Tag Archives: Winning Localized War under Conditions of Informationization

The Intrinsic Evolution of the Winning Mechanisms in Chinese Military Joint Operations

中國軍事聯合作戰中獲勝機制的內在演變

現代英語:

Joint operations, as a fundamental form of modern warfare, have evolved in their winning mechanisms along with advancements in military technology and changes in the nature of warfare. From the coordinated formations of the cold weapon era to the combined arms operations of infantry and artillery in the era of firearms, from joint operations of various services and branches in the era of mechanized warfare to multi-domain joint operations in the era of informationized warfare, each military revolution has brought about fundamental changes in the winning mechanisms of warfare.

Currently, emerging technologies such as artificial intelligence, big data, cloud computing, and the Internet of Things are driving the evolution of warfare towards informatization and intelligence at an unprecedented pace. The connotation and extension of joint operations are constantly expanding, and the mechanisms of victory are also showing a series of new development trends. In-depth research into the development trends of the mechanisms of victory in joint operations, based on a multi-perspective analysis framework, systematically exploring the historical evolution and future development direction of these mechanisms from five dimensions—operation time, operation space, operation force, operation actions, and operation command and control—is of vital importance for accurately grasping the changes in future warfare, scientifically establishing the direction of military force development, and effectively enhancing joint operations capabilities.

From a combat time perspective: the strategy has evolved from step-by-step progression to instantaneous enemy destruction.

Time is one of the fundamental elements of war, and the art of utilizing operational time is key to victory in joint operations. In the era of mechanized warfare, limited by intelligence gathering methods, command and control capabilities, and weapon performance, joint operational operations are typically organized and implemented under strict time constraints, unfolding sequentially in stages: reconnaissance and early warning, fire preparation, forward breakthrough, deep attack, and fortification. Each branch of the armed forces carries out its operational mission according to a predetermined plan at each stage. This operational model results in a relatively slow pace of combat and inefficient use of time, often requiring several days or even months to complete a single operational phase. With the development of information technology and precision-guided weapons, the time-dimensional winning mechanism of modern joint operations is shifting towards “instantaneous enemy destruction.” The pace of combat operations has accelerated significantly, and the division of combat phases has become increasingly blurred. The traditional step-by-step approach is gradually being replaced by “instantaneous” warfare characterized by real-time perception, real-time decision-making, and real-time action. Real-time information sharing and rapid flow have drastically shortened the combat command and decision-making cycle, achieving the “detect and destroy” combat effect. The widespread application of precision-guided weapons has greatly improved the speed and accuracy of firepower strikes, enabling combat forces to carry out devastating strikes against key targets in an instant. In the future, with the development and application of artificial intelligence technology, the speed of combat decision-making and action will be further improved, and the instantaneous nature of joint operations will become more prominent.

From the perspective of operational space: expanding from the tangible battlefield to the intangible space

The operational space is the arena for joint combat forces, and its constantly evolving form and scope directly influence the mechanisms of victory in joint operations. In industrial-era warfare, the operational space was primarily confined to tangible physical spaces such as land, sea, and air. Operations mainly revolved around seizing and controlling key geographical points, transportation lines, and strategic locations, and the deployment of combat forces and the evaluation of operational effectiveness were also primarily based on the tangible spatial scope. Entering the information age, the operational space is undergoing revolutionary changes. In addition to the traditional tangible physical spaces of land, sea, air, and space, intangible spaces such as information space, cyberspace, and psychological space are increasingly becoming important battlefields for joint operations, even determining the outcome of combat to some extent. The struggle for information space has become a primary aspect of joint operations, the battle in cyberspace is intensifying, and the psychological warfare is constantly evolving. The battlefield of modern joint operations is characterized by a fusion of tangible and intangible spaces, and an equal emphasis on the physical and information domains. In the future, with the development of emerging technologies such as quantum technology, biotechnology, and artificial intelligence, the space for joint operations will further expand, potentially giving rise to new operational domains such as quantum space and biological space. The mechanisms for winning in joint operations will also undergo profound changes.

From the perspective of combat power: a shift from human-machine integration to human-machine collaboration.

Combat forces are the material foundation of joint operations, and their composition and deployment directly affect the outcome of such operations. In the era of mechanized warfare, the composition of joint combat forces was primarily a human-equipment integration model, with personnel as the main body and weapons and equipment as the tools. The effectiveness of combat forces depended mainly on the number and quality of personnel, the performance and quantity of weapons and equipment, and the degree of integration between personnel and equipment. Armies around the world emphasize improving the level of personnel-equipment integration through rigorous training to fully leverage the combat effectiveness of weapons and equipment. With the development of emerging technologies such as artificial intelligence, robotics, and big data, the composition and deployment of modern joint combat forces are undergoing profound changes, and human-machine collaboration is becoming a new logic for winning joint combat operations. Unmanned aerial vehicles (UAVs), unmanned ships, unmanned combat vehicles, and unmanned underwater vehicles have become an important component of joint combat forces. They are capable of performing reconnaissance, surveillance, strike, and interference missions in high-risk environments, significantly improving the survivability and combat effectiveness of combat forces. The application of artificial intelligence technology has also endowed weaponry with a certain degree of autonomous action, enabling them to autonomously collaborate with humans to complete complex tasks. Machine intelligence has not only changed the composition of combat forces but also their operational methods. In the future, with the continuous advancement of human-machine integration technology, the boundaries between humans and machines will become increasingly blurred, and human-machine collaboration will reach an even higher level.

From a combat operations perspective: The shift from segmented cooperation to cross-domain integration.

Joint operations are the concrete practice of joint warfare, and their organizational form and implementation methods directly affect the overall effectiveness of joint operations. In traditional joint operations, limited by command and control capabilities and coordination mechanisms between various services and branches, forces from each service and branch can only carry out missions within their respective operational domains and conduct limited cooperation through pre-established coordination plans. This domain-specific cooperation model is prone to problems such as coordination failures and operational disconnects. In the information age, with the improvement of all-domain awareness capabilities and the refinement of command and control methods, joint operations are gradually developing towards cross-domain integration. Cross-domain integration emphasizes breaking down the boundaries between different operational domains, achieving seamless connection and deep integration of operational forces across multiple domains such as land, sea, air, space, electromagnetic, and cyberspace, forming a coordinated overall operational effect. Operational forces in each domain can share battlefield information in real time, dynamically adjust operational actions, rapidly transcend geographical and domain boundaries, and conduct operations simultaneously in multiple domains. Through the integration and sharing of multi-domain information, a high degree of coordination and precise cooperation in operational actions across domains is achieved, forming a synergistic and effective overall operational effect. In the future, with the continuous development of information technology, the degree of cross-domain integration in joint operations will further deepen, becoming a key to victory in joint operations.

From the perspective of combat command and control: Evolution from central radiation to flexible periphery

Operational command and control is the “brain” and “nerve center” of joint operations; its mode selection and effectiveness directly determine the success or failure of joint operations. In the era of mechanized warfare, due to limited command and control technology, joint operational command and control typically adopted a centralized, hierarchical, tree-like organizational model. This model, centered on the highest command organization, implements operational command and control by transmitting orders downwards and feeding back information upwards, possessing significant advantages in centralized and unified action. However, it also suffers from drawbacks such as multiple command levels, slow information transmission, and poor responsiveness. With the development of information network technology and artificial intelligence technology, modern joint operational command and control is evolving towards greater flexibility. A modular and reconfigurable command structure enables the entire combat system to flexibly adjust command relationships and processes according to changes in combat missions and battlefield environments. While maintaining a centralized and unified strategic intent, it grants greater autonomy to tactical nodes at the system’s periphery, thereby enhancing the system’s flexibility and responsiveness, and better adapting to the rapidly changing challenges of future battlefields. In the future, with the development of technologies such as brain-computer interfaces and quantum communication, the real-time nature, accuracy, and flexibility of joint operations command and control will reach new heights.

In conclusion, with the development of emerging technologies such as information technology and artificial intelligence and their widespread application in the military field, the form of joint operations is undergoing continuous evolution, and the mechanisms for winning joint operations are also undergoing profound changes. This not only reshapes traditional operational concepts and methods but also poses new and higher requirements for the development of future joint operational capabilities. Therefore, we must maintain strategic clarity and innovative vitality, closely monitor global military development trends, conduct in-depth research on the mechanisms for winning joint operations, and continuously promote innovation in joint operational theory and practice to lay a solid foundation for winning informationized and intelligent warfare.

現代國語:

把握聯合作戰制勝機理內在演進

■李玉焱 楊飛龍 李忠智

寫在前面

聯合作戰作為現代戰爭的基本作戰形式,其制勝機理隨著軍事技術的進步和戰爭形態的演變而不斷發展。從冷兵器時代的方陣協同到熱兵器時代的步炮配合,從機械化戰爭時代的諸軍兵種合同作戰到信息化戰爭時代的多域聯合作戰,每一次軍事革命都帶來了作戰制勝機理的根本性變革。

當前,以人工智能、大數據、雲計算、物聯網等為代表的新興技術正以前所未有的速度推動戰爭形態向信息化智能化方向加速演進,聯合作戰的內涵和外延不斷拓展,制勝機理也呈現出一系列新的發展趨勢。深入研究聯合作戰制勝機理的發展趨勢,基於多視角分析框架,從作戰時間、作戰空間、作戰力量、作戰行動和作戰指控五個維度,系統探討聯合作戰制勝機理的歷史演進軌跡和未來發展方向,對於我們准確把握未來戰爭形態變化、科學確立軍事力量建設方向、有效提升聯合作戰能力,具有至關重要的意義。

從作戰時間視角看:由按階推進向瞬時破敵發展

時間是戰爭的基本要素之一,作戰時間的運用藝術是聯合作戰制勝的關鍵所在。在機械化戰爭時代,受限於情報獲取手段、指揮控制能力和武器裝備性能,聯合作戰行動組織實施通常遵循嚴格的時間限制,按照偵察預警、火力准備、前沿突破、縱深攻擊、鞏固防御的階段劃分依次展開,各軍兵種力量在各階段根據預定計劃遂行作戰任務。這種作戰模式下,作戰節奏相對緩慢,時間利用效率不高,往往需要數天甚至數月才能完成一個戰役階段。隨著信息技術和精確制導武器的發展,現代聯合作戰的時間維度制勝機理正在向“瞬時破敵”方向轉變。作戰行動節奏大大加快,作戰階段劃分日益模糊,傳統的按階推進模式逐漸被實時感知、實時決策、實時行動的“秒殺”式作戰所取代。信息的實時共享和快速流動使得作戰指揮決策周期大幅縮短,實現了“發現即摧毀”的作戰效果。精確制導武器的廣泛應用大大提高了火力打擊的速度和精度,使得作戰力量能夠在瞬間對關鍵目標實施毀滅性打擊。未來,隨著人工智能技術的發展和應用,作戰決策和行動的速度將進一步提升,聯合作戰的瞬時性特征將更加凸顯。

從作戰空間視角看:由有形戰場向無形空間拓展

作戰空間是聯合作戰力量活動的舞台,其形態和范圍的不斷變化直接影響著聯合作戰的制勝機理。在工業時代的戰爭中,聯合作戰的空間主要局限於陸地、海洋和空中等有形物理空間。作戰行動主要圍繞著奪取和控制地理要點、交通線和戰略要地展開,作戰力量的運用和作戰效果的評估也主要基於有形空間范圍。進入信息化時代,聯合作戰空間正在發生革命性變化,除了傳統的陸、海、空、天等有形物理空間外,信息空間、網電空間、心理空間等無形空間日益成為聯合作戰的重要戰場,甚至在某種程度上決定著作戰的勝負。信息空間的爭奪已成為聯合作戰的首要環節,網電空間的斗爭也日趨激烈,心理空間的較量更是層出不窮,現代聯合作戰的戰場空間已經呈現出“有形空間與無形空間交融、物理域與信息域並重”的鮮明特征。未來,隨著量子技術、生物技術、人工智能等新興技術的發展,聯合作戰空間還將進一步拓展,可能會出現量子空間、生物空間等新的作戰領域,聯合作戰的制勝機理也將隨之發生更深層次的變革。

從作戰力量視角看:由人裝結合向人機協作轉變

作戰力量是聯合作戰的物質基礎,其構成和運用方式直接關系到聯合作戰的勝負。在機械化戰爭時代,聯合作戰力量的構成主要是以人員為主體、以武器裝備為工具的人裝結合模式,作戰力量的效能主要取決於人員的數量、素質和武器裝備的性能、數量,以及人與裝備的結合程度。各國軍隊都強調通過嚴格的訓練提高人與裝備的結合水平,以充分發揮武器裝備的作戰效能。隨著人工智能、機器人技術、大數據等新興技術的發展,現代聯合作戰力量的構成和運用方式正在發生深刻變化,人機協作正成為聯合作戰力量制勝的新邏輯。無人機、無人艦艇、無人戰車、無人潛航器等無人裝備已經成為聯合作戰力量的重要組成部分,它們能夠在高危環境下遂行偵察、監視、打擊、干擾等任務,大大提高了作戰力量的生存能力和作戰效能。人工智能技術的應用也使得武器裝備具備了一定的自主行動能力,能夠與人自主協同完成復雜任務,機器智能不僅改變了作戰力量的構成形式,也改變了其運用方式。未來,隨著人機融合技術的持續進步,人與機器的界限會日益模糊,人機協作也將達到更高水平。

從作戰行動視角看:由分域配合向跨域融合深化

作戰行動是聯合作戰的具體實踐,其組織形式和實施方式將直接影響聯合作戰的整體效能。在傳統的聯合作戰中,受限於指揮控制能力和各軍兵種之間的協同機制,各軍兵種力量僅能在各自作戰領域內遂行任務,並通過預先制定的協同計劃進行有限的配合。這種分域配合的模式很容易出現協同失調、行動脫節等問題。進入信息時代,隨著全域感知能力的提升和指揮控制手段的完善,聯合作戰行動正逐步向跨域融合的方向發展。跨域融合強調打破各作戰領域之間的界限,實現作戰力量在陸、海、空、天、電、網等多域空間的無縫銜接和深度融合,形成整體聯動的作戰效果。各域作戰力量能夠實時共享戰場信息,動態調整作戰行動,快速跨越地理空間和領域界限,在多個域內同時展開行動,通過多域信息的融合共享,實現各域作戰行動的高度協同和精確配合,形成疊加增效的整體作戰效果。未來,隨著信息技術的不斷發展,聯合作戰行動的跨域融合程度將進一步加深,成為聯合作戰制勝的關鍵所在。

從作戰指控視角看:由中央輻射向彈性邊緣演進

作戰指揮控制是聯合作戰的“大腦”和“神經中樞”,其模式選擇和效能發揮將直接決定聯合作戰行動的成敗。在機械化戰爭時代,由於指控技術手段有限,聯合作戰指控通常采取中央輻射、層級樹狀的組織模式。這種模式以最高指揮機構為中心,通過逐級向下傳遞命令和向上反饋信息的方式實施作戰指揮控制,具有行動集中統一的顯著優勢,但也存在指揮層級多、信息傳遞慢、應變能力差等不足。隨著信息網絡技術和人工智能技術的發展,現代聯合作戰指控正在向彈性邊緣的方向發展演變。模塊化、可重組的指揮體系結構,使整個作戰體系能夠根據作戰任務和戰場環境的變化,靈活調整指揮關系和指揮流程,在保持戰略意圖集中統一的前提下,賦予體系邊緣的戰術節點更大的自主決策權,進而提高了作戰體系的靈活性和應變能力,能夠更好地適應未來戰場局勢瞬息萬變的挑戰。未來,隨著腦機接口、量子通信等技術的發展,聯合作戰指控的實時性、准確性和靈活性還將達到新的高度。

總之,隨著信息技術、人工智能等新興技術的發展及其在軍事領域的廣泛應用,聯合作戰形態正在發生持續演變,聯合作戰制勝機理也隨之發生深刻變革。這不僅重塑了傳統的作戰理念和作戰方式,也對未來聯合作戰能力建設提出了新的更高要求。對此,我們必須保持戰略清醒和創新活力,密切關注世界軍事發展趨勢,深入研究聯合作戰制勝機理,不斷推動聯合作戰理論和實踐創新,為打贏信息化智能化戰爭奠定堅實基礎。

中國原創軍事資源:

http://www.81.cn/ll_208543/16848385973.html

Functional Orientation of the Modern Combat System with Chinese Characteristics

中國特色現代作戰體系的功能定位

2018年08月14日 xx:xx 来源:解放军报

現代英語:

Functional Orientation of the Modern Combat System with Chinese Characteristics

  Key Points

  ● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.

  ● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.

  The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.

  Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.

  The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.

  A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.

  Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.

  Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.

  The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.

  Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.

  The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.

  Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.

  Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.

  The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.

  Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.

  (Author’s affiliation: Institute of War Studies, Academy of Military Sciences)

Zhang Qianyi

現代國語:

中國特色現代作戰體系的功能取向

要點提示

●機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。

●傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告提出,站在新的歷史起點上,面對強國強軍的時代要求,“構建中國特色現代作戰體系”。這是適應戰爭形態加速演變的時代要求,深入貫徹習近平強軍思想、全面推進國防和軍隊現代化、瞄準建設世界一流軍隊的戰略抉擇。其中,對中國特色現代作戰體系功能取向的把握,極大影響著體系構建的目標、方向和質量。

抓住時代機遇,以機械化信息化智能化融合發展為歷史方位

作戰體係是戰爭的物質基礎,與戰爭形態緊密關聯。當今世界,新一輪科技革命和產業革命正在孕育興起,一些重大科學問題的原創性顛覆性突破正在開闢新前沿新方向,促使人類社會向智能化快速轉型,戰爭形態向智能化加速演變。當前,我軍正處於機械化信息化複合發展階段,機械化尚未完成、信息化深入推進,又面臨智能化軍事革命帶來的機遇和挑戰。新時代為我們實現創新超越、快速發展提供了難得歷史機遇,也為我軍作戰體系建設實現跨代超越、彎道超車提供了難得歷史機遇。

新時代新起點,需要確立新的坐標系。機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。應準確把握戰爭形態演變的歷史進程,準確把握機械化信息化複合發展的歷史階段,準確把握智能化戰爭帶來的歷史機遇,堅持把軍事智能化建設擺在優先發展位置,以智能化引領帶動機械化信息化,在智能化建設全局中統籌機械化信息化,在智能化進程中完成機械化信息化發展的任務;注重搞好軍事智能化發展的頂層設計,研究制定軍事智能化發展戰略綱要和路線圖,明確智能化發展的關鍵領域、核心技術、重點項目和步驟措施等,加快軍事智能化作戰體系建設進程;盡快在深度學習、跨界融合、人機協同、自主操控、神經網絡等關鍵技術上取得重大進展,提高先進科技力物化為先進武器裝備的能力,為構建現代作戰體系提供物質條件。

突出體係對抗,以打造聯合作戰和全域作戰能力為核心指標

信息化局部戰爭,一體化聯合作戰成為基本形式,網絡支撐、信息主導、體係對抗成為主要特徵,戰鬥力生成模式向基於網絡信息體系轉變。當前及今後一個時期,我國地緣戰略環境仍然複雜,傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,同時隨著國家利益的拓展,海外利益安全問題日益凸顯,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告指出,“提高基於網絡信息體系的聯合作戰能力、全域作戰能力”,這是對新時代我軍作戰能力的新概括,也是中國特色現代作戰體系建設的核心指標。應積極探索現代戰爭特點規律和製勝機理,前瞻設計未來作戰行動模式、力量運用方式、指揮協同程式等,為構建中國特色現代作戰體系提供先進理論支撐;按照軍委管總、戰區主戰、軍種主建的新格局,適應聯合作戰指揮新體制、軍隊規模結構和力量編成改革,突出網絡信息體系這個核心支撐,打造能夠生成強大聯合作戰能力的作戰體系,充分發揮諸軍兵種作戰力量整體威力;著眼妥善應對各戰略方向、傳統和非傳統安全威脅,確保我軍可靠遂行各種作戰任務,打造能夠生成強大全域作戰能力的作戰體系,實現陸海空天電網多維戰場、多域戰場的整體聯動。

著眼現實威脅,以形成對敵非對稱作戰優勢為戰略指向

當今世界,國際形勢正處在新的轉折點上,大國戰略博弈呈現新態勢,圍繞國際和地區秩序主導權的鬥爭空前激烈。霸權主義和強權政治陰魂不散,一些國家加緊對華防範和遏制。我國地緣戰略環境日趨複雜,存在多重不穩定因素,面對多方向安全壓力,我海上安全環境日趨複雜等,這些都使得國家安全面臨的危險和挑戰增多。

有效應對現實軍事安全威脅,是我軍事鬥爭準備的重要戰略任務,也是中國特色現代作戰體系建設的戰略指向。應注重技術跟進,大力研發先進裝備,力避與潛在對手拉開新的技術代差,為作戰體系建設提供堅實物質支撐,同時注重發揮我軍歷來堅持的靈活機動、自主作戰原則,揚長避短,擊敵弱項、軟肋,不單純在高科技領域“與龍王比寶”,著眼懾敵止戰,加快發展非對稱制衡手段,加強常規戰略手段、新概念新機理和新型領域戰略威懾手段建設,支撐形成具有新質威懾與實戰能力的新型作戰體系;不懼直面過招,立足最複雜最困難情況,構建能夠提供多種手段、多種力量、多種方式應對多樣化戰爭威脅的作戰體系,確保一旦有事,充分發揮作戰體係綜合效能,確保戰而勝之、以戰止戰。

推進軍民融合,以國家戰略體系支撐打贏新時代人民戰爭為根本要求

戰爭偉力之最深厚根源存在於民眾之中。人民戰爭思想是我軍克敵制勝的法寶。現代戰爭是敵對雙方綜合實力的整體對抗,涉及政治、經濟、軍事、科技、文化等各條戰線,各種武裝力量緊密結合、各種鬥爭形式相互配合,民用技術和民間力量在戰爭中的地位作用日益提升,更加要求把國防體系融入國家經濟社會體系,努力打贏新時代人民戰爭。

發揮軍民融合時代偉力,以國家戰略體系支撐打贏新時代人民戰爭,是中國特色現代作戰體系建設的根本要求。要深入實施軍民融合發展國家戰略,推動我軍作戰體系建設深度融入國家戰略體系,利用國家資源和整體力量實現戰鬥力的持續躍升,最大限度發揮人民戰爭的整體威力;注重加強在新興戰略領域的軍民融合發展,積極搶占未來軍事競爭的製高點,不斷創造人民戰爭的新優勢;把軍事創新體系納入國家創新體系之中,加強需求對接、協同創新,增強自主創新、原始創新、集成創新能力,主動發現、培育和運用戰略性顛覆性前沿性技術,為構建現代作戰體系提供先進技術支撐;抓好民用資源深度挖掘,強化可服務於國防和軍隊建設的各種資源整合力度,防止重複浪費、自成體系、封閉運行,最大限度發揮民用資源對現代作戰體系構建的孵化效應。

(作者單位:軍事科學院戰爭研究院)

張謙一

中國原創軍事資源:https://www.chinanews.com.cn/mil/2018/08-14/8599617888.shtml

Chinese Military Intelligence Drives Accelerated Development of Cyberspace Warfare

中國軍事情報推動網絡空間戰爭加速發展

現代英語:

The report to the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint operational capabilities and all-domain operational capabilities based on network information systems.” Today’s *PLA Daily* published an article stating that military intelligence is a new trend and direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, while using intelligence to drive mechanization and informatization to a higher level and a higher standard. Cyberspace, as a new operational domain, is a new field with high technological content and the greatest innovative vitality. Under the impetus of military intelligence, it is ushering in a period of rapid development opportunities.Illustration: Lei Yu

Military intelligence is driving the accelerated development of cyberspace operations.

■ Respected soldiers Zhou Dewang Huang Anwei

Three key technologies support the intelligentization of cyberspace weapons.

Intelligence is a kind of wisdom and capability; it is the perception, cognition, and application of laws by all systems with life cycles. Intelligentization is the solidification of this wisdom and capability into a state. Cyberspace weapons are weapons used to carry out combat missions in cyberspace. Their form is primarily software and code, essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, there’s intelligent vulnerability discovery. Vulnerabilities are the foundation of cyber weapon design. The ransomware that spread globally this May exploited a vulnerability in the Microsoft operating system, causing a huge shock in the cybersecurity community. Vulnerabilities are expensive, with a single zero-day vulnerability costing tens to hundreds of thousands of dollars. Previously, vulnerability discovery relied mainly on experienced hackers using software tools to inspect and analyze code. However, at the International Cybersecurity Technology Competition finals held during this year’s China Internet Security Conference, participants demonstrated how intelligent robots could discover vulnerabilities on-site, then use these vulnerabilities to write network code, creating cyber weapons to breach target systems and capture the flag. This change signifies that vulnerability discovery has entered the era of intelligent technology.

Second, intelligent signal analysis and cryptography. Signals are the carriers of network data transmission, and cryptography is the last line of defense for network data security. Signal analysis and cryptography are core technologies for cyberspace warfare. Breaking through signals and cryptography is the fundamental path to entering cyberspace and a primary target of cyber weapons attacks. Intelligent signal analysis solves problems such as signal protocol analysis, modulation identification, and individual identification through technologies such as big data, cloud computing, and deep learning. Cryptography is the “crown jewel” of computational science. Intelligent cryptography, through the accumulation of cryptographic data samples, continuously learns and searches for patterns to find the key to decryption, thereby opening the last door of the network data “safe” and solving the critical links of network intrusion and access.

Thirdly, there is the design of intelligent weapon platforms. In 2009, the U.S. military proposed the “Cyber ​​Aircraft” project, providing platforms similar to armored vehicles, ships, and aircraft for cyberspace operations. These platforms can automatically conduct reconnaissance, load cyber weapons, autonomously coordinate, and autonomously attack in cyberspace. When threatened, they can self-destruct and erase traces, exhibiting a certain degree of intelligence. In the future, the weapons loaded onto “Cyber ​​Aircraft” will not be pre-written code by software engineers, but rather intelligent cyber weapons will be designed in real-time based on discovered vulnerabilities, enabling “order-based” development and significantly improving the targeting of cyberspace operations.

The trend of intelligentization in network-controlled weapons is becoming increasingly prominent.

Weapons controlled by cyberspace, or cyber-controlled weapons, are weapons that connect to a network, receive commands from cyberspace, execute cross-domain missions, and achieve combat effects in physical space. Most future combat weapon platforms will be networked, making military information networks essentially the Internet of Things (IoT). These networks connect to satellites, radars, drones, and other network entities, enabling control from perception and detection to tracking, positioning, and strike. The intelligence of cyber-controlled weapons is rapidly developing across land, sea, air, space, and cyber domains.

In 2015, Syria used a Russian robotic force to defeat militants. The operation employed six tracked robots, four wheeled robots, an automated artillery corps, several drones, and a command system. Commanders used the command system to direct drones to locate militants, and the robots then charged, supported by artillery and drone fire, inflicting heavy casualties. This small-scale battle marked the beginning of robotic “team” operations.

Network-controlled intelligent weapons for naval and air battlefields are under extensive research and development and verification. In 2014, the U.S. Navy used 13 unmanned surface vessels to demonstrate and verify the interception of enemy ships by unmanned surface vessel swarms, mainly by exchanging sensor data, and achieved good results. When tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became its prominent feature of intelligence.

The development of swarms of small, micro-sized drones for aerial combat is also rapid. In recent years, the U.S. Department of Defense has conducted multiple tests of the Partridge micro-drone, capable of deploying dozens or even hundreds at a time. By enhancing its coordination capabilities during reconnaissance missions, progress has been made in drone formation, command, control, and intelligent management.

Space-based cyber-control weapons are becoming increasingly “intelligent.” The space-based cyber-control domain primarily comprises two categories of weapons: reconnaissance and strike weapons. Satellites of various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various microsatellite constellations, satellites are exhibiting new characteristics: small size, rapid launch, large numbers, and greater intelligence. Microsatellite constellations offer greater flexibility and reliability in performing reconnaissance and communication missions, and currently, the world’s leading satellite powers are actively developing microsatellite constellation plans with broader coverage.

Various hypersonic strike weapons are cruising in the air, like a sword of Damocles hanging over people’s heads. The U.S. Air Force Research Laboratory stated that the “hypersonic strike weapon” will begin flight testing around 2018, and other countries are also actively developing similar weapons. The most prominent features of these weapons are their high speed, long range, and high level of intelligence.

Intelligent command information systems are changing traditional combat command methods.

Cyber ​​weapons and weapons controlled by cyberspace constitute the “fist” of intelligent warfare, while the command information systems that direct the use of these weapons are the “brain” of intelligent warfare. Cyberspace operational command information systems must keep pace with the process of intelligentization. Currently, almost all global command information systems face the challenge of “intelligent lag.” Future warfare requires rapid and autonomous decision-making, which places higher demands on intelligent support systems.

In 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) launched the “Deep Green Program,” a research and development program for command and control systems, aiming to enable computer-aided commanders to make rapid decisions and gain a decisive advantage. This is a campaign-level command information system, developed to be embedded into the U.S. Army’s brigade-level C4ISR wartime command information system, enabling intelligent command by commanders. Even today, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace warfare, network targets are represented by a single IP address accessing the network. Their sheer number makes efficient manual operation difficult, necessitating the support of intelligent command and information systems. Currently, intelligent command and information systems need to achieve functions such as intelligent intelligence analysis, intelligent sensing, intelligent navigation and positioning, intelligent decision support, intelligent collaboration, intelligent assessment, and intelligent unmanned combat. In particular, they must enable swarm operational control of unmanned network control systems. All of these requirements urgently demand intelligent command and information systems, necessitating accelerated research and development and application of relevant key technologies.

In conclusion, intelligent cyber weapons and network control weapons, coordinated through intelligent information systems, will form enormous combat capabilities, essentially enabling them to carry out all actions in current combat scenarios. Future warfare, from command force organization to target selection, action methods, and tactical applications, will all unfold within an intelligent context. The “gamification” of warfare will become more pronounced, and operational command methods will undergo significant changes.

In future battlefields, combat will require not only courage but also intelligence.

■ Yang Jian, Zhao Lu

Currently, artificial intelligence is entering a new stage of development and is rapidly penetrating various fields. Influenced by this process, military competition among nations surrounding intelligent technologies has begun. Our army has always been a brave and tenacious people’s army, determined to fight and win. On the future battlefield, we should continue to carry forward our glorious traditions while more broadly mastering and utilizing the latest technological achievements to develop more intelligent weapons and equipment, thereby gaining a decisive advantage on the future battlefield.

Intelligentization is a trend in human societal development, and intelligent warfare is rapidly approaching. The development of military intelligence has a solid foundation thanks to successful innovations that transcend existing computational models, the gradual popularization of nanotechnology, and breakthroughs in research on the mechanisms of the human brain. Consequently, intelligent weaponry is increasingly prominent, surpassing and even replacing human capabilities in areas such as intelligence analysis and combat response. Furthermore, intelligent weaponry offers significant advantages in terms of manpower requirements, comprehensive support, and operating costs, and is increasingly becoming the dominant force in warfare.

The development and application of intelligent weaponry have proven to expand the scope of military operations and significantly enhance the combat effectiveness of troops. In the battlefields of Afghanistan and Iraq, drones have undertaken most of the reconnaissance, intelligence, and surveillance support missions, and have been responsible for approximately one-third of the air strike missions. In the past two years, Russia has also repeatedly used highly intelligent unmanned reconnaissance aircraft and combat robots in the Syrian theater. Intelligent weaponry is increasingly demonstrating its significant value, surpassing that of traditional weapons.

In future wars, the contest of intelligent combat systems will be the key to victory in high-level competition and ultimate showdowns. As the development of technology-supported military means becomes increasingly uneven, whoever first acquires the capability to conduct intelligent warfare will be better positioned to seize the initiative on the battlefield. Those with a technological advantage will minimize the costs of war, while the weaker will inevitably suffer enormous losses and pay a heavy price. We must not only accelerate innovation in core technologies and the development of weaponry, but also research and explore organizational structures, command methods, and operational models adapted to the development of intelligent military operations. Furthermore, we must cultivate a talent pool capable of promoting intelligent military development and forging intelligent combat capabilities, fully leveraging the overall effectiveness of our military’s combat system, and winning wars in a more “intelligent” manner against our adversaries.

現代國語:

党的十九大报告指出,要“加快军事智能化发展,提高基于网络信息体系的联合作战能力、全域作战能力”。今天的《解放军报》刊发文章指出,军事智能化是机械化、信息化之后军事领域发展的新趋势和新方向,我们要在现有机械化和信息化基础上发展智能化,同时用智能化牵引机械化和信息化向更高水平、更高层次发展。网络空间作为新型作战领域,是科技含量高、最具创新活力的新领域,在军事智能化的牵引下,正在迎来快速发展的机遇期。制图:雷 煜

军事智能化牵引网络空间作战加速发展

■敬兵 周德旺 皇安伟

三大技术支撑网络空间武器智能化

智能是一种智慧和能力,是一切有生命周期的系统对规律的感应、认知与运用,智能化就是把这种智慧和能力固化下来,成为一种状态。网络空间武器是网络空间遂行作战任务的武器,其形态以软件和代码为主,本质上是一段数据。网络空间武器的智能化主要体现在以下三个方面:

一是智能化漏洞挖掘。漏洞是网络武器设计的基础,今年5月在全球范围内传播的勒索病毒软件,就是利用了微软操作系统漏洞,给网络安全界带来了巨大震动。漏洞价格昂贵,一个零日漏洞价值几万到几十万美元不等。以往漏洞的发现,主要依靠有经验的黑客,利用软件工具对代码进行检查和分析。在今年中国互联网安全大会期间举办的国际网络安全技术对抗联赛总决赛中,参赛人员演示由智能机器人现场进行漏洞挖掘,然后通过漏洞编写网络代码,形成网络武器,攻破目标系统,夺取旗帜。这一变化,意味着漏洞挖掘进入了智能化时代。

二是智能化信号分析和密码破译。信号是网络数据传输的载体,密码是网络数据安全最后的屏障,信号分析和密码破译是网络空间作战的核心技术,突破信号和密码是进入网络空间的基本路径,是网络武器攻击的首要目标。智能化信号分析将信号的协议分析、调制识别、个体识别等问题,通过大数据、云计算、深度学习等技术进行解决。密码破译是计算科学“皇冠上的明珠”,智能化密码破译通过对密码数据样本的积累,不断学习、寻找规律,能找到破译的钥匙,从而打开网络数据“保险柜”的最后一道门,解决网络入侵和接入的关键环节。

三是智能化武器平台设计。美军在2009年提出“网络飞行器”项目,为网络空间作战提供像战车、舰艇、飞机这样的平台,可以实现在网络空间里自动侦察、加载网络武器、自主协同、自主攻击,受到威胁时自我销毁、清除痕迹,具备了一定的智能化特征。未来“网络飞行器”加载的武器,不是软件人员编好的代码,而是根据侦察结果直接对发现的漏洞,现场实时进行智能化网络武器设计,实现“订购式”开发,从而极大地提高网络空间作战的针对性。

网控武器的智能化趋势愈加凸显

受网络空间控制的武器简称网控武器,是通过网络连接,接受网络空间指令,执行跨域任务,在物理空间达成作战效果的武器。未来的各种作战武器平台,大多是联网的武器平台,这样军事信息网本质上就是物联网,上联卫星、雷达、无人机等网络实体,从感知到发现、跟踪、定位、打击都可通过网络空间控制,网控武器的智能化已在陆海空天电等战场蓬勃发展。

2015年,叙利亚利用俄罗斯机器人军团击溃武装分子,行动采用了包括6个履带式机器人、4个轮式机器人、1个自动化火炮群、数架无人机和1套指挥系统。指挥员通过指挥系统调度无人机侦察发现武装分子,机器人向武装分子发起冲锋,同时伴随火炮和无人机攻击力量支援,对武装分子进行了致命打击。这仅仅是一场小规模的战斗,却开启了机器人“组团”作战的先河。

海空战场网控智能武器正在大量研发验证。2014年,美国海军使用13艘无人水面艇,演示验证无人艇集群拦截敌方舰艇,主要通过交换传感器数据,取得了不错的效果。2016年再次试验时,新增了协同任务分配、战术配合等功能,“蜂群意识”成为其智能化的显著特点。

用于空中作战的小微型无人机蜂群也在快速发展。近年来,美国国防部多次试验“山鹑”微型无人机,可一次投放数十架乃至上百架,通过提升其执行侦察任务时的协同能力,在无人机编队、指挥、控制、智能化管理等方面都取得了进展。

空天网控武器越来越“聪明”。空天领域主要包含侦察和打击两类网控武器,各种功能的卫星主要执行侦察任务,是典型的侦察传感器。随着各种小微卫星群的出现,使卫星表现出新的特征:体积小、发射快、数量多、更加智能。小微卫星群在执行侦察和通信任务时,有了更大的灵活度和可靠性,目前世界卫星强国都在积极制定覆盖范围更广的小微卫星群计划。

各种高超音速打击武器在空天巡航,仿佛悬在人们头顶的利剑。美国空军研究室称“高速打击武器”将在2018年前后启动飞行试验,其它各国也正在积极研发类似武器。这类武器最大的特点是速度快、航程远、智能化程度高。

智能化指挥信息系统改变传统作战指挥方式

网络空间武器和受网络空间控制的武器,是智能化战争的“拳头”,而指挥这些武器运用的指挥信息系统是智能化战争的“大脑”,网络空间作战指挥信息系统要同步跟上智能化的进程。当前,几乎全球的指挥信息系统都面临着“智能滞后”的难题,未来战争需要快速决策、自主决策,这对智能辅助系统提出了更高要求。

2007年,美国国防部高级研究计划局启动关于指挥控制系统的研发计划——“深绿计划”,以期能实现计算机辅助指挥员快速决策赢得制胜先机。这是一个战役战术级的指挥信息系统,其研发目的是将该系统嵌入美国陆军旅级C4ISR战时指挥信息系统中去,实现指挥员的智能化指挥。直到今天,美军也没有放松对智能化指挥信息系统的开发。

在网络空间作战中,网络目标表现为一个接入网络的IP地址,数量众多导致人工难以高效操作,作战更需要智能化指挥信息系统的辅助支撑。当前,智能化指挥信息系统需要实现智能情报分析、智能感知、智能导航定位、智能辅助决策、智能协同、智能评估、智能化无人作战等功能,尤其是实现对无人网控系统的集群作战操控,这都对智能化指挥信息系统提出了迫切需求,需要加快相应关键技术的研发和运用。

综上所述,智能化的网络武器和网控武器,通过智能化的信息系统调度,将形成巨大的作战能力,基本能遂行现行作战样式中的所有行动。未来战争,从指挥力量编组、到目标选择、行动方式、战法运用等,都将在智能化的背景下展开,战争“游戏化”的特点将更显著,作战指挥方式也将发生重大变化。

未来战场 斗勇更需斗“智”

■杨建 赵璐

当前,人工智能发展进入崭新阶段,并开始向各个领域加速渗透。受这一进程的影响,各国围绕智能化的军事竞争已拉开帷幕。我军历来是一支英勇顽强、敢打必胜的人民军队,未来战场上应继续发扬光荣传统,同时要更加广泛地掌握和利用最新的科技成果,研制出更多智能化的武器装备,在未来战场上掌握制胜先机。

智能化是人类社会发展的趋势,智能化战争正在加速到来。正是由于超越原有体系结构计算模型的成功创新、纳米制造技术的逐步普及,以及对人脑机理研究的突破性进展,军事智能化发展才拥有了坚实的基础。因此,智能化武器装备的表现日益突出,并在情报分析、战斗反应等方面开始超越并替代人类。此外,在人力需求、综合保障、运行成本等方面,智能化武器装备也具有明显的优势,正在日益成为战争的主导力量。

事实证明,智能化武器装备的发展应用,拓展了军事行动的能力范围,大幅提升了部队的作战效能。在阿富汗和伊拉克战场上,无人机已承担了大部分侦察、情报、监视等作战保障任务,并担负了约三分之一的空中打击任务。近两年,俄罗斯在叙利亚战场上也多次使用具有较高智能化程度的无人侦察机、战斗机器人等装备。智能化武器装备正在愈来愈多地展现出超越传统武器的重要价值。

未来战争中,作战体系智能化的较量将是高手过招、巅峰对决的制胜关键。随着以科技为支撑的军事手段发展的不平衡性越来越大,谁先具备实施智能化作战的能力,谁就更能掌握战场的主动权,拥有技术代差优势的强者会尽可能将战争成本降到最低,而弱者必然遭受巨大损失,付出惨重代价。我们不仅要加紧核心技术创新、武器装备研制,还要研究探索适应军事智能化发展的组织结构、指挥方式和运用模式,更要培养一支能够担起推进军事智能化发展、锻造智能化作战能力的人才队伍,充分发挥我军作战体系的整体效能,在与对手的较量中,以更加“智慧”的方式赢得战争。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841898885.htm

Chinese Military Era of Intelligent Warfare Rapidly Approaching

中國軍事智能化戰爭時代迅速來臨

現代英語:

Since the beginning of the new century, the rapid development of intelligent technologies, with artificial intelligence (AI) at its core, has accelerated the process of a new round of military revolution, and competition in the military field is rapidly moving towards an era of intellectual dominance. Combat elements represented by “AI, cloud, network, cluster, and terminal,” combined in diverse ways, constitute a new battlefield ecosystem, completely altering the mechanisms of victory in warfare. AI systems based on models and algorithms will be the core combat capability, permeating all aspects and stages, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made to decision by AI. Traditional human-centric tactics are being replaced by AI models and algorithms, making intellectual dominance the core control in future warfare. The stronger the intelligent combat capability, the greater the hope of subduing the enemy without fighting.

[Author Biography] Wu Mingxi is the Chief Scientist and Researcher of China Ordnance Industry Group, Deputy Secretary-General of the Science and Technology Committee of China Ordnance Industry Group, and Deputy Director of the Science and Technology Committee of China Ordnance Science Research Institute. His research focuses on national defense science and technology and weaponry development strategies and planning, policies and theories, management and reform research. His major works include “Intelligent Warfare – AI Military Vision,” etc.

Competition in the Age of Intellectual Property

The history of human civilization is a history of understanding and transforming nature, and also a history of understanding and liberating oneself. Through the development of science and technology and the creation and application of tools, humanity has continuously enhanced its capabilities, reduced its burdens, freed itself from constraints, and liberated itself. The control of war has also constantly changed, enriched, and evolved with technological progress, the expansion of human activity space, and the development of the times. Since the 19th century, humanity has successively experienced the control and struggle for land power, sea power, air power, space power, and information power. With the rapid development of intelligent technologies such as artificial intelligence (AI), big data, cloud computing, bio-interdisciplinary technologies, unmanned systems, and parallel simulation, and their deep integration with traditional technologies, humanity’s ability to understand and transform nature has been transformed in terms of epistemology, methodology, and operational mechanisms. This is accelerating the major technological revolutions in machine intelligence, bionic intelligence, swarm intelligence, human-machine integrated intelligence, and intelligent perception, intelligent decision-making, intelligent action, intelligent support, as well as intelligent design, research and development, testing, and manufacturing, thus accelerating the evolution of warfare towards the control and struggle for intellectual power.

The rapid development of intelligent technology has garnered significant attention from major countries worldwide, becoming a powerful driving force for the leapfrog development of military capabilities. The United States and Russia have placed intelligent technology at the core of maintaining their strategic status as global military powers, and significant changes have occurred in their development concepts, models, organizational methods, and innovative applications. They have also carried out substantive applications and practices of military intelligence (see Figure 1).

Wu Mingxi 1

In August 2017, the U.S. Department of Defense stated that future AI warfare was inevitable and that the U.S. needed to “take immediate action” to accelerate the development of AI warfare technologies. The U.S. military’s “Third Offset Strategy” posits that a military revolution, characterized by intelligent armies, autonomous equipment, and unmanned warfare, is underway; therefore, they have identified intelligent technologies such as autonomous systems, big data analytics, and automation as key development directions. In June 2018, the U.S. Department of Defense announced the establishment of the Joint Artificial Intelligence Center, which, guided by the national AI development strategy, coordinates the planning and construction of the U.S. military’s intelligent military system. In February 2019, then-President Trump signed the “American Artificial Intelligence Initiative” executive order, emphasizing that maintaining U.S. leadership in AI is crucial for safeguarding U.S. economic and national security, and requiring the federal government to invest all resources in promoting innovation in the U.S. AI field. In March 2021, the U.S. National Security Council on Artificial Intelligence released a research report stating that, “For the first time since World War II, the technological advantage that has been the backbone of U.S. economic and military power is under threat. If current trends do not change, China possesses the power, talent, and ambition to surpass the United States as the global leader in artificial intelligence within the next decade.” The report argues that the United States must use artificial intelligence swiftly and responsibly to prepare for these threats in order to safeguard national security and enhance defense capabilities. The report concludes that artificial intelligence will transform the world, and the United States must take a leading role.

Russia also attaches great importance to the technological development and military application of artificial intelligence. The Russian military generally believes that artificial intelligence will trigger the third revolution in the military field, following gunpowder and nuclear weapons. In September 2017, Russian President Vladimir Putin publicly stated that artificial intelligence is the future of Russia, and whoever becomes the leader in this field will dominate the world. In October 2019, Putin approved the “Russian National Strategy for the Development of Artificial Intelligence until 2030,” aiming to accelerate the development and application of artificial intelligence in Russia and seek a world-leading position in the field.

In July 2017, the State Council of China issued the “New Generation Artificial Intelligence Development Plan,” which put forward the guiding ideology, strategic goals, key tasks and safeguard measures for the development of new generation artificial intelligence towards 2030, and deployed efforts to build a first-mover advantage in the development of artificial intelligence and accelerate the construction of an innovative country and a world-class science and technology power.

Other major countries and military powers around the world have also launched their own artificial intelligence development plans, indicating that the global struggle for “intellectual power” has fully unfolded. Land power, sea power, air power, space power, information power, and intellectual power are all results of technological progress and products of their time, each with its own advantages and disadvantages, and some theories are constantly expanding with the changing times. From the development trend of control over warfare since modern times, it can be seen that information power and intellectual power involve the overall situation, carrying greater weight and influence. In the future, with the accelerated pace of intelligent development, intellectual power will become a rapidly growing new type of battlefield control with greater strategic influence on the overall combat situation.

The essence of military intelligence lies in leveraging intelligent technologies to establish diverse identification, decision-making, and control models for the war system. These models constitute artificial intelligence (AI), the core of the new era’s intellectual power struggle. The war system encompasses: equipment systems such as individual units, clusters, manned/unmanned collaborative operations, and multi-domain and cross-domain warfare; combat forces such as individual soldiers, squads, detachments, combined arms units, and theater command; operational links such as networked perception, mission planning and command, force coordination, and comprehensive support; specialized systems such as network attack and defense, electronic warfare, public opinion control, and infrastructure management; and military industrial capabilities such as intelligent design, research and development, production, mobilization, and support. AI, in the form of chips, algorithms, and software, is embedded in every system, level, and link of the war system, forming a systematic brain. Although AI is only a part of the war system, its increasingly powerful “brain-like” functions and capabilities “surpassing human limits” will inevitably dominate the overall situation of future warfare.

Battlefield Ecosystem Reconstruction

Traditional warfare involves relatively independent and separate combat elements, resulting in a relatively simple battlefield ecosystem, primarily consisting of personnel, equipment, and tactics. In the intelligent era, warfare is characterized by significant integration, correlation, and interaction among various combat elements. This will lead to substantial changes in the battlefield ecosystem, forming a combat system, cluster system, and human-machine system comprised of an AI brain, distributed cloud, communication networks, collaborative groups, and various virtual and physical terminals—collectively known as the “AI, Cloud, Network, Cluster, Terminal” intelligent ecosystem (see Figure 2). Among these, AI plays a dominant role.

Wu Mingxi 2

AI Brain System. The AI ​​brain system of the intelligent battlefield is a networked and distributed system that is inseparable from and interdependent with combat platforms and missions. It can be classified in several ways. Based on function and computing power, it mainly includes cerebellum, swarm brain, midbrain, hybrid brain, and cerebrum; based on combat missions and stages, it mainly includes sensor AI, combat mission planning and decision-making AI, precision strike and controllable destruction AI, network attack and defense AI, electronic warfare AI, intelligent defense AI, and integrated support AI; based on form, it mainly includes embedded AI, cloud AI, and parallel system AI.

The cerebellum mainly refers to the embedded AI in sensor platforms, combat platforms, and support platforms, which mainly performs tasks such as battlefield environment detection, target recognition, rapid maneuver, precision strike, controlled destruction, equipment support, maintenance support, and logistical support.

“Swarm brain” mainly refers to the AI ​​that enables intelligent control of unmanned swarm platforms on the ground, in the air, at sea, in the water, and in space. It mainly performs tasks such as collaborative perception of the battlefield environment, swarm maneuver, swarm attack, and swarm defense. The key components include algorithms for homogeneous swarm systems and algorithms for heterogeneous systems such as manned-unmanned collaboration.

The midbrain mainly refers to the AI ​​system of the command center, data center, and edge computing of the front-line units on the battlefield. It mainly performs dynamic planning, autonomous decision-making, and auxiliary decision-making for tactical unit combat missions under online and offline conditions.

Hybrid brain mainly refers to a hybrid decision-making system in which commanders and machine AI collaborate in combat operations of organized units. Before the battle, it mainly performs human-based combat mission planning; during the battle, it mainly performs adaptive dynamic mission planning and adjustment based on machine AI; and after the battle, it mainly performs hybrid decision-making tasks oriented towards counter-terrorism and defense.

The “brain” primarily refers to the model, algorithm, and tactical libraries of the theater command center and data center, playing a key supporting role in campaign and strategic decision-making. Due to the abundant data, various battlefield AI systems can be trained and modeled here, and then loaded into different mission systems once mature.

In future battlefields, there will be other AIs of different functions, types, and sizes, such as sensor AI, which mainly includes image recognition, electromagnetic spectrum recognition, sound recognition, speech recognition, and human activity behavior recognition. With the rapid development and widespread application of intelligence, AIs of all sizes will exist throughout society, serving the public and society in peacetime, and potentially serving the military in wartime.

Distributed cloud. Military cloud differs from civilian cloud. Generally speaking, a military cloud platform is a distributed resource management system that uses communication networks to search, collect, aggregate, analyze, calculate, store, and distribute operational information and data. By constructing a distributed system and a multi-point fault-tolerant backup mechanism, a military cloud platform possesses powerful intelligence sharing capabilities, data processing capabilities, resilience, and self-healing capabilities. It can provide fixed and mobile, public and private cloud services, achieving “one-point collection, everyone sharing,” greatly reducing information flow links, making command processes flatter and faster, and avoiding redundant and decentralized construction at all levels.

From the perspective of future intelligent warfare needs, military cloud needs to construct at least a four-tiered system: tactical front-end cloud, troop cloud, theater cloud, and strategic cloud. Based on operational elements, it can also be divided into specialized cloud systems such as intelligence cloud, situational awareness cloud, firepower cloud, information warfare cloud, support cloud, and nebula.

1. Front-end cloud primarily refers to computing services provided by units, squads, and platforms, including information perception, target identification, battlefield environment analysis, autonomous and assisted decision-making, and operational process and effect evaluation. The role of front-end cloud is mainly reflected in two aspects. First, it facilitates the sharing and collaboration of computing and storage resources among platforms, and the interactive integration of intelligent combat information. For example, if a platform or terminal is attacked, relevant perception information, damage status, and historical data will be automatically backed up, replaced, and updated through a networked cloud platform, and the relevant information will be uploaded to the higher command post. Second, it provides online information services and intelligent software upgrades for offline terminals.

2. Military cloud primarily refers to the cloud systems built at the battalion and brigade level for operations. Its focus is on providing computing services such as intelligent perception, intelligent decision-making, autonomous action, and intelligent support in response to different threats and environments. The goal of military cloud construction is to establish a networked, automatically backed-up, distributed cloud system connected to multiple links with higher-level units. This system should meet the computing needs of different forces, including reconnaissance and perception, mobile assault, command and control, firepower strikes, and logistical support, as well as the computing needs of various combat missions such as tactical joint operations, manned/unmanned collaboration, and swarm offense and defense.

3. Theater Cloud primarily provides battlefield weather, geographical, electromagnetic, human, and social environmental factors and information data for the entire operational area. It offers comprehensive information on troop deployments, weaponry, movement changes, and combat losses for both sides, as well as relevant information from higher command, friendly forces, and civilian support. Theater Cloud should possess networked, customized, and intelligent information service capabilities. It should interconnect with various operational units through military communication networks (space-based, airborne, ground-based, maritime, and underwater) and civilian communication networks (under secure measures) to ensure efficient, timely, and accurate information services.

4. Strategic cloud is mainly established by a country’s defense system and military command organs. It is primarily based on military information and covers comprehensive information and data related to defense technology, defense industry, mobilization support, economic and social support capabilities, as well as politics, diplomacy, and public opinion. It provides core information, assessments, analyses, and suggestions such as war preparation, operational planning, operational schemes, operational progress, battlefield situation, and battle situation analysis; and provides supporting data such as strategic intelligence, the military strength of adversaries, and war mobilization potential.

The various clouds mentioned above are interconnected, exhibiting both hierarchical and horizontal relationships of collaboration, mutual support, and mutual service. The core tasks of the military cloud platform are twofold: first, to provide data and computing support for building an AI-powered intelligent warfare system; and second, to provide operational information, computing, and data support for various combat personnel and weapon platforms. Furthermore, considering the needs of terminals and group operations, it is necessary to pre-process some cloud computing results, models, and algorithms into intelligent chips and embed them into weapon platforms and group terminals, enabling online upgrades or offline updates.

Communication networks. Military communication and network information constitute a complex super-network system. Since military forces primarily operate in land, sea, air, space, field maneuver, and urban environments, their communication networks encompass strategic and tactical communications, wired and wireless communications, secure communications, and civilian communications. Among these, wireless, mobile, and free-space communication networks are the most crucial components of the military network system, and related integrated electronic information systems are gradually established based on these communication networks.

Military communications in the mechanized era primarily followed the platform, terminal, and user, satisfying specific needs but resulting in numerous silos and extremely poor interconnectivity. In the information age, this situation is beginning to change. Currently, military communication networks are adopting new technological systems and development models, characterized by two main features: first, “network-data separation,” where information transmission does not depend on any specific network transmission method—”network access is all that matters”—any information can be delivered as long as the network link is unobstructed; second, internet-based architecture, utilizing IP addresses, routers, and servers to achieve “all roads lead to Beijing,” i.e., military networking or grid-based systems. Of course, military communication networks differ from civilian networks. Strategic and specialized communication needs exist at all times, such as nuclear button communications for nuclear weapons and command and control of strategic weapons, information transmission for satellite reconnaissance, remote sensing, and strategic early warning, and even specialized communications in individual soldier rooms and special operations conditions. These may still adopt a mission-driven communication model. Even so, standardization and internet connectivity are undoubtedly the future trends in military communication network development. Otherwise, not only will the number of battlefield communication frequency bands, radios, and information exchange methods increase, leading to self-interference, mutual interference, and electromagnetic compatibility difficulties, but radio spectrum management will also become increasingly complex. More importantly, it will be difficult for platform users to achieve automatic communication based on IP addresses and routing structures, unlike email on the internet where a single command can be sent to multiple users. Future combat platforms will certainly be both communication user terminals and also function as routers and servers.

Military communication network systems mainly include space-based communication networks, military mobile communication networks, data links, new communication networks, and civilian communication networks.

1. Space-Based Information Networks. The United States leads in the construction and utilization of space-based information networks. This is because more than half of the thousands of orbiting platforms and payloads in space are American-owned. Following the Gulf War, and especially during the Iraq War, the US military accelerated the application and advancement of space-based information networks through wartime experience. After the Iraq War, through the utilization of space-based information and the establishment of IP-based interconnection, nearly 140 vertical “chimneys” from the Gulf War period were completely interconnected horizontally, significantly shortening the “Out-of-Target-Action” (OODA) loop time. The time from space-based sensors to the shooter has been reduced from tens of hours during the Gulf War to approximately 20 seconds currently using artificial intelligence for identification.

With the rapid development of small satellite technology, low-cost, multi-functional small satellites are becoming increasingly common. As competition intensifies in commercial launches, costs are dropping dramatically, and a single launch can carry several, a dozen, or even dozens of small satellites. If miniaturized electronic reconnaissance, visible light and infrared imaging, and even quantum dot micro-spectroscopy instruments are integrated onto these satellites, achieving integrated reconnaissance, communication, navigation, meteorological, and mapping functions, the future world and battlefield will become much more transparent.

2. Military Mobile Communication Networks. Military mobile communication networks have three main uses. First, command and control between various branches of the armed forces and combat units in joint operations; this type of communication requires a high level of confidentiality, reliability, and security. Second, communication between platforms and clusters, requiring anti-jamming capabilities and high reliability. Third, command and control of weapon systems, mostly handled through data links.

Traditional military mobile communication networks are mostly “centralized, vertically focused, and tree-like structures.” With the acceleration of informatization, the trend towards “decentralized, self-organizing networks, and internet-based” is becoming increasingly apparent. As cognitive radio technology matures and is widely adopted (see Figure 3), future network communication systems will be able to automatically identify electromagnetic interference and communication obstacles on the battlefield, quickly locate available spectrum resources, and conduct real-time communication through frequency hopping and other methods. Simultaneously, software and cognitive radio technology can be compatible with different communication frequency bands and waveforms, facilitating seamless transitions from older to newer systems.

Wu Mingxi 3

3. Data Links. A data link is a specialized communication technology that uses time division, frequency division, and code division to transmit pre-agreed, periodic, or irregular, regular or irregular critical information between various combat platforms. Unless fully understood or deciphered by the enemy, it is very difficult to interfere with. Data links are mainly divided into two categories: dedicated and general-purpose. Joint operations, formation coordination, and swarm operations primarily utilize general-purpose data links. Satellite data links, UAV data links, missile-borne data links, and weapon fire control data links are currently mostly dedicated. In the future, generalization will be a trend, and specialization will decrease. Furthermore, from the perspective of the relationship between platforms and communication, the information transmission and reception of platform sensors and internal information processing generally follow the mission system, exhibiting strong specialization characteristics, while communication and data transmission between platforms are becoming increasingly general-purpose.

4. New Communication Technologies. Traditional military communication primarily relies on microwave communication. Due to its large divergence angle and numerous application platforms, corresponding electronic jamming and microwave attack methods have developed rapidly, making it easy to carry out long-range interference and damage. Therefore, new communication technologies such as millimeter waves, terahertz waves, laser communication, and free-space optical communication have become important choices that are both anti-jamming and easy to implement high-speed, high-capacity, and high-bandwidth communication. Although high-frequency electromagnetic waves have good anti-jamming performance due to their smaller divergence angle, achieving precise point-to-point aiming and omnidirectional communication still presents certain challenges, especially under conditions of high-speed maneuvering and rapid trajectory changes of combat platforms. How to achieve alignment and omnidirectional communication is still under technological exploration.

5. Civilian Communication Resources. The effective utilization of civilian communication resources is a strategic issue that must be considered and cannot be avoided in the era of intelligentization. In the future, leveraging civilian communication networks, especially 5G/6G mobile communications, for open-source information mining and data correlation analysis to provide battlefield environment, target, and situational information will be crucial for both combat and non-combat military operations. In non-combat military operations, especially overseas peacekeeping, rescue, counter-terrorism, and disaster relief, the military’s dedicated communication networks can only be used within limited areas and regions, raising the question of how to communicate and connect with the outside world. There are two main ways to utilize civilian communication resources: one is to utilize civilian satellite communication resources, especially small satellite communication resources; the other is to utilize civilian mobile communication and internet resources.

The core issue in the interactive utilization of military and civilian communication resources is addressing security and confidentiality. One approach is to employ firewalls and encryption, directly utilizing civilian satellite communications and global mobile communication infrastructure for command and communication; however, the risks of hacking and cyberattacks remain. Another approach is to utilize emerging technologies such as virtualization, intranets, semi-physical isolation, one-way transmission, mimicry defense, and blockchain to address these challenges.

Collaborative swarms. By simulating the behavior of bee colonies, ant colonies, flocks of birds, and schools of fish in nature, this research studies the autonomous collaborative mechanisms of swarm systems such as drones and smart munitions to accomplish combat missions such as attacking or defending against enemy targets. This can achieve strike effects that are difficult to achieve with traditional combat methods and approaches. Collaborative swarms are an inevitable trend in intelligent development and a major direction and key area of ​​intelligent construction. No matter how advanced the combat performance or how powerful the functions of a single combat platform, it cannot form a collective or scalable advantage. Simply accumulating quantity and expanding scale, without autonomous, collaborative, and orderly intelligent elements, is just a disorganized mess.

Collaborative swarms mainly comprise three aspects: first, manned/unmanned collaborative swarms formed by the intelligent transformation of existing platforms, primarily constructed from large and medium-sized combat platforms; second, low-cost, homogeneous, single-function, and diverse combat swarms, primarily constructed from small unmanned combat platforms and munitions; and third, biomimetic swarms integrating human and machine intelligence, possessing both biological and machine intelligence, primarily constructed from highly autonomous humanoid, reptile-like, avian-like, and marine-like organisms. Utilizing collaborative swarm systems for cluster warfare, especially swarm warfare, offers numerous advantages and characteristics.

1. Scale Advantage. A large unmanned system can disperse combat forces, increasing the number of targets the enemy can attack and forcing them to expend more weapons and ammunition. The survivability of a swarm, due to its sheer number, is highly resilient and resilient; the survivability of a single platform becomes less important, while the overall advantage becomes more pronounced. The sheer scale prevents drastic fluctuations in combat effectiveness, because unlike high-value manned combat platforms and complex weapon systems such as the B-2 strategic bomber and advanced F-22 and F-35 fighter jets, the loss of a low-cost unmanned platform, once attacked or destroyed, results in a sharp decline in combat effectiveness. Swarm operations can launch simultaneous attacks, overwhelming enemy defenses. Most defensive systems have limited capabilities, able to handle only a limited number of threats at a time. Even with dense artillery defenses, a single salvo can only hit a limited number of targets, leaving some to escape. Therefore, swarm systems possess extremely strong penetration capabilities.

2. Cost Advantage. Swarm warfare, especially bee warfare, primarily utilizes small and medium-sized UAVs, unmanned platforms, and munitions. These have simple product lines, are produced in large quantities, and have consistent quality and performance requirements, facilitating low-cost mass production. While the pace of upgrades and replacements for modern weapons and combat platforms has accelerated significantly, the cost increases have also been staggering. Since World War II, weapons development and procurement prices have shown that equipment costs and prices have risen much faster than performance improvements. Main battle tanks during the Gulf War cost 40 times more than those during World War II, while combat aircraft and aircraft carriers cost as much as 500 times more. From the Gulf War to 2020, the prices of various main battle weapons and equipment increased several times, tens of times, or even hundreds of times. In comparison, small and medium-sized UAVs, unmanned platforms, and munitions with simple product lines have a clear cost advantage.

3. Autonomous Advantage. Under a unified spatiotemporal reference platform, through networked active and passive communication and intelligent perception of battlefield targets, individual platforms in the group can accurately perceive the distance, speed, and positional relationships between each other. They can also quickly identify the nature, size, priority, and distance of target threats, as well as their own distance from neighboring platforms. With pre-defined operational rules, one or more platforms can conduct simultaneous or wave-based attacks according to the priority of target threats, or they can attack in groups simultaneously or in multiple waves (see Figure 4). Furthermore, the priority order for subsequent platforms to replace a damaged platform can be clearly defined, ultimately achieving autonomous decision-making and action according to pre-agreed operational rules. This intelligent combat operation, depending on the level of human involvement and the difficulty of controlling key nodes, can be either completely autonomous, or semi-autonomous, with human intervention.

Wu Mingxi 4

4. Decision-making advantage. The future battlefield environment is becoming increasingly complex, with combatants vying for dominance in intense strategic maneuvering and confrontation. Therefore, relying on humans to make decisions in a high-intensity confrontation environment is neither timely nor reliable. Thus, only by entrusting automated environmental adaptation, automatic target and threat identification, autonomous decision-making, and coordinated action to collaborative groups can adversaries be rapidly attacked or effective defenses implemented, thereby gaining battlefield advantage and initiative.

The coordination group brings new challenges to command and control. How to implement command and control of the cluster is a new strategic issue. Control can be implemented in a hierarchical and task-based manner, which can be roughly divided into centralized control mode, hierarchical control mode, consistent coordination mode, and spontaneous coordination mode. [1] Various forms can be adopted to achieve human control and participation. Generally speaking, the smaller the tactical unit, the more autonomous action and unmanned intervention should be adopted; at the level of organized unit operations, since the control of multiple combat groups is involved, centralized planning and hierarchical control are required, and human participation should be limited; at the higher strategic and operational levels, the cluster is only used as a platform weapon and combat style, which requires unified planning and layout, and the degree of human participation will be higher. From the perspective of mission nature, the operation and use of strategic weapons, such as nuclear counterattacks, requires human operation and is not suitable for autonomous handling by weapon systems. When conducting offensive and defensive operations against important or high-value targets, such as decapitation strikes, full human participation and control are necessary, while simultaneously leveraging the autonomous functions of the weapon systems. For offensive operations against tactical targets, if the mission requires lethal strikes and destruction, limited human participation is permissible, or, after human confirmation, the coordinated group can execute the operation automatically. When performing non-strike missions such as reconnaissance, surveillance, target identification, and clearance, or short-duration missions such as air defense and missile defense where human involvement is difficult, the coordinated group should primarily execute these tasks automatically, without human involvement. Furthermore, countermeasures for swarm operations must be carefully studied. Key research should focus on countermeasures against electronic deception, electromagnetic interference, cyberattacks, and high-power microwave weapons, electromagnetic pulse bombs, and artillery-missile systems, as their effects are relatively significant. Simultaneously, research should be conducted on countermeasures such as laser weapons and swarm-to-swarm tactics, gradually establishing a “firewall” that humans can effectively control against coordinated groups.

Virtual and physical terminals. Virtual and physical terminals mainly refer to various terminals linked to the cloud and network, including sensors with pre-embedded intelligent modules, command and control platforms, weapon platforms, support platforms, related equipment and facilities, and combat personnel. Future equipment and platforms will be cyber-physical systems (CPS) and human-computer interaction systems with diverse front-end functions, cloud-based back-end support, virtual-physical interaction, and online-offline integration. Simple environmental perception, path planning, platform maneuverability, and weapon operation will primarily rely on front-end intelligence such as bionic intelligence and machine intelligence. Complex battlefield target identification, combat mission planning, networked collaborative strikes, combat situation analysis, and advanced human-computer interaction will require information, data, and algorithm support from back-end cloud platforms and cloud-based AI. The front-end intelligence and back-end cloud intelligence of each equipment platform should be combined for unified planning and design, forming a comprehensive advantage of integrated front-end and back-end intelligence. Simultaneously, virtual soldiers, virtual staff officers, virtual commanders, and their intelligent and efficient interaction with humans are also key areas and challenges for future research and development.

Qualitative change in the form of warfare

Since modern times, human society has mainly experienced large-scale mechanized warfare and smaller-scale informationized local wars. The two world wars that occurred in the first half of the 20th century were typical examples of mechanized warfare. The Gulf War, the Kosovo War, the Afghanistan War, the Iraq War, and the Syrian War since the 1990s fully demonstrate the form and characteristics of informationized warfare. In the new century and new stage, with the rapid development and widespread application of intelligent technologies, the era of intelligent warfare, characterized by data and computing, models and algorithms, is about to arrive (see Figure 5).

Wu Mingxi 5

Mechanization is a product of the industrial age, focusing on mechanical power and electrical technology. Its weaponry primarily manifests as tanks, armored vehicles, artillery, aircraft, and ships, corresponding to mechanized warfare. Mechanized warfare is mainly based on classical physics, represented by Newton’s laws, and large-scale socialized production. It is characterized by large-scale, linear, and contact warfare. Tactically, it typically involves on-site reconnaissance, terrain surveys, understanding the opponent’s forward and rear deployments, making decisions based on one’s own capabilities, implementing offensive or defensive maneuvers, and assigning tasks, coordinating operations, and ensuring logistical support. It exhibits clear characteristics such as hierarchical command and control and sequential temporal and spatial operations.

Information technology, a product of the information age, focuses on information technologies such as computers and network communications. Its equipment primarily manifests as radar, radios, satellites, missiles, computers, military software, command and control systems, cyber and electronic warfare systems, and integrated electronic information systems, corresponding to the form of information warfare. Information warfare is mainly based on the three laws of computers and networks (Moore’s Law, Gilder’s Law, and Metcalfe’s Law), emphasizing integrated, precise, and three-dimensional operations. It establishes a seamless and rapid information link from sensor to shooter, seizing information dominance and achieving preemptive detection and strike. Tactically, it requires detailed identification and cataloging of the battlefield and targets, highlighting the role of networked perception and command and control systems, and placing new demands on the interconnectivity and other information functions of platforms. Due to the development of global information systems and diversified network communications, information warfare blurs the lines between front and rear lines, emphasizing horizontal integration of reconnaissance, control, strike, assessment, and support, as well as the integration and flattening of strategy, campaign, and tactics.

Intelligentization is a product of the knowledge economy era. Technologically, it focuses on intelligent technologies such as artificial intelligence, big data, cloud computing, cognitive communication, the Internet of Things, biological cross-disciplinary, hybrid enhancement, swarm intelligence, autonomous navigation and collaboration. In terms of equipment, it mainly manifests as unmanned platforms, intelligent munitions, swarm systems, intelligent sensing and database systems, adaptive mission planning and decision-making systems, combat simulation and parallel training systems, military cloud platforms and service systems, public opinion early warning and guidance systems, and intelligent wearable systems, which correspond to the form of intelligent warfare.

Intelligent warfare, primarily based on biomimetic, brain-like principles, and AI-driven battlefield ecosystems, is a new combat form characterized by “energy mobility and information interconnection,” supported by “network communication and distributed cloud,” centered on “data computing and model algorithms,” and focused on “cognitive confrontation.” It features multi-domain integration, cross-domain offense and defense, unmanned operation, cluster confrontation, and integrated interaction between virtual and physical spaces.

Intelligent warfare aims to meet the needs of nuclear and conventional deterrence, joint operations, all-domain operations, and non-war military operations. It focuses on multi-domain integrated operations encompassing cognitive, informational, physical, social, and biological domains, exhibiting characteristics such as distributed deployment, networked links, flattened structures, modular combinations, adaptive reconfiguration, parallel interaction, focused energy release, and nonlinear effects. Its winning mechanisms overturn traditions, its organizational forms undergo qualitative changes, its operational efficiency is unprecedentedly improved, and its combat power generation mechanisms are transformed. These substantial changes are mainly reflected in the following ten aspects.

The Winning Mechanism Dominated by AI. Under intelligent conditions, new combat elements represented by “AI, cloud, network, cluster, and terminal” will reshape the battlefield ecosystem, completely changing the winning mechanism of war. Among them, AI systems based on models and algorithms are the core combat capability, permeating all aspects and links, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made by AI. The traditional human-based combat methods are being replaced by AI models and algorithms. Algorithmic warfare will play a decisive role in war, and the combat system and process will ultimately be dominated by AI. The right to intelligence will become the core control in future warfare.

Different eras and different forms of warfare result in different battlefield ecosystems, with entirely different compositions of combat elements and winning mechanisms. Mechanized warfare is platform-centric warfare, with “movement” as its core and firepower and mobility as its dominant forces, pursuing energy delivery and release through equipment. Combat elements mainly include: personnel + mechanized equipment + tactics. The winning mechanism is based on human-led decision-making in the operational use of mechanized equipment, achieving victory with superior numbers, overwhelming smaller forces, and controlling slower forces, with comprehensive, efficient, and sustainable mobilization capabilities playing decisive or important roles. Informationized warfare is network-centric warfare, with “connectivity” as its core and information power as its dominant force, pursuing energy aggregation and release through networks. Combat elements and their interrelationships mainly consist of “personnel + informationized equipment + tactics” based on network information. Information permeates personnel, equipment, and tactics, establishing seamless information connections “from sensor to shooter,” achieving system-wide and networked combat capabilities, using systems against localized forces, networks against discrete forces, and speed against slow forces, becoming a crucial mechanism for achieving victory in war. Information plays a multiplier role in equipment and combat systems, but the platform remains human-centric. Information assists in decision-making, but most decisions are still made by humans. Intelligent warfare is cognitive-centric warfare, with “computation” at its core and intelligence as the dominant force. Intelligence will carry more weight than firepower, mobility, and information power, pursuing the use of intelligence to control and dominate capabilities, using the virtual to overcome the real, and achieving victory through superiority. The side with more AI and whose AI is smarter will have greater initiative on the battlefield. The main combat elements and their interrelationships are: AI × (cloud + network + swarm + human + equipment + tactics), which can be simplified to an interconnected and integrated battlefield ecosystem composed of “AI, cloud, network, swarm, and terminal” elements. In the future, AI’s role in warfare will become increasingly significant and powerful, ultimately playing a decisive and dominant role.

Emphasizing the leading role of AI does not deny the role of humans in warfare. On the one hand, human intelligence has been pre-emptively utilized and endowed into AI; on the other hand, at the pre-war, post-war, and strategic levels, for a considerable period of time and in the foreseeable future, AI cannot replace humans.

Modern warfare is becoming increasingly complex, with combat operations moving at ever faster paces. The ability to quickly identify and process massive amounts of information, respond rapidly to battlefield situations, and formulate decisive strategies is far beyond human capability and exceeds the limits of current technology (see Tables 1 and 2). As AI becomes more widely applied and plays a more significant role in warfare, operational processes will be reshaped, and the military kill chain will be accelerated and made more efficient. Rapid perception, decision-making, action, and support will become crucial factors for victory in future intelligent warfare.

Wu Mingxi - Table 1
Wu Mingxi - Table 2

In the future, intelligent recognition and pattern recognition of images, videos, electromagnetic spectrum, and voice will enable rapid and accurate target identification from complex battlefield information gathered by air, land, and sea sensor networks. Utilizing big data technology, through multi-source, multi-dimensional directional search and intelligent correlation analysis, not only can various targets be accurately located, but also human behavior, social activities, military operations, and public opinion trends can be precisely modeled, gradually improving the accuracy of early warning and prediction. Based on precise battlefield information, each theater and battlefield can adaptively implement mission planning, autonomous decision-making, and operational process control through extensive parallel modeling and simulation training in virtual space. AI on various combat platforms and cluster systems can autonomously and collaboratively execute tasks around operational objectives according to mission planning, and proactively adjust to changes that may occur at any time. By establishing a distributed, networked, intelligent, and multi-modal support system and pre-positioned deployment, rapid and precise logistics distribution, material supply, and intelligent maintenance can be implemented. In summary, through the widespread application of intelligent technologies and the proactive and evolving capabilities of various AI systems, the entire operational process—including planning, prediction, perception, decision-making, implementation, control, and support—can be re-engineered to achieve a “simple, fast, efficient, and controllable” operational workflow. This will gradually free humanity from the burdens of arduous combat tasks. Operational workflow re-engineering will accelerate the pace, compress time, and shorten processes on the future battlefield.

The winning mechanism dominated by AI is mainly manifested in combat capabilities, methods, strategies, and measures. It fully integrates human intelligence, approaches human intelligence, surpasses human limits, leverages the advantages of machines, and embodies advancement, disruption, and innovation. This advancement and innovation is not a simple extension or increase in quantity in previous wars, but a qualitative change and leap, a higher-level characteristic. This higher-level characteristic is reflected in intelligent warfare possessing “brain-like” functions and many “capabilities that surpass human limits” that traditional warfare lacks. As AI continues to optimize and iterate, it will one day surpass ordinary soldiers, staff officers, commanders, and even elite and expert groups, becoming a “super brain” and a “super brain group.” This is the core and key of intelligent warfare, a technological revolution in the fields of epistemology and methodology, and a high-level combat capability that humanity can currently foresee, achieve, and evolve.

The role of cyberspace is rising. With the progress of the times and the development of technology, the operational space has gradually expanded from physical space to virtual space. The role and importance of virtual space in the operational system are gradually rising and becoming increasingly important, and it is increasingly deeply integrated with physical space and other fields. Virtual space is an information space based on network electromagnetics constructed by humans. It can reflect human society and the material world from multiple perspectives, and can be utilized by transcending many limitations of the objective world. It is constructed by the information domain, connected by the physical domain, reflected by the social domain, and utilized by the cognitive domain. In a narrow sense, virtual space mainly refers to the civilian Internet; in a broad sense, virtual space mainly refers to cyberspace, including various Internet of Things, military networks, and dedicated networks. Cyberspace is characterized by being easy to attack but difficult to defend, using software to fight hard, integrating peacetime and wartime, and blurring the lines between military and civilian sectors. It has become an important battlefield for conducting military operations, strategic deterrence, and cognitive confrontation.

The importance of cyberspace is mainly reflected in three aspects: First, through network information systems, it connects dispersed combat forces and elements into a whole, forming a systematic and networked combat capability, which becomes the foundation of information warfare; second, it becomes the main battlefield and basic support for cognitive confrontation such as cyberspace, intelligence, public opinion, psychology, and consciousness; and third, it establishes virtual battlefields, conducts combat experiments, realizes virtual-real interaction, and forms the core and key to parallel operations and the ability to use the virtual to defeat the real.

In the future, with the accelerated upgrading of global interconnection and the Internet of Things, and with the establishment, improvement and widespread application of systems such as space-based networked reconnaissance, communication, navigation, mobile internet, Wi-Fi, high-precision global spatiotemporal reference platforms, digital maps, and industry big data, human society and global military activities will become increasingly “transparent,” increasingly networked, perceived, analyzed, correlated, and controlled (see Figure 6). This will have a profound, all-round, and ubiquitous impact on military construction and operations. The combat system in the intelligent era will gradually expand from closed to open, and from military-led to a “source-open and ubiquitous” direction that integrates military and civilian sectors.

Wu Mingxi 6

In the era of intelligentization, information and data from the physical, informational, cognitive, social, and biological fields will gradually flow freely. Combat elements will achieve deep interconnection and the Internet of Things. Various combat systems will evolve from basic “capability combinations” to advanced “information fusion, data linking, and integrated behavioral interaction,” possessing powerful all-domain perception, multi-domain fusion, and cross-domain combat capabilities, and the ability to effectively control important targets, sensitive groups, and critical infrastructure anytime, anywhere. A report from the U.S. Army Joint Arms Center argues that the world is entering an era of “ubiquitous global surveillance.” Even if the world cannot track all activities, the proliferation of technology will undoubtedly cause the potential sources of information to grow exponentially.

Currently, network-based software attacks have acquired the capability to cause physical damage, and cyberattacks by militarily advanced countries possess operational capabilities such as intrusion, deception, interference, and sabotage. Cyberspace has become another important battlefield for military operations and strategic deterrence. The United States has already used cyberattacks in actual combat. Ben Ali of Tunisia, Gaddafi of Libya, and Saddam Hussein of Iraq were all influenced by US cyberattacks and WikiLeaks, causing shifts in public opinion, psychological breakdowns, and social unrest, leading to the rapid collapse of their regimes and having a disruptive impact on traditional warfare. Through the Snowden revelations, a list of 49 cyber reconnaissance projects across 11 categories used by the United States was gradually exposed. Incidents such as the Stuxnet virus’s sabotage of Iranian nuclear facilities, the Gauss virus’s mass intrusion into Middle Eastern countries, and the Cuban Twitter account’s control of public opinion demonstrate that the United States possesses powerful monitoring capabilities, as well as soft and hard attack and psychological warfare capabilities over the internet, closed networks, and mobile wireless networks.

The war began with virtual space experiments. The US military began exploring combat simulation, operational experiments, and simulation training in the 1980s. Later, the US military pioneered the use of virtual reality, wargaming, and digital twin technologies in virtual battlefields and combat experiments. Analysis shows that the US military conducted combat simulations in military operations such as the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War, striving to find the optimal operational and action plans. It has been reported that before Russia intervened militarily in Syria, it conducted pre-war exercises in its war labs. Based on the experimental simulations, it formulated the “Center-2015” strategic exercise plan, practicing “mobility and accessibility in unfamiliar areas” for combat in Syria. After the exercise, Russian Chief of the General Staff Gerasimov emphasized that the primary means would be political, economic, and psychological warfare, supplemented by long-range precision air strikes and special operations, ultimately achieving political and strategic objectives. Practice shows that the process of Russia’s intervention in Syria was largely consistent with these experiments and exercises.

In the future, with the application and development of virtual simulation, mixed reality, big data, and intelligent software, a parallel military artificial system can be established, allowing physical forces in the physical space to map and iterate with virtual forces in the virtual space. This will enable rapid, high-intensity adversarial training and supercomputing that are difficult to achieve in the physical space. It can also engage in combat and games against highly realistic “blue force systems,” continuously accumulating data, building models and algorithms, and ultimately using the optimal solutions to guide the construction and combat of physical forces, achieving the goal of virtual-real interaction, using the virtual to control the real, and winning with the virtual. On January 25, 2019, DeepMind, Google’s AI team, and Blizzard Entertainment, the developer of StarCraft, announced the results of the December 2018 match between AlphaSTAR and professional players TLO and MANA. In the best-of-five series, AlphaSTAR won both matches 5-0. AlphaSTAR completed the training workload that would take human players 200 years in just two weeks, demonstrating the enormous advantages and bright prospects of simulated adversarial training in virtual space.

The combat style is dominated by unmanned operations. In the era of intelligentization, unmanned warfare will become the basic form, and the integration and development of artificial intelligence and related technologies will gradually push this form to an advanced stage. Unmanned systems represent the full pre-positioning of human intelligence in the combat system and are a concentrated manifestation of the integrated development of intelligence, informatization, and mechanization. Unmanned equipment first appeared in the field of drones. In 1917, Britain built the world’s first drone, but it was not used in actual combat. With the development of technology, drones were gradually used in target drones, reconnaissance, and reconnaissance-strike integrated operations. Since the beginning of the 21st century, unmanned technologies and equipment have achieved tremendous leaps and major breakthroughs in exploration and application due to their advantages such as mission-centric design, no need to consider crew requirements, and high cost-effectiveness. They have shown a rapid and comprehensive development trend, and their application scope has expanded rapidly, covering various fields such as air, surface, underwater, ground, and space.

In recent years, technologies such as artificial intelligence, bionic intelligence, human-machine integrated intelligence, and swarm intelligence have developed rapidly. With the help of satellite communication and navigation, and autonomous navigation, unmanned combat platforms can effectively achieve remote control, formation flight, and swarm collaboration. Currently, unmanned combat aerial vehicles, underwater unmanned platforms, and space-based unmanned autonomous robots have emerged one after another. Bipedal, quadrupedal, multi-legged, and cloud-based intelligent robots are developing rapidly and have entered the fast lane of engineering and practical application, with military applications not far off.

Overall, unmanned warfare in the era of intelligentization will enter three stages of development. The first stage is the initial stage, characterized by manned dominance and unmanned support, where “unmanned warfare under manned leadership” means that combat behavior is completely controlled and dominated by humans before, during, and after the operation. The second stage is the intermediate stage, characterized by manned support and unmanned dominance, where “unmanned warfare under limited control” means that human control is limited, auxiliary, but crucial throughout the entire combat process, and in most cases, the autonomous action capabilities of the platform can be relied upon. The third stage is the advanced stage, characterized by manned rules and unmanned action, where “unmanned warfare with manned design and minimal control” means that humans conduct overall design in advance, clarifying autonomous behavior and rules of the game under various combat environments, and the execution phase is mainly entrusted to unmanned platforms and unmanned forces for autonomous execution.

Autonomous behavior or autonomy is the essence of unmanned warfare and a common and prominent feature of intelligent warfare, manifested in many aspects.

First, the autonomy of combat platforms, mainly including the autonomous capabilities and intelligence level of unmanned aerial vehicles, ground unmanned platforms, precision-guided weapons, underwater and space robots.

Second, the detection system is autonomous, which mainly includes automatic search, tracking, association, aiming, and intelligent recognition of information such as images, voice, video, and electronic signals.

Thirdly, there is autonomous decision-making, the core of which is AI-based autonomous decision-making within the combat system. This mainly includes automatic analysis of the battlefield situation, automatic planning of combat missions, automated command and control, and intelligent human-machine interaction.

Fourthly, autonomous coordination in combat operations, which initially includes autonomous coordination between manned and unmanned systems, and later includes autonomous unmanned swarms, such as various combat formations, bee swarms, ant swarms, fish swarms, and other combat behaviors.

Fifth, autonomous network attack and defense behaviors, including automatic identification, automatic tracing, automatic protection, and autonomous counterattack against various viruses and network attacks.

Sixth, cognitive electronic warfare, which automatically identifies the power, frequency band, and direction of electronic interference, automatically hops frequencies and autonomously forms networks, and engages in active and automatic electronic interference against adversaries.

Seventh, other autonomous behaviors, including intelligent diagnosis, automatic repair, and self-protection.

In the future, with the continuous upgrading of the integration and development of artificial intelligence and related technologies, unmanned operations will rapidly develop towards autonomy, biomimicry, swarming, and distributed collaboration, gradually pushing unmanned warfare to an advanced stage and significantly reducing direct confrontation between human forces on the battlefield. Although manned platforms will continue to exist in the future, biomimetic robots, humanoid robots, swarm weapons, robot armies, and unmanned system warfare will become the norm in the intelligent era. Since unmanned systems can replace human beings in many combat domains and can accomplish tasks autonomously, unmanned combat systems will always be there to protect humans before they suffer physical attacks or injuries. Therefore, unmanned combat systems in the intelligent era are humanity’s main protective barrier, its shield and shield.

All-domain operations and cross-domain offense and defense. In the era of intelligent warfare, all-domain operations and cross-domain offense and defense are also a fundamental style of combat, manifested in many combat scenarios and aspects. From land, sea, air, and space to multiple domains including physical, information, cognitive, social, and biological domains, as well as the integration and interaction of virtual and physical elements, from peacetime strategic deterrence to wartime high-confrontation, high-dynamic, and high-response operations, the time and space span is enormous. It involves not only physical space operations and cyberspace cyber offense and defense, information warfare, public opinion guidance, and psychological warfare, but also tasks such as global security governance, regional security cooperation, counter-terrorism, and rescue, and the control of critical infrastructure such as networks, communications, power, transportation, finance, and logistics.

Since 2010, supported by advancements in information and intelligent technologies, the U.S. military has proposed concepts such as operational cloud, distributed lethality, multi-domain warfare, algorithmic warfare, mosaic warfare, and joint all-domain operations. The aim is to maintain battlefield and military superiority by using system-wide systems against localized ones, multi-functional systems against simpler ones, multi-domain systems against single-domain ones, integrated systems against discrete ones, and intelligent systems against non-intelligent ones. The U.S. military proposed the concept of multi-domain warfare in 2016 and joint all-domain operations in 2020, aiming to develop cross-service and cross-domain joint operational capabilities, ensuring that each service’s operations are supported by all three services, and possessing all-domain capabilities against multi-domain and single-domain ones.

In the future, with breakthroughs in key technologies for the cross-disciplinary integration of artificial intelligence and multidisciplinary collaboration, multi-domain integration and cross-domain offense and defense based on AI and human-machine hybrid intelligence will become a distinctive feature of intelligent warfare. This will be achieved across functional domains such as physics, information, cognition, society, and biology, as well as geographical domains such as land, sea, air, and space.

In the intelligent era, multi-domain and cross-domain operations will expand from mission planning, physical collaboration, and loose coordination to heterogeneous integration, data linking, tactical interoperability, and cross-domain offensive and defensive integration.

First, multi-domain integration. Based on different battlefields and adversaries in a multi-domain environment, different combat styles, combat procedures and missions are planned in accordance with the requirements of joint operations, and unified as much as possible. This achieves the overall planning and integration of information, firepower, defense, support and command and control, and the integration of combat capabilities at the strategic, operational and tactical levels, forming the capability of one-domain operations and multi-domain joint rapid support.

Second, cross-domain offense and defense. Supported by a unified network information system, and through a unified battlefield situation and data information exchange based on unified standards, the information links for cross-domain joint operations reconnaissance, control, strike, and assessment are completely opened up, enabling seamless integration of operational elements and capabilities at the tactical and fire control levels, as well as collaborative actions between services, cross-domain command and interoperability.

Third, the entire process is interconnected. Multi-domain integration and cross-domain offense and defense are treated as a whole, with coordinated design and interconnectedness throughout. Before the war, intelligence gathering and analysis are conducted, along with public opinion warfare, psychological warfare, propaganda warfare, and necessary cyber and electronic warfare attacks. During the war, special operations and cross-domain actions are used to carry out decapitation strikes, key point raids, and precise and controllable strikes (see Figure 7). After the war, defense against cyberattacks on information systems, elimination of negative public opinion’s impact on the public, and prevention of enemy damage to infrastructure are addressed through post-war governance, public opinion control, and the restoration of social order across multiple areas.

Wu Mingxi 7

Fourth, AI support. Through combat experiments, simulation training, and necessary test verification and real-world testing, we continuously accumulate data, optimize models, and establish AI combat models and algorithms for different combat styles and adversaries, forming an intelligent brain system to better support joint operations, multi-domain operations, and cross-domain offense and defense.

Human-AI hybrid decision-making. The continuous improvement, optimization, upgrading, and perfection of the AI ​​brain system in intelligent battlefields will enable it to surpass humans in many aspects. The human-dominated command, control, and decision-making model of human warfare for thousands of years will be completely transformed. Humans commanding AI, AI commanding humans, and AI commanding AI are all possible scenarios in warfare.

Distributed, networked, flattened, and parallel structures are key characteristics of intelligent combat systems. The centralized, human-centric single-decision-making model is gradually being replaced by decentralized or weakly centralized models based on AI, such as unmanned systems, autonomous swarms, and manned-unmanned collaboration. Hybrid compatibility among these models is becoming a development trend. The lower the operational level and the simpler the mission, the more prominent the role of unmanned and decentralized systems; the higher the level and the more complex the mission, the more important human decision-making and centralized systems become. Pre-war decision-making is primarily human, supplemented by AI; during war, AI is primarily AI, supplemented by human; post-war, both are used, with hybrid decision-making becoming the dominant approach (see Table 3).

Wu Mingxi - Table 3

In the future battlefield, combat situations will be highly complex, rapidly changing, and exceptionally intense. The convergence of various information sources will generate massive amounts of data, which cannot be processed quickly and accurately by the human brain alone. Only by achieving a collaborative operation mode of “human brain + AI,” based on technologies such as combat cloud, databases, network communication, and the Internet of Things, can “commanders” cope with the ever-changing battlefield and complete command and control tasks. With the increasing autonomy of unmanned systems and the enhancement of swarm and system-wide AI functions, autonomous decision-making is gradually emerging. Once command and control achieve different levels of intelligence, the Out-of-Loop (OODA) loop time will be significantly reduced, and efficiency will be significantly improved. In particular, pattern recognition for network sensor image processing, “optimization” algorithms for combat decision-making, and particle swarm optimization and bee swarm optimization algorithms for autonomous swarms will endow command and control systems with more advanced and comprehensive decision-making capabilities, gradually realizing a combat cycle where “humans are outside the loop.”

Nonlinear amplification and rapid convergence. Future intelligent warfare will no longer be a gradual release of energy and a linear superposition of combat effects, but rather a rapid amplification of multiple effects such as nonlinearity, emergence, self-growth, and self-focusing, and a rapid convergence of results.

Emergence primarily refers to the process by which each individual within a complex system, following local rules and continuously interacting, generates a qualitative change in the overall system through self-organization. In the future, while battlefield information will be complex and ever-changing, intelligent recognition of images, voice, and video, along with processing by military cloud systems, will enable “one-point collection, multi-user sharing.” Through big data technology, it will be rapidly linked with relevant information and integrated with various weapon fire control systems to implement distributed strikes, swarm strikes, and cyber psychological warfare. This will allow for “detection and destruction,” “aggressive attacks at the first sign of trouble,” and “numerical superiority generating psychological panic”—these phenomena constitute the emergence effect.

The emergent effects of intelligent warfare are mainly reflected in three aspects: first, the acceleration of the kill chain caused by the speed of AI decision-making chain; second, the combat effect caused by the numerical advantage of manned and unmanned collaborative systems, especially swarm systems; and third, the rapid swarm emergence behavior based on network interconnection.

As military intelligence develops to a certain stage, the combined effects of advanced AI, quantum computing, IPv6, and hypersonic technologies will result in combat systems exhibiting nonlinear, asymmetric, self-growing, rapid-response, and uncontrollable amplification and operational effects. This is particularly evident in unmanned, swarm, cyber warfare, and cognitive confrontation. The emergence of intelligence from collective ignorance, increased efficiency through sheer numbers, nonlinear amplification, and other emergent effects will become increasingly prominent. AI-driven cognitive, informational, and energy confrontations will intertwine and rapidly converge around a target, with time becoming increasingly compressed and the speed of confrontation accelerating. This will manifest as a dramatic amplification of multiple effects and a rapid convergence of outcomes. Energy shockwaves, rapid-fire combat, AI terminators, public opinion reversals, social unrest, psychological breakdowns, and the chain reaction of the Internet of Things will become prominent characteristics of intelligent warfare.

In unmanned swarm attacks, assuming roughly the same platform performance, the Lanchester equation applies: combat effectiveness is proportional to the square of the number of units; quantity advantage translates to quality advantage. Network attack and defense, and psychological and public opinion effects, follow Metcalfe’s Law, being proportional to the square of the number of interconnected users, with nonlinear and emergent effects becoming more pronounced. The quantity and intelligence of battlefield AI determine the overall level of intelligence in the combat system, impacting battlefield intelligence control and influencing the outcome of war. In the era of intelligent warfare, how to manage the interrelationships between energy, information, cognition, quantity, quality, virtuality, and physicality, and how to skillfully design, control, utilize, and evaluate nonlinear effects, are major new challenges and requirements for future warfare.

In the future, whether it is a reversal of public opinion, psychological panic, swarm attacks, mass operations, or autonomous combat by humans outside the ring, their emergence effects and strike effects will become relatively common phenomena and easy-to-implement actions, forming a capability that is compatible with deterrence and actual combat. It is also a form of warfare that human society must strictly manage and control.

An organically symbiotic relationship between humans and equipment. In the era of intelligence, the relationship between humans and weapons will undergo fundamental changes, becoming increasingly distant physically but increasingly closer in thought. The form of equipment and its development and management models will be completely transformed. Human thought and wisdom will be deeply integrated with weaponry through AI, fully integrated in the early stages of equipment development, optimized and iterated during the use and training phase, and further upgraded and improved after combat verification, in a continuous cycle of progress.

First, with the rapid development of technologies such as network communication, mobile internet, cloud computing, big data, machine learning, and bionics, and their widespread application in the military field, the structure and form of traditional weapons and equipment will be completely changed, exhibiting diverse functions such as front-end and back-end division of labor and cooperation, efficient interaction, and adaptive adjustment. They will be complex entities integrating mechanics, information, networks, data, and cognition.

Secondly, while humans and weapons are gradually becoming physically detached, they are also becoming increasingly integrated into an organic symbiotic entity in terms of mindset. The gradual maturation of drones and robots is shifting their focus from assisting humans in combat to replacing them, with humans taking a more backseat. The integration of humans and weapons will take on entirely new forms. Human thought and wisdom will participate in the entire lifecycle of design, research and development, production, training, use, and support. Unmanned combat systems will perfectly combine human creativity and intellect with the precision, speed, reliability, and fatigue resistance of machines.

Third, profound changes are taking place in equipment development and management models. Mechanized equipment becomes increasingly outdated with use, while information technology software becomes increasingly new, and intelligent algorithms become increasingly sophisticated with use. Traditional mechanized equipment is delivered to the troops using a “pre-research—development—finalization” model, resulting in a decline in combat performance over time and vehicle hours. Information technology equipment is a product of the combined development of mechanization and informatization; the platform remains the same, but the information system is constantly iterated and updated with the development of computer CPUs and storage devices, exhibiting a step-by-step development characteristic of “information-led, software-driven hardware, rapid replacement, and spiral ascent.” Intelligent equipment, based on mechanization and informatization, continuously optimizes and improves training models and algorithms with the accumulation of data and experience, showing an upward curve of becoming stronger and better with use over time and frequency. Therefore, the development, construction, use, training, and support models for intelligent equipment will undergo fundamental changes.

Evolving through learning and confrontation. Evolution will undoubtedly be a defining characteristic of future intelligent warfare and combat systems, and a commanding height in future strategic competition. Combat systems in the intelligent era will gradually acquire adaptive, self-learning, self-confrontational, self-repairing, and self-evolving capabilities, becoming an evolvable ecosystem and game-theoretic system.

The most distinctive and unique feature of intelligent combat systems lies in the combination of human-like and human-like intelligence with the advantages of machines, achieving “superhuman” combat capabilities. The core of this capability is that numerous models and algorithms improve and refine with use, possessing an evolutionary function. If future combat systems resemble the human body, with the brain as the command and control center, the nervous system as the network, and the limbs as weapons and equipment controlled by the brain, like a living organism, possessing self-adaptive, self-learning, self-defense, self-repair, and self-evolutionary capabilities, then we believe it possesses the ability and function of evolution. Because intelligent combat systems are not entirely the same as living organisms, while a single intelligent system is similar to a living organism, a multi-system combat system is more like an “ecosystem + adversarial game system,” more complex than a single living organism, and more adversarial, social, collective, and emergent.

Preliminary analysis suggests that with the development and application of technologies such as combat simulation, virtual reality, digital twins, parallel training, intelligent software, brain-inspired chips, brain-like systems, bionic systems, natural energy harvesting, and novel machine learning, future combat systems can gradually evolve from single-function, partial-system evolution to multi-functional, multi-element, multi-domain, and multi-system evolution. Each system will be able to rapidly formulate response strategies and take action based on changes in the battlefield environment, different threats, different adversaries, and its own strengths and capabilities, drawing upon accumulated experience, extensive simulated adversarial training, and models and algorithms built through reinforcement learning. These strategies will then be continuously revised, optimized, and self-improved through practical warfare. Single-mission systems will possess characteristics and functions similar to living organisms, while multi-mission systems, like species in a forest, will have a cyclical function and evolutionary mechanism of mutual restraint and survival of the fittest, possessing the ability to engage in game-theoretic confrontation and competition under complex environmental conditions, forming an evolvable ecological and game-theoretic system.

The evolution of combat systems mainly manifests in four aspects: First, the evolution of AI. With the accumulation of data and experience, it will inevitably be continuously optimized, upgraded, and improved. This is relatively easy to understand. Second, the evolution of combat platforms and cluster systems, mainly moving from manned control to semi-autonomous and autonomous control. Because it involves not only the evolution of platform and cluster control AI, but also the optimization and improvement of related mechanical and information systems, it is relatively more complex. Third, the evolution of mission systems, such as detection systems, strike systems, defense systems, and support systems. Because it involves multiple platforms and multiple missions, the factors and elements involved in the evolution are much more complex, and some may evolve quickly, while others may evolve slowly. Fourth, the evolution of the combat system itself. Because it involves all elements, multiple missions, cross-domain operations, and confrontations at various levels, its evolutionary process is extremely complex. Whether a combat system can evolve cannot rely entirely on its own growth; it requires the proactive design of certain environments and conditions, and must follow the principles of biomimicry, survival of the fittest, mutual restraint, and full-system lifecycle management to possess the function and capability for continuous evolution.

Intelligent design and manufacturing. In the era of intelligentization, the defense industry will shift from a relatively closed, physical-based, and time-consuming research and manufacturing model to an open-source, intelligent design and manufacturing model that can rapidly meet military needs.

The defense industry is a strategic industry of the nation, a powerful pillar of national security and defense construction. In peacetime, it primarily provides the military with advanced, high-quality, and reasonably priced weaponry and equipment. In wartime, it is a crucial force for operational support and a core pillar for ensuring victory. The defense industry is a high-tech intensive sector. The research and development and manufacturing of modern weaponry and equipment are technology-intensive, knowledge-intensive, systemically complex, and highly integrated. The development of weapons and equipment such as large aircraft carriers, fighter jets, ballistic missiles, satellite systems, and main battle tanks typically takes ten, twenty, or even more years before finalization and delivery to the armed forces, involving large investments, long cycles, and high costs. From the post-World War II period to the end of the last century, the defense industrial system and capability structure were products of the mechanized era and warfare. Its research, testing, manufacturing, and support were primarily geared towards the needs of the military branches and industry systems, mainly including weaponry, shipbuilding, aviation, aerospace, nuclear, and electronics industries, as well as civilian supporting and basic industries. After the Cold War, the US defense industry underwent strategic adjustments and mergers and reorganizations, generally forming a defense industrial structure and layout adapted to the requirements of informationized warfare. The top six defense contractors in the United States can provide specialized combat platforms and systems for relevant branches of the armed forces, as well as overall solutions for joint operations, making them cross-service and cross-domain system integrators. Since the beginning of the 21st century, with the changing demands of system-of-systems and information-based warfare and the development of digital, networked, and intelligent manufacturing technologies, the traditional development model and research and production capabilities of weapons and equipment have begun to gradually change, urgently requiring reshaping and adjustment in accordance with the requirements of informationized warfare, especially intelligent warfare.

In the future, the defense science and technology industry will, in accordance with the requirements of joint operations, all-domain operations, and the integrated development of mechanization, informatization, and intelligence, shift from the traditional focus on service branches and platform construction to cross-service and cross-domain system integration. It will also shift from relatively closed, self-contained, independent, fragmented, physical-based, and long-cycle research, design, and manufacturing to open-source, democratic crowdsourcing, virtual design and integration verification, adaptive manufacturing, and rapid fulfillment of military needs (see Figure 8). This will gradually form a new innovation system and intelligent manufacturing system that combines hardware and software, virtual and real interaction, intelligent human-machine-object-environment interaction, effective vertical industrial chain connection, horizontal distributed collaboration, and military-civilian integration. Joint design and demonstration by multiple military and civilian parties, joint research and development by supply and demand sides for construction and use, iterative optimization based on parallel military systems in both virtual and real environments, and improvement through combat training and real-world verification—a model of simultaneous research, testing, use, and construction—is the basic mode for the development and construction of intelligent combat systems and the generation of combat power.

Wu Mingxi 8

Wu Mingxi 8

The risk of spiraling out of control. Since intelligent warfare systems theoretically possess the ability to self-evolve and reach “superhuman” levels, if humans do not pre-design control programs, control nodes, and a “stop button,” the result could very well be destruction and disaster. A critical concern is that numerous hackers and malicious warmongers may exploit intelligent technology to design uncontrollable warfare programs and combat methods, allowing numerous machine brains (AIs) and swarms of robots to fight adaptively and self-evolving according to pre-set combat rules, becoming invincible and relentlessly advancing, ultimately leading to an uncontrollable situation and irreparable damage. This is a major challenge facing humanity in the process of intelligent warfare and a crucial issue requiring research and resolution. This problem needs to be recognized and prioritized from the perspective of a shared future for all humanity and the sustainable development of human civilization. It requires designing rules of war, formulating international conventions, and regulating these systems technically, procedurally, ethically, and legally, implementing mandatory constraints, checks, and management.

The above ten transformations and leaps constitute the main content of the new form of intelligent warfare. Of course, the development and maturity of intelligent warfare is not a castle in the air or a tree without roots, but is built upon mechanization and informatization. Without mechanization and informatization, there is no intelligence. Mechanization, informatization, and intelligence form an organic whole, interconnected and mutually reinforcing, iteratively optimizing and leapfrog developing. Currently, mechanization is the foundation, informatization is the guiding principle, and intelligence is the direction. Looking to the future, mechanization will remain the foundation, informatization will provide support, and intelligence will be the guiding principle.

A Bright Future

In the time tunnel of the new century, we see the train of intelligent warfare speeding along. Will humanity’s greed and technological might lead us into a more brutal darkness, or will it propel us towards a more civilized and enlightened future? This is a major philosophical question that humanity needs to ponder. Intelligentization is the future, but it is not everything. Intelligentization can handle diverse military tasks, but it is not omnipotent. Faced with sharp contradictions between civilizations, religions, nations, and social classes, and with extreme events such as thugs wielding knives, suicide bombings, and mass riots, the role of intelligentization remains limited. Without resolving global political imbalances, unequal rights, unfair trade, and social contradictions, war and conflict will be inevitable. Ultimately, the world is determined by strength, and technological, economic, and military strength are extremely important. While military strength cannot determine politics, it can influence it; it cannot determine the economy, but it can bring security for economic development. The stronger the intelligent warfare capabilities, the stronger its deterrent and war-preventing function, and the greater the hope for peace. Like nuclear deterrence, it plays a crucial role in preventing large-scale wars to avoid terrible consequences and uncontrolled disasters.

The level of intelligence in warfare, in a sense, reflects the progress of civilization in warfare. The history of human warfare, initially a struggle between groups for food and habitation, has evolved into land occupation, resource plunder, expansion of political power, and domination of the spiritual world—all fraught with bloodshed, violence, and repression. As the ultimate solution to irreconcilable contradictions in human society, war’s ideal goal is civilization: subjugation without fighting, minimal resource input, minimal casualties, and minimal damage to society… However, past wars have often failed to achieve this due to political struggles, ethnic conflicts, competition for economic interests, and the brutality of technological destructive methods, frequently resulting in the utter destruction of nations, cities, and homes. Past wars have failed to achieve these ideals, but future intelligent warfare, due to technological breakthroughs, increased transparency, and deeper mutual sharing of economic benefits, especially as the confrontation of human forces gradually gives way to confrontation between robots and AI, will see decreasing casualties, material consumption, and collateral damage. This presents a significant possibility of achieving civilization, offering humanity hope. We envision future warfare gradually transitioning from the mutual slaughter of human societies and the immense destruction of the material world to wars between unmanned systems and robots. This will evolve into deterrence and checks and balances limited to combat capabilities and overall strength, AI confrontations in the virtual world, and highly realistic war games… The energy expenditure of human warfare will be limited to a certain scale of unmanned systems, simulated confrontations and experiments, or even merely the energy needed to wage a war game. Humanity will transform from the planners, designers, participants, leaders, and victims of war into rational thinkers, organizers, controllers, observers, and adjudicators. Human bodies will no longer suffer trauma, minds will no longer be frightened, wealth will no longer be destroyed, and homes will no longer be devastated. Although this beautiful ideal and aspiration may always fall short of harsh reality, we sincerely hope that this day will arrive, and arrive as soon as possible. This is the highest stage of intelligent warfare development, the author’s greatest wish, and humanity’s beautiful vision!

(Thanks to my colleague, Researcher Zhou Xumang, for his support and assistance in writing this paper. He has unique thoughts and insights into the development and construction of intelligent systems.)

Notes

[1] Robert O. Walker et al., 20YY: War in the Age of Robots, translated by Zou Hui et al., Beijing: National Defense Industry Press, 2016, p. 148.

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

現代國語:

2021-08-18 18:53 来源: 《人民论坛·学术前沿》5月下 作者: 吴明曦

【摘要】新世纪以来,以人工智能(AI)为核心的智能科技快速发展,加快了新一轮军事革命的进程,军事领域的竞争正加速走向智权时代。以“AI、云、网、群、端”为代表的作战要素与多样化组合,构成了新的战场生态系统,战争的制胜机理完全改变。基于模型和算法的AI系统将是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,制智权成为未来战争的核心制权。智能化作战能力越强大,不战而屈人之兵就越有希望。

【关键词】人工智能 无人化 战场生态 战争形态

【中图分类号】TP18 【文献标识码】A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.005

【作者简介】吴明曦,中国兵器首席科学家、研究员,中国兵器工业集团科技委副秘书长,中国兵器科学研究院科技委副主任。研究方向为国防科技和武器装备发展战略与规划、政策与理论、管理与改革研究。主要著作有《智能化战争——AI军事畅想》等。

智权时代竞争

人类文明的历史,是认识自然、改造自然的历史,也是认识自我、解放自我的历史。人类通过发展科学技术、开发和运用工具,不断增强能力、减轻负担、摆脱束缚、解放自己。战争的控制权也随着科技的进步、人类活动空间的拓展、时代的发展而不断变化、不断丰富和不断演进。19世纪以来,人类先后经历了陆权、海权、空权、天权、信息权的控制与争夺。随着人工智能(AI)、大数据、云计算、生物交叉、无人系统、平行仿真等智能科技的迅速发展及其与传统技术的深度融合,从认识论、方法论和运行机理上,改变了人类认识和改造自然的能力,正在加快推动机器智能、仿生智能、群体智能、人机融合智能和智能感知、智能决策、智能行动、智能保障以及智能设计、研发、试验、制造等群体性重大技术变革,加速战争形态向智权的控制与争夺演变。

智能科技迅速发展,受到世界主要国家的高度重视,成为支撑军事能力跨越发展的强大动力。美俄已将智能科技置于维持其全球军事大国战略地位的核心,其发展理念、发展模式、组织方式、创新应用等已发生重大转变,并开展了军事智能化的实质性应用与实践(见图1)。

吴明曦1

2017年8月,美国国防部表示,未来人工智能战争不可避免,美国需要“立即采取行动”加速人工智能战争科技的开发工作。美军提出的“第三次抵消战略”认为,以智能化军队、自主化装备和无人化战争为标志的军事变革风暴正在到来;为此,他们已将自主系统、大数据分析、自动化等为代表的智能科技列为主要发展方向。2018年6月,美国国防部宣布成立联合人工智能中心,该中心在国家人工智能发展战略的牵引下,统筹规划美军智能化军事体系建设。2019年2月,时任美国总统特朗普签署《美国人工智能倡议》行政令,强调美国在人工智能领域保持持续领导地位对于维护美国的经济和国家安全至关重要,要求联邦政府投入所有资源来推动美国人工智能领域创新。2021年3月,美国人工智能国家安全委员会发布研究报告,指出:“自第二次世界大战以来,作为美国经济和军事力量支柱的技术优势首次受到威胁。如果当前的趋势不改变,中国就拥有未来十年内超越美国成为人工智能全球领导者的力量、人才和雄心。”报告认为,美国为维护国家安全和提升国防能力,必须迅速而负责任地使用人工智能,为抵御这些威胁作好准备。报告得出结论,人工智能将改变世界,美国必须发挥带头作用。

俄罗斯也高度重视人工智能的技术发展及其军事运用。俄军方普遍认为,人工智能将引发继火药、核武器之后军事领域的第三次革命。俄罗斯总统普京2017年9月公开提出,人工智能是俄罗斯的未来,谁能成为该领域的领导者,谁就将主宰世界。2019年10月,普京批准《2030年前俄罗斯国家人工智能发展战略》,旨在加快推进俄罗斯人工智能发展与应用,谋求在人工智能领域的世界领先地位。

中国国务院2017年7月印发《新一代人工智能发展规划》,提出了面向2030年新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

世界其他主要国家和军事大国,也纷纷推出各自的人工智能发展规划,表明全球范围内围绕“智权”的争夺已经全面展开。陆权、海权、空权、天权、信息权、智权等,都是科技进步的结果、时代的产物,都有各自的优势,也有各自的不足,并且有些理论随着时代的变化,又在不断拓展。从近代以来战争的控制权发展趋势可以看出,信息权与智权是涉及全局的,其权重更重,影响力更大。未来,随着智能化发展步伐的加快,智权将成为一种快速增长的、对作战全局有更大战略影响力的新型战场控制权。

军事智能的本质是利用智能科技为战争体系建立多样化识别、决策和控制模型。这些模型就是人工智能(AI),是新时代智权争夺的核心。其中,战争体系包括:单装、集群、有人无人协同、多域与跨域作战等装备系统;单兵、班组、分队、合成作战单元、战区联指等作战力量;网络化感知、任务规划与指控、力量协同、综合保障等作战环节;网络攻防、电子对抗、舆情控制、基础设施管控等专业系统;智能化设计、研发、生产、动员、保障等军工能力。AI以芯片、算法和软件等形式,嵌入战争体系的各个系统、各个层次、各个环节,是一个体系化的大脑。AI虽然是战争体系的一个局部,但由于其“类脑”功能和“超越人类极限”的能力越来越强,必将主宰未来战争全局。

战场生态重构

传统战争作战要素相对独立、相对分离,战场生态系统比较简单,主要包括人、装备和战法等。智能时代的战争,各作战要素之间融合、关联、交互特征明显,战场生态系统将发生实质性变化,形成由AI脑体系、分布式云、通信网络、协同群、各类虚实端等构成的作战体系、集群系统和人机系统,简称“AI、云、网、群、端”智能化生态系统(见图2)。其中,AI居于主导地位。

吴明曦2

AI脑体系。智能化战场的AI脑体系,是一个网络化、分布式的体系,是与作战平台和作战任务相生相伴、如影随形的,其分类方法有多种。按功能和计算能力分,主要包括小脑、群脑、中脑、混合脑和大脑等;按作战任务和环节分,主要包括传感器AI、作战任务规划和决策AI、精确打击和可控毁伤AI、网络攻防AI、电子对抗AI、智能防御AI和综合保障AI等;按形态分,主要包括嵌入式AI、云端AI和平行系统AI等。

小脑,主要指传感器平台、作战平台和保障平台的嵌入式AI,主要执行战场环境探测、目标识别、快速机动、精确打击、可控毁伤、装备保障、维修保障和后勤保障等任务。

群脑,主要指地面、空中、海上、水中和太空无人化集群平台智能控制的AI,主要执行战场环境协同感知、集群机动、集群打击和集群防御等任务,重点包括同构集群系统的算法和有人无人协同等异构系统的算法。

中脑,主要指战场前沿一线分队指挥中心、数据中心、指挥所边缘计算的AI系统,主要执行在线和离线条件下战术分队作战任务动态规划、自主决策与辅助决策。

混合脑,主要指成建制部队作战中,指挥员与机器AI协同指挥和混合决策系统,战前主要执行以人为主的作战任务规划,战中主要执行以机器AI为主的自适应动态任务规划和调整,战后主要执行面向反恐和防卫的混合决策等任务。

大脑,主要指战区指挥中心、数据中心的模型库、算法库、战法库,重点为战役和战略决策起辅助支撑作用。由于数据充足,战场各类AI脑系统,都可以在此进行训练和建模,待成熟时再加载到各个任务系统中。

未来战场,还将有其他不同功能、不同种类、大大小小的AI,如传感器AI,主要包括图像识别、电磁频谱识别、声音识别、语音识别、人类活动行为识别等。随着智能化的快速发展和广泛应用,全社会都会存在大大小小的AI,平时为民众和社会服务,战时完全有可能为军事服务。

分布式云。军事云与民用云有所不同。一般来讲,军事云平台是利用通信网络搜索、采集、汇总、分析、计算、存储、分发作战信息和数据的分布式资源管理系统。军事云平台通过构建分布式系统、多点容错备份机制,具备强大的情报共享能力、数据处理能力、抗打击和自修复能力,可提供固定与机动、公有与私有的云服务,实现“一点采集,大家共享”,大大减少信息流转环节,使指挥流程扁平、快速,避免各级重复分散建设。

从未来智能化战争需求看,军事云至少需要构建战术前端云、部队云、战区云和战略云四级体系。按作战要素也可分为情报云、态势云、火力云、信息作战云、保障云、星云等专业化云系统。

1.前端云,主要是指分队、班组、平台之间的信息感知、目标识别、战场环境分析和行动自主决策与辅助决策,以及作战过程和效果评估等计算服务。前端云的作用主要体现在两个方面。一是平台之间计算、存储资源的相互共享和协同、智能作战信息的互动融合。例如,一旦某一平台或终端被攻击,相关的感知信息、毁伤状况和历史情况,就会通过网络化的云平台自动备份、自动替换、自动更新,并把相关信息上传到上级指挥所。二是离线终端的在线信息服务和智能软件升级。

2.部队云,主要指营、旅一级作战所构建的云系统,重点是针对不同的威胁和环境,开展智能感知、智能决策、自主行动和智能保障等计算服务。部队云建设的目标是要建立网络化、自动备份,并与上级多个链路相连的分布式云系统,满足侦察感知、机动突击、指挥控制、火力打击、后装保障等不同力量的计算需要,满足战术联合行动、有人/无人协同、集群攻防等不同作战任务的计算需要。

3.战区云,重点是提供整个作战区域的战场气象、地理、电磁、人文、社会等环境因素和信息数据,提供作战双方的兵力部署、武器装备配备、运动变化、战损情况等综合情况,提供上级、友军和民用支援力量等相关信息。战区云应具备网络化、定制化、智能化等信息服务功能,并通过天基、空中、地面、海上和水下等军用通信网络,以及采取保密措施下的民用通信网络,与各个作战部队互联互通,确保提供高效、及时、准确的信息服务。

4.战略云,主要是由一个国家国防系统和军队指挥机关建立起来的以军事信息为主,涵盖相关国防科技、国防工业、动员保障、经济和社会支撑能力,以及政治、外交、舆论等综合性的信息数据,提供战争准备、作战规划、作战方案、作战进程、战场态势、战况分析等核心信息及评估分析和建议;提供战略情报、作战对手军事实力和战争动员潜力等支撑数据。

上述各个云之间,既有大小关系、上下关系,也有横向协作、相互支撑、相互服务的关系。军事云平台的核心任务有两个:一是为构建智能化作战的AI脑体系提供数据和计算支撑;二是为各类作战人员和武器平台,提供作战信息、计算和数据保障。此外,从终端和群体作战需求来看,还需要把云计算的一些结果、模型、算法,事先做成智能芯片,嵌入武器平台和群终端,之后,可以在线升级,也可以离线更新。

通信网络。军用通信与网络信息,是一个复杂的超级网络系统。由于军事力量主要是在陆、海、空、天和野战机动、城镇等环境下作战,其通信网络包括战略通信与战术通信、有线通信与无线通信、保密通信和民用通信等。其中,无线、移动、自由空间通信网络是军用网络体系最重要的组成部分,相关的综合电子信息系统也是依托通信网络逐步建立起来的。

机械化时代的军用通信,主要是跟着平台、终端和用户走,专用性得到了满足,但烟囱太多、互联互通能力极差。信息化时代,这种状况开始改变。目前,军用通信网络正在采取新的技术体制和发展模式,主要有两个特征:一是“网数分离”,信息的传输不依赖于某种特定的网络传输方式,“网通即达”,只要网络链路畅通,所需任何信息即可送达;二是互联网化,基于IP地址和路由器、服务器实现“条条大路通北京”,即军用网络化或者栅格化。当然,军事通信网络与民用不同,任何时候都存在战略性、专用性通信需求,如核武器的核按钮通信和战略武器的指挥控制,卫星侦察、遥感和战略预警的信息传输,甚至单兵室内和特种作战等条件下的专用通信,可能仍然采取通信跟着任务走的模式。但即便如此,通用化、互联网化一定是未来军用通信网络发展的趋势,否则不仅造成战场通信频段、电台和信息交流方式越来越多,造成自扰、互扰和电磁兼容困难,无线电频谱管理也越来越复杂,更为重要的是,平台用户之间很难基于IP地址和路由结构等功能来实施自动联通,如同互联网上的电子邮件那样,一键命令可以传给多个用户。未来的作战平台,一定会既是通信的用户终端,也兼有路由器和服务器等功能。

军用通信网络体系主要包括天基通信网、军用移动通信网、数据链、新型通信网、民用通信网等。

1.天基信息网。在天基信息网络建设和天基信息利用方面,美国居于领先地位。因为太空中上千个在轨平台和载荷中,一半多是美国人的。美军在海湾战争后尤其是伊拉克战争期间,通过战争实践加快了天基信息网络的应用和推进步伐。伊拉克战争之后,通过天基信息的利用和基于IP方式互联互通的建立,彻底将海湾战争时期近140个纵向烟囱实现横向互联,大大缩短了“侦察—判断—决策—攻击”(OODA)回路的时间,从天基传感器到射手的时间由海湾战争时的几十个小时缩短到目前采用人工智能识别后仅20秒左右。

随着小卫星技术的飞速发展,低成本、多功能的小卫星越来越多。商用发射随着竞争越来越多,成本也开始急剧下降,并且一次发射可以携带几颗、十几颗甚至几十颗小卫星。如果再将小型化以后的电子侦察、可见光和红外成像,甚至是量子点微型光谱仪都集成在上面,实现侦察、通信、导航和气象、测绘等功能一体化,未来世界和战场将变得更加透明。

2.军用移动通信网。军用移动通信网络主要有三个方面的用途。一是联合作战各军兵种和作战部队之间的指挥控制,这类通信的保密等级较高,可靠性、安全性要求也高。二是平台、集群之间的通信联络,要求具备抗干扰和较高的可靠性。三是武器系统的指控和火控,大多通过数据链解决。

传统的军用移动通信网络,大多是“有中心、纵向为主、树状结构”。随着信息化进程的加快,“无中心、自组网、互联网化”的趋势愈加明显。随着认知无线电技术的逐步成熟和推广(见图3),未来的网络通信系统,能够自动识别战场中的电磁干扰和通信障碍,快速寻找可用频谱资源,通过跳频跳转等方式进行实时通信联络。同时,软件与认知无线电技术还能兼容不同通信频段与波形,便于在旧体制向新体制的过渡中兼容使用。

吴明曦3

3.数据链。数据链是一种特殊的通信技术,通过时分、频分、码分等形式,在各作战平台之间实现事先约定的、定期或不定期、有规则或无规则关键信息的传输,只要不被敌方完全掌握或破译,是很难被干扰的。数据链主要分为专用和通用两大类。联合作战、编队协同和集群作战等,主要采用通用数据链。卫星数据链、无人机数据链、弹载数据链、武器火控数据链等,目前多数还是专用的。未来,通用化是一种趋势,专用化将越来越少。此外,从平台和通信的关系来看,平台传感器的信息收发和内部信息处理一般跟着任务系统走,专用化特点较强,平台之间的通信联络和数据传输则越来越通用化。

4.新型通信。传统军用通信以微波通信为主,由于发散角较大,应用平台较多,相应的电子干扰和微波攻击手段发展也较快,容易实施较远距离的干扰与破坏。因此,毫米波、太赫兹、激光通信、自由空间光通信等新型通信手段,就成为既抗干扰,又容易实施高速、大容量、高带宽通信的重要选择。由于高频电磁波发散角较小,虽然抗干扰性能好,但要实现点对点的精确瞄准和全向通信,仍然有一定难度,尤其是在作战平台高速机动和快速变轨条件下,如何实现对准和全向通信,技术上仍在探索之中。

5.民用通信资源。民用通信资源的有效利用,是智能化时代需要重点考虑和无法回避的战略问题。未来通过民用通信网络尤其是5G/6G移动通信,进行开源信息挖掘和数据关联分析,提供战场环境、目标和态势信息,无论是对作战还是非战争军事行动来说都非常重要。在非战争军事行动任务中,尤其是海外维和、救援、反恐、救灾等行动中,军队的专用通信网络,只能在有限范围和地域中使用,而如何与外界交流和联系就成为一个问题。利用民用通信资源,主要有两种途径:一是利用民用卫星特别是小卫星通信资源;二是利用民用移动通信及互联网资源。

军用与民用通信资源的互动利用,核心是要解决安全与保密问题。一种方式是采取防火墙和加密形式,直接利用民用卫星通信和全球移动通信设施来指挥通信和联络,但黑客与网络攻击的风险依然存在。另一种方式是,采用近年发展起来的虚拟化、内联网、半物理隔离、单向传输、拟态防御、区块链等新技术予以解决。

协同群。通过模拟自然界蜂群、蚁群、鸟群及鱼群等行为,研究无人机、智能弹药等集群系统的自主协同机制,完成对敌目标进攻或防御等作战任务,可以起到传统作战手段和方式难以达到的打击效果。协同群是智能化发展的一个必然趋势,也是智能化建设的主要方向和重点领域。单一作战平台,无论战技性能多高、功能多强,也无法形成群体、数量规模上的优势。简单数量的堆积和规模的扩展,如果没有自主、协同、有序的智能元素,也是一盘散沙。

协同群主要包括三个方面:一是依托现有平台智能化改造形成的有人/无人协同群,其中以大、中型作战平台为主构建;二是低成本、同质化、功能单一、种类不同的作战蜂群,其中以小型无人作战平台和弹药为主构建;三是人机融合、兼具生物和机器智能的仿生集群,其中以具有高度自主能力的仿人、仿爬行动物、仿飞禽动物、仿海洋生物为主构建。利用协同群系统实施集群作战特别是蜂群作战,具有多方面的优势与特点。

1.规模优势。庞大的无人系统可以分散作战力量,增加敌方攻击的目标数,迫使敌人消耗更多的武器和弹药。集群的生存能力,因数量足够多而具有较大的弹性和较强的恢复能力,单个平台的生存能力变得无关紧要,而整体的优势更为明显。数量规模使战斗力的衰减不会大起大落,因为消耗一个低成本的无人平台,不像高价值的有人作战平台与复杂武器系统,如B2战略轰炸机,F22、F35先进作战飞机,一旦受到攻击或被击毁,战斗力将急剧下降。集群作战可以同时发起攻击,使敌人的防线不堪重负,因为大部分防御系统能力有限,一次只能处理一定数量的威胁,即便是密集火炮防御,一次齐射也只能击中有限目标,总有漏网之鱼,所以集群系统突防能力极强。

2.成本优势。集群作战特别是蜂群作战大多以中小无人机、无人平台和弹药为主,型谱简单、数量规模较大,质量性能要求相同,便于低成本大规模生产。现代武器装备和作战平台,虽然升级换代的速度明显加快,但成本上涨也极其惊人。二战以后,武器装备研发和采购价格表明,装备成本和价格上涨比性能提升快得多。海湾战争时期的主战坦克是二战时期的40倍,作战飞机和航母则高达500倍。海湾战争之后到2020年,各类主战武器装备价格又分别上涨了几倍、十几倍、甚至几十倍。与此相比,型谱简单的中小无人机、无人平台和弹药具有明显的成本优势。

3.自主优势。在统一的时空基准平台下,通过网络化的主动、被动通信联络和对战场环境目标的智能感知,群体中的单个平台可以准确感知到相互之间的距离、速度和位置关系,也可以快速识别目标威胁的性质、大小、轻重缓急,以及自身与友邻平台距离的远近。在事先制定好作战规则的前提下,可以让一个或数个平台,按照目标威胁的优先级,进行同时攻击和分波次攻击,也可以分组同时攻击、多次攻击(见图4),还可以明确某个平台一旦受损后,后续平台的优先替补顺序,最终达到按照事先约定好的作战规则,自主决策、自主行动。这种智能化作战行动,根据人的参与程度和关键节点控制难度,既可以完全交给群体自主行动,也可以实施有人干预下的半自主行动。

吴明曦4

4.决策优势。未来的战场环境日趋复杂,作战双方是在激烈的博弈和对抗中较量。因此,快速变化的环境和威胁,依靠人在高强度对抗环境下参与决策,时间上来不及,决策质量也不可靠。因此,只有交由协同群进行自动环境适应,自动目标和威胁识别,自主决策和协同行动,才能快速地攻击对手或实施有效防卫,取得战场优势和主动权。

协同群给指挥控制带来了新挑战。怎么对集群实施指挥控制是一个新的战略课题。可以分层级、分任务实施控制,大致包括集中控制模式、分级控制模式、一致协同模式、自发协同模式。[1]可以采取多种形式,实现人为的控制和参与。一般来讲,越是在战术层面的小分队行动,越是要采取自主行动和无人干预;在成建制的部队作战层面,由于涉及对多个作战群的控制,需要采取集中规划、分级控制,人要有限参与;在更高级的战略和战役层次,集群只是作为一种平台武器和作战样式来使用,需要统一规划和布局,人为参与的程度就会更高。从任务性质来看,执行战略武器的操作使用,如核反击,就需要由人操作,不适合交给武器系统自主处理;执行重要目标、高价值目标的攻防时,如斩首行动,也需要人全程参与和控制,同时发挥武器系统的自主功能;对于战术目标的进攻,如果需要实施致命打击和毁伤任务的作战行动,可以让人有限参与,或者经人确认后,让协同群去自动执行;执行侦察、监视和目标识别、排查等非打击任务,或执行防空反导等时间短、人难以参与的任务时,主要交由协同群自动执行,而人不需要参与,也无法参与。此外,集群作战也要重视研究其反制措施。重点研究电子欺骗、电磁干扰、网络攻击和高功率微波武器、电磁脉冲炸弹、弹炮系统等反制措施,其相关作用和效果比较明显。同时,还要研究激光武器、蜂群对蜂群等反制措施,逐步建立人类能有效控制的、对付协同群的“防火墙”。

虚实端。虚实端主要指各类与“云、网”链接的终端,包括预先置入智能模块的各类传感器、指控平台、武器平台、保障平台、相关设备设施和作战人员。未来各种装备、平台,都是前台功能多样、后台云端支撑、虚实互动、在线离线结合的赛博实物系统CPS和人机交互系统。在简单环境感知、路径规划、平台机动、武器操作等方面,主要依靠前端智能如仿生智能、机器智能来实现。复杂的战场目标识别、作战任务规划、组网协同打击、作战态势分析、高级人机交互等,需要依靠后端云平台和云上AI提供信息数据与算法支撑。每个装备平台的前端智能与后端云上智能应结合,进行统筹规划与设计,形成前后端一体化智能的综合优势。同时,虚拟士兵、虚拟参谋、虚拟指挥员及其与人类的智能交互、高效互动等,也是未来研究发展的重点与难点。

战争形态质变

近代以来,人类社会主要经历了大规模的机械化战争和较小规模的信息化局部战争。20世纪前半叶发生的两次世界大战,是典型的机械化战争。20世纪90年代以来的海湾战争、科索沃战争、阿富汗战争、伊拉克战争和叙利亚战争,充分体现了信息化战争的形态与特点。新世纪新阶段,随着智能科技的快速发展与广泛应用,以数据和计算、模型和算法为主要特征的智能化战争时代即将到来(见图5)。

吴明曦5

机械化是工业时代的产物,技术上以机械动力和电气技术为重点,武器装备形态主要表现为坦克、装甲车辆、大炮、飞机、舰船等,对应的是机械化战争形态。机械化战争,主要基于以牛顿定律为代表的经典物理学和社会化大生产,以大规模集群、线式、接触作战为主,在战术上通常要进行现地侦察、勘查地形、了解对手前沿与纵深部署情况,结合己方能力下定决心,实施进攻或防御,进行任务分工、作战协同和保障,呈现出明显的指控层次化、时空串行化等特点。

信息化是信息时代的产物,技术上以计算机、网络通信等信息技术为重点,装备形态主要表现为雷达、电台、卫星、导弹、计算机、军用软件、指挥控制系统、网电攻防系统、综合电子信息系统等,对应的是信息化战争形态。信息化战争,主要基于计算机与网络三大定律(摩尔定律、吉尔德定律和梅特卡夫定律),以一体化联合、精确、立体作战为主,建立“从传感器到射手的无缝快速信息链接”,夺取制信息权,实现先敌发现与打击。在战术上则要对战场和目标进行详细识别和编目,突出网络化感知和指挥控制系统的作用,对平台的互联互通等信息功能提出了新的要求。由于全球信息系统和多样化网络通信的发展,信息化战争淡化了前后方的界限,强调“侦控打评保”横向一体化和战略、战役、战术的一体化与扁平化。

智能化是知识经济时代的产物,技术上以人工智能、大数据、云计算、认知通信、物联网、生物交叉、混合增强、群体智能、自主导航与协同等智能科技为重点,装备形态主要表现为无人平台、智能弹药、集群系统、智能感知与数据库系统、自适应任务规划与决策系统、作战仿真与平行训练系统、军事云平台与服务系统、舆情预警与引导系统、智能可穿戴系统等,对应的是智能化战争形态。

智能化战争,主要基于仿生、类脑原理和AI的战场生态系统,是以“能量机动和信息互联”为基础、以“网络通信和分布式云”为支撑、以“数据计算和模型算法”为核心、以“认知对抗”为中心,多域融合、跨域攻防,无人为主、集群对抗,虚拟与物理空间一体化交互的全新作战形态。

智能化战争以满足核常威慑、联合作战、全域作战和非战争军事行动等需求为目标,以认知、信息、物理、社会、生物等多域融合作战为重点,呈现出分布式部署、网络化链接、扁平化结构、模块化组合、自适应重构、平行化交互、聚焦式释能、非线性效应等特征,制胜机理颠覆传统,组织形态发生质变,作战效率空前提高,战斗力生成机制发生转变。其实质性的变化主要体现在以下十个方面。

AI主导的制胜机理。在智能化条件下,以“AI、云、网、群、端”为代表的全新作战要素将重构战场生态系统,战争的制胜机理将完全改变。其中,基于模型和算法的AI系统是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,算法战将在战争中起到决定性作用,作战体系和进程最终将以AI为主导,制智权成为未来战争的核心制权。

不同时代、不同战争形态,战场生态系统是不一样的,作战要素构成、制胜机理完全不同。机械化战争是平台中心战,核心是“动”,主导力量是火力和机动力,追求以物载能、以物释能。作战要素主要包括:人+机械化装备+战法。制胜机理是基于机械化装备作战运用的以人为主导的决策,以多胜少、以大吃小、以快制慢,全面、高效、可持续的动员能力,分别起到决定性或重要的作用。信息化战争是网络中心战,核心是“联”,主导力量是信息力,追求以网聚能、以网释能。作战要素及相互关系主要是:基于网络信息的“人+信息化装备+战法”。信息贯穿于人、装备和战法,建立“从传感器到射手”的无缝信息连接,实现体系化网络化作战能力,以体系对局部、以网络对离散、以快制慢,成为取得战争胜利的重要机理。其中,信息对装备和作战体系起到了倍增的作用,但平台仍然以有人为主,信息围绕人发挥辅助决策的作用,但多数决策还是以人为主。智能化战争是认知中心战,核心是“算”,主导力量是智力,智力所占权重将超过火力、机动力和信息力,追求的将是以智驭能、以智制能,以虚制实、以优胜劣,作战双方谁的AI多,谁的AI更聪明,战场主动权就越大。作战要素及相互关系主要是:AI×(云+网+群+人+装备+战法),可以简化为“AI、云、网、群、端”要素构成的相互关联与融合的战场生态系统。未来,AI在战争中的作用将越来越大、越来越强,最终将发挥决定和主导作用。

强调AI的主导作用,并不否认人在战争中的作用。一方面,人的聪明才智已经前置并赋予了AI;另一方面,在战前、后台和战略层面,在相当长一段时间和可预见的未来,AI是无法取代人类的。

现代战争战场环境越来越复杂、作战对抗速度越来越快,如何快速识别处理海量信息、快速响应战场态势、快速制定决策方案,已远非人力所能,也超出了现有技术手段的极限(见表1、表2)。随着AI在战争体系中的应用越来越广、作用越来越大,作战流程将重新塑造,军事杀伤链将提速增效,感知快、决策快、行动快、保障快,成为未来智能化战争制胜的重要砝码。

吴明曦-表1
吴明曦-表2

未来,通过图像、视频、电磁频谱、语音等智能识别与模式识别,对天空地海传感器网络复杂战场信息能够快速精确实施目标识别。利用大数据技术,通过多源多维定向搜索与智能关联分析,不仅能够对各种打击目标进行准确定位,还能够对人类行为、社会活动、军事行动和舆情态势精准建模,逐步提高预警预测准确率。各战区和战场基于精准战场信息,通过事先虚拟空间的大量平行建模和模拟训练,能够自适应地实施任务规划、自主决策与作战进程控制。各作战平台、集群系统的AI,根据任务规划能够围绕作战目标自主、协同执行任务,并针对随时出现的变化进行能动调整。通过事先建立分布式、网络化、智能化、多模式的保障体系与预置布局,能够快速实施精准物流配送、物资供应和智能维修等。总之,通过智能科技的广泛应用和各种AI系统的能动作用、进化功能,在谋划、预测、感知、决策、实施、控制、保障等作战全过程,实现“简单、快捷、高效、可控”的作战流程再造,能够让人类从繁重的作战事务中逐步解脱出来。作战流程再造将促使未来战场节奏加快、时间压缩、过程变短。

AI主导的制胜机理,主要表现在作战能力、手段、策略和措施方面,全面融合了人的智力,接近了人的智能,超越了人的极限,发挥了机器的优势,体现了先进性、颠覆性和创新性。这种先进与创新,不是以往战争简单的延长线和增长量,而是一种质的变化和跃升,是一种高阶特征。这种高阶特征体现为智能化战争具有传统战争形态所不具备的“类脑”功能和很多方面“超越人类极限的能力”。随着AI的不断优化迭代,它总有一天将超过普通士兵、参谋、指挥员甚至精英和专家群体,成为“超级脑”和“超级脑群”。这是智能化战争的核心和关键,是认识论和方法论领域的技术革命,是人类目前可预见、可实现、可进化的高级作战能力。

虚拟空间作用上升。随着时代的进步和科技的发展,作战空间逐步从物理空间拓展到虚拟空间。虚拟空间在作战体系中的地位作用逐步上升且越来越重要,越来越同物理空间和其他领域实现深度融合与一体化。虚拟空间是由人类构建的基于网络电磁的信息空间,它可以多视角反映人类社会和物质世界,同时可以超越客观世界的诸多限制来利用它。构建它的是信息域,连接它的是物理域,反映出的是社会域,利用它的是认知域。狭义上的虚拟空间主要指民用互联网,广义上的虚拟空间主要指赛博空间(Cyberspace),包括各种物联网、军用网和专用网构成的虚拟空间。赛博空间具有易攻难防、以软搏硬、平战一体、军民难分等特征,已成为实施军事行动、战略威慑和认知对抗的重要战场。

虚拟空间的重要性主要体现在三个方面:一是通过网络信息系统,把分散的作战力量、作战要素连接为一个整体,形成体系化网络化作战能力,成为信息化战争的基础;二是成为网电、情报、舆情、心理、意识等认知对抗的主战场和基本依托;三是建立虚拟战场,开展作战实验,实现虚实互动,形成平行作战和以虚制实能力的核心与关键。

未来,随着全球互联、物联的加速升级,随着天基网络化侦察、通信、导航、移动互联、Wi-Fi和高精度全球时空基准平台、数字地图、行业大数据等系统的建立完善与广泛应用,人类社会和全球军事活动将越来越“透明”,越来越被联网、被感知、被分析、被关联、被控制(见图6),对军队建设和作战呈现全方位、泛在化的深刻影响,智能化时代的作战体系将逐步由封闭向开放、由以军为主向军民融合的“开源泛在”方向拓展。

吴明曦6

智能化时代,物理、信息、认知、社会、生物等领域的信息数据将逐渐实现自由流动,作战要素将实现深度互联与物联,各类作战体系将从初级的“能力组合”向高级的“信息融合、数据交链、一体化行为交互”方向发展,具备强大的全域感知、多域融合、跨域作战能力,具备随时随地对重要目标、敏感人群和关键基础设施实施有效控制的能力。美国陆军联合兵种中心的一份报告认为,这个世界正在进入“全球监控无处不在”的时代。即使这个世界无法跟踪所有的活动,技术的扩散也无疑会使潜在的信息来源以指数方式增长。

目前,基于网络的软件攻击已具备物理毁伤能力,军事发达国家的网络攻击已具备入侵、欺骗、干扰、破坏等作战能力,赛博空间已经成为实施军事行动和战略威慑的又一重要战场。美国的网络攻击已经用于实战。突尼斯的本·阿里、利比亚的卡扎菲、伊拉克的萨达姆都曾经被美国的网络攻防和维基解密影响,造成舆情转向、心理失控、社会动荡,导致政权的迅速垮台,对传统战争形态产生了颠覆性影响。通过斯诺登事件,美国使用的11类49项“赛博空间”侦察项目目录清单陆续被曝光,“震网”病毒破坏伊朗核设施、“高斯”病毒群体性入侵中东有关国家、“古巴推特网”控制大众舆情等事件,表明美国已具备对互联网、封闭网络、移动无线网络的强大监控能力、软硬攻击和心理战能力。

战争从虚拟空间实验开始。美军从20世纪80年代就开始了作战仿真、作战实验和模拟训练的探索。后来,美军又率先将虚拟现实、兵棋推演、数字孪生等技术用于虚拟战场和作战实验。据分析,海湾战争、科索沃战争、阿富汗战争、伊拉克战争等军事行动,美军都开展了作战模拟推演,力图找出的最优作战和行动方案。据报道,俄罗斯出兵叙利亚之前,就在战争实验室进行了作战预演,依据实验推演情况,制定了“中央-2015”战略演习计划,针对叙利亚作战演练了“在陌生区域的机动和可到达性”。演习结束后,俄军格拉西莫夫总参谋长强调,以政治、经济及舆论心理战等手段为主,辅之以远程精确的空中打击、特种作战等措施,最终达成政治和战略目的。实践表明,俄出兵叙利亚的进程,与实验、演习基本一致。

未来,随着虚拟仿真、混合现实、大数据、智能软件的应用和发展,通过建立一个平行军事人工系统,使物理空间的实体部队与虚拟空间的虚拟部队相互映射、相互迭代,可以在虚拟空间里解决物理空间难以实现的快速、高强度对抗训练和超量计算,可以与高仿真的“蓝军系统”进行对抗和博弈,不断积累数据,建立模型和算法,从而把最优解决方案用于指导实体部队建设和作战,达到虚实互动、以虚制实、以虚制胜的目的。2019年1月25日,谷歌旗下人工智能团队DeepMind与《星际争霸》开发公司暴雪,公布了2018年12月AlphaSTAR与职业选手TLO、MANA的比赛结果,最终在五局三胜赛制中,AlphaSTAR均以5:0取胜。AlphaSTAR只用了两周时间就完成了人类选手需要200年时间的训练量,展示了在虚拟空间进行仿真对抗训练的巨大优势与光明前景。

无人化为主的作战样式。智能化时代,无人化作战将成为基本形态,人工智能与相关技术的融合发展将逐步把这种形态推向高级阶段。无人系统是人类智慧在作战体系中的充分前置,是智能化、信息化、机械化融合发展的集中体现。无人装备最早出现在无人机领域,1917年,英国造出了世界上第一架无人机,但未用于实战。随着技术发展,无人机逐步用于靶机、侦察、察打一体等领域。进入21世纪以来,无人技术与装备由于具有以任务为中心设计、不必考虑乘员需求、作战效费比高等优势,其探索应用已经实现了巨大跨越,取得了重大突破,显现出快速全方位发展的态势,应用范围迅速拓展,涵盖了空中、水面、水下、地面、空间等各个领域。

近年来,人工智能、仿生智能、人机融合智能、群体智能等技术飞速发展,借助卫星通信与导航、自主导航,无人作战平台能够很好地实现远程控制、编队飞行、集群协同。目前,无人作战飞行器、水下无人平台和太空无人自主操作机器人相继问世,双足、四足、多足和云端智能机器人等正在加速发展,已经步入工程化和实用化快车道,军事应用为期不远。

总体上看,智能化时代的无人化作战,将进入三个发展阶段。第一阶段是有人为主、无人为辅的初级阶段,其主要特点是“有人主导下的无人作战”,也就是事前、事中、事后都是由人完全控制和主导的作战行为。第二阶段是有人为辅、无人为主的中级阶段,其主要特点是“有限控制下的无人作战”,即在作战全过程中人的控制是有限度、辅助性但又是关键性的,多数情况可以依靠平台自主行动能力。第三阶段是规则有人、行动无人的高级阶段,其主要特点是“有人设计、极少控制的无人作战”,人类事先进行总体设计,明确各种作战环境条件下的自主行为与游戏规则,在行动实施阶段主要交由无人平台和无人部队自主执行。

自主行为或者自主性,是无人化作战的本质,是智能化战争既普遍又显著的特征,体现在很多方面。

一是作战平台的自主,主要包括无人机、地面无人平台、精确制导武器、水下和太空机器人等自主能力和智能化水平。

二是探测系统的自主,主要包括自动搜索、跟踪、关联、瞄准和图像、语音、视频、电子信号等信息的智能识别。

三是决策的自主,核心是作战体系中基于AI的自主决策,主要包括战场态势的自动分析、作战任务的自动规划、自动化的指挥控制、人机智能交互等。

四是作战行动的自主协同,前期包括有人无人系统的自主协同,后期包括无人化的自主集群,如各类作战编队集群、蜂群、蚁群、鱼群等作战行为。

五是网络攻防的自主行为,包括各种病毒和网络攻击行为的自动识别、自动溯源、自动防护、自主反击等。

六是认知电子战,自动识别电子干扰的功率、频段、方向等,自动跳频跳转和自主组网,以及面向对手的主动、自动电子干扰等。

七是其他自主行为,包括智能诊断、自动修复、自我保障等。

未来,随着人工智能和相关技术融合发展的不断升级,无人化将向自主、仿生、集群、分布式协同等方向快速发展,逐步把无人化作战推向高级阶段,促使战场上有生力量的直接对抗显著减少。虽然未来有人平台会一直存在,但仿生机器人、类人机器人、蜂群武器、机器人部队、无人化体系作战,在智能化时代将成为常态。由于在众多作战领域都可以用无人系统来替代,都可以通过自主行为去完成,人类在遭到肉体打击和损伤之前,一定有无人化作战体系在前面保驾护航。因此,智能化时代的无人化作战体系,是人类的主要保护屏障,是人类的护身符和挡箭牌。

全域作战与跨域攻防。智能化时代全域作战与跨域攻防,也是一种基本作战样式,体现在很多作战场景、很多方面。从陆、海、空、天到物理、信息、认知、社会、生物多领域,以及虚拟和实体的融合互动,从平时的战略威慑到战时的高对抗、高动态、高响应,时间和空间跨度非常大。既面临物理空间作战和虚拟空间网络攻防、信息对抗、舆情引导、心理战等认知对抗,还面临全球安全治理、区域安全合作、反恐、救援等任务,面临网络、通信、电力、交通、金融、物流等关键基础设施的管控。

2010年以来,以信息化智能化技术成果为支撑,美军提出了作战云、分布式杀伤、多域战、算法战、马赛克战、联合全域作战等概念,目的是以体系对局部、以多能对简能、以多域对单域、以融合对离散、以智能对非智能,维持战场优势和军事优势。美军2016年提出多域战、2020年提出联合全域作战概念,目的是发展跨军种跨领域的联合作战能力,实现单一军种作战背后都有三军的支持,具备全域对多域、对单域的能力优势。

未来,随着人工智能与多学科交叉融合、跨介质攻防关键技术群的突破,在物理、信息、认知、社会、生物等功能域之间,在陆、海、空、天等地理域之间,基于AI与人机混合智能的多域融合与跨域攻防,将成为智能化战争一个鲜明的特征。

智能时代的多域与跨域作战,将从任务规划、物理联合、松散协同为主,向异构融合、数据交链、战术互控、跨域攻防一体化拓展。

一是多域融合。根据多域环境下不同的战场与对手,按照联合行动的要求把不同的作战样式、作战流程和任务规划出来,尽量统一起来,实现信息、火力、防御、保障和指控的统筹与融合,实现战略、战役和战术各层次作战能力的融合,形成一域作战、多域联合快速支援的能力。

二是跨域攻防。在统一的网络信息体系支撑下,通过统一的战场态势,基于统一标准的数据信息交互,彻底打通跨域联合作战侦控打评信息链路,实现在战术和火控层面军种之间协同行动、跨域指挥与互操作、作战要素与能力的无缝衔接。

三是全程关联。把多域融合和跨域攻防作为一个整体,统筹设计、全程关联。战前,开展情报收集与分析,实施舆论战、心理战、宣传战和必要的网电攻击。战中,通过特种作战和跨域行动,实施斩首、要点破袭和精确可控打击(见图7)。战后,防御信息系统网络攻击、消除负面舆论对民众影响、防止基础设施被敌破坏,从多个领域实施战后治理、舆情控制和社会秩序恢复。

吴明曦7

四是AI支持。通过作战实验、模拟训练和必要的试验验证、实战检验,不断积累数据、优化模型,建立不同作战样式与对手的AI作战模型和算法,形成一个智能化的脑体系,更好地支撑联合作战、多域作战和跨域攻防。

人与AI混合决策。智能化战场AI脑体系的不断健全、优化、升级和完善,使其将在许多方面超越人类。几千年来,人类战争以人为主的指挥控制和决策模式将彻底改变,人指挥AI、AI指挥人、AI指挥AI等,都有可能在战争中出现。

分布式、网络化、扁平化、平行化是智能化作战体系的重要特征,有中心、以人为主的单一决策模式,逐步被基于AI的无人化、自主集群、有人无人协同等无中心、弱中心模式所改变,相互之间的混合兼容成为发展趋势。作战层级越低、任务越简单,无人化、无中心的作用越突出;层级越高、任务越复杂,人的决策、有中心的作用越重要。战前以人决策为主、以AI决策为辅,战中以AI决策为主、以人决策为辅,战后两者都有、以混合决策为主(见表3)。

吴明曦-表3

未来战场,作战对抗态势高度复杂、瞬息万变、异常激烈,多种信息交汇形成海量数据,仅凭人脑难以快速、准确处理,只有实现“人脑+AI”的协作运行方式,基于作战云、数据库、网络通信、物联网等技术群,“指挥员”才能应对瞬息万变的战场,完成指挥控制任务。随着无人系统自主能力的增加,集群和体系AI功能的增强,自主决策逐步显现。一旦指挥控制实现不同程度的智能化,侦察—判断—决策—攻击(OODA)回路时间将大大压缩,效率将明显提升。尤其是用于网络传感器图像处理的模式识别、用于作战决策的“寻优”算法、用于自主集群的粒子群算法和蜂群算法等,将赋予指挥控制系统更加高级、完善的决策能力,逐步实现“人在回路外”的作战循环。

非线性放大与快速收敛。未来的智能化作战,不再是能量的逐步释放和作战效果的线性叠加,而是非线性、涌现性、自生长、自聚焦等多种效应的急剧放大和结果的快速收敛。

涌现主要指复杂系统内每个个体都遵从局部规则,不断进行交互后,以自组织方式产生出整体质变效应的过程。未来,战场信息虽然复杂多变,但通过图像、语音、视频等智能识别和军事云系统处理后,具备“一点采集、大家共享”能力,通过大数据技术与相关信息快速关联,并与各类武器火控系统快速交链后,实施分布式打击、集群打击和网络心理战等,能够实现“发现即摧毁”“一有情况群起而攻之”和“数量优势滋生心理恐慌效应”,这些现象就是涌现效应。

智能化作战的涌现效应主要体现在三个方面:一是基于AI决策链的快速而引发的杀伤链的加速;二是有人无人协同特别蜂群系统数量优势所引发的作战效应;三是基于网络互联互通所产生的快速群体涌现行为。

军事智能化发展到一定阶段后,在高级AI、量子计算、IPV6、高超声速等技术共同作用下,作战体系将具备非线性、非对称、自生长、快速对抗、难以控制的放大效应和行动效果,特别在无人、集群、网络舆情、认知对抗等方面尤为明显,群愚生智、以量增效、非线性放大、涌现效应越来越突出,AI主导下的认知、信息、能量对抗相互交织并围绕着目标迅速聚焦,时间越来越被压缩,对抗速度越来越快,即呈现多种效应的急剧放大和结果的快速收敛。能量冲击波、对抗极速战、AI终结者、舆情反转、社会动荡、心理失控、物联网连锁效应等,将成为智能化战争的显著特征。

无人化集群攻击,作战双方在平台性能大致相同的条件下,遵循兰切斯特方程,作战效能与数量的平方成正比,数量优势就是质量优势。网络攻防和心理舆情效应,遵循梅特卡夫定律,与信息互联用户数的平方成正比,非线性、涌现效应更加明显。战场AI数量的多少和智商的高低,更决定着作战体系智能化的整体水平,关系到战场智权的控制,影响战争胜负和结局。智能化时代,如何处理好能量、信息、认知、数量、质量、虚拟、实体之间的相互关系,如何巧妙地设计、把控、运用和评估非线性效应,是未来战争面临的重大新挑战和新要求。

未来,无论是舆情反转、心理恐慌,还是蜂群攻击、集群行动,以及人在环外自主作战,其涌现效应和打击效果,将成为相对普遍的现象和容易实施的行动,形成威慑与实战兼容的能力,也是人类社会必须严加管理和控制的战争行为。

有机共生的人装关系。在智能化时代,人与武器的关系将发生根本性改变,在物理上越来越远、在思维上越来越近。装备形态和发展管理模式将完全改变,人的思想和智慧通过AI与武器装备深度交链,在装备发展阶段充分前置、在使用训练阶段优化迭代、在作战验证之后进一步升级完善,如此循环往复、不断递进。

第一,随着网络通信、移动互联、云计算、大数据、机器学习和仿生等技术的快速发展及其在军事领域的广泛应用,传统武器装备的结构和形态将彻底改变,呈现出前后台分工协作、高效互动、自适应调整等多样化功能,是集机械、信息、网络、数据、认知于一体的复合体。

第二,人与武器逐渐物理脱离,但在思维上逐步深度融合为有机共生体。无人机、机器人的逐步成熟,从辅助人作战转向代替人作战,人更加退居到后台。人与武器的结合方式,将以崭新形态出现。人的思想和智慧将全寿命周期地参与设计、研发、生产、训练、使用和保障过程,无人作战系统将把人的创造性、思想性和机器的精准性、快速性、可靠性、耐疲劳性完美结合起来。

第三,装备建设与管理模式发生深刻变化。机械化装备越用越旧、信息化软件越来越新、智能化算法越用越精。传统的机械化装备采用“预研—研制—定型”的模式交付部队,战技性能随时间和摩托小时呈下降趋势;信息化装备是机械化、信息化复合发展的产物,平台不变,但信息系统随计算机CPU和存储设备的发展不断迭代更新,呈现“信息主导、以软牵硬,快速更替、螺旋上升”的阶梯式发展特点;智能化装备以机械化、信息化为基础,随着数据和经验的积累,不断地优化提升训练模型和算法,呈现随时间和使用频率越用越强、越用越好的上升曲线。因此,智能化装备发展建设及使用训练保障模式,将发生根本性改变。

在学习对抗中进化。进化,一定是未来智能化战争和作战体系的一个鲜明特点,也是未来战略竞争的一个制高点。智能化时代的作战体系将逐步具备自适应、自学习、自对抗、自修复、自演进能力,成为一个可进化的类生态和博弈系统。

智能化作战体系与系统,最大的特点和与众不同之处,就在于其“类人、仿人”的智能与机器优势的结合,实现“超人类”的作战能力。这种能力的核心是众多模型和算法越用越好、越用越精,具备进化的功能。如果未来作战体系像人体一样,大脑是指挥控制中枢,神经系统是网络,四肢是受大脑控制的武器装备,就像一个生命体一样,具备自适应、自学习、自对抗、自修复、自演进能力,我们认为它就具备进化的能力和功能。由于智能化作战体系与生命体不完全一样,单一的智能化系统与生命体类似,但多系统的作战体系,更像一个“生态系统+对抗博弈系统”,比单一的生命体更复杂,更具有对抗性、社会性、群体性和涌现性。

经初步分析判断,随着作战仿真、虚拟现实、数字孪生、平行训练、智能软件、仿脑芯片、类脑系统、仿生系统、自然能源采集和新型机器学习等技术的发展应用,未来的作战体系可以逐步从单一功能、部分系统的进化向多功能、多要素、多领域、多系统的进化发展。各系统能够根据战场环境变化、面临的威胁不同、面临的对手不同、自身具备的实力和能力,按照以往积累的经验知识、大量仿真对抗性训练和增强学习所建立的模型算法,快速形成应对策略并采取行动,进而在战争实践中不断修正、优化和自我完善、自我进化。单一任务系统将具备类似生命体的特征和机能,多任务系统就像森林中的物种群那样具备相生相克、优胜劣汰的循环功能和进化机制,具备复杂环境条件下的博弈对抗和竞争能力,形成可进化的类生态和博弈系统。

作战体系的进化途径,主要体现在四个方面:一是AI的进化,随着数据和经验的积累,一定会不断优化、升级和提升。这一点比较容易理解。二是作战平台和集群系统的进化,主要从有人控制为主向半自主、自主控制迈进。由于不仅涉及平台和集群控制AI的进化,还涉及相关机械与信息系统的优化和完善,所以要相对复杂一点。三是任务系统的进化。如探测系统、打击系统、防御系统、保障系统的进化等,由于涉及多平台、多任务,所以进化涉及的因素和要素就复杂得多,有的可能进化快,有的可能进化慢。四是作战体系的进化,由于涉及全要素、多任务、跨领域,涉及各个层次的对抗,其进化过程就非常复杂。作战体系能否进化,不能完全依靠自生自长,而需要主动设计一些环境和条件,需要遵循仿生原则、适者生存原则、相生相克原则和全系统全寿命管理原则,才能具备持续进化的功能和能力。

智能设计与制造。智能化时代的国防工业,将从相对封闭、实物为主、周期较长的研究制造模式向开源开放、智能设计与制造、快速满足军事需求转变。

国防工业是国家战略性产业,是国家安全和国防建设的强大支柱,平时主要为军队提供性能先进、质量优良、价格合理的武器装备,战时是实施作战保障的重要力量,是确保打赢的核心支撑。国防工业是一个高科技密集的行业,现代武器装备研发和制造,技术密集、知识密集、系统复杂、综合性强,大型航母、战斗机、弹道导弹、卫星系统、主战坦克等武器装备的研发,一般都要经过十年、二十年甚至更长时间,才能定型交付部队,投入大、周期长、成本高。二战以后到上世纪末,国防工业体系和能力结构是机械化时代与战争的产物,其科研、试验、生产制造、保障等,重点面向军兵种需求和行业系统组织科研与生产,主要包括兵器、船舶、航空、航天、核和电子等行业,以及民口配套和基础支撑产业等。冷战后,美国国防工业经过战略调整和兼并重组,总体上形成了与信息化战争体系对抗要求相适应的国防工业结构和布局。美国排名前六位的军工巨头,既可以为相关军兵种提供专业领域的作战平台与系统,也可以为联合作战提供整体解决方案,是跨军兵种跨领域的系统集成商。进入21世纪以来,随着体系化、信息化作战需求的变化和数字化、网络化、智能化制造技术的发展,传统武器装备发展模式和科研生产能力开始逐步改变,迫切需要按照信息化战争特别是智能化战争的要求进行重塑和调整。

未来,国防科技工业将按照联合作战、全域作战、机械化信息化智能化融合发展要求,从传统以军兵种、平台建设为主向跨军兵种、跨领域系统集成转变,从相对封闭、自成体系、各自独立、条块分割、实物为主、周期较长的研究设计制造向开源开放、民主化众筹、虚拟化设计与集成验证、自适应制造、快速满足军事需求转变(见图8),逐步形成软硬结合、虚实互动、人机物环智能交互、纵向产业链有效衔接、横向分布式协同、军民一体化融合的新型创新体系和智能制造体系。军地多方联合论证设计,建设和使用供需双方共同研发,基于平行军事系统的虚实迭代优化,通过作战训练和实战验证来完善提升,边研边试边用边建,是智能化作战体系发展建设和战斗力生成的基本模式。

吴明曦8

吴明曦8

失控的风险。由于智能化作战体系在理论上具备自我进化并达到“超人类”的能力,如果人类不事先设计好控制程序、控制节点,不事先设计好“终止按钮”,结果很可能会带来毁灭和灾难。需要高度关注的是,众多黑客和“居心不良”的战争狂人,会利用智能化技术来设计难以控制的战争程序和作战方式,让众多机器脑AI和成群结队的机器人,按照事先设定的作战规则,自适应和自演进地进行战斗,所向披靡,勇往直前,最终酿成难以控制的局面,造成难以恢复的残局。这是人类在智能化战争进程中面临的重大挑战,也是需要研究解决的重大课题。需要从全人类命运共同体和人类文明可持续发展的高度,认识和重视这个问题,设计战争规则,制定国际公约,从技术上、程序上、道德上和法律上进行规范,实施强制性的约束、检查和管理。

以上十个方面的突变和跨越,是智能化战争新形态的主要内容。当然,智能化战争的发展与成熟,并不是空中楼阁、无本之木,而是建立在机械化和信息化之上。没有机械化和信息化,就没有智能化。机械化、信息化、智能化“三化”是一个有机整体,相互联系、相互促进,迭代优化、跨越发展。从目前看,机械化是基础,信息化是主导,智能化是方向。从未来看,机械化是基础,信息化是支撑,智能化是主导。

未来美好远景

在新世纪的时空隧道里,我们看到智能化战争的列车正快速行驶,是任由人类的贪婪和科技的强大走向更加残酷的黑暗,还是迈向更加文明和光明的彼岸,这是人类需要思索的重大哲学命题。智能化是未来,但不是全部。智能化能胜任多样化军事任务,但不是全能。面对文明之间、宗教之间、国家之间、阶层之间的尖锐矛盾,面对手持菜刀的暴徒、自杀式爆炸、群体性骚乱等极端事件,智能化作用仍然有限。全球政治不平衡、权利不平等、贸易不公平、社会矛盾不解决,战争和冲突将不可避免。世界最终靠实力说了算,而其中科技实力、经济实力和军事实力极其重要。军事实力虽然决定不了政治,但可以影响政治,决定不了经济,但可以为经济发展带来安全。智能化作战能力越强大,其威慑强敌、遏制战争的功能越强,和平就越有希望。就像核威慑那样,为避免可怕的后果和失控的灾难,在防止大规模战争方面发挥着重要的作用。

战争的智能化程度,在某种意义上体现了战争文明的进程。人类战争的历史,最初由族群之间食物和居住区域的争夺,到土地占领、资源掠夺、政治实力扩张、精神世界统治,无不充满血腥、暴力和镇压。战争作为人类社会不可调和矛盾的最终解决手段,其所追求的理想目标是文明化:不战而屈人之兵、资源投入最少、人员伤亡最小、对社会的破坏最轻……但以往的战争实践,往往因政治斗争、民族矛盾、经济利益争夺、科技毁伤手段的残酷等原因而事与愿违,常常把国家、城市和家园毁坏殆尽。以往的战争未能实现上述理想,而未来智能化战争由于技术上的突破、透明度的增加、经济利益互利共享的加深,特别是有生力量的对抗逐步让位于机器人之间的对抗、AI之间的博弈,人员伤亡、物质消耗、附带损伤会越来越小,在很大程度上存在实现文明化的可能性,给人类带来了希望。我们期待,未来战争,从人类社会的相互残杀、物质世界的极大破坏,逐步过渡到无人系统和机器人之间的战争,发展到仅限于作战能力和综合实力的威慑与制衡、虚拟世界中AI之间的对抗、高仿真的战争游戏……人类战争的消耗,只限于一定规模的无人系统、模拟对抗与仿真实验,甚至仅仅是打一场战争游戏的能源。人类由战争的谋划者、设计者、参与者、主导者和受害者,转变为理性的思想者、组织者、控制者、旁观者和裁决者。人类的身体不再受到创伤,精神不再受到惊吓,财富不再遭到破坏,家园不再遭到摧毁。虽然美好的理想和愿望,与残酷的现实可能始终存在差距,但衷心希望这一天能够到来,尽早到来。这是智能化战争发展的最高阶段,作者的最大愿望,人类的美好远景!

(感谢同事周旭芒研究员为论文撰写提供支持和帮助,他在智能化发展和建设方面有独到的思想和见解)

注释

[1][美]罗伯特·O.沃克等:《20YY:机器人时代的战争》,邹辉等译,北京:国防工业出版社,2016年,第148页。

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. The AI system based on models and algorithms will be the core combat capability, running through all aspects and links and playing a multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

中國原創軍事資源:https://www.rmlt.com.cn/2021/0818/622318889.shtml

Analyzing Chinese Military’s New Changes in Ways to Win Intelligent Warfare

解析中國軍隊智戰打贏方式新變化

現代英語:

●From war of attrition to war of dissipation—

An Analysis of the New Changes in the Ways to Win in Intelligent Warfare

■Wang Ronghui

President Xi Jinping pointed out that the core of studying warfare is to understand the characteristics, laws, and winning mechanisms of modern warfare. From the clash of bronze swords to the roar of tank engines and the saturation attacks of unmanned “swarms,” ​​each leap in the form of warfare has profoundly changed the way wars are won. In the long era of cold weapons, firearms, and mechanized warfare, attrition warfare used the offsetting of national wealth and resources to exhaust the opponent’s will to resist. However, the new military revolution, led by the information technology revolution and accelerating towards the intelligent era, is pushing the way wars are won to a completely new dimension—dissipation warfare, which transforms the traditional method of war, which is mainly based on the consumption of materials and energy, into a comprehensive method of war that integrates the offsetting of materials, the offsetting of energy, and the confrontation of information.

The war of attrition is an iron law of traditional warfare.

In the long years before and during the Industrial Age, wars were primarily based on the struggle for material and energy resources, and the balance of power often tipped in favor of the side that could withstand greater material and energy losses.

The war of attrition is a major winning tactic in traditional warfare. In cold weapon warfare, the focus of confrontation lies in the number of soldiers, their physical endurance, and the competition of metal weapons and food reserves. The outcome of the war often depends on the size of the army and the strength of the logistical chain. For example, the siege warfare that was common in ancient times was essentially a war of attrition between the defender’s supplies and the attacker’s manpower and equipment. In firearms warfare, the use of gunpowder did not reduce the attrition of war; on the contrary, it pushed it to a new level. The dense charges of line infantry in the Napoleonic Wars, and the brutal trench warfare of Verdun and the Somme in World War I, all exemplified the nature of attrition warfare—trading space for steel and flesh. Mechanized warfare, with the advent of tanks, airplanes, and aircraft carriers, pushed the scale of material and energy consumption to its peak. In World War II, the Battle of Kursk on the Soviet-German front and the brutal Battle of Iwo Jima in the Pacific were the ultimate clashes between a nation’s industrial capacity and its military’s ability to withstand casualties.

The war of attrition is essentially a contest of material and energy resources. It’s a contest of size and reserves—static or slowly accumulating factors such as population size, resource reserves, industrial capacity, and troop strength. Its primary objective is to destroy the enemy’s manpower, war materials, and seize their territory and resources; essentially, it’s a contest of material and energy resources between the opposing sides. Klausewitz’s assertion that “war is a violent act that forces the enemy to submit to our will” is fundamentally based on the logic of violent attrition. The winning mechanism of a war of attrition is that victory belongs to the side that can more sustainably convert material resources into battlefield lethality and can withstand greater losses.

The war of attrition has revealed significant historical limitations in practice. From the long-term experience of traditional warfare, the fundamental limitations of the war of attrition manifest in the enormous loss of life and material wealth, the unbearable high costs to society, and the waste of vast amounts of energy and resources on non-critical targets, indiscriminate bombardment, and large-scale but inefficient charges. When both sides are evenly matched in strength and determined, the outcome is difficult to predict, leading to repeated back-and-forth battles and easily resulting in a protracted quagmire of attrition, as seen on the Western Front of World War I. Faced with increasingly networked and information-based modern warfare systems, the attrition model relying on large-scale firepower coverage is insufficient for accurately targeting the opponent’s key nodes and functional connections, resulting in diminishing returns.

The information technology revolution gave rise to the prototype of dissipative warfare

The information technology revolution in the second half of the 20th century injected a disruptive variable into the form of warfare. Information began to surpass matter and energy, becoming the core element of victory, and information warfare took center stage in history.

The focus of information warfare has shifted. The Gulf War is considered a milestone in information warfare, where multinational forces, relying on reconnaissance aircraft, early warning aircraft, electronic warfare systems, precision-guided weapons, and C4ISR systems, achieved overwhelming information superiority, realizing “one-way transparency” on the battlefield. The focus of this war was no longer on the complete annihilation of the opponent’s massive ground forces, but rather on the systematic destruction of its command and control systems, air defense systems, communication hubs, and logistical supply lines, leading to the rapid collapse of the opponent’s overall combat capability and plunging them into a chaotic state of fragmented operations and command failure. This marks a shift in the focus of warfare from “hard destruction” in the physical domain to “system disruption” and functional paralysis in the information domain.

The methods of winning in informationized warfare have changed. Informationized warfare alters the way and objectives of material and energy utilization through information superiority. The winning strategy is no longer simply about “consuming” the opponent’s materials and energy, but rather about guiding the flow of materials and energy through efficient information flow, precisely targeting the “key links” of the enemy’s operational system. This aims to achieve maximum chaos, disorder, functional collapse, and overall effectiveness reduction in the enemy system with minimal material and energy input. Therefore, informationized warfare is beginning to pursue “entropy increase,” or increased disorder, in the enemy’s operational system, causing it to move from order to disorder. This indicates that dissipative warfare, reflecting the complex system confrontation of intelligent warfare, is beginning to emerge.

Dissipation warfare is a typical form of intelligent warfare.

With the rapid development of intelligent technology and its widespread application in the military, intelligent warfare is becoming a new form of warfare after information warfare, and dissipation warfare is becoming a typical mode of intelligent warfare.

Dissipation warfare has adapted to the demands of the modern world security landscape. In the era of intelligence, the rapid development and application of intelligent technologies such as broadband networks, big data, cloud computing, brain-computer interfaces, intelligent chips, and deep learning have broadened connections between countries and nations. Non-traditional security threats have emerged and intertwined with traditional security threats, leading to a continuous expansion of the subject and scope of intelligent warfare. The time and space of warfare are constantly extending, and the warfare system is shifting from relatively closed to more open, forming a higher-level and broader-ranging confrontation. Dissipation warfare, as a winning strategy in the intelligent era, is becoming increasingly prominent.

Dissipation warfare reflects the historical development of methods for winning wars. Dissipation warfare has always existed, but before the advent of intelligent warfare, due to technological constraints, it remained in a relatively rudimentary and simple form, where the confrontation could only be manifested as a confrontation between one of the elements of matter, energy, or information. Cold weapon warfare was primarily a confrontation centered on the human body and dominated by material elements; firearms and mechanized warfare was primarily a confrontation centered on platforms and dominated by energy elements; and information warfare is primarily a confrontation centered on network information systems and dominated by information elements. Entering the intelligent era, intelligent technology highly unifies the cognitive, decision-making, and action advantages in the confrontation between enemies and ourselves. In essence, it highly unifies matter, energy, and information. By empowering, gathering, driving, and releasing energy with intelligence, it forms an intelligent warfare form dominated by intelligent elements and centered on intelligent algorithms. Its typical form is dissipation warfare, which reflects the complex system confrontation of intelligent warfare.

Dissipation warfare embodies the resilience of complex warfare systems. From the perspective of the winning mechanism, to gain a competitive advantage, it is necessary to construct a closed loop of dissipation warfare that enables rapid “perception, decision-making, action, and evaluation” based on the fundamental principles of “negative entropy infusion, threshold determination, phase transition triggering, and victory control.” This continuously increases the enemy’s entropy value in a dynamic hybrid game, causing the enemy to lose its overall combat capability. From the perspective of the path to victory, dissipation warfare emphasizes the comprehensive use of material attrition, energy confrontation, and information confrontation. Internally, it “establishes order” to achieve logical concentration, immediate accumulation, complementary advantages, and integrated strengths to form comprehensive combat power. Externally, it “increases entropy” by continuously exerting its effects through military, political, economic, technological, cultural, and diplomatic components until the effectiveness accumulates to a certain level, resulting in “rise and fall” and achieving a sudden change in combat power and the emergence of systemic effectiveness. In terms of its basic characteristics, dissipative warfare is characterized by comprehensive confrontation and competition, multiple subjects across domains, complex and diverse forms, integrated and concentrated forces, and the emergence of accumulated effectiveness. The core of the confrontation has evolved from the destruction of the physical domain and the control of the information domain to a game of disrupting and maintaining the “orderliness” inherent in the complex system of intelligent warfare.

Dissipation warfare encompasses various forms of intelligent warfare. Beyond the traditional attrition warfare across land, sea, air, space, cyberspace, and electronic domains, dissipation warfare also includes various forms of conflict employed by one or more countries against their adversaries in multiple social spheres. These include political isolation and encirclement, economic and financial blockades, disruption of technological supply chains, cultural strategic export, authoritative media campaigns to seize the initiative in discourse, manipulation of public opinion through trending events, AI-assisted social media information warfare, and the use of proxies to establish multilateral battlefields. The diverse forms of dissipation warfare allow it to be conducted in both war and peacetime. Sun Tzu’s Art of War principle, “Victorious armies first secure victory and then seek battle,” takes on new meaning in the context of war preparation in the intelligent age.

The shift in winning strategies from war of attrition to war of dissipation

Dissipative warfare manifests itself in the comprehensive confrontation across multiple domains, including the physical and information domains, in the intelligent era. It embodies a high degree of unity among political contests, economic competition, military offense and defense, cultural conflicts, and diplomatic checks and balances, reflecting the openness, complexity, and emergence of intelligent warfare systems.

The evolution from a war of attrition to a war of dissipation represents a comprehensive and profound transformation. The basis for victory has shifted from relying on the stock of resources such as population, mineral deposits, and industrial base to relying on information superiority, intelligent algorithm superiority, network structure superiority, and the ability to dynamically control the flow of energy and information. The target of action has shifted from focusing on destroying physical entities such as soldiers, tanks, and factories to focusing on dismantling the “function” and “order” of the war system. The pursuit of effectiveness has shifted from the absolute destruction and annihilation of manpower to the pursuit of highly efficient “asymmetric paralysis,” that is, inducing the greatest chaos and incompetence of the enemy’s combat system at the lowest cost on one’s own side, pursuing “paralysis” rather than “destruction.” The focus of war has shifted from confrontation mainly in the physical domains such as land, sea, and air to a comprehensive game in multiple domains such as the physical domain and the information domain. While the physical domain still exists, it is often determined by the advantages of higher-dimensional domains.

The evolution from war of attrition to war of dissipation reflects a change in the decisive advantage. In the era of intelligent warfare, victory will no longer simply belong to the side with the largest steel torrent, but will inevitably belong to the side that can more efficiently “establish order” and “induce entropy”—that is, the side that can maintain a highly ordered and efficient operation of its own war system, while precisely and intelligently dismantling the order of the enemy’s system, forcing it into irreversible “entropy increase” and chaos. To gain a decisive advantage in war, we must adapt to the openness, complexity, and emergence of intelligent warfare systems, shifting from the extensive consumption and utilization of single materials, energy, and information to a war system where intelligent advantages dominate dissipation, and striving to gain the initiative and advantage in comprehensive multi-domain games.

The evolution from war of attrition to war of dissipation is an inevitable trend driven by the tide of technological revolution. Technology is the core combat capability and the most active and revolutionary factor in military development. Currently, intelligent technology is developing rapidly. Only by proactively embracing the wave of intelligence and firmly grasping the key to victory in the accurate understanding, intelligent control, and efficient dissipation of the complex system of warfare can we remain invincible in the ever-changing landscape of future global competition and the profound transformation of warfare.

現代國語:


●從消耗戰到耗散戰——

試析智能化戰爭制勝方式新變革

■王榮輝

閱讀提示

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。從青銅劍的碰撞到坦克發動機的轟鳴再到無人“蜂群”的飽和攻擊,戰爭形態的每一次躍遷都深刻改變著戰爭制勝方式。在漫長的冷兵器、熱兵器和機械化戰爭時代,消耗戰以國家財富資源的對沖抵消來耗盡對手的抵抗意志。然而,以信息技術革命為先導,並加速向智能化時代邁進的新軍事革命,正將戰爭制勝方式推向全新的維度——耗散戰,即將傳統的以物質、能量消耗為主,轉變為集物質對耗、能量對沖和信息對抗綜合一體的戰爭方式。

消耗戰是傳統戰爭形態的鐵律

在工業時代及其之前的漫長歲月裡,戰爭主要是基於物質與能量要素的對抗,勝負的天平往往向能夠承受更大物質與能量損耗的一方傾斜。

消耗戰是傳統戰爭形態的主要制勝方式。冷兵器戰爭,對抗重心在於兵員數量、體能耐力、金屬兵器與糧秣儲備的比拼,戰爭勝負往往取決於誰的兵員數量規模大,誰的後勤鏈條更牢固。如古代比較多見的圍城戰本質就是守城方物資儲備與攻城方兵力器械的消耗戰;熱兵器戰爭,火藥的運用並未削弱戰爭消耗,反而將其推至新高度。拿破侖戰爭線列步兵的密集沖鋒,第一次世界大戰的凡爾登、索姆河戰役戰壕對峙的殘酷絞殺,無不體現著“以鋼鐵和血肉換取空間”的消耗戰本質;機械化戰爭,坦克、飛機、航母等平台的登場,將物質與能量的消耗規模推向巔峰。第二次世界大戰中,蘇德戰場的庫爾斯克坦克大會戰、太平洋戰場慘烈的硫磺島爭奪戰,都是國家工業產能與軍隊承受傷亡能力的終極對撞。

消耗戰實質是基於物質與能量要素的比拼。消耗戰比拼的是體量和存量,是人口基數、資源儲備、工業產能、兵力規模等靜態或可緩慢累積的要素,主要目標是摧毀敵方有生力量、戰爭物資、剝奪其領土和資源,實質上是對抗雙方物質與能量要素的比拼。克勞塞維茨“戰爭是迫使敵人服從我們意志的一種暴力行為”的論斷,底層邏輯正是暴力消耗。消耗戰的制勝機理是:勝利屬於能更持久地將物質資源轉化為戰場殺傷力,並能承受更大損失的一方。

消耗戰在實踐中暴露出重大歷史局限性。從傳統戰爭的長期實踐看,消耗戰的根本局限性體現為巨大的生命、物質財富損失,社會難以承受的高昂成本,以及大量能量與資源被浪費在非關鍵目標或盲目炮擊、大規模但低效的沖鋒等無效對抗上。當對抗雙方實力接近且意志堅定時,勝負難分,反復拉鋸,極易陷入如第一次世界大戰西線戰場般的長期消耗泥潭。面對日益網絡化、信息化的現代作戰體系,依靠大規模火力覆蓋的消耗模式,難以精准打擊對手關鍵節點與功能連接,效果事倍功半。

信息技術革命催生耗散戰雛形

20世紀下半葉的信息技術革命,為戰爭形態注入了顛覆性變量,信息開始超越物質與能量,成為核心制勝要素,信息化戰爭形態登上歷史舞台。

信息化戰爭的重心發生轉移。海灣戰爭被視為信息化戰爭的裡程碑,多國部隊憑借偵察機、預警機、電子戰系統、精確制導武器和C4ISR系統,形成壓倒性信息優勢,實現了戰場“單向透明”。這場戰爭的重點不再是徹底殲滅對手龐大的地面部隊,而是轉向系統性摧毀其指揮控制系統、防空體系、通信樞紐和後勤補給線,導致對手整體作戰能力迅速瓦解,陷入各自為戰、指揮失靈的混亂狀態。這標志著戰爭重心開始從物理域的“硬摧毀”,向信息域的“體系破擊”和功能癱瘓轉移。

信息化戰爭的制勝方式發生變化。信息化戰爭通過信息優勢改變物質、能量運用的方式與目標。制勝方式不再是單純追求“消耗”對手的物質與能量,而是通過高效的信息流引導物質流與能量流,精確作用於敵作戰體系的“關鍵鏈”,以最小的物質與能量投入,達成敵方體系最大程度的混亂失序、功能瓦解和整體效能塌縮。由此可見,信息化戰爭開始追求敵方作戰體系的“熵增”即混亂度增加,使其從有序走向無序,表明反映智能化戰爭復雜體系對抗的耗散戰已經初露端倪。

耗散戰是智能化戰爭的典型方式

隨著智能化技術快速發展及其在軍事上的廣泛應用,智能化戰爭正成為信息化戰爭後的新戰爭形態,而耗散戰則成為智能化戰爭的典型方式。

耗散戰適應了世界安全形勢的時代要求。進入智能化時代,寬網絡、大數據、雲計算、腦機連接、智能芯片、深度學習等智能技術及其應用快速發展,各國家、民族之間的聯系更加廣泛,非傳統安全威脅興起並與傳統安全威脅交織,智能化戰爭主體和范疇不斷拓展,戰爭時間與空間不斷外延,戰爭體系從相對封閉走向更加開放,形成更高層次和更大范圍的對抗,耗散戰這一智能化時代的戰爭制勝方式日益凸顯。

耗散戰反映了戰爭制勝方式的歷史發展。耗散戰實際上始終存在,只不過在智能化戰爭形態出現之前,由於技術的制約,一直處於較為低級的形式和簡單狀態,戰爭對抗只能突出體現為物質、能量和信息某一種要素間的對抗。冷兵器戰爭主要表現為以物質要素為主導的以人體為中心的對抗,熱兵器和機械化戰爭主要表現為以能量要素為主導的以平台為中心的對抗,信息化戰爭主要表現為以信息要素為主導的以網絡信息體系為中心的對抗。進入智能時代,智能化技術將敵我對抗中的認知優勢、決策優勢和行動優勢高度統一起來,實質是將物質、能量和信息三者高度統一,通過以智賦能、以智聚能、以智驅能、以智釋能,形成了以智能要素為主導的、以智能算法為中心的智能化戰爭形態,其典型方式即為反映智能化戰爭復雜體系對抗的耗散戰。

耗散戰體現了戰爭復雜體系的韌性比拼。從制勝機理看,要取得對抗優勢,必須以“負熵灌注、閾值認定、相變觸發、勝勢控制”為基本原理,構建自身快速“感知、決策、行動、評估”耗散戰閉環,在動態混合博弈中持續增加敵方熵值,致敵喪失整體作戰能力。從制勝路徑看,耗散戰強調綜合運用物質對耗、能量對沖、信息對抗等形式,對內“制序”,達成邏輯集中、即時富聚,優勢互補、一體聚優,形成綜合戰力;對外“致熵”,通過軍事、政治、經濟、科技、文化、外交等組分系統持續發揮作用,至效能累積達到某一程度形成“漲落”,實現戰力突變和體系效能湧現。從基本特征看,耗散戰表現為對抗綜合博弈、主體跨域多元、形式復雜多樣、力量一體富聚、效能累積湧現,對抗的核心從物理域的摧毀、信息域的掌控,躍升為對智能化戰爭復雜體系內在“有序性”的破壞與維持的博弈。

耗散戰涵蓋了智能化戰爭的多種形式。除了戰爭對抗雙方在傳統的陸、海、空、天、網、電等空間的消耗對抗,耗散戰更包括了一國或者多國對作戰對手在多類社會域所采取的政治孤立圍困、經貿金融封鎖、科技產業斷鏈、文化戰略輸出、權威媒體造勢搶佔話語主動、制造熱點事件導控大眾認知、AI助力社交媒體編織信息繭房、利用代理人開設多邊戰場等斗爭形式。耗散戰的多樣化呈現形式使其在戰時和平時均可進行,《孫子兵法》講的“勝兵先勝而後求戰”,在智能化時代的戰爭准備中被賦予新的涵義。

從消耗戰到耗散戰的制勝方式之變

耗散戰表現在智能時代中物理域、信息域等多域的綜合對抗,體現出政治較量、經濟比拼、軍事攻防、文化沖突和外交制衡等形式的高度統一,反映了智能化戰爭體系所具有的開放性、復雜性和湧現性。

從消耗戰到耗散戰的演進是一次全方位深層次的變革。制勝基礎從依賴人口、礦藏、工業基礎等資源存量的比拼,轉向依賴信息優勢、智能算法優勢、網絡結構優勢以及對能量流、信息流的動態調控能力;作用對象從聚焦摧毀士兵、坦克、工廠等物質實體,轉向聚焦瓦解戰爭體系的“功能”與“有序性”;效能追求從對有生力量的絕對摧毀與殲滅,轉向追求高效能的“非對稱癱瘓”,即以己方最小代價,引發敵方作戰體系的最大混亂與失能,追求“打癱”而非“打爛”;戰爭重心從主要在陸地、海洋、天空等物理域的對抗,轉向物理域、信息域等多域的綜合博弈。物理域的對抗雖然依舊存在,但往往由更高維域的優勢所決定。

從消耗戰到耗散戰的演進反映了制勝優勢的變化。智能化戰爭時代,勝利將不再簡單歸屬於擁有最龐大鋼鐵洪流的一方,而必然歸屬於能更高效地“制序”與“致熵”的一方——即能夠維系己方戰爭體系高度有序、高效運轉,同時精准智能地瓦解敵方體系有序性,迫使其陷入不可逆“熵增”和混亂的一方。要贏得戰爭制勝優勢,必須適應智能化戰爭體系的開放性、復雜性和湧現性要求,從單一物質、能量和信息的粗放式消耗和運用轉變到以智能優勢主導戰爭體系的耗散,力爭在多領域的綜合博弈中贏得主動和優勢。

從消耗戰向耗散戰的演進是科技革命洪流裹挾下的必然趨勢。科技是核心戰斗力,是軍事發展中最活躍、最具革命性的因素。當前,智能化科技迅猛發展,只有主動擁抱智能化浪潮,將制勝之鑰牢牢掌握在對戰爭復雜體系有序性的精確認知、智能調控與高效耗散之中,才能在未來世界博弈的風雲變幻與戰爭方式的深刻變革中立於不敗之地。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/16408788821.html

Understand Chinese Military Single-Domain & Multi-Domain Joint Operations

了解中國軍事單域和多域聯合作戰

現代英語:

Joint operations are the basic form of combat in modern warfare. They emphasize the strength of more than two services and arms and other participating forces, and jointly implement operations in multi-domain space under unified command. “Single domain” and “multidomain” interdependence and interaction in joint operations are a pair of important military categories. Grasping the relationship between single domain and multi-domain is the core content and key to solving the “internal interface” problem in the construction and application of joint combat forces. The relationship between the two should be viewed dialectically and correctly handled, and the winning mechanism of joint operations should be continuously enriched to promote joint operations. Really achieve cross-domain integration, energy gathering and efficiency improvement.

“Single domain” is the constituent element and development basis of “multi-domain”

Joint operations emphasize the formation of advantageous multi-domains based on advantageous single domains, and place higher demands on the coupling relationship between each single domain that makes up the multi-domain. The development of a single domain can provide a solid foundation for the development of multiple domains and create prerequisites for achieving cross-domain integration.

In terms of historical process, single domain to multi-domain is the process of domain expansion. Throughout human history, the wars of each era have applied the techniques of their own era, imprinted the imprint of their own era, and developed with the time and space of the war. War in the agricultural era, with cold weapons as the main military equipment, battlefield fighting is mainly limited to land and offshore waters. It is a lower-level “full contact” war, and the combat domain is relatively single, making early operations “loose” Joint characteristics.

Entering the industrial era, with the invention and use of steam engines and internal combustion engines, air combat weapons represented by combat aircraft appeared on the battlefield. The combat space broke through the limitations of land and sea areas, forming a three-dimensional battlefield between land, sea and air. The war turned “semi-contact”, making joint operations take on “cooperative” joint characteristics. Entering the information age, the combat space breaks through the three-dimensional geographical space and forms a multi-domain integration of land, sea, air, space, electricity, network, and cognitive fields, making joint operations present multi-domain “integrated” characteristics. With the development of single domain to multi-domain, single-domain control rights such as land control, sea control, air control, heaven control, and information control have continued to appear, and the subsequent importance of single-domain control has continued to increase, promoting the connotation of multi-domain control. Expanding and changing, the competition for comprehensive control has become the first priority in the confrontation between ourselves and the enemy.

In terms of development form, single domain to multi-domain is a process of clustering into a network. Restricted by technical conditions and other constraints, combat activities before the information age, whether in terms of battlefield time, battlefield space, or the deployment and use of combat forces, have clear sections between single domains and clear levels of action at all levels, showing a strong Sequential and progressive, showing a single-domain chain development form.

Entering the information age, under the full “adhesion” of the network system, the multi-domain force formation develops from “combination” to “convergence”, forming an elastic structure with spatial dispersion and deployment, time coordination, and multi-dimensional energy release. According to the battlefield situation and changes in the situation, combat activities use the network information system as a “link” to connect the “links” of the combat single domain into a “network” shape, forming the focus of similar strong points and complementary advantages, and realizing each single domain “shape and spirit gathering” and “gathering fingers into fists”, The transition from single-domain chain to multi-domain network was achieved.

In terms of performance index, single domain to multi-domain is a process of energy aggregation and efficiency. Both opposing sides in the war tried to exert their overall combat power in order to achieve combat victory. However, due to the clear boundaries and loose connections of each single domain in the past, improving the overall combat power can only be achieved through the linearity “superposition” of each combat domain. With the development of information technology and intelligent technology, especially the widespread application of information systems in the military, the network information system realizes the command and control of each single domain force and can seamlessly link each combat domain. Each combat force maximizes The advantages of spatial multidimensionality and power diversity have been realized, and the strength and strength of each single domain and each level have been realized The high degree of integration, multi-dimensional cohesion, overall linkage and integrated energy release in terms of means and actions has achieved the effect of complementary advantages, synergy and cohesion, which is conducive to achieving a comprehensive advantage or local overwhelming advantage over the enemy.

“Multi-domain” is the direction-dominant and powerful dominance of “single-domain”

The essence of the winning mechanism of joint operations lies in cross-domain integration to achieve excellence and efficiency, which requires that single domain and multi-domain must be functionally “unified in the same direction”. “Multi-domain” stipulates the status and role of each single domain in combat. Each single domain must start from the overall functional needs of joint operations, focus on providing the ultimate contribution rate to the combat system, and achieve synchronous cross-domain maneuvering, cross-domain coordination, and cross-domain strike, to achieve system advantages in overall confrontation. Currently, the multi-domain dominates and dominates the single-domain in the direction of forming a resultant force with the system mainly from the following aspects.

Transition of multidomain operational requirements to hybrid war threats. At present, conventional threats are expanding and unconventional threats are becoming new and present threats, with the boundaries between regular and irregular battlefields tending to be blurred, between combatants and non-combatants and between physical and virtual dimensions. Joint operations are still the basic form of operations, but specific combat styles show a trend towards combining multiple styles. Various threats from traditional or non-traditional, formal or informal, high-intensity or low-intensity exist on land, sea, air, space, electricity, network, cognition and other multi-domains. These threats add a new dimension to the concept of war. Therefore, it is necessary not only to do a good job in the fight against a single threat, but also to develop the ability to integrate into multi-domain operations to deal with hybrid warfare.

The focus of multi-domain operations shifts to the network information system. Several informatization local wars that have broken out in recent years have shown that no war, no alliance, no alliance, no victory, the network information system that condenses various single-domain combat elements has become the focus of operations, and the combat command information system that gathers the combat power of the network information system has become the main basis for military operations “nerve center” and has become the key point for opponents to attack. The degree of integration of command and information systems is getting higher and higher, and the command systems of each single domain must converge and move closer to the overall command system, so as to achieve system integration of various services and combat units and deep coupling of various combat elements. In line with this, the information domain, the cognitive domain, and the electromagnetic domain, as emerging fields of warfare, have increased in their core status and importance, and have increasingly become the core operational domains for opposing sides to compete for control, becoming capable of causing enemy “blind, incapacitated, and mentally retarded” key operational domains. Therefore, each single domain must strengthen its ability to organically integrate into the network information system within the framework of a unified standard system and achieve interconnection and interoperability between each single domain, so as to ensure that it provides basic support in multi-domain precision warfare and thus wins overall advantages.

Transformation of multi-domain combat forces into joint combat units. Integrated joint operations have the characteristics of platform operations, system support and tactical operations, and strategic support. Strategic-level planning, campaign-level command, and tactical-level operations will become the norm in future wars. Large-scale corps operations may become increasingly rare and will be replaced by joint battles more often on multi-domain battlefields. The joint combat unit will bring together various single-domain combat forces and cover various combat elements. The level of the joint is reflected in the tactical level, presenting an independent combat capability that includes early warning and reconnaissance, information support, combat command, multi-domain attack and defense, combat support and other elements. Joint tactical unit form. Each “single-domain combat force” has a closer coupling relationship, and its own characteristics and advantages will become more prominent.

Accelerate the expansion of “single-domain advantages” to “multi-domain advantages”

For the dialectical unity of a single domain and a multi-domain, we must not only see the unity of a multi-domain, but also respect the independence of a single domain; we must neither completely oppose the two, nor erase the connection between them. In view of the actual situation of combat opponents, combat environment, own strength, etc., and taking into account various political, economic, technological, cultural and other factors, we should accelerate the expansion of “single-domain advantage” to “multi-domain advantage”, so as to form an information advantage, decision-making advantage and operational advantage against the enemy.

First, we must consolidate and expand the advantages of single domain.“ Metcalfe’s law ” tells us that increasing a network entity is capable of producing nonlinear exponential convergence of the combat power of the system. Multi-domain operations are deeply integrated system operations. As the basic element of multi-domain existence, the strength of each single domain’s construction will definitely affect the effectiveness of multi-domain integration. The essence of forming a multi-domain advantage is to deeply aggregate the advantages of each single domain. It is necessary to continuously strengthen the construction of single domain capabilities to form a single domain advantage and limit the opponent’s strength advantage to the limit. In fact, consolidating and expanding the advantages of single domains is not only to enhance single domain performance, but also to serve the purpose of multi-domain convergence. Single-domain construction requires strengthening top-level design, formulating standards and specifications, and striving to overcome conflicts caused by different combat construction concepts formed by the unique combat styles and combat culture of different services. At the same time, it is necessary to coordinate all military construction resources and focus on the development of multi-domain combat weapon platforms to meet the overall needs of joint operations, rather than just the needs of each single domain itself.

Second, we must promote the achievement of cross-domain synergy. Cross-domain synergy emphasizes breaking the boundaries between services and arms and integrating combat forces across services, arms and institutions. Based on the network information system, the combat forces in each domain are distributed in a wide area, and the multiple domains are linked as a whole to complement each other’s advantages and increase efficiency, and quickly gather energy step by step, promoting the expansion of single-domain advantages into multi-domain integration advantages and system advantages, and forming a concentrated energy strike against important enemy targets. In “joint operations”, combat forces in various fields must not only have the ability to independently perform a variety of combat missions, but also need to use their own cross-domain perception, target recognition and strike capabilities to support or even directly participate in other combat domain operations.

3. “Flexible mobile combat application is required!”. The winning mechanism of joint operations lies in the rapid and continuous integration of multi-domain combat forces to form multiple advantages and immediate advantages in specific time windows, forcing the enemy into passivity, disadvantage and dilemma. For the use of single-domain and multi-domain forces, such as the use of fingers and fists, whether it is “pointing points with hands” or “clenching fingers into fists”, or even the mutual transformation and use in combat, we must adhere to seeking truth from facts and comprehensively consider the efficiency of combat effects. Scientifically make decisions based on factors such as efficiency and contribution to the victory of war, and effectively use troops according to circumstances, location, and situation. If the single-domain combat force can solve the problem well, it is no longer necessary to use multi-domain combat forces, thereby improving operational effectiveness.

現代國語:

聯合作戰是現代戰爭的基本作戰形式,強調兩個以上軍兵種力量及其他參戰力量,在統一指揮下於多域空間共同實施作戰。聯合作戰中的「單域」與「多域」相互依存、相互作用,是一對重要的軍事範疇。掌握單域與多域的關係,是解決聯合作戰力量建設與運用之「內接口」問題的核心內容與關鍵所在,應辯證看待並正確處理二者關係,不斷豐富聯合作戰制勝機理,推動聯合作戰真正實現跨域融合、聚能增效。

「單域」是「多域」的構成要素與發展基礎

聯合作戰強調以優勢單域為基礎構成優勢多域,對組成多域的各單域之間的耦合關係提出了更高要求。單域的發展才能為多域的發展提供堅實的基礎,為實現跨域融合創造前提條件。

從歷史進程來看,單域到多域是領域拓展的過程。縱觀人類歷史,每個時代的戰爭都運用所在時代的技術,印刻著所在時代的烙印,並隨著戰爭時間和空間的發展而發展。農業時代的戰爭,以冷兵器為主要軍事裝備,戰場廝殺主要局限在陸域及近海海域,屬於較低級的「全接觸式」戰爭,作戰域較為單一,使得早期的作戰呈現出「鬆散性」聯合特徵。

進入工業時代,隨著蒸汽機和內燃機的發明與使用,以作戰飛機為代表的空戰武器出現在戰場,作戰空間突破陸域和海域的局限,形成陸海空三維立體戰場,戰爭轉向“半接觸式”,使得聯合作戰呈現出“協同性”聯合特徵。進入資訊時代,作戰空間突破三維地理空間,形成陸、海、空、天、電、網、認知領域等多域一體,使得聯合作戰呈現多域「一體化」聯合特徵。伴隨著單域向多域發展,制陸權、制海權、制空權、製天權、制資訊權等單域制權不斷出現,且後續單域制權的重要性不斷提升,推動著多域制權內涵的拓展變化,對綜合製權的爭奪成為敵我對抗的首要。

從發展形態來看,單域到多域是聚鏈成網的過程。受技術條件等製約,資訊時代之前的作戰活動,不論是在戰場時間、戰場空間,還是在作戰力量布勢運用等方面,各單域間條塊分明,各級行動層次分明,表現出強烈的順序性和漸進性,呈現出單域鏈條式發展形態。

進入資訊時代,在網路系統的充分“粘合”下,多域力量編成由“組合”發展為“融合”,形成空間分散部署、時間協調一致、能量釋放多維一體的彈性結構。根據戰場態勢和情況變化,作戰活動以網路資訊體系為“紐帶”,將作戰單域的“形散神聚”聯結成“網絡”狀,形成同類強點聚焦、優勢互補,實現了各單域“形散神聚”和“聚指成拳”,實現了由單域鏈條式向多域網絡式的轉變。

從效能指數來看,單域到多域是聚能增效的過程。戰爭敵對雙方都力圖發揮整體作戰威力以求得作戰勝利,但由於以往各單域邊界清晰、聯繫較為鬆散,提高整體戰力只能透過各作戰域的線性「疊加」來實現。隨著資訊化技術和智慧化技術的發展,特別是資訊系統在軍事上的廣泛應用,網路資訊體系實現了對各單域力量的指揮調控,並能無縫連結各作戰域,各作戰力量最大限度地發揮空間多維性和力量多元性優勢,實現了各單域各層級在力量、手段和行動等方面的高度融合、多維聚力、整體聯動和集成釋能,達成了優勢互補、協同一致、內聚融合的效果,有利於實現對敵全面優勢或局部壓倒性優勢。

「多域」是「單域」的方向主導與強力支配

聯合作戰制勝機理本質在於跨域融合實現聚優增效,要求單域與多域在功能上必須「同向統一」。多域規定了各單域在作戰中的地位與作用,各單域必須從聯合作戰整體功能需要出發,著眼為作戰體系提供極限貢獻率,實現同步跨域機動、跨域協同、跨域打擊,達成整體對抗中的體系優勢。目前,多域主要從以下方面主導並支配單域朝向與體系形成合力的方向發展。

多域作戰需求轉變為混合戰爭威脅。目前,常規性威脅不斷拓展,非常規威脅成為新的現實威脅,正規戰場與非正規戰場之間的界線趨於模糊,戰鬥人員與非戰鬥人員之間的界線趨於模糊,物理維度與虛擬維度之間的界線趨於模糊。聯合作戰仍是基本作戰形式,但具體的作戰樣式呈現出向多種樣式結合方向發展的趨勢,來自於傳統或非傳統、正規或非正規、高強度或低強度的各種威脅存在於陸、海、空、天、電、網、認知等多域中。這些威脅為戰爭概念增添了新的內涵。因此,既要做好針對某單一威脅的鬥爭,更要發展出具有融入多域作戰應對混合戰爭的能力。

多域作戰重心轉移到網路資訊體系。近年來爆發的幾場資訊化局部戰爭表明,無戰不聯、無聯不勝,凝聚各單域作戰要素的網路資訊體系成為作戰重心,匯聚網路資訊體系戰力的作戰指揮資訊系統,成為軍隊作戰主要依託的“神經中樞”,成為對手打擊的要害。指揮資訊系統的一體化程度越來越高,各單域的指揮系統必然要向整體指揮體系匯聚和靠攏,從而實現各軍種、各作戰單位的系統集成以及各作戰要素的深度耦合。與之相適應,資訊域、認知域、電磁域作為戰爭的新興領域,其核心地位和重要性不斷增強,日益成為敵對雙方爭奪制權的核心作戰域,成為能夠致敵「眼盲、失能、智障」的關鍵作戰域。所以,各單域必須在統一的標準體系框架內,加強自身有機融入網路資訊體系的能力,達成各單域間的互聯互通互通,才能確保在多域精確戰中提供基礎支撐,進而贏得整體優勢。

多域作戰力量轉型為聯合作戰單元。一體化聯合作戰具有平台作戰、體系支撐與戰術行動、戰略保障的特點,戰略級規劃、戰役級指揮、戰術級行動將成為未來戰爭的常態。大規模兵團作戰可能愈發少見,代之的將是聯合戰鬥更多地出現在多域戰場。聯合戰鬥單元將匯集各單域作戰力量,涵蓋各作戰要素,聯合的層級體現在戰術級,呈現出一個包括預警偵察、資訊保障、作戰指揮、多域攻防、作戰保障等多要素的可獨立作戰的聯合戰術單元形態。各單域作戰力量耦合關係更加緊密,自身特色優勢將更加突出。

加速推動「單域優勢」向「多域優勢」拓展

單域與多域辯證統一,我們既要看到多域的統一性,又要尊重單域的獨立性;既不能把二者完全地對立起來,又不可抹殺它們之間的聯繫。應針對作戰對手、作戰環境、自身實力等實際情況,綜合考慮政治、經濟、技術、文化等各種因素,加速推動「單域優勢」向「多域優勢」拓展,形成對敵的資訊優勢、決策優勢與行動優勢。

一要鞏固拓展單域優勢。 「梅特卡夫定律」告訴我們,增加網路實體能夠產生對體系戰鬥力的非線性指數聚能。多域作戰是深度融合的體係作戰,各單域作為多域存在的基礎要素,其建設的強度必將影響多域融合的效能。形成多域優勢實質是深度聚合各單域優勢,必須不斷加強單域能力建構形成單域優勢,限制對手力量優勢極限發揮。事實上,鞏固和拓展單域優勢不僅是為了增強單域效能,更是為了實現多域融合而服務。單域建設要加強頂層設計,制定標準規範,努力克服因不同軍種特有作戰樣式與戰鬥文化形成的不同作戰建設理念而帶來的矛盾衝突。同時,要統籌好各項軍隊建設資源,注重研發多域作戰武器平台,滿足聯合作戰整體需求,而非僅是各單域自身需要。

二要促進實現跨域協同。跨域協同強調打破軍兵種間界限,進行跨軍種、跨兵種、跨建制的作戰力量融合。基於網路資訊體系,各域作戰力量廣域分佈,多域整體連動,優勢互補增效,快速逐級聚能,推動將單域優勢擴展為多域融合優勢和體系優勢,形成對敵重要目標的聚能打擊。在聯合作戰中各域作戰力量不僅要具備獨立遂行多種作戰任務的能力,更需要利用自身的跨域感知、目標識別和打擊能力,能夠支援甚至直接參與其他作戰域行動。

三要靈活機動作戰運用。聯合作戰的致勝機制在於透過多域作戰力量快速且持續地整合,在特定時間窗口形成多重優勢和即時優勢,迫敵陷入被動、劣勢和困境。對於單域和多域力量的運用,猶如指頭與拳頭的使用,究竟是“指針點穴”還是“攥指成拳”,甚至是作戰中相互轉化運用,都需堅持實事求是,綜合考慮作戰效果效率效益,以及對戰爭制勝的貢獻率等因素科學決斷,切實做到因情用兵、因地用兵。如果單域作戰力量能很好解決問題,就不必再使用多域作戰力量,進而提升作戰效益。

王榮輝  鄧仕峰

中國軍網 國防部網 2022年1月20日 星期四

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-01/20/content_307852888.htm

Chinese Military Operational Transition “Cyber Warfare” to “Mosaic Warfare”

中國軍事行動從「網路戰」轉型為「馬賽克戰」

現代英語:

Theory is the precursor of action. Strengthening innovation in combat concepts and promoting innovation in combat guidance have always been important ways for militaries around the world to develop military advantages. In recent years, the U.S. military has successively proposed cutting-edge combat theories such as “cyber warfare”“ and mosaic warfare”, in order to realize that the combat model “production relationship” can be more adapted to the development of combat capabilities “productivity”. Through comparative analysis of these two combat theories, the world can get a glimpse of the changes in the thinking of building the US military’s combat capabilities, especially the understanding of the winning mechanism “mosaic warfare”, so as to find targeted and effective checks and balances.

● From threat response to war design——

Active shaping and improvement of traction combat capability

“Threat-based ”or “capability-based” are two basic ways to build military combat capabilities.“ Threat-based ”reflecting demand traction and focusing on solving real-life problems in the near and medium term are the basic rules that the military should follow in building combat capabilities; “based on capabilities” embodying goal traction, aiming at future strategic missions, and supporting strategic concepts with new combat theories are the key to military combat capabilities. The only way to innovate and surpass. The development from “cyber warfare” to “mosaic warfare” reflects the differences and evolution of the internal laws of the above two approaches, and also reflects the changes in the thinking and concepts of the US military in promoting combat capability construction in recent years.

New changes in concept origin. Cyberspace was originally born to solve human communication needs. Later, it gradually evolved into a new combat domain independent of land, sea, air, and space. From this, a “cyber war” with the struggle for cyberspace control as the core was derived. In comparison, “mosaic warfare” is a new combat concept actively developed and designed by the US military in order to continue to maintain its strategic advantage and directly target competitors. Its formation process reflects the integration of demand traction and capability traction, and its strategy, initiative, and traction Sex is more prominent.

New ideas for the use of technology.“ Cyber warfare ”emphasis on supporting the transformation and implementation of combat concepts through the development of new generation technologies.“ Mosaic Warfare” breaks out of this model and does not place too much emphasis on the development of a new generation of equipment technology. It pays more attention to the rapid transformation of general military and civilian technologies and the incremental iteration of mature technologies. The basic idea is to build on existing equipment and follow the application concepts of service platforms such as online ride-hailing and crowdfunding development. Through module upgrades and intelligent transformation, various combat system units “mosaicization” will be transformed into single-function, flexible Assemble and replaceable “building blocks” or “pixels” to build a dynamically coordinated, highly autonomous, and seamlessly integrated combat system Embodied new technology-driven ideas.

Path Development New Design.“ Cyber warfare ”as a companion concept to the network space, wherever the network space develops, “cyber warfare” will follow suit. Generally speaking, “objective” material conditions will be considered first, and then “subjective” conceptual design will be carried out. It has strong dependence on path development.“ Mosaic warfare ”first from “subjective” to “objective”, by developing a force design model that can dynamically adjust the functional structure, it can adapt to different combat needs and changes in the battlefield environment.

It can be seen that “mosaic warfare” has clearer goals, more mature technology, and more reliable paths than previous combat concepts such as “cyber warfare”, reflecting the change in thinking actively shaped by the US military.

● From network center to decision center——

Group intelligence to achieve optimal system energy release

AI technology is a key variable in the information age and a core increment in the development of the “mosaic warfare” system.“ Cyber warfare ”emphasis on “network center”, “mosaic warfare” closely focuses on the core of artificial intelligence technology, adjusts the key to victory from “network center” to “decision-making center”, and changes the combat system structure from system level and platform level Joint transformation to functional level and factor level integration, seeking to fully gather energy in the network The “group intelligence technology” realizes the optimal release of the system and gives new connotation to the war winning mechanism in the intelligent era.

Use “fast” to control “slow” to seize the cognitive lead. In future wars, the battlefield situation will change rapidly, and the weight of time factors will continue to increase. “Fast” versus “Slow” can form a combat strike effect that is approximately dimensionally reduced.“ Mosaic War ” By using data information technology and artificial intelligence technology, we can improve the single-ring decision-making speed of our own “OODA” ring, expand the breadth of parallel decision-making, reduce the granularity of group decision-making, accelerate the progress of system operations, and create an overall one-step faster “First move” situation, aiming to firmly control the dominance of cognitive decision-making on the battlefield.

With “low” system “high”, we accumulate cost advantages. Different from the traditional combat concept of pursuing high-end weapon platforms, “mosaic warfare” focuses on using artificial intelligence technology to tap the potential and increase efficiency of existing weapon platforms and combat resources. By loading and operating intelligent algorithms and specific functional modules on many mid-to-low-end weapon platforms, it can achieve combat performance comparable to high-end weapon platforms, overall improving the cost-effectiveness ratio of the input and output of the weapon platform, thereby accumulating cost advantages.

To “disperse” control “gather” and seek sustainable survival. “ Mosaic Warfare ” emphasizes the adoption of decentralized ideas and asymmetric checks and balances, using an open system architecture, and decentralized configuration of various functions such as reconnaissance, positioning, communication, and strike on various manned/unmanned platforms to achieve power. Distributed deployment. At the same time, relying on intelligent algorithms to improve the self-organization, self-coordination, and independent attack capabilities of each platform to achieve dispersion and concentration of firepower. When some combat platforms are eliminated, interfered with or stripped away, the entire combat system can still operate normally, thereby enhancing the continued viability of the battlefield of the force cluster.

Use “movement” to control “stillness” to improve system flexibility. “ Mosaic warfare ” emphasizes further breaking through the barriers of various combat areas. By turning the fixed “kill chain” in different combat domains into a dynamically reconfigurable “kill net”, the “OODA” large ring is disassembled into small rings, and the single ring is differentiated into multiple rings. According to changes in combat processes and combat requirements, intelligent networking is relied on to realize the split-in-movement, call-in-movement and combination of combat forces. In this way, on the one hand, it can enhance the flexibility and adaptability of the combat system; on the other hand, it can also hedge and offset the node aggregation effect of complex networks, making it difficult for opponents to find key nodes to defeat their own systems.

“Mosaic warfare” provides a reference prototype for intelligent operations. But at the same time, as an idealized force design and application framework, “mosaic warfare” still needs closely related technical, doctrinal, policy and other supporting support. There is still a long way to go before it is fully realized, and it is consistent with traditional combat systems. The coexistence situation will exist for a long time.

● From factor integration to system restructuring——

Dynamic structure to enhance combat system flexibility

Structure and relationships often determine function and nature.“ Cyber warfare ”and “mosaic warfare” are built on the common material foundation of the information age and follow the same evolutionary paradigm, but the principles and effects of system construction are different.“ The system structure formed by cyber warfare” is statically deconstructable, while “mosaic warfare” dynamically combines functional units according to certain construction rules to form a flexible system structure with self-organizing and adaptive characteristics, similar to a “dynamic black box”, which is difficult to follow with conventional means. predict. And this flexible structure often “emerges” new capabilities to empower and increase effectiveness in the combat system.

The integrated development of network and cloud makes combat time and space more dynamic and malleable. The Internet and the cloud are the basic environment for the operation of the information combat system. They reshape the process elements of intelligence, accusation, strike, and support in traditional operations, and at the same time derive new combat time and space.“ Cyber warfare ”mainly focusing on network space, its combat time and space are relatively static.“ Mosaic warfare ” is not limited to a single combat space. Under the development trend of information infrastructure network following cloud movement and cloud network integration, tangible and intangible spaces can be further deep-linked. The boundaries between combat time and space are more flexible, and the allocation of combat resources is more flexible, the combat system structure is more dynamic.

Data flows across domains, making operational control more seamlessly coordinated. In the “Command and Control” link, “cyber warfare” focuses on the command and control of combat units by joint combat command agencies. Cross-domain exchange and flow of data is mainly concentrated on the theater battlefield.“ Mosaic warfare ”further sinks the level of joint operations to the tactical end. Through the autonomous cross-domain exchange and seamless flow of data at the tactical level, various data islands can be clustered into data clusters on demand, thereby producing a significant “spillover” effect, making the dynamic, discrete, agile, and parallel characteristics of the combat command control loop more obvious, and more conducive to achieving agile connection of each combat unit on demand Efficiently act in concert.

Algorithm full-dimensional penetration makes system operation more autonomous and efficient. Algorithms are the mapping of human consciousness in cyberspace, forming two basic forms: compilation codes transformed by intention and neural networks transformed by knowledge. In “cyber warfare”, compiled code is widely used, and neural networks are only used locally. In “Mosaic Warfare”, the algorithm expands the two key functions of shaping rules and providing engines, and the breadth and depth of application are more prominent. Shaping rules is mainly based on compilation code, supplemented by neural networks, to construct the process framework and operating logic of the “mosaic warfare” system, laying a structural foundation for its uncertainty, adaptability and ability “emergence”; the provision engine mainly integrates intelligent algorithms The model is distributed to the edge elements to operate, forming a knowledge diffusion effect, thereby comprehensively improving the intelligent autonomous combat capabilities of the “mosaic warfare” system.

The side end releases energy independently, making the combat style more flexible and polymorphic. The edge is an abstract model of various manned/unmanned combat functional units and a direct source of systemic capabilities “emergence”.“ Cyber warfare ”in a system where edge elements are closely coupled with superior and subordinate accusation processes and are in a state of precise control.“ In the mosaic warfare” system, the perception, interaction, reasoning, and decision-making capabilities of edge-end elements are greatly improved. Its “OODA” ring does not need to be linked back to the superior command structure, which is conducive to supporting the formation of a decentralized combat cluster with high and low matching and manned/unmanned combination. form, which can give edge-end elements more self-organizing authority and significantly enhance the battlefield confrontation advantage.

It can be seen that if “cyber warfare” is called a sophisticated war machine, “mosaic warfare” can be regarded as a complex “ecology” that can stimulate the dynamic growth of combat capabilities. New changes in network clouds, data, algorithms, and edges have contributed to The formation of a dynamically complex “system structure”. This structure in turn reversely regulates elements, platforms and systems, and new capabilities continue to emerge, playing an important role in enhancing and evolving the combat system.

● From “system breaking to compound confrontation——”

To analyse the advantages and disadvantages and seek effective checks and balances

“Mosaic warfare” represents to a certain extent the possible direction of the future development of joint operations. It is necessary to fully analyze and grasp the winning mechanism of “mosaic warfare”, shape the field of information and communication as a new quality and new domain that breaks the traditional boundaries of war time and space, create a new concept of network cloud-enabled combat, build and strengthen the support and support capabilities of national defense information infrastructure, and highlight military information network security defense capabilities, enhance the minimum support capabilities for the operation of strategic campaign command organizations, and continuously improve the network information system.

On the other hand, the emergence of the “mosaic warfare” theory makes it difficult for traditional combat methods to attack target nodes with limited capture and control to achieve the system-breaking effect of breaking points and breaking chains. But it should be noted that any system has its inherent contradictions, and the seemingly “impeccable” decentralized structure of “mosaic warfare” can still find ways to effectively crack it. For example, grasp its system complexity characteristics, use its correlation dependence, highlight the functional suppression of communication networks, construct network-electrical composite attack paths, and achieve disassembly and isolation of various units of the combat system; grasp its structural dissipation characteristics, and use Its external information dependence highlights the disguise and misleading of information data, prompting the combat system to transform into abnormal states such as information closure and information overload; Grasp its group autonomy characteristics, use its key technology dependence, highlight the confrontation and efficiency reduction of intelligent algorithms, and suppress the intelligent internal drive of each combat unit; grasp its functional non-linear characteristics, use its unknown vulnerabilities, and highlight battlefield differentiation Strike assessment, test and discover operational system imbalances with higher efficiency and faster speed, and find key weaknesses in system attack.

(Author’s unit: Unit 61001)

現代國語:

編者按

理論是行動的先導。加強作戰概念創新、推動作戰指導革新,歷來是世界各國軍隊培塑軍事優勢的重要途徑。近年來,美軍先後提出「賽博戰」「馬賽克戰」等前線作戰理論,以期實現作戰模式這一「生產關系」能夠更加適應作戰能力這一「生產力」的發展。透過對比分析這兩種作戰理論,世人可以一窺美軍作戰能力建設思路的變化,特別是認清「馬賽克戰」的製勝機理,從而有的放矢,找到有效制衡之策。

●從威脅應對到戰爭設計——

主動塑造,牽引作戰能力提升

「基於威脅」或「基於能力」是軍隊作戰能力建設的兩條基本途徑。 「基於威脅」體現需求牽引,聚焦解決近中期現實問題,是軍隊作戰能力建設應遵循的基本規律;「基於能力」體現目標牽引,瞄準未來戰略使命,以新作戰理論支撐戰略構想,是軍隊作戰能力創新超越的必由之路。從「賽博戰」向「馬賽克戰」的發展,體現了上述兩種途徑內在規律的差異與演進,也反映出美軍近年來推進作戰能力建設思維理念的變化。

概念發端新變化。網絡空間,最初為解決人類的通訊需求而生,後來逐漸演變為一個獨立於陸、海、空、天之外的新作戰域,由此衍生出以爭奪網絡空間制權為核心的「賽博戰」。與之相比,「馬賽克戰」是美軍為繼續保持戰略優勢地位,直接瞄準競爭對手而主動開發設計的新作戰概念,其形成過程體現了需求牽引與能力牽引的融合,戰略性、主動性、牽引性更加突顯。

技術運用新思路。 「賽博戰」強調,透過研發新世代技術支撐作戰概念轉化落地。 「馬賽克戰」則跳出這個模式,不過分強調研發新一代裝備技術,更加關注對軍民通用技術的快速轉化,對成熟技術的漸進迭代。其基本想法是立足現有裝備,按照類似網約車、眾籌開發等服務類平台的運用理念,通過模塊升級和智能化改造,將各類作戰系統單元“馬賽克化”為功能單一、靈活拼裝、便於替換的“積木”或“像素”,構建形成動態協調、高度自主、無縫融合的作戰體系,體現了新的技術驅動。

路徑發展新設計。 「賽博戰」作為網電空間的伴生概念,網電空間發展到哪裡,「賽博戰」就跟進到哪裡,總體上先考慮「客觀」的物質條件,再進行「主觀」的概念設計,在路徑發展上具有較強的依附性。 「馬賽克戰」則先由「主觀」再到「客觀」,透過開發可動態調整功能結構的兵力設計模型,使其能夠適應不同作戰需求及戰場環境變化。

由此可見,「馬賽克戰」相比「賽博戰」等過去作戰概念,其目標更加明確、技術更加成熟、路徑更加可靠,體現出美軍主動塑造的思路轉變。

●從網絡中心到決策中心—

群體智能,實現體系最優釋能

人工智慧技術是資訊時代的關鍵變量,也是「馬賽克戰」體系發展的核心增量。 《賽博戰》強調“網絡中心”,“馬賽克戰”則緊緊扭住人工智能技術這一核心,將製勝關鍵從“網絡中心”調整為“決策中心”,將作戰體系架構由系統級、平台級聯合轉變為功能級、要素級融合,謀求在網絡充分聚能的前提下,以群體性智能技術實現體系最優釋能,為勝理的戰爭賦予新涵機時代。

以“快”制“慢”,奪取認知先手。未來戰爭,戰場形勢瞬息萬變,時間要素的權重不斷上升,「快」對「慢」可以形成近似降維的作戰打擊效果。 「馬賽克戰」透過運用數據資訊技術與人工智慧技術,提升己方「OODA」環的單環決策速度,拓展並行決策廣度,降低組環決策粒度,加快體係作戰進度,在整體上塑造始終快人一步的「先手棋」態勢,旨在牢牢控制戰場認知決策的主導權。

以“低”制“高”,積累成本優勢。與追求高端武器平台的傳統作戰概念不同,「馬賽克戰」著重於利用人工智慧技術對現有武器平台及作戰資源的挖潛增效。透過在眾多中低階武器平台上加載運行智慧演算法和特定功能模塊,使其達到媲美高端武器平台的作戰性能,整體上提高了武器平台投入產出的效費比,進而積累形成成本優勢。

以“散”制“聚”,謀求持續生存。 「馬賽克戰」強調採用化整為零的去中心化思路和非對稱制衡理念,使用開放系統架構,在各類有人/無人平台上分散配置偵察、定位、通信、打擊等各類功能,實現力量的分佈式部署。同時,依托智能演算法提升各平台的自組織、自協同、自主攻擊能力,實現形散神聚、火力集中。當部分作戰平台被消滅、幹擾或剝離後,整個作戰體系仍能正常運轉,從而增強兵力集群的戰場持續生存能力。

以“動”制“靜”,提升體系彈性。 「馬賽克戰」強調進一步突破各作戰域壁壘。通過把不同作戰域中固定的“殺傷鏈”變成可動態重構的“殺傷網”,將“OODA”大環拆解為小環,單環分化為多環。根據作戰進程和作戰需求的變化,依托智能組網實現作戰力量的動中拆分、動中調用、動中組合。如此,一方面可增強作戰體系的靈活性、適應性;另一方面還可對沖抵消複雜網絡的節點聚集效應,使對手難以找到破擊己方體系的關鍵節點。

「馬賽克戰」為智慧化作戰提供了一種可藉鑑的參考原型。但同時,作為一種理想化的兵力設計和運用框架,「馬賽克戰」還需要與之緊密相關的技術、條令、政策等配套支持,距離完全實現還有很長的路要走,與傳統作戰體系共存的局面將長期存在。

●從要素整合到體系重組—

動態結構,增強作戰體係彈性

結構和關系往往決定功能和性質。 「賽博戰」與「馬賽克戰」建構於資訊時代共同的物質基礎,遵循相同的演進範式,但體系建構的原理和效果有所不同。 「賽博戰」形成的體系結構靜態可解構,而「馬賽克戰」則按照一定構建規則動態組合功能單元,形成具有自組織、自適應特徵的彈性體系結構,類似一種“動態黑箱”,常規手段難以跟踪預測。而這一彈性結構常會「湧現」出新的能力,為作戰體系賦能增效。

網雲融合發展,使作戰時空更動態可塑。網和雲是資訊化作戰體系運作的基礎環境,重塑了傳統作戰中情報、指控、打擊、保障的流程要素,同時衍生出新的作戰時空。 「賽博戰」主要聚焦網電空間,其作戰時空相對靜態。 「馬賽克戰」則不限於單一作戰空間,在資訊基礎設施網隨雲動、雲網一體的發展趨勢下,可進一步深度鉸鏈有形無形空間,作戰時空邊界更有彈性,作戰資源配置更加靈活,作戰體系結構更具動態。

數據跨域流轉,使作戰控制更加無縫協同。在指揮控制環節,「賽博戰」關注的重點是聯合作戰指揮機構對作戰單元的指揮控制,數據跨域交換流轉主要集中在戰區戰場。 「馬賽克戰」則進一步將聯合作戰的層級下沉至戰術末端,通過數據在戰術層面的自主跨域交換和無縫流轉,實現各類數據孤島按需集聚為數據集群,進而產生顯著的「溢出」效應,讓作戰指揮控制環路動態、離散、敏捷、並行的特徵更為明顯,更加有利於實現各作戰單元按需銜接、高效協同行動。

演算法全維滲透,使體系運作更加自主高效。演算法是人的意識在網絡空間的映射,形成了由意圖轉化的編譯代碼和由知識轉化的神經網絡兩種基本形態。在「賽博戰」中,編譯代碼大量應用,神經網絡只在局部應用。在「馬賽克戰」中,演算法擴展出塑造規則、提供引擎兩項關鍵職能,運用的廣度深度更加突出。塑造規則以編譯代碼為主,輔以神經網絡,構造「馬賽克戰」體系的流程框架和運行邏輯,為其不確定性、適應性和能力「湧現」性奠定結構基礎;提供引擎則主要將智能演算法模型分發至邊端要素運行,形成知識擴散效應,從而全面提升「馬賽克戰」體系的智能自主作戰能力。

邊端自主釋能,使作戰樣式更靈活多態。邊端是各類有人/無人作戰功能單元的抽像模型,也是體系能力「湧現」的直接來源。 「賽博戰」體系中,邊端要素與上下級指控流程緊密耦合,處於精確受控狀態。 「馬賽克戰」體系中,邊端要素的感知、交互、推理、決策能力大大提升,其「OODA」環不必回鏈至上級指揮機構,有利於支撐形成高低搭配、有人/無人結合的去中心化作戰集群形態,可以賦予邊端要素更多自組織權限,明顯增強了戰場對抗優勢。

可見,如果稱“賽博戰”為精密的戰爭機器,“馬賽克戰”則可以視為一種能夠激發作戰能力動態生長的復雜“生態”,網雲、數據、算法、邊端所產生的新變化,促進形成了動態復雜的“體系結構”。這一結構又反向調控要素、平台和系統,不斷湧現新的能力,為作戰體系增能、演變發揮重要作用。

●從體系破擊到復合對抗——

辨析優劣,尋求有效制衡之策

「馬賽克戰」某種程度上代表著未來聯合作戰形態發展的可能方向。應當充分研析把握「馬賽克戰」的製勝機理,將資訊通信領域作為打破傳統戰爭時空界限的新質新域加以塑造,打造網雲賦能作戰新概念,建強國防資訊基礎設施支撐保障能力,突顯軍事資訊網安全防禦能力,增強戰略戰役指揮機構運行的保底支撐能力,不斷完善網絡資訊體系。

另一方面,「馬賽克戰」理論的出現,使得打擊奪控有限目標節點的傳統作戰手段,難以達成毀點斷鏈的體系破擊效果。但應當看到,任何體係都有其固有矛盾,「馬賽克戰」看似「無懈可擊」的去中心化結構,仍可以找到有效破解的方法路徑。例如,掌握其體系複雜性特徵,利用其關聯關係依賴性,突出針對通信網絡的功能抑制,構建網電復合攻擊路徑,實現對作戰體系各單元的拆解孤立;把握其結構耗散性特徵,利用其外部信息依賴性,突出針對信息數據的偽裝誤導,促使作戰體係向信息封閉、信息過載等非正常狀態轉化;掌握其群體自主性特徵,利用其關鍵技術依賴性,突出針對智能算法的對抗降效,抑制各作戰單元的智能內驅力;把握其功能非線性特徵,利用其未知脆弱性,突出戰場差異化打擊評估,以更高的效率和更快的速度失衡、發現作戰體系擊點,尋找體系破擊的關鍵弱點。

(作者單位:61001部隊

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4894734888.html?big=fan

Military Intelligence Drives Accelerated Development of Chinese Army Cyberspace Operations

軍事情報推動中國軍隊網路空間作戰加速發展

現代英語:

The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.

Military intelligence leads to accelerated development of cyberspace operations

■Respect the soldiers Zhou Dewang and Huang Anwei

Three major technologies support the intelligence of cyberspace weapons

Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.

Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.

Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.

The intelligent trend of network-controlled weapons has become increasingly prominent

Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.

In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.

Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.

Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.

Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.

Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.

Intelligent command information system changes traditional combat command methods

Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.

In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.

To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.

In the future battlefield, fighting courage requires more fighting “wisdom”

■Yang Jian and Zhao Lu

At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.

Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.

It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.

In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.

現代國語:

資料來源:中國軍網綜合作者:敬兵 周德旺 皇安偉 等責任編輯:胡雪珂

黨的十九大報告指出,要「加速軍事智慧化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。今天的《解放軍報》刊發文章指出,軍事智能化是機械化、資訊化之後軍事領域發展的新趨勢和新方向,我們要在現有機械化和資訊化基礎上發展智能化,同時用智能化牽引機械化和信息化向更高水平、更高層次發展。網路空間作為新型作戰領域,是科技含量高、最具創新活力的新領域,在軍事智慧化的牽引下,正迎來快速發展的機會期。

軍事智慧化牽引網路空間作戰加速發展

■敬兵 週德旺 皇安偉

三大技術支撐網路空間武器智慧化

智能是一種智慧和能力,是一切有生命週期的系統對規律的感應、認知與運用,智能化就是把這種智慧和能力固化下來,成為一種狀態。網路空間武器是網路空間遂行作戰任務的武器,其形態以軟體和程式碼為主,本質上是一段資料。網路空間武器的智慧化主要體現在以下三個方面:

一是智慧化漏洞挖掘。漏洞是網路武器設計的基礎,今年5月在全球傳播的勒索病毒軟體,就是利用了微軟作業系統漏洞,為網路安全界帶來了巨大震動。漏洞價格昂貴,零日漏洞價值幾萬到幾十萬美元不等。過去漏洞的發現,主要依靠有經驗的駭客,利用軟體工具對程式碼進行檢查和分析。今年中國網路安全大會期間舉辦的國際網路安全技術對抗聯賽總決賽中,參賽人員示範由智慧機器人現場進行漏洞挖掘,然後透過漏洞編寫網路程式碼,形成網路武器,攻破目標系統,奪取旗幟。這項變化,意味著漏洞挖掘進入了智慧化時代。

二是智能化訊號分析和密碼破譯。訊號是網路資料傳輸的載體,密碼是網路資料安全的最後屏障,訊號分析和密碼破解是網路空間作戰的核心技術,突破訊號和密碼是進入網路空間的基本路徑,也是網路武器攻擊的首要目標。智慧化訊號分析將訊號的協定分析、調變辨識、個體辨識等問題,透過大數據、雲端運算、深度學習等技術來解決。密碼破解是計算科學“皇冠上的明珠”,智能化密碼破譯通過對密碼數據樣本的積累,不斷學習、尋找規律,能找到破譯的鑰匙,從而打開網絡數據“保險櫃”的最後一扇門,解決網絡入侵和接入的關鍵環節。

三是智慧化武器平台設計。美軍在2009年提出「網路飛行器」項目,為網路空間作戰提供像戰車、艦艇、飛機這樣的平台,可以實現在網路空間裡自動偵察、載入網路武器、自主協同、自主攻擊,受到威脅時自我銷毀、清除痕跡,具備了一定的智慧化特徵。未來「網路飛行器」載入的武器,不是軟體人員編好的程式碼,而是根據偵察結果直接對發現的漏洞,現場即時進行智慧化網路武器設計,實現「訂購式」開發,從而大大提高網路空間作戰的針對性。

網控武器的智慧化趨勢愈加凸顯

受網路空間控制的武器簡稱網路武器,是透過網路連接,接受網路空間指令,執行跨域任務,在實體空間達成作戰效果的武器。未來的各種作戰武器平台,大多是聯網的武器平台,這樣軍事資訊網本質上就是物聯網,上聯衛星、雷達、無人機等網路實體,從感知到發現、追蹤、定位、打擊都可透過網路空間控制,網控武器的智慧化已在陸海空天電等戰場蓬勃發展。

2015年,敘利亞利用俄羅斯機器人軍團擊潰武裝分子,行動採用了包括6個履帶式機器人、4個輪式機器人、1個自動化火砲群、數架無人機和1套指揮系統。指揮官透過指揮系統調度無人機偵察發現武裝分子,機器人向武裝分子發動衝鋒,同時伴隨火砲和無人機攻擊力量支援,對武裝分子進行了致命打擊。這只是一場小規模的戰鬥,卻開啟了機器人「組團」作戰的先河。

海空戰場網控智慧武器正在大量研發驗證。 2014年,美國海軍使用13艘無人水面艇,示範驗證無人艇集群攔截敵方艦艇,主要透過交換感測器數據,取得了不錯的效果。 2016年再次試驗時,新增了協同任務分配、戰術配合等功能,「蜂群意識」成為其智慧化的顯著特徵。

用於空中作戰的小微型無人機蜂群也正在快速發展。近年來,美國國防部多次試驗「山銻」微型無人機,可一次投放數十架乃至上百架,透過提升其執行偵察任務時的協同能力,在無人機編隊、指揮、控制、智慧化管理等方面都取得了進展。

空天網控武器越來越「聰明」。空天領域主要包含偵察和打擊兩類網控武器,各種功能的衛星主要執行偵察任務,是典型的偵察感測器。隨著各種小微衛星群的出現,使衛星表現出新的特徵:體積小、發射快、數量多、更聰明。小微衛星群在執行偵察和通訊任務時,有了更大的彈性和可靠性,目前世界衛星強國都在積極制定覆蓋範圍更廣的小微衛星群計畫。

各種高超音速打擊武器在空天巡航,彷彿懸在人們頭頂的利劍。美國空軍研究室稱「高速打擊武器」將在2018年前後啟動飛行試驗,其它各國也正積極研發類似武器。這類武器最大的特色是速度快、航程遠、智能化程度高。

智慧化指揮資訊系統改變傳統作戰指揮方式

網路空間武器和受網路空間控制的武器,是智慧化戰爭的“拳頭”,而指揮這些武器運用的指揮資訊系統是智慧化戰爭的“大腦”,網路空間作戰指揮資訊系統要同步跟上智慧化的進程。目前,幾乎全球的指揮資訊系統都面臨著「智慧滯後」的難題,未來戰爭需要快速決策、自主決策,這對智慧輔助系統提出了更高要求。

2007年,美國國防部高級研究計劃局啟動關於指揮控制系統的研發計劃——“深綠色計劃”,以期能實現計算機輔助指揮官快速決策贏得制勝先機。這是一個戰役戰術級的指揮資訊系統,其研發目的是將該系統嵌入美國陸軍旅級C4ISR戰時指揮資訊系統中去,實現指揮官的智慧化指揮。直到今天,美軍也沒有放鬆對智慧化指揮資訊系統的發展。

在網路空間作戰中,網路目標表現為一個接取網路的IP位址,數量眾多導致人工難以有效率操作,作戰更需要智慧化指揮資訊系統的輔助支撐。目前,智慧化指揮資訊系統需要實現智慧情報分析、智慧感知、智慧導航定位、智慧輔助決策、智慧協同、智慧評估、智慧化無人作戰等功能,尤其是實現對無人網控系統的集群作戰操控,這都對智慧化指揮資訊系統提出了迫切需求,需要加快相應關鍵技術的研發和運用。

綜上所述,智慧化的網路武器和網路控制武器,透過智慧化的資訊系統調度,將形成巨大的作戰能力,基本能遂行現行作戰樣式中的所有行動。未來戰爭,從指揮力量編組、到目標選擇、行動方式、戰法運用等,都將在智能化的背景下展開,戰爭「遊戲化」的特徵將更顯著,作戰指揮方式也將發生重大變化。

未來戰場 鬥勇更需鬥“智”

■楊建 趙璐

目前,人工智慧發展進入嶄新階段,並開始向各個領域加速滲透。受此一進程的影響,各國圍繞智慧化的軍事競爭已揭開序幕。我軍歷來是一支英勇頑強、敢打必勝的人民軍隊,未來戰場上應繼續發揚光榮傳統,同時要更加廣泛地掌握和利用最新的科技成果,研製出更多智能化的武器裝備,在未來戰場上掌握制勝先機。

智慧化是人類社會發展的趨勢,智慧化戰爭正加速到來。正是由於超越原有體系結構計算模型的成功創新、奈米製造技術的逐步普及,以及對人腦機制研究的突破性進展,軍事智慧化發展才擁有了堅實的基礎。因此,智慧化武器裝備的表現日益突出,並在情報分析、戰鬥反應等方面開始超越並取代人類。此外,在人力需求、綜合保障、運作成本等方面,智慧化武器裝備也具有明顯的優勢,日益成為戰爭的主導力量。

事實證明,智慧化武器裝備的發展應用,拓展了軍事行動的能力範圍,大幅提升了部隊的作戰效能。在阿富汗和伊拉克戰場上,無人機已承擔了大部分偵察、情報、監視等作戰保障任務,並承擔了約三分之一的空中打擊任務。近兩年,俄羅斯在敘利亞戰場上也曾多次使用較高智慧化程度的無人偵察機、戰鬥機器人等裝備。智慧化武器裝備正愈來愈地展現出超越傳統武器的重要價值。

未來戰爭中,作戰體系智能化的較量將是高手過招、巔峰對決的勝利關鍵。隨著以科技為支撐的軍事手段發展的不平衡性越來越大,誰先具備實施智能化作戰的能力,誰就更能掌握戰場的主動權,擁有技術代差優勢的強者會盡可能將戰爭成本降到最低,而弱者必然遭受巨大損失,付出慘重代價。我們不僅要加緊核心技術創新、武器裝備研製,還要研究探索適應軍事智能化發展的組織結構、指揮方式和運用模式,更要培養一支能夠擔起推進軍事智能化發展、鍛造智能化作戰能力的人才隊伍,充分發揮我軍作戰體系的整體效能,在與對手的較量中,以更加“智慧”的方式贏得戰爭。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841895888.htm

Chinese Military Deciphering Cognitive Warfare Codes Capability Based on Operational Decision Chains

中國軍隊基於作戰決策鏈破解認知戰密碼的能力

現代英語:

Cognition is the basis for operational decisions and operations. Cognitive warfare is a confrontation activity carried out in the cognitive domain. The purpose is to attack the enemy’s knowledge system, social consciousness, people’s morale, etc., disrupt its judgment and decision-making, and cause it to lose its decision-making advantage and action advantage. To deepen the research on cognitive warfare and decipher the cognitive warfare code, the key is to embed the combat decision-making chain and explore how to influence and interfere with the cognitive activities of the enemy’s decision-making chain, causing the enemy to form false observations, wrong judgments and poor decisions, so as to fully control Cognitive initiative.

Seeing is false, changing the facts

Observation is the starting point of cognition. No matter what kind of war, when facing any opponent, the first step is observation. The observation here is a broad concept and is about all activities to obtain all relevant information about the hostile party. Just as people perceive external things through sensory organs, observation relies on the battlefield perception system to obtain relevant data and information from the battlefield environment according to the needs of the subject, providing “ source material ” for judgment and decision-making. Observation uses intelligence, reconnaissance, surveillance and other activities to obtain as much factual information and materials from all aspects of the enemy as possible and convert them into text, images, audio, video and sensor signals.

The history of war at home and abroad in ancient and modern times shows that the essence of command is the endless pursuit of certainty, including the status and intentions of enemy troops, various factors affecting the combat environment such as weather and terrain, as well as the status and actions of one’s own troops. Therefore, efficient command consists in clarifying each element and then coordinating it as a whole to achieve the best combat effect. Human judgment and decision-making are easily disturbed by information uncertainty. In the observation stage, the key to cognitive warfare is to make the enemy unable to clearly observe, incompletely observe, and distort the information of their own combat elements, and lack real information or accurate understanding, thereby weakening the enemy’s decision-making on combat at the source. The pursuit of certainty.

Measures for observing cognitive warfare, in addition to common information warfare methods, such as disguise, interference, deception, silence, etc., should also pay attention to the following aspects: First, create complex situations. War is inherently full of complexity. By creating complexity, it increases the fog and resistance on the battlefield, making it impossible for the enemy to observe the real specific situation. For example, by creating various events and operations in multi-dimensional combat areas such as land, sea, air, sky, and network, and making irregular changes, it can effectively increase the difficulty of enemy observation. The second is to interfere with observation and cognition. Observation is not aimless. It is carried out based on a certain cognition. Cognition determines what information needs to be observed, what kind of reconnaissance activities need to be carried out, etc. For example, during observation activities, by interfering with operations, the enemy’s attention in observation activities is affected, causing it to lose the ability to focus on essential issues and key issues, thereby making it unable to obtain key information. The third is to shape the factual narrative. Shaping factual narratives is to reformulate, combine, arrange, and reconstruct facts according to the needs of cognitive warfare. These facts are either created out of nothing, highlight certain details in the facts, or are difficult to verify and test, making their observation materials Mixed with fictional facts, the observed facts are far from objective facts. The fourth is to protect specific knowledge. Knowledge protection is an important aspect of cognitive warfare. The main contents include: commander’s decision-making style, combat theory reasoning process, premises and assumptions, key tactical ideas and combat principles, key decision-making procedures, mechanisms and methods, information analysis methods, especially some algorithms, passwords, etc.

Targeting the judgment, misleading the judgment

On the battlefield, simple observation and data collection do not make much sense. Only by analyzing these data “ by looking at the essence of the phenomenon, and then drawing various judgments, will we promote the formation of operational decisions. For example, during the Battle of Moscow in World War II, the Soviet Union had a lot of and messy information about the Japanese Kwantung Army. Finally, after careful analysis, it was concluded that “ the Soviet Union could be considered safe in the Far East, and the threat from Japan had been ruled out ” After the judgment, it was decided to transfer troops from the Far East to Moscow to participate in the Battle of Moscow. Judgment is the corresponding conclusion reached by analyzing and reasoning the observation results, which mainly includes: first, factual judgment, usually expressed in descriptive language, such as the current situation, enemy battlefield deployment, battlefield posture, etc.; second, value and relationship judgment, usually Expressed in evaluative language, such as threat assessment, correlation analysis, trend prediction, etc.

Judgment cognitive warfare is actually a game surrounding judgment. Normally, judgments arise on the basis of a judgment, without which there would be no conclusion of judgment. Whether a person has high blood pressure or diabetes is often based on some medical indicators, and these indicators are the criteria. The premises and assumptions of reasoning are actually based on judgments. “ Persian cat story ” circulated in World War I. Judging from the location of the command post from a Persian cat, it contains a series of judgments: there is no village around, and it cannot be a cat raised by ordinary civilians; the sound of artillery on the battlefield is rumbling, and it cannot be It is a wild cat that is cautious and avoids people; Persian cats are a valuable breed, and the position of cat owners is not low; cats appear at fixed times every day, and the command post should be near cats. Therefore, interfering with judgment is to target the judgment to design and produce information products so that the facts obtained do not match the judgment, or to minimize the leakage of information related to the judgment, so that the enemy cannot judge or make wrong judgments.

The main contents of the interference criterion are: First, the interference is based on experience. Based on enemy experience, create “ virtual facts ” to make errors in judgment. For example, in the Battle of Maling, Sun Bin halved the stove to lure Pang Juan, which is a typical example. Because according to experience, the number of stoves is directly proportional to the number of troops. Halving the number of stoves every day means that the number of people is decreasing. The possibility of reduction is that the soldiers have suffered greater casualties, which leads to the judgment of weakening combat power. The second is to interfere with the judgment based on the knowledge system. Such knowledge includes the enemy’s common sense, concepts, principles and some assumptions. For example, in the Fourth Middle East War that broke out in October 1973, Israel’s initial defeat was a misjudgment of the war situation. It believed that as long as its air force was still in an advantageous position, the other side would never dare to attack. However, Egypt began to adopt new military technology and used mobile surface-to-air missiles to support an air defense network, partially offsetting Israel’s air superiority. The third is to interfere with judgments based on universal culture. That is, design corresponding information and actions based on the enemy’s cultural characteristics so that they can be misjudged due to cultural differences. According to foreign information, during the Cold War, the United States studied the root causes of “ Soviet behavior, so it started from culture and behavior to induce the Soviet Union to make strategic misjudgments. The fourth is to interfere with methodological-based judgments. Generalizations, analogies, etc. are the basic methods of judgment. Cognitive interference based on methodology makes it difficult for the other party to understand facts and cannot be compared with known facts; complicating the causal relationship and confusing factual cause and effect, psychological cause and effect, conditional cause and effect, social cause and effect, etc., making it impossible to implement causal judgment; reducing possible signs and phenomena, making it impossible to see through the essence and make accurate judgments.

Focus on the process and influence decision-making

Operational decision-making is based on combat purposes and intentions. After observation and judgment, various factors are combined to derive the optimal solution to the problem. War or conflict behavior has game, competition and confrontation attributes, so decision-making is a game. Decisions address key issues such as whether to do it, how to do it, what purpose to achieve, or the state of termination. In information-based local wars, action-centeredness gradually replaces planning-centeredness, requiring an increase from data center warfare, information center warfare, and knowledge center warfare to decision-making center warfare. Combat decision-making has become one of the main areas of competition between the enemy and ourselves.

Decision-making cognitive warfare is to target enemy cognition and interfere with the decision-making process to affect the quality and efficiency of decision-making. Decision-making is affected by the knowledge structure of the decision-maker himself. If cognition is paranoid or the knowledge reserve is outdated, even if the judgment is correct, good decisions will still not be made. The decision-making process includes the application and change process of knowledge structure, which mainly involves procedural knowledge and conceptual principled knowledge. The former includes decision-making procedures and methods, decision-making mechanisms and evaluation methods, etc., while the latter includes understanding of battlefield posture, winning mechanism, combat concepts, combat rules, and weapons and equipment performance. Therefore, cognitive attacks on the decision-making process will greatly affect its decision-making speed and quality.

The main ways to influence cognitive warfare in decision-making are: First, squeezing the cognitive decision-making space. When watching tennis matches, commentary on non-forced errors and forced mistakes are often heard, with forced mistakes being those caused by putting pressure on the opponent. Interfering with the cognitive decision-making environment is to put pressure on the enemy’s cognitive decisions, thereby squeezing the cognitive space and weakening cognition to force the enemy to make mistakes in decision-making. For example, through virtual and real decision-making activities and actions, the opponent is trapped in decision-making difficulties, which increases the probability of low-level decision-making. The second is to attack rational cognition. Including: First, interfering with the understanding of threats and opportunities. Many examples of failures in military history are caused by misjudgment of threats and opportunities on the battlefield. Whether you despise the enemy or overestimate the enemy, you will form decision-making expectations that are different from objective reality, leading to adverse action results. Second, attack combat theory and doctrine. For example, by proposing the theory of mutual restraint, deliberately exaggerating the loopholes in the enemy’s doctrine, and amplifying the adverse effects of the enemy’s combat operations, the enemy can arouse doubts about its own theory and doctrine. Third, for procedural knowledge. Including decision-making mechanisms, procedures and methods, plan evaluation and combat evaluation methods, auxiliary decision-making systems, algorithms, thinking, etc. Attacking the weaknesses present will also cause decision-making errors. The third is to interfere with irrational factors. The use of irrational factors often creates decision-making traps, such as groupthink traps, conceit traps, etc., which have a significant impact on decision-making. The strategic deception successfully implemented by the Allied forces many times during World War II was to use the enemy’s ambiguous and misleading analysis to increase the probability that the wrong decision would win.

現代國語:

來源:中國軍網-解放軍報 作者:吳中和 朱小寧 責任編輯:王韻
2022-09-13 06:48:xx
吳中和 朱小寧

引言

認知是作戰決策與行動的基礎。認知戰是在認知域進行的對抗活動,目的是攻擊敵知識體系、社會意識、民心士氣等,打亂其判斷與決策,使其失去決策優勢與行動優勢。深化認知戰研究,破譯認知戰密碼,關鍵是嵌入作戰決策鏈,探究如何影響和乾擾敵決策鏈的認知活動,致敵形成不真實的觀察、錯誤的判斷和糟糕的決策,從而充分掌控認知主動權。

眼見為虛,改變事實

觀察是認知的起點。無論何種戰爭,面對任何對手,首先要做的第一步就是為觀察。這裡的觀察是一個廣義概念,是關於獲得敵對方所有相關資訊的一切活動。正如人類透過感覺器官感知外界事物一樣,觀察依托戰場感知系統,根據主體需要從戰場環境中獲得相關數據與訊息,為判斷和決策提供「原始材料」。觀察通過情報、偵察、監視等活動,盡可能多地獲取敵對方各方面的事實信息與材料,並將其轉化為文本、圖像、音頻、視頻和傳感器信號等。

古今中外的戰爭史表明,指揮的本質是對確定性的無盡追求,包括敵軍部隊狀態和意圖,天候、地形等影響作戰環境的種種因素,以及己方部隊的狀態和行動。因而,高效率的指揮在於廓清每個要素,然後將其整體協調起來行動,以達成最佳作戰效果。而人的判斷決策,很容易受資訊的不確定性幹擾。在觀察階段,認知戰的關鍵就在於,使敵人對己方各種作戰要素觀察不清、觀察不全、觀察的信息失真混亂,缺乏真實信息或準確理解,從而從源頭上削弱敵方對作戰決策確定性的追求。

觀察認知戰的措施,除了通常的資訊戰方法,如偽裝、幹擾、欺騙、靜默等,還應注意以下方面:一是製造復雜局面。戰爭本來就充滿複雜性,通過製造複雜性,增加戰場的迷霧和阻力,使敵人無法觀察到真實具體情況。如,透過在陸、海、空、天、網絡等多維作戰域製造各種事件與行動,並作無規則變動,可有效增加敵方觀察的難度。二是乾擾觀察認知。觀察不是毫無目的的,是基於某種認知進行的,認知決定需要觀察哪些資訊、採取何種偵察活動等。如,在觀察活動中,透過幹擾行動,影響敵方觀察活動的注意力,使其失去聚焦本質問題、關鍵問題的觀察能力,進而使其始終無法獲得關鍵資訊。三是塑造事實敘事。塑造事實敘事,就是根據認知戰需要,重新表述、組合、編排、再建構事實,這些事實要麼是無中生有,要麼是突出事實中的某些細節、要麼是難以查實和檢驗等,使其觀察材料中混雜於虛構事實,觀察的事實與客觀事實相距甚遠。四是保護特定知識。知識保護是認知戰的重要面向。主要內容有:指揮員決策風格,作戰理論推理過程、前提與假設,關鍵戰術思想與作戰原則,關鍵決策程序、機制與方法,資訊分析方法特別是一些演算法、密碼等。

瞄準判據,誤導判斷

戰場上,簡單的觀察和資料收集並沒有太多意義,只有對這些數據進行「透過現像看本質」地分析,進而得出各種判斷,才會推動形成作戰決策。如第二次世界大戰莫斯科保衛戰中,蘇聯有關日本關東軍的資訊多而雜亂,最後經過縝密分析,得出「蘇聯在遠東地區可以認為是安全的,來自日本方面的威脅已排除」的判斷後,才決定將遠東方面的部隊調往莫斯科,參加莫斯科保衛戰。判斷是對觀察結果進行分析推理而得出的相應結論,主要包括:一是事實判斷,通常用描述性語言表達,如當前形勢、敵方的戰場部署、戰場態勢等;二是價值和關系判斷,通常用評價性語言表達,如威脅評估、關聯分析、趨勢預測等。

判斷認知戰,實際上是圍繞判據展開的一種博弈。通常情況下,判斷是基於判據產生的,沒有判據,就不會有判斷結論。一個人是否患有高血壓、糖尿病,往往基於一些醫學指標,這些指標就是判據。推理的前提與假設,實際上也是基於判據。一戰中流傳的“波斯貓的故事”,從一隻波斯貓判斷出指揮所位置,就包含著一系列判據:周圍沒有村莊,不可能是普通平民養的貓;戰場上炮聲隆隆,不可能是謹慎避人的野貓;波斯貓是名貴品種,養貓的人職位不低;貓每天固定時間出現,指揮家應該就在貓出沒在貓出沒。因此,幹擾判斷就是瞄準判據進行資訊產品設計與生產,使其獲得的事實與判據不匹配,或盡量減少自己與判據相關資訊的洩漏,從而使敵方無法判斷或做出錯誤的判斷。

幹擾判據的主要內容有:一是乾擾以經驗為基礎的判據。根據敵方經驗,製造“虛擬事實”,使其判斷失誤。如馬陵之戰中孫臏日減半灶以誘龐涓,就是典型的例子。因為根據經驗,灶與軍隊人數成正比,日減半灶說明人數在減少,減少的可能性是士兵傷亡較大,從而得出戰力減弱的判斷。二是乾擾以知識體係為基礎的判據。此類知識,包括敵方的常識、概念、原則及一些假設等。如1973年10月爆發的第四次中東戰爭,以色列最初的失利在於對戰局的誤判,認為只要自己的空軍仍處於優勢地位,對方就絕對不敢進攻。但是,埃及開始採用新的軍事技術,運用移動式地空飛彈撐起一張空中防禦網,部分抵銷了以色列的空中優勢。三是乾擾以普遍文化為基礎的判據。即根據敵方文化特徵,設計相應資訊與行動,使其因文化差異而產生誤判。據國外資料介紹,冷戰時期美國曾研究了“蘇聯行為的根源”,因此從文化與行為上入手做文章,誘使蘇聯產生戰略誤判。四是乾擾以方法論為基礎的判據。概括、類比等是判斷的基本方法。針對方法論的認知幹擾,就是使對方難以了解事實,無法與已知事實類比;將因果關系復雜化,把事實因果、心理因果、條件因果、社會因果等混淆起來,無法實施因果判斷;減少可能的徵兆和現象,使其無法看透本質,無從進行準確判斷。

著眼過程,影響決策

作戰決策,是針對作戰目的和企圖,經過觀察和判斷,將各種因素綜合起來,推導出解決問題的最優方案。戰爭或沖突行為,具有博弈、競爭和對抗屬性,因而決策即是​​博弈。決策解決的是乾不干、怎麼幹,達到什麼目的或終止狀態等關鍵問題。在資訊化局部戰爭中,以行動為中心逐步取代以計畫為中心,要求從資料中心戰、資訊中心戰、知識中心戰上升為決策中心戰,作戰決策更成為敵我雙方競逐的主要領域之一。

決策認知戰,就是瞄準決策過程中敵方認知進行攻擊幹擾,以影響決策品質與效率。決策受到決策者本身知識結構的影響,如果認知發生偏執或知識儲備過時,即使判斷正確了,仍然得不出好的決策。決策過程包含了知識結構的運用與變化過程,主要涉及程序性知識和概念原理性知識,前者包括決策程序與方法、決策機制與評估方法等,後者包括對戰場態勢、制勝機理、作戰概念、作戰法則、武器裝備表現的認識等。因而,對決策過程中的認知攻擊,將大大影響其決策速度與品質。

影響決策認知戰的主要途徑有:一是擠壓認知決策空間。觀看網球比賽時,經常聽到非逼迫性失誤和逼迫性失誤的解說,逼迫性失誤是指由於給對手造成壓力引起的失誤。幹擾認知決策環境,就是給敵方認知決策壓力,從而擠壓認知空間,削弱認知力,以逼迫敵人決策出現失誤。如,透過虛實相間的決策活動與行動,讓對手陷入決策困境,致其增加出現低水準決策的機率。二是攻擊理性認知。包括:其一,幹擾對威脅與機會的認知。軍事史上許多失敗的戰例,都是誤判戰場上的威脅與機會所引起的。無論輕視敵人,或高估敵人,都會形成與客觀實際不一樣的決策預期,導致不利的行動結果。其二,攻擊作戰理論與條令。如透過提出相剋的理論、刻意渲染敵條令的漏洞、放大敵方作戰行動的不利效果等,引起敵方對自身理論與條令的懷疑。其三,針對程序性知識。包括決策的機制、程序與方法,方案評估與作戰評估方法,輔助決策系統、演算法、思維等,攻擊其中的弱點,也會造成決策失誤。第三是乾擾非理性因素。對非理性因素加以利用,往往會造成決策陷阱,如群思陷阱、自負陷阱等,對決策有重大影響。二戰中盟軍曾多次成功實施的戰略欺騙,就是利用了敵方模稜兩可和誤導性迷惑分析,讓錯誤的決策勝出的機率增大。

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/pl_207751/10184370888.html?big=fan

Chinese Military Research on Conceptual System-based Superior Warfare – How to Fight in Information Warfare System Operations? Analysis of Nine Typical Combat Styles

中國軍事體系優勢作戰概念研究-資訊化作戰體系如何作戰?九種典型作戰風格分析

現代英語:

System “Gathering Excellent War” It is “systematic warfare in information warfare. It does not necessarily refer to a certain combat style, but is composed of multiple combat styles and tactics” “combination boxing”, or combat style group . Emphasizes that, depending on the combat mission, combat opponent and the changing battlefield situation, any appropriate means and style of combat can be used flexibly to form combat advantages as long as it is conducive to forming comparative advantages and achieving system victory. In the specific implementation process of “system-based superior warfare”, these specific combat styles and operational tactics can not only be organized and implemented separately as part of joint all-domain operations, but also emphasize fighting “combination boxing”, using multiple strategies simultaneously, and winning as a whole. 


       In order to better understand its core connotation, this article lists Nine typical combat styles including overall deterrence warfare, electromagnetic disturbance warfare, network penetration warfare, and cognitive control disturbance warfare And analyze .

       System “Juyouzhan” ――combination boxing that flexibly uses multiple combat styles“
        1. Overall deterrence war: Emphasis on multi-domain joint deterrence; Three elements should be present in the implementation of an overall deterrent war ; Strong overall strength is central to achieving effective deterrence
        2. Electromagnetic Disturbance Warfare : The key to competing for information advantage; On the combined means approach, information empowerment is achieved through “connection + sharing” ; Crack down on effective tactics for unmanned cluster operations
       3. Cyber-sabotage: Soft “kill” is the main focus, combining soft and hard, focusing on breaking the net and reducing energy failure
       4. Cognitive scrambling: Control the cognitive power of situational awareness and compete for information advantage; control the decision-making power of command and compete for decision-making advantage; control “brain” power and seize the advantage of brain control
       5. Agile mobile warfare: High-efficiency and rapid decision-making; high-efficiency formation of a favorable combat situation; high-efficiency and instant gathering of combat forces; agile mobile warfare is an innovative development of traditional mobile warfare
       6. Swarm autonomous warfare: It is conducive to forming a system advantage to suppress the enemy; it is conducive to enhancing the combat effect; it is conducive to falling into the enemy’s combat dilemma
       7. Point-and-kill War: Achieving an efficient cost ratio for operations; targeting key nodes is an important option; large-scale system support is a basic condition; it is inseparable from precise intelligence support
       8. Supply-breaking: The supply guarantee chain has a huge impact on the overall combat situation; the center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain; the focus is on choosing the right time and making full use of tactics
       9. System “paralysis battle:” The objectives of the operation are to make the enemy combat system run out of order; to strike the key nodes of the combat system with heavy blows; and to carry out soft strikes against the enemy combat system

        For learning reference only, welcome to communicate and correct! Article views do not represent the position of this body
       The concept of combat was first proposed as a new combat style. Innovative combat styles are a core element in the development of combat concepts. It can be said that system-gathering battle is a general term for a series of specific tactics. The following nine typical combat styles constitute the tactical system of system-gathering and superior warfare. They are: One is Overall deterrence warfare, actively organize static power display and deterrence actions in system excellence battles, and strive to defeat others without fighting or small battles; Two is Electromagnetic disturbance warfare uses various combat methods and action styles such as electronic detection, attack and defense to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize the right to control information, and then win the initiative in combat; Three is In cyber attack warfare, various means such as soft strikes and hard destruction are used to defeat the enemy’s command network, intelligence network, communication network, logistics supply network, and disrupt the enemy’s command and support; Four is Cognitively Controlled Disturbance. Form a controlling advantage in the cognitive space through information attacks, public opinion attacks, and brain attacks; Five is Agile mobile warfare. Quickly adjust the deployment of troops and weapons, quickly gather capabilities on the battlefield, and seize combat opportunities; Six is Swarm autonomous warfare. Extensively use unmanned combat methods such as “bee swarms”, “wolf swarms”, and “fish swarms” to independently organize actions and distributed attacks to achieve joint human-machine victory; Seven is Pointkill. Accurately obtain intelligence, carry out multi-domain precision strikes, strive to shake the overall situation with one point, and maximize combat benefits; Eight is Supply-breaking. Organize an elite force to attack enemy logistics supplies and equipment supply supply chains, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle; Nine is System “paralysis battle”. A variety of means, such as breaking the net, exercising, and hitting nodes, are used to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken its functions.


       1. Overall deterrence
       Overall deterrence warfare refers to actively organizing static power display and deterrence actions in the system’s battle for excellence, and striving to defeat others without fighting or small battles. Sun Tzu said: “Subduing one’s troops without fighting is a good thing.” Deterrence and war are the two main forms of military activity. And “deterrence” is mainly the act of showing determination and will to potential opponents by showing strength or threatening to use strong strength to deter opponents from action. It can be said that the overall deterrence war in the system-based battle of excellence is an important means or tactic to achieve the goal of “stopping” human troops without fighting. Clausewitz emphasized that the first rule of strategy is to be as strong as possible, first in general, and then in key locations. Modern warfare is system-to-system confrontation. The overall deterrence war under informationized local warfare requires not only traditional deterrence methods and capabilities on land, sea, air and space, but also new deterrence methods and capabilities such as space deterrence, electromagnetic deterrence, and network deterrence. It also requires an overall deterrence that shows the overall strength of the country. Especially with the rapid development of advanced technologies such as information technology, the technological revolution, industrial revolution, and military revolution have accelerated their integration, and strategic competitiveness, social productivity, and military combat effectiveness have become more closely coupled. Winning the information war is to a greater extent a contest between the will of the country and the overall strength of the country. To contain the war, we must first act as a deterrent to our opponents in terms of overall strength.


       1.1 Emphasis on multi-domain joint deterrence
       Means of deterrence typically include both nuclear and conventional deterrence. In the “system-based battle for excellence”, the overall deterrence war is implemented, aiming to comprehensively use conventional deterrence methods across the land, sea, air and space power grids to achieve the purpose of deterrence. Especially with the application of information network technology and space and directed energy technology in the military, space, networks, electromagnetic weapons, etc. have become new means of deterrence. Space deterrence, It mainly uses equipment such as rapid response electromagnetic orbit weapons, space-to-ground networked anti-navigation and positioning service systems, large elliptical orbit laser weapons, and high-power microwave weapons to threaten and attack the opponent’s space targets and form a deterrent against enemy space information “interference blocking”. Cyber deterrence mainly uses cyberspace situational awareness and attack equipment to threaten and attack the opponent’s military network and other critical information infrastructure to achieve deterrence against the enemy. Electromagnetic deterrence mainly uses electromagnetic spectrum combat systems to threaten and attack enemy detection, navigation, communications and other information weapons and equipment systems to achieve deafening and blinding deterrence against the enemy.

1.2 The implementation of overall deterrence should have three major elements
       Implementing an overall deterrent war and achieving the desired effect of deterrence usually requires three main elements: One is strength. The deterrent must have the reliable ability or strength to frighten and fear the opponent; the second is determination and will. The deterrent party must dare to use this capability when necessary; third, to transmit information clearly. The deterring party must make the ability to act and the determination clearly known to the other party accurately and effectively.


       Historically, the criteria for judging deterrent strength have varied in three main ways: First, the active military force; second, the combined national strength or war potential; and third, the total number of main battle weapons and equipment. For quite a long period of history, the number of troops was deterrence, and the strength of military strength depended directly on the size of the active military, the amount of vital weapons and equipment, and non-material factors such as the morale of the army’s training organization. After the twentieth century, with the expansion of the scale of warfare, deterrence power has become less limited to the strength of the military and the quantity of vital weapons and equipment, but is determined by the nation’s war potential, which includes economic power, scientific and technological power, energy resources, and even population size, among others. The overall deterrence war in the system’s “gathering and excellence war”, the formation of its deterrence strength is mainly based on the network information system, as well as the joint global deterrence capability formed under the integration of the system.


       1.3 Strong overall strength is the core of achieving effective deterrence
       The development of information technology and its widespread penetration and application in the military sector provide favourable conditions for building overall strength and achieving overall deterrence. System “Juyouzhan” is supported by the network information system, making full use of the permeability and connectivity of information technology, not only integrating various combat forces, combat elements, and combat units into an organic whole, realizing the military system combat advantages, but also integrating Various fields related to war and national mobilization, such as national politics, economy, diplomacy, finance, transportation, and energy, are connected and integrated into the national war mobilization system Gather all forces and resources to form an overall synergy, realize the emergence effect of system capabilities, show the overall strength advantage, and form a powerful invisible deterrent of united efforts and sharing the same hatred Create a situation that makes the enemy “powerful but unable to act ”“able to act but ineffective”, and play a role in containing and winning the war.
       In the “overall deterrence war”, the scope of national war mobilization will be wider, not limited to a certain direction or region, but throughout the country and even the relevant regions of the world; mobilization time will be faster, and using networks and information systems, mobilization and action information can be quickly transmitted to everyone and every node at the first time; action coordination and synergy will be more consistent, and all forces distributed in various regions can be based on the same situation Under the same order, the operation is unified at almost the same time, which greatly improves the efficiency of operational synergy; resources are more fully utilized, and various war resources based on the Internet can quickly realize the conversion between peacetime and wartime, military-civilian conversion, and achieve integrated front and rear guarantees and precise guarantees.


       2. Electromagnetic Disturbance Warfare
       Electromagnetic disturbance warfare refers to the flexible use of electronic detection, attack and defense and other combat methods and action styles to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize information control rights, and then win operational initiative.


       2.1 The key to competing for information advantage Informatization local warfare is highly dependent on the electromagnetic spectrum, the Control and counter-control of electromagnetic space have become the focus of competition for information rights. Organize and carry out electromagnetic obstruction warfare, mainly to destroy the enemy’s electromagnetic spectrum and protect one’s own side from destruction. The electromagnetic spectrum is the main carrier for transmitting information. The use of electromagnetic means to disrupt the enemy’s electromagnetic spectrum will effectively reduce the enemy’s information combat capabilities and enable our own side to ensure the rapid and effective flow of information in the scenario of ownership of information rights, driving command flow, action flow, and material flow through information flow, energy flow, and then have the dominance and initiative in combat.


       2.2 The basic focus is to implement electromagnetic disturbance warfare in the battle to deactivate the enemy’s combat system. It is mainly aimed at the enemy’s dependence on electromagnetic space. At the same time, in order to ensure its own effective use of electromagnetic space, it organizes various electronic reconnaissance and interference, attack, defense and support forces to attack enemy communication networks, radar networks, computer networks and command centers, communication hubs, radar stations, etc Computer network nodes, global navigation and positioning systems, space link systems such as the “Heaven and Earth Integrated Internet”, and various other frequency-using weapons and equipment carry out interference and attacks, block and destroy their communication and data transmission, and destroy the enemy’s combat system. “Connection” and “sharing” structural center of gravity provide support for seizing information control and electromagnetic control from the root, thereby weakening the enemy’s command and control capabilities Deactivating and disabling the enemy’s entire combat system.


       2.3 Crack effective tactics for unmanned cluster operations
     “Unmanned autonomous group operations such as swarms ”“wolves ”“fishes” are important features of information-based local warfare with intelligent characteristics. The various unmanned autonomous clusters are large in number, diverse in type, and complex in characteristics, and each individual can complement each other and play a role in replacing each other. It will be very difficult to intercept and damage the entire unmanned cluster. However, from a technical point of view, for unmanned combat clusters to achieve effective synergy, each individual must share and interact with each other. Once the communication coordination between unmanned clusters is interfered with, it will be impossible to share battlefield posture and information, and will not be able to coordinate actions with each other, making it difficult to achieve the combat effectiveness it deserves. This gives the other party an opportunity to implement interception of communications and electromagnetic interference. Therefore, the implementation of electromagnetic spectrum warfare, interference and attacks on the information and communication networks of unmanned clusters, and the destruction of their information sharing and interaction will make it impossible for each individual in the unmanned cluster to achieve effective synergy and thus lose its operational capabilities.


       3. Cyber-sabotage
       Cyber-blowout, It refers to military confrontation operations that comprehensively use technologies such as networks and computers and other effective means to control information and information networks. It is a major combat style of cyberspace operations and competition for network control. Its main combat operations are both soft-kill and hard-destroy, focusing on soft and combining soft and hard. Among them, soft kill is mainly a cyber attack, that is, it comprehensively uses blocking attacks, virus attacks and other means to block and attack enemy information networks, command systems, weapon platforms, etc., making it difficult for enemy networks, command information systems, etc. to operate effectively or even paralyze; hard destruction mainly uses precision fire strikes, high-energy microwaves, electromagnetic pulses, and anti-radiation attacks to paralyze and destroy enemy information network physical facilities Destroy enemy combat and weapons and equipment entities.
       The important thing is to “break the net and reduce energy failure”. Organizing a cyber attack in a “system-based battle of excellence” is to target the weaknesses of the combat opponent’s military information network, use the advantages of the system to organize various cyber attack forces, and conduct combat command networks, reconnaissance intelligence networks, communication networks and even logistics throughout the entire operation. Supply networks, etc., continue to carry out soft killing and hard destruction operations to destroy the enemy’s network system The overall function of the enemy’s combat system is reduced or even disabled. It mainly targets core targets such as the enemy’s basic information network, intelligence network, command network, and support network, and implements a series of combat operations such as network-to-electronics coordinated attacks, deception and confusion, link blocking, and takeover control, so that the enemy’s intelligent combat network system becomes incapacitated and ineffective, achieving a critical victory that paralyzes the enemy system.


      4. Cognitively Controlled Disturbance Warfare
      Cognitive interference control war refers to interfering with, destroying or controlling the enemy’s thinking and cognition through information attacks, public opinion attacks, and brain attacks in the system optimization war, so that the enemy cannot make correct judgments and decisions, thereby controlling the enemy in cognitive space. form a controlling advantage.
      Cognitive domains, That is, “human thinking space and consciousness space are areas that have a critical impact on combat decision-making and judgment”. The development of information technology, especially artificial intelligence technology, and its widespread application in the military field have expanded the battle of war from physical space and information space to cognitive space, making cognitive space a completely new combat domain. With the development of information and intelligent technology and its widespread and in-depth application in the military field, the Human-machine intelligence tends to converge This has made the status of cognition in intelligent warfare more prominent, and the cognitive field has gradually become an important battlefield. The right to control cognition has become a key element of future battlefield control. Fighting for cognitive control has become an important combat style for winning information-based local warfare operations with intelligent characteristics.


       4.1 Control the cognitive rights of situational awareness and compete for information advantages
       In the system’s “excellence battle”, information flow drives the flow of matter and energy, and information advantage determines decision-making advantage. Rapid and accurate knowledge of intelligence information and battlefield situations has an important impact on seizing command and decision-making advantages. Therefore, when organizing and implementing system-based battle gathering, we must make full use of intelligent technology and big data technology to conduct comprehensive analysis and judgment on massive intelligence information data, mine and extract the required intelligence information, and achieve more accurate and faster understanding of battlefield situations and combat environments. Cognition ensures that the enemy is discovered first and the enemy is recognized first from the source. While removing one’s own side “the fog of war”, create “the fog” for the opponent. Therefore, in order to compete for cognitive rights, we must not only control and process information before the enemy, but also take measures such as online public opinion attacks and high virtual reality chaos to actively create and spread false information, disrupt and disrupt the perception and cognition of hostile battlefield situations, maximize confusion and increase uncertainty, interfere with the opponent’s combat decisions, and delay its combat operations.


       4.2 Control and command decision-making power and compete for decision-making advantages
       Decision strengths determine action strengths. Quick decision-making by the commander is the key to shortening “the command cycle” and achieving quick wins. The organizational system focuses on excellent combat, and the success or failure of combat operations depends largely on the speed of the commander’s decision-making. It is necessary to “use intelligent auxiliary decision-making systems, select the best combat plans, scientifically and rationally allocate combat resources, and maximize combat effectiveness; use ubiquitous intelligent networks to access required combat nodes and combat platforms at any time to build and form an integrated combat system.” Achieve decentralized deployment of power, information, and capabilities, cross-domain linkage, form advantages at locations and times required for operations, gather energy to release energy, and gather advantages to win; Implementation “core attack”, Errors or deviations in the enemy’s command decisions are caused by hacking into the other party “chip”, tampering with its programs, and command and decision system algorithms.


       4.3 Control “brain” power and seize the advantage of brain control
       Cognitive interference control warfare in the system’s “gathering excellence war” emphasizes “attacking the heart and seizing the will”, that is, using network warfare, electromagnetic warfare and other methods to control the enemy’s human brain and consciousness cognition as well as the control system of the unmanned autonomous platform “attacking the heart Cognitive control warfare to control the brain and seize ambitions” Replace “destroy” with “control”, To achieve the goal of stopping and winning the war at the minimum cost. Attacking the heart and controlling the brain is different from traditional strategic deterrence. It places more emphasis on active attack. It is an active attack operation that mainly uses advanced information combat technology, brain control technology, etc. to attack the enemy’s decision-making leader, as well as intelligent unmanned autonomous combat platforms, auxiliary decision-making systems, etc., carry out controlled “brain” attacks, directly control and disrupt the opponent “brain”, influence and control the enemy’s decision-making, or disable it Enable stealth control of enemy combat operations. For example, “Targeting human cognitive thinking, using brain reading and brain control technology, and using mental guidance and control methods to directly carry out “inject ”“invasive” attacks on the brains of enemy personnel, interfering with, controlling or destroying the cognitive system of enemy commanders.”, deeply control it from the perspective of consciousness, thinking and psychology, seize “control intellectual power”, disrupt the enemy’s decision-making, destroy the enemy’s morale, and force the enemy to disarm.


      5. Agile Mobile Warfare
      Agile mobile warfare refers to the efficient decision-making, efficient adjustment of troop deployment and high-efficiency real-time gathering of combat forces in systematic battle, efficient gathering of capabilities on the existing battlefield, and seizing combat opportunities. Agility is the ability to respond quickly and timely to changes in the battlefield environment. It has the characteristics of responsiveness, robustness, flexibility, elasticity, innovation and adaptability.

Table 1 Connotation of the concept of agile warfare


      5.1 Efficient and fast decision-making
      To implement agile and mobile warfare, we must first make efficient and rapid decisions to win operational opportunities. Therefore, it is necessary to comprehensively use various means of reconnaissance, detection, perception and surveillance to obtain battlefield posture and target information in a timely manner, especially characteristic information, activity trajectories and real-time position information of time-sensitive targets, so as to ensure precise intelligence support for rapid decision-making. Efficient decision-making is also reflected in the speed of intelligence processing. It takes less time to screen effective intelligence information, formulate action plans at a faster speed according to changes in circumstances, and seize the initiative and seize the opportunity with one step ahead. High-efficiency decision-making focuses on shortening the decision-making cycle, taking the target time window as the central point, and integrating decision-making command with combat units and weapon platforms, rapid response, and overall linkage to improve combat efficiency.


      5.2 High efficiency forms a favorable combat situation
      It is necessary to “keep abreast of changes in the battlefield situation at any time, rely on the support of information networks, and achieve dynamic reorganization of combat forces and integration during movement through cross-domain, cross-dimensional, and diversified three-dimensional maneuvers. Combat resources flow efficiently throughout the region and gather during movement to achieve mobility and excellence.”, forming a favorable battlefield situation. Agile mobile warfare relies on data fusion processing, intelligent assisted decision-making and other means to quickly form combat plans, quickly project combat forces at a high frequency according to the case, organize troops to quickly form favorable combat deployments, and realize enemy discovery, enemy decision-making, and enemy fire, first enemy assessment, change the balance of power in the shortest time and fastest speed, form combat advantages, and improve the efficiency of combat operations.


      5.3 Efficient and instant gathering of combat power
      To organize agile mobile warfare, the key is to select the right combat force within a limited time, coordinate the entire battle situation, and form an overall synergy to ensure a fatal blow. Therefore, in response to changes in battlefield posture, especially target situations, it is necessary to draw up groups to form a joint mobile combat system formed by multi-domain combat forces, gather combat forces in real time, deploy quickly and mobilely to a favorable battlefield, and carry out real-time strikes against the enemy. For deep space, deep sea, etc. to become a new combat space, an intelligent unmanned autonomous combat platform can be organized Rapid mobility is deployed to lurk near key targets or important passages that are difficult for humans to reach due to physiological limitations, and ambush operations are carried out on standby, creating new cross-domain checks and balances.


      5.4 Agile mobile warfare is an innovative development of traditional mobile warfare
      In the history of both ancient and modern warfare at home and abroad, there have been numerous examples of successful battles that relied on rapid covert maneuvers to achieve combat objectives. However, the combat process of information-based local warfare has been greatly compressed, the combat rhythm has accelerated rapidly, and fighter aircraft are fleeting. It has put forward higher requirements for fast mobile capture fighters. It is difficult to meet the requirements of joint operations and all-area operations under information conditions alone “fast pace, high speed”. requirements, so agile mobility must be implemented.


       6. Unmanned cluster autonomous warfare
       Unmanned cluster autonomous warfare refers to the widespread use of unmanned combat methods such as “bees”“ wolves ”“fishes” in system optimization warfare to independently organize actions and distributed attacks to achieve joint human-machine victory. With unmanned autonomous equipment becoming the main combat force on the battlefield, defeating the enemy with unmanned autonomous equipment clusters and numerical superiority has become an important combat style in information warfare.


       6.1 It is conducive to forming a system advantage to suppress the enemy
       Unmanned cluster independent warfare gives full play to the special advantages of unmanned combat weapons such as all-weather, unlimited, difficult to defend, and low consumption, and builds and forms large-scale unmanned combat clusters or formations such as unmanned “bee swarms”“ wolves ”“fish swarms”, and organizes independently, mutual coordination, can implement close-range and full-coverage reconnaissance, or act as bait to interfere or deceive, or cooperate with main battle weapons to implement distributed coordinated attacks Enable overall mobility and joint control of the enemy.


       6.2 Conducive to enhancing combat effectiveness
       In “unmanned cluster autonomous operations”, different combat units within the unmanned cluster organization are responsible for different functions and different tasks, including those responsible for reconnaissance, those carrying out electromagnetic interference and fire strikes, and those playing “decoy” roles. Clusters transmit and share battlefield information through inter-group networks, perform their respective duties according to the division of labor, and collaborate in real-time, independently, and dynamically according to battlefield changes. They not only give full play to their advantages in quantity and scale, but also use information networks and intelligent integration technology to achieve integration effects, using cluster advantages to consume enemy defense detection, tracking and interception capabilities, rapidly saturating and paralyzing the enemy’s defense system.


       6.3 Conducive to getting into enemy combat difficulties
       Unmanned cluster autonomous warfare uses a large number of autonomous unmanned combat platforms with different functions to form an unmanned combat cluster integrating reconnaissance and detection, electronic interference, cyber attacks, and fire strikes. It can carry out multi-directional and multi-directional operations against the same target or target group. Multiple, continuous attacks will make it difficult for the enemy to make effective counterattacks.


       7. Pointkill Battle
       “Precise point-killing warfare” refers to accurately obtaining intelligence in system-based battles, implementing multi-domain precision strikes, striving to shake the overall situation with one point, and maximizing combat benefits. Informationized local warfare is an overall confrontation between systems. Implementing precise point-killing warfare and precise strikes on important nodes and key links of the enemy’s combat system will destroy the enemy’s combat system and reduce enemy combat capabilities, which will achieve twice the result with half the effort. Combat effect.


      7.1 Achieve efficient combat cost ratio
      Achieving maximum combat effectiveness at the minimum cost is a goal pursued by both sides of the war. With the widespread application of information technology in the military field and the advent of information warfare, precision-guided weapons, intelligent kinetic energy weapons, integrated surveillance and attack drones, and laser weapons are widely equipped with troops; through the use of big data, artificial intelligence and other technologies, it has become possible to accurately calculate the required troops and weapons. These all provide material and technical conditions for achieving precision point kill warfare, achieving operational objectives at a lesser cost, and achieving operationally efficient fee ratios.


       7.2 Targeting key nodes is an important option
       The key to precise point-killing battles is to hit the key points and nodes. If you don’t hit, it will be enough. If you hit, it will be painful. If you hit, you will win. If you hit a point, you will break the enemy’s system and shake the overall situation. The target of the strike is not limited to the enemy’s dispersed deployment of ships and aircraft, but should also be targeted at local, dynamic, time-sensitive targets or independent targets such as enemy command centers, important hubs, and even major generals and commanders, in pursuit of deterrence, shock and enemy-breaking system effects. It will also be an effective countermeasure to use precision strike fire to carry out “point-kill” strikes in response to the distributed tactic of decomposing expensive large-scale equipment functions into a large number of small platforms and implementing decentralized deployment of forces.


       7.3 Large-scale system support is the basic condition
       The implementation of precise point-kill warfare cannot be separated from the support of a large-scale system. Focusing on achieving combat goals, the required troops and weapons are transferred from each operational domain that is dispersed and deployed. With the support of the network information system, they are dynamically integrated to form a precision strike system to achieve overall linkage and system energy gathering. Through reasonable and sufficient firepower, the target is concentrated. Strike to achieve precise use of troops and precise release of energy. To implement precise point-and-kill operations to be precise, all links within the entire combat system need to be closely connected without any mistakes. The U.S. military’s killing of bin Laden in 2011 can be said to be a typical strategic precision killing operation supported by the strategic system.


       7.4 It is inseparable from precise intelligence support
       In precision point kill warfare, precise intelligence support is always the key to achieving operational goals. Therefore, before the war, various means should be used to collect various enemy intelligence information, especially accurate analysis and judgment of enemy targets. During combat operations, various sensors and intelligence reconnaissance methods should be used to accurately grasp enemy target changes and dynamic target situations in a timely manner, so as to provide powerful and effective intelligence support for the implementation of precise point-kill warfare. The U.S. military’s targeted killing operation against Soleimani was a typical precise point-killing battle supported by an efficient intelligence system.


       8. Supply-breaking
       Supply chain-breaking warfare refers to organizing elite forces in a system-gathering battle to attack the enemy’s logistics supplies and equipment supply supply chain, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle. In response to weaknesses such as the enemy’s long logistics supply line and large equipment support stalls, the organization of elite forces to build “chain-breaking warfare” combat systems, and to carry out sustained, precise and devastating strikes against enemy logistics supplies and equipment supply chains, supply lines and supply bases, will make it unsustainable due to the loss of supplies and will have to withdraw from the battle.


       8.1 The supply guarantee chain has a huge impact on the overall combat situation
       Logistics equipment support is an important basis for operations. The constant supply of logistical supplies and weapons and equipment ultimately determines the size of an army’s combat troops, whether they can fight, in what season, where they can fight, how far they can leave their rear bases, how long they can fight, how fast they can maneuver, and so on. In information warfare, the consumption of battlefield materials has increased exponentially. Not only has the dependence on logistics equipment support for operations not decreased, but it has become larger and larger. Moreover, the requirements for the specialization of support have also become higher and higher In particular, modern combat equipment is available in a wide variety of models and specifications, with huge volumes of mixed transport, more dispersed troop deployment and very high requirements for transport capacity, which makes bases, communication lines and transport more important than ever. The stable and efficient operation of the supply guarantee chain and continuous and uninterrupted supply guarantee are the key to operational victory and have a huge impact on the overall operational situation.


       8.2 The center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain
       The operational center of gravity of supply chain-breaking warfare is a key link in attacking the enemy’s supply support chain, and its continuous support capability is lost through chain-breaking. Therefore, the organization of supply chain-breaking warfare should mainly target enemy ground railway and road transport lines, maritime supply convoys, military requisitioned merchant ships and combat support ships, large and medium-sized air transport aircraft, and rear supply bases. For example, striking the enemy’s maritime supply support chain and cutting off the enemy’s fuel, ammunition, fresh water, and food supplies will make the enemy aircraft carrier battle group lose its ability to continue fighting, which in turn will even affect the outcome of a battle.


       8.3 The key is to choose the right time and make full use of tactics
       It is crucial to organize the implementation of supply chain-breaking warfare and to choose a favorable time to strike. The timing of strikes in supply chain-breaking warfare should be organized and implemented when the enemy’s supply maneuvers are selected, so as to surprise and attack unprepared concealed tactics, carry out sudden strikes on enemy supply vehicles, ships and transport aircraft, and terminate their supply operations. Specific tactics usually include covert ambush warfare, organizing capable forces to ambush the routes and routes that enemy transportation must pass through, waiting for opportunities to carry out covert surprise attacks; stealth surprise warfare, using submarines, stealth fighters, etc. to covertly move forward to carry out attacks on enemy transportation targets, and win by surprise; long-range precision warfare, using long-range conventional surface-to-surface missile forces to attack enemy supply bases and airports Long-range precision strikes are carried out at the departure points of supplies such as docks.


       9. System “paralysis battle”
       System destruction and paralysis war refers to the comprehensive use of various means such as breaking the network, breaking the chain, and defeating nodes in the system optimization war to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken the functions of the enemy’s combat system. The essence of system destruction and paralysis warfare is to weaken the correlation and structural power between the elements of the enemy’s combat system, degrade the functions of the system, and fail to play a role in doubling capabilities.


       9.1 The combat goal is to disorderly operate the enemy’s combat system
       In information warfare, the combat systems of both warring parties have their own internal order, and this order is the key to maintaining and supporting the operation of the combat system. The side that can maintain and navigate the internal order of the combat system will gain an advantage and, conversely, a disadvantage. Therefore, the goal of “disrupting the enemy’s winning mechanism and causing the enemy’s combat system to become disordered” should be established in system destruction and paralysis warfare. This requires that the system be fully utilized in the battle of paralysis Information technology in particular intelligent algorithms The “powerful enabling effect” can quickly adjust and reconstruct one’s own combat system, quickly generate and release powerful combat power, and implement agile and precise strikes on the enemy’s combat system, causing the enemy’s combat system to lose normal operating order and become disordered. The system functions are destroyed and the overall combat capabilities are significantly reduced.


       9.2 A key node in the heavy strike combat system
       Systematic confrontation is a major feature of information warfare. System is an important foundation and support for system confrontation, and is also the key to effectively exerting combat effectiveness by integrating various combat forces, weapon platforms and weapon systems on the battlefield. Whether the system can be kept robust and run smoothly has a decisive influence on the achievement of war and campaign victories. In the battle to destroy and paralyze the system, the key is to focus on the enemy’s integrated combat system of land, sea, air and space power grids, breaking the network, breaking the chain, and attacking nodes. By attacking key node targets, the operating mechanism of the enemy’s combat system will be out of order, and it may even be severely damaged or destroyed. Paralysis. Therefore, the basic direction of system destruction and paralysis warfare is to select key units, key nodes, and key elements of the enemy’s combat system to carry out strikes, attack one point, destroy one part, and paralyze the whole, so as to achieve the goal of defeating the enemy.


       9.3 Implement soft strikes against the enemy’s combat system
       When organizing and implementing system breaking and hard destruction, it simultaneously organizes soft-kill combat operations such as electronic warfare, cyber warfare, psychological warfare, and public opinion warfare, and carries out soft strikes on the information domain and cognitive domain of the enemy’s combat system. Electronic warfare uses the power of electronic warfare to carry out strong electromagnetic interference against the enemy, causing its information to malfunction and fall into the fog of war; cyber warfare uses the power of cyber attack to attack the enemy’s network information system, causing the enemy’s command and communication system and computer network to be severely damaged, causing its command to malfunction and fall into information islands or even war islands; psychological warfare and public opinion warfare, using psychological warfare and public opinion warfare methods It carries out psychological strikes and public opinion guidance against the enemy, severely damaging his will to fight and inducing his cognitive disorientation. Organizing “people’s livelihood wars” to attack the opponent’s major national economy and people’s livelihood facilities can also play a role in the enemy’s combat system “drawing fuel from the bottom of the cauldron”. In the 1999 Kosovo War, the US military did not attack the Yugoslav army, but attacked its war potential target system, causing the Yugoslav soldiers and civilians to lose their will to fight and lead to defeat. 

現代國語:

體系聚優戰是資訊化戰爭中的體係作戰,其不限定特指某一種作戰樣式,而是由多種作戰樣式和戰法組成的“組合拳”,或作戰樣式群。強調根據作戰任務、作戰對手和戰場情勢變化,只要有利於形成相對優勢、達成體系製勝,可以靈活運用任何適宜的作戰手段和样式,形成作戰優勢。在體系聚優戰具體實施過程中,這些具體作戰樣式和行動戰法既可以作為聯合全局作戰的一部分單獨組織實施,更強調打“組合拳”,多策並舉,整體制勝。
為更能理解其核心內涵,本文列舉了整體威懾戰、電磁擾阻戰、網路破擊戰、認知控擾戰等九大典型作戰樣式,並進行分析。

體系聚優戰――靈活運用多種作戰樣式的「組合拳」作者:學術plus高級觀察員 東週
本文主要內容及關鍵字
1.整體威懾戰:強調多域聯合威懾;實施整體威懾戰應具備三大要素;強大整體實力是實現有效威懾的核心
2.電磁擾阻戰:爭奪資訊優勢的關鍵;在組合手段方法上,透過「連結+共享」實現資訊賦能;破解無人集群作戰的有效戰法
3.網路破擊戰:軟殺傷為主,軟硬結合,重在破網降能失效
4.認知控擾:控制態勢感知認知權,爭奪資訊優勢;控制指揮決策權,爭奪決策優勢;控制「腦」權,奪取腦控優勢
5.敏捷機動戰:高效率快速決策;高效率形成有利作戰態勢;高效率即時聚合作戰力量;敏捷機動戰是對傳統機動作戰的創新發展
6.蜂群自主戰:有利於形成體系優勢壓制敵方;有利於增強作戰效果;有利於陷敵於作戰困境
7.精確點殺戰:實現作戰的高效費比;打關鍵節點目標是重要選項;大範圍體系支撐是基本條件;離不開精確情報保障
8.補給斷鍊戰:供應保障鏈對作戰全局影響巨大;打擊重心是斷敵供應保障鏈的關鍵節點;重在選準時機活用戰法
9.體系毀癱戰:作戰目標是使敵作戰體系運作失序;重拳打擊作戰體系的關鍵節點;對敵作戰體系實施軟打擊

僅供學習參考,歡迎交流指正!文章觀點不代表本機構立場
作戰概念首先是作為一種新的作戰樣式提出。創新作戰樣式是作戰概念開發的核心內容。可以說,體系聚優戰是一系列具體戰法的總稱。以下九大典型作戰樣式構成了體系聚優戰的戰法體系。分別為:一是整體威懾戰,在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵;二是電磁擾阻戰,運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制資訊權,進而贏得作戰主動;三是網路破擊戰,運用軟打擊和硬摧毀等多種手段,破敵指揮網、情報網、通信網、後勤補給網,亂敵指揮保障;四是認知控擾。透過資訊攻擊、輿論攻擊、腦攻擊,在認知空間形成控制優勢;五是敏捷機動戰。快速調整兵力兵器部署,在即設戰場快速聚集能力,搶奪作戰先機;六是蜂群自主戰。廣泛運用「蜂群」、「狼群」、「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝;七是精確點殺戰。精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化;八是補給斷鏈戰。組織精銳力量,打敵後勤物資裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥;九是體系毀癱戰。綜合採取破網、鍛鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰系統功能。
1.整體威懾戰
整體威懾戰是指在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵。孫子曰:「不戰而屈人之兵,善之善者也。」威懾和戰爭是軍事活動的兩種主要形式。而威懾,主要是透過展現力量或威脅使用強大實力,向潛在對手錶明決心意志,以嚇阻對手行動的行為。可以說,體系聚優戰中的整體威懾戰是實現不戰而「止」人之兵的重要手段或戰法。克勞塞維茨強調,策略的第一條規則是盡可能強大,首先是整體的強大,然後是在關鍵部位的強大。現代戰爭是體系與體系的對抗。資訊化局部戰爭下的整體威懾戰,不僅要有陸海空天傳統威懾手段和能力,也需要太空威懾、電磁威懾、網路威懾等新型威懾手段和能力,更需要有顯示國家整體實力的整體威懾。特別是隨著資訊科技等先進科技的快速發展,科技革命、產業革命、軍事革命加速融合,戰略競爭力、社會生產力和軍隊戰鬥力耦合關聯更加緊密,打贏資訊化戰爭更大程度上是國家意志和國家整體實力的較量。若要遏止戰爭,首先要從整體實力上對對手形成嚇阻。
1.1 強調多域聯合威懾
威懾手段通常包括核威懾和常規威懾。在體系聚優戰中,實施整體威懾戰,旨在綜合運用陸海空天電網全域常規威懾手段,以達成威懾目的。特別是隨著資訊網路技術及太空、定向能技術在軍事上的應用,太空、網路、電磁武器等成為新型威懾手段。太空威懾,主要以快速回應電磁軌道武器、天地網路化反導航定位服務系統、大橢圓軌道雷射武器、高功率微波武器等裝備,威脅攻擊對手空間目標,形成對敵空間訊息「幹擾阻斷」威懾。網路威懾,主要是以網路空間態勢感知和攻擊裝備,威脅攻擊對手軍事網路及其它關鍵資訊基礎設施,實現對敵威懾。電磁威懾,主要以電磁頻譜作戰系統,威脅攻擊敵探測、導航、通訊等資訊化武器裝備系統,實現對敵致聾致盲威懾。 1.2 實施整體嚇阻戰應具備三大要素
實施整體威懾戰並達成嚇阻預期效果,通常必須具備三大要素:一是實力。威嚇方必須具備令對手感到忌憚畏懼的可靠能力或力量;二是決心意志。威懾方在必要時必須敢於使用這種能力;三是明確傳遞訊息。威懾方必須將行動能力與決心準確、有效地讓對方清楚知道。
從歷史上看,判斷威懾實力的標準主要有三個面向變化:一是現役軍事力量;二是綜合國力或戰爭潛力;三是主戰武器裝備總數。在相當長一段歷史時期內,軍隊數量就是威懾,軍事實力的強弱直接取決於現役軍隊的規模、重要武器裝備的數量,以及軍隊訓練組織士氣等非物質因素。二十世紀後,隨著戰爭規模的擴大,威懾實力已不再僅限於軍隊兵力和重要武器裝備的數量,而是由國家戰爭潛力所決定,其中包括經濟實力、科技實力、能源資源,甚至人口數量,等等。體系聚優戰中的整體威懾戰,其威懾實力的形成主要基於網路資訊體系,以及在該體系融合整合下形成的聯合全局威懾能力。
1.3 強大整體實力是實現有效威懾的核心綜合分析研判,挖掘提取所需情報訊息,實現對戰場態勢、作戰環境的更精準、更快速認知,從源頭確保先敵發現、先敵認知。在消除己方「戰爭迷霧」的同時,也要為對手製造「迷霧」。因此,爭奪認知權,不僅要先敵掌握、先敵處理信息,還要採取網絡輿論攻擊、高度虛擬現實亂真等措施,積極製造、散佈虛假信息,破壞、擾亂敵對戰場態勢的感知、認知,最大限度地製造混亂、增加不確定性,幹擾對手的作戰決策,遲滯其作戰行動。
4.2 控制指揮決策權,爭奪決策優勢
決策優勢決定行動優勢。指揮者的快速決策是縮短「指揮週期」、實現快速勝利的關鍵。組織體系聚優戰,作戰行動成敗很大程度取決於指揮的決策速度。要利用智慧輔助決策系統,優選最佳作戰方案,科學合理調配作戰體系,實現力量、資訊、能力分散部署、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施法實作「攻芯」,透過反義程式定義、原則性反制勝;
4.3 控制「腦」權,奪取腦控優勢
體系聚優戰中的認知控擾戰,強調“攻心奪志”,即利用網絡戰、電磁戰等方式,對敵方人腦和意識認知以及無人自主平台的控制系統實施“攻心控腦奪志”的認知控制戰,以“控制”取代“摧毀”,以最小代價實現止戰、勝戰之目的。攻心控腦與傳統的謀略威懾不同,其更強調主動攻擊,是一種主動攻擊行動,主要運用先進信息作戰技術、控腦技術等,對敵決策首腦,以及智能化無人自主作戰平台、輔助決策系統等,實施控“腦”攻擊,直接控制、擾亂對手“大腦”,影響、控制敵對決策,或使其失能,實現隱形敵作戰。如以人的認知思維為目標,利用讀腦、腦控技術,運用心智導控手段,直接對敵方人員大腦實施“注入”“侵入”式攻擊,幹擾、控製或破壞敵指揮人員認知體系,從意識、思維和心理上對其深度控制,奪取“制智權”,以亂敵決策、破敵士氣,迫敵繳械。
5.敏捷機動戰
敏捷機動戰,指在體系聚優戰中高效率決策、高效率調整兵力兵器部署和高效率即時聚合作戰力量,在既設戰場高效率聚集能力,搶奪作戰先機。敏捷是一種快速及時應對戰場環境變化的能力,具有響應性、穩健性、柔性、彈性、創新性和適應性等特徵。
表1 敏捷作戰概念內涵

5.1 高效率快速決策
實施敏捷機動戰,首先要高效率快速決策,贏得作戰先機。因此,要綜合運用各種偵察探測感知與監視手段,及時獲取戰場態勢和目標信息,特別是時敏目標的特徵信息、活動軌跡以及實時位置信息,確保為快速決策提供精準情報支持。高效率決策也體現在情報處理速度上,要用更少的時間甄別有效情報訊息,根據情況變化,以更快的速度製定行動方案,快敵一步佔據主動,奪取先機。高效率決策重在縮短決策週期,要以目標時間窗口為中心點,決策指揮與作戰單元、武器平台一體協同、快速反應、整體連動,提高作戰效率。
5.2 高效率形成有利作戰態勢
要隨時掌握戰場態勢變化,依靠資訊網支撐,透過跨域、跨維、多樣化立體機動,達成作戰力量動態重組、動中融合,作戰資源全局高效流動、動中聚集,實現機動聚優,形成有利戰場態勢。敏捷機動戰依賴資料融合處理、智慧化輔助決策等手段,快速形成作戰方案,依案高頻率快速投送作戰力量,組織部隊快速形成有利作戰部署,實現先敵發現、先敵決策、先敵開火、先敵評估,以最短時間、最快速度改變力量對比,形成作戰優勢,提高作戰行動效率。
5.3 高效率即時聚合作戰力量
組織敏捷機動戰,關鍵在於有限時間內選準作戰力量,協調整個戰局,形成整體合力,確保一擊致命。因此,要針對戰場態勢特別是目標情況變化,抽組形成由多域作戰力量形成的聯合機動作戰系統,即時聚合作戰力量,快速機動部署至有利戰場,對敵實施即時打擊。針對深空、深海等成為新的作戰空間,可組織智慧化無人自主作戰平台,快速機動部署至人類因生理所限而難以到達的重點目標或重要通道附近潛伏,待機實施伏擊作戰,形成新的跨域制衡優勢。
5.4 敏捷機動戰是對傳統機動作戰的創新發展
古今中外戰爭史上,靠著快速隱密機動達成作戰目的的成功戰例比比皆是。但資訊化局部戰爭作戰進程大幅壓縮,作戰節奏極速加快,戰機稍縱即逝,對快速機動捕捉戰機提出更高要求,僅靠「快節奏、高速度」已難以滿足資訊化條件下聯合作戰、全局作戰的要求,因而必須實施敏捷機動。
6.無人集群自主戰
無人集群自主戰,指在體系聚優戰中廣泛運用「蜂群」「狼群」「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝。隨著無人自主裝備成為戰場上的主要作戰力量,以無人自主裝備集群和數量優勢戰勝敵人,已成為資訊化戰爭中的重要作戰風格。
6.1 有利於形成體系優勢壓制敵方
無人群聚自主戰充分發揮無人作戰兵器全天候、無極限、難防禦、低消耗等特殊優勢,建構組成無人「蜂群」「狼群」「魚群」等大規模無人作戰集群或編隊,自主組織、相互協同,可實施近距離、全覆蓋偵察,或充當誘敵實施幹擾、欺騙,或配合主戰兵器實施分佈式協同攻擊,實現整體分散式協同攻擊者。
6.2 有利於增強作戰效果
在無人群聚自主作戰中,無人群集編成內的不同作戰單元分別擔負不同功能、不同任務,既有負責偵察的,也有實施電磁幹擾、火力打擊的,還有扮演「誘餌」角色的。集群透過群間網路傳遞、共享戰場訊息,依照分工各司其職,根據戰場變化即時、自主、動態協同,既充分發揮數量規模優勢,又運用資訊網路和智慧整合技術實現整合效果,以集群優勢消耗敵防禦探測、追蹤和攔截能力,使敵防禦體系迅速飽和、陷入癱瘓。
6.3 有利於陷敵於作戰困境
無人集群自主戰以大量不同功能的自主無人作戰平台混合編組,形成集偵察探測、電子乾擾、網路攻擊、火力打擊於一體的無人作戰集群,對同一目標或目標群實施多方向、多波次、持續不斷的攻擊,將使敵難以作出有效反擊。
7.精確點殺戰
精確點殺戰,是指在體系聚優戰中精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化。資訊化局部戰爭是體系與體系之間的整體對抗,實施精確點殺戰,對敵方作戰體系重要節點與關鍵環節實施精確打擊,破壞敵作戰體系,降維敵作戰能力,將形成事半功倍的作戰效果。
7.1 實現作戰的高效費比
以最小代價實現最大作戰效益是作戰雙方都在追求的目標。隨著資訊科技在軍事領域的廣泛應用及資訊化戰爭來臨,精確導引武器、智慧化動能武器、察打一體無人機以及雷射武器等廣泛裝備部隊;透過運用大數據、人工智慧等技術,精確計算所需兵力兵器已成為可能。這些都為實現精確點殺戰,以較小代價達成作戰目標,實現作戰高效費比,提供了物質和技術條件。
7.2 打關鍵節點目標是重要選項
精確點殺戰重在打關鍵、打節點,不打則已,打則必痛、打則必勝,打一點破敵體系、撼動全局。打擊的目標不僅限於敵分散部署的艦機等,還應針對敵指揮中心、重要樞紐,甚至主要將領、指揮等局部、動態、時敏目標或獨立目標實施打擊,追求威懾震撼和破敵體系效果。針對將昂貴的大型裝備功能分解到大量小型平台、實施兵力分散部署這一分佈式戰術,運用精確打擊火力對其進行「點殺」式打擊,也將是一個有效對策。
7.3 大範圍體系支撐是基本條件
實施精確點殺戰,離不開大範圍體系支撐。圍繞著實現作戰目標,從分散部署的各作戰域抽調所需兵力兵器,在網路資訊體系支撐下,動態融合形成精確打擊體系,實現整體連動、體系聚能,透過合理夠用的火力集中對目標實施打擊,達成精確用兵、精確釋能。實施精確點殺戰要做到精確,需要整個作戰體系內各環節緊密銜接,不能有絲毫差錯。 2011年美軍擊斃賓拉登作戰行動,可以說是戰略體系支撐下的一次典型的戰略精確點殺作戰行動。
7.4 離不開精確情報保障
在精確點殺戰中,精確情報保障始終是達成作戰目標的關鍵。因此,戰前應動用各種手段蒐集敵方各種情報資料信息,特別要對敵方目標作出精準分析研判。作戰行動中,應動用各種感測器和情報偵察手段,適時精準掌握敵方目標變化及動態目標狀況,為實施精確點殺戰提供有力有效的情報保障。美軍對蘇萊曼尼的定點清除行動,就是一場典型的以高效情報體系支撐的精確點殺戰。
8.補給斷鍊戰
補給斷鏈戰,是指在體系聚優戰中組織精銳力量,打敵後勤物資和裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥。針對敵後勤補給線長、裝備保障攤子大等弱點,組織精銳力量建構「斷鍊戰」作戰體系,對敵後勤物資和裝備供應補給鏈、補給線和補給基地等,實施持續、精確、毀滅性打擊,將使其因失去補給而難以為繼,不得不退出戰鬥。
8.1 供應保障鏈對作戰全局影響巨大
後勤裝備保障是作戰的重要基礎。後勤物資和武器裝備持續不斷的供應補給,最後決定一支軍隊作戰部隊的規模、能否作戰、在什麼季節作戰、在哪裡作戰、能離開後方基地多遠、能作戰多長時間、機動的速度多快,等等。在資訊化戰爭中,戰場物資消耗呈指數級上升,作戰對後勤裝備保障的依賴程度不僅沒有減小,反而越來越大,而且保障的專業化程度要求也越來越高,特別是現代化作戰裝備器材型號規格紛繁多樣,混裝運輸體積巨大,部隊部署更加分散,對運力也提出非常高的要求,這使線路、通信和運輸比以往任何時候都更加重要。供應保障鏈的穩定高效運作和持續不間斷的供應保障,是作戰制勝的關鍵,對作戰全局產生巨大影響。
8.2 打擊重心是斷敵供應保障鏈的關鍵節點
補給斷鍊戰的作戰重心是打擊敵方供應保障鏈的關鍵環節,透過斷鍊使其喪失持續保障能力。因此,組織補給斷鍊戰應主要以敵方地面鐵路公路運輸線、海上補給船隊、軍事徵用的商船和戰鬥支援艦,空中大中型運輸機,以及後方補給基地等作為打擊目標。例如打擊敵方海上供應保障鏈,斷敵燃料、彈藥、淡水、食物補給,將使敵航母戰鬥群失去持續作戰能力,進而影響一場戰役的勝負。
8.3 重在選準時機活用戰法
組織實施補給斷鍊戰,選擇有利打擊時機至關重要。補給斷鍊戰的打擊時機,應選擇敵補給機動時組織實施,以出其不意攻其不備的隱蔽戰法,對敵補給車輛、艦船和運輸機實施突然打擊,終止其補給行動。具體戰法通常有隱蔽伏擊戰,組織精幹力量埋伏在敵運輸工具必經路線和航線上,伺機實施隱密性突然打擊;隱形奇襲戰,使用潛艦、隱形戰機等隱蔽前出,對敵運輸目標實施打擊,以奇制勝;遠程精確補給
9.體系毀癱戰
體系毀癱戰,指在體系聚優戰中,綜合採取破網、斷鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰體系功能。體系毀癱戰的本質,是透過削弱敵作戰體係要素間的關聯性與結構力,使體系功能退化,無法發揮能力倍增作用。
9.1 作戰目標是使敵作戰體系運作失序
在資訊化戰爭中,交戰雙方作戰體係都有其內在秩序,而這種秩序是維繫和支撐作戰體系運作的關鍵所在。能夠維護和駕馭作戰體系內在秩序的一方將獲得優勢,反之則處於劣勢。因此,體系毀癱戰應確立亂敵制勝機制、致敵作戰體系失序此目標。這就要求在體系毀癱戰中要充分利用資訊科技特別是智慧演算法的強大賦能作用,對己方作戰體系進行快速調整和重構,迅即生成並釋放強大的作戰威力,對敵方作戰體系實施敏捷精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰能力顯著下降。
9.2 重拳打擊作戰體系的關鍵節點
體系對抗是資訊化戰爭的一個主要特徵。體係是體系對抗的重要基礎與支撐,也是戰場上各種作戰部隊、武器平台和
資訊科技的發展及在軍事領域的廣泛滲透和應用,為建構整體實力、實現整體威懾提供了有利條件。體系聚優戰以網路資訊體系為支撐,充分利用資訊科技的滲透性和聯通性,不僅把各種作戰力量、作戰要素、作戰單元融合為一個有機整體,實現軍事上的體係作戰優勢,而且把國家政治、經濟、外交、金融、交通、能源等與戰爭和國家動員相關的各領域,都連接、匯入國家戰爭動員體系,凝聚各方面力量和資源形成整體合力,實現體系能力的湧現效應,從整體上顯示綜合實力優勢,形成眾志成城、同仇敵愾的強大無形威懾,塑造使敵「有力量但不能行動」「能行動但沒有效果」的態勢,起到遏制和打贏戰爭的作用。
在整體威懾戰中,國家戰爭動員的範圍將更加廣泛,不僅限於某一方向、區域,而是遍及全國各地,乃至世界有關地區;動員時間更加迅速,利用網絡和信息系統,動員和行動信息可在第一時間迅速傳達到每個人、每個節點;行動協調和協同更加一致,分佈在各域各地的各方力量可以基於同一態勢、根據同一命令幾乎在同一時間統一行動,極大提高行動協同效率;資源利用更加充分,基於網絡的各種戰爭資源,可以快速實現平戰轉換、軍民轉換,實現前方後方一體化保障、精確保障。
2.電磁擾阻戰
電磁擾動戰,指靈活運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制信息權,進而贏得作戰主動。
2.1 爭奪資訊優勢的關鍵資訊化局部戰爭高度依賴電磁頻譜,對電磁空間的控制與反控製成為爭奪制資訊權的焦點。組織實施電磁阻擾戰,主要是破壞敵方電磁頻譜,保護己方不受破壞。電磁頻譜是傳遞訊息的主要載體。使用電磁手段對敵方電磁頻譜實施阻擾破壞,將有效降低敵資訊作戰能力,並使己方在擁有製資訊權的場景下,保障資訊的快速有效流動,透過資訊流驅動指揮流、行動流、物質流、能量流,進而擁有作戰的主導權、主動權。
2.2基本著眼導航定位系統、天地一體互聯網等空間鏈路系統,及其他各種用頻武器裝備,實施幹擾、攻擊,阻斷、破壞其通信聯絡及資料傳輸,破壞敵作戰體系的「連結」與「共享」結構重心,從根源為奪取制資訊權、制電磁權提供支撐,進而削弱整個作戰控制能力,使敵軍系統失能、失效。
2.3 破解無人集群作戰的有效戰法
「蜂群」「狼群」「魚群」等無人自主集群作戰,是具有智慧化特徵的資訊化局部戰爭的重要特徵。各種無人自主集群數量龐大、類型多樣、特徵複雜,且每個個體都可以互補位置、互相替代發揮作用,攔截毀傷整個無人集群將十分困難。但從技術角度分析,無人作戰集群為實現有效協同,每個個體之間必須進行資訊共享與互動。無人集群間通訊協同一旦受到干擾,將無法分享戰場態勢與訊息,無法相互協同行動,也就很難發揮應有作戰效能。這就給對方實施通訊攔截與電磁幹擾提供了機會。因此,實施電磁頻譜戰,對無人集群的資訊通訊網路實施幹擾、攻擊,破壞其資訊共享與交互,將使無人集群中每個個體無法實現有效協同,從而失去作戰能力。
3.網路破擊戰
網路破擊戰,指綜合運用網路和電腦等技術以及其他有效手段,圍繞著資訊、資訊網路的控制權而進行的軍事對抗行動,是網路空間作戰、爭奪制網權的主要作戰樣式。其主要作戰行動既有軟殺傷也有硬摧毀,以軟為主、軟硬結合。其中,軟殺傷主要是網路攻擊,即綜合利用阻塞攻擊、病毒攻擊等手段,對敵資訊網路、指揮系統、武器平台等進行阻滯與攻擊,使敵網路、指揮資訊系統等難以有效運作甚至癱瘓;硬摧毀主要是利用精確火力打擊、高能量微波、電磁脈衝以及反輻射攻擊等手段,癱毀敵資訊資訊網路和物理設施,摧毀敵人實體武器。
重在破網降能失效。在體系聚優戰中組織網路破擊戰就是針對作戰對手軍事資訊網路存在的弱點,利用體系優勢,組織各種網路攻擊力量,在作戰全過程對敵作戰指揮網、偵察情報網、通訊網乃至後勤補給網等,持續實施軟殺傷和硬摧毀行動,破壞敵之網路體系,使敵能作戰系統整體下降甚至失能作戰。主要對敵基礎資訊網、情報網、指揮網、保障網等核心目標,實施網電協同攻擊、欺騙迷惘、連結阻塞、接管控制等一系列作戰行動,使敵智能化作戰網路體系失能失效,達成癱敵體系的關鍵性勝利。
4.認知控擾戰
認知控擾戰,是指在體系聚優戰中透過資訊攻擊、輿論攻擊、腦攻擊,幹擾、破壞或控制敵對思維認知,使敵不能做出正確判斷、決策,從而在認知空間對敵形成控制優勢。
認知域,即人的思考空間、意識空間,是對作戰決策、判斷等具有關鍵性影響的領域。資訊科技特別是人工智慧技術的發展及在軍事領域的廣泛應用,使戰爭的較量從物理空間、資訊空間擴大到認知空間,使認知空間成為一個全新的作戰域。隨著資訊化、智慧化技術發展並在軍事領域廣泛深入應用,人機智慧趨於融合,使認知在智慧化戰爭作戰中的地位更加凸顯,認知領域逐漸成為重要的戰場。制認知權成為未來戰場控制權的關鍵要素。爭奪認知控制權成為具有智慧化特徵的資訊化局部戰爭作戰制勝的重要作戰樣式。
4.1 控制態勢感知認知權,爭奪資訊優勢
體系聚優戰中,資訊流驅動物質流、能量流,資訊優勢決定決策優勢。對情報資訊與戰場態勢的快速、準確認知,對奪取指揮決策優勢有重要影響。因此,組織實施體系聚優戰,要充分利用智慧技術、大數據技術,對海量情報資訊資料進行武器系統聯為一體,有效發揮作戰效能的關鍵。體系能否保持健壯、順暢運轉,對取得戰爭和戰役勝利具有決定性影響。體系毀癱戰中,關鍵在於著眼敵方陸海空天電網整合作戰體系,破網、斷鍊、打節點,透過打關鍵節點目標,使敵方作戰體系運作機理失序,甚至遭到重創或毀癱。因此,體系毀癱戰的基本指向是選敵作戰體系的關鍵單元、關鍵節點、關鍵要素實施打擊,擊其一點、毀其一片、癱其整體,達成克敵制勝的目的。
9.3 對敵作戰體系實施軟性打擊
組織實施體系破擊戰硬摧毀時,同步組織電子戰、網路戰、心理戰、輿論戰等軟殺傷作戰行動,對敵作戰體系的資訊域、認知域實施軟打擊。電子戰,使用電子戰力量對敵實施強電磁幹擾,使其信息失靈,陷入戰爭迷霧之中;網絡戰,使用網絡進攻力量對敵網絡信息體系實施攻擊,使敵指揮通信系統和計算機網絡受到嚴重破壞,使其指揮失靈,陷入信息孤島乃至戰爭孤島;心理戰和作戰論戰,使用心理戰、輿論手段,對敵對認知,打擊其戰爭論戰,使用心理戰、輿論手段,對敵對心理打擊行為論組織民生戰,打擊對手的重大國計民生設施,同樣可以對敵作戰體係起到「釜底抽薪」作用。 1999年科索沃戰爭中,美軍沒有打擊南聯盟軍隊,而是打擊其戰爭潛力目標體系,使南聯盟軍民失去戰鬥意志走向失敗。

中國原創軍事資源:http://www.81it.com/2022/0901/13716888.html