,以快速構建跨領域、穿維度的廣域分散式武器系統。 2017年,美軍提出「馬賽克戰」概念,設想藉助動態分佈技術將以往集中靜態的武器系統變得異構且多能。

裝備體系更彈性開放。新域新質作戰力量的裝備體系改變了要素串聯、單元並聯的結構化模式,變得更有彈性開放。透過「去中心化」設計,新域新質作戰力量將裝備體系節點的關鍵功能分散至各單元模塊,可有效避免一旦某類或某些重點裝備遭到打擊,整體陷入癱瘓的被動局面。近幾年,美軍積極推進「縫合」全新電子系統整合技術的試驗驗證,就是要加速研發新型資訊融合與互通技術。

力量編組顯現新樣態

力量編組是作戰力量編配的形式體現,直接影響作戰力量的角色發揮與效能釋放。新域新質作戰力量具有力量平台新生性、涉及領域廣泛性、作戰機理創新性和技術發展突變性等特徵,力量編組與傳統力量相比有著明顯不同。

要素融合強調動態重構。新域新質作戰力量實現了作戰要素的動態重構與跨域融合,推動了作戰要素由靜態搭配向動態重構的轉變。基於智慧化網絡資訊體系的支撐,新域新質作戰力量可充分發揮智慧技術的衍生效能,基於自主化、智慧化的戰場實時指揮控制,構建一種體係要素的融合式迭代更新機制。通過異構的功能要素和單元模塊,實現體係要素的迭代更新、體系結構的重組優化和體系能力的演進提升。

單元架構借助跨域組網。新域新質作戰力量實現了單元架構由域內組合向多域聚合躍升。利用先進的資訊網絡技術,基於相互協作的功能節點,新域新質作戰力量可構建具有良好韌性的分佈式“殺傷網”,以實現作戰單元和基本模塊的廣域配置、跨域組網和多域聚合。在美陸軍「融合計畫2020」演習中,「火焰風暴」人工智慧輔助決策系統能夠在20秒鐘內實現前沿「灰鷹」無人機的目標輸入,並與滑翔導引炸彈、直升機、地面火砲等攻擊武器連接起來。

編組構成講求人機混合。新域新質作戰力量實現了編組構成由有人為主向人機混合轉變。大量無人平台和無人作戰集群的應用,使得新域新質作戰力量能夠依托智能化作戰體系,形成異構多樣的開放式混合編組。各類無人系統平台基於人工智慧與機器學習技術,自主建鏈組網,產生多套組合方案。指揮員借助輔助決策工具,可快速選定最優的人機混合編組,以實現智慧決策、出奇制勝。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/492720888.html

Brief Analysis on the Development of Chinese Military Intelligent Command Information Systems

淺析我軍智慧指揮資訊系統發展

現代英語:

The prelude to the era of intelligent warfare has begun. Command information systems with intelligent characteristics will become the “central nerve” of future intelligent combat command and control, and are the supporting means of intelligent combat command and control. Accelerating the construction of intelligent command information systems is an inherent requirement for the development of military intelligence. Only by clarifying the development essentials of intelligent command information systems, grasping the key points of intelligent command information system research and development, and exploring the key points of intelligent command information system development can we better promote the construction and development of intelligent command information systems and gain the upper hand in future intelligent combat.

Clarify the key points of developing intelligent command information system

Intelligent command information system is the inevitable choice for the development of war form towards information-based intelligent warfare, the inevitable result of the development of scientific and technological revolution, and the era’s call for the development of military intelligence. Clarifying the development essentials of intelligent command information system will help to guide the construction direction of intelligent command information system and establish the long-term goal of system development.

Promote the intelligent evolution of war. In the future intelligent warfare, the battlefield situation is changing rapidly and the battlefield environment is complex and severe. In order to take the initiative on the battlefield, “control of intelligence” has become a new commanding height, and the intelligent command information system is undoubtedly an important means of supporting future combat command and action. Its intelligent development can promote the evolution of war to intelligence, and is an important support for intelligent warfare to gain the initiative and seek victory.

Support intelligent innovation of combat concepts. Future intelligent combat requires a combat command concept that is compatible with it, and the intelligent command information system is an important support for the practical application of the combat command concept, and is the soil for the innovation and development of the intelligent combat command concept. New intelligent combat command concepts such as human-machine hybrid command formation, data-driven command activities, open development command mode, and intelligent force-focused command process are inseparable from the support of the intelligent command information system. The intelligent command information system will serve as the extension of the human brain, breaking through the physiological limits of the human body and realizing the organic integration of combat command art and intelligent technology.

Promote the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about major changes in the combat victory mechanism. Intelligence has surpassed firepower and information power and has become the primary factor in determining the outcome of a war. The construction and development of intelligent command information systems will promote the transformation of combat methods to intelligence, making the combat methods change from “combat networks + precision-guided weapons” in the information age to “intelligent Internet of Things + manned/unmanned combat platforms” in the intelligent age, and the basic combat style will evolve from “network-centric warfare” to “cognitive-centric warfare” accordingly.

Grasp the key points of intelligent command information system research and development

The command information system is a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent combat winning mechanisms, the intelligent upgrade of the command information system is imminent. We should highlight the key points of functional research and development and create a new intelligent command information system.

“Super-brainization” assists decision-making. In the future intelligent warfare, the amount of battlefield information data is huge and complex and changeable. Commanders are easily trapped in the “sea of ​​information” during the command process, resulting in information confusion and affecting command decisions. With the emergence of intelligent decision-making technology and “cloud brain” and “digital staff”, a new decision-making model based on the collaboration of “human brain + artificial intelligence” is quietly taking shape. The intelligent command information system will break through the limits of human intelligence, as an extension of the human brain, assist the commander’s work, and develop war decisions from simple human brain decisions to “human brain + artificial intelligence” super-brainized command decisions.

“Full-dimensional” situational awareness. In future intelligent combat, the space will be multi-dimensional, the forces will be diversified, the styles will be diverse, and the pace will be accelerated. Comprehensive and flexible grasp of battlefield situations will become the basis for commanders to make decisions, and multi-domain integration and intelligent dynamic presentation of full-dimensional battlefield situations will become an inevitable requirement for the construction and development of command information systems. The command information system’s perception, understanding, integration and prediction of battlefield situations such as target identification, threat level estimation, combat action prediction and future war situation prediction are expanding from land, sea, air, space, electromagnetic, network and other spaces to cognitive and social domains, realizing “full-dimensional” situational awareness.

“Intelligent” network communication. In the future, intelligent warfare will use a large number of intelligent command and control platforms and intelligent weapon platforms, and the intelligent information and communication system must be connected to the command and control platform and the weapon platform. Like the nerves and blood vessels of the human body, the intelligent information and communication system plays a linking and lubricating role in intelligent warfare. Therefore, it is necessary to establish an intelligent information network with full-dimensional coverage and uninterrupted communication to support the connection and control of intelligent equipment, form intelligent optimization of network structure, intelligent reorganization of network anti-destruction, and intelligent anti-interference capabilities, so as to ensure intelligent collaborative operations between platforms and exert the best overall combat effectiveness.

“Unmanned” autonomous collaboration. In recent local conflicts around the world, drones have been used in large numbers and have played an important role in determining the direction of war, which has attracted widespread attention from all parties. Unmanned weapons and equipment are the material basis of intelligent warfare, and have formed disruptive combat styles based on this, such as invasive lone wolf warfare, manned/unmanned collaborative system sabotage warfare, unmanned system formation independent warfare, and drone swarm cluster warfare. Although unmanned warfare is led by humans, machines are given a certain degree of autonomous action authority in the background, thereby realizing unmanned combat operations on the front line. However, the unmanned battlefield is changing rapidly, and the destruction of human-machine collaboration will become the norm. The command and control system of the unmanned intelligent equipment platform must be more intelligent and be able to conduct autonomous and coordinated combat according to the purpose of the operation.

“Active” information defense. Intelligent warfare will inevitably face all-dimensional and diverse information attacks from powerful enemies. The level of information security protection capabilities directly affects the outcome of the “intellectual power” struggle on the battlefield and is a key link in the construction of intelligent command information systems. Therefore, we should take the initiative to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of high-tech information security technologies, strengthen the anti-interference and anti-intervention capabilities of various wireless transmission methods, and strengthen intelligent traceability and countermeasure capabilities to effectively curb information attacks.

Exploring the key to the development of intelligent command information system

The development of intelligent command information system is not only a technological innovation, but also requires further emancipation of mind and updating of concepts. To promote the development of intelligent command information system, we must change the traditional idea of ​​adding hardware, building a large “network”, collecting and storing various types of data, break through the inherent hierarchical settings, create an open and service-oriented system, aim at the needs of intelligent combat command and action, and explore and study the key points of the development of intelligent command information system.

Innovative concepts. Adhere to the guidance of innovative thinking concepts, learn from the development ideas of intelligent command information systems of military powers, combine actual needs, and explore a development path with its own characteristics. We must break the traditional “building chimneys” approach, adhere to the top-level design and overall planning of command information systems, unify interfaces, protocols and standards, and form an open and sustainable system architecture layout; adhere to the system development ideas that combine research, construction and use, formulate short-term, medium-term and long-term development strategies, and standardize the direction of system construction and development; adhere to iterative upgrades and optimization and improvement strategies, and continuously improve the intelligence level of various subsystems such as command control, intelligence reconnaissance, communications, information confrontation and comprehensive support, to ensure the continuous and healthy development of intelligent command information systems.

Focus on the key. Focusing on the construction of key capabilities of intelligent command information systems is an important support for intelligent warfare to gather intelligence and win with intelligence, and is the key to intelligent warfare to gain the “right to win”. Algorithms, computing power, and data are not only the internal driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command information systems. The development of intelligent command information systems must adhere to algorithm innovation research to improve the system’s cognitive advantages, speed advantages, and decision-making advantages; accelerate the research and development of the next generation of computers represented by quantum computers to provide stronger computing power support for intelligent command information systems; deeply explore the deeper and wider dimensional information value in massive combat data resources to seek the initiative to win.

Gather wisdom to tackle key problems. The construction and development of intelligent command information systems is one of the main projects of military intelligence. It is a multi-domain, multi-disciplinary, multi-departmental and multi-unit integrated and coordinated project. The construction and development of intelligent command information systems must adhere to the spirit of collective wisdom, collective wisdom, pioneering and innovation, aiming at strategic forward-looking fields such as sensors, quantum information, network communications, integrated circuits, key software, big data, artificial intelligence, and blockchain, and insist on high-tech promotion and intelligent combat demand. Carry out in-depth research and exchanges in multiple fields, multiple levels, and multiple forms, continuously break through innovation, iterative upgrades, and make the intelligent command information system more complete and more intelligent.

Collaborative development. To further promote the construction and development of intelligent command information systems, we must fully absorb local advanced technological achievements and integrate into the era of innovation and development of artificial intelligence in the world. At present, the world’s artificial intelligence technology is booming, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application and broad prospects for the transformation and application of technological achievements. It is an important way to achieve the construction and development of intelligent command information systems. We must study and formulate general technical standards, remove barriers, break the ice, facilitate military-civilian cooperation, and realize the sharing and linkage of technological achievements. We must cultivate and shape new military talents through collaboration, so that they can constantly adapt to the needs of various positions under intelligent conditions and give full play to the effectiveness of intelligent command information systems.

現代國語:

來源:解放軍報 作者:李建平 紀鳳珠 李琳 責任編輯:王鳳 2022-08-09 12:40

智慧化戰爭時代序幕已經拉開,具有智慧化特徵的指揮資訊系統將成為未來智慧化作戰指揮的“中樞神經”,是智慧化作戰指揮控制的支撐手段。加速智慧化指揮資訊系統建設是軍事智慧化發展的內在要求,只有明晰智能化指揮資訊系統發展要義,抓住智慧化指揮資訊系統研發要點,探索智能化指揮資訊系統發展要津,才能更好地推動智能化指揮資訊系統建設發展進程,贏得未來智能化作戰制勝先機。

明晰智能化指揮資訊系統發展要義

智慧化指揮資訊系統是戰爭形態朝向資訊化智能化戰爭發展的必然選擇,是科技革命發展的必然結果,也是軍事智能化發展的時代訴求。明晰智能化指揮資訊系統發展要義,有助於把脈智能化指揮資訊系統建設方向,確立系統發展長遠目標。

助推戰爭形態智能化演進。未來智能化作戰,戰場形勢瞬息萬變、戰場環境復雜嚴酷,要想在戰場上取得主動,「制智權」成為新的製高點,而智能化指揮資訊系統無疑是未來作戰指揮和行動的重要支撐手段,其智能化發展可助推戰爭形態向智能化演變,是智能化作戰贏得先機、謀求勝利的重要依托。

支撐作戰理念智能化創新。未來智慧化作戰,需要與之相適應的作戰指揮理念,而智慧化指揮資訊系統是作戰指揮理念實踐運用的重要依托,是智慧化作戰指揮理念創新、發展的土壤。如人機混合指揮編組、數據驅動指揮活動、開放發展指揮模式、智能聚力指揮過程等智能化作戰指揮新理念,都離不開智能化指揮信息系統的支撐,智能化指揮信息系統將作為人腦的外延,突破人體生理極限,實現作戰指揮藝術和智能技術的有機融合。

促進作戰方式智能化轉變。人工智慧技術在軍事領域的廣泛應用,使得作戰制勝機理發生重大變化,智慧超越火力、資訊力,成為決定戰爭勝負的首要因素。智慧化指揮資訊系統建設發展將促進作戰方式向智慧化轉變,使得作戰方法從資訊時代的「作戰網絡+精確制導武器」向智慧時代的「智慧物聯網+有人/無人作戰平台」轉變、基本作戰樣式相應地從「網絡中心戰」向「認知中心戰」演進。

抓住智慧化指揮資訊系統研發點

指揮資訊系統是資訊化戰爭時代的產物,隨著軍事智慧化的快速發展、智慧化作戰制勝機理的研究和實踐運用,指揮資訊系統智慧化升級建設迫在眉睫。應突顯功能研發點,打造全新智慧化指揮資訊系統。

“超腦化”輔助決策。未來智能化作戰,戰場資訊數據量龐大且複雜多變,指揮員在指揮過程中易陷入「資訊海洋」而導致資訊迷茫,影響指揮決策。隨著智慧輔助決策技術和「雲端大腦」「數字參謀」的出現,以「人腦+人工智慧」協作為基本方式的新決策模式正悄悄形成。智慧化指揮資訊系統將突破人類智力極限,作為人腦的外延,輔助指揮員工作,使戰爭決策由單純的人腦決策發展為「人腦+人工智慧」的超腦化指揮決策。

「全維化」態勢感知。未來智能化作戰,空間多維、力量多元、樣式多樣、節奏加快趨勢突出,全面靈動地掌握戰場態勢成為指揮員決策的基礎,多域一體、智能動態地呈現全維戰場態勢成為指揮資訊系統建設發展必然要求。指揮資訊系統對諸如目標識別、威脅等級估計、作戰行動預判和未來戰況走向預估等戰場態勢的感知、理解、融合和預測,正在從陸、海、空、天、電磁、網絡等空間擴展至認知域、社會域,實現「全維化」態勢感知。

「智聯化」網絡通聯。未來智慧化作戰將使用大量智慧指揮控制平台和智慧化武器平台,而連接指揮控制平台和武器平台的必然是智慧化的資訊通訊系統。如同人體的神經和血管,智慧化的資訊通訊系統在智慧化作戰中扮演連結和潤滑作用。因此,要建立全維度覆蓋、不間斷的智慧化資訊網絡,支撐智慧化裝備的連結和控制,形成網絡結構智能優化、網絡抗毀智能重組以及智能抗干擾能力,以確保平台間智能化的協同作戰,發揮最佳的整體作戰效能。

「無人化」自主協同。近期世界局部沖突中,無人機大量運用並起到決定戰爭走向的重要作用,引起了各方的廣泛關注。無人化武器裝備是智慧化作戰的物質基礎,並依此形成了顛覆式作戰樣式,如侵入式獨狼作戰、有人/無人協同體系破擊作戰、無人系統編隊獨立作戰、無人機蜂群集群作戰等。無人作戰雖是由人主導,並在後台賦予機器一定程度的自主行動權限,從而實現機器在一線無人作戰行動。然而無人作戰戰場瞬息萬變,人機協同被破壞將成為常態,無人智慧化裝備平台指控系統必須更加智慧,要能根據作戰目的進行自主協同作戰。

“主動化”訊息防禦。智慧化作戰必將面臨強敵全維多樣的資訊攻擊,資安防護能力的高低,直接影響戰場「制智權」鬥爭的勝負,是智慧化指揮資訊系統建設的關鍵環節。因此,應主動作為,積極制定及完善網絡防護策略,豐富入侵檢測能力及認證識別手段,加強資訊安全高新技術運用,強化各類無線傳輸方式的抗干擾、抗介入能力,建強智能化溯源反制能力,有效遏止資訊攻擊。

探索智慧化指揮資訊系統發展要津

智慧化指揮資訊系統發展不單單是技術的革新,更需要進一步解放思想、更新理念。推動智慧化指揮資訊系統發展,要改變傳統添硬體、建大「網」、收集存儲各類數據的思路,突破固有層級設定,打造開放式、服務型系統,瞄準智能化作戰指揮與行動需要,探索研究智能化指揮資訊系統發展要津。

創新理念。堅持以創新的思維理念為指引,借用軍事強國智慧化指揮資訊系統發展思路,結合實際需求,探索具有自身特色的發展道路。要打破傳統「樹煙囪」做法,堅持指揮資訊系統頂層設計和整體規劃,統一介面、協議和標準,形成開放式、可持續發展的系統架構佈局;堅持研建用相結合的系統研發策略,制定近期、中期、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化持續策略,不斷提升指揮、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化持續性策略,不斷提升指揮控制、長期不同階段發展策略、各分列系統建設發展方向;堅持版本

聚力關鍵。聚力智能化指揮資訊系統關鍵能力建設,是智慧化作戰以智聚優、以智制勝的重要依托,是智慧化作戰取得「制勝權」的關鍵。演算法、算力、數據既是人工智慧發展的內在動力和支撐,也是智慧化指揮資訊系統的核心能力要求和優勢。智慧化指揮資訊系統發展要堅持演算法創新研究,提高系統認知優勢、速度優勢和決策優勢;加快量子計算機等為代表的下一代計算機研發,為智能化指揮信息系統提供更強的算力支持;深度挖掘海量作戰數據資源中更深層次、更廣維度信息價值,謀求制勝先機。

集智攻關。智慧化指揮資訊系統建設發展是軍事智慧化的主要工程之一,是一個多領域、多學科交叉,多部門、多單位參與的大融合大聯動的攻堅工程。智慧化指揮資訊系統建設發展要堅持群策群力、集智攻關、開拓創新的精神,瞄準傳感器、量子信息、網絡通信、集成電路、關鍵軟件、大數據、人工智能、區塊鍊等戰略性前瞻領域,堅持高新技術推動、智能化作戰需求拉動,開展多領域、多層次、多形式深度研究交流,更加創新、進一步迭代創新

協作發展。深入推動智慧化指揮資訊系統建設發展,必須充分吸收地方先進技術成果,融入世界人工智慧創新發展的時代洪流。當前,世界人工智慧技術蓬勃發展,積蓄了強大發展動能和技術優勢,人工智慧技術應用通用性強,技術成果轉化應用前景廣闊,是智慧化指揮資訊系統建設發展的重要實現途徑。要研究制定通用技術標準,拆壁壘、破堅冰、暢通軍地合作,實現技術成果共享連結。要透過協作培養塑造新型軍事人才,使其不斷適應智慧化條件下各類崗位需求,充分發揮智慧化指揮資訊系統效能。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/491773588.html?

China’s Military Ponders Integration Concept That Will be Adopted During Information Warfare

中國軍方思考資訊戰中將採用的一體化概念

現代英語:

The basic form of information warfare is system confrontation. Different from any form of warfare in history, information warfare is not a discrete confrontation or local decentralized warfare with the simple superposition of various combat units and elements, but a holistic confrontation between systems. The system integration capability of war determines the effectiveness of combat and the achievement of war objectives; achieving effective integration of various systems is the fundamental way to win information warfare.

Multi-space fusion

The battlefield space is the stage for the war hostile parties to compete. Due to the widespread use of high-tech weapons, the battlefield space of informationized warfare has been greatly expanded, forming a multi-dimensional battlefield space of land, sea, air, space, and information. Under the strong “bonding” of information technology, each battlefield space is integrated around a unified combat purpose. First, the three-dimensional, all-round reconnaissance and surveillance network covers the battlefield. Under the conditions of informatization, the military reconnaissance and surveillance capabilities have been unprecedentedly improved. The large-scale, three-dimensional, multi-means, and automated intelligence reconnaissance and surveillance network connects outer space, high altitude, medium altitude, low altitude, ground (sea), and underground (underwater) into one, thereby obtaining battlefield intelligence information in multiple fields. Second, long-range, high-precision informationized weapons are densely distributed and threaten the battlefield. The extraordinary combat capability of the informationized weapon system to cover and strike targets in the entire battlefield space has realized that discovery means destruction, and promoted the high integration of various battlefield spaces. In addition, the development of space and air power has made strikes more precise, means more flexible, and combat efficiency higher, and the battlefield space has become an integrated battlefield of sea, land, air, and space. This integrated battlefield structure has a high degree of integration of multiple spaces, and multiple spaces and multiple fields restrict each other. Third, the battlefield is restricted by electromagnetic and information competition in all time and space and throughout the entire process. The development of military information technology not only realizes the integration of tangible battlefields on land, sea, air and space through reconnaissance and strikes, but also opens up the competition for invisible battlefields in the electromagnetic and information fields. Electromagnetic and information are the soul of informationized warfare and the link between the battlefields on land, sea, air and space. They exist in the entire time and space of combat, act on all elements of war, run through the entire process of combat, and deeply affect the tangible battlefields on land, sea, air and space.

It can be seen that the informationized battlefield is precisely through the increasingly mature information technology, centering on the purpose of war and combat needs, closely integrating the multi-dimensional space of land, sea, air, space, information, etc., forming an inseparable and interdependent organic unity. Leaving any dimension of the battlefield space, or losing control of any dimension, will directly affect the overall combat effectiveness, thus leading to the failure of the war.

Fusion of multiple forces

War power is the protagonist of the battle between the two opposing sides of a war. The “integrated joint combat force” of system integration is a prominent feature of information warfare. Various participating forces in information warfare are highly integrated. Regardless of their affiliation and combat mission, they will be equal users and resources of the entire combat system and integrated into a unified large system. First, the participating forces are united. Information warfare is a joint operation in which the army, navy, air force, aerospace, special operations, information operations and other forces participate. Each participating force has advantages that other participating forces do not have or cannot replace. They communicate and connect through information technology to achieve “seamless connection” and form a force system that can play to its strengths and avoid its weaknesses and complement each other’s advantages, becoming an organic whole that combines “soft” strike and “hard” destruction capabilities, combat and support capabilities, mobility and assault capabilities, and attack and defense capabilities. Second, the participants are diversified. With the development of information networks, wars in the information age no longer have a distinction between the front and the rear, and the networking of combat systems can also make home a “battlefield”. In the industrial age, wars were “over, go home”; in the information age, wars can also be “go home and fight”. Participants in war are not limited to the military forces of countries and political groups. Non-governmental and group-based people can join the “battlefield” as long as they have high-tech knowledge and are proficient in computer applications. Third, the support force is socialized. With the development of science and technology, the mutual tolerance, intercommunication and compatibility of military and civilian technologies have been greatly enhanced. A large number of combat facilities and platforms will rely more on local basic resources. Not only does the material support in combat need to be socialized, but also the technical support and information support need to be socialized.

It can be seen that the victory or defeat of the informationized battlefield depends on the overall strength of the warring parties. Various combat forces are both interrelated and mutually influential, but any single force is difficult to determine the outcome of the war. Only when multiple forces work closely together and learn from each other’s strengths and weaknesses can the overall combat system benefits be brought into play and victory be ultimately achieved.

Multi-level integration

The war level is the pattern of the war between the two hostile parties. In information warfare, the distinction between strategy, campaign and battle is no longer as clear as in traditional warfare. Instead, there is a mutual integration of you and me, and the distinction between levels has become relatively vague. First, the war path is simplified. With the centralized use of a large number of informationized weapons and equipment and their information systems, the precision strike capability of the troops has been unprecedentedly improved. A small-scale combat operation and a high-efficiency information offensive operation can effectively achieve certain strategic goals. A battle, a campaign or a carefully planned information operation may be a war. The path to achieve the purpose of war is becoming simpler and the convergence of war, campaign and even battle in purpose and time and space is prominent. Second, command and control is real-time. The widespread use of automated command and control systems on the battlefield has greatly enhanced the command and control function. Campaign commanders and even the highest political and military leadership of the country can plan and command and control all participating forces and specific combat operations in a unified manner, and directly intervene in campaigns, battles and even the actions of individual soldiers or combat platforms in near real time. Combat and campaign operations are similar to strategic engagements. Third, the combat process is fast-tracked. Quick victory and quick decision are important features of information warfare. The combat time is showing a trend of shortening. There is no concept of time for all combat operations. More often, the participating forces at all levels are carried out simultaneously in different fields. The beginning and the end are closely linked. The combat operations in various battlefield spaces penetrate each other, are closely linked, and gradually merge into an integrated and coordinated system, which is difficult to distinguish at the level.

It can be seen that information warfare has a strong overall nature. Campaigns, as a bridge for achieving strategic and even war objectives, are gradually integrated into battles. Combat, as the most basic combat activity in war, is also gradually sublimated into strategies and campaigns. All levels are intertwined and serve to achieve the purpose of war. Only by comprehensively exerting the combat capabilities of all levels and achieving overall effects can we seize the initiative in the war.

Fusion of various styles

The combat style is the carrier for the war hostile parties to compete. Informationized warfare is a process of confrontation between multiple forces and multiple fields, and is manifested in multiple combat actions and confrontation styles. Various combat actions are inseparable from the overall combat situation, and various actions are closely linked, mutually conditional, coordinated, and integrated to form an overall combat power. The first is the unity of combat actions. The victory or defeat of informationized warfare is the result of the system confrontation between the two warring parties. Isolated and single combat actions are often difficult to work. This requires multiple military services to adopt a variety of combat styles in different combat spaces and combat fields, while the combat style dominated by a single military service can only “live” in the overall joint action as a sub-combat action, and all combat actions are unified in the system confrontation. The second is the integration of combat actions. Informationized warfare is a form of war that pursues high efficiency. Objectively, it requires that multiple combat styles and actions must be highly “integrated” from the perspective of system effectiveness. Comprehensively use a variety of combat styles and tactics, combine tangible combat actions with intangible combat actions, combine non-linear combat with non-contact combat and asymmetric combat, combine psychological warfare with public opinion warfare and legal warfare, combine regular combat with irregular combat, and combine soft strikes with hard destruction to form an overall advantage. The third is the mutation of combat actions. In information warfare, while integrating various combat resources and exerting overall power, both hostile parties strive to find the “center of gravity” and “joint points” of the other side. Once the enemy’s weak points are found, all combat forces and actions are linked as a whole and autonomously coordinated, and various styles and means of destruction are adopted to cause a sudden change in the enemy’s combat capability and a comprehensive “collapse” of the combat system, so as to achieve combat initiative and advantage.

It can be seen that information warfare is a practical activity in which various forces use a variety of combat styles and means to compete in multiple battlefield spaces and combat fields. Only when multiple combat styles and means cooperate, support and complement each other can a multiplier effect be produced, thereby exerting the maximum combat effectiveness of the entire system.

Multi-method integration

The means of war are methods used to achieve the purpose of war. In addition to powerful military means, information warfare must also use all available ways and means to cooperate with each other, organically integrate, and form a whole to achieve a favorable situation. First, the use of war means is comprehensive. All wars have a distinct political nature and serve certain political purposes. With the influence of factors such as the globalization of the world economy and the multipolarization of international politics, information warfare is more based on military means, and military means are used in combination with various means such as economy, diplomacy, culture, and technology. Second, the use of war means is gradient. With the development of the times, war as a means of maintaining and seeking power and interests has been increasingly restricted by international law and international public opinion. In addition, resorting to war requires a high price. Therefore, in the information age, the use of war means presents a gradual development gradient, usually starting from retaliation, display of force, and violent retaliation (strike) in the sense of international law, and finally developing into local or even large-scale wars. Third, the use of war means is systematic. Information warfare is a contest of the comprehensive national strength of the hostile parties. The victory of the war depends on the comprehensive and systematic use of various war means. In specific combat operations, various means of warfare have different functions and natures, occupying different positions and playing different roles in the war. Only by closely combining various effective means of warfare into an organic whole can we form a combat system that fully utilizes our strengths and avoids our weaknesses, and maximize the overall combat effectiveness.

It can be seen that information warfare is subject to more restrictive factors, simpler war objectives, and newer combat styles. In the process of decision-making and action, only by coordinating and integrating with struggle actions in other fields such as politics, economy, culture, and diplomacy can the overall goal of the war be achieved efficiently.

現代國語:

中國軍網 國防部網

2019年12月10日 星期二

張自廉 馬代武

資訊化戰爭的基本形式是體系對抗。與歷史上任何一種戰爭形態都不同,資訊化戰爭不是各作戰單元、要素簡單疊加的離散式對抗或局部分散式作戰,而是體系對體系的整體對抗。戰爭的體系融合能力,決定作戰效能的發揮和戰爭目的達成;實現各系統的有效融合,是打贏資訊化戰爭的根本途徑。

多空間融合

戰場空間是戰爭敵對雙方較量的舞台。由於高技術兵器的廣泛運用,資訊化戰爭戰場空間大為拓展,形成了陸、海、空、天、資訊等多維戰場空間。各戰場空間在資訊科技的強力「黏合」下,圍繞著統一的作戰目的融為一體。一是立體化、全方位的偵察與監視網覆蓋透視戰場。在資訊化條件下,軍事偵察與監視能力空前提高,大範圍、立體化、多手段、自動化的情報偵察與監視網,將外層空間、高空、中空、低空、地面(海上)、地下(水下)連為一體,進而獲取多領域的戰場情報資訊。二是遠射程、高精準度的資訊化武器密布威脅戰場。資訊化武器系統所具有的覆蓋和打擊戰場全空間目標的超常作戰能力,實現了發現即意味著摧毀,促進了各戰場空間的高度融合。加之太空和空中力量的發展,使打擊更精確,手段更靈活,作戰效益更高,戰場空間成為海陸空天一體化戰場。這種一體化的戰場結構,多空間高度融合,多空間、多領域相互制約。第三是全時空、全過程的電磁和資訊爭奪滲透制約戰場。軍事資訊科技的發展,不僅透過偵察、打擊等手段實現有形的陸海空天戰場一體化,也開闢了電磁和資訊領域無形戰場的爭奪。電磁和訊息是資訊化戰爭之魂,是連結陸海空天戰場的紐帶,存在於作戰的全時空,作用於戰爭的全要素,貫穿作戰的整個過程,深度影響著陸海空天各維有形的戰場。

可見,資訊化戰場正是透過日益成熟的資訊技術,圍繞著戰爭目的和作戰需要,把陸、海、空、天、資訊等多維空間緊密地融合在一起,形成不可分割、唇齒相依的有機統一體。離開了哪一維戰場空間,或是失去哪一維的控制權,都會直接影響全域作戰效能,進而導致戰爭失敗。

多力量融合

戰爭力量是戰爭敵對雙方較量的主角。體系融合的「一體化聯合作戰力量」是資訊化戰爭的突出特徵。資訊化戰爭各種參戰力量高度一體化,無論其隸屬關係如何、作戰任務如何,都將作為整個作戰系統的平等用戶和資源,融合成為一個統一的大系統。一是參戰部隊聯合化。資訊化戰爭是陸、海、空軍以及航太、特種作戰、資訊作戰等部隊參與的聯合作戰。各參戰部隊都具有其他參戰部隊所不具備或無法替代的優勢,它們通過信息技術溝通和聯繫,實現“無縫鏈接”,形成可以揚長避短、優勢互補的力量體系,成為具備“軟”打擊與“硬”摧毀能力、作戰與保障能力、機動與突擊能力、攻擊與防護能力相結合的有機整體。二是參加人員多元化。隨著資訊網路的發展,資訊時代的戰爭,不再有前方後方之分,作戰系統的網路化使家中也可能成為「戰場」。工業時代的戰爭,「結束了,回家去」;資訊時代的戰爭,也可以「回家,打仗去」。戰爭的參與者不僅只局限於國家和政治集團的軍事力量,非政府和團體性質的民眾,只要具有高技術知識就能投身“戰場”,只要熟練計算機應用都可能成為參與戰鬥的一員。三是保障力量社會化。科學技術的發展,軍用、民用技術的互容、互通和相容性大大增強,大量作戰設施和平台將更加依靠地方基礎資源,不僅作戰中的物資保障需要社會化,而且技術保障與資訊支援也需要社會化。

可見,資訊化戰場的勝負取決於交戰雙方整體力量的強弱,多種作戰力量既相互關聯,又相互影響,但其中任何單一的力量都難以決定戰爭的勝負。只有多種力量密切配合、取長補短,才能發揮整體作戰的系統效益,最終贏得勝利。

多層級融合

戰爭層級是戰爭敵對雙方較量的格局。在資訊化戰爭中,戰略、戰役、戰鬥之間已不再像傳統戰爭那樣涇渭分明,更多的是,你中有我,我中有你,層級區分變得相對模糊。一是戰爭途徑簡約化。大量資訊化武器裝備及其資訊系統的集中運用,部隊的精確打擊能力空前提高,一次小規模的作戰行動和高效益的資訊進攻行動,就能有效達成一定的戰略目的。一場戰鬥、一場戰役或一次周密計畫的資訊行動可能就是一場戰爭。達成戰爭目的的途徑不斷走向簡約,戰爭與戰役甚至戰鬥在目的和時空上的趨同性突出。二是指揮控制即時化。自動化指揮控制系統在戰場上的廣泛運用,指揮控制功能大大增強,戰役指揮員甚至國家最高政治、軍事領導層能夠對所有參戰力量和具體的作戰行動進行統一籌劃和指揮控制,近乎實時地直接幹預戰役、戰鬥甚至單兵或作戰平台的行動,戰鬥和戰役行動趨同於戰略交戰。三是作戰進程速決化。速戰速決是信息化戰爭的一個重要特徵,作戰時間呈現出縮短的趨勢,所有作戰行動已無時間上的概念,更多的是各層次的參戰力量在不同領域同時進行,開始與結束緊密相連,各戰場空間的作戰行動互相滲透、緊密聯繫、逐漸融合成一個整體聯動的綜合體系,難以作層級上的區分。

可見,資訊化戰爭整體性強,戰役作為戰鬥達成戰略乃至戰爭目的的橋樑,逐漸融合在戰鬥中;戰鬥作為戰爭中最基本的作戰活動,也逐漸昇華到戰略、戰役裡面,各層次之間,相互交融,共同為達成戰爭目的服務。只有綜合發揮各層級的作戰能力,達到整體效應,才能奪取戰爭的主動權。

多樣式融合

作戰樣式是戰爭敵對雙方較量的承載。資訊化戰爭是多力量、多領域實施對抗的過程,並表現為多種作戰行動和對抗樣式。各種作戰行動對於作戰全局來說都是不可分割的,各種行動之間也是緊密聯繫,互為條件,相互協調,融為一體,從而形成整體作戰威力。一是作戰行動的統一性。資訊化戰爭的勝負是交戰雙方體系對抗的結果,孤立、單一的作戰行動往往是難以發揮的。這就要求多個軍兵種在不同的作戰空間、作戰領域綜合採取多種作戰樣式,而單一軍兵種為主的作戰樣式將只能作為子作戰行動「棲身」於整體的聯合行動之中,所有的作戰行動統一於體系對抗之中。二是作戰行動的整合性。資訊化戰爭是追求高效益的戰爭形態,客觀上要求必須從系統效能出發,將多種作戰樣式和行動高度「整合」。綜合運用多種作戰樣式和戰法,把有形的作戰行動與無形的作戰行動結合起來,把非線式作戰與非接觸作戰、非對稱作戰結合起來,把心理戰與輿論戰、法律戰結合起來,把正規作戰與非正規作戰結合起來,把軟打擊與硬摧毀結合起來,形成整體優勢。三是作戰行動的突變性。在資訊戰爭中,敵對雙方在整合己方各種作戰資源、發揮整體威力的同時,都著力尋找對方“體系重心”“關節點”,一旦發現敵薄弱部位,所有作戰力量和行動通過整體聯動和自主協同,採取多樣式、多手段的破擊行動,造成敵作戰能力的突變和主動作戰體系的全面作戰,以實現“崩塌與優勢”,以崩潰與作戰能力的全面作戰。

可見,資訊化戰爭是各種力量在多個戰場空間、作戰領域中綜合運用多種戰鬥樣式和作戰手段同場競技的實踐活動。只有多種戰鬥樣式、作戰手段相互配合、相互支援、互補,才能產生倍增效應,進而發揮整個系統的最大作戰效能。

多手融合

戰爭手段是為達成戰爭目的而運用的方法。資訊化戰爭除了強大的軍事手段外,還必須動用一切可以動用的方式和手段,相互配合,有機融合,形成整體,以取得有利的態勢。一是戰爭手段運用綜合化。凡戰爭都有鮮明的政治性,都是為一定的政治目的服務的。隨著世界經濟全球化、國際政治多極化等因素的影響,資訊化戰爭更多的是以軍事手段為主,軍事手段與經濟、外交、文化、科技等多種手段的綜合運用。二是戰爭手段運用梯度化。隨著時代的發展,戰爭作為維護、謀求權力與利益的手段受到了國際法和國際輿論越來越多的限制,加上諸戰爭需付出高昂代價,所以信息化時代在戰爭手段運用上,呈現出逐步發展的梯度性,通常先由國際法意義上的報復、顯示武力、暴力性報復(打擊),最後發展至局部戰爭。三是戰爭手段運用的系統化。資訊化戰爭是敵對雙方綜合國力的較量,戰爭的取勝,有賴於各種戰爭手段綜合、系統運用。在具體的作戰行動中,各種戰爭手段因其功能、性質的不同,在戰爭中居於不同的地位,扮演不同的角色。只有把各種有效的戰爭手段緊密地結合成一個有機連結的整體,才能形成充分揚己之長、避己之短的作戰體系,最大限度地發揮整體作戰效能。

可見,資訊化戰爭受制因素增多、戰爭目的簡約、作戰樣式翻新,在決策與行動過程中,只有與政治、經濟、文化、外交等其他領域鬥爭行動互相配合,融為一體,才能高效地達成戰爭總體目標。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2019-12/10/content_24955988.htm

Chinese Military Focus Developing Weaponizing Artificial Intelligence

中國軍方重點發展武器化人工智慧

現代英語:

As a strategic technology leading a new round of scientific and technological revolution and industrial transformation, artificial intelligence is profoundly changing the form of modern warfare. Countries have taken a national strategic approach to Focus on the military field and develop artificial intelligence.

Currently, artificial intelligence is profoundly changing people’s thinking, lifestyles and exploration directions. Its application and development in the military field will also have a profound impact on future war fighting styles, combat spaces and means. While major countries have elevated artificial intelligence to a national strategy, they are also taking various measures to promote the military application of artificial intelligence.

Russia–

Highlight military priority

Focus on actual combat testing

As the importance of artificial intelligence technology gradually becomes apparent, Russia has listed artificial intelligence as a priority development area to promote military modernization and intelligence and compete for strategic commanding heights.

Russia has successively introduced strategic plans such as the “National Weapons and Equipment Plan 2018-2025” and the “National Artificial Intelligence Development Strategy before 2030”, and established the National Artificial Intelligence Center, the Robotics Technology Development Center, etc. to carry out theoretical and applied research in the fields of artificial intelligence and information technology.

The Russian military has currently developed and applied artificial intelligence technology in all combat domains on land, sea and air, and possesses a considerable scale of unmanned combat forces.

On land, China has unmanned combat vehicles represented by the “Uranus” series, “Platform-M” and “Argo” models. In the air, China has “Pomegranate”-4, “Fast Light Particle” short-range UAVs, “Sea Eagle”-10, “Outpost” and other medium-sized UAVs that perform reconnaissance, command and communication relay tasks. Underwater, China has in service large-scale “Harpsichord”-1R, small-scale “Marlin-350”, “Vision-600” micro-unmanned submarines, especially the “Poseidon” nuclear-powered unmanned submarine, which can carry a nuclear warhead with a TNT equivalent of 2 million tons.

Since 2015, the Russian army has formed combat robot companies in various military regions and fleets, equipped a large number of robots, and continuously organized artificial intelligence exercises. In addition, the Russian army has accelerated the research on combat theory and the development of new equipment systems, and conducted actual combat tests in the battlefields of Syria and eastern Ukraine, providing a reliable basis for the development and improvement of unmanned combat systems. In the Syrian military operation in early 2016, the Russian army used six “Platform-M” tracked unmanned combat vehicles and four “Codeword” wheeled unmanned reconnaissance vehicles for the first time to participate in the attack and occupy enemy positions, creating a practical precedent for ground unmanned equipment to move from auxiliary combat to main combat.

Currently, the Russian military is stepping up efforts to integrate artificial intelligence systems with drones, missiles, etc. to cope with the future era of intelligent warfare.

USA–

Develop long-term plans

Strengthening technology leadership

The U.S. military has always focused on the research and development of artificial intelligence technology, and has made arrangements at the national strategic level, with a clear development strategy, specific tactical models and strong technical support. Since 2000, the U.S. Department of Defense has strengthened the top-level planning of unmanned equipment and technology development by regularly updating the unmanned equipment development strategy and roadmap.

In 2014, the United States proposed the “Third Offset Strategy” with artificial intelligence as the key supporting technology. In October 2016, then-US President Obama released a report at the White House, “National Artificial Intelligence Research and Development Strategic Plan”, which proposed seven strategic directions and two suggestions for the priority development of artificial intelligence in the United States. The US military has successively formulated artificial intelligence technology research and development plans, key project ideas, and technical standards and specifications, focusing on building a research and development production and combat application system, and promoting the deployment of projects such as intelligent missiles and unmanned autonomous aerial refueling.

At present, the U.S. military’s active unmanned equipment is still mainly controlled by remote control or pre-programming. It is expected that in the future, major breakthroughs will be made in the autonomy of unmanned equipment and manned-unmanned collaboration. The U.S. military also hopes to further develop neural technology to enable combat personnel to interact with the system on the battlefield in the future, and ultimately achieve consciousness connection and human-like thinking of artificial intelligence systems.

With the deployment of a series of new combat concepts and related military application projects, the United States is accelerating the transformation of artificial intelligence technology into weapons and equipment systems and unmanned combat systems to offset the combat capabilities of its opponents, maintain absolute military advantages, and safeguard its global hegemony.

Yingde is based on——

Promoting resource integration

Each has its own development path

The UK has defined its AI strategy as a key national strategy and has developed a development path of “universities as the source and military-civilian integration”, focusing on cooperating with the world’s top universities and mature companies to explore ways to maintain military advantages on future battlefields. In September 2018, the UK announced that it had developed an AI military robot called “Sapiens” that can scan urban battlefields, detect hidden enemies, and send information to soldiers.

As a traditional industrial power, Germany regards artificial intelligence as the key to maintaining Germany’s competitiveness and safeguarding Germany’s future. Germany, which has the world’s largest artificial intelligence research center, released the national “Artificial Intelligence Strategy” in 2018, planning to invest about 3 billion euros at the federal level by 2025 to create an “artificial intelligence made in Germany” brand. In terms of military applications of artificial intelligence, Germany has also achieved many important results. The German army has been equipped with digital systems with intelligent information perception and processing capabilities in large quantities. The German Air Force’s “Typhoon” fighter has successfully achieved interconnection with remote-controlled vehicles and can receive and execute combat missions at the same time.

Israel has a small territory and a complex surrounding situation. A strong sense of insecurity is a powerful driving force for its development of artificial intelligence, and deep military-civilian integration has provided advanced technology, abundant funds and high-level talents for the rapid development of artificial intelligence in the Israeli military. Its national artificial intelligence program, the “Tower” program, a collaboration between the military and the Hebrew University, has provided a number of outstanding talents for the Israel Defense Forces to improve their intelligence level.

Today, Israel has become the world’s largest exporter of military drones, accounting for about 60% of the world’s exports. Among them, drones such as “Hermes” and “Skylark” represent the world’s advanced level. Many of the Azerbaijani drones that have attracted attention in the recent war between India and Pakistan were imported from Israel. Israel’s “Guardian” unmanned vehicle is the world’s first controllable autonomous unmanned vehicle. The Israeli Navy is equipped with multiple types of unmanned surface vessels such as “Protector”, “Stingray” and “Seagull”, among which the “Seagull” unmanned surface vessel can perform a variety of tasks such as anti-submarine, anti-mine, and anti-frogman.

現代國語:

人工智慧作為引領新一輪科技革命和產業變革的戰略技術,正深刻改變現代戰爭形態,各國紛紛將重點發展軍事領域人工智慧上升為國家戰略。

目前,人工智慧正在深刻改變人們的思維理念、生活方式和探索方向,其在軍事領域的運用和發展,也將對未來戰爭作戰樣式、作戰空間和作戰手段產生深遠影響。各主要國家在把人工智慧上升為國家戰略的同時,也採取多種措施促進人工智慧的軍事應用。

俄羅斯——

突顯軍用優先

注重實戰檢驗

隨著人工智慧技術的重要性逐漸顯現,俄羅斯已將人工智慧列入優先發展領域,以促進軍事現代化和智慧化,爭取戰略制高點。

俄羅斯先後推出了《2018~2025年國家武器裝備計畫》《2030年前人工智慧國家發展戰略》等戰略規劃,組成國家人工智慧中心、機器人技術發展中心等,用以進行人工智慧和資訊科技領域的理論與應用研究。

俄軍目前在陸海空各個作戰域內,都開發應用了人工智慧技術,擁有了相當規模的無人作戰力量。

陸上有以「天王星」系列和「平台-M」「阿爾戈」等型號為代表的無人戰車。空中擁有遂行偵察、指揮和通訊中繼任務的「石榴」-4、「超光速粒子」近程無人機,「海鷹」-10、「前哨」等中型無人機。水下在役「大鍵琴」-1R大型、「馬爾林-350」小型、「視野-600」微型小型無人潛航器等,特別是「波塞冬」核動力無人潛航器,可攜帶200萬噸TNT當量的核子戰鬥部。

從2015年開始,俄軍在各軍區和艦隊組成戰鬥機器人連,大量列裝機器人,不斷組織人工智慧演練。此外,俄軍加快作戰理論研究和新型裝備系統研發,並在敘利亞和烏克蘭東部戰場進行實戰檢驗,為無人作戰系統的研發改進提供可靠依據。在2016年初的敘利亞軍事行動中,俄軍首次使用6台「平台-M」履帶式無人戰車和4部「暗語」輪式無人偵察車參與進攻並佔領敵方陣地,開創了地面無人裝備從輔戰走向主戰的實戰先例。

目前,俄軍正加緊將人工智慧系統與無人機、飛彈等結合,以應對未來的智慧化戰爭時代。

美國——

制定長期規劃

強化技術引領

美軍一直注重人工智慧領域的技術研發,從國家戰略層面進行佈局,具有明晰的發展策略、具體的戰術模式和強而有力的技術支撐。從2000年開始,美國防部就透過定期更新無人裝備發展策略與路線圖,加強無人裝備與技術發展的頂層規劃。

2014年,美國提出了以人工智慧為關鍵支撐技術的「第三次抵銷策略」。 2016年10月,時任美國總統歐巴馬在白宮發布報告《國家人工智慧研究與發展戰略計畫》,提出了美國優先發展的人工智慧七大戰略方向和兩方面建議。美國軍方相繼制定了人工智慧技術研發規劃、重點專案設想、技術標準規範,著力建構研發生產和作戰運用體系,推動智慧飛彈、無人自主空中加油等項目的部署。

目前,美軍現役無人裝備仍主要採取遙控或預編程方式進行控制,預計未來將在無人裝備自主性、有人-無人協同等方面取得較大突破。美軍也希望透過進一步開發神經技術,在未來戰場上使作戰人員能夠與系統進行思想交互,最終實現人工智慧系統的意識連結和類人化思考。

隨著一系列新型作戰概念和相關軍事應用項目的部署,美國正在加快人工智慧技術向武器裝備系統和無人作戰體系的轉化進程,以抵消對手作戰能力,維持絕對軍事優勢,維護其全球霸權。

英德以——

推進資源融合

各闢發展路徑

英國把人工智慧戰略定性為國家重點戰略,並製定了「高校為源、軍民融合」的發展路徑,注重與世界頂級高校和成熟的公司合作,探索在未來戰場上保持軍事優勢的途徑。 2018年9月,英國宣稱已經研發了一種名為「智人」的人工智慧軍事機器人,能夠掃描城市戰場,發現隱藏敵人,並將訊息傳送給士兵。

作為傳統的工業強國,德國將人工智慧視為維持德國競爭力、保障德國未來的關鍵。擁有世界上最大的人工智慧研究中心的德國,於2018年發布了國家層級的《人工智慧戰略》,計畫2025年前在聯邦層級投入約30億歐元,打造「人工智慧德國製造」品牌。在人工智慧軍事應用方面,德國也取得了不少重要成果。德軍已經大批量裝備具有智慧化資訊感知與處理能力的數位化系統,德國空軍的「颱風」戰鬥機,已成功實現與遙控載具的互聯互通,可同時領受和執行作戰任務。

以色列國土狹小、週邊形勢複雜,強烈的不安全感是促使其發展人工智慧的強大動力,而深度軍民融合,則為以軍人工智慧飛速發展提供了先進技術、充裕資金和高水準人才。其國家級人工智慧計畫——軍隊和希伯來大學合作的「塔樓」計劃,就為以色列國防軍提升智慧化水平輸送了不少優秀人才。

如今以色列已成為全球最大的軍用無人機出口國,出口量約佔全球的60%,其中,「赫爾墨斯」「雲雀」等無人機代表世界先進水準。近期在亞阿戰爭中令人關注的阿塞拜疆無人機,不少就是從以色列引進的。以色列「守護者」無人車,是世界上第一種可控的自主式無人車。以海軍則裝備「保護者」「魟魚」「海鷗」等多型無人水面艇,其中「海鷗」無人水面艇可執行反潛、反水雷、反蛙人等多樣化任務。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2020-11/19/content_27624788.htm

People’s Republic of China’s Development Trend & Governance Strategy for Weaponization of Artificial Intelligence

中華人民共和國人工智慧武器化發展趨勢與治理策略

現代英語:

The weaponization of artificial intelligence is an inevitable trend in the new round of military transformation. Local wars and conflicts in recent years have further stimulated relevant countries to promote the strategic deployment of artificial intelligence weaponization and seize the commanding heights of future wars. The potential risks of artificial intelligence weaponization cannot be ignored. It may intensify the arms race and break the strategic balance; empower the combat process and increase the risk of conflict; increase the difficulty of accountability and increase collateral casualties; lower the threshold of proliferation and lead to misuse and abuse. In this regard, we should strengthen international strategic communication to ensure consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on the construction of laws and regulations to form a unified and standardized legal framework; strengthen the ethical constraints of artificial intelligence to ensure that technological development meets ethical standards; actively participate in global security governance cooperation and jointly maintain peace and stability in the international community.

    The weaponization of artificial intelligence is to apply artificial intelligence-related technologies, platforms and services to the military field, making it an important driving force for enabling military operations, thereby improving the efficiency, accuracy and autonomy of military operations. With the widespread application of artificial intelligence technology in the military field, major powers and military powers have increased their strategic and resource investment and accelerated the pace of research and development and application. The frequent regional wars and conflicts in recent years have further stimulated the battlefield application of artificial intelligence, and profoundly shaped the form of war and the future direction of military transformation.

    It cannot be ignored that, as a rapidly developing technology, AI itself may have potential risks due to the immaturity of its inherent technology, inaccurate scene matching, and incomplete supporting conditions. It is also easy to bring various risks and challenges to the military field and even the international security field due to human misuse, abuse, or even malicious use. To conscientiously implement the global security initiative proposed by General Secretary Xi Jinping, we must face the development trend of weaponization of AI worldwide, conduct in-depth analysis of the security risks that may be brought about by the weaponization of AI, and think about scientific and feasible governance ideas and measures.

    Current trends in the weaponization of artificial intelligence

    In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of war, changing the future combat system, and affecting the future direction of military reform. Major military powers have regarded artificial intelligence as a subversive key technology that will change the rules of future wars, and have invested a lot of resources to promote the research and development and application of artificial intelligence weapons.

    The weaponization of artificial intelligence is an inevitable trend in military transformation.

    With the rapid development of science and technology, the necessity and urgency of military reform have become increasingly prominent. Artificial intelligence can simulate human thinking processes, extend human brainpower and physical strength, realize rapid information processing, analysis and decision-making, and develop increasingly complex unmanned weapon system platforms, thus providing unprecedented intelligent support for military operations.

    First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, and it is difficult to effectively respond to large-scale, high-speed and high-complexity intelligence processing needs. The introduction of artificial intelligence technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of artificial intelligence technology can build an intelligent monitoring system to provide high-precision and real-time intelligence perception services. In the field of intelligence reconnaissance, artificial intelligence technology has the ability to process multiple “information flows” in real time, thereby greatly improving analysis efficiency. ① By using technical tools such as deep learning, it is also possible to “see the essence through the phenomenon”, dig out the deep context and causal relationship in various types of fragmented intelligence information, and quickly transform massive fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.

    Second, provide data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situation awareness. ② Its advantage lies in the ability to perform key tasks such as data mining, data fusion, and predictive analysis. In information-based and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is huge, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become an important tool to assist commanders in managing intelligence data, making enemy situation judgments, proposing combat plan suggestions, and formulating plans and orders. Taking the US military as an example, the ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system developed by Raytheon Technologies Corporation of the United States covers intelligence collection, surveillance, target identification and tracking functions, and can gather data from multiple information sources such as satellites, ships, aircraft and ground stations, and conduct in-depth analysis and processing. This not only significantly improves the speed at which commanders obtain information, but also can provide data support with the help of intelligent analysis systems, making decisions faster, more efficient and more accurate.

    Third, it provides important support for unmanned combat systems. Unmanned combat systems are a new type of weapon and equipment system that can independently complete military tasks without direct human manipulation. They mainly include intelligent unmanned combat platforms, intelligent ammunition, and intelligent combat command and control systems, and have significant autonomy and intelligent features. As a technical equipment that leads the transformation of future war forms, unmanned combat systems have become an important bargaining chip in military competition between countries. The system has achieved adaptability to different battlefield environments and combat spaces by using key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise strikes on targets. The design concept of this system is “unmanned platform, manned system”, and its essence is an intelligent extension of manned combat systems. For example, the “MQM-57 Falconer” drone developed by the US Department of Defense’s Advanced Research Projects Agency (DARPA) uses advanced artificial intelligence technology and has highly autonomous target recognition and tracking functions.

    Fourth, provide technical support for military logistics and equipment support. In the context of information warfare, the war process has accelerated, mobility has improved, and combat consumption has increased significantly. The traditional “excessive pre-storage” support model can no longer adapt to the rapidly changing needs of the modern battlefield. Therefore, higher requirements are placed on combat troops to provide timely, appropriate, appropriate, appropriate, and appropriate rapid and accurate after-sales support. As a technology with spillover and cross-integration characteristics, artificial intelligence is integrated with cutting-edge technologies such as the Internet of Things, big data, and cloud computing, allowing artificial intelligence knowledge groups, technology groups, and industrial groups to fully penetrate the military after-sales field, significantly improving the logistics equipment support capabilities.

    Major countries are planning to develop military applications of artificial intelligence.

    In order to enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan have stepped up their strategic layout for the military application of artificial intelligence. First, by updating and adjusting the top-level strategic planning in the field of artificial intelligence, they provide clear guidance for future development; second, in response to future war needs, they accelerate the deep integration of artificial intelligence technology and the military field, and promote the intelligent, autonomous, and unmanned development of equipment systems; in addition, they actively innovate combat concepts to drive combat force innovation, thereby improving combat effectiveness and competitive advantages.

    The first is to formulate a strategic plan. Based on the strategic paranoia of pursuing military hegemony, political hegemony, and economic hegemony with technological hegemony, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense issued the “Data, Analysis and Artificial Intelligence Adoption Strategy”, which aims to expand the advanced capabilities of the entire Department of Defense system to gain lasting military decision-making advantages. The Russian military promulgated the “Russian Weapons and Equipment Development Outline from 2024 to 2033”, known as the “3.0 version”, which aims to provide guidance for the development of weapons and equipment in the next 10 years. The outline emphasizes the continued advancement of nuclear and conventional weapons construction, and focuses on the research of artificial intelligence and robotics technology, hypersonic weapons and other strike weapons based on new physical principles.

    The second is to develop advanced equipment systems. Since 2005, the U.S. military has released a version of the “Unmanned System Roadmap” every few years to look forward to and design unmanned system platforms in various fields such as air, ground, surface/underwater, and connect the development chain of unmanned weapons and equipment such as research and development-production-testing-training-combat-support. At present, more than 70 countries in the world can develop unmanned system platforms, and various types of drones, unmanned vehicles, unmanned ships (boats), and unmanned submarines are springing up like mushrooms after rain. On July 15, 2024, Mark Milley, former chairman of the U.S. Joint Chiefs of Staff, said in an interview with U.S. Defense News that by 2039, one-third of the U.S. military will be composed of robots. The Platform-M combat robot, the “Lancet” suicide drone, and the S70 “Hunter” heavy drone developed by the Russian army have been put into actual combat testing.

    The third is to innovate future combat concepts. The combat concept is a forward-looking study of future war styles and combat methods, which can often lead to the leapfrog development of new combat force formations and weapons and equipment. In recent years, the US military has successively proposed combat concepts such as “distributed lethality”, “multi-domain warfare” and “mosaic warfare” in an attempt to lead the development direction of military transformation. Taking “mosaic warfare” as an example, this combat concept regards various sensors, communication networks, command and control systems, weapon platforms, etc. as “mosaic fragments”. These “fragment” units, with the support of artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems to form an on-demand integrated, highly flexible, and flexible killing network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan”, which aims to expand multi-domain operations to all-domain operations concepts, connect sensors of various services to a unified “Internet of Things”, and use artificial intelligence algorithms to help improve combat command decisions. ③

    War conflicts stimulate the weaponization of artificial intelligence.

    In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukrainian crisis, and the Israeli-Kazakh conflict have continued, further stimulating the development of the weaponization of artificial intelligence.

    In the Libyan conflict, the warring parties used various types of drones to perform reconnaissance and combat missions. According to a report released by the United Nations Panel of Experts on Libya, the Turkish-made Kargu-2 drone carried out a “hunt and engage remotely” operation in Libya in 2020, and could autonomously attack retreating enemy soldiers. This incident marked the first use of lethal autonomous weapon systems in actual combat. As American scholar Zachary Cullenborn said, if someone unfortunately died in such an autonomous attack, this would most likely be the first known example in history of artificial intelligence autonomous weapons being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan used a formation of Turkish-made “Flagship” TB2 drones and Israeli-made “Harop” drones to successfully break through the Armenian air defense system and gain air superiority and initiative on the battlefield. ④ The remarkable results of the Azerbaijani army’s drone operations are largely due to the Armenian army’s “underestimation of the enemy” mentality and insufficient understanding of the importance and threat of drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They flexibly use advanced equipment such as reconnaissance and strike drones and cruise missiles, which not only improves combat efficiency, but also greatly enhances the suddenness and lethality of combat. ⑤

    During the Ukrainian crisis that broke out in 2022, both Russia and Ukraine widely used military-grade and commercial drones to perform reconnaissance, surveillance, artillery targeting and strike missions. The Ukrainian army used the “Flagship” TB2 drone and the “Switchblade” series of suicide drones assisted by the United States to carry out precision strikes and efficient killings, becoming a “battlefield killer” that attracted worldwide attention. In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock bombing targets in Gaza. It once marked as many as 37,000 Palestinians in Gaza as suspected “militants” and identified them as targets that could be directly “assassinated”. The Israeli military’s actions have attracted widespread attention and condemnation from the international community. ⑥

    Security risks posed by weaponization of artificial intelligence

    From automated command systems to intelligent unmanned combat platforms, to intelligent decision-making systems in network defense, the application of artificial intelligence technology in the military field is becoming more and more common and has become an indispensable part of modern warfare. However, with the trend of weaponization of artificial intelligence, its misuse, abuse and even malicious use will also bring risks and challenges to international security that cannot be ignored.

    Intensify the arms race and disrupt the strategic balance.

    In the information and intelligent era, the disruptive potential of artificial intelligence is hard for major military powers to resist. They are all focusing on the development and application of artificial intelligence military capabilities, fearing that they will fall behind in this field and lose strategic opportunities. Deepening the military application of artificial intelligence can gain “asymmetric advantages” at a lower cost and with higher efficiency.

    First, countries are scrambling to seize the “first mover advantage”. When a country achieves technological leadership in the development of intelligent weapon systems, it means that the country has more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and emergency response. This advantage includes higher autonomy, intelligence, and adaptability, which increases the country’s military strength and strategic competitive advantage. At the same time, the military advantage of the first mover may become a security threat to competitors, leading to a scramble among countries in the military application of advanced technologies. ⑦ In August 2023, US Deputy Secretary of Defense Kathryn Hicks announced the “Replicator initiative”, which seeks to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧

    Second, the opacity of AI armament construction in various countries may intensify the arms race. There are two main reasons for this: First, AI technology is an “enabling technology” that can be used to design a variety of applications, which means that it is difficult to verify the specific situation of AI military applications. It is difficult to determine whether a country is developing or deploying nuclear weapons by monitoring uranium, centrifuges, weapons and delivery systems, as is the case with nuclear weapons. The difference between semi-autonomous and fully autonomous weapon systems is mainly due to different computer software algorithms, and it is difficult to verify the implementation of treaties by various countries through physical verification. Second, in order to maintain their strategic advantages, countries often take confidentiality measures for the details of the military application of advanced technologies, so that opponents cannot detect their strategic intentions. In the current international environment, this opacity not only intensifies the arms race, but also lays the groundwork for future escalation of conflicts.

    Third, the uncertainty of the strategic intentions of various countries will also intensify the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence and war escalation depends largely on other countries’ perception of its capabilities rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often have the characteristics of risk competition, which is more of a test of courage than force. The relationship between major opponents is determined by which side is ultimately willing to invest more power, or make it look like it is about to invest more power. ⑨ An actor’s perception of the capabilities of others, whether true or false, will greatly affect the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors will become suspicious of their competitors’ armament capabilities and intentions to develop armaments without being sure of the other party’s intentions, and often take reciprocal measures, that is, to meet their own security needs by developing armaments. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.

    Empowering operational processes increases the risk of conflict.

    Empowered by big data and artificial intelligence technologies, traditional combat processes will be rebuilt intelligently, that is, from “situational awareness – command decision-making – attack and defense coordination – comprehensive support” to “intelligent cognition of global situation – human-machine integrated hybrid decision-making – manned/unmanned autonomous coordination – proactive on-demand precise support”. However, although the intelligent reconstruction of combat processes has improved the efficiency and accuracy of operations, it has also increased the risk of conflict and misjudgment.

    First, wars that break out at “machine speed” will increase the risk of hasty actions. Artificial intelligence weapon systems have demonstrated strong capabilities in accuracy and response speed, making future wars break out at “machine speed”. ⑩ However, too fast a war will also increase the risk of conflict. In areas such as missile defense, autonomous weapon systems, and cyberspace that value autonomy and response speed, faster response speeds will bring huge strategic advantages, but will also greatly compress the time window for the defender to respond to military actions, causing combat commanders and decision makers to be under tremendous “time pressure”, exacerbating the risk of “hasty action” and increasing the possibility of accidental escalation of crises.

    Second, reliance on system autonomy may increase the chance of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on the dynamic changes in mission parameters, and efficiently achieve human preset goals. The increase in autonomy not only greatly reduces dependence on manpower and improves overall operational efficiency, but is also regarded by defense planners as a key factor in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, since human commanders cannot respond quickly enough, they may gradually delegate control to autonomous systems, increasing the chance of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly marked a friendly Tornado fighter as an anti-radiation missile. The commander chose to launch the missile under the pressure of only a few seconds to react, resulting in the death of two pilots. ⑫

    Third, it weakens the effectiveness of the crisis termination mechanism. During the Cold War, the United States and the Soviet Union led the construction of a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear wars. In these measures, humans play a vital role as “supervisors”. When risks may get out of control, they can initiate termination measures in sufficient time to avoid large-scale humanitarian disasters. However, with the improvement of the computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become faster, more precise and destructive, and humans’ termination intervention mechanism for crises may be weakened.

    War accountability is difficult and collateral casualties increase.

    Artificial intelligence weapon systems make it more difficult to define responsibility for war. In traditional combat modes, weapons systems are controlled by humans. Once errors or crises occur, human operators or developers of operating systems will bear corresponding responsibilities. Artificial intelligence technology itself weakens human initiative and control capabilities, making the attribution of responsibility for technical behavior unclear.

    The first is the problem of the “black box” of artificial intelligence. Although artificial intelligence has significant advantages in processing and analyzing data, its internal operating rules and causal logic are often difficult for humans to understand and explain, which makes it difficult for programmers to correct errors in the algorithm. This problem is often referred to as the “black box” of the algorithm model. Once the artificial intelligence weapon system poses a safety hazard, the “algorithm black box” may become a rational excuse for the relevant responsible parties to shirk responsibility. Those who pursue responsibility can only face generalized shirking and shirking of responsibility, and point the finger of responsibility at the artificial intelligence weapon system. In practice, if the decision-making process of artificial intelligence cannot be understood and explained, it may cause a series of problems, such as decision-making errors, trust crises, and information abuse.

    The second is the division of responsibilities between humans and machines in military operations. When an AI system fails or makes a wrong decision, should it be considered an independent entity to bear responsibility? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this division of responsibilities lies not only in the technical level, but also in the ethical and legal levels. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human preset procedures and algorithms, so their responsibilities cannot be completely independent of humans. On the other hand, AI systems may go beyond the preset scope of humans and make independent decisions in some cases. How to define their responsibilities at this time has also become a difficult problem in the field of arms control.

    The third is the issue of the allocation of decision-making power between humans and artificial intelligence weapon systems. According to the different autonomous powers of the machine, the artificial intelligence system can perform tasks in three decision-making and control modes: semi-autonomous, supervised autonomous, and fully autonomous. In a semi-autonomous system, the decision-making power of the action is controlled by humans; in supervised autonomous actions, humans supervise and intervene when necessary; in fully autonomous actions, humans do not participate in the action process. With the gradual deepening of the military application of artificial intelligence, the role of humans in the combat system is undergoing a gradual transformation from the traditional “man in the loop” mode to the “man on the loop”, and humans have evolved from direct operators inside the system to supervisors outside the system. However, this transformation has also raised new problems. How to ensure that artificial intelligence weapon systems can still follow human ethics and values ​​when operating independently is a major challenge facing the current field of artificial intelligence weapon research and development.

    Lowering the threshold for proliferation leads to misuse and abuse.

    Traditional strategic competition usually involves large-scale research and development and procurement of weapons systems, which requires a lot of money and technical support. After AI technology matures and spreads, it has the advantages of being easy to obtain and inexpensive. Even small and medium-sized countries may have the ability to develop advanced intelligent weapon systems. At present, strategic competition in the field of military AI is mainly concentrated between major military powers such as the United States and Russia. However, in the long run, the spread of AI technology will expand the scope of strategic competition and pose a destructive threat to the existing strategic balance. Once smaller countries that master AI technology have relatively strong competitiveness, their willingness to initiate confrontation when facing threats from major powers may increase.

    First, artificial intelligence helps develop some lightweight and agile means of warfare, thereby encouraging some small and medium-sized countries or non-state actors to use it to carry out small, opportunistic military adventures, achieving their strategic goals at a lower cost and with more abundant channels. Second, the rapid development of artificial intelligence has made new forms of warfare such as cyber warfare and electronic warfare increasingly prominent. In a highly competitive battlefield environment, malicious third-party actors can influence military planning and strategic deterrence by manipulating information, leading to an escalation of the situation. In the Ukrainian crisis that broke out in 2022, a lot of false information was spread on the Internet to confuse the public. Third, the widespread application of artificial intelligence technology has also reduced strategic transparency. Traditional military strategies often rely on a large amount of intelligence collection, analysis and prediction, and with the assistance of artificial intelligence technology, combat planning and decision-making processes have become more complex and unpredictable. This opacity may lead to misunderstandings and misjudgments, thereby increasing the risk of escalating conflicts.

    Governance Path for Security Risks of Weaponized Artificial Intelligence

    To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework; strengthen the constraints on artificial intelligence ethics to ensure that technological development complies with ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.

    Attach great importance to strategic communication at the international level.

    AI governance is a global issue that requires the concerted efforts of all countries to solve. On the international stage, countries have both mixed and conflicting interests. Therefore, dealing with global issues through effective communication channels has become the key to maintaining world peace and development.

    On the one hand, we need to accurately grasp the challenges of international governance of AI. We need to grasp the consensus of various countries on the development of weaponized AI, pay close attention to the policy differences among countries in the security governance of weaponized AI applications, and coordinate relevant initiatives with the UN agenda through consultation and cooperation, so as to effectively prevent the military abuse of AI and promote the use of AI for peaceful purposes.

    On the other hand, governments should be encouraged to reach relevant agreements and establish strategic mutual trust through official or semi-official dialogues. Compared with the “Track 1 Dialogue” at the government level, the “Track 1.5 Dialogue” refers to dialogues between government officials and civilians, while the “Track 2 Dialogue” is a non-official dialogue between scholars, retired officials, etc. These two forms of dialogue have higher flexibility and are important supplements and auxiliary means to official dialogues between governments. Through a variety of dialogue and communication methods, officials and civilians can widely discuss possible paths to arms control, share experiences and expertise, and avoid the escalation of the arms race and the deterioration of tensions. These dialogue mechanisms will provide countries with a continuous communication and cooperation platform, help enhance mutual understanding, strengthen strategic mutual trust, and jointly respond to the challenges brought about by the militarization of artificial intelligence.

    Scientifically formulate laws and ethical norms for artificial intelligence.

    Artificial intelligence technology itself is neither right nor wrong, good nor evil, but there are differences in good and bad intentions in the design, development, manufacturing, use, operation and maintenance of artificial intelligence. The weaponization of artificial intelligence has aroused widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on a complex battlefield? In addition, if artificial intelligence weapon systems cause unexpected harm, how to define the responsibility? Is it in line with moral and ethical standards to give machines the decision-making power of life and death? These concerns highlight the need to strengthen the ethical constraints of artificial intelligence.

    On the one hand, we must insist on ethics first and integrate the concept of “intelligent for good” from the source of technology. In the design process of artificial intelligence military systems, values ​​such as people-oriented and intelligent for good will be embedded in the system. The purpose is to eliminate the indiscriminate killing and injury that may be caused by artificial intelligence from the source, control its excessive lethality, and prevent accidental damage, so as to limit the damage caused by artificial intelligence weapon systems to the smallest possible range. At present, nearly 100 institutions or government departments at home and abroad have issued various artificial intelligence ethical principle documents, and academia and industry have also reached a consensus on the basic ethical principles of artificial intelligence. In 2022, China’s “Position Paper on Strengthening the Ethical Governance of Artificial Intelligence” submitted to the United Nations provided an important reference for the development of global artificial intelligence ethical supervision. The document clearly emphasizes that artificial intelligence ethical supervision should be promoted through institutional construction, risk control, collaborative governance and other measures.

    On the other hand, we need to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of AI entities. We need to formulate strict technical review standards to ensure the security and reliability of AI systems. We need to conduct comprehensive tests before AI systems go online to ensure that they do not have a negative impact on human life and social order. We need to clarify the legal responsibilities of developers, users, maintainers and other parties throughout the life cycle of AI systems, and establish corresponding accountability mechanisms.

    Pragmatically participate in international cooperation on artificial intelligence security governance.

    The strategic risks brought about by the military application of artificial intelligence further highlight the importance of pragmatic cooperation in international security. It is recommended to focus on three aspects:

    First, promote the formulation of guidelines for the use of artificial intelligence in the military field. Formulating a code of conduct for the military application of artificial intelligence is an important responsibility of all countries to regulate the military application of artificial intelligence, and it is also a necessary measure to promote international consensus and comply with international laws and regulations. In 2021, the Chinese government submitted the “China’s Position Paper on Regulating the Military Application of Artificial Intelligence” to the United Nations Convention on Certain Conventional Weapons Conference, and issued the “Global Artificial Intelligence Governance Initiative” in 2023. These have provided constructive references for improving the code of conduct for regulating the military application of artificial intelligence.

    The second is to establish an applicable regulatory framework. The dual-use nature of AI involves many stakeholders. Some non-state actors, such as non-governmental organizations, technology communities, and technology companies, will play a more prominent role in the global governance of AI and become an important force in the construction of a regulatory framework for the military application of AI. The technical regulatory measures that countries can take include: clarifying the scope of use of AI technology, responsible entities, and penalties for violations; strengthening technology research and development to improve the security and controllability of technology; establishing a regulatory mechanism to supervise the development and application of technology throughout the process, and promptly discover and solve problems.

    Third, jointly develop AI security prevention technologies and solutions. Encourage bilateral or multilateral negotiations between governments and militaries to be included in the dialogue options for military AI applications, conduct extensive exchanges on military AI security prevention technologies, operating procedures and practical experience, promote the sharing and reference of relevant risk management technical standards and usage specifications, and continuously inject new stability factors into the international security mutual trust mechanism under the background of AI militarization.

    (The author is the director, researcher, and doctoral supervisor of the National Defense Science and Technology Strategic Research Think Tank of the National University of Defense Technology; Liu Hujun, a master’s student at the School of Foreign Languages ​​of the National University of Defense Technology, also contributed to this article)

現代國語:

【摘要】人工智慧武器化是新一輪軍事變革的必然趨勢,近年來局部戰爭的衝突進一步刺激相關國家推動人工智慧武器化戰略部署,搶佔未來戰爭制高點。人工智慧武器化的潛在風險不容忽視,將可能加劇軍備競賽,打破戰略平衡;賦能作戰流程,加大衝突風險;提升問責難度,增加附帶傷亡;降低擴散門檻,導致誤用濫用。對此,應加強國際間戰略溝通,確保各國在人工智慧軍事應用上的共識與協作;推動法律法規建設的對話與協調,以形成統一規範的法律架構;加強人工智慧倫理約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

【關鍵字】人工智慧 軍事應用 安全風險 安全治理 【中圖分類號】F113 【文獻識別碼】A

人工智慧武器化,是將人工智慧相關技術、平台與服務應用到軍事領域,使其成為賦能軍事行動的重要驅動力量,進而提升軍事行動的效率、精準度與自主性。隨著人工智慧技術在軍事領域的廣泛應用,各主要大國及軍事強國紛紛加大戰略與資源投入,加速研發應用步伐。近年來頻繁的區域戰爭衝突也進一步刺激了人工智慧的戰場運用,並深刻塑造戰爭形態以及軍事變革的未來走向。

不容忽視的是,人工智慧作為一類快速發展中的技術,其本身由於內在技術的不成熟、場景匹配的不準確、支持條件的不完備,可能存在潛在風險,而由於人為的誤用、濫用甚至惡意使用,也容易給軍事領域乃至國際安全領域帶來多種風險挑戰。認真貫徹實習近平總書記提出的全球安全倡議,必須直面世界範圍內人工智慧武器化的發展趨勢,深入分析人工智慧武器化應用可能帶來的安全風險,並思考科學可行的治理思路與舉措。

當前人工智慧武器化的發展趨勢

近年來,人工智慧在軍事領域的應用,正從根本上重塑未來戰爭形態、改變未來作戰體系,影響軍事變革的未來走向。主要軍事大國已將人工智慧視為改變未來戰爭規則的顛覆性關鍵技術,紛紛挹注大量資源,並推動人工智慧武器的研發與應用。

人工智慧武器化是軍事變革的必然趨勢。

隨著科學技術的快速發展,軍事變革的必要性與緊迫性愈發凸顯。人工智慧透過模擬人類的思考過程,延展人類的腦力與體力,可實現資訊快速處理、分析與決策,研發日益複雜的無人化武器系統平台,進而為軍事行動提供前所未有的智慧化支援。

一是為軍事情報偵察與分析提供智慧支援。傳統的情報偵察方式受到人力和時間等多重因素制約,難以有效應對大規模、高速度和高複雜度的情報處理需求。人工智慧技術的引進,為情報偵察領域帶來革新和突破。在軍事基礎設施中,應用人工智慧技術,可建構智慧監測系統,提供高精度即時的情報感知服務。在情報偵察領域,人工智慧技術具備對多個「資訊流」進行即時處理的能力,從而大大提高分析效率。 ①透過使用深度學習等技術工具,還可以“透過現像看本質”,挖掘出各類碎片化情報信息中的深層脈絡與因果聯繫,將海量碎片化數據快速轉變為可以利用的情報,從而提升情報分析的質效。

二是為作戰指揮與決策提供資料支援。人工智慧在戰場態勢感知方面為作戰指揮和軍事決策提供有力支援。 ②其優點在於能夠進行資料探勘、資料融合以及預測分析等關鍵任務。在資訊化智能化戰爭中,戰場環境瞬息萬變,情報資訊量龐大,要求決策反應迅速且準確。因此,先進的電腦系統就成為協助指揮人員管理情報資料、進行敵情判斷、提出作戰方案建議以及擬制計畫與命令的重要工具。以美軍為例,美國雷神科技公司(Raytheon Technologies Corporation)研發的ISTAR(情報、監視、目標辨識與追蹤)系統,涵蓋了情報採集、監視、目標辨識及追蹤功能,可匯聚來自衛星、艦船、飛機及地面站等多元資訊來源的數據,並對其進行深度分析與處理。這不僅顯著提高了指揮官獲取資訊的速度,而且可藉助智慧分析系統提供數據支持,使決策更加快速、高效和精準。

第三是為無人作戰系統提供重要支撐。無人作戰系統是一種無需人類直接操縱,便可獨立完成軍事任務的新型武器裝備系統,主要包括智慧化無人作戰平台、智慧化彈藥和智慧化作戰指揮控制系統等組成部分,具備顯著的自主性和智慧化特徵。無人作戰系統,作為引領未來戰爭形態變革的技術裝備,成為國家間軍事競爭的重要籌碼。該系統透過運用自主導航、目標辨識、路徑規劃等關鍵技術,實現了不同戰場環境及作戰空間的適應能力。透過深度學習、強化學習等先進演算法,無人作戰系統能夠獨立完成導航任務,並實現精準打擊目標。這種系統的設計理念是“平台無人,系統有人”,其本質是對有人作戰系統的智慧化延伸。例如,美國國防部高級研究計畫局(DARPA)研發的「MQM-57獵鷹者」無人機,就採用了先進的人工智慧技術,具備高度自主的目標識別和追蹤功能。

四是為軍事後勤與裝備保障提供技術支援。在資訊化戰爭的背景下,戰爭進程加快、機動性提升、作戰消耗顯著增加。傳統的「超量預儲」保障模式已無法適應現代戰場快速變化的需求,因此,對作戰部隊進行適時、適地、適需、適量的快速精確後裝保障提出了更高的要求。人工智慧作為一種具有溢出帶動和交叉融合特性的技術,與物聯網、大數據、雲端運算等尖端技術相互融合,使得人工智慧知識群、技術群和產業群全面滲透到軍事後裝領域,顯著提升了後勤裝備保障能力。

主要國家紛紛佈局人工智慧軍事應用。

為增強人工智慧領域的全球競爭力,美國、俄羅斯、日本等主要大國加緊人工智慧軍事應用的戰略佈局。首先,透過更新和調整人工智慧領域的頂層策略規劃,為未來的發展提供明確指導;其次,針對未來戰爭需求,加速人工智慧技術與軍事領域的深度融合,推動裝備系統的智慧化、自主化和無人化發展;此外,積極創新作戰概念,以驅動作戰力量創新,進而提升作戰效能和競爭優勢。

一是製定戰略規劃。基於技術霸權追求軍事霸權、政治霸權、經濟霸權的戰略偏執,美國正加速自體軍事智慧化進程。 2023年11月,美國國防部發布《數據、分析與人工智慧採用戰略》,旨在擴展整個國防部體系的先進能力,以獲得持久的軍事決策優勢。俄軍頒布被稱為「3.0版本」的《2024年至2033年俄羅斯武器裝備發展綱要》,旨在為未來10年武器裝備發展提供指導,綱要強調繼續推進核武器和常規武器建設,並重點研究人工智慧和機器人技術、高超音速武器和其他基於新物理原理的打擊兵器。

二是研發先進裝備系統。美軍自2005年開始每隔幾年都會發布一版“無人系統路線圖”,以展望並設計空中、地面、水面/水下等各領域無人系統平台,貫通研發—生產—測試—訓練—作戰—保障等無人化武器裝備發展鏈路。目前,世界上已有70多個國家可以研發無人化系統平台,各種類型的無人機、無人車、無人船(艇)、無人潛航器如雨後春筍般不斷出現。 2024年7月15日,美軍參會前主席馬克‧米利接受《美國防務新聞》採訪時稱,到2039年,三分之一的美軍部隊將由機器人組成。俄軍研發的平台-M作戰機器人、「柳葉刀」自殺式無人機和S70「獵人」重型無人機等,已投入實戰檢驗。

三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來提出「分散式殺傷」「多域戰」「馬賽克戰」等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種感測器、通訊網路、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智慧技術賦能支援下,透過網路資訊系統可動態連結、自主規劃、協同組合,從而形成一個按需整合、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計畫》,該計畫旨在將多域作戰向全局作戰概念拓展,將各軍種感測器連接到一個統一「物聯網」中,利用人工智慧演算法幫助改善作戰指揮決策。 ③

戰爭衝突刺激人工智慧武器化進程。

近年來,利比亞衝突、納卡衝突、烏克蘭危機、哈以衝突等局部衝突不斷,進一步刺激了人工智慧武器化的發展進程。

在利比亞衝突中,交戰雙方採用多種型號無人機執行偵察和作戰任務。根據聯合國利比亞問題專家小組發布的報告指出,土耳其製造的「卡古-2」(Kargu-2)無人機2020年在利比亞執行了「追捕並遠程交戰」行動,可自主攻擊撤退中的敵方士兵。這事件標誌著致命性自主武器系統在實戰中的首次運用。如美國學者扎卡里·卡倫伯恩所述,若有人在此類自主攻擊中不幸喪生,這極有可能是歷史上首個已知的人工智慧自主武器被用於殺戮的例子。在2020年納卡衝突中,阿塞拜疆運用土耳其生產的「旗手」TB2無人機編隊和以色列生產的「哈洛普」無人機成功突破了亞美尼亞防空系統,掌握了戰場制空權和主動權。 ④ 阿塞拜疆軍隊無人機作戰的顯著成效,在很大程度上源於亞美尼亞軍隊的「輕敵」心態,對無人機在現代戰爭中的重要性和威脅性認識不足。其次,從進攻策略的角度來看,阿塞拜疆軍隊在無人機戰法上進行了大膽的創新。他們靈活運用察打一體無人機和巡彈等先進裝備,不僅提升了作戰效率,也大大增強了戰鬥的突然性和致命性。 ⑤

在2022年爆發的烏克蘭危機中,俄羅斯和烏克蘭都廣泛使用軍用級和商用無人機執行偵察監視、火砲瞄準和打擊任務。烏克蘭軍隊透過使用「旗手」TB2無人機以及美國援助的「彈簧刀」系列自殺式無人機,實施精準打擊和高效殺傷,成為令世界矚目的「戰場殺手」。在哈以衝突中,以色列軍方被指控使用名為「薰衣草」(Lavender)的人工智慧系統來識別並鎖定加薩境內的轟炸目標,曾將多達3.7萬名加薩巴勒斯坦人標記為「武裝分子」嫌疑對象,並將其認定為可直接「暗殺」的目標,以軍事行動引發了國際社會廣泛關注和譴責對象。 ⑥

人工智慧武器化帶來的​​安全風險

從自動化指揮系統到智慧無人作戰平台,再到網路防禦中的智慧決策系統,人工智慧技術在軍事領域的應用正變得愈發普遍,已成為現代戰爭不可或缺的一部分。然而,在人工智慧武器化的趨勢下,其誤用、濫用甚至惡意使用,也將為國際安全帶來不可忽視的風險挑戰。

加劇軍備競賽,打破戰略平衡。

在資訊化智能化時代,人工智慧所具有的顛覆潛力讓軍事大國都難以抗拒,紛紛聚焦人工智慧軍事能力的開發與運用,唯恐在這一領域落後而喪失戰略機會。深化人工智慧軍事應用,則能夠以更低成本、更高效率的方式獲得「非對稱優勢」。

一是各國紛紛搶抓「先行者優勢」。當一個國家在智慧武器系統開發領域取得技術領先地位時,意味著該國具備更高階的人工智慧和相關應用能力,使其在武器系統開發、控制和緊急應變等方面具有先發優勢。這種優勢包括更高的自主性、智慧化程度和自適應能力,從而增加了該國的軍事實力和戰略競爭優勢。同時,先行者的軍事優勢可能會成為競爭對手的安全威脅,導致各國在先進技術的軍事應用上呈現出你爭我趕的態勢。 ⑦ 2023年8月,美國國防部副部長凱瑟琳·希克斯宣布了「複製者計畫」(Replicator initiative),該倡議力求在不到兩年的時間內在印太地區部署數千個「自主武器系統」。 ⑧

二是各國人工智慧軍備建設的不透明性可能加劇軍備競賽。這主要有兩個方面的原因:一是人工智慧技術是一種可用於設計多種應用的“使能技術”,這意味著人工智能軍事應用具體情況核查難度較高,難以像核武器可以通過對鈾、離心機以及武器和運載系統的監測來判斷一個國家是否在進行核武器的開發或部署。半自主、完全自主武器系統之間的差異主要是由於電腦軟體演算法不同導致的,很難透過物理核查手段來對各國的條約執行情況進行核查。二是各國為了維持己方的戰略優勢,往往對先進技術的軍事應用相關細節採取保密措施,使對手無法探知其戰略意圖。在當前國際環境中,這種不透明性不僅加劇了軍備競賽,更為未來衝突升級埋下了伏筆。

三是各國戰略意圖的不確定性也會加劇軍備競賽。人工智慧對於戰略穩定、核威懾和戰爭升級的影響,很大程度上取決於他國對其能力的感知,而非其實質能力。正如美國學者托馬斯·謝林指出,國際關係常常具有風險競爭的特徵,更多的是對勇氣而不是武力的考驗,主要對手之間的關係是由哪一方最終願意投入更大的力量,或使之看起來即將投入更大的力量來決定的。 ⑨ 一個行為體對於他者能力的感知,無論真假,都會在很大程度上影響軍備競賽進程。如果一個國家大力發展智慧武器系統,競爭對手在不確定對方意圖的情況下,會對競爭對手的軍備能力及發展軍備的意圖產生猜忌,往往採取對等措施,即透過發展軍備來滿足自身安全需求。正是這種意圖的模糊性刺激了技術積累,加劇武器部署的不穩定性,最終導致惡性循環。

賦能作戰流程,增加衝突風險。

在大數據與人工智慧技術賦能下,傳統作戰流程將實現智慧化再造,即由「態勢感知—指揮決策—攻防協同—綜合保障」轉向「全局態勢智慧認知—人機一體混合決策—有人/無人自主協同—主動按需精準保障」轉變。然而,作戰流程的智慧化再造雖然提高了作戰的效率和精準性,但也提升了衝突和誤判的風險。

一是以「機器速度」爆發的戰爭將增加倉促行動的風險。人工智慧武器系統在精確度和反應速度上表現出強大的能力,使得未來戰爭將以「機器速度」爆發。 ⑩ 但戰爭速度過快也將增加衝突風險。在飛彈防禦、自主武器系統和網路空間等重視自主性以及反應速度的領域,更快的反應速度將帶來巨大的戰略優勢,同時也極大地壓縮了防禦方對軍事行動作出反應的時間窗口,導致作戰指揮官和決策者置身於巨大的「時間壓力」之下,加劇了「倉促行動」的風險,並增加了危機意外升級的可能性。

二是依賴系統自主性可能增加壓力下的誤判幾率。美國國防部認為,「高度自主化的人工智慧系統,能夠根據任務參數的動態變化,自主選擇並執行相應操作,高效實現人類預設的目標。自主性的增加不僅大幅減少了對人力的依賴,提高了整體操作效率,更被國防規劃者視為保持戰術領先、確保戰場優勢的關鍵要素。」⑪然而,由於人類指揮官無法做出足夠快的決定權,可能會逐漸增加自己。 2003年3月,美國「愛國者」飛彈系統曾錯誤地將友軍的「龍捲風」戰鬥機標記為反輻射飛彈,指揮人員在只有幾秒鐘反應時間的壓力狀態下,選擇發射飛彈,造成了兩名飛行員的死亡。 ⑫

三是削弱了危機終止機制的有效性。冷戰時期,美蘇主導建構了一系列限制性措施來遏止危機的升級,避免其演變為大規模的核戰。在這些措施中,人類扮演著至關重要的「監督者」角色,在可能出現風險失控時,能夠在充足的時間內啟動終止措施,避免大規模人道災難發生。但是,隨著人工智慧系統運算能力的提升及其與機器學習的深度融合,作戰反應變得更為迅捷、精確和具有破壞性,人類對於危機的終止幹預機制將可能被削弱。

戰爭問責困難,增加附帶傷亡。

人工智慧武器系統使得戰爭責任更難界定。在傳統作戰模式下,由人類控制武器系統,一旦造成失誤或危機,人類操作員或作業系統的研發者將承擔相應的責任。人工智慧技術本身弱化了人類的能動性和控制能力,致使技術性行為的責任歸屬變得模糊不清。

一是人工智慧「黑箱」問題。儘管人工智慧在處理和分析資料方面有著顯著優勢,但是其內部運作規律和因果邏輯卻常常難以被人類理解和解釋,這使得程式設計師難以對錯誤演算法進行糾偏除誤,這一問題常常被稱為演算法模型的「黑盒子」。一旦人工智慧武器系統產生安全危害,「演算法黑箱」可能成為相關責任方推卸責任的合理化藉口,追責者只能面臨泛化的卸責與推諉,並將責任矛頭指向人工智慧武器系統。在實踐中,如果無法理解並解釋人工智慧的決策過程,可能會引發一系列的問題,如決策失誤、信任危機、資訊濫用等。

二是軍事行動中人機責任劃分問題。當人工智慧系統出現故障或決策失誤時,是否應將其視為一種獨立的實體來承擔責任?或者,是否應該將其視為一種工具,由人類操作者承擔全部或部分責任?這種責任劃分的複雜性不僅在於技術層面,更在於倫理和法律層面。一方面,人工智慧系統雖然能夠自主決策,但其決策過程仍受到人類預設的程式和演算法限制,因此其責任無法完全獨立於人類之外。另一方面,人工智慧系統在某些情況下可能會超越人類的預設範圍,做出獨​​立的決策,此時其責任又該如何界定,也成為軍控領域的難題。

三是人與人工智慧武器系統的決策權分配問題。依照機器自主權限的不同,人工智慧系統能夠以半自主、有監督式自主以及完全自主三種決策與控制方式執行任務。在半自主系統中,行動的決策權由人類掌控;在有監督式自主行動中,人類實施監督並在必要時幹預;在完全自主行動中,人類不參與行動過程。隨著人工智慧軍事應用程度的逐漸加深,人類在作戰系統中的角色正經歷由傳統的「人在迴路內」模式逐步向「人在迴路」轉變,人類從系統內部的直接操控者演化為系統外部的監督者。然而,這項轉變也引發了新的問題。如何確保人工智慧武器系統在獨立運作時仍能遵循人類倫理和價值觀,這是當前人工智慧武器研發領域面臨的重大挑戰。

降低擴散門檻,導致誤用濫用。

傳統的戰略競爭通常涉及大規模的武器系統研發和採購,需要大量資金和技術支援。人工智慧技術成熟擴散後,具有易取得且價格低廉等優勢,即便是中小國家也可能具備開發先進智慧武器系統的能力。目前,軍用人工智慧領域的戰略競爭主要集中在美俄等軍事大國之間。但長遠來看,人工智慧技術的擴散將擴大戰略競爭的範圍,對現有的戰略平衡構成破壞性威脅。一旦掌握人工智慧技術的較小規模國家擁有相對較強的競爭力,這些國家在面臨大國威脅時發起對抗的意願可能就會增強。

一是人工智慧有助於發展一些輕便靈巧的作戰手段,從而鼓勵一些中小國家或非國家行為體利用其開展小型的、機會主義的軍事冒險,以更低廉的成本和更豐富的途徑來達到其戰略目地。二是人工智慧的快速發展使得網路戰、電子戰等新型戰爭形態日益凸顯。在競爭激烈的戰場環境中,惡意的第三方行為體可以透過操縱資訊來影響軍事規劃和戰略威懾,導致局勢升級。在2022年爆發的烏克蘭危機中,就有眾多網路假訊息傳播混淆視聽。三是人工智慧技術的廣泛應用也降低了戰略透明度。傳統的軍事戰略往往依賴大量的情報收集、分析和預測,而在人工智慧技術的輔助下,作戰計畫和決策過程變得更加複雜和難以預測。這種不透明性可能導致誤解和誤判,增加了衝突升級的風險。

人工智慧武器化安全風險的治理路徑

為確保人工智慧安全發展,避免其武器化帶來的​​潛在危害,應加強國際間的治理戰略溝通,尋求各國在人工智慧軍事應用方面的共識與協作;推進法律法規對話協調,以形成統一規範的法律框架;加強人工智慧倫理的約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

高度重視國際層面戰略溝通。

人工智慧治理是全球性問題,需要各國通力合作,共同解決。在國際舞台上,各國利益交融與利益衝突並存,因此,透過有效的溝通管道來處理全球性議題成為維護世界和平與發展的關鍵。

一方面,要精準掌握人工智慧國際治理挑戰。既要掌握各國對人工智慧武器化發展的共識,也要密切關注各國在人工智慧武器化應用安全治理方面的政策差異,透過協商合作,使相關倡議與聯合國議程相協調,從而有效防止人工智慧在軍事上的濫用,推動人工智慧用於和平目的。

另一方面,推動各國政府透過官方或半官方對話,達成相關協議,建立戰略互信。相較於政府層面的“1軌對話”,“1.5軌對話”指的是政府官員與民間人士共同參與的對話,而“2軌對話”則是由學者、退休官員等進行的民間非官方形式的對話。這兩種對話形式具有更高的彈性,是政府間官方對話的重要補充和輔助。透過多樣化的對話交流方式,官方和民間人士可以廣泛諮詢軍備控制的可能實現路徑,分享經驗和專業知識,以避免軍備競賽的升級和緊張局勢的惡化。這些對話機制將為各國提供持續的溝通與合作平台,有助於增進相互理解、加強戰略互信,共同因應人工智慧軍事化應用帶來的挑戰。

科學制定人工智慧法律和倫理規約。

人工智慧技術本身並無對錯善惡之分,但對於人工智慧的設計、研發、製造、使用、運作以及維護確有善惡意圖之別。人工智慧武器化引發了廣泛的倫理關注。國際法框架下,自主武器系統是否能夠在複雜戰場上精準區分戰鬥人員與平民?此外,若人工智慧武器系統導致非預期的傷害,其責任歸屬如何界定?將關乎生死的決策權交付於機器,這項做法是否符合道德倫理標準?這些擔憂凸顯了加強人工智慧倫理約束的必要性。

一方面,要堅持倫理先行,從技術源頭融入「智能向善」的概念。在人工智慧軍事系統的設計過程中,將以人為本、智能向善等價值觀內嵌於系統中。其目的是從源頭杜絕人工智慧可能引發的濫殺濫傷行為,控制其過度殺傷力,防範意外毀傷的發生,從而將人工智慧武器系統所帶來的毀傷程度限制在盡可能小的範圍內。目前,國內外已有近百家機構或政府部門發佈各類人工智慧倫理原則文件,學術界和產業界亦就人工智慧基本倫理原則達成共識。 2022年,中國向聯合國遞交的《關於加強人工智慧倫理治理的立場文件》為全球人工智慧倫理監管的發展提供了重要參考。文件明確強調,應透過制度建置、風險管控、協同共治等多方面的措施來推動人工智慧倫理監管。

另一方面,要完善相關法律法規,明確人工智慧主體的權責邊界。制定嚴格的技術審核標準,確保人工智慧系統的安全性和可靠性。在人工智慧系統上線前進行全面的測試,確保其不會對人類生活和社會秩序造成負面影響。明確開發者、使用者、維護者等各方在人工智慧系統全生命週期中的法律責任,以及建立相應的追責機制。

務實參與人工智慧安全治理國際合作。

人工智慧軍事應用所帶來的戰略風險,更凸顯國際安全務實合作的重要性。建議重點從三個面向著手:

一是推動制定人工智慧在軍事領域的運用準則。制定人工智慧軍事應用的行為準則,是各國規範人工智慧軍事應用的重要責任,也是推動國際共識和遵守國際法規的必要措施。中國政府在2021年向聯合國《特定常規武器公約》大會提交了《中國關於規範人工智慧軍事應用的立場文件》,2023年發布《全球人工智慧治理倡議》,這些都為完善規範人工智慧軍事應用的行為準則提供了建設性參考。

二是建立適用的監理架構。人工智慧軍民兩用性使其涉及眾多利益攸關方,一些非國家行為體如非政府組織、技術社群、科技企業在人工智慧全球治理過程中的作用將更加突出,成為人工智慧軍事應用監管框架建設的重要力量。各國可採取的技術監管措施包括:明確人工智慧技術的使用範圍、責任主體和違規處罰措施;加強技術研發,提高技術的安全性和可控性;建立監管機制,對技術的研發和應用進行全程監管,及時發現和解決問題。

三是共同研發人工智慧安全防範技術和解決方案。鼓勵將政府間和軍隊間的雙邊或多邊談判納入軍用人工智慧應用的對話選項,就軍用人工智慧安全防範技術、操作規程及實踐經驗廣泛交流,推動相關風險管理技術標準和使用規範的分享借鑒,為人工智慧軍事化背景下的國際安全互信機制不斷注入新的穩定因素。

(作者為國防科技大學國防科技戰略研究智庫主任、研究員,博導;國防科技大學外國語學院碩士研究生劉胡君對本文亦有貢獻)

中國原創軍事資源:http://paper.people.com.cn/rmlt/pc/content/202502/05/content_30059349.html

Chinese Military Fifth Generation Command Information System and Its Intelligent Technology

中國軍隊第五代指揮資訊系統及其智慧化技術

現代英語:

Modern war presents the explosive growth of battlefield information and new combat style. With the continuous emergence of new technologies such as artificial intelligence and edge computing, a new generation of command information system is coming. Based on the international fourth generation command information system, this paper imagines the overall architecture of the fifth generation command information system, expounds the technical characteristics of its knowledge center, intelligent enabling, cloud edge integration, independent evolution and resilience adaptation, analyze its key technologies, continuously improves the battlefield information advantage, and transforms to the battlefield cognitive advantage, decision-making advantage and action advantage.

Abstract

Modern war presents the explosive growth of battlefield information and new combat style. With the continuous emergence of new technologies such as artificial intelligence and edge computing, a new generation of command information system is coming. Based on the international fourth generation command information system, this paper imagines the overall architecture of the fifth generation command information system, expounds the technical characteristics of its knowledge center, intelligent enabling, cloud edge integration, independent evolution and resilience adaptation, analyze its key technologies, continuously improves the battlefield information advantage, and transforms to the battlefield cognitive advantage, decision-making advantage and action advantage.

Key words

command information system artificial intelligence edge computing situation processing planning and decision action control

Cite this article

Download CitationsZHANG Zhi-hua , WANG Fan . The Fifth Generation Command Information System and Its Intelligent Technology. Command Control and Simulation . 2021, 43(5): 1-7 https://doi.org/10.3969/j.issn.1673-3819.2021.05.001

 Previous Article Next Article In his report to the 19th CPC National Congress, President Xi Jinping clearly pointed out that “we should accelerate the development of military intelligence and improve the joint combat capability and all-domain combat capability based on network information systems” 

1 ] . This statement indicates that future wars will be based on networked and intelligent system operations. The fifth-generation command information system will focus on intelligence, strengthen battlefield information advantages, and strive for battlefield cognitive advantages, decision-making advantages, and action advantages. According to relevant reports, the international command information system has gone through four stages of development 

2 ] and is evolving towards the fifth-generation command information system. The system architecture is developing towards intelligence, knowledge, cloud edge, and service. The fourth-generation system in the world mainly uses networking, service, and cloud to build an overall coordinated command information system 

2 ] , which meets the needs of coordinated operations to a certain extent and achieves information advantages. However, with the explosive growth of battlefield information, it is difficult to transform the system information advantage into the commander’s cognitive and decision-making advantages. With the emergence of new combat styles such as unmanned combat and cyber warfare, in order to adapt to the complexity and nonlinear characteristics of combat command, the command information system must break through cognitive technology and provide accurate battlefield situation cognition and planning and decision-making capabilities. The fifth-generation command information system is envisioned to be centered on artificial intelligence, edge computing, and cloud brain technology to enhance battlefield cognitive advantages, decision-making advantages, and action advantages, support combat command to move from the information domain to the cognitive domain, and realize capabilities such as information knowledge, intelligent decision-making, agile command and control, multi-domain collaboration, and edge services.

1 New Concept of Command and Control

1.1 Intelligent command and control

Intelligent command and control is to use artificial intelligence methods to achieve the transformation from “information-based, network-centric” to “intelligent, knowledge-centric”, and assist commanders in solving perception, understanding, and cognitive problems in the command field. The system architecture and technical architecture of the command information system will change. The system will apply corresponding intelligent technologies around functional domains such as situation, command, control, and support to improve the cognitive and decision-making efficiency of combat command. Foreign militaries pay great attention to the intelligent application of combat command. Since 2007, the US DARPA has published three white papers on national and military development strategies for artificial intelligence, and has launched plans such as “Deep Green” 

 – 5 ] , “The High-Tech Holy Grail of the Third Offset Strategy”, and “Commander’s Virtual Staff”. In the field of intelligence perception and tactical decision-making, it has launched artificial intelligence projects such as “Insight”, “Xdata”, “Deep Learning”, “Deep Text Search and Filtering”, “Distributed Battlefield Management”, “Human-Machine Collaboration”, “Mind’s Eye”, “Trace”, “Human-Machine Collaboration”, “X-Plan”, “Cognitive Electronic Warfare”, and “AlphaAI Air Combat”, realizing the ability to deeply understand battlefield intelligence, predict situation cognition, and automatically generate and deduce tactical plans. Since then, the U.S. military has also set up projects such as “Autonomous Negotiation Formation”, “Big Dog”, and “Hummingbird” to improve the manned and unmanned collaborative control capabilities. Overall, the U.S. military currently has the world’s leading level of intelligent combat command. In addition, Germany, France, Russia and other countries have also conducted extensive research in intelligent information perception and processing, intelligent autonomous unmanned combat platforms, etc., and have achieved fruitful research results 

 – 8 ] .

1.2 Tactical Edge Command and Control

With the development of military technology, traditional large-scale cluster combat methods are gradually transformed into small-scale asymmetric combat. Combat activities at the tactical edge will play an important role in war. The tactical edge is also known as the “first tactical mile” 

9 ] . It is far away from the command center and has limited communication, computing, and service resources. It is usually composed of combat platforms, tactical units, and special forces. In order to gain information and decision-making advantages, command units at all levels use ubiquitous networks, micro-clouds, and other technologies to achieve information and resource sharing. Mobile computing devices at the tactical edge use fog computing methods to integrate into larger combat units and form micro-clouds under self-organizing networks. The large amount of situation information obtained by the tactical edge is calculated, stored, and shared in the tactical micro-cloud, which simplifies the scale of interaction with the command center, improves the timeliness of information interaction, and solves the problem of insufficient service capabilities at the tactical frontier in the past.

1.3 Multi-Domain Battle Command and Control

In 2016, the U.S. Army proposed the concept of “multi-domain warfare” 

10 ] , taking “synchronous cross-domain firepower” and “all-domain mobility” as core elements, promoting the high integration of combat elements, enhancing all-domain strike capabilities, and attempting to eliminate the “anti-access/area denial” capabilities of China, Russia and other countries. It mainly has the following three characteristics 

10 ] . First, the combat domain is expanded in multiple dimensions, enabling the U.S. Army to deploy forces from the ground to multiple combat domains such as sea, air, electricity, and the Internet, and has the ability to integrate with other services. Second, the combat elements are highly integrated, and the various services and combat functional domains can share information, coordinate tactics, and synchronize actions, which promotes the transformation of joint services to the integration of combat capability elements. Third, the command chain is developing in a flat direction, and the command mechanism is efficient and flexible. It is necessary to have centralized planning and decentralized execution, and to share information and instructions with various command nodes and individual soldiers, extend the tactical command chain, and realize rapid, multi-line, and multi-domain combat command.

1.4 Mosaic Combat Command and Control

In 2017, DARPA proposed the concept of “mosaic warfare” 

11-12 ] , which takes into account both ” threat-based” and “capability-based” equipment construction methods, and flexibly combines sensors, command and control nodes, combat platforms, and cooperative manned and unmanned systems in multiple combat domains on demand to form a mission system. System integration uses a building block approach to dynamically link dispersed fine-grained systems together to form a combat system similar to a “mosaic block”. “Mosaic warfare” uses intelligent decision-making tools to provide distributed situational awareness and adaptive planning and control, assist in combat mission planning, and implement distributed combat management. “Mosaic warfare” requires the replacement of fixed combat force composition with adaptive system reorganization, and the combat command has a resilient and adaptable information system that can customize physically dispersed mixed combat units on demand and meet various dynamic and collaborative combat requirements 

12  – 14 ] .

2. Transformation of the Characteristics of the Fifth Generation Command Information System

1) The system shifts from network-centric to knowledge-centric. The network-centric approach brings battlefield information advantage, which is then transformed into cognitive advantage and decision-making advantage. The information sharing between systems shifts to knowledge-centric intelligence sharing, which promotes the transformation of the entire command system into decision-making and action advantage.2) The cloud architecture is transformed into cloud-edge-end integration. Expand the original cloud resource sharing capabilities 

2 ] and extend them to the platforms, teams, and individual soldiers at the tactical edge, realize the integrated hybrid service capabilities of the battlefield center cloud, mobile cloud, and edge micro-cloud in a mobile environment, and enhance the tactical frontier resource service capabilities.3) Transformation from scheduled integration to resilient adaptability. Currently, the system is deployed and operated according to preset rules. When the mission changes, it must be regulated according to the pre-planned plan. In the future, battlefield systems are vulnerable to attacks and paralysis, requiring the system to have the ability to self-reconstruct, resilient and adaptable when disturbances occur to ensure that the core mission is uninterrupted

 [ 13-14 ] .4) Transformation from computational intelligence to cognitive intelligence. Intelligence is manifested in computational intelligence, perceptual intelligence, and cognitive intelligence. Currently, computational intelligence provides a tactical deterministic solution method. In the future battlefield, intelligent technology must be used to improve the accuracy and real-time degree of cognition in terms of massive intelligence processing, situational awareness, and decision-making reasoning.5) Performance changes from fixed fixed to autonomous learning evolution. The system’s algorithm and performance are generally determined and fixed during the design period, and performance improvement is achieved through upgrading and transformation. Intelligent systems have the ability of self-learning and self-evolution, and can learn algorithms for situational awareness and intelligent decision-making online to improve system performance.6) Construction shifts from capability-based to knowledge-based. Command information systems are generally constructed based on capability elements, and system integration is integrated based on capability elements. Intelligent systems pay more attention to the intellectual construction of the system, focusing on the construction of system knowledge, rules, algorithms, and data.7) The interaction mode will shift to human-machine fusion intelligent interaction. Human-machine fusion intelligent perception, anthropomorphic interaction, intention-oriented intelligent human-machine interface interaction, wearable human-machine fusion computing, and fusion and linkage interaction will become the main interaction mode of future systems, and the human-machine control system will progress towards human-machine fusion.8) The separation of combat and training has shifted to the integration of combat, training, exercise and research. The fifth-generation command information system tightly couples combat command and tactical training, and has parallel simulation and reasoning capabilities. It can not only update intelligent algorithms, but also conduct combat and tactics confrontation research, obtain tactical data, and promote algorithm learning. Exercise training has developed from war game simulation to battlefield virtual game.

3 Overall Architecture Concept

The overall architecture of the future fifth-generation command information system should be a command information system that is knowledge-centric, human-machine integrated, intelligently empowered, cloud-edge integrated, autonomously evolving, and resilient and adaptable. The following article mainly describes the overall system from the perspectives of system architecture, service architecture, and technical architecture 

15 ] . The system architecture mainly refers to the composition of the system’s logical elements and their relationships, the service architecture describes the integration model of information and computing resources between systems, and the technical architecture describes the system’s technical reference model.

3.1 System Architecture Concept

The system is changing from “information-based, network-centric” to “intelligent, knowledge-centric”, while extending to the tactical edge. Based on the original system integration, the system integrates knowledge and algorithms, applies intelligent technology in functional domains such as situation, command, control, and support, and improves the cognition and decision-making efficiency of combat command. The system architecture is envisioned as follows:

Figure 1 Conceptualization of the fifth-generation command information system architecture

第五代指揮資訊系統架構概念

The fifth-generation system expands the functional domain of parallel deduction and learning training on the basis of functional elements such as situational awareness, command decision-making, action control, support and guarantee, and information services to meet the needs of combat branch evaluation and algorithm learning. In terms of situational awareness, it covers computational intelligence, perceptual intelligence, and cognitive intelligence, mainly completing battlefield intelligence processing and target identification, understanding and predicting the situation, having state and momentum, and improving information advantage; in terms of command decision-making, it is mainly based on cognitive intelligence, which can machine tactical reasoning, generate plans and plans, and improve decision-making level; in terms of action control, it is mainly based on computational intelligence and cognitive intelligence, completing task monitoring and temporary tactical control, and providing action optimization strategies based on knowledge reasoning, such as command guidance, firepower coordination, and unmanned cluster intelligent control; in terms of comprehensive guarantee, it is mainly based on computational intelligence, completing the optimal allocation of battlefield resources under prior knowledge and rules; in terms of parallel deduction and learning training, it combines command and control with simulation training, trains personnel and algorithms in peacetime, and conducts parallel plan deduction in wartime.In addition, the fifth-generation system has an autonomous evolving learning mechanism: first, autonomous learning within the node to optimize the algorithm and knowledge base; second, the nodes share intelligent algorithms and knowledge through the command cloud to collaboratively complete the evolution. Each node can upload the learned algorithms and knowledge to the command cloud to update the algorithms and knowledge of the knowledge center; third, the system issues instructions to tactical nodes, weapon nodes, detection nodes, and combat support nodes, and collects execution feedback. These feedback results can be used to learn and evolve the algorithm.Between the fifth-generation systems, based on the original comprehensive integration based on the cloud/end architecture, an integrated sharing method for knowledge and intelligent algorithms has been added. Each command information system uploads intelligent algorithms and knowledge rules to the knowledge center for plug-and-play sharing by heterogeneous nodes such as battlefield detection, command, and weapons. The command information system can obtain existing intelligent knowledge from the knowledge center and conduct secondary learning and training in combination with its own battlefield data to improve algorithm capabilities. The command cloud will eventually form an intelligent knowledge center for the battlefield, and a battlefield knowledge network will be formed between the intelligent command information systems.

3.2 Concept of cloud-edge-device service architecture

In the future, ubiquitous network connections will extend from command units to various squads, individual soldiers, and platforms at the tactical edge. The fifth-generation command information system will use fog computing and distributed computing technologies to build tactical mobile clouds, squad micro-clouds (Cloudlet), and individual task group pico-clouds (Pico-Cloud) based on cloud architecture technology 

9 , 16 ] , forming tactical frontier mobile cloud service capabilities, realizing the hybrid service capabilities of battlefield centralized combat clouds, mobile tactical clouds, and edge micro-clouds and pico-clouds, forming an integrated resource service structure of “cloud, edge, and end”, and quickly building command chains and strike chains.

Concept of cloud-edge-end service architecture of the fifth-generation command information system

第五代指揮資訊系統雲端端服務架構構想

The cloud-edge-end integrated service capability supports the fifth-generation system to achieve dynamic aggregation and release of combat resources through “cloud deployment, cloud aggregation, cloud attack, and cloud dissipation”, thereby improving the combat effectiveness of the entire system 

17 ] . The centralized combat cloud is deployed in the command center in a fixed cloud manner 

16 ] to provide services for various combat nodes; air, land, and sea tactical clouds provide information, algorithms, computing, and storage services under mobile conditions for aircraft, ships, armored forces, and other forces at the tactical frontier, thereby improving the resource sharing level at the tactical frontier 

9 , 16 , 18-19 ] ; in tactical edge military operations, micro-clouds and pico – clouds are constructed. Micro-clouds are deployed in fog computing on vehicles, aircraft, and boats within one hop of the communication distance of the frontier contact unit, expanding the tactical information processing and sharing capabilities of the frontier unit personnel. When individual soldiers and units cannot access micro-clouds, mobile ad hoc networks and distributed computing technologies can be used to construct pico-clouds to support dynamic information aggregation and resource sharing end-to-end under weak connections at the tactical edge, thereby extending the command chain.

3.3 Technical Architecture Concept

The fifth-generation command information system will extend the war from the physical domain and information domain to the cognitive domain, and will change the way of command and control. Its technical architecture is as follows:

Technical architecture of the fifth-generation command information system

第五代指揮資訊系統技術架構

The fifth generation command information system adds tactical edge services and intelligent computing environments based on the networked computing environment of the fourth generation command information system, which is compatible with the system architecture and meets the intelligent requirements of the system. The tactical edge service computing environment provides micro-cloud and pico-cloud basic computing, storage, and information service platforms for weakly connected terminals; the intelligent computing environment provides intelligent services for situation, decision-making, control, and human-computer interaction.The intelligent technology environment layer includes the following five parts. The intelligent computing hardware platform is equipped with AI acceleration processors such as GPU, FPGA, and TPU to adapt to the computing power required by deep learning. Some algorithms use brain-like chips with neuron processing mechanisms or solidified dedicated intelligent computing chips; the intelligent data management platform mainly manages data, samples, cases, models, and knowledge; the deep learning framework integrates the runtime library and basic algorithm library of deep learning and reinforcement learning; the traditional artificial intelligence computing framework includes traditional algorithm support libraries such as spark and bigflow for search and solution, data mining, and parallel processing; intelligent services include application-oriented intelligent algorithm service libraries, such as intelligent interactive recognition, valuation network calculation, and strategy network calculation services, which provide solution interfaces for application development.The intelligent application layer mainly provides functional elements such as intelligent situational awareness, planning and decision-making, action control and information services, human-computer interaction, learning and training. It is the system’s main functional interface for users and the core problem that intelligence needs to solve.The fifth-generation system technology architecture model mentioned above mainly uses cloud computing and intelligent technology support services to achieve the sharing of situations, instructions, algorithms and knowledge between systems, and supports system autonomous evolution, algorithm upgrades and knowledge updates. System intelligence can be divided into levels 0 to 4 

20 ] . Level 0: full manual control; Level 1: computing intelligence, deterministic complex tactical calculations and information automation processing; Level 2: having certain perceptual intelligence, able to understand, evaluate and predict battlefield situations; Level 3: having cognitive intelligence, able to provide machine decision-making and decision-making deduction capabilities; Level 4: having human-machine integration and symbiosis capabilities, and the core algorithm can self-learn and self-evolve. At present, the intelligence level of the fourth-generation system is generally at level 1, and situation understanding and command decisions are still controlled by humans. The intelligence of the fifth-generation system can reach the fourth level through three stages. The first stage is to realize the ability to perceive, understand and evaluate the battlefield situation; the second stage is to build a knowledge base of tactics and enable machine decision-making based on rules, knowledge and algorithms; the third stage is to realize machine self-learning and self-evolution of core tasks, and have the function of autonomous decision-making, reaching a highly intelligent level of human-machine integration 

20 ] .

4 Key technologies of the system and its intelligent concept

The key technologies of the fifth-generation command information system mainly solve the above – mentioned problems of intelligence, cloud – edge-end integration, and system resilience and adaptability. The key technologies of the system and its intelligent concept is the following

Key technologies of the system and its intelligent concept

系統關鍵技術及智慧化理念

The key technologies of the fifth-generation command information system cover all aspects of the command and control OODA loop, and can support the system’s intelligence, resilience, and edge command and control requirements in terms of detection, decision-making, control, and strike, thereby building a precise perception chain, rapid control chain, precise strike chain, and agile service chain, extending to the tactical edge and improving command effectiveness.

1) Situational Awareness Machine Analysis TechnologyIntelligence compilation and analysis technology.

Use big data, deep learning, knowledge graphs and other technologies to perform intelligent information correlation matching, text semantics intelligent analysis, and public opinion intelligent search and extraction to obtain valuable intelligence from massive, multi-source, and heterogeneous battlefield information.

Multiple target rapid recognition technology. Using deep learning methods, a multi-layer CNN convolutional neural network is constructed, and sample feature parameter learning is used to complete feature extraction and rapid target recognition of optical, infrared, electromagnetic, and acoustic information.Situation recognition and understanding technology. Analyze the enemy’s combat intentions and combat capabilities, use the reinforcement learning valuation network technology to simulate the commander’s situation recognition process, and combine the CNN nonlinear battlefield situation fitting ability to establish a mapping from situation images to situation understanding 

Situation machine prediction and assessment technology. Based on situation understanding, the enemy’s tactical behavior is estimated. First, the strategy network is used to obtain the enemy’s activity rules, and then the parallel deduction method is used to perform multi-branch situation deduction. Finally, a prediction network is constructed to predict the situation.

2) Operational planning machine decision-making technology.

Combat mission space and strategy modeling technology. Modeling the state and action strategy of the combat mission space and determining the description method of the mission state, strategy, and feedback are the basis for deep reinforcement learning to make decisions.Mission planning machine decision-making technology. Use operations optimization to complete target analysis and task allocation. Use deep reinforcement learning and swarm intelligence algorithms to machine plan force composition, firepower configuration, and collaborative paths. Tactical planning tends to be rule-based reasoning and easy to break through; campaign planning tends to be knowledge-based reasoning based on experience, involving the art of command, and is more difficult to break through.

Parallel simulation technology for combat plans. With reference to the parallel simulation technology of the “deep green” system the Monte Carlo search tree and game test method are used to simulate enemy combat behavior, rehearse and evaluate the action process, and accumulate feedback reward and punishment functions for learning, training, and decision optimization.

Intelligent generation technology of combat plans. Using intelligent perception algorithms such as natural language understanding, voice command recognition, and sketch recognition, combined with the extraction of elements from the task model, the knowledge graph is used to automatically extract the plan to generate combat plans and command sequences .

Rapid decision-making technology on the spot. Based on the current situation, using the learning data accumulated by the game platform, automatically matching the most appropriate plan adjustment, making dynamic decisions on the plan based on Monte Carlo tree search and transfer learning algorithms, reverse reinforcement learning, and enhancing the generalization ability of the plan.3) Intelligent motion control technologySituation-based improvisation control technology. According to the effects and deviations of combat operations, the resources, paths, and coordination modes of the mission are dynamically adjusted, and parallel simulation multi-branch deduction and reinforcement learning technology are used to correct the deviations, thus realizing tactical “feedforward” control .

Swarm intelligence collaborative control technology. Promote the maximization of the overall effectiveness of battlefield intelligent bodies in collaborative operations, use ant colony and bee colony control algorithms and deep reinforcement learning methods to build a global tactical value network, establish an effect feedback model, and perform strategic control based on the value network.Firepower collaborative control technology. Improve the speed and accuracy of friend-or-foe identification, firepower allocation, and collaborative dispatch, use swarm intelligence and deep reinforcement learning algorithms to automatically plan, coordinate and optimize the strike chain, and have a certain degree of autonomous decision-making ability.

4) Manned/unmanned collaborative command technology.

Multi-domain cluster system autonomous collaborative machine planning technology. Use branch search solution, knowledge reasoning, and deep reinforcement learning to plan and allocate collaborative tasks for manned/unmanned systems, and use swarm intelligence optimization algorithms to plan collaborative trajectories for unmanned and manned platforms.Multi-domain cluster system autonomous collaborative command and control technology. It monitors the missions of unmanned clusters and provides autonomous collaborative command and guidance. It uses swarm intelligence algorithms to detect conflicts and avoid collisions among multiple unmanned platforms, and coordinates grouping, routing, and load.

5) Intelligent information service technology.

Intelligent battlefield information sharing technology uses reinforcement learning and semantic association technology to analyze users’ information needs and preferences, generate information needs based on users’ differentiated characteristics, and intelligently push tactical information to users.

6) Human-machine fusion intelligent interaction technology.

Human-computer fusion intelligent perception interaction technology. Construct multi-channel human-computer interaction methods including sketches, spoken language, gestures, head postures, expressions, eye movements, etc., and provide natural, sensitive, accurate and anthropomorphic interaction strategies . Intention-oriented intelligent human-computer interface technology. Using FCM fuzzy cognitive interactive reasoning technology, infer the user’s interactive intention, and organize the interactive interface output by integrating different means such as spoken language, gestures, sketches, and natural language according to the user’s interface needs and interaction preferences.Smart wearable human-machine fusion technology. It uses edge computing technology and new human-machine interaction methods such as voice, gestures, eye movements, brain-computer interfaces, and augmented reality to provide soldiers with smart wearable devices that have a collaborative, integrated, and linked human-machine interaction mode.

7) Virtual gaming and training evaluation technology.

The combat virtual game technology builds a game confrontation test platform, conducts combat knowledge modeling, and uses parallel simulation, branch decision, differential confrontation and other technologies to conduct red-blue confrontation, which not only trains tactics and methods, but also collects tactical data.Machine training and evaluation technology uses the data accumulated by the game platform and the experience of personnel to model, adopts small sample transfer learning technology to train and optimize the algorithm, replays the real data afterwards, performs transfer learning optimization on the decision model, and updates the decision plan.

8) System resilience adaptive reconstruction technology.

Environmental perception and autonomous fault detection technology. Under soft and hard damage, it can detect the main faults and analyze abnormal correlations, predict the occurrence of faults that affect task execution, evaluate the impact of faults on tasks, and realize active perception and rapid location of system resources and faults.System self-healing and reconstruction intelligent technology. When key nodes of the system fail, an adaptive mechanism is used to reallocate resources, achieve capacity regeneration, and continuously ensure the completion of core tasks. The system changes from a fault repair method with preset rules and manual participation to an intelligent system reconstruction method.

9) Tactical edge computing technology.

Mobile micro-cloud service platform technology. Deployed in fog computing mode on vehicles, aircraft, and boats within one hop of the enemy, it provides shared processing capabilities for combat teams and expands the tactical information processing capabilities of team members.Pi-cloud resource sharing technology under weak connection ad hoc network. Based on the individual soldier ad hoc network, the Pi-cloud is constructed using distributed computing technology to support end-to-end autonomous collaborative information sharing and resource sharing between individual soldier mobile devices under weak connection to meet tactical edge needs.

5 Development ideas and ideas

1) Gradually progress in stages, starting with the easy and then moving on to the difficult. In the first stage, image, voice, gesture, face recognition, and natural language understanding are applied to intelligence analysis; in the second stage, deep learning and reinforcement learning are applied to situational awareness and command decision-making; in the third stage, cloud computing is used to realize a knowledge-centered, intelligently empowered system. 

2) Select intelligent algorithms for application. Focusing on the application of deep learning in situation and deep reinforcement learning in planning and decision-making, select appropriate tactical backgrounds to verify intelligent algorithms. Tactical-level planning of paths, firepower, tasks, etc. can be used as breakthroughs. 

3) Strengthen the construction of knowledge engineering in the field of combat command. Expert rules, military regulations, and actual combat data are the basis of intelligent command. The existing combat rules should be modeled and represented in a knowledge-based manner, and the input and output mapping relationship between knowledge representation and deep learning should be established. The research on knowledge learning and knowledge reasoning methods should be strengthened .

4) Establish a virtual confrontation game platform to accumulate data. Intelligent algorithms require a large number of learning samples. The ways to accumulate samples are: Establish a confrontation game platform to conduct war games, human-machine confrontation, and red-blue confrontation to accumulate data; Collect tactical data from actual combat exercises and build models as training samples.

6 Conclusion

This paper proposes the overall and intelligent concept of the fifth-generation command information system, constructs a new generation of command information system architecture with “intelligent empowerment, human-machine integration, cloud-edge integration, autonomous evolution, cloud-intelligence sharing, and resilience and adaptability”, analyzes its key technologies and capability characteristics, and attempts to achieve cognitive advantages, decision-making advantages, and action advantages based on the fourth-generation system in the world .

There are not many technical verifications for the fifth-generation system in the world, so we should not rush for quick success and still need to conduct sufficient research.

現代國語:

現代戰爭呈現戰場資訊爆炸性成長與新型作戰形態。隨著人工智慧、邊緣運算等新技術的不斷湧現,新一代指揮資訊系統呼之欲出。本文在國際第四代指揮資訊系統的基礎上,構想了第五代指揮資訊系統的整體架構,闡述了其知識中心化、智慧賦能、雲邊融合、自主演進和彈性適配的技術特徵,分析了其關鍵技術,不斷提升戰場資訊優勢,並向戰場認知優勢、決策優勢和行動轉化。

習主席在中國共產黨十九大報告中明確指出,「加速軍事智能化發展,提高基於網路資訊體系的聯合作戰能力、全域作戰能力」[1]。這個論述指明了未來戰爭將是基於網路化、智慧化的體係作戰,第五代指揮資訊系統將以智慧化為核心,強化戰場資訊優勢,爭取戰場認知優勢、決策優勢與行動優勢。據相關通報,國際上指揮資訊系統經歷了四個階段的發展過程[2],正在向第五代指揮資訊系統演化,系統體系結構向智慧化、知識化、雲端端、服務化發展。國際上第四代系統主要以網路化、服務化、雲端化等手段建構了整體協同的指揮資訊體系[2],一定程度上滿足協同作戰需求,實現了資訊優勢。但隨著戰場資訊的爆發式增長,系統資訊優勢很難轉化為指揮的認知與決策優勢,隨著無人作戰、賽博作戰等新型作戰樣式的出現,為了適應作戰指揮的複雜性、非線性特徵,指揮資訊系統須突破認知技術,提供準確的戰場態勢認知與籌​​劃決策能力。第五代指揮資訊系統設想以人工智慧、邊緣運算、雲腦技術為核心,提升戰場認知優勢、決策優勢與行動優勢,支援作戰指揮由資訊域邁向認知領域、實現資訊知識化、決策智慧化、指控敏捷化、協同多域化、服務邊緣化等能力。
1 指揮控制新理念
1.1 智能化指揮控制
智慧化指揮控制就是利用人工智慧方法,實現從「資訊化、網路中心」轉變為「智慧化、知識中心」,輔助指揮者解決指揮領域的感知、理解、認知問題。指揮資訊系統的系統架構、技術架構都會改變。系統圍繞著態勢、指揮、控制、保障等功能域進行相應的智慧技術應用,提升作戰指揮的認知與決策效能。外軍十分關注作戰指揮智能化應用,美軍DARPA從2007年至今,發布了3份關於人工智能國家及軍事發展戰略白皮書,分別開展了“深綠”[3⇓-5]、“第3次抵消戰略的高科技聖杯”、“指揮官虛擬參謀”等計劃,在情報感知與戰術決策領域啟動了“Insight”、Xdata” 「分散式戰場管理」、「人機協作」、「Mind’sEye」、「Trace」、「人機協作」、「X-Plan」、「認知電子戰」、「AlphaAI空戰」等人工智慧專案,實現戰場情報深度理解、態勢認知預測及戰術方案自動生成與推演能力。此後,美軍也設置了「自主協商編隊」、「大狗」、「蜂鳥」等項目,提升有人與無人協同控制能力。整體而言,美軍目前具備全球領先的智慧化作戰指揮水準。此外,德、法、俄等國也紛紛在智慧化資訊感知與處理、智慧自主無人作戰平台等方面進行了大量研究,取得了豐碩的研究成果[6⇓-8]。
1.2 戰術邊緣指揮控制
隨著軍事科技的發展,傳統大規模集群作戰方式逐漸轉換為小範圍的非對稱作戰,戰術邊緣的作戰活動在戰爭中將扮演重要角色。戰術邊緣又稱為「第一戰術英里」[9],它遠離指揮中心,通信、計算、服務資源受限,通常由作戰平台、戰術分隊、特種單兵組成,為了獲得信息與決策優勢,各級指揮單元利用泛在網絡、微雲等技術,實現信息與資源共享。戰術邊緣的移動計算設備,採用霧計算方法,整合為更大的作戰單元,形成自組網下的微雲,戰術邊緣獲取的大量態勢信息,在戰術微雲進行計算、存儲、共享,簡化了與指揮中心的交互規模,提升了信息交互時效,解決以往戰術前沿服務能力不足的問題。
1.3 多域戰指揮控制
2016年美陸軍提出「多域戰」概念[10],將「同步跨域火力」與「全域機動」作為核心要素,推動作戰要素高度融合,增強全域打擊能力,試圖消除中俄等國的「反介入/區域拒止」能力,主要具備以下三個特徵[10]。一是作戰領域向多維擴展,使美陸軍能夠從地面向海、空、電、網等多個作戰域投送力量,具備與其他軍種融合能力。二是作戰要素高度融合,各軍兵種及作戰功能域之間能夠共享資訊、統籌戰術、同步行動,推動了軍種聯合向作戰能力要素融合轉變。三是指揮鏈向扁平方向發展,指揮機制高效靈活,既要集中計劃、分散執行,又要向各指揮節點和單兵共享信息和指令,延伸戰術指揮鏈,實現快速、多線、多域作戰指揮。
1.4 馬賽克作戰指揮控制
2017年,DARPA提出「馬賽克戰」的概念[11-12],兼顧「基於威脅」與「基於能力」的裝備建設方法,將多作戰域的感測器、指控節點、戰鬥平台以及相互協作的有人、無人系統進行按需靈活組合,形成任務系統。系統整合採用搭積木的方式,將分散的細粒度系統動態連結在一起,構成類似「馬賽克區塊」的作戰體系。 「馬賽克戰」,借助智慧化決策工具,提供分散式態勢感知與自適應規劃、控制,輔助進行作戰任務規劃,實施分散式作戰管理。 「馬賽克戰」要求以自適應體系重組取代固定式作戰力量編成,作戰指揮具有韌性適變的資訊體系,能面向任務、按需定制物理分散的混合編成的作戰單元,滿足各種動態、協同作戰需求[12⇓-14]。
2 第五代指揮資訊系統特徵轉變
1) 體係由網路中心轉變為知識中心。以網絡為中心帶來戰場資訊優勢,並向認知優勢、決策優勢轉變,系統間由資訊共享走向以知識為中心的智力共享,促進整個指揮體係向決策及行動優勢轉變。
2) 雲端架構轉向雲端端一體化。拓展原有的雲端資源共享能力[2],向戰術邊緣的平台、分隊、單兵延伸,實現移動環境下戰場中心雲、移動雲、邊緣微雲的一體化混合服務能力,提升戰術前沿資源服務能力。
3) 預定整合向韌性適變轉變。目前系統依預設規則部署運作,任務變更時,須依預先方案進行調控。未來戰場系統易受攻擊而癱瘓,要求系統在發生擾動時,具備自重構韌性適變能力,保證核心任務不間斷[13-14]。
4) 由計算智能轉變為認知智能。智能化表現在計算智能、感知智能、認知智能,目前計算智能提供了戰術確定性求解方法,未來戰場須在海量情報處理、態勢認知與決策推理等方面透過智能化技術提升認知的精準度、實時度。
5) 性能由固化既定轉變為自主學習演化。系統的演算法、性能一般在設計期就被決定與固化,性能的提升透過升級改造完成。智慧化系統具備自學習、自演化能力,可在線上進行態勢感知、智慧決策的演算法學習,提升系統效能。
6) 建設由基於能力轉變為基於知識。指揮資訊系統一般基於能力要素進行建構,系統整合以能力要素進行綜合整合,智慧化系統,更加關注系統的智力建構,聚焦系統的知識、規則、演算法、資料的建構。
7) 互動方式向人機融合智慧互動轉變。人機融合智能感知、擬人化交互、面向意圖的智能人機界面交互、可穿戴的人機融合計算協同於一體、融合聯動的交互模式,將成為未來系統主要交互模式,以人禦機的系統向人機融合進展。
8) 戰訓分離轉變為戰訓演研一體化。第五代指揮資訊系統將作戰指揮與戰術訓練緊密耦合,具有平行模擬、推理能力,既能更新智慧演算法,也可進行戰法對抗研究,取得戰術資料,促進演算法學習。演習訓練由兵棋推演向戰場虛擬賽局發展。
3 總體架構設想
未來第五代指揮資訊系統的整體架構應該是知識中心、人機融合、智慧賦能、雲邊一體、自主演化、韌性適變的指揮資訊系統。下文主要圍繞系統架構、服務架構、技術架構等主要視角對系統總體進行闡述[15],其中系統架構主要指系統邏輯要素組成及其關係,服務架構描述系統之間的資訊與計算資源的整合模式,技術架構描述了系統的技術參考模型。
3.1 系統架構設想
該系統從「資訊化、網路中心」轉變為「智慧化、知識中心」,同時向戰術邊緣延伸。系統綜合整合在原有基礎上,進行知識與演算法的共享整合,在態勢、指揮、控制、保障等功能域進行智慧化技術應用,提升作戰指揮的認知與決策效能。系統架構設想如圖1所示。

圖1 第五代指揮資訊系統架構設想

第五代系統在態勢感知、指揮決策、行動控制、支援保障、資訊服務等功能要素基礎上,擴展平行推演與學習訓練功能域,滿足作戰分支評估及演算法的學習需求。在態勢認知方面,涵蓋了計算智能、感知智能與認知智能,主要完成戰場情報處理及目標識別,對態勢進行理解、預測,有態有勢,提升信息優勢;指揮決策方面,以認知智能為主,能夠機器戰術推理、生成方案與計劃,提升決策水平;行動控制方面,以計算智能與認知智能為主,能夠完成任務監控及臨機戰術控制,提供知識推理的行動優化策略,例如指揮引導、火力協同、無人集群智能控制;綜合保障方面,以計算智能為主,在先驗知識與規則下,完成戰場資源的優化調配;平行推演與學習訓練方面,將指控與仿真訓練結合起來,平時訓練人員以及算法
此外,第五代系統具有自主演化的學習機制:一是節點內自主學習,優化演算法與知識庫;二是節點間透過指揮雲共享智慧演算法與知識,協同完成演化,各節點可將學習後的演算法與知識上傳至指揮雲,更新知識中心的演算法及知識;三是系統向戰術學習、武器節點、偵測節點運作保障
第五代系統之間,在原有基於雲/端架構的綜合集成基礎上,增加了面向知識與智能算法的集成共享方式,各指揮信息系統將智能算法與知識規則上傳到知識中心,供戰場探測、指揮、武器等異構節點進行即插即享,指揮信息系統可以從知識中心獲取已有的智能知識,結合其二次戰場數據提升自身的戰場數據進行學習能力。指揮雲最終形成戰場的智慧知識中心,各智慧化指揮資訊系統之間形成戰場知識網。
3.2 雲端邊端服務架構設想
未來泛在網路連結將從指揮單元向戰術邊緣的各類分隊、單兵、平台延伸。第五代指揮資訊系統將利用霧運算、分散運算技術,在雲端架構技術基礎上建構戰術移動雲、分隊微雲(Cloudlet)、單兵任務組皮雲(Pico-Cloud)[9,16],形成戰術前沿移動雲服務能力,實現戰場集中作戰雲、移動戰術雲、邊緣微皮鏈雲的混合服務能力,前沿移動雲服務能力,實現戰場集中作戰雲、移動式戰術雲、邊緣微皮鏈雲的混合服務能力,形成「雲、邊、指揮」結構的快速構建能力。如圖2所示。

圖2 第五代指揮資訊系統雲端端服務架構設想

雲端端一體化服務能力支援第五代系統以「雲端部署、雲端聚合、雲端攻擊、雲端消散」等方式,實現作戰資源動態聚、釋能,提升整個體係作戰效能[17]。集中式作戰雲採用固定雲的方式部署在指揮中心[16],為各類作戰節點提供服務;空中、陸上、海上戰術雲為戰術前沿的飛機、艦艇、裝甲等兵力提供移動條件下的信息、算法、計算、存貯服務,提升了戰術前沿的資源共享水平[9,16,18-19];微雲及皮雲,微雲以霧計算方式部署在距離前沿接敵分隊通信一跳距離的車、機、艇上,擴展前沿分隊人員的戰術信息處理與共享能力,當單兵及分隊無法訪問微雲時,可利用移動自組網與分散計算技術構建皮雲,支持戰術邊緣弱連接下,端到端的信息匯聚到端的信息匯聚到端。
3.3 技術架構設想
第五代指揮資訊系統將戰爭從物理域、資訊域延伸到認知域,將改變指控方式,其技術架構如圖3。

圖3 第五代指揮資訊系統技術架構設想

第五代指揮資訊系統在第四代指揮資訊系統的網路化運算環境基礎上,增加戰術邊緣服務、智慧運算環境,既相容系統的架構,又滿足系統的智慧化要求。戰術邊緣服務運算環境為弱連結終端提供微雲及皮雲的基礎運算、存貯、資訊服務平台;智慧化運算環境為態勢、決策、控制、人機互動提供智慧服務。
智慧科技環境層包括以下五部分內容。智慧型運算硬體平台,配置了GPU、FPGA、TPU等AI加速處理器,適應深度學習所要求的運算能力,個別演算法採用神經元處理機制的類腦晶片或固化的專用智慧運算晶片;智慧資料管理平台,主要進行資料、樣本、案例、模型、知識的管理;深度學習架構,整合了深度學習、強化學習的運行庫及基本演算法庫;傳統人工智慧計算框架,包括了spark、bigflow等用於搜尋求解、資料探勘、平行處理等方面的傳統演算法支援庫;智慧服務,包含了面向應用的智慧演算法服務庫,如智慧交互辨識、估值網計算、策略網計算等服務,為應用開發提供求解介面。
智慧應用層,主要提供智慧化態勢認知、規劃決策、行動控制及資訊服務、人機互動、學習與訓練等功能要素,是系統主要面向使用者的功能介面,是智慧化要解決的核心問題。
上述的第五代系統技術架構模型,主要利用雲端運算與智慧化技術的支援服務,實現系統間的態勢、指令及演算法與知識的共享,同時支援系統自主演化、演算法升級、知識更新。系統智能化可分為0~4級[20]。 0級,完全人工控制;1級,實現計算智能,實現確定性的複雜戰術計算與資訊自動化處理;2級,具有一定感知智能,能夠理解、評估、預測戰場態勢;第3級:具有認知智能,能提供機器決策及決策推演能力;4級,具有人機融合與共生能力,核心算法能夠自學習、自演化。目前第四代系統的智慧化水準一般處於1級,態勢理解、指揮決策仍由人把控。第五代系統的智能化可經過三個階段達到第4級,第一階段實現戰場態勢感知、理解與評估能力;第二階段構建戰法知識庫,能基於規則、知識、算法實現機器決策;第三階段實現核心任務的機器自學習、自演化,具備自主方案決策功能,達到人機融合的高度智能化水平[20]。
4 系統關鍵技術及其智慧化設想
第五代指揮資訊系統的關鍵技術主要解決上述智慧化、雲端端整合、系統韌性適變問題。系統關鍵技術及其智慧化設想如圖4所示。

圖4 系統關鍵技術及其智慧化設想

第五代指揮資訊系統的關鍵技術涵蓋指控OODA環的所有面向,能夠支撐系統從探測、決策、控制、打擊等方面的智能、韌性、邊緣指控要求,從而構建精準感知鏈、快速控制鏈、精確打擊鏈、敏捷服務鏈,向戰術邊緣延伸,提升指揮效能。
1) 態勢感知機器分析技術
情報整編分析技術。利用大數據及深度學習、知識圖譜等技術進行資訊智能關聯匹配、文本語義智能分析、輿情智能搜索與提取,從海量、多源、異構的戰場信息中獲取有價值情報。
多元目標快速辨識技術。利用深度學習方法,建構多層CNN卷積神經網路,採用樣本特徵參數學習完成光學、紅外線、電磁、聲學資訊進行特徵提取與目標快速辨識。
態勢認知與理解技術。對敵進行作戰意圖、作戰能力分析,利用強化學習的估值網絡技術,模擬指揮員態勢認知的過程,結合CNN非線性戰場態勢擬合能力,建立態勢圖像到態勢理解的映射[22]。
態勢機器預測與評估技術。在態勢理解基礎上,對敵戰術行為進行預估,先利用策略網絡獲得敵方活動規律,再採用平行推演方法,進行多分支態勢推演,最後構建預測網絡進行態勢預測。
2) 作戰規劃機器決策技術
作戰任務空間及策略建模技術。對作戰任務空間的狀態及行動策略進行建模,確定任務狀態、策略、回饋的描述方法,是深度強化學習進行決策的基礎。
任務規劃機器決策技術。利用運籌優化完成目標分析、任務分配。利用深度強化學習、群體智慧演算法對兵力編成、火力配置、協同路徑進行機器規劃。戰術規劃偏向規則推理,易突破;戰役規劃偏向基於經驗的知識推理,涉及指揮藝術,較難突破。
作戰方案平行推演技術。參考「深綠」系統平行模擬技術[23],採用蒙特卡羅搜尋樹及博弈試驗方法,模擬敵作戰行為,對行動流程進行預演與評估,累積回饋賞罰函數,供學習訓練、最佳化決策。
作戰計劃智慧生成技術。利用自然語言理解、語音指令辨識、草圖辨識等智慧感知演算法,結合任務模型的要素提取,利用知識圖譜將方案進行自動提取生成作戰計畫與指令序列[24]。
臨機快速決策技術。基於當前態勢,利用博弈平台累積的學習資料,自動配對最適當的預案調整,基於蒙特卡羅樹搜尋及遷移學習演算法對計畫進行動態決策,反向強化學習,增強計畫泛化能力。
3) 行動控制智慧化技術
基於態勢的臨機行動控制技術。根據作戰行動的效果及偏差,對任務的資源、路徑、協同模式進行動態調整,利用平行模擬多支推演與強化學習技術進行糾偏,實現戰術「前饋式」的控制[4]。
群體智慧協同控制技術。促進戰場智能體協同作戰全局效能最大化,利用蟻群、蜂群控制演算法及深度強化學習方法,建構全局戰術價值網絡,建立效果回饋模型,根據價值網絡進行策略控制。
火力協同控制技術。提升敵我辨識、火力分配、協同調度的速度與精度,利用群智能及深度強化學習演算法自動規劃、協調優化打擊鏈,具備一定自主決策能力。
4) 有人/無人協同指揮技術
多域叢集系統自主協同機器規劃技術。利用分支搜尋求解、知識推理、深度強化學習進行有人/無人系統的協同任務規劃與分配,利用群智能最佳化演算法規劃無人、有人平台的協同軌跡。
多域集群系統自主協同指揮控制技術。對無人群集的巡航進行任務監控及自主協同指揮引導,利用群體智慧演算法進行多無人平台任務衝突偵測及避碰控制,進行編組、路徑、載重等調配。
5) 智慧化資訊服務技術
戰場資訊智慧共享技術,利用強化學習及語意關聯技術分析使用者的資訊需求及偏好,產生基於使用者差異化特徵的資訊需求,為使用者智慧推送戰術資訊。
6) 人機融合智慧化互動技術
人機融合智慧感知互動技術。建構多通道包含草圖、口語、手勢、頭勢、表情、眼動等多方式的人機互動手段,提供自然、靈敏、精準、擬人化的互動策略[5]。
面向意圖的智慧人機介面技術。利用FCM模糊認知互動推理技術,推理使用者的互動意圖,根據使用者的介面需求與互動喜好,整合不同的口語、手勢、草圖、自然語言等手段,組織互動介面輸出。
智慧穿戴式人機融合技術。採用邊緣運算技術,利用語音、手勢、眼動、腦機介面、擴增實境等新人機互動方式,為單兵提供智慧穿戴裝置,具備協同一體、融合連動的人機互動模式。
7) 虛擬博弈與訓練評估技術
作戰虛擬賽局技術建構賽局對抗試驗平台,進行作戰知識建模,利用平行模擬、分支決策、微分對抗等技術,進行紅藍對抗,既訓練戰術、戰法,又採集戰術資料。
機器訓練與評估技術,利用博弈平台累積的資料以及人員的經驗建模,採用小樣本遷移學習技術進行演算法的訓練與優化,對真實資料事後重播,對決策模型進行遷移學習優化,更新決策方案。
8) 系統韌性適變重建技術
環境感知與自主故障偵測技術。在軟硬毀傷下,進行主故障檢測、異常關聯分析,預測影響任務執行的故障發生,評估故障對任務的影響,實現對系統資源及故障的主動感知與快速定位。
系統自癒重構智慧技術。當系統關鍵節點失效時,採用適變機制,重新分配資源,實現能力再生,持續保障核心任務完成。由預置規則、人工參與的故障修復方式轉變為智慧化的系統重構方式。
9) 戰術邊緣運算技術
行動微雲服務平台技術。以霧運算方式部署在距離接敵一跳距離的車、機、艇上,為作戰分隊提供共享處理能力,擴展分隊人員的戰術資訊處理能力。
弱連接自組網下的皮雲資源共享技術。在單兵自組網基礎上,採用分散運算技術建構皮雲,支援弱連接下,端到端自主協同的資訊共享與單兵移動設備之間資源共用,滿足戰術邊緣需求。
5 發展思路設想
1) 分階段先易後難循序漸進。第一階段將圖像、語音、手勢、臉譜辨識及自然語言理解等應用到情報分析中;第二階段將深度學習、強化學習應用到態勢認知、指揮決策中;第三階段利用雲端運算實現知識中心,智慧賦能的系統[6]。
2) 選取智慧演算法進行應用。圍繞深度學習在態勢方面的應用、深度強化學習在規劃決策方面的應用,選取合適的戰術背景,對智能演算法進行驗證,可選用戰術層面的路徑、火力、任務等規劃作為突破口[25]。
3) 強化作戰指揮領域知識工程建設。專家規則、軍事條例、實戰資料是指揮智能化的基礎,對現有作戰規則進行知識化建模與表示,建立知識表示與深度學習的輸入、輸出映射關係,加強知識學習、知識推理的方法研究[4]。
4) 建立虛擬對抗博弈平台累積資料。智慧演算法需要大量學習樣本,樣本累積途徑有:①建立對抗賽局平台進行兵棋推演、人機對抗、紅藍對抗,累積資料;②收集實戰演習的戰術資料,進行建模作為訓練樣本[21]。
6 結束語
本文提出了第五代指揮資訊系統的總體及智慧化設想,建構了「智慧賦能、人機融合、雲邊一體、自主演化、雲智共享、韌性適變」的新一代指揮資訊系統架構,對其關鍵技術、能力特徵進行分析,試圖在國際上第四代系統的基礎上[2],實現認知優勢、決策優勢、行動優勢。國際上用於第五代系統的技術驗證不多,不可急功近利,仍需充分研究。

中國原創軍事資源:https://www.zhkzyfz.cn/EN/10.3969/j.issn.1673-3819.2021.05.00881

Chinese Military Militarization of Artificial Intelligence is Constantly Accelerating

中國軍方人工智慧軍事化進程不斷加速

現代英語:

Adapt to the general trend of technological development and seize the high point of future war system ——

Artificial intelligence is a collective term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition, and spatial situational awareness. The “ cognitive burden ” that liberates human intelligent fitness enables technology users to obtain prophets, preemptive, Preemptive decision-making action advantage. As “ power multiplier ” and “ the basis for future combat ”, artificial intelligence will fundamentally reshape future war patterns, change the country’s traditional security territory, impact existing military technology development patterns, and reconstruct future operations The system and military power system have become important leading forces in the future battlefield.

With the rapid development of technology and the continuous pace of competition, major countries have launched their own artificial intelligence development plans, and accelerated the transformation of organizational mechanisms, scientific and technological research and development, and tactical tactical innovation, promote the use of artificial intelligence military, and seize future war commanding heights.

Speed up organizational innovation

Promote technology conversion applications

Unlike traditional technology, the research and development and transformation of artificial intelligence have its own characteristics. The institutional setting and operation of the traditional defense system make it difficult to adapt to the needs of rapid development of artificial intelligence. To this end, the military of relevant countries has vigorously carried out organizational reforms and innovations, removed institutional obstacles in the process of research and development of artificial intelligence technologies, and accelerated the transformation and application of related technologies.

Emphasize that “ is close to ”. The UK is mainly based on “ Defense Data Office ” and “ Digital Integration and Defense Artificial Intelligence Center ”, integrating energy efficiency such as route planning, specification setting, technical governance and asset development, and breaking down restrictions on the development and application of artificial intelligence technologies Administrative obstacles. The United States is based on the “ Strategic Competency Office ” and “ Chief Numbers and Artificial Intelligence Officer ”, and uses the Army’s Future Command as a pilot to integrate decentralized functions such as theoretical development, technology development, and equipment acquisition. Together, the focus is on “ Digging potential efficiency ” to strengthen the innovative use of existing platforms, while In order to effectively balance real needs with long-term development.

Pay attention to “ research conversion ”. The use of artificial intelligence in the military field will have a profound impact on battlefield methods, tactical tactical choice, etc. Russia has established “ Preliminary Research Foundation ” and “ National Robot Technology R&D Center ” and other institutions to guide the design, research and development and application of Russian military industrial and intelligent technology to improve the practical transformation of scientific research results rate. The United States has set up “ Joint Artificial Intelligence Center ”, relying on “ National Mission Plan ” and “ Military Type Mission Plan ”, focusing on coordinating military-site collaborative innovation and technological achievements transformation to promote artificial intelligence Wide application of the US Department of Defense and various services.

Focus on “ military-civilian integration ”. Russia has set up “Tech City ” and other institutions in Anapa and other places. Based on the “ Advanced Research Foundation ”, it fully absorbs military personnel, actively builds technological production clusters and research clusters, and effectively expands military personnel. Two-way communication mechanism. By setting up “ National Defense Innovation Test Group ” and other institutions in Silicon Valley and other places, the United States can directly enter high-level decision-making by relying on “ National Defense Innovation Committee”. France has established technical research and development institutions such as the Innovation Defense Laboratory and the Defense Innovation Division in the Ministry of National Defense, aiming to solicit private capital investment and cooperation in defense projects to improve scientific research energy efficiency.

Highlight “ combination of technology ”. The Israel Defense Forces established the Digital Transformation System Architecture Department to fully demonstrate new technologies, new theories, and new concepts based on the specific effects of the organic integration of various systems into various military services to determine the corresponding technology research and development priorities and strategic development directions. The United States has re-established the positions of Deputy Secretary of Defense Research and Engineering, created chief numbers and artificial intelligence officers to enhance the control of defense technology innovation and application, and relied on theoretical methods such as red and blue confrontation, analog deduction, and net assessment analysis. New ideas, new ideas, and new methods are tested in practice to select various types of technology research and development focus and strategic tactical attack directions, Achieve benign interaction between technological development and theoretical innovation.

Set up a project for military needs

Seize the opportunity for future development

In recent years, various military powers have aimed at the development of artificial intelligence frontier technology, and have established extensive projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, with the intention of seizing future development opportunities.

Situation awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellite, radar, and electronic reconnaissance. However, under the conditions of “ mixed warfare ”, which is ambiguous in peace, unity of soldiers, internal outreach, and integration of all regions, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “ Computable Cultural Understanding ” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “ compass ” project aims to extract cases from unstructured data sources, Integrate key information and respond to different types of “ gray zone ” actions. The French “ Scorpion ” Combat System project aims to use intelligent information analysis and data sharing platforms to enhance the fire support effectiveness of the French’s existing frontline mobile combat platform to ensure the safety of operational personnel.

Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and action advantages. Russia’s “ Combat Command Information System ” aims to provide commanders with multiple types of action plans by using artificial intelligence and big data technology to analyze the battlefield environment. The British “THEIA program ” and the French “The Forge” digital decision support engine are designed to enhance the information processing capabilities of command control, intelligence gathering, etc., and improve the commander’s ability to control complex battlefields. And command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, the use of artificial intelligence algorithms to collect and process intelligence has the advantages of fast access to information, wide content sources, and high processing efficiency. The Japan Self-Defense Force satellite intelligent monitoring system aims to identify and track foreign vessels in the vicinity of key waters that may “ infringe ” their territorial waters. U.S. military “ complex combat environment causal exploration ” project, which aims to use artificial intelligence and machine learning tools to process multi-source information to assist commanders in understanding the cultural drivers, root causes, and factors behind the war; “ Marvin ” The project uses machine learning algorithms, human face recognition technology, etc. to screen and list various suspicious targets from the full dynamic video, Provide technical support for counter-terrorism operations.

No one is fighting. In some technologically advanced countries, the unmanned combat system is maturing and the equipment species spectrum system is becoming more and more perfect. The Israeli M-RCV unmanned combat vehicle can perform diversified tasks such as unmanned reconnaissance, fire strike, carrying and recycling drones under all terrain and full-time conditions. The Russian army “ Outpost-R” UAV system with integrated capabilities can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities and has been inspected on the battlefield. The US military “ Future Tactical UAV System ” project aims to comprehensively enhance the effectiveness of the US Army in performing reconnaissance and surveillance, auxiliary aiming, war damage assessment, and communications relay operations.

Adapt to future battlefield changes

Continuously explore new ways of warfare

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new warfare methods by enhancing the energy efficiency of artificial intelligence in key military decisions and operations.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, to give full play to the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the cycle cycle of “ observation-adjustment-decision-action” Always lead the opponent, thereby destroying the enemy’s combat plan and achieving preemption. In December 2015, the Russian army relied on the unmanned reconnaissance and intelligent command information system to guide the ground unmanned combat platform to cooperate with the Syrian government forces to quickly eliminate 77 armed elements within the target range at the cost of 4 minor injuries. In 2021, the US Air Force conducted a test flight of the first intelligent drone “ Air Borg ”, marking a further advancement of the US military algorithm warfare.

Unmanned warfare, guided by a saturated number of attacks and a low-cost war of system attack and defense operations, strives to achieve full-scale posture tracking, dynamic deterrence, and tactical suppression of the enemy defense system through human-computer coordination and group combat models. In May 2021, the Israeli army used artificial intelligence to assist the drone bee colony in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying the enemy’s target, and monitoring the enemy’s dynamics. In October 2021 and July 2022, the US military launched a drone targeted air strike in northwestern Syria, killing Abdul Hamid Matar, a high-level leader of the “ base ” organization, and the extremist organization “ Islamic State ” Leader Agel.

Distributed warfare, based on artificial intelligence unlimited command and control capabilities and new electronic warfare methods, using shallow footprints such as special forces, low-characteristics, and fast-paced forces to form small groups of mobile formations, spreading infiltration into combat in a multi-diameter multi-domain manner Area, continue to break the shortboard and chain dependence of the enemy system, increasing the difficulty of its fire saturation attack. In this process, “ people are commanding and machines are controlling ”. In recent years, the US military has successively launched “ Golden Tribe ”“ Flexible Network Distributed Marseille Communication ” and other “ distributed operations ” scientific research projects.

Fusion warfare, relying on network quantum communication and other means to build a “ combat cloud ” that is resistant to interference and high rates, in order to eliminate the technical barriers of military data chain interconnection, interconnection and interoperability, and achieve deep integration of combat power. In 2021, the joint general basic platform developed by the United States Artificial Intelligence Center officially possessed initial operational capabilities, which will help the US military break down data barriers and significantly improve data sharing capabilities. During the NATO “ Spring Storm ” exercise held in Estonia in 2021, the British army used artificial intelligence technology to perform intelligent analysis and automated processing of battlefield information of various services, which improved the integration of arms and strengthened joint command and control effectiveness.

現代國語:

中国军网 国防部网 // 2022年9月1日 星期四

适应技术发展大趋势,抢占未来战争制高点——

■程柏华

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以「戰略能力辦公室」和「首席數位與人工智慧長」為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以「挖潛增效」方式加強現有平台的創新運用,同時為國防高級研究計劃局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新思想、新理念、新方法進行實踐檢驗,以選定各類技術研發焦點與戰略戰術攻關方向,實現技術發展與創新理論的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源信息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發製人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力和全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增大其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_323244.htm