Tag Archives: @intelligentization

Analyzing Chinese Military’s New Changes in Ways to Win Intelligent Warfare

解析中國軍隊智戰打贏方式新變化

現代英語:

●From war of attrition to war of dissipation—

An Analysis of the New Changes in the Ways to Win in Intelligent Warfare

■Wang Ronghui

President Xi Jinping pointed out that the core of studying warfare is to understand the characteristics, laws, and winning mechanisms of modern warfare. From the clash of bronze swords to the roar of tank engines and the saturation attacks of unmanned “swarms,” ​​each leap in the form of warfare has profoundly changed the way wars are won. In the long era of cold weapons, firearms, and mechanized warfare, attrition warfare used the offsetting of national wealth and resources to exhaust the opponent’s will to resist. However, the new military revolution, led by the information technology revolution and accelerating towards the intelligent era, is pushing the way wars are won to a completely new dimension—dissipation warfare, which transforms the traditional method of war, which is mainly based on the consumption of materials and energy, into a comprehensive method of war that integrates the offsetting of materials, the offsetting of energy, and the confrontation of information.

The war of attrition is an iron law of traditional warfare.

In the long years before and during the Industrial Age, wars were primarily based on the struggle for material and energy resources, and the balance of power often tipped in favor of the side that could withstand greater material and energy losses.

The war of attrition is a major winning tactic in traditional warfare. In cold weapon warfare, the focus of confrontation lies in the number of soldiers, their physical endurance, and the competition of metal weapons and food reserves. The outcome of the war often depends on the size of the army and the strength of the logistical chain. For example, the siege warfare that was common in ancient times was essentially a war of attrition between the defender’s supplies and the attacker’s manpower and equipment. In firearms warfare, the use of gunpowder did not reduce the attrition of war; on the contrary, it pushed it to a new level. The dense charges of line infantry in the Napoleonic Wars, and the brutal trench warfare of Verdun and the Somme in World War I, all exemplified the nature of attrition warfare—trading space for steel and flesh. Mechanized warfare, with the advent of tanks, airplanes, and aircraft carriers, pushed the scale of material and energy consumption to its peak. In World War II, the Battle of Kursk on the Soviet-German front and the brutal Battle of Iwo Jima in the Pacific were the ultimate clashes between a nation’s industrial capacity and its military’s ability to withstand casualties.

The war of attrition is essentially a contest of material and energy resources. It’s a contest of size and reserves—static or slowly accumulating factors such as population size, resource reserves, industrial capacity, and troop strength. Its primary objective is to destroy the enemy’s manpower, war materials, and seize their territory and resources; essentially, it’s a contest of material and energy resources between the opposing sides. Klausewitz’s assertion that “war is a violent act that forces the enemy to submit to our will” is fundamentally based on the logic of violent attrition. The winning mechanism of a war of attrition is that victory belongs to the side that can more sustainably convert material resources into battlefield lethality and can withstand greater losses.

The war of attrition has revealed significant historical limitations in practice. From the long-term experience of traditional warfare, the fundamental limitations of the war of attrition manifest in the enormous loss of life and material wealth, the unbearable high costs to society, and the waste of vast amounts of energy and resources on non-critical targets, indiscriminate bombardment, and large-scale but inefficient charges. When both sides are evenly matched in strength and determined, the outcome is difficult to predict, leading to repeated back-and-forth battles and easily resulting in a protracted quagmire of attrition, as seen on the Western Front of World War I. Faced with increasingly networked and information-based modern warfare systems, the attrition model relying on large-scale firepower coverage is insufficient for accurately targeting the opponent’s key nodes and functional connections, resulting in diminishing returns.

The information technology revolution gave rise to the prototype of dissipative warfare

The information technology revolution in the second half of the 20th century injected a disruptive variable into the form of warfare. Information began to surpass matter and energy, becoming the core element of victory, and information warfare took center stage in history.

The focus of information warfare has shifted. The Gulf War is considered a milestone in information warfare, where multinational forces, relying on reconnaissance aircraft, early warning aircraft, electronic warfare systems, precision-guided weapons, and C4ISR systems, achieved overwhelming information superiority, realizing “one-way transparency” on the battlefield. The focus of this war was no longer on the complete annihilation of the opponent’s massive ground forces, but rather on the systematic destruction of its command and control systems, air defense systems, communication hubs, and logistical supply lines, leading to the rapid collapse of the opponent’s overall combat capability and plunging them into a chaotic state of fragmented operations and command failure. This marks a shift in the focus of warfare from “hard destruction” in the physical domain to “system disruption” and functional paralysis in the information domain.

The methods of winning in informationized warfare have changed. Informationized warfare alters the way and objectives of material and energy utilization through information superiority. The winning strategy is no longer simply about “consuming” the opponent’s materials and energy, but rather about guiding the flow of materials and energy through efficient information flow, precisely targeting the “key links” of the enemy’s operational system. This aims to achieve maximum chaos, disorder, functional collapse, and overall effectiveness reduction in the enemy system with minimal material and energy input. Therefore, informationized warfare is beginning to pursue “entropy increase,” or increased disorder, in the enemy’s operational system, causing it to move from order to disorder. This indicates that dissipative warfare, reflecting the complex system confrontation of intelligent warfare, is beginning to emerge.

Dissipation warfare is a typical form of intelligent warfare.

With the rapid development of intelligent technology and its widespread application in the military, intelligent warfare is becoming a new form of warfare after information warfare, and dissipation warfare is becoming a typical mode of intelligent warfare.

Dissipation warfare has adapted to the demands of the modern world security landscape. In the era of intelligence, the rapid development and application of intelligent technologies such as broadband networks, big data, cloud computing, brain-computer interfaces, intelligent chips, and deep learning have broadened connections between countries and nations. Non-traditional security threats have emerged and intertwined with traditional security threats, leading to a continuous expansion of the subject and scope of intelligent warfare. The time and space of warfare are constantly extending, and the warfare system is shifting from relatively closed to more open, forming a higher-level and broader-ranging confrontation. Dissipation warfare, as a winning strategy in the intelligent era, is becoming increasingly prominent.

Dissipation warfare reflects the historical development of methods for winning wars. Dissipation warfare has always existed, but before the advent of intelligent warfare, due to technological constraints, it remained in a relatively rudimentary and simple form, where the confrontation could only be manifested as a confrontation between one of the elements of matter, energy, or information. Cold weapon warfare was primarily a confrontation centered on the human body and dominated by material elements; firearms and mechanized warfare was primarily a confrontation centered on platforms and dominated by energy elements; and information warfare is primarily a confrontation centered on network information systems and dominated by information elements. Entering the intelligent era, intelligent technology highly unifies the cognitive, decision-making, and action advantages in the confrontation between enemies and ourselves. In essence, it highly unifies matter, energy, and information. By empowering, gathering, driving, and releasing energy with intelligence, it forms an intelligent warfare form dominated by intelligent elements and centered on intelligent algorithms. Its typical form is dissipation warfare, which reflects the complex system confrontation of intelligent warfare.

Dissipation warfare embodies the resilience of complex warfare systems. From the perspective of the winning mechanism, to gain a competitive advantage, it is necessary to construct a closed loop of dissipation warfare that enables rapid “perception, decision-making, action, and evaluation” based on the fundamental principles of “negative entropy infusion, threshold determination, phase transition triggering, and victory control.” This continuously increases the enemy’s entropy value in a dynamic hybrid game, causing the enemy to lose its overall combat capability. From the perspective of the path to victory, dissipation warfare emphasizes the comprehensive use of material attrition, energy confrontation, and information confrontation. Internally, it “establishes order” to achieve logical concentration, immediate accumulation, complementary advantages, and integrated strengths to form comprehensive combat power. Externally, it “increases entropy” by continuously exerting its effects through military, political, economic, technological, cultural, and diplomatic components until the effectiveness accumulates to a certain level, resulting in “rise and fall” and achieving a sudden change in combat power and the emergence of systemic effectiveness. In terms of its basic characteristics, dissipative warfare is characterized by comprehensive confrontation and competition, multiple subjects across domains, complex and diverse forms, integrated and concentrated forces, and the emergence of accumulated effectiveness. The core of the confrontation has evolved from the destruction of the physical domain and the control of the information domain to a game of disrupting and maintaining the “orderliness” inherent in the complex system of intelligent warfare.

Dissipation warfare encompasses various forms of intelligent warfare. Beyond the traditional attrition warfare across land, sea, air, space, cyberspace, and electronic domains, dissipation warfare also includes various forms of conflict employed by one or more countries against their adversaries in multiple social spheres. These include political isolation and encirclement, economic and financial blockades, disruption of technological supply chains, cultural strategic export, authoritative media campaigns to seize the initiative in discourse, manipulation of public opinion through trending events, AI-assisted social media information warfare, and the use of proxies to establish multilateral battlefields. The diverse forms of dissipation warfare allow it to be conducted in both war and peacetime. Sun Tzu’s Art of War principle, “Victorious armies first secure victory and then seek battle,” takes on new meaning in the context of war preparation in the intelligent age.

The shift in winning strategies from war of attrition to war of dissipation

Dissipative warfare manifests itself in the comprehensive confrontation across multiple domains, including the physical and information domains, in the intelligent era. It embodies a high degree of unity among political contests, economic competition, military offense and defense, cultural conflicts, and diplomatic checks and balances, reflecting the openness, complexity, and emergence of intelligent warfare systems.

The evolution from a war of attrition to a war of dissipation represents a comprehensive and profound transformation. The basis for victory has shifted from relying on the stock of resources such as population, mineral deposits, and industrial base to relying on information superiority, intelligent algorithm superiority, network structure superiority, and the ability to dynamically control the flow of energy and information. The target of action has shifted from focusing on destroying physical entities such as soldiers, tanks, and factories to focusing on dismantling the “function” and “order” of the war system. The pursuit of effectiveness has shifted from the absolute destruction and annihilation of manpower to the pursuit of highly efficient “asymmetric paralysis,” that is, inducing the greatest chaos and incompetence of the enemy’s combat system at the lowest cost on one’s own side, pursuing “paralysis” rather than “destruction.” The focus of war has shifted from confrontation mainly in the physical domains such as land, sea, and air to a comprehensive game in multiple domains such as the physical domain and the information domain. While the physical domain still exists, it is often determined by the advantages of higher-dimensional domains.

The evolution from war of attrition to war of dissipation reflects a change in the decisive advantage. In the era of intelligent warfare, victory will no longer simply belong to the side with the largest steel torrent, but will inevitably belong to the side that can more efficiently “establish order” and “induce entropy”—that is, the side that can maintain a highly ordered and efficient operation of its own war system, while precisely and intelligently dismantling the order of the enemy’s system, forcing it into irreversible “entropy increase” and chaos. To gain a decisive advantage in war, we must adapt to the openness, complexity, and emergence of intelligent warfare systems, shifting from the extensive consumption and utilization of single materials, energy, and information to a war system where intelligent advantages dominate dissipation, and striving to gain the initiative and advantage in comprehensive multi-domain games.

The evolution from war of attrition to war of dissipation is an inevitable trend driven by the tide of technological revolution. Technology is the core combat capability and the most active and revolutionary factor in military development. Currently, intelligent technology is developing rapidly. Only by proactively embracing the wave of intelligence and firmly grasping the key to victory in the accurate understanding, intelligent control, and efficient dissipation of the complex system of warfare can we remain invincible in the ever-changing landscape of future global competition and the profound transformation of warfare.

現代國語:


●從消耗戰到耗散戰——

試析智能化戰爭制勝方式新變革

■王榮輝

閱讀提示

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。從青銅劍的碰撞到坦克發動機的轟鳴再到無人“蜂群”的飽和攻擊,戰爭形態的每一次躍遷都深刻改變著戰爭制勝方式。在漫長的冷兵器、熱兵器和機械化戰爭時代,消耗戰以國家財富資源的對沖抵消來耗盡對手的抵抗意志。然而,以信息技術革命為先導,並加速向智能化時代邁進的新軍事革命,正將戰爭制勝方式推向全新的維度——耗散戰,即將傳統的以物質、能量消耗為主,轉變為集物質對耗、能量對沖和信息對抗綜合一體的戰爭方式。

消耗戰是傳統戰爭形態的鐵律

在工業時代及其之前的漫長歲月裡,戰爭主要是基於物質與能量要素的對抗,勝負的天平往往向能夠承受更大物質與能量損耗的一方傾斜。

消耗戰是傳統戰爭形態的主要制勝方式。冷兵器戰爭,對抗重心在於兵員數量、體能耐力、金屬兵器與糧秣儲備的比拼,戰爭勝負往往取決於誰的兵員數量規模大,誰的後勤鏈條更牢固。如古代比較多見的圍城戰本質就是守城方物資儲備與攻城方兵力器械的消耗戰;熱兵器戰爭,火藥的運用並未削弱戰爭消耗,反而將其推至新高度。拿破侖戰爭線列步兵的密集沖鋒,第一次世界大戰的凡爾登、索姆河戰役戰壕對峙的殘酷絞殺,無不體現著“以鋼鐵和血肉換取空間”的消耗戰本質;機械化戰爭,坦克、飛機、航母等平台的登場,將物質與能量的消耗規模推向巔峰。第二次世界大戰中,蘇德戰場的庫爾斯克坦克大會戰、太平洋戰場慘烈的硫磺島爭奪戰,都是國家工業產能與軍隊承受傷亡能力的終極對撞。

消耗戰實質是基於物質與能量要素的比拼。消耗戰比拼的是體量和存量,是人口基數、資源儲備、工業產能、兵力規模等靜態或可緩慢累積的要素,主要目標是摧毀敵方有生力量、戰爭物資、剝奪其領土和資源,實質上是對抗雙方物質與能量要素的比拼。克勞塞維茨“戰爭是迫使敵人服從我們意志的一種暴力行為”的論斷,底層邏輯正是暴力消耗。消耗戰的制勝機理是:勝利屬於能更持久地將物質資源轉化為戰場殺傷力,並能承受更大損失的一方。

消耗戰在實踐中暴露出重大歷史局限性。從傳統戰爭的長期實踐看,消耗戰的根本局限性體現為巨大的生命、物質財富損失,社會難以承受的高昂成本,以及大量能量與資源被浪費在非關鍵目標或盲目炮擊、大規模但低效的沖鋒等無效對抗上。當對抗雙方實力接近且意志堅定時,勝負難分,反復拉鋸,極易陷入如第一次世界大戰西線戰場般的長期消耗泥潭。面對日益網絡化、信息化的現代作戰體系,依靠大規模火力覆蓋的消耗模式,難以精准打擊對手關鍵節點與功能連接,效果事倍功半。

信息技術革命催生耗散戰雛形

20世紀下半葉的信息技術革命,為戰爭形態注入了顛覆性變量,信息開始超越物質與能量,成為核心制勝要素,信息化戰爭形態登上歷史舞台。

信息化戰爭的重心發生轉移。海灣戰爭被視為信息化戰爭的裡程碑,多國部隊憑借偵察機、預警機、電子戰系統、精確制導武器和C4ISR系統,形成壓倒性信息優勢,實現了戰場“單向透明”。這場戰爭的重點不再是徹底殲滅對手龐大的地面部隊,而是轉向系統性摧毀其指揮控制系統、防空體系、通信樞紐和後勤補給線,導致對手整體作戰能力迅速瓦解,陷入各自為戰、指揮失靈的混亂狀態。這標志著戰爭重心開始從物理域的“硬摧毀”,向信息域的“體系破擊”和功能癱瘓轉移。

信息化戰爭的制勝方式發生變化。信息化戰爭通過信息優勢改變物質、能量運用的方式與目標。制勝方式不再是單純追求“消耗”對手的物質與能量,而是通過高效的信息流引導物質流與能量流,精確作用於敵作戰體系的“關鍵鏈”,以最小的物質與能量投入,達成敵方體系最大程度的混亂失序、功能瓦解和整體效能塌縮。由此可見,信息化戰爭開始追求敵方作戰體系的“熵增”即混亂度增加,使其從有序走向無序,表明反映智能化戰爭復雜體系對抗的耗散戰已經初露端倪。

耗散戰是智能化戰爭的典型方式

隨著智能化技術快速發展及其在軍事上的廣泛應用,智能化戰爭正成為信息化戰爭後的新戰爭形態,而耗散戰則成為智能化戰爭的典型方式。

耗散戰適應了世界安全形勢的時代要求。進入智能化時代,寬網絡、大數據、雲計算、腦機連接、智能芯片、深度學習等智能技術及其應用快速發展,各國家、民族之間的聯系更加廣泛,非傳統安全威脅興起並與傳統安全威脅交織,智能化戰爭主體和范疇不斷拓展,戰爭時間與空間不斷外延,戰爭體系從相對封閉走向更加開放,形成更高層次和更大范圍的對抗,耗散戰這一智能化時代的戰爭制勝方式日益凸顯。

耗散戰反映了戰爭制勝方式的歷史發展。耗散戰實際上始終存在,只不過在智能化戰爭形態出現之前,由於技術的制約,一直處於較為低級的形式和簡單狀態,戰爭對抗只能突出體現為物質、能量和信息某一種要素間的對抗。冷兵器戰爭主要表現為以物質要素為主導的以人體為中心的對抗,熱兵器和機械化戰爭主要表現為以能量要素為主導的以平台為中心的對抗,信息化戰爭主要表現為以信息要素為主導的以網絡信息體系為中心的對抗。進入智能時代,智能化技術將敵我對抗中的認知優勢、決策優勢和行動優勢高度統一起來,實質是將物質、能量和信息三者高度統一,通過以智賦能、以智聚能、以智驅能、以智釋能,形成了以智能要素為主導的、以智能算法為中心的智能化戰爭形態,其典型方式即為反映智能化戰爭復雜體系對抗的耗散戰。

耗散戰體現了戰爭復雜體系的韌性比拼。從制勝機理看,要取得對抗優勢,必須以“負熵灌注、閾值認定、相變觸發、勝勢控制”為基本原理,構建自身快速“感知、決策、行動、評估”耗散戰閉環,在動態混合博弈中持續增加敵方熵值,致敵喪失整體作戰能力。從制勝路徑看,耗散戰強調綜合運用物質對耗、能量對沖、信息對抗等形式,對內“制序”,達成邏輯集中、即時富聚,優勢互補、一體聚優,形成綜合戰力;對外“致熵”,通過軍事、政治、經濟、科技、文化、外交等組分系統持續發揮作用,至效能累積達到某一程度形成“漲落”,實現戰力突變和體系效能湧現。從基本特征看,耗散戰表現為對抗綜合博弈、主體跨域多元、形式復雜多樣、力量一體富聚、效能累積湧現,對抗的核心從物理域的摧毀、信息域的掌控,躍升為對智能化戰爭復雜體系內在“有序性”的破壞與維持的博弈。

耗散戰涵蓋了智能化戰爭的多種形式。除了戰爭對抗雙方在傳統的陸、海、空、天、網、電等空間的消耗對抗,耗散戰更包括了一國或者多國對作戰對手在多類社會域所采取的政治孤立圍困、經貿金融封鎖、科技產業斷鏈、文化戰略輸出、權威媒體造勢搶佔話語主動、制造熱點事件導控大眾認知、AI助力社交媒體編織信息繭房、利用代理人開設多邊戰場等斗爭形式。耗散戰的多樣化呈現形式使其在戰時和平時均可進行,《孫子兵法》講的“勝兵先勝而後求戰”,在智能化時代的戰爭准備中被賦予新的涵義。

從消耗戰到耗散戰的制勝方式之變

耗散戰表現在智能時代中物理域、信息域等多域的綜合對抗,體現出政治較量、經濟比拼、軍事攻防、文化沖突和外交制衡等形式的高度統一,反映了智能化戰爭體系所具有的開放性、復雜性和湧現性。

從消耗戰到耗散戰的演進是一次全方位深層次的變革。制勝基礎從依賴人口、礦藏、工業基礎等資源存量的比拼,轉向依賴信息優勢、智能算法優勢、網絡結構優勢以及對能量流、信息流的動態調控能力;作用對象從聚焦摧毀士兵、坦克、工廠等物質實體,轉向聚焦瓦解戰爭體系的“功能”與“有序性”;效能追求從對有生力量的絕對摧毀與殲滅,轉向追求高效能的“非對稱癱瘓”,即以己方最小代價,引發敵方作戰體系的最大混亂與失能,追求“打癱”而非“打爛”;戰爭重心從主要在陸地、海洋、天空等物理域的對抗,轉向物理域、信息域等多域的綜合博弈。物理域的對抗雖然依舊存在,但往往由更高維域的優勢所決定。

從消耗戰到耗散戰的演進反映了制勝優勢的變化。智能化戰爭時代,勝利將不再簡單歸屬於擁有最龐大鋼鐵洪流的一方,而必然歸屬於能更高效地“制序”與“致熵”的一方——即能夠維系己方戰爭體系高度有序、高效運轉,同時精准智能地瓦解敵方體系有序性,迫使其陷入不可逆“熵增”和混亂的一方。要贏得戰爭制勝優勢,必須適應智能化戰爭體系的開放性、復雜性和湧現性要求,從單一物質、能量和信息的粗放式消耗和運用轉變到以智能優勢主導戰爭體系的耗散,力爭在多領域的綜合博弈中贏得主動和優勢。

從消耗戰向耗散戰的演進是科技革命洪流裹挾下的必然趨勢。科技是核心戰斗力,是軍事發展中最活躍、最具革命性的因素。當前,智能化科技迅猛發展,只有主動擁抱智能化浪潮,將制勝之鑰牢牢掌握在對戰爭復雜體系有序性的精確認知、智能調控與高效耗散之中,才能在未來世界博弈的風雲變幻與戰爭方式的深刻變革中立於不敗之地。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/16408788821.html

Chinese Military Development Trends & Governance Strategies of Weaponizing Artificial Intelligence

中國軍事發展趨勢與人工智能武器化治理策略

現代英語:

The weaponization of artificial intelligence (AI) is an inevitable trend in the new round of military revolution. Recent local wars have further spurred relevant countries to advance their AI weaponization strategies in order to seize the high ground in future warfare. The potential risks of AI weaponization cannot be ignored. It may intensify the arms race and disrupt the strategic balance; empower operational processes and increase conflict risks; increase accountability and collateral damage; and lower the proliferation threshold, leading to misuse and abuse. To address this, it is necessary to strengthen international strategic communication to ensure consensus and cooperation among countries on the military applications of AI; promote dialogue and coordination in the development of laws and regulations to form a unified and standardized legal framework; strengthen ethical constraints on AI to ensure that technological development conforms to ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.

    [Keywords] Artificial intelligence, military applications, security risks, security governance [Chinese Library Classification Number] F113 [Document Code] A

    The weaponization of artificial intelligence (AI) refers to the application of AI-related technologies, platforms, and services to the military field, making them a crucial driving force for military operations and thereby enhancing their efficiency, precision, and autonomy. With the widespread application of AI technology in the military, major powers and military leaders have increased their strategic and resource investment, accelerating research and application. The frequent regional conflicts in recent years have further stimulated the battlefield application of AI, profoundly shaping the nature of warfare and the future direction of military transformation.

    It cannot be ignored that artificial intelligence, as a rapidly developing technology, inherently carries potential risks due to its immature technology, inaccurate scenario matching, and incomplete supporting conditions. Furthermore, human misuse, abuse, or even malicious use can easily bring various risks and challenges to the military and even international security fields. To earnestly implement the global security initiatives proposed by General Secretary Xi Jinping, we must directly confront the global trend of weaponizing artificial intelligence, deeply analyze the potential security risks arising from the weaponization of AI, and consider scientifically feasible governance approaches and measures.

    Current trend of weaponization of artificial intelligence

    In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of warfare, changing future combat systems, and influencing the future direction of military transformation. Major military powers have regarded artificial intelligence as a disruptive key technology that will change the rules of future warfare, and have invested heavily in the research and development and application of AI weapons.

    The weaponization of artificial intelligence is an inevitable trend in military transformation.

    With the rapid development of science and technology, the necessity and urgency of military transformation are becoming increasingly prominent. Artificial intelligence, by simulating human thought processes, extends human mental and physical capabilities, enabling rapid information processing, analysis, and decision-making. It can also develop increasingly complex unmanned weapon system platforms, thereby providing unprecedented intelligent support for military operations.

    First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, making it difficult to effectively cope with the demands of large-scale, high-speed, and highly complex intelligence processing. The introduction of artificial intelligence (AI) technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of AI technology can build intelligent monitoring systems, providing high-precision, real-time intelligence perception services. In the field of intelligence reconnaissance, AI technology has the ability to process multiple “information streams” in real time, thereby greatly improving analysis efficiency. ① By using technologies such as deep learning, it is also possible to “see through the phenomena to the essence,” uncovering the deep-seated connections and causal relationships within various fragmented intelligence information, rapidly transforming massive amounts of fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.

    Secondly, it provides data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situational awareness. Its advantage lies in its ability to perform key tasks such as data mining, data fusion, and predictive analysis. In informationized and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is enormous, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become important tools to assist commanders in managing intelligence data, assessing the enemy situation, proposing operational plans, and formulating plans and orders. For example, the US military’s ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system, developed by Raytheon Technologies Corporation, encompasses intelligence gathering, surveillance, target identification, and tracking functions. It can aggregate data from diverse information sources such as satellites, ships, aircraft, and ground stations, and perform in-depth analysis and processing. This not only significantly improves the speed at which commanders acquire information but also provides data support through intelligent analysis systems, making decision-making faster, more efficient, and more accurate.

    Third, it provides crucial support for unmanned combat systems. Unmanned combat systems are a new type of weapon system capable of independently completing military missions without direct human control. They primarily consist of intelligent unmanned combat platforms, intelligent munitions, and intelligent combat command and control systems, possessing significant autonomy and intelligence. As a technological equipment leading the transformation of future warfare, unmanned combat systems have become a crucial bargaining chip in inter-state military competition. This system achieves adaptability to different battlefield environments and operational spaces by utilizing key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise target strikes. The design philosophy of this system is “unmanned platform, manned system,” essentially an intelligent extension of manned combat systems. For example, the MQM-57 Falconer unmanned aerial vehicle developed by the U.S. Defense Advanced Research Projects Agency (DARPA) employs advanced artificial intelligence technology and possesses highly autonomous target recognition and tracking capabilities.

    Fourth, it provides technical support for military logistics and equipment support. In the context of information warfare, the pace of war has accelerated, mobility has increased, and combat consumption has significantly risen. The traditional “overstocking” support model is no longer adequate to meet the rapidly changing needs of the modern battlefield. Therefore, higher demands are placed on combat troops to provide timely, location-appropriate, demand-based, and precise rapid and precise logistical support. Artificial intelligence, as a technology with spillover and cross-integration characteristics, is merging with cutting-edge technologies such as the Internet of Things, big data, and cloud computing. This has enabled AI knowledge, technology, and industry clusters to fully penetrate the military logistics field, significantly enhancing logistical equipment support capabilities.

    Major countries are actively developing military applications of artificial intelligence.

    To enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan are accelerating their strategic deployments for the military applications of AI. First, they are updating and adjusting their top-level strategic plans in the field of AI to provide clear guidance for future development. Second, in response to the needs of future warfare, they are accelerating the deep integration of AI technology with the military field, promoting the intelligent, autonomous, and unmanned development of equipment systems. Furthermore, they are actively innovating operational concepts to drive innovation in combat forces, thereby enhancing combat effectiveness and competitive advantage.

    First, strategic planning is being developed. Driven by a strategic obsession with pursuing military, political, and economic hegemony through technological dominance, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense released the “Data, Analytics, and Artificial Intelligence Adoption Strategy,” aiming to expand the advanced capabilities of the entire Department of Defense system to gain a lasting military decision-making advantage. The Russian military issued what is known as “Version 3.0,” the “Russian Armaments Development Program for 2024-2033,” designed to guide weapons development over the next decade. The program emphasizes continued advancement in nuclear and conventional weapons development, with a focus on research into artificial intelligence and robotics, hypersonic weapons, and other strike weapons based on new physical principles.

    Second, the development of advanced equipment systems. Since 2005, the U.S. military has released a “Roadmap for Unmanned Systems” every few years to envision and design unmanned system platforms in various fields, including air, ground, and surface/underwater, connecting the development chain of unmanned weapons and equipment from research and development to production, testing, training, combat, and support. Currently, more than 70 countries worldwide are capable of developing unmanned system platforms, and various types of drones, unmanned vehicles, unmanned boats (vessels), and unmanned underwater vehicles are emerging rapidly. On July 15, 2024, former Chairman of the Joint Chiefs of Staff Mark Milley stated in an interview with *Defense News* that by 2039, one-third of the U.S. military force will be composed of robots. The Russian military’s Platform-M combat robot, the “Lancet” suicide drone, and the S-70 “Hunter” heavy drone have already been deployed in combat.

    Third, innovate future operational concepts. Operational concepts are forward-looking studies of future warfare styles and methods, often guiding new force organization and leapfrog development of weaponry. In recent years, the US military has proposed operational concepts such as “distributed lethality,” “multi-domain warfare,” and “mosaic warfare,” attempting to guide the direction of military transformation. Taking “mosaic warfare” as an example, this concept treats various sensors, communication networks, command and control systems, and weapon platforms as “mosaic fragments.” These “fragment” units, empowered by artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems, forming an on-demand integrated, highly flexible, and mobile lethality network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan,” which aims to expand multi-domain operations to an all-domain operations concept, connecting sensors from various services to a unified “Internet of Things” and using artificial intelligence algorithms to help improve operational command decisions. ③

    War and conflict have spurred the weaponization of artificial intelligence.

    In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukraine crisis, and the Kazakh-Israeli conflict have continued, further stimulating the development of the weaponization of artificial intelligence.

    In the Libyan conflict, both sides employed various types of drones for reconnaissance and combat missions. A report by the UN Group of Experts on Libya noted that the Turkish-made Kargu-2 drone conducted a “pursuit and long-range engagement” operation in Libya in 2020, autonomously attacking retreating enemy soldiers. This event marked the first use of a lethal autonomous weapon system in actual combat. As American scholar Zachary Callenburn stated, if anyone were to die in such an autonomous attack, it would likely be the first known instance of an AI-powered autonomous weapon being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan successfully penetrated Armenian air defenses using a formation of Turkish-made TB2 “Standard” drones and Israeli-made Harop drones, gaining air superiority and the initiative. The significant success of Azerbaijani drone warfare largely stemmed from the Armenian army’s underestimation of the enemy’s capabilities and insufficient understanding of the importance and threat posed by drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They have flexibly utilized advanced equipment such as reconnaissance and strike drones and loitering munitions, which has not only improved combat efficiency but also greatly enhanced the surprise and lethality of the battles. ⑤

    During the 2022 Ukraine crisis, both Russia and Ukraine extensively used military-grade and commercial drones for reconnaissance, surveillance, artillery targeting, and strike missions. The Ukrainian army, through the use of the TB2 “Standard” drone and the US-supplied “Switchblade” series of suicide drones, conducted precision strikes and achieved high kill rates, becoming a notorious “battlefield killer.” In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock onto bombing targets in Gaza, marking as many as 37,000 Palestinians in Gaza as suspected “militants” and identifying them as targets for direct assassination. This Israeli military action drew widespread international attention and condemnation.

    Security risks arising from the weaponization of artificial intelligence

    From automated command systems to intelligent unmanned combat platforms, and then to intelligent decision-making systems in cyber defense, the application of artificial intelligence (AI) technology in the military field is becoming increasingly widespread and has become an indispensable part of modern warfare. However, with the trend of weaponizing AI, its misuse, abuse, and even malicious use will also bring significant risks and challenges to international security.

    It intensifies the arms race and disrupts the strategic balance.

    In the information and intelligent era, the disruptive potential of artificial intelligence is irresistible to major military powers, who are all focusing on the development and application of AI military capabilities, fearing that falling behind in this field will result in missing strategic opportunities. Deepening the military application of artificial intelligence can achieve “asymmetric advantages” in a lower cost and with higher efficiency.

    First, countries are vying for “first-mover advantage.” When a country achieves a technological lead in the development of intelligent weapon systems, it signifies that the country possesses more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and contingency response. This advantage includes higher autonomy, intelligence, and adaptability, thereby increasing the country’s military strength and strategic competitive advantage. At the same time, the military advantage of a first-mover can become a security threat to competitors, leading to a competitive race among countries to advance the military application of advanced technologies. ⑦ In August 2023, U.S. Deputy Secretary of Defense Kathleen Hicks announced the “Replicator initiative,” which aims to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧

    Secondly, the lack of transparency in the development of AI-based military equipment by various countries may exacerbate the arms race. This is mainly due to two reasons: First, AI technology is an “enabling technology” that can be used to design a variety of applications. This means that verifying the specific military applications of AI is extremely difficult, unlike nuclear weapons, where monitoring uranium, centrifuges, and weapon and delivery systems can help determine whether a country is developing or deploying nuclear weapons. The differences between semi-autonomous and fully autonomous weapon systems are primarily due to differences in computer software algorithms, making it difficult to verify treaty compliance through physical means. Second, to maintain their strategic advantage, countries often keep details of the military applications of advanced technologies secret, preventing adversaries from discerning their strategic intentions. In the current international environment, this lack of transparency not only intensifies the arms race but also sows the seeds for future escalation of conflict.

    Third, the uncertainty of national strategic intentions also exacerbates the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence, and the escalation of war largely depends on other countries’ perception of its capabilities, rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often feature risk competition, testing courage more than force. The relationship between major adversaries is determined by which side is ultimately willing to invest more power, or to make it appear as if it is about to invest more power.⁹ An actor’s perception of the capabilities of others, whether true or false, significantly influences the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors, uncertain of the other’s intentions, will become suspicious of the competitor’s military capabilities and the intentions behind their military development, often taking reciprocal measures, namely, developing their own military to meet their own security needs. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.

    Empowering operational processes increases the risk of conflict.

    Empowered by big data and artificial intelligence technologies, traditional combat processes will undergo intelligent restructuring, shifting from “situational awareness—command and decision-making—offensive and defensive coordination—comprehensive support” to “intelligent situational awareness across the entire domain—human-machine integrated hybrid decision-making—manned/unmanned autonomous coordination—proactive and on-demand precise support.” However, while this intelligent restructuring of combat processes improves operational efficiency and accuracy, it also increases the risk of conflict and miscalculation.

    First, wars that break out at “machine speed” will increase the risk of hasty action. Artificial intelligence weapon systems demonstrate formidable capabilities in precision and reaction speed, making future wars likely to erupt at “machine speed.”⑩ However, excessively rapid warfare will also increase the risk of conflict. In areas that emphasize autonomy and reaction speed, such as missile defense, autonomous weapon systems, and cyberspace, faster reaction times will bring significant strategic advantages. At the same time, they will drastically reduce the time window for the defending side to react to military actions, placing commanders and decision-makers under immense “time pressure,” exacerbating the risk of “hasty action,” and increasing the possibility of unexpected escalation of the crisis.

    Second, relying on system autonomy may increase the probability of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on dynamic changes in mission parameters, efficiently achieving human-preset goals. Increased autonomy not only significantly reduces reliance on human labor and improves overall operational efficiency, but is also regarded by defense planners as a key element in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, because human commanders cannot react quickly enough, they may gradually delegate control to autonomous systems, increasing the probability of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly identified a friendly Tornado fighter jet as an anti-radiation missile. Under pressure with only a few seconds to react, the commanders chose to launch the missile, resulting in the deaths of two pilots.⑫

    Third, it weakens the effectiveness of crisis termination mechanisms. During the Cold War, the US and the Soviet Union spearheaded a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear war. In these measures, humans played a crucial “monitoring” role, able to initiate termination measures within sufficient time to avert large-scale humanitarian catastrophes should a risk of spiraling out of control. However, with the increasing computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become more rapid, precise, and destructive, potentially weakening human intervention mechanisms for crisis termination.

    Accountability for war is difficult, and collateral damage is increased.

    Artificial intelligence weapon systems make it more difficult to define responsibility in war. In traditional warfare, weapon systems are controlled by humans, and if errors or crises occur, the human operator or the developer of the operating system bears the corresponding responsibility. Artificial intelligence technology itself weakens human agency and control, making the attribution of responsibility for technical actions unclear.

    First, there’s the “black box” problem of artificial intelligence. While AI has significant advantages in processing and analyzing data, its internal operating principles and causal logic are often difficult for humans to understand and explain. This makes it challenging for programmers to correct erroneous algorithms, a problem often referred to as the “black box” of algorithmic models. If an AI-powered weapon system poses a security threat, the “algorithm black box” could become a convenient excuse for those responsible to shirk accountability. Those seeking accountability would face generalized blame-shifting and deflection, ultimately pointing the finger at the AI ​​weapon system. In practice, the inability to understand and explain the decision-making process of AI can lead to a series of problems, such as decision-making errors, trust crises, and information misuse.

    Secondly, there is the issue of delineating human-machine responsibility in military operations. When an AI system malfunctions or makes a decision-making error, should it be treated as an independent entity and held responsible? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this responsibility delineation lies not only in the technical aspects but also in the ethical and legal ones. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human-preset programs and algorithms, therefore their responsibility cannot be completely independent of humans. On the other hand, in certain situations, AI systems may exceed the pre-set limits of humans and make independent decisions; how to define their responsibility in such cases also becomes a difficult problem in the field of arms control.

    Thirdly, there is the issue of the allocation of decision-making power between humans and AI weapon systems. Depending on the level of machine autonomy, AI systems can execute tasks in three decision-making and control modes: semi-autonomous, supervised autonomy, and fully autonomous. In semi-autonomous systems, human decision-making power rests with the user; in supervised autonomy, humans supervise and intervene when necessary; in fully autonomous operations, humans do not participate in the process. As the military application of AI deepens, the role of humans in combat systems is gradually shifting from the traditional “human-in-the-loop” model to “human-on-the-loop,” evolving from direct controllers within the system to external supervisors. However, this shift also raises new questions. How to ensure that AI weapon systems adhere to human ethics and values ​​while operating independently is a major challenge currently facing the field of AI weapon development.

    Lowering the threshold for dissemination leads to misuse and abuse.

    Traditional strategic competition typically involves large-scale weapons system development and procurement, requiring substantial financial and technological support. With the maturation and diffusion of artificial intelligence (AI) technology, its accessibility and low cost make it possible for even small and medium-sized countries to develop advanced intelligent weapons systems. Currently, strategic competition in the field of military AI is primarily concentrated among major military powers such as the US and Russia. However, in the long run, the proliferation of AI technology will broaden the scope of strategic competition, posing a disruptive threat to the existing strategic balance. Once smaller countries possessing AI technology achieve relatively strong competitiveness, their willingness to confront threats from major powers may increase.

    First, artificial intelligence (AI) facilitates the development of lightweight and agile combat methods, encouraging smaller states and non-state actors to engage in small-scale, opportunistic military adventures to achieve their strategic objectives at a lower cost and with more diverse means. Second, the rapid development of AI has led to the increasing prominence of new forms of warfare such as cyber warfare and electronic warfare. In a highly competitive battlefield environment, malicious third-party actors can manipulate information to influence military planning and strategic deterrence, leading to escalation. The 2022 Ukraine crisis saw numerous instances of online disinformation used to confuse the public. Third, the widespread application of AI technology has also reduced strategic transparency. Traditional military strategies often rely on extensive intelligence gathering, analysis, and prediction; however, with the assistance of AI, operational planning and decision-making processes become more complex and unpredictable. This lack of transparency can lead to misunderstandings and misjudgments, thereby increasing the risk of conflict escalation.

    Governance Path of Artificial Intelligence Weaponization Security Risks

    To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military applications of artificial intelligence, promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework, strengthen ethical constraints on artificial intelligence to ensure that technological development conforms to ethical standards, and actively participate in global security governance cooperation to jointly safeguard the peace and stability of the international community.

    We attach great importance to strategic communication at the international level.

    Artificial intelligence governance is a global issue that requires concerted efforts from all countries to resolve. On the international stage, the interests of nations are intertwined yet conflicting; therefore, addressing global issues through effective communication channels is crucial for maintaining world peace and development.

    On the one hand, it is essential to accurately grasp the challenges of international governance of artificial intelligence. This involves understanding the consensus among nations on the weaponization of AI, while also closely monitoring policy differences among countries regarding the security governance of AI weaponized applications. Through consultation and cooperation, relevant initiatives should be aligned with the UN agenda to effectively prevent the misuse of AI for military purposes and promote its peaceful application.

    On the other hand, it is crucial to encourage governments to reach relevant agreements and build strategic mutual trust through official or semi-official dialogues. Compared to the “Track 1 dialogue” at the government level, “Track 1.5 dialogue” refers to dialogues involving both government officials and civilians, while “Track 2 dialogue” is a non-official dialogue conducted by academics, retired officials, and others. These two forms of dialogue offer greater flexibility and serve as important supplements and auxiliary means to official intergovernmental dialogues. Through diverse dialogue methods, officials and civilians can broadly discuss possible paths to arms control, share experiences and expertise, and avoid escalating the arms race and worsening tensions. These dialogue mechanisms will provide countries with a continuous platform for communication and cooperation, helping to enhance mutual understanding, strengthen strategic mutual trust, and jointly address the challenges posed by the militarization of artificial intelligence.

    Scientifically formulate laws and ethical guidelines for artificial intelligence.

    Artificial intelligence (AI) technology itself is neither right nor wrong, good nor evil. However, there are certainly distinctions of good and evil intentions in the design, research and development, manufacturing, use, operation, and maintenance of AI. The weaponization of AI has sparked widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on complex battlefields? Furthermore, if AI weapon systems cause unintended harm, how should liability be determined? Is entrusting life-or-death decision-making power to machines in accordance with ethical standards? These concerns highlight the necessity of strengthening ethical constraints on AI.

    On the one hand, it is essential to prioritize ethics and integrate the concept of “intelligent for good” from the very source of technology. In the design of AI military systems, values ​​such as human-centeredness and intelligent for good should be embedded within the system. The aim is to prevent potential indiscriminate killing and harm caused by AI at the source, control its excessive destructive power, and prevent accidental damage, thereby limiting the extent of damage caused by AI weapon systems to the smallest possible range. Currently, nearly a hundred institutions and government departments both domestically and internationally have published various AI ethics principles documents, and the academic and industrial communities have reached a consensus on basic AI ethical principles. In 2022, China’s “Position Paper on Strengthening Ethical Governance of Artificial Intelligence,” submitted to the United Nations, provided an important reference for the development of global AI ethics regulation. The document explicitly emphasizes that AI ethics regulation should be promoted through measures such as institutional construction, risk management, and collaborative governance.

    On the other hand, it is necessary to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of artificial intelligence entities. Strict technical review standards should be established to ensure the safety and reliability of AI systems. Comprehensive testing should be conducted before AI systems are deployed to ensure they do not negatively impact human life and social order. The legal responsibilities of developers, users, maintainers, and other parties throughout the entire lifecycle of AI systems should be clearly defined, and corresponding accountability mechanisms should be established.

    We will pragmatically participate in international cooperation on artificial intelligence security governance.

    The strategic risks posed by the military applications of artificial intelligence further highlight the importance of pragmatic international security cooperation. It is recommended to focus on three key areas:

    First, we should promote the formulation of guidelines for the application of artificial intelligence in the military field. Developing codes of conduct for the military application of artificial intelligence is an important responsibility of all countries in regulating its military use, and a necessary measure to promote international consensus and comply with international regulations. In 2021, the Chinese government submitted its “Position Paper on Regulating the Military Application of Artificial Intelligence” to the UN Convention on Certain Conventional Weapons Conference, and in 2023, it released the “Global Artificial Intelligence Governance Initiative,” both of which provide constructive references for improving the codes of conduct for regulating the military application of artificial intelligence.

    Second, it is essential to establish a suitable regulatory framework. The dual-use nature of artificial intelligence (AI) involves numerous stakeholders, making the role of non-state actors such as NGOs, technical communities, and technology companies increasingly prominent in the global governance of AI, thus becoming a crucial force in building a regulatory framework for the military application of AI. Technical regulatory measures that countries can adopt include: clarifying the scope of AI technology use, responsible parties, and penalties for violations; strengthening technological research and development to improve the security and controllability of the technology; and establishing regulatory mechanisms to monitor the entire process of technology research and development and application, promptly identifying and resolving problems.

    Third, we will jointly develop technologies and solutions for AI security. We encourage the inclusion of bilateral or multilateral negotiations between governments and militaries in the dialogue options for military AI applications, and promote extensive exchanges on military AI security technologies, operating procedures, and practical experience. We will also promote the sharing and reference of relevant risk management technical standards and usage norms, and continuously inject new stabilizing factors into the international security and mutual trust mechanism in the context of the militarization of AI.

    (The author is the director and researcher of the National Defense Science and Technology Strategy Research Think Tank at the National University of Defense Technology, and a doctoral supervisor; Liu Hujun, a master’s student at the School of Foreign Languages ​​of the National University of Defense Technology, also contributed to this article.)

現代國語:

朱啟超
《人民論壇》(2025年02月05日 第 02版)

【摘要】人工智能武器化是新一輪軍事變革的必然趨勢,近年來的局部戰爭衝突進一步刺激相關國家推進人工智能武器化戰略部署,搶占未來戰爭制高點。人工智能武器化的潛在風險不容忽視,將可能加劇軍備競賽,打破戰略平衡;賦能作戰流程,加大衝突風險;提升問責難度,增加附帶傷亡;降低擴散門檻,導致誤用濫用。對此,應加強國際間戰略溝通,確保各國在人工智能軍事應用上的共識與協作;推進法律法規建設的對話與協調,以形成統一規範的法律框架;加強人工智能倫理約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

【關鍵詞】人工智能 軍事應用 安全風險 安全治理 【中圖分類號】F113 【文獻標識碼】A

人工智能武器化,是將人工智能相關技術、平台與服務應用到軍事領域,使其成為賦能軍事行動的重要驅動力量,進而提升軍事行動的效率、精準度和自主性。隨著人工智能技術在軍事領域的廣泛應用,各主要大國和軍事強國紛紛加大戰略與資源投入,加快研發應用步伐。近年來頻發的地區戰爭衝突也進一步刺激了人工智能的戰場運用,並深刻形塑戰爭形態以及軍事變革的未來走向。

不容忽視的是,人工智能作為一類快速發展中的技術,其本身由於內在技術的不成熟、場景匹配的不准確、支持條件的不完備,可能存在潛在風險,而由於人為的誤用、濫用甚至惡意使用,也容易給軍事領域乃至國際安全領域帶來多種風險挑戰。認真貫徹落實習近平總書記提出的全球安全倡議,必須直面世界範圍內人工智能武器化的發展趨勢,深入分析人工智能武器化應用可能帶來的安全風險,並思考科學可行的治理思路與舉措。

當前人工智能武器化的發展趨勢

近年來,人工智能在軍事領域的應用,正在從根本上重塑未來戰爭形態、改變未來作戰體系,影響軍事變革的未來走向。主要軍事大國已將人工智能視為改變未來戰爭規則的顛覆性關鍵技術,紛紛挹注大量資源,推進人工智能武器的研發與應用。

人工智能武器化是軍事變革的必然趨勢。

隨著科學技術的飛速發展,軍事變革的必要性與緊迫性愈發凸顯。人工智能通過模擬人類的思維過程,延展人類的腦力與體力,可實現信息快速處理、分析和決策,可研發日益複雜的無人化武器系統平台,從而為軍事行動提供前所未有的智能化支持。

一是為軍事情報偵察與分析提供智能支持。傳統的情報偵察方式受到人力和時間等多重因素制約,難以有效應對大規模、高速度和高複雜度的情報處理需求。人工智能技術的引入,為情報偵察領域帶來革新和突破。在軍事基礎設施中,應用人工智能技術,可構建智能監測系統,提供高精度實時的情報感知服務。在情報偵察領域,人工智能技術具備對多個“信息流”進行實時處理的能力,從而極大地提高分析效率。 ①通過使用深度學習等技術工具,還可以“透過現像看本質”,挖掘出各類碎片化情報信息中的深層脈絡與因果聯繫,將海量碎片化數據快速轉變為可以利用的情報,從而提升情報分析的質效。

二是為作戰指揮與決策提供數據支持。人工智能在戰場態勢感知方面為作戰指揮和軍事決策提供有力支持。 ②其優勢在於能夠進行數據挖掘、數據融合以及預測分析等關鍵任務。在信息化智能化戰爭中,戰場環境瞬息萬變,情報信息量龐大,要求決策響應迅速且準確。因此,先進的計算機系統就成為協助指揮人員管理情報數據、進行敵情判斷、提出作戰方案建議以及擬制計劃與命令的重要工具。以美軍為例,美國雷神技術公司(Raytheon Technologies Corporation)研製的ISTAR(情報、監視、目標識別和跟踪)系統,涵蓋了情報採集、監視、目標識別及跟踪功能,可匯聚來自衛星、艦船、飛機及地面站等多元信息源的數據,並對其進行深度分析與處理。這不僅顯著提高了指揮官獲取信息的速度,而且可藉助智能分析系統提供數據支持,使決策更加快速、高效和精準。

三是為無人作戰系統提供重要支撐。無人作戰系統是一種無需人類直接操縱,便可獨立完成軍事任務的新型武器裝備系統,主要包括智能化無人作戰平台、智能化彈藥和智能化作戰指揮控制系統等組成部分,具備顯著的自主性和智能化特徵。無人作戰系統,作為引領未來戰爭形態變革的技術裝備,已成為國家間軍事競爭的重要籌碼。該系統通過運用自主導航、目標識別、路徑規劃等關鍵技術,實現了不同戰場環境及作戰空間的適應能力。借助深度學習、強化學習等先進算法,無人作戰系統能夠獨立完成導航任務,並實現精準打擊目標。這種系統的設計理念是“平台無人,系統有人”,其本質是對有人作戰系統的智能化延伸。例如,美國國防部高級研究計劃局(DARPA)研發的“MQM-57獵鷹者”無人機,就採用了先進的人工智能技術,具備高度自主的目標識別和追踪功能。

四是為軍事後勤與裝備保障提供技術支持。在信息化戰爭的背景下,戰爭進程加快、機動性提升、作戰消耗顯著增加。傳統的“超量預儲”保障模式已無法適應現代戰場快速變化的需求,因此,對作戰部隊進行適時、適地、適需、適量的快速精確後裝保障提出了更高的要求。人工智能作為一種具有溢出帶動和交叉融合特性的技術,與物聯網、大數據、雲計算等前沿技術相互融合,使得人工智能知識群、技術群和產業群全面滲透到軍事後裝領域,顯著提升了後勤裝備保障能力。

主要國家紛紛佈局人工智能軍事應用。

為增強在人工智能領域的全球競爭力,美國、俄羅斯、日本等主要大國加緊對人工智能軍事應用的戰略佈局。首先,通過更新和調整人工智能領域的頂層戰略規劃,為未來的發展提供明確指導;其次,針對未來戰爭需求,加快人工智能技術與軍事領域的深度融合,推動裝備系統的智能化、自主化和無人化發展;此外,積極創新作戰概念,以驅動作戰力量創新,進而提升作戰效能和競爭優勢。

一是製定戰略規劃。基於技術霸權追求軍事霸權、政治霸權、經濟霸權的戰略偏執,美國正加快自身軍事智能化進程。 2023年11月,美國國防部發布《數據、分析與人工智能採用戰略》,旨在擴展整個國防部體系的先進能力,以獲得持久的軍事決策優勢。俄軍頒布被稱為“3.0版本”的《2024年至2033年俄羅斯武器裝備發展綱要》,旨在為未來10年武器裝備發展提供指導,綱要強調繼續推進核武器和常規武器建設,並重點研究人工智能和機器人技術、高超音速武器和其他基於新物理原理的打擊兵器。

二是研發先進裝備系統。美軍自2005年開始每隔幾年都會發布一版“無人系統路線圖”,以展望並設計空中、地面、水面/水下等各領域無人系統平台,貫通研發—生產—測試—訓練—作戰—保障等無人化武器裝備發展鏈路。目前,世界上已有70多個國家可以研發無人化系統平台,各種類型的無人機、無人車、無人船(艇)、無人潛航器如雨後春筍般不斷出現。 2024年7月15日,美軍參聯會前主席馬克·米利接受《美國防務新聞》採訪時稱,到2039年,三分之一的美軍部隊將由機器人組成。俄軍研發的平台-M作戰機器人、“柳葉刀”自殺式無人機和S70“獵人”重型無人機等,已投入實戰檢驗。

三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來先後提出“分佈式殺傷”“多域戰”“馬賽克戰”等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種傳感器、通信網絡、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智能技術賦能支持下,通過網絡信息系統可動態鏈接、自主規劃、協同組合,從而形成一個按需集成、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計劃》,該計劃旨在將多域作戰向全域作戰概念拓展,將各軍種傳感器連接到一個統一“物聯網”中,利用人工智能算法幫助改善作戰指揮決策。 ③

戰爭衝突刺激人工智能武器化進程。

近年來,利比亞衝突、納卡衝突、烏克蘭危機、哈以沖突等局部衝突不斷,進一步刺激了人工智能武器化的發展進程。

在利比亞衝突中,交戰雙方採用多種型號無人機執行偵察和作戰任務。據聯合國利比亞問題專家小組發布的報告指出,土耳其製造的“卡古-2”(Kargu-2)無人機2020年在利比亞執行了“追捕並遠程交戰”行動,可自主攻擊撤退中的敵方士兵。這一事件標誌著致命性自主武器系統在實戰中的首次運用。如美國學者扎卡里·卡倫伯恩所述,若有人在此類自主攻擊中不幸喪生,這極有可能是歷史上首個已知的人工智能自主武器被用於殺戮的例子。在2020年納卡衝突中,阿塞拜疆運用土耳其生產的“旗手”TB2無人機編隊和以色列生產的“哈洛普”無人機成功突破了亞美尼亞防空系統,掌握了戰場製空權和主動權。 ④ 阿塞拜疆軍隊無人機作戰的顯著成效,在很大程度上源於亞美尼亞軍隊的“輕敵”心態,對無人機在現代戰爭中的重要性和威脅性認識不足。其次,從進攻策略的角度來看,阿塞拜疆軍隊在無人機戰法上進行了大膽的創新。他們靈活運用察打一體無人機和巡飛彈等先進裝備,不僅提升了作戰效率,也大大增強了戰鬥的突然性和致命性。 ⑤

在2022年爆發的烏克蘭危機中,俄羅斯和烏克蘭都廣泛使用軍用級和商用無人機執行偵察監視、火砲瞄準和打擊任務。烏克蘭軍隊通過使用“旗手”TB2無人機以及美國援助的“彈簧刀”系列自殺式無人機,實施精確打擊和高效殺傷,成為令世界矚目的“戰場殺手”。在哈以沖突中,以色列軍方被指控使用名為“薰衣草”(Lavender)的人工智能係統來識別並鎖定加沙境內的轟炸目標,曾將多達3.7萬名加沙巴勒斯坦人標記為“武裝分子”嫌疑對象,並將其認定為可直接“暗殺”的目標,以軍行動引發了國際社會廣泛關注和譴責。 ⑥

人工智能武器化帶來的​​安全風險

從自動化指揮系統到智能無人作戰平台,再到網絡防禦中的智能決策系統,人工智能技術在軍事領域的應用正變得愈發普遍,已成為現代戰爭不可或缺的一部分。然而,人工智能武器化的趨勢下,其誤用、濫用甚至惡意使用,也將給國際安全帶來不可忽視的風險挑戰。

加劇軍備競賽,打破戰略平衡。

在信息化智能化時代,人工智能所具有的顛覆性潛力讓軍事大國都難以抗拒,紛紛聚焦人工智能軍事能力的開發和運用,唯恐在這一領域落後而喪失戰略機遇。深化人工智能軍事應用,則能夠以更低成本、更高效率的方式獲得“非對稱優勢”。

一是各國紛紛搶抓“先行者優勢”。當一個國家在智能武器系統開發領域取得技術領先地位時,意味著該國具備更高級的人工智能和相關應用能力,使其在武器系統開發、控制和應急響應等方面具有先發優勢。這種優勢包括更高的自主性、智能化程度和自適應能力,從而增加了該國的軍事實力和戰略競爭優勢。與此同時,先行者的軍事優勢可能會成為競爭對手的安全威脅,導致各國在先進技術的軍事應用上呈現出你爭我趕的態勢。 ⑦ 2023年8月,美國國防部副部長凱瑟琳·希克斯宣布了“複製者計劃”(Replicator initiative),該倡議力求在不到兩年的時間內在印太地區部署數千個“自主武器系統”。 ⑧

二是各國人工智能軍備建設的不透明性可能加劇軍備競賽。這主要有兩個方面的原因:一是人工智能技術是一種可用於設計多種應用的“使能技術”,這意味著人工智能軍事應用具體情況核查難度較高,難以像核武器可以通過對鈾、離心機以及武器和運載系統的監測來判斷一個國家是否在進行核武器的開發或部署。半自主、完全自主武器系統之間的差別主要是由於計算機軟件算法不同導致的,很難通過物理核查手段來對各國的條約執行情況進行核查。二是各國為了保持己方的戰略優勢,往往對先進技術的軍事應用相關細節採取保密措施,從而使對手無法探知其戰略意圖。在當前國際環境中,這種不透明性不僅僅加劇了軍備競賽,更為未來衝突升級埋下了伏筆。

三是各國戰略意圖的不確定性也會加劇軍備競賽。人工智能對於戰略穩定、核威懾和戰爭升級的影響,很大程度上取決於他國對於其能力的感知,而非其實質能力。正如美國學者托馬斯·謝林指出,國際關係常常具有風險競爭的特徵,更多的是對勇氣而不是武力的考驗,主要對手之間的關係是由哪一方最終願意投入更大的力量,或者使之看起來即將投入更大的力量來決定的。 ⑨ 一個行為體對於他者能力的感知,無論真假,都會在很大程度上影響軍備競賽進程。如果一個國家大力發展智能武器系統,競爭對手在不確定對方意圖的情況下,會對競爭對手的軍備能力及發展軍備的意圖產生猜忌,往往採取對等措施,即通過發展軍備來滿足自身安全需求。正是這種意圖的模糊性刺激了技術積累,加劇武器部署的不穩定性,最終導致惡性循環。

賦能作戰流程,加大衝突風險。

在大數據和人工智能技術賦能下,傳統作戰流程將實現智能化再造,即由“態勢感知—指揮決策—攻防協同—綜合保障”向“全域態勢智能認知—人機一體混合決策—有人/無人自主協同—主動按需精准保障”轉變。然而,作戰流程的智能化再造雖然提高了作戰的效率和精確性,但也提升了衝突和誤判的風險。

一是以“機器速度”爆發的戰爭將增加倉促行動的風險。人工智能武器系統在精確度和反應速度上表現出強大的能力,使得未來戰爭將以“機器速度”爆發。 ⑩ 但戰爭速度過快也將升高衝突風險。在導彈防禦、自主武器系統和網絡空間等重視自主性以及反應速度的領域,更快的反應速度將帶來巨大的戰略優勢,同時也極大地壓縮了防禦方對軍事行動作出反應的時間窗口,導致作戰指揮員和決策者置身於巨大的“時間壓力”之下,加劇了“倉促行動”的風險,並增加了危機意外升級的可能性。

二是依賴系統自主性可能增加壓力下的誤判機率。美國國防部認為,“高度自主化的人工智能係統,能夠根據任務參數的動態變化,自主選擇並執行相應操作,高效實現人類預設的目標。自主性的增加不僅大幅減少了對人力的依賴,提高了整體操作效率,更被國防規劃者視為保持戰術領先、確保戰場優勢的關鍵要素。”⑪然而,由於人類指揮官無法作出足夠快的反應,可能逐漸將控制權下放給自主系統,增加誤判機率。 2003年3月,美國“愛國者”導彈系統曾錯誤地將友軍的“龍捲風”戰鬥機標記為反輻射導彈,指揮人員在只有幾秒鐘反應時間的壓力狀態下,選擇發射導彈,造成了兩名飛行員的死亡。 ⑫

三是削弱了危機終止機制的有效性。冷戰時期,美蘇主導構建了一系列限制性措施來遏制危機的升級,避免其演化為大規模的核戰爭。在這些措施中,人類扮演著至關重要的“監督者”角色,在可能出現風險失控時,能夠在充足的時間內啟動終止措施,避免大規模人道主義災難發生。但是,隨著人工智能係統運算能力的提升及其與機器學習的深度融合,作戰響應變得更為迅捷、精確和具有破壞性,人類對於危機的終止干預機制將可能被削弱。

戰爭問責困難,增加附帶傷亡。

人工智能武器系統使得戰爭責任更難界定。在傳統作戰模式下,由人類控制武器系統,一旦造成失誤或危機,人類操作員或者操作系統的研發者將承擔相應的責任。人工智能技術本身弱化了人類的能動性和控制能力,致使技術性行為的責任歸屬變得模糊不清。

一是人工智能“黑箱”問題。儘管人工智能在處理和分析數據方面有著顯著優勢,但是其內部運行規律和因果邏輯卻常常難以被人類理解和解釋,這使得程序員難以對錯誤算法進行糾偏除誤,這一問題常常被稱為算法模型的“黑箱”。一旦人工智能武器系統產生安全危害,“算法黑箱”可能成為相關責任方推卸責任的合理化藉口,追責者只能面臨泛化的卸責與推諉,並將責任矛頭指向人工智能武器系統。在實踐中,如果無法理解並解釋人工智能的決策過程,可能會引發一系列的問題,如決策失誤、信任危機、信息濫用等。

二是軍事行動中人機責任劃分問題。當人工智能係統出現故障或者決策失誤時,是否應將其視為一種獨立的實體來承擔責任?或者,是否應該將其視為一種工具,由人類操作者承擔全部或部分責任?這種責任劃分的複雜性不僅在於技術層面,更在於倫理和法律層面。一方面,人工智能係統雖然能夠自主決策,但其決策過程仍然受到人類預設的程序和算法限制,因此其責任不能完全獨立於人類。另一方面,人工智能係統在某些情況下可能會超越人類的預設範圍,作出獨立的決策,此時其責任又該如何界定,也成為軍控領域的難題。

三是人與人工智能武器系統的決策權分配問題。按照機器自主權限的不同,人工智能係統能夠以半自主、有監督式自主以及完全自主三種決策與控制方式執行任務。在半自主系統中,行動的決策權由人類掌控;在有監督式自主行動中,人類實施監督並在必要時干預;在完全自主行動中,人類不參與行動過程。隨著人工智能軍事應用程度的逐漸加深,人在作戰系統中的角色正經歷由傳統的“人在迴路內”模式逐步向“人在迴路上”轉變,人類從系統內部的直接操控者演化為系統外部的監督者。然而,這一轉變也引發了新的問題。如何確保人工智能武器系統在獨立運作時仍能遵循人類倫理和價值觀,這是當前人工智能武器研發領域面臨的重大挑戰。

降低擴散門檻,導致誤用濫用。

傳統的戰略競爭通常涉及大規模的武器系統研發和採購,需要大量資金和技術支持。人工智能技術成熟擴散後,具有易獲取且價格低廉等優勢,即便是中小國家也可能具備開發先進智能武器系統的能力。當前,軍用人工智能領域的戰略競爭主要集中在美俄等軍事大國之間。但長遠來看,人工智能技術的擴散將擴大戰略競爭的範圍,對現有的戰略平衡構成破壞性威脅。一旦掌握人工智能技術的較小規模國家擁有相對較強的競爭力,這些國家在面臨大國威脅時發起對抗的意願可能就會增強。

一是人工智能有助於發展一些輕便靈巧的作戰手段,從而鼓勵一些中小國家或者非國家行為體利用其開展小型的、機會主義的軍事冒險,以更低廉的成本和更豐富的途徑來達到其戰略目地。二是人工智能的快速發展使得網絡戰、電子戰等新型戰爭形態日益凸顯。在競爭激烈的戰場環境中,惡意的第三方行為體可以通過操縱信息來影響軍事規劃和戰略威懾,導致局勢升級。在2022年爆發的烏克蘭危機中,就有眾多網絡虛假信息傳播混淆視聽。三是人工智能技術的廣泛應用還降低了戰略透明度。傳統的軍事戰略往往依賴於大量的情報收集、分析和預測,而在人工智能技術的輔助下,作戰計劃和決策過程變得更加複雜和難以預測。這種不透明性可能導致誤解和誤判,從而增加了衝突升級的風險。

人工智能武器化安全風險的治理路徑

為確保人工智能安全發展,避免其武器化帶來的​​潛在危害,應加強國際間的治理戰略溝通,尋求各國在人工智能軍事應用方面的共識與協作;推進法律法規對話協調,以形成統一規範的法律框架;加強人工智能倫理的約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

高度重視國際層面戰略溝通。

人工智能治理是一個全球性問題,需要各國通力合作,共同解決。在國際舞台上,各國利益交融與利益衝突並存,因此,通過有效的溝通渠道來處理全球性問題成為維護世界和平與發展的關鍵。

一方面,要準確把握人工智能國際治理挑戰。既要把握各國對人工智能武器化發展的共識,也要密切關注各國在人工智能武器化應用安全治理方面的政策差異,通過協商合作,使相關倡議與聯合國議程相協調,從而有效防止人工智能在軍事上的濫用,推動人工智能用於和平目的。

另一方面,推動各國政府通過官方或半官方對話,達成相關協議,建立戰略互信。相較於政府層面的“1軌對話”,“1.5軌對話”指的是政府官員與民間人士共同參與的對話,而“2軌對話”則是由學者、退休官員等進行的民間非官方形式的對話。這兩種對話形式具有更高的靈活性,是政府間官方對話的重要補充和輔助手段。通過多樣化的對話交流方式,官方和民間人士可以廣泛磋商軍備控制的可能實現路徑,分享經驗和專業知識,以避免軍備競賽的升級和緊張局勢的惡化。這些對話機制將為各國提供持續的溝通與合作平台,有助於增進相互理解、加強戰略互信,共同應對人工智能軍事化應用帶來的挑戰。

科學制定人工智能法律和倫理規約。

人工智能技術本身並無對錯善惡之分,但對於人工智能的設計、研發、製造、使用、運行以及維護確有善惡意圖之別。人工智能武器化引發了廣泛的倫理關注。國際法框架下,自主武器系統是否能夠在復雜戰場上精準區分戰鬥人員與平民?此外,若人工智能武器系統導致非預期的傷害,其責任歸屬如何界定?將關乎生死的決策權交付於機器,這一做法是否符合道德倫理標準?這些擔憂凸顯了加強人工智能倫理約束的必要性。

一方面,要堅持倫理先行,從技術源頭上融入“智能向善”的理念。在人工智能軍事系統的設計過程中,將以人為本、智能向善等價值觀內嵌於系統中。其目的是從源頭上杜絕人工智能可能引發的濫殺濫傷行為,控制其過度殺傷力,防範意外毀傷的發生,從而將人工智能武器系統所帶來的毀傷程度限制在盡可能小的範圍內。目前,國內外已有近百家機構或政府部門發佈各類人工智能倫理原則文件,學術界和產業界亦就人工智能基本倫理原則達成共識。 2022年,中國向聯合國遞交的《關於加強人工智能倫理治理的立場文件》為全球人工智能倫理監管的發展提供了重要參考。文件明確強調,應通過制度建設、風險管控、協同共治等多方面的措施來推進人工智能倫理監管。

另一方面,要完善相關法律法規,明確人工智能主體的權責邊界。制定嚴格的技術審核標準,確保人工智能係統的安全性和可靠性。在人工智能係統上線前進行全面的測試,確保其不會對人類生活和社會秩序造成負面影響。明確開發者、使用者、維護者等各方在人工智能係統全生命週期中的法律責任,以及建立相應的追責機制。

務實參與人工智能安全治理國際合作。

人工智能軍事應用所帶來的戰略風險,更加凸顯出國際安全務實合作的重要性。建議重點從三個方面著手:

一是推動制定人工智能在軍事領域的運用準則。制定人工智能軍事應用的行為準則,是各國規範人工智能軍事應用的重要責任,也是推動國際共識和遵守國際法規的必要舉措。中國政府2021年向聯合國《特定常規武器公約》大會提交了《中國關於規範人工智能軍事應用的立場文件》,2023年發布《全球人工智能治理倡議》,這些都為完善規範人工智能軍事應用的行為準則提供了建設性參考。

二是建立適用的監管框架。人工智能軍民兩用性使其涉及眾多利益攸關方,一些非國家行為體如非政府組織、技術社群、科技企業在人工智能全球治理進程中的作用將更加突出,成為人工智能軍事應用監管框架建設的重要力量。各國可採取的技術監管措施包括:明確人工智能技術的使用範圍、責任主體和違規處罰措施;加強技術研發,提高技術的安全性和可控性;建立監管機制,對技術的研發和應用進行全程監管,及時發現和解決問題。

三是共同研發人工智能安全防範技術和解決方案。鼓勵將政府間和軍隊間的雙邊或多邊談判納入軍用人工智能應用的對話選項,就軍用人工智能安全防範技術、操作規程及實踐經驗廣泛交流,推動相關風險管理技術標準和使用規範的分享借鑒,為人工智能軍事化背景下的國際安全互信機制不斷注入新的穩定因素。

(作者為國防科技大學國防科技戰略研究智庫主任、研究員,博導;國防科技大學外國語學院碩士研究生劉胡君對本文亦有貢獻)

【註釋】

①Katz B. Analytic edge: Leveraging emerging technologies to

transform intelligence analysis [R]. Washington D.C.: Center for

Strategic and International Studies, 2020.

②Paul McLeary. Pentagon’s Big AI Program, Maven, Already

Hunts Data in Middle East, Africa[N]. Breaking Defense, May 1, 2018.

③唐新華:《美國綜合威懾戰略中的技術互操作性》,《太平洋學報》, 2022年第12期,第15-25頁。

aijan’s Drones Owned the Battlefield in

Nagorno-Karabakh—and Showed Future of Warfare[N]. The

Washington Post, November 11, 2020.

⑤朱啟超、陳曦、龍坤:《無人機作戰與納卡衝突》,《中國國際戰略評論》,2020年第2期,第167-183頁。

⑥The Verge Report: Israel used AI to identify bombing targets in

Gaza [EB/OL].[2024-04-05].

artificial-intelligence-gaza-ai#:~:text.

⑦羅易煊、李彬:《軍用人工智能競爭中的先行者優勢》,《國際政治科學》, 2022第3期,第1-33頁。

⑧U.S. Department of Defense. Deputy Secretary of Defense

Kathleen Hicks Keynote Address: The Urgency to Innovate (As

Delivered) [EB/OL]. [2023-08-28]. https://www.defense.gov/News/Speeches/Speech/Article/3507156/deputy-

secretary-of-defense-kathleen-hicks-keynote-address-the-urgency-

to-innov/.

⑨[美]托馬斯·謝林著,毛瑞鵬譯:《軍備及其影響》,上海:上海人民出版社,2017年,第81頁。

⑩Rautenbach P. Keeping Humans in the Loop is Not Enough to

Make AI Safe for Nuclear Weapons[EB/OL],

enough-to-make-ai-safe-for-nuclear-weapons/,2023-02-16/2024-01-

09.

⑪Mayer M. The new killer drones: understanding the strategic

implications of next-generation unmanned combat aerial vehicles[J],

International Affairs, 2015,91(04):771.

⑫[美]保羅·沙瑞爾著,朱啟超、王姝、龍坤譯:《無人軍隊:自主武器與未來戰爭》,北京:世界知識出版社,2019年,第153-156頁。

中國原創軍事資源:https://paper.people.com.cn/rmlt/pc/content/202502/05/content_30058889349.html

STRENGTHENING THE FOUNDATION FOR CHINESE MILITARY INTELLIGENT TRANSFORMATION

加強中國軍事情報轉型的基礎

現代英語:

The nature of warfare is rapidly evolving towards intelligence. The intelligent transformation of the military is not merely a simple accumulation of technologies, but a systemic change supported by data, algorithms, and computing power. These three elements mutually empower and organically integrate, forming the technological foundation for generating new combat capabilities. To accelerate the intelligent development of the military, we must deeply grasp the technological logic of intelligent transformation, solidify the data foundation, activate the algorithm engine, and strengthen computing power support to provide a solid guarantee for winning future intelligent wars.

Operational data: the “digital cornerstone” of intelligent transformation

Data is the “lifeblood” of intelligence. Without the accumulation of high-quality, large-scale, and multi-dimensional operational data, the transformation of military intelligence will be like water without a source or a tree without roots. In intelligent warfare, all activities across the entire chain, including battlefield perception, command and decision-making, and combat operations, are essentially processes of data generation, flow, processing, and application. The completeness, accuracy, and timeliness of operational data directly determine the perception precision, decision-making speed, and strike accuracy of intelligent systems, and are an indispensable cornerstone for the intelligent transformation of the military field.

The core value of operational data lies in breaking through the “fog of war” and enabling a shift from experience-driven to data-driven approaches. In traditional warfare, commanders primarily rely on battlefield reconnaissance, intelligence analysis, and combat experience to make decisions. Limited by the breadth and depth of information acquisition, these decisions often carry a degree of subjectivity and limitation. However, in the era of intelligent warfare, a single reconnaissance drone can transmit 5GB of image data per second, and satellite networks constantly track tens of thousands of ground targets, resulting in a geometrical increase in the rate of battlefield data generation. This operational data, originating from multiple domains including land, sea, air, space, cyber, electronic, and psychological domains, can, after standardized processing and in-depth analysis, construct a transparent battlefield situation across all domains, providing commanders with precise decision-making support.

Building a comprehensive operational data resource system requires focusing on key aspects of the entire lifecycle governance. In the data acquisition phase, it’s essential to base data acquisition on the needs of all-domain operations, broaden data source channels, and achieve full coverage of data in both traditional and new domains. Traditional domains should focus on land, sea, and air battlefields, accurately collecting data on troop deployments, equipment performance, and terrain. New domains should extend to outer space, deep sea, polar regions, and cyberspace, prioritizing the collection of data on space target trajectories, deep-sea environmental parameters, and cyberspace situational awareness. In the data fusion and processing phase, a unified data standard system must be established to address prominent issues such as multiple values ​​for a single data point and inconsistent formats, achieving interconnectivity between data from different sources and of different types. In the data sharing phase, a sound cross-domain sharing mechanism must be established, along with tiered and categorized sharing rules, breaking down service-specific barriers, departmental boundaries, and network isolation to build a ubiquitous, all-encompassing, and interconnected data sharing environment, maximizing the utilization of data resources.

To fully leverage the multiplier effect of combat data, the key lies in cultivating data-driven thinking and building a strong professional team. Data-driven thinking is the prerequisite for activating data value. It is essential to guide officers and soldiers to develop the habit of “thinking with data, speaking with data, managing with data, and making decisions with data,” abandoning traditional thinking patterns based on experience and intuition. In operational planning, quantitative analysis should be based on data; in training evaluation, precise measurement should be based on data standards; and in equipment development, iterative optimization should be supported by data. Simultaneously, efforts should be focused on building a professional data talent team, clarifying the responsibilities of each position, and connecting the entire process from data generation to data application. Through various means such as academic training, on-the-job experience, and specialized training, the professional skills of officers and soldiers in data collection, processing, analysis, and application should be improved, creating a composite talent team that understands both military operations and data technology, providing talent support for releasing the value of data.

Specialized Algorithms: The “Digital Engine” of Intelligent Transformation

If data is the “fuel” of intelligence, then algorithms are the “engine” that transforms fuel into power. Specialized algorithms, as the core driving force of military intelligence, are the key link in realizing the transformation of data into knowledge, knowledge into decision-making, and decision-making into combat effectiveness. In intelligent warfare, the quality of algorithms directly determines the reaction speed, decision-making accuracy, and combat effectiveness of the combat system, becoming the engine of intelligent transformation in the military field.

The core advantage of algorithms lies in reconstructing the operational chain and achieving rapid iteration of the OODA loop. In traditional warfare, the chain of observation, judgment, decision-making, and action is lengthy and often struggles to adapt to rapidly changing battlefield situations due to limitations in human processing capabilities. Intelligent algorithms, however, can leverage machine learning, deep learning, and other technologies to process massive amounts of operational data in seconds, perform real-time analysis, and uncover patterns, significantly shortening the decision-making cycle. In simulation tests, foreign military AI command systems generated multiple complete operational plans in a very short time, demonstrating response speed and decision-making efficiency far exceeding that of human command teams, fully showcasing the enormous advantages of algorithms in accelerating the decision-making process. In combat operations, algorithms can span the entire chain, from reconnaissance and perception, command and decision-making, fire strikes, and effect assessment, constructing an autonomous, closed-loop “kill chain.” From target identification to threat ranking, from plan generation to fire allocation, from strike implementation to damage assessment, algorithms can autonomously complete a series of complex tasks, achieving a “detect and destroy” operational effect.

Enhancing the practical application effectiveness of algorithms requires strengthening technological innovation and scenario empowerment. In terms of technological innovation, it is essential to keep pace with the development trends of artificial intelligence and accelerate the military application transformation of cutting-edge algorithms. Focusing on emerging technologies such as generative AI, neuromorphic computing, and brain-computer interfaces, we should explore pathways for the deep integration of algorithms with military needs. Regarding scenario empowerment, we must build diverse typical scenarios for algorithms based on actual combat requirements, develop specialized algorithms for target recognition, situational assessment, and virtual training, overcome bottlenecks in information processing in complex electromagnetic environments, promote the modularization and lightweight transformation of algorithms, and rapidly integrate them with command and control systems and unmanned equipment systems. This will allow algorithms to continuously iterate and optimize in specific tasks within typical scenarios, transforming algorithmic advantages into practical combat capabilities.

Strengthening algorithm security is crucial for ensuring the steady and sustainable development of intelligent transformation. While algorithms enhance combat effectiveness, they also face security risks such as tampering, deception, and misuse, potentially leading to serious consequences like “algorithmic runaway.” It is essential to establish an algorithm security review mechanism to conduct full-process security assessments of algorithm models in military intelligent systems, focusing on their reliability, transparency, and controllability to prevent algorithmic bias and logical vulnerabilities. Strengthening the research and development of algorithmic countermeasures technologies is also vital. This involves improving the anti-interference and anti-attack capabilities of our own algorithms while mastering techniques to interfere with and deceive enemy algorithms, thus gaining the initiative in algorithmic confrontation. Simultaneously, it is crucial to emphasize algorithmic ethics, clearly defining the boundaries and rules of algorithm application to ensure that algorithm development and use comply with international laws and ethical standards, avoiding any violations of war ethics.

Supercomputing Power: The “Digital Energy” for Intelligent Transformation

Computing power is the fundamental capability supporting data processing and algorithm execution, much like the “energy support” for intelligent systems. In the transformation towards military intelligence, the explosive growth of data and the increasing complexity of algorithms have placed unprecedented demands on computing power. The scale, speed, and reliability of supercomputing power directly determine the operational efficiency and combat effectiveness of military intelligent systems, becoming the driving force behind the intelligent transformation of the military field.

The core role of computing power lies in overcoming performance bottlenecks and supporting the efficient operation of complex intelligent tasks. The demand for computing power in intelligent warfare exhibits an “exponential growth” characteristic: an advanced AI command system needs to run thousands of algorithm models simultaneously when processing battlefield data across the entire domain; a swarm of drones performing collaborative combat missions requires real-time interaction and decision-making calculations involving massive amounts of data; a large-scale virtual combat training exercise needs to simulate the interactive behaviors of tens or even hundreds of thousands of combat units. The completion of these complex tasks is inseparable from powerful computing power. Without sufficient computing power, even the highest quality data cannot be processed quickly, and even the most advanced algorithms cannot operate effectively. Currently, computing power has become a crucial indicator for measuring the level of military intelligence; whoever possesses stronger computing power holds the initiative in intelligent warfare.

Building a computing power system adapted to the needs of intelligent transformation requires creating a collaborative computing power layout across the cloud, edge, and terminal. In the cloud, distributed cloud computing centers need to be constructed to build a computing power foundation that covers the entire domain and is elastically scalable. Relying on infrastructure such as big data centers and supercomputing centers, various computing resources should be integrated to form a large-scale, intensive computing power supply capability. At the edge, computing power should be deployed more readily, enhancing the autonomous computing capabilities of the battlefield. For special scenarios such as forward positions, naval vessels, and air platforms, miniaturized, low-power, and highly reliable edge computing nodes should be developed to transfer some computing tasks from the cloud to the edge. This reduces reliance on communication links and data transmission latency, and ensures that combat units can autonomously complete basic tasks such as target identification, path planning, and coordination even in extreme environments such as communication interruptions or signal blackouts, thus improving the system’s survivability. At the terminal, the built-in computing power of equipment should be strengthened to improve the intelligence level of individual combat platforms. By embedding high-performance AI chips into platforms such as drones, unmanned vehicles, and missile weapons, equipment is endowed with the ability to autonomously perceive, make decisions, and act, making it an intelligent unit with independent combat capabilities and laying the foundation for cluster collaboration and system-on-system confrontation.

Enhancing the combat readiness of computing power support requires strengthening technological innovation and security protection. In terms of technological innovation, it is crucial to keep pace with the development trends of computing power technology and accelerate the military application of new computing technologies. Focusing on cutting-edge areas such as quantum computing, photonic computing, and neuromorphic computing, we must break through the performance bottlenecks of traditional computing architectures and develop disruptive new computing power equipment. Simultaneously, we must strengthen the construction of computing power networks, building high-bandwidth, low-latency, and interference-resistant computing power transmission networks. By integrating technologies such as 5G, 6G, and satellite communication, we can ensure computing power collaboration and data interaction between the cloud, edge, and terminals, achieving seamless connection and efficient scheduling of computing power resources. In terms of security protection, we must establish a computing power security system to prevent the risks of attacks, hijacking, and misuse of computing power resources. By adopting technologies such as encrypted computing and trusted computing, we can ensure the security and privacy of data during the computing process; strengthen the physical and network protection of computing power facilities, and build a multi-layered, all-round protective barrier to ensure that the computing power system can operate stably in wartime and is not subject to enemy interference or damage.

現代國語:

戰爭形態正加速向智慧化演進,軍事領域的智慧轉型絕非單純的技術疊加,而是以數據、演算法、算力為核心支撐的體系性變革,三者相互賦能、有機融合,構成了新型戰鬥力生成的技術基礎。加速軍事領域智慧化發展進程,應深刻掌握智慧轉型的技術邏輯,夯實數據基石、啟動演算法引擎、做強力支撐,為打贏未來智慧化戰爭提供堅實保障。

作戰數據:智慧轉型的“數位基石”

數據是智慧化的“血液”,沒有高品質、大規模、多維度的作戰數據積累,軍事智慧轉型就會成為無源之水、無本之木。在智慧化戰爭中,戰場感知、指揮決策、作戰行動等全連結活動,本質上都是資料的產生、流轉、處理與應用過程。作戰數據的完備性、準確性和時效性,直接決定了智慧系統的感知精度、決策速度和打擊準度,是軍事領域智慧轉型不可或缺的基石。

作戰資料的核心價值在於打破“戰爭迷霧”,實現從經驗驅動到數據驅動的轉變。在傳統戰爭中,指揮官主要依賴戰場偵察、情報研判和實戰經驗來做出決策,受限於資訊獲取的廣度和深度,決策往往帶有一定的主觀性和限制。而在智慧化戰爭時代,一架偵察無人機每秒可傳回5GB影像數據,衛星網路時刻追蹤成千上萬個地面目標,戰場數據生成速率呈幾何級數增長。這些來自陸、海、空、天、網、電、心理等多域的作戰數據,經過規範化處理和深度挖掘後,能夠建構起全局透明的戰場態勢,為指揮官提供精準決策支撐。

建構全域覆蓋的作戰資料資源體系,需要抓好全生命週期治理的關鍵環節。在資料擷取環節,要立足全域作戰需求,拓寬資料來源管道,實現傳統空間與新域空間的資料全覆蓋。傳統空間要聚焦陸戰場、海戰場、空戰場等傳統領域,精準採集兵力部署、裝備性能、地形地形等資料;新域空間要向太空、深海、極地、網路空間等領域延伸,重點收集太空目標軌跡、深海環境參數、網路空間態勢等資料。在資料融合處理環節,要建立統一的資料標準體系,解決「一數多值」「格式不一」等突出問題,實現不同來源、不同類型資料的互聯互通。在資料共享環節,要健全跨域共享機制,建立分級分類共享規則,打破軍種壁壘、部門界限和網路隔離,建構「無所不在、無所不含、無所不聯」的數據共享環境,實現數據資源的最大化利用。

發揮作戰數據的戰鬥力倍增效應,關鍵在於培育數據思維與建強專業隊伍。數據思維是啟動數據價值的前提,要引導官兵養成「用數據思考、用數據說話、用數據管理、用數據決策」的行為習慣,摒棄憑經驗、靠直覺的傳統思維模式。在作戰籌劃中,要以數據為依據進行量化分析;在訓練評估中,要以數據為標準進行精準衡量;在裝備研發中,要以數據為支撐進行迭代優化。同時,要著力建構專業化的資料人才隊伍,明確各環節職務職責,貫通從資料產生到資料運用的全流程連結。透過院校培養、職缺歷練、專案訓練等多種方式,提升官兵資料收集、處理、分析、運用的專業技能,打造一支既懂軍事業務又通資料技術的複合型人才隊伍,為資料價值釋放提供人才支撐。

專業演算法:智慧轉型的“數位引擎”

如果說數據是智慧化的“燃料”,那麼演算法就是將燃料轉化為動力的“引擎”。專業演算法作為軍事智慧的核心驅動力,是實現數據向知識、知識向決策、決策轉化為戰鬥力的關鍵環節。在智慧化戰爭中,演算法的優劣直接決定了作戰體系的反應速度、決策精準度和對抗效能,成為軍事領域智慧轉型的引擎。

演算法的核心優勢在於重構作戰鏈路,實現OODA循環的極速迭代。傳統作戰中,觀察、判斷、決策、行動的連結較長,受限於人工處理能力,往往難以適應瞬息萬變的戰場態勢。而智慧演算法能夠依賴機器學習、深度學習等技術,對海量作戰資料進行秒級處理、即時分析與規律挖掘,大幅縮短決策週期。外軍AI軍事指揮系統在模擬測試中,僅用很短時間就生成多套完整作戰方案,響應速度和決策效率遠超人類指揮團隊,充分展現了演算法在加速決策流程中的巨大優勢。在作戰行動中,演算法能夠貫穿偵察感知、指揮決策、火力打擊、效果評估等全鏈路,建構自主閉環的「殺傷鏈」。從目標識別到威脅排序,從方案生成到火力分配,從打擊實施到毀傷評估,演算法能夠自主完成一系列複雜任務,實現「發現即摧毀」的作戰效果。

提升演算法的實戰應用效能,需要強化技術創新與場景賦能。在技​​術創新方面,要緊跟人工智慧發展趨勢,加速前沿演算法的軍事應用轉換。聚焦生成式AI、神經形態運算、腦機介面等新技術方向,探索演算法與軍事需求的深度融合路徑。在場景賦能方面,要立足實戰需求建構多元演算法典型場景,研發目標辨識、態勢研判、虛擬訓練等專用演算法,突破複雜電磁環境資訊處理瓶頸,推動演算法模組化、輕量化改造,與指揮控制系統、無人裝備系統快速整合,讓演算法在典型場景具體任務中不斷迭代優化,讓優勢轉化為最佳化演算法。

築牢演算法安全防線,是確保智慧轉型行穩致遠的重要保障。演算法在帶來作戰效能提升的同時,也面臨被竄改、被欺騙、被濫用等安全風險,甚至可能出現「演算法失控」的嚴重後果。要建立演算法安全審查機制,對軍事智慧系統中的演算法模型進行全流程安全評估,重點在於審查演算法的可靠性、透明度和可控性,防止演算法偏見、邏輯漏洞等問題。加強演算法對抗技術研發,既要提升己方演算法的抗干擾、抗攻擊能力,也要掌握幹擾、欺騙敵方演算法的技術手段,在演算法對抗中佔據主動。同時,要注重演算法倫理建設,明確演算法應用的邊界和規則,確保演算法的研發和使用符合國際法律和倫理標準,避免違反戰爭倫理的情況。

超智算力:智慧轉型的“數位能量”

算力是支撐資料處理和演算法運作的基礎能力,如同智慧化體系的「能量支撐」。在軍事智慧轉型中,數據的爆炸性成長和演算法的複雜化發展,對算力提出了前所未有的高要求。超智算力的規模、速度和可靠性,直接決定了軍事智慧系統的運作效率和實戰效能,成為軍事領域智慧轉型的動力系統。

算力的核心作用在於突破性能瓶頸,支撐複雜智慧任務的高效運作。智慧化戰爭對算力的需求呈現出「指數級增長」特徵:一套先進的AI指揮系統,在處理全局戰場數據時,需要同時運行數千個演算法模型;一支無人機蜂群在執行協同作戰任務時,需要實時進行海量數據交互和決策計算;一次大規模的虛擬對抗訓練,需要模擬數萬甚至數十萬作戰單元的互動行為。這些複雜任務的完成,離不開強大的算力支撐。沒有足夠的算力,再優質的數據也無法快速處理,再先進的演算法也無法有效運作。目前,算力已成為衡量軍事智慧化程度的重要指標,誰掌握了更強的算力,誰就掌握了智慧對抗的主動權。

建構適應智慧轉型需求的算力體系,需要打造「雲端端」協同的算力佈局。在雲端,要建置分散式雲算力中心,建構覆蓋全域、彈性伸縮的算力基座。依託大資料中心、超級運算中心等基礎設施,整合各類運算資源,形成規模化、集約化的算力供給能力。在邊端,要推進算力下沉部署,提升戰場末端的自主運算能力。針對前線陣地、海上艦艇、空中平台等特殊場景,研發小型化、低功耗、高可靠的邊緣運算節點,將部分運算任務從雲端轉移至邊緣端。這樣既可以降低對通訊鏈路的依賴,減少資料傳輸延遲,又能在通訊中斷或訊號黑障等極端環境下,保障作戰單元自主完成目標辨識、路徑規劃、協同配合等基本任務,提升體系生存能力。在終端,要強化裝備內置算力,提升單一作戰平台的智慧等級。透過在無人機、無人車、飛彈武器等平台中嵌入高性能AI晶片,賦予裝備自主感知、自主決策、自主行動的能力,使其成為具備獨立作戰能力的智慧單元,為集群協同和體系對抗奠定基礎。

提升算力保障的實戰化水平,需要強化技術創新與安全防護。在技​​術創新方面,要緊跟算力技術發展趨勢,加速新型計算技術的軍事應用。聚焦量子運算、光子運算、神經形態運算等前沿方向,突破傳統運算架構的效能瓶頸,研發具有顛覆性的新型算力裝備。同時,要加強算力網路建設,建構高頻寬、低時延、抗干擾的算力傳輸網路。透過融合5G、6G、衛星通訊等技術,確保雲端、邊端、終端之間的算力協同與資料交互,實現算力資源的無縫銜接與高效調度。在安全防護方面,要建立算力安全保障體系,防範算力資源被攻擊、被劫持、被濫用的風險。透過採用加密運算、可信任運算等技術,確保資料在運算過程中的安全性和隱私性;加強算力設施的實體防護和網路防護,建構多層次、全方位的防護屏障,確保算力系統在戰時能夠穩定運行,不受敵方幹擾破壞。 (李建平、紀鳳珠、趙輓)

2025年12月30日09 | 資料來源:解放軍報

中國原創軍事資源:https://military.people.com.cn/n1/2025/1230/c1011-40688835461.html

A Look at Chinese Intelligent Warfare | “Order Dispatch”: A New Style of Precision Strike

中國情報戰概覽 | 「命令派遣」:一種新型的精確打擊方式

現代英語:

“Order Dispatch”: Precise Targeting of New Patterns

  introduction

  As Lenin said, “Without understanding the times, one cannot understand war.” In recent years, the widespread application of information and intelligent technologies in the military field has promoted the deep integration of technology and tactics. Relying on intelligent network information systems, it has given rise to “order-based” precision strikes. Commanders and command organs can generate strike requirements in a formatted manner according to combat missions. The decision-making system intelligently matches strike platforms, autonomously plans action paths, and scientifically selects strike methods based on personalized requirements such as strike time, operational space, and damage indicators, thereby rapidly and accurately releasing strike effectiveness.

  The operational characteristics of “order dispatch” type precision strike

  As the informatization and intelligence of weapons and ammunition continue to improve, the cost of modern warfare is also constantly increasing. How to achieve the highest cost-effectiveness ratio with limited strike resources and maximize combat effectiveness has become a central issue for commanders and command organs in operational planning. “Order-based” precision strikes can provide a “feasible solution” for this.

  Real-time, precise, and targeted strikes. Modern warfare places greater emphasis on structurally disrupting enemy operational systems, achieving operational objectives through the rapid and precise release of combat effectiveness. This requires commanders and command organs to seize fleeting “windows of opportunity” to strike high-value, nodal, and critical targets within an enemy’s operational system before the enemy can react. The traditional “detection-guided-strike-assessment” operational loop is time-consuming and ineffective. Therefore, “order-based” precision strikes rely on advanced intelligent network information systems, without pre-determining strike platforms. Target lists are released in real-time, and auxiliary decision-making systems rapidly assess the strike performance of various weapon platforms and the expected damage to targets. Tasks are autonomously allocated to strike platforms, rapidly linking and controlling multi-domain firepower, autonomously closing the kill chain, and conducting rapid strikes against key targets.

  Multi-domain coordinated strike. The advantage of modern precision strike over traditional firepower lies in its information-based and intelligent combat system. It requires no human intervention and autonomously completes tasks such as reconnaissance, control, strike, and assessment based on a closed strike chain. This not only saves strike costs and reduces resource waste but also enables adaptive coordination based on unified operational standards. Therefore, “order-based” precision strikes require firepower forces distributed across various operational domains to establish a unified standard grid. Once a demand is issued from one point, multiple points can respond and coordinate globally, flexibly concentrating forces and firepower, using multiple means to rapidly and multi-domain convergence, and determining the strike direction, sequence, and method for each strike platform while on the move. Through system integration, time is effectively saved, enabling multi-domain precision strikes against key enemy nodes and critical parts of core targets, fully leveraging the combined power of the integrated combat effectiveness of various operational units.

  The key to victory lies in swift and decisive action. Modern warfare is a “hybrid war” conducted simultaneously across multiple domains, where the interplay and confrontation of new domains and new types of forces, such as information, aerospace, and artificial intelligence, are becoming increasingly pronounced. This necessitates that both sides be able to detect and act faster than the enemy, crippling their operational systems and reducing their operational efficiency. On the one hand, it is crucial to pinpoint key nodes in the enemy’s system and launch timely and precise strikes; on the other hand, it is essential to conceal one’s own intentions and strike forces, striking swiftly and unexpectedly. “Order-based” precision strikes perfectly meet these two requirements. Supported by network information systems, they intelligently integrate firepower from various domains, achieving multi-source information perception, data interconnection, and multi-domain coordinated strikes. This enables seamless and high-speed operation of “target perception—decision and command—firepower strike—damage assessment,” resulting in a high degree of information and firepower integration and the rapid achievement of operational objectives.

  The system of “order dispatch” type precision strike

  ”Order dispatch” precision strikes compress action time and improve strike effectiveness by building an efficient closed strike chain, enabling various fire strike platforms to better integrate into the joint fire strike system and provide rapid and accurate battlefield fire support. Its key lies in the “network” and its focus is on the “four” systems.

  Multi-domain platform access network. Supported by information and intelligent technologies, an integrated information network system with satellite communication as the backbone is established. Firepower strike platforms distributed across multiple domain battlefields are integrated into the combat network to create a battlefield “cloud.” Different combat modules are distinguished, and “sub-network clouds” such as “reconnaissance, control, strike, and assessment” are established. Relying on an integrated communication network, the “sub-network clouds” are linked to the “cloud.” This can enhance the firepower strike platform’s capabilities in all domains, all times, on the move, autonomous networking, and spectrum planning, and realize network interconnection between firepower platforms, domain combat systems, and joint combat systems, as well as the interconnection and interoperability of internal strike forces.

  Joint reconnaissance and sensing system. This system leverages various reconnaissance and surveillance forces within the joint operations system to achieve all-weather, multi-directional, and high-precision battlefield awareness of the operational area. This requires constructing a ubiquitous, multi-dimensional reconnaissance and sensing force system encompassing physical and logical spaces, tangible and intangible spaces. It involves widely deploying intelligent sensing devices to form an intelligence data “cloud.” Through this intelligence data “cloud,” the system analyzes the enemy situation, identifies key points in the enemy’s operational system and time-sensitive targets, updates reconnaissance information in real time, and displays target dynamics.

  Intelligent Command and Decision-Making System. Relying on a new command and control system with certain intelligent control capabilities, this system constructs various planning and analysis models, expands functions such as intelligent intelligence processing, intelligent mission planning, automatic command generation, and precise action control, and expands and improves databases such as target feature database, decision-making knowledge base, and action plan database. It strengthens the system support capabilities for mission planning, action decision-making, and control during combat organization and implementation, enhances planning and decision-making and combat action control capabilities, clarifies “how to fight, where to fight, and who will fight,” and achieves precise “order dispatch.”

  Distributed fire strike system. Relying on intelligent network information systems, on the one hand, it integrates multi-dimensional fire strike platforms across land, sea, air, and space, enhancing functions such as intelligent target identification and remote-controlled strike, enabling various combat modes such as remote-controlled operations, manned-unmanned collaborative operations, and flexible mobile operations; on the other hand, it can construct a low-cost fire strike platform mainly composed of low-altitude and ultra-low-altitude unmanned strike platforms such as racing drones and loitering munitions. By adding different functional combat payloads, it can closely coordinate with high-end fire strike platforms to carry out tasks such as battlefield guidance, precision strikes, and fire assessment, efficiently completing “orders”.

  Autonomous Damage Assessment System. This system, built upon reconnaissance and surveillance capabilities within the joint operations system, autonomously assesses the effectiveness of attacks on targets after the firepower platform has completed its strike. It conducts real-time, dynamic, objective, and systematic analysis and evaluation of the target’s external condition and degree of functional loss, and promptly transmits relevant information back to decision-making and command centers at all levels via video images. The assessment centers then determine “how well it went” and whether the expected damage requirements were met. If not, operational actions can be adjusted in a timely manner for supplementary strikes, providing strong support for maximizing operational effectiveness.

  The planning and implementation of “order dispatch” style precision strikes

  The “order dispatch” style of precision strike is similar to the operation of ride-hailing services. Through a series of processes such as formatted “order” generation, intelligent target matching, and autonomous route planning, it autonomously completes the “OODA” combat cycle, making its actions more efficient, its strikes more precise, and its collaboration closer.

  Real-time reporting of firepower requirements allows combat units to submit orders on demand. Reconnaissance elements distributed across different operational areas and multi-dimensional battlefield spaces are acquired through radar, optical, infrared, and technical reconnaissance methods, forming battlefield target intelligence information across a wide area and multiple sources. This information is transmitted to the battlefield information network via intelligence links, and is constantly relayed to combat units. Combat units then perform correlation processing, multi-source comparison and verification, and comprehensively compile battlefield target information to generate precise mission orders. Combat units analyze target value and connect to the decision-making platform as needed, constructing a closed-loop strike chain based on these orders, and submitting mission orders in real time, achieving dynamic optimization and precise adaptation.

  The decision-making center intelligently “dispatches” fire support missions, differentiating them from actual fire strike missions. Through the battlefield information network and relying on an intelligent mission planning system, the center can automatically analyze the mission “order” information data submitted by combat units. Based on the nature, coordinates, movement status, and threat level of battlefield targets, it automatically generates mission requirements such as the type and quantity of ammunition needed for fire strike operations, the strike method, and damage indicators, forming a fire support mission “order.” By intelligently matching the optimal fire support platform and connecting link nodes as needed, the center conducts intelligent command-based “order dispatch,” delivering the orders instantly to the standby fire support platforms.

  Optimal target matching is performed continuously, and firepower platforms swiftly “accept orders.” Multiple firepower platforms distributed across the battlefield respond rapidly to these orders via the battlefield information network. The platforms autonomously establish links with combat units, mutually verifying their identities before directly establishing a guided strike chain. They coordinate firepower strikes, adjusting strike methods and firing parameters in a timely manner based on target damage and battlefield target dynamics before conducting further strikes until the assigned mission is completed. Firepower platforms consistently adhere to the principle of “strike-relocate-strike-relocate,” completing strike missions and rapidly relocating to new positions, maintaining a state of constant readiness and receiving orders online in real time. After the mission concludes, the guided strike chain between the firepower platform and the combat unit is automatically terminated.

  Multi-source damage information acquisition and real-time assessment by the evaluation center. Utilizing a comprehensive range of long-range, intelligent, and information-based reconnaissance methods, including satellite, radar, and drone reconnaissance, multi-domain, three-dimensional reconnaissance is conducted to acquire real-time target fire damage information, providing accurate assessments for precision fire strikes. A comprehensive assessment of damage effects is performed, quantitatively and qualitatively evaluating the strike results, distinguishing between physical, functional, and systemic damage states, and promptly feeding back to the decision-making center. Based on the damage assessment results, timely adjustment suggestions are made to modify fire strike plans, optimize operational actions, and achieve precise control of fire strikes. This facilitates commanders’ accurate control of the operational process and efficient command and control of fire strike effectiveness.

現代國語:

「訂單派單」:精確打擊新樣式

引言

列寧說過,「不理解時代,就不能理解戰爭」。近年來,資訊化智慧化技術在軍事領域的廣泛運用,促進了技術與戰術深度融合,依托智能化網路資訊體系,催生出「訂單派單」式精確打擊。指揮及指揮機關可依據作戰任務格式化產生打擊清單需求,決策系統依據打擊時間、作戰空間、毀傷指標等個人化需求智慧匹配打擊平台、自主規劃行動路徑、科學選擇打擊方式,進而快速精準釋放打擊效能。

「訂單派單」式精準打擊的作戰特點

隨著武器彈藥資訊化智慧化程度不斷提升,現代作戰成本也不斷提高。如何運用有限打擊資源打出最高效費比,實現作戰效能最大化,已成為指揮員及指揮機關作戰籌劃的中心問題,「訂單派單」式精準打擊可為此提供「可行解」。

即時聚優精確釋能。現代作戰更強調對敵作戰體系進行結構性打擊破壞,透過快速且精準地釋放作戰效能來實現作戰目的。這就要求指揮官及指揮機關能夠抓住稍縱即逝時機的“窗口”,在敵未做出反應之時對其作戰體系內高價值、節點性、關鍵性目標實施打擊。傳統的「發現—引導—打擊—評估」的作戰環路耗時長,作戰效果不佳。因此,「訂單派單」式精確打擊,需要依托先進的智慧化網路資訊體系,不預先確定打擊平台,即時發布打擊目標清單,由輔助決策系統對各種武器平台的打擊性能與目標打擊毀傷預期等進行快速評估,自主分配打擊平台任務,快速連結調控多領域火力打擊力量,自主閉合殺傷鏈,對關鍵目標實施快速打擊。

多域聚能協同打擊。現代作戰精準打擊較以往火力打擊的優勢在於資訊化智能化的作戰體系,不需人工介入,依托閉合打擊鏈自主完成「偵、控、打、評」等任務,不僅能夠節省打擊成本,減少資源浪費,還能夠實現基於統一作戰標準的自適應協同。因此,「訂單派單」式精確打擊,需要分佈在各作戰領域的火力打擊力量能夠建立統一標準網格,只要一點發出需求,就能夠多點響應、全局聯動,靈活集中兵力、火力,多手段、快速多域聚能,動中確定各打擊平台打擊方向、打擊次序以及打擊方式。透過體系整合有效節約時間,對敵關鍵節點目標以及核心目標的關鍵部位實施多域精確打擊,充分發揮各作戰單元作戰效能疊加融合的整體威力。

擊要破體速戰速決。現代作戰是在多領域同步實施的“混合戰爭”,資訊、空天、智慧等新域新質力量交織影響、對抗更加明顯。這就需要作戰雙方能夠快敵一秒發現、快敵一步行動,毀癱敵作戰體系、降低敵體系運作效率。一方面,要透過找準敵體系節點,即時聚優精準打擊;另一方面,要隱藏己方企圖及打擊力量,乘敵不備快速打擊。 「訂單派單」式精確打擊能夠很好地契合這兩點需求,在網路資訊系統的支撐下,智慧融合各領域火力打擊力量,實現資訊多源感知、數據交鍊、多域協同打擊,實現「目標感知—決策指揮—火力打擊—毀傷評估」無縫高速運轉,資訊火力高度融合,快速達成作戰目的。

「訂單派單」式精確打擊的體系構成

“訂單派單”式精確打擊通過構建高效閉合打擊鏈,壓縮行動時間,提高打擊效果,使各火力打擊平台能夠更好地融入聯合火力打擊體系,並提供快速精準的戰場火力支援,其關鍵在“網”,重點在“四個”系統。

多領域平台接入網。在資訊化智慧化技術支撐下,建立以衛星通訊為骨幹的一體化資訊網系,將分佈在多維域戰場的火力打擊平台融入作戰網路建立戰場“雲”,區分不同作戰模組,建立“偵、控、打、評”等“子網雲”,並依託一體化的通訊網鏈將“子網雲”鏈入“雲端”,能夠提升火力打擊平台全局全時、動中接入、自主組網、頻譜規劃的能力,實現火力平台、分域作戰體系與聯合作戰體系的網絡互聯,以及內部打擊力量的互聯互通。

聯合偵察感知系統。依托聯合作戰體系內的各種偵察監視力量對作戰地域進行全天候、多方位、高精度戰場感知。這就要建構物理空間和邏輯空間、有形空間和無形空間泛在存在的全維域偵察感知力量系統,廣域佈設智能感知設備,形成情報數據“雲”,通過情報數據“雲”分析敵情態勢,找出敵作戰體系關鍵點以及時敏性目標,實時更新偵察信息,展現目標動態。

智能指揮決策系統。依托具備一定智能控制能力的新型指控系統,建構各類規劃分析模型,擴展情報智能處理、任務智能規劃、指令自動生成、行動精確控制等功能,擴充完善目標特徵庫、決策知識庫、行動預案庫等資料庫,強化戰鬥組織與實施過程中的任務規劃、行動決策和控制的系統支撐能力,提昇決定決策和戰鬥能力,明確怎麼打」。

分佈火力打擊系統。依托智慧網路資訊系統,一方面,融入陸、海、空、天等多維域火力打擊平台,強化目標智慧識別、遠程遙控打擊等功能,實現作戰單元遠程遙控作戰、有人無人協同作戰、靈活機動作戰等多種作戰方式;另一方面,可建構以穿越機、巡飛彈等低空超低空無人打擊平台為主的低成本火力打擊平台,透過加掛不同功能作戰載重,與高端火力打擊平台密切協同來實施戰場引導、精確打擊、火力評估等任務,高效完成「訂單」。

自主毀傷評估系統。依托聯合作戰體系內的偵察監視力量建構毀傷評估系統,在火力平台打擊完畢後,自主對目標實施打擊效果查核。主要就目標的外觀狀態、功能喪失程度等進行實時、動態、客觀、系統的分析和評估,並及時通過視頻圖像的方式將相關信息回傳至各級決策指揮中心,由評估中心判斷“打得怎麼樣”,是否達到預期毀傷要求。如不符合,可適時調控作戰行動,進行補充打擊,為最大限度釋放作戰效能提供強力支撐。

「訂單派單」式精確打擊的規劃實施

「訂單派單」式精準打擊就如同叫車的運作方式一樣,透過格式化「訂單」產生、智慧化物件配對、自主化路徑規劃等一系列流程,自主完成「OODA」作戰循環,其行動更為高效、打擊更為精準、協同更為密切。

即時提報火力需求,作戰單元按需「提單」。分佈在不同作戰地域、多維戰場空間的偵察要素,透過雷達、光學、紅外線和技術偵察等方式,廣域多源偵獲形成戰場目標情報資訊。這些資訊依托情報鏈路接入戰場資訊網,隨時隨地被傳至作戰單元,由作戰單元進行關聯處理、多方對比印證,綜合整編戰場目標訊息,產生精確的任務「訂單」。作戰單元分析目標價值按需連通決策平台,建構“訂單”式閉合打擊鏈,實時提報任務“訂單”,實現動中集優、精準適配。

區分火力打擊任務,決策中心智能「派單」。決策中心透過戰場資訊網,依托智能任務規劃系統,能夠自動解析作戰單元提報的任務「訂單」資訊數據,根據戰場目標性質、座標方位、移動狀態、威脅程度等,自動產生火力打擊行動所需彈種彈量、打擊方式和毀傷指標等任務要求,形成火力支援任務「訂單」,透過智慧服務火力平台,按需使用火力平台節點,按需通路,支援任務「訂單」。

全時匹配最優目標,火力平台迅即「接單」。多點分佈在戰場區域內的火力平台,透過戰場資訊網迅即響應“接單”,火力平台與作戰單元之間自主建鏈,相互核驗“身份”後直接建立引導打擊鏈,協同配合火力打擊行動,並根據打擊後目標毀傷情況以及戰場目標動態,及時調整打擊方式、射擊參數等,而後再次實施火力打擊,直至完成“派單”任務。火力平台始終遵循「打擊—轉移—打擊—轉移」的原則,完成打擊任務,迅即轉移陣地,全時保持待戰狀態,即時在線接收「訂單」。任務結束後,火力平台與作戰單元之間的引導打擊鏈會自動取消。

多源獲取毀傷訊息,評估中心即時「評單」。綜合運用衛星偵察、雷達偵察、無人機偵察等遠距離資訊化智慧化偵察手段,實施多域立體偵察,即時取得目標的火力毀傷訊息,為進行精確火力打擊提供準確評估。綜合判定毀傷效果,對打擊效果進行定量和定性評估,區分目標物理、功能和系統三種毀傷狀態,及時回饋至決策中心。根據打擊目標的毀傷評估結果,適時提出調控建議,調整火力打擊計劃,優化作戰行動,實現對火力打擊的精確控制,便於指揮員精準把控作戰進程,達成對火力打擊效能的高效指揮控制。 (高凱 陳良)

中國原創軍事資源:https://www.news.cn/milpro/20250123/8f71783cff6a4284a43871e996bc31888a7/c.html

Chinese Military Analysis of Developing Intelligent Command and Information Systems

中國軍方對發展智慧指揮資訊系統的分析

現代英語:

The era of intelligent warfare has begun. Intelligent command and information systems will become the “central nervous system” of future intelligent combat command and control, serving as a supporting means for intelligent combat command and control. Accelerating the construction of intelligent command and information systems is an inherent requirement for the development of military intelligence. Only by clarifying the essence of intelligent command and information system development, grasping the key points of intelligent command and information system research and development, and exploring the essentials of intelligent command and information system development can we better promote the construction and development of intelligent command and information systems and gain a competitive advantage in future intelligent warfare.

Clarify the key points of the development of intelligent command and information systems

Intelligent command and information systems are an inevitable choice in the development of warfare towards informationized and intelligent warfare, a natural outcome of the technological revolution, and a contemporary demand for the intelligent development of the military. Clarifying the key points of intelligent command and information system development helps to grasp the direction of its construction and establish long-term goals.

Promoting the intelligent evolution of warfare. In future intelligent warfare, the battlefield situation will change rapidly and the battlefield environment will be complex and harsh. In order to gain the initiative on the battlefield, “intellectual superiority” will become the new commanding height. Intelligent command and information systems are undoubtedly an important support for future combat command and operations. Their intelligent development can help promote the intelligent evolution of warfare and is an important foundation for gaining the initiative and seeking victory in intelligent warfare.

Supporting Intelligent Innovation in Combat Concepts. Future intelligent warfare requires corresponding combat command concepts, and intelligent command information systems are a crucial foundation for the practical application of these concepts, serving as the fertile ground for their innovation and development. New intelligent combat command concepts such as human-machine hybrid command formations, data-driven command activities, open development command models, and intelligent convergence command processes all rely on the support of intelligent command information systems. These systems will act as an extension of the human brain, breaking through the physiological limits of the human body and achieving the organic integration of the art of combat command and intelligent technology.

Promoting the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about significant changes in the mechanisms of combat victory. Intelligence has surpassed firepower and information power to become the primary factor determining the outcome of war. The development and construction of intelligent command and control information systems will promote the transformation of combat methods towards intelligence, shifting combat methods from the “combat network + precision-guided weapons” of the information age to the “intelligent Internet of Things + manned/unmanned combat platforms” of the intelligent age. Correspondingly, the basic combat style is evolving from “network-centric warfare” to “cognition-centric warfare”.

Focus on the key points of intelligent command and information system research and development

Command and information systems are a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent warfare mechanisms, the intelligent upgrading and construction of command and information systems is urgently needed. Emphasis should be placed on key functional development aspects to create a completely new intelligent command and information system.

“Super-brain-based” decision-making. In future intelligent warfare, the battlefield information data is massive and complex, and commanders are easily overwhelmed by the “sea of ​​information,” leading to confusion and affecting command and decision-making. With the emergence of intelligent decision-making technology and “cloud brains” and “digital advisors,” a new decision-making model based on the collaboration of “human brain + artificial intelligence” is quietly taking shape. Intelligent command information systems will break through the limits of human intelligence, acting as an extension of the human brain to assist commanders in their work, transforming war decision-making from purely human brain-based decision-making to super-brain-based command and decision-making combining “human brain + artificial intelligence.”

“All-dimensional” situational awareness. Future intelligent warfare will be characterized by multi-dimensional space, diverse forces, varied tactics, and accelerated pace. A comprehensive and flexible grasp of the battlefield situation will be fundamental to commanders’ decision-making. The integrated, intelligent, and dynamic presentation of the all-dimensional battlefield situation across multiple domains is an inevitable requirement for the development of command information systems. Command information systems are expanding their perception, understanding, integration, and prediction of battlefield situations, such as target identification, threat level assessment, operational action prediction, and future battle trajectory forecasting, from land, sea, air, space, electromagnetic, and cyberspace to the cognitive and social domains, achieving “all-dimensional” situational awareness.

“Intelligent connectivity” is crucial for future intelligent warfare. This will involve numerous intelligent command and control platforms and intelligent weapon platforms, connected by intelligent information and communication systems. Like the nerves and blood vessels of the human body, intelligent information and communication systems act as a link and lubricant in intelligent warfare. Therefore, it is essential to establish a comprehensive, uninterrupted intelligent information network to support the connectivity and control of intelligent equipment, enabling intelligent optimization of the network structure, intelligent reorganization to withstand network damage, and intelligent anti-interference capabilities. This will ensure intelligent collaborative operations between platforms and maximize overall combat effectiveness.

“Unmanned” Autonomous Collaboration. The extensive use of drones in recent local conflicts worldwide, playing a crucial role in determining the course of war, has attracted widespread attention. Unmanned weaponry is the material foundation of intelligent warfare, leading to disruptive combat styles such as intrusive lone-wolf operations, manned/unmanned collaborative system sabotage operations, independent operations by unmanned system formations, and drone swarm operations. While unmanned warfare is human-led, with machines granted a degree of autonomy from the backend, enabling unmanned operations on the front lines, the unmanned battlefield is constantly evolving. Disruptions to human-machine collaboration will become commonplace. Therefore, the command and control systems of unmanned intelligent equipment platforms must be more intelligent, capable of autonomous collaborative operations based on operational objectives.

“Proactive” information defense. Intelligent warfare will inevitably face diverse and multi-dimensional information attacks from powerful adversaries. The level of information security protection capabilities directly affects the outcome of the battle for “intellectual dominance” on the battlefield and is a key aspect of the construction of intelligent command information systems. Therefore, proactive measures should be taken to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of advanced information security technologies, enhance the anti-interference and anti-interference capabilities of various wireless transmission methods, and build strong intelligent traceability and countermeasure capabilities to effectively curb information attacks.

Exploring the key points of intelligent command and information system development

The development of intelligent command and information systems is not merely a matter of technological innovation; it also requires further liberating our thinking and updating our concepts. To advance the development of intelligent command and information systems, we must change the traditional approach of simply adding hardware, building large networks, and collecting and storing various types of data. We must break through existing hierarchical structures, create open and service-oriented systems, and target the needs of intelligent combat command and action, exploring and researching the key aspects of intelligent command and information system development.

Innovation Concept. Guided by innovative thinking, and drawing on the development strategies of intelligent command and information systems for building a strong military, we will explore a development path with our own characteristics, tailored to actual needs. We must break away from traditional “chimney” approaches, adhere to top-level design and overall planning of the command and information system, unify interfaces, protocols, and standards, and form an open and sustainable system architecture. We must adhere to a system development approach that combines research, development, and application, formulating short-term, medium-term, and long-term development strategies to standardize the direction of system construction and development. We must adhere to iterative upgrades and optimization strategies to continuously improve the intelligence level of various subsystems, including command and control, intelligence reconnaissance, communication, information warfare, and comprehensive support, ensuring the continuous and healthy development of the intelligent command and information system.

Focusing on Key Capabilities. Concentrating on building key capabilities of intelligent command and information systems is crucial for intelligent warfare to leverage intelligence to achieve victory, and is key to gaining the “right to win” in intelligent warfare. Algorithms, computing power, and data are not only the intrinsic driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command and information systems. The development of intelligent command and information systems must adhere to algorithmic innovation research to improve the system’s cognitive, speed, and decision-making advantages; accelerate the research and development of next-generation computers, such as quantum computers, to provide stronger computing power support for intelligent command and information systems; and deeply mine the deeper and broader information value from massive combat data resources to seek the initiative in victory.

Collective Efforts to Overcome Challenges. The construction and development of intelligent command and information systems is one of the major projects in military intelligence. It is a complex and collaborative project involving multiple fields, disciplines, departments, and units. The construction and development of intelligent command and information systems must adhere to the spirit of collective wisdom, collaborative problem-solving, and pioneering innovation. It should target strategic and forward-looking fields such as sensors, quantum information, network communication, integrated circuits, key software, big data, artificial intelligence, and blockchain. It should be driven by high-tech advancements and the demands of intelligent warfare, conducting in-depth research and exchanges across multiple fields, levels, and forms to continuously break through, innovate, and upgrade, making the functions of intelligent command and information systems more complete and intelligent.

Collaborative Development. To deeply promote the construction and development of intelligent command and information systems, it is essential to fully absorb advanced local technological achievements and integrate into the global trend of artificial intelligence innovation. Currently, artificial intelligence technology is booming worldwide, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application, and its technological achievements have broad prospects for transformation and application, making it an important pathway to the construction and development of intelligent command and information systems. It is necessary to research and formulate general technical standards, break down barriers, overcome obstacles, and facilitate military-civilian cooperation to achieve the sharing and linkage of technological achievements. Through collaboration, it is also crucial to cultivate and shape new types of military personnel, enabling them to continuously adapt to the needs of various positions under intelligent conditions and fully leverage the effectiveness of intelligent command and information systems.

現代國語:

智慧化戰爭時代序幕已經拉開,具有智慧化特徵的指揮資訊系統將成為未來智慧化作戰指揮的“中樞神經”,是智慧化作戰指揮控制的支撐手段。加速智慧化指揮資訊系統建設是軍事智慧化發展的內在要求,只有明晰智能化指揮資訊系統發展要義,抓住智慧化指揮資訊系統研發要點,探索智能化指揮資訊系統發展要津,才能更好地推動智能化指揮資訊系統建設發展進程,贏得未來智能化作戰制勝先機。

明晰智能化指揮資訊系統發展要義

智慧化指揮資訊系統是戰爭形態朝向資訊化智能化戰爭發展的必然選擇,是科技革命發展的必然結果,也是軍事智能化發展的時代訴求。明晰智能化指揮資訊系統發展要義,有助於把脈智能化指揮資訊系統建設方向,確立系統發展長遠目標。

助推戰爭形態智能化演進。未來智能化作戰,戰場形勢瞬息萬變、戰場環境復雜嚴酷,要想在戰場上取得主動,「制智權」成為新的製高點,而智能化指揮資訊系統無疑是未來作戰指揮和行動的重要支撐手段,其智能化發展可助推戰爭形態向智能化演變,是智能化作戰贏得先機、謀求勝利的重要依托。

支撐作戰理念智能化創新。未來智慧化作戰,需要與之相適應的作戰指揮理念,而智慧化指揮資訊系統是作戰指揮理念實踐運用的重要依托,是智慧化作戰指揮理念創新、發展的土壤。如人機混合指揮編組、數據驅動指揮活動、開放發展指揮模式、智能聚力指揮過程等智能化作戰指揮新理念,都離不開智能化指揮信息系統的支撐,智能化指揮信息系統將作為人腦的外延,突破人體生理極限,實現作戰指揮藝術和智能技術的有機融合。

促進作戰方式智能化轉變。人工智慧技術在軍事領域的廣泛應用,使得作戰制勝機理發生重大變化,智慧超越火力、資訊力,成為決定戰爭勝負的首要因素。智慧化指揮資訊系統建設發展將促進作戰方式向智慧化轉變,使得作戰方法從資訊時代的「作戰網絡+精確制導武器」向智慧時代的「智慧物聯網+有人/無人作戰平台」轉變、基本作戰樣式相應地從「網絡中心戰」向「認知中心戰」演進。

抓住智慧化指揮資訊系統研發點

指揮資訊系統是資訊化戰爭時代的產物,隨著軍事智慧化的快速發展、智慧化作戰制勝機理的研究和實踐運用,指揮資訊系統智慧化升級建設迫在眉睫。應突顯功能研發點,打造全新智慧化指揮資訊系統。

“超腦化”輔助決策。未來智能化作戰,戰場資訊數據量龐大且複雜多變,指揮員在指揮過程中易陷入「資訊海洋」而導致資訊迷茫,影響指揮決策。隨著智慧輔助決策技術和「雲端大腦」「數字參謀」的出現,以「人腦+人工智慧」協作為基本方式的新決策模式正悄悄形成。智慧化指揮資訊系統將突破人類智力極限,作為人腦的外延,輔助指揮員工作,使戰爭決策由單純的人腦決策發展為「人腦+人工智慧」的超腦化指揮決策。

「全維化」態勢感知。未來智能化作戰,空間多維、力量多元、樣式多樣、節奏加快趨勢突出,全面靈動地掌握戰場態勢成為指揮員決策的基礎,多域一體、智能動態地呈現全維戰場態勢成為指揮資訊系統建設發展必然要求。指揮資訊系統對諸如目標識別、威脅等級估計、作戰行動預判和未來戰況走向預估等戰場態勢的感知、理解、融合和預測,正在從陸、海、空、天、電磁、網絡等空間擴展至認知域、社會域,實現「全維化」態勢感知。

「智聯化」網絡通聯。未來智慧化作戰將使用大量智慧指揮控制平台和智慧化武器平台,而連接指揮控制平台和武器平台的必然是智慧化的資訊通訊系統。如同人體的神經和血管,智慧化的資訊通訊系統在智慧化作戰中扮演連結和潤滑作用。因此,要建立全維度覆蓋、不間斷的智慧化資訊網絡,支撐智慧化裝備的連結和控制,形成網絡結構智能優化、網絡抗毀智能重組以及智能抗干擾能力,以確保平台間智能化的協同作戰,發揮最佳的整體作戰效能。

「無人化」自主協同。近期世界局部沖突中,無人機大量運用並起到決定戰爭走向的重要作用,引起了各方的廣泛關注。無人化武器裝備是智慧化作戰的物質基礎,並依此形成了顛覆式作戰樣式,如侵入式獨狼作戰、有人/無人協同體系破擊作戰、無人系統編隊獨立作戰、無人機蜂群集群作戰等。無人作戰雖是由人主導,並在後台賦予機器一定程度的自主行動權限,從而實現機器在一線無人作戰行動。然而無人作戰戰場瞬息萬變,人機協同被破壞將成為常態,無人智慧化裝備平台指控系統必須更加智慧,要能根據作戰目的進行自主協同作戰。

“主動化”訊息防禦。智慧化作戰必將面臨強敵全維多樣的資訊攻擊,資安防護能力的高低,直接影響戰場「制智權」鬥爭的勝負,是智慧化指揮資訊系統建設的關鍵環節。因此,應主動作為,積極制定及完善網絡防護策略,豐富入侵檢測能力及認證識別手段,加強資訊安全高新技術運用,強化各類無線傳輸方式的抗干擾、抗介入能力,建強智能化溯源反制能力,有效遏止資訊攻擊。

探索智慧化指揮資訊系統發展要津

智慧化指揮資訊系統發展不單單是技術的革新,更需要進一步解放思想、更新理念。推動智慧化指揮資訊系統發展,要改變傳統添硬體、建大「網」、收集存儲各類數據的思路,突破固有層級設定,打造開放式、服務型系統,瞄準智能化作戰指揮與行動需要,探索研究智能化指揮資訊系統發展要津。

創新理念。堅持以創新的思維理念為指引,借用軍事強國智慧化指揮資訊系統發展思路,結合實際需求,探索具有自身特色的發展道路。要打破傳統「樹煙囪」做法,堅持指揮資訊系統頂層設計和整體規劃,統一介面、協議和標準,形成開放式、可持續發展的系統架構佈局;堅持研建用相結合的系統研發策略,制定近期、中期、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化持續策略,不斷提升指揮、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化持續性策略,不斷提升指揮控制、長期不同階段發展策略、各分列系統建設發展方向;堅持版本

聚力關鍵。聚力智能化指揮資訊系統關鍵能力建設,是智慧化作戰以智聚優、以智制勝的重要依托,是智慧化作戰取得「制勝權」的關鍵。演算法、算力、數據既是人工智慧發展的內在動力和支撐,也是智慧化指揮資訊系統的核心能力要求和優勢。智慧化指揮資訊系統發展要堅持演算法創新研究,提高系統認知優勢、速度優勢和決策優勢;加快量子計算機等為代表的下一代計算機研發,為智能化指揮信息系統提供更強的算力支持;深度挖掘海量作戰數據資源中更深層次、更廣維度信息價值,謀求制勝先機。

集智攻關。智慧化指揮資訊系統建設發展是軍事智慧化的主要工程之一,是一個多領域、多學科交叉,多部門、多單位參與的大融合大聯動的攻堅工程。智慧化指揮資訊系統建設發展要堅持群策群力、集智攻關、開拓創新的精神,瞄準傳感器、量子信息、網絡通信、集成電路、關鍵軟件、大數據、人工智能、區塊鍊等戰略性前瞻領域,堅持高新技術推動、智能化作戰需求拉動,開展多領域、多層次、多形式深度研究交流,更加創新、進一步迭代創新

協作發展。深入推動智慧化指揮資訊系統建設發展,必須充分吸收地方先進技術成果,融入世界人工智慧創新發展的時代洪流。當前,世界人工智慧技術蓬勃發展,積蓄了強大發展動能和技術優勢,人工智慧技術應用通用性強,技術成果轉化應用前景廣闊,是智慧化指揮資訊系統建設發展的重要實現途徑。要研究制定通用技術標準,拆壁壘、破堅冰、暢通軍地合作,實現技術成果共享連結。要透過協作培養塑造新型軍事人才,使其不斷適應智慧化條件下各類崗位需求,充分發揮智慧化指揮資訊系統效能。

來源:解放軍報 作者:李建平 紀鳳珠 李琳 責任編輯:王鳳 2022-08-0x

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/8884917735.html

Chinese Military: Drones Possessing Swarm Intelligence What Combat Advantages Exist?

中國軍方:具備群體智慧的無人機有哪些作戰優勢?

現代英語:

A drone is an unmanned aerial vehicle that uses radio remote control equipment or autonomous control devices to control its flight.

Compared with manned aircraft, unmanned aircraft have advantages such as greater flexibility and higher cost-effectiveness in combat.

However, in system-of-systems warfare, due to the complex battlefield environment, dispersed resource allocation, and multi-dimensional combat styles, a single UAV is difficult to perform diverse combat missions.

By leveraging swarm intelligence to conduct intelligent drone swarm operations, the numerical advantage of drones can be transformed into an asymmetric warfare advantage.

Intelligent combat style of drone swarm

In recent years, unmanned aerial vehicle (UAV) swarms have played an increasingly important role in combat missions such as collaborative detection, all-domain strikes, and tactical deception, becoming one of the key development directions in the military field.

Based on the current level of collective intelligence and combat style of drone swarms, they can be divided into three types:

—Pseudo-swarm. This is a type of “swarm” where multiple drones are controlled separately by ground personnel. While the drones appear to be in a swarm, they are actually independent and do not interact or coordinate with each other.

In 2016, the U.S. Navy conducted hundreds of simulation tests of drone swarm attacks against the Aegis defense system. The results showed that when a swarm of eight drones launched a penetration attack, the defense system struggled to allocate firepower effectively, with an average of about 2.8 drones managing to evade the interception system and carry out the attack each time.

In the above cases, the drones appear to be in a “swarm” but lack collective intelligence; their combat capabilities are only enhanced by the numerical advantage brought about by the aggregation of multiple drones.

—Centralized Cluster. This is a clustering approach where a ground command center acts as the cluster’s brain, and drones operate independently, all under the unified command and control of this brain. In November 2020, the U.S. military conducted a two-hour autonomous, coordinated flight test using ground-based software to drive a cluster of Avenger drones. This project utilizes software to determine the optimal combat strategy, improving the flexibility and survivability of existing unmanned combat forces.

Centralized clusters have low levels of intelligence and face potential problems such as single-chain failures and poor reliability. When the communication link between the ground command center and the cluster is damaged, the entire cluster will lose its combat capability due to loss of control.

In 2018, Syrian opposition forces deployed a concentrated swarm of 13 fixed-wing drones to harass and attack a Russian airbase. Russia responded using electronic warfare combined with firepower to intercept the drones, ultimately capturing six and shooting down seven.

—Distributed Cluster. This is a cluster approach where there is no central controller, and drones collaborate and cooperate to execute combat missions through information sharing. This approach has advantages such as decentralization, low complexity, and self-organization, greatly improving the ability to perform complex tasks.

In 2017, the United States used three F/A-18 fighter jets to launch 103 drones, forming a distributed swarm for flight tests. The tests demonstrated functions such as aircraft launch and formation changes, achieving the expected combat results.

Compared to centralized clusters, distributed clusters possess a distributed architecture, and inter-machine information interaction provides the necessary conditions for the emergence of swarm intelligence. Unmanned aerial vehicle (UAV) swarms with swarm intelligence exhibit high autonomy and good security, representing a major development direction for swarm warfare.

Empowering clusters with intelligence by leveraging group behavior characteristics

In the magnificent natural world, there exist biological communities such as schools of fish, herds of mammals, swarms of bees, and flocks of birds. These individual organisms are fragile, but the groups they form through interaction and cooperation possess stronger abilities in foraging, seeking advantage and avoiding harm, and migration.

Biological communities achieve efficient collaboration through simple communication, exhibiting behavioral characteristics such as collaborative aggregation, target attraction, and collision avoidance and repulsion, thus achieving a win-win cluster effect.

This macroscopic intelligent behavior, exhibited by social organisms through cooperation, is known as swarm intelligence. Swarm intelligence is an important research area in artificial intelligence.

By combining unmanned aerial vehicle (UAV) system technology with research on the theory and methods of swarm intelligence, it is hoped that UAV swarms with more autonomous intelligence characteristics can be explored, thus forming advanced swarm intelligence.

—Based on the characteristics of collaborative aggregation behavior, distributed operation of UAV swarms is achieved. In nature, schools of fish foraging for food can gather through local information exchange to improve foraging efficiency. When encountering predators, they can quickly disperse and escape, distracting the predators and reducing the risk of being preyed upon. Similarly, the flight control of UAV swarms, through information exchange between adjacent UAVs, designs a UAV collaborative control protocol, enabling each member in the swarm to reach a “consensus” on global consistency, directional convergence, and desired formation, truly realizing distributed operation of the swarm. Just like the phenomenon of wave motion, information is transmitted rapidly and accurately between them, thereby achieving consistency in action.

—Utilizing target attraction behavior, drone swarms can achieve formation tracking. Just as a wolf pack, led by an alpha wolf, can divide tasks and cooperate closely to hunt prey, with the alpha wolf tracking the target and issuing commands, while the pack members perform different roles and work together efficiently to complete the hunt, drone swarms can follow a similar model. The alpha drone, with its strong detection, identification, and analysis capabilities, is responsible for tracking the target and generating its trajectory. Leveraging its high performance and situational awareness, it achieves real-time target tracking. Follower drones not only track the alpha drone’s trajectory in real time but also form the necessary swarm configuration through inter-drone collaboration, improving payload distribution efficiency and enhancing mission execution.

—Based on collision avoidance and repulsion behavior characteristics, intelligent collision avoidance is achieved for UAV swarms. Intelligent collision avoidance is a fundamental requirement for ensuring the flight safety and successful execution of missions by UAV swarms during combat operations. “Intelligent collision avoidance for swarms” aims to enable individual UAVs to avoid obstacles in the battlefield environment in real time, while preventing collisions between swarm members. To achieve this, an “intelligent repulsive potential field” can be constructed between UAVs and between the swarm and obstacles: when the relative distance is too small, a collision avoidance and repulsion mechanism is triggered, effectively coping with complex environments and combat modes.

Intelligent clusters lead to a new style of system-of-systems warfare

Judging from the development trends of the world’s military powers, with the application of information, unmanned and intelligent technologies on the battlefield, the ability to conduct systematic combat will become an important factor in determining the success or failure of a war.

The development of swarm intelligence technology will greatly promote the transformation of unmanned aerial vehicle (UAV) swarm warfare, and is an important means for future militaries to adapt to complex battlefield environments and enhance their combat capabilities. UAV swarms will revolutionize traditional warfare and become a new type of combat style for winning future battlefields.

Unmanned aerial vehicle (UAV) swarms possessing a certain degree of coordination and autonomy can carry different types of payloads and perform diverse combat missions. Experimental results from UAV swarm collaboration verification projects such as the US’s “Gremlins” and “Partridges” demonstrate that miniaturized, low-cost UAV swarms are expected to achieve collaborative capabilities in detection, perception, identification, communication, and attack in the short term through inter-UAV information sharing.

In light of this, major military powers continue to develop unmanned aerial vehicle (UAV) swarm warfare capabilities, hoping to use systematic, low-cost UAV swarms to harass relatively isolated, high-value military targets and leverage the advantages of asymmetric warfare.

With the continuous upgrading of artificial intelligence technology, drone swarms with collective intelligence can leverage their advantages of strong environmental adaptability, flexible deployment, functional integration, small size and high efficiency to achieve intelligent networking, collaborative combat and strategic confrontation, implement all-round penetration against defense systems, form a “reconnaissance-resistance-strike-assessment” combat closed loop, and defeat the enemy in future multi-domain and multi-dimensional systemic warfare.

現代國語:

無人機蜂群作戰系統示意圖。

無人機是一種利用無線電遙控設備或者自主控制裝置操縱飛行狀態的無人飛行器。

與有人機相比,無人機在作戰中具備靈活性強、作戰效費比高等優勢。

然而,在體系化作戰中,由於戰場環境復雜、要素配置分散、作戰樣式多維,單一無人機難以勝任多樣化作戰任務。

依托群體智能開展智能化無人機集群作戰,可將無人機數量優勢轉化為非對稱作戰優勢。

無人機集群智能化作戰樣式

近年來,無人機集群在協同探測、全域打擊、戰術騙擾等作戰任務中,逐漸發揮出越來越重要的作用,成為軍事領域重點發展方向之一。

按照目前無人機集群的群體智能化程度與作戰樣式,可將其劃分為3種類型:

——偽集群。這是一種由地面人員分別操控多架無人機構成的“集群”方式。無人機看上去是集群,其實相互獨立,並不存在信息交互協同。

2016年,美國海軍進行了數百次無人機“集群”進攻“宙斯盾”防御系統的模擬試驗。結果表明,當由8架無人機組成的“集群”突防攻擊時,防御系統難以合理分配火力,平均每次約有2.8架無人機可避開攔截系統實施打擊。

上述案例,無人機在形式上表現為“集群”,但不存在群體智能,僅靠多架無人機集聚帶來的數量優勢提高作戰能力。

——集中式集群。這是一種以地面指揮中心作為集群大腦、無人機之間無交互、統一受集群大腦指揮調度的集群方式。2020年11月,美軍通過地面軟件驅動“復仇者”無人機組成集群,進行了約2小時的自主協同飛行試驗。該項目利用軟件確定最優作戰方案,提高了現有無人作戰力量的靈活性和生存能力。

集中式集群智能化程度低,面臨單鏈失效、可靠性差等潛在問題。當地面指揮中心與集群通信鏈路遭到破壞時,整個集群將因失去控制而喪失作戰能力。

2018年,敘利亞反對派出動13架固定翼無人機構成集中式集群,對俄羅斯空軍基地進行襲擾攻擊。俄方利用電子戰加火力殺傷的手段實施攔截,最終俘獲6架無人機,擊落7架無人機。

——分布式集群。這是一種不存在中心控制器、各無人機通過機間信息共享、協同配合執行作戰任務的集群方式。該方式具有去中心化、低復雜度和自組織性等優勢,極大提高了遂行復雜任務能力。

2017年,美國利用3架F/A-18戰斗機釋放了103架無人機,形成分布式集群進行飛行試驗,實現了載機發射、隊形變換等功能,達到了預期作戰效果。

相比於集中式集群,分布式集群具備了分布式體系結構,機間信息交互為群體智能的產生提供了必要條件。擁有群體智能的無人機集群,自主性高、安全性好,是集群作戰的主要發展方向。

利用群體行為特征為集群賦智

在瑰麗的自然界中,存在著魚群、獸群、蜂群和鳥群等生物群落。這些生物個體本身是脆弱的,但通過交互協作聚集而成的群體,則擁有更強的覓食、趨利避害和遷徙等能力。

生物群落通過簡單通信實現高效協同,表現出協同聚集、目標吸引和避撞排斥等行為特征,能夠達成合作共贏的集群效果。

這種由群居性生物通過協作表現出的宏觀智能行為特征,即為群體智能。群體智能是人工智能的一個重要研究方向。

結合無人機系統技術,研究群體智能的理論與方法,有望探求到更具自主智能特性的無人機集群,形成高級群體智能。

——根據協同聚集行為特征,實現無人機集群的分布式作業。在自然界中,覓食的魚群能通過局部信息交流聚集,提高覓食效率。在遭遇捕食者時,又可快速散開逃逸,分散捕食者注意力,降低被捕食風險。與之類似,無人機集群的飛行控制,通過相鄰無人機的信息交互,設計無人機協同控制協議,使得集群中的每一成員就全局一致、方向趨同和期望隊形等達成“共識”,真正實現集群的分布式作業。就像波動現象一樣,相互間迅速准確地傳導信息,從而達成行動的一致性。

——利用目標吸引行為特征,實現無人機集群的編隊跟蹤。狼群能在頭狼帶領下進行任務分工,密切配合圍捕獵物。頭狼負責追蹤目標並發布命令,狼群則擔負不同職責共同協作高效完成捕獵任務。無人機集群可參照狼群模式,利用目標吸引行為特征,形成領航跟隨任務模式。領航機探測識別與分析處理能力較強,負責跟蹤目標生成航跡,發揮高性能優勢和態勢感知能力,實現對目標的實時跟蹤,跟隨機既能實時跟蹤領航機航跡,又能通過機間協同形成任務所需的集群構型,提高載荷分布配置效能,強化任務執行力。

——依據避撞排斥行為特征,實現無人機集群的智能防撞。無人機集群在執行作戰任務時,實現智能防撞是保證自身飛行安全和順利執行任務的基本要求。“集群智能防撞”,就是要讓各無人機實時規避戰場環境中的障礙物,同時集群間不發生碰撞。要實現這一效果,可構建無人機之間和集群與障礙物之間的“智能斥力勢場”:當相對距離過小時,觸發避撞排斥機制,有效應對復雜環境和作戰模式。

智能集群引領體系化作戰新樣式

從世界軍事強國發展趨勢來看,隨著信息化、無人化和智能化技術應用於戰場,是否具備體系化作戰能力將成為決定戰爭成敗的重要因素。

群體智能技術的發展,將極大推動無人機集群作戰模式的變革,是未來軍隊適應復雜戰場環境、提升作戰能力的重要手段。無人機集群將顛覆傳統戰爭形態,成為制勝未來戰場的新型作戰樣式。

具備一定協同能力與自主性的無人機集群,可搭載不同種類載荷,執行多樣化作戰任務。從美國的“小精靈”“山鶉”等無人機集群協同作戰驗證項目的實驗效果來看,小型化、低成本的無人機集群,在短期內有望通過機間信息共享,形成探測、感知、識別、通信和攻擊等協同能力。

鑑於此,各軍事強國持續發展無人機集群作戰力量,期望以成體系的低成本無人機集群,襲擾相對孤立的高價值軍事目標,發揮出非對稱作戰優勢。

隨著人工智能技術的不斷升級,擁有群體智能的無人機集群,可發揮其環境適應能力強、部署靈活、功能集成、小型高效的優勢,實現智能組網、協同作戰與博弈對抗,對防御系統實施全向突防,形成“偵-抗-打-評”作戰閉環,在未來多域多維的體系化作戰中克敵制勝。

中國原創軍事資源:http://www.81.cn/yw_208788827/10085732.html

Analysis of Chinese Military Development Trend of Collaborative Combat in the Era of Intelligentization

智能化時代中國協同作戰軍事發展趨勢分析

現代英語:

Operational coordination is a key element in modern warfare for achieving system-of-systems operations, unleashing overall effectiveness, and achieving operational objectives. In recent years, with breakthroughs in military science and technology, particularly artificial intelligence, the empowering and efficiency-enhancing role of technology has become increasingly prominent. While profoundly changing the nature of warfare and operational styles, it has also given rise to a new operational coordination model—autonomous coordination. Currently, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development of autonomous coordination, and thus accelerate the transformation and upgrading of operational methods.

Transforming towards intelligent empowerment and autonomous collaboration

Future warfare will be a comprehensive confrontation between opposing sides employing “human + intelligent equipment.” Limited by military technology, system platforms, and combat capabilities, traditional combat coordination, with its fixed cycles and low fault tolerance, is no longer suitable for the rapidly changing modern battlefield. With the powerful support of advanced technologies such as artificial intelligence and big data, the autonomy and automation of combat coordination will be greatly enhanced, and intelligently empowered autonomous coordination will become key to victory.

Wide-area ubiquitous collaboration. In recent years, the profound development of communication and intelligent technologies, along with the accumulation and superposition of data, algorithms, and computing power, has promoted the interconnection and aggregation of people, machines, things, and energy. This has extended the military Internet of Things (IoT) to many fields such as situational awareness, command and control, information and fire strikes, and logistical support. While promoting the iterative upgrading of combat capabilities, it has also provided more options for modern combat collaboration. It is foreseeable that the military IoT will shine on the future battlefield, serving not only as a key infrastructure supporting combat operations but also as a crucial hub for maintaining combat collaboration. Based on this, ubiquitous warfare characterized by wide-area dispersion of forces, modular organizational structures, and highly coordinated actions will emerge, characterized by being omnipresent, ubiquitous, and autonomous without control.

Deep human-machine collaboration. In the Nagorno-Karabakh conflict, the Azerbaijani army leveraged its drone advantage to build a strong battlefield advantage, marking the beginning of “robot warfare.” In future warfare, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are rapidly moving from back-end support to the front lines, becoming the “protagonists” of the battlefield. Compared to traditional combat collaboration, manned-unmanned intelligent collaboration exhibits characteristics such as decentralized command, de-division of labor in combat processes, advanced skill operation, and blurred lines between the front and rear, placing greater emphasis on human-machine collaboration and algorithmic victory. Especially in recent years, intelligent unmanned swarms have emerged as a powerful force, strongly impacting the modern battlefield. Faced with these new situations and changes, we should comprehensively utilize swarm formation algorithms, formation control algorithms, and complex scenario optimization algorithms to promote networked communication and intelligent collaboration between unmanned and manned systems, facilitating the integrated operation of the intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerating the generation of comprehensive precision-based combat capabilities.

Data-driven collaboration. The traditional operational collaboration model under hierarchical command is no longer suitable for the multi-dimensional and fast-paced nature of modern warfare. In future warfare, intelligence is key, and data is king. The deep integration of big data, cloud computing, and artificial intelligence enables the storage, analysis, fusion, and application of massive amounts of battlefield data, making command and control more scientific and operational collaboration more efficient. Leveraging powerful resource integration, computing power, and data analysis capabilities, battlefield intelligence can be rapidly integrated, battlefield situation awareness can be achieved in real time, collaborative plans can be efficiently formulated, and threat levels can be assessed instantly. This allows for the integrated planning of predicting combat actions, analyzing typical scenarios, deploying combat forces, and allocating combat resources, thereby comprehensively improving the overall effectiveness of command and control, firepower strikes, and integrated support, and driving a revolutionary change in operational collaboration.

Towards Multi-Domain Collaborative Autonomous Evolution

Future warfare will feature complex and diverse participating forces, a mix of advanced and less sophisticated weaponry, and a hybrid application of combat methods. It will exhibit distinct characteristics such as intelligent, dynamically decentralized command and control, intelligent and wide-area deployment of combat forces, and intelligent allocation and dynamic differentiation of combat missions. It is foreseeable that multi-domain联动 (interconnected and autonomous) collaboration will become a crucial component of operational coordination.

System self-restructuring and collaboration. Future warfare will involve a multi-domain battlefield space that combines virtual and real elements, with diverse military operations interacting and constraints and collaboration shifting randomly. Only an engineered and systematic organizational model can adapt to the complex needs of multi-domain collaboration. The essence of this collaboration model is to form a wide-area holographic support architecture for system self-restructuring and collaboration. Specifically, this means emphasizing the concept of system-of-systems warfare, comprehensively resolving practical contradictions in organizational system construction, institutional mechanism establishment, and collaborative rule formulation; focusing more on the system integration effect, achieving beyond-visual-range and cross-domain collaborative operations for combat units across a wide area; emphasizing efficient and flexible command, refining command relationships and clarifying command responsibilities from multiple dimensions; and paying more attention to data-driven precision, integrating network system platforms at all levels to establish a dynamic optimization network for reconnaissance, control, strike, assessment, and support missions. Once this collaboration model is formed, it will undoubtedly be able to analyze and predict typical confrontation scenarios based on the operational environment, adversaries, and missions, dynamically select action collaboration links, and plan operational actions across various domains in an integrated manner.

Tactical Adaptive Collaboration. Recent local wars have repeatedly demonstrated that the complexity and systemic nature of operational collaboration have increased exponentially due to the extension of operational data and information sharing to the tactical level. Only by achieving efficient processing, integration, and sharing of operational data and information can adaptive and autonomous collaboration among operational users be guaranteed. This collaborative model places greater emphasis on scientific planning and innovative methods to form a universal battlefield situation map with full-dimensional coverage. It supports hierarchical, cross-level, and cross-domain sharing and collaboration among users deployed across a wide area, enabling command elements and operational units to jointly perceive the battlefield situation and ensuring self-synchronous operations within a unified strategic intent, operational guidance, and collaborative planning framework. This collaborative model further emphasizes vertical integration of strategy, operations, and tactics, and horizontal integration of land, sea, air, space, and cyberspace. It provides powerful information sharing services in detection, early warning, and surveillance, and promotes the extension of operational-level joint operations to tactical-level joint operations through information media. This collaborative model further highlights the standardized operation of command and control, and the use of cutting-edge technologies such as big data and cloud computing to promote the connection of operational command levels, cross-domain linkage, element interaction, and situational awareness sharing. It achieves intelligent collaboration among command systems, weapon platforms, and sensors, and implements the key to victory through speed.

Complementary and Synergistic Advantages. In future warfare, operations in space, cyberspace, and other domains will be deeply integrated into the traditional battlefield, requiring higher standards and more stringent planning and design for the overall operation. Only by clarifying the complementary relationships and proportions of input and output across different operational domains, and then outlining the operational relationships for cross-domain collaboration, can we bridge the gaps in domain operations and achieve multi-dimensional battlefield complementarity. Essentially, this is also a concentrated reflection of the concept of war effectiveness. From another perspective, in a war, when local battlefield advantages are not obvious or harbor hidden dangers, overall victory can still be achieved by gaining local advantages in other domains to compensate and achieve comprehensive superiority. In future informationized and intelligent warfare, this will be even more prominent and complex, requiring comprehensive strategies targeting military, political, public opinion, legal, psychological, and diplomatic fields, leveraging each other to fully unleash maximum operational effectiveness; requiring close cooperation between traditional and new-type forces, building an integrated operational system based on network information systems, and maximizing overall effectiveness through synergistic advantages.

Towards Dynamic Coupling and Autonomous Collaborative Transition

In the era of artificial intelligence, with the profound changes in information technology and weaponry, combat operations place greater emphasis on breaking down traditional force formations, integrating the functions of traditional platforms, and dismantling traditional offensive and defensive boundaries, so as to achieve all-weather dynamic control of combat operations through dynamic coupling and autonomous collaboration.

Dynamic convergence and coordination. Future warfare will see more intense adversarial confrontations and more volatile battlefield situations, rendering the static, extensive, and methodical coordination methods of the past inadequate. It is imperative to pay close attention to key operational nodes, closely monitoring the overall situation, anchoring operational tasks, and focusing on operational objectives. This requires assessing the situation, seizing opportunities, and swiftly changing coordination partners, flexibly adjusting coordination strategies, and autonomously negotiating coordinated actions based on predetermined coordination rules. It is important to note that this coordination method based on key operational nodes particularly emphasizes the ability of combat forces to overcome structural barriers and organically aggregate operational effectiveness. Through the flexible structure of the coordination organization, conflicts can be self-coupled and autonomously resolved, gaps in cooperation can be bridged, and the precise release of the combined forces of the operational system can be promoted.

Dynamic control and coordination. The battlefield situation in future warfare is constantly changing, and the course of operations often deviates from the predetermined plan, resulting in significant uncertainty. This implicitly requires us to break through traditional operational thinking and closely monitor changes in the battlefield situation to implement real-time, flexible, and autonomous coordination of the operational process. This coordination method, through real-time assessment of changes in the battlefield situation, the extent of damage to enemy targets, and the scale and effectiveness of operational operations, enables rapid command and control and precise coordination in areas such as force projection, fire support, and comprehensive support, ensuring that we always maintain the initiative on the battlefield. This coordination method requires relying on advanced intelligent auxiliary means to quickly divide the operational phases, predict the duration of operational operations, analyze the overall deployment of operational forces, calculate the allocation of operational resources, and accordingly precisely control the decision-making cycle and operational rhythm, accurately coordinating troop actions and the operational process to ensure effective response to various randomness and uncertainties in combat.

Dynamic Response and Coordination. The unpredictable nature of future warfare, coupled with the profound effects of asymmetric warfare, hybrid games, and system emergence, means that planned operations will inevitably encounter various unforeseen circumstances during execution. Therefore, dynamic coordination in response to unforeseen situations is an effective strategy for resolving these contradictions. This coordination method emphasizes dynamically adjusting actions based on different situations. When unforeseen circumstances arise in a local battlefield or operation, with minimal impact on the overall operation and sufficient time, the operational system automatically responds, partially adjusting operational deployments and actions to ensure the achievement of expected operational objectives. When multiple urgent and non-urgent situations coexist on the battlefield and partially affect the overall situation, operations are dynamically and instantly coordinated according to the principle of prioritizing urgent matters, pushing the battle situation in our favor. When multiple major unexpected situations or unforeseen changes occur in the overall battle situation, coordination is carried out according to the principle of prioritizing primary directions and then secondary directions, rapidly generating new coordinated response measures to effectively address various unforeseen battlefield situations. (Wu Siliang, Jia Chunjie, Hou Yonghong)

Source: PLA Daily

(Editors: Wang Xiaoxiao, Ren Yilin)

現代國語:

2025年04月01日08:59 |

小字号

引言

作战协同是现代战争中实现体系作战、释放整体效能、达成作战目标的关键要素。近年来,随着以人工智能为代表的军事科学技术取得突破性进展,科技的赋能增效作用进一步凸显,在深刻改变战争形态、作战样式的同时,也催生出一种新的作战协同模式——自主协同。当前,应科学把握新军事革命的机遇挑战,动态统筹好自主协同发展走向,从而推动作战方式加速转型升级。

向智能赋能自主协同蜕变

未来战争将是对抗双方采用“人+智能装备”展开的全方位对抗。受军事技术、系统平台、作战能力等限制,传统作战协同因为存在周期固化、容错率低等局限,已难以适应战机转瞬即逝的现代战场。在人工智能、大数据等先进技术手段的强力支撑下,作战协同的自主性、自动化水平将极大提升,智能赋能下的自主协同亦将成为克敌制胜的关键。

广域泛在协同。近年来,通信技术、智能技术的深度发展,数据、算法、算力的积累叠加,促进了人、机、物、能的互联聚合,将军事物联网延伸扩展至态势感知、指挥控制、信火打击、后装保障等诸多领域,在促进作战能力迭代升级的同时,也为现代作战协同提供了更多选项。可以预见,军事物联网将在未来战场大放异彩,不仅是支撑作战行动的关键性基础设施,也是维系作战协同的关节枢纽。以此为依托,将催生出力量广域分散、组织模块构成、行动高度协同的泛在式作战,无时不在、无处不在、无控自主。

人机深度协同。纳卡冲突中,阿塞拜疆军队凭借无人机优势构建起强大战场优势,某种程度也宣告“机器人战争”登场。未来战争,无人机、无人车、无人舰等无人作战力量,正加速从后台支援保障走向一线作战前台,开始担当战场“主角”。较之传统作战协同,有人无人智能协同呈现出作战指挥“去中心化”、作战过程“去分工化”、技能操作高端化、前沿与后方模糊化等特点,更加强调人机协同、算法取胜。尤其是近年来,智能无人集群异军突起,开始强烈冲击现代战场。面对这些新情况新变化,应统筹运用集群编队算法、队形控制算法以及复杂场景优化算法等,推动无人与有人组网通信、智能协同,促进情报链、指挥链、机动链、打击链和保障链一体运转,加快生成精确制敌综合作战能力。

数智驱动协同。逐层递进指挥下的传统作战协同模式,已难以适应现代战争的多维度快节奏。未来战争,智能为要,数据为王。大数据、云计算、人工智能等深度融合,实现了对海量战场数据的存储、分析、融合和运用,从而使得指挥控制更加科学、作战协同更加高效。借助强大的资源整合、计算处理和数据分析能力,可以快速融合战场情报、实时感知战场态势、高效制订协同计划、瞬时评估威胁等级,将预测作战行动、解剖典型场景、布势作战力量和配置作战资源一体统筹,从而全面提升指挥控制、火力打击、综合保障等方面的综合质效,推动作战协同革命性变革。

向多域联动自主协同演进

未来战争,参战力量复杂多元、武器装备高低搭配、作战方法混合运用,呈现作战指挥智能动态分散、作战力量智联广域部署、作战任务智配动态区分等鲜明特征。可以预见,多域联动自主协同将成为作战协同的重要构成。

体系自重塑协同。未来战争多域战场空间虚实结合、多样军事行动交互作用,约束与协作随机转化,只有采取工程化、系统化的组织模式,才能适应庞杂的多域协同需要。这种协同模式,其实质是要形成体系自重塑协同的广域全息支撑架构。具体来看,就是更加突出体系作战理念,从整体上破解组织体系构建、制度机制设立、协同规则制订等现实矛盾;更加注重体系融合效应,从广域上实现作战单元超视距作战、跨域协同作战;更加强调高效灵活指挥,从诸维度细化指挥关系、厘清指挥权责;更加关注数据精准驱动,从各层级整合网络系统平台,建立侦控打评保任务动态优化网。这种协同模式一旦形成,无疑能够针对作战环境、作战对手和作战任务等,研判预测典型对抗态势场景,动态选择行动协同链路,一体规划各领域作战行动。

战术自适应协同。近年来的局部战争冲突一再表明,由于作战数据信息向战术层共享应用延伸,作战协同的复杂性系统性呈指数级跃升。只有实现作战数据信息的高效处理、融合共享,才能保证作战用户间自适应、自主化协同。这种协同模式,更加注重科学规划、创新手段,形成全维覆盖的通用战场态势图,支持广域分散部署的各级各类用户间按级、越级、跨域共享协作,实现指挥要素、作战单元共同感知战场态势,确保在统一的战略意图、战役指导、协同计划框架内自同步作战。这种协同模式,更加强调纵向贯通战略、战役、战术,横向融汇陆海空天电,在探测、预警、监视等方面提供强力信息共享服务,依托信息介质推动战役级联合向战术级联合延伸。这种协同模式,更加突出指挥运行、力量运用等的标准化运行,借助大数据、云计算等前沿技术推动作战指挥层级衔接、跨域联动、要素交互、态势共享,实现指挥系统、武器平台、传感器间的智能化协同,落地落实以快制慢制胜关键。

优势智互补协同。未来战争,太空、网络等领域作战行动深度融入传统战场空间,要求对作战全局实施更高标准更高要求的规划设计。只有搞清各作战域优势互补关联、投入成效比重,进而梳理出跨领域协同的运行关系,才能弥合领域作战缝隙,实现多维战场优势互补。从本质上看,这也是战争效益观的集中反映。从另一视角来看,一场战争,当战场局部优势不明显或暗藏危机时,通过在其他领域取得局部优势予以弥补并达成综合优势,同样可以实现整体制胜目的。未来信息化智能化战争,这一点将体现得更为突出也更为复杂,要求针对军事、政治、舆论、法理、心理、外交等领域综合施策,相互借力充分释放最大作战效能;要求传统力量、新质力量密切配合,依托网络信息体系打造一体化作战体系,通过优势协同实现整体效能最大化。

向动态耦合自主协同变迁

人工智能时代,伴随信息技术和武器装备的深度变革,作战行动更加强调打散传统力量编组、打通传统平台功能、打破传统攻防界限,通过动态耦合自主协同实现对作战行动的全时动态可控。

动态聚点协同。未来战争敌我对抗更加激烈、战场态势更为多变,以往那种静态粗放、按部就班的协同方式将难以适应。必须对作战的关键节点给予高度关注,在紧盯整体态势、锚定作战任务、聚焦作战目标的基础上,审时度势把握战机,依据预定的协同规则,敏捷变换协同对象、灵活调整协同策略、自主协商协同行动。需要注意的是,这种基于关键作战节点的协同方式,尤为强调作战力量跨越结构壁垒、有机聚合作战效能,通过协同组织的弹性结构,自耦合自主化消解矛盾冲突、弥合作战缝隙,促进作战体系合力精准释放。

动态调控协同。未来战争战场态势瞬息万变,作战进程往往难以按照预定作战计划推进,作战行动有着极大的不确定性。在无形中,这也要求我们突破传统作战思维,紧盯战场态势变化对作战进程实施即时灵活自主协同。这种协同方式,通过实时评估战场态势变化、敌方目标毁伤程度、作战行动规模效益等,从而在力量投送、火力支援、综合保障等方面实现快速指控、精准协同,始终把握战场主动权。这种协同方式,要求依托智能辅助先进手段,快速切分作战阶段,预测作战行动持续时间,研判作战力量整体布势,计算作战行动资源分配,据此精准控制决策周期和作战节奏,精准协调部队行动和作战进程,确保能够有效应对作战中的各种随机性、不确定性。

动态响应协同。未来战争作战机理变化莫测,非对称作战、混合博弈、体系涌现等的深层作用,使得预定作战方案计划在执行中必然遇到各类突发情况。为此,针对突发情况动态协同是解决上述矛盾问题的有效策略。这种协同方式,更加强调依据不同情况动态调整协同行动。当局部战场或局部行动出现突发情况,对作战全局影响不大且时间充裕时,作战体系自动响应,部分调整作战部署和作战行动,确保实现预期作战目标。当战场出现多个急缓并存情况且部分影响战场态势时,根据具体情况按照先急后缓原则动态即时协调作战行动,推动战局向着有利于我的方向发展。当战局整体发展出现多个重大意外情况或出现未曾预想的变化时,按先主要方向、后次要方向的原则展开协同,快速生成新的协同处置措施,有效应对战场各类突发情况。(吴思亮、贾春杰、侯永红)

来源:解放军报

(责编:王潇潇、任一林)

中國原創軍事資源:https://military.people.com.cn/n1/2025/0401/c1011-40451255888.html

Chinese Military’s Exploration Regarding Evolution of Intelligent Warfare Practices

中國軍隊對智慧化戰爭實踐演進的探索

現代英語:

Recent global regional wars and military conflicts demonstrate that modern warfare practice is gradually evolving toward an information-based, intelligent form. Facing a new wave of military revolution, to fully explore the evolutionary laws of intelligent warfare practice, we need to further clarify the fundamental underpinnings of this evolution, fully assess the technological advantages of warfare practice, and identify the key challenges driving the current evolution of warfare practice.

  The evolution of intelligent warfare practice requires the support of social practice foundation

  As an important part of social activities, military activities have a very close relationship with social activities. Similarly, as a specific form of military activities, war practice cannot be examined in isolation from the larger system of social practice.

  The level of development of productive forces determines the height of practical evolution. Warfare is part of human social practice and always aligns with the level of social production. How humans conduct material production often determines how they organize war; the way humans conduct warfare reflects their mode of production. Engels argued that victory through violence is based on the production of weapons, which in turn is based on the entire production system. Therefore, with the development of productive forces, the means of warfare are also constantly evolving. Just as it was impossible to find a weapon from the information age in the cold weapon age, it is difficult to use typical cold weaponry on the battlefields of the information age. Even daggers produced in the information age differ from those of the cold weapon age. From the alloy composition to the forging and molding technology, they embody the technological advancements of the information age and are weapons of the information age.

  Changes in the production relations system influence the outcomes of practical evolution. As a special form of social practice, the development and changes in war practice closely revolve around the direction and speed of social practice evolution. In other words, behind every transformation in war practice, a similar social transformation is also taking place simultaneously, and success requires the completion of a systemic transformation of production relations as a whole. Marx insightfully pointed out that in all social forms, a certain type of production determines the status and influence of all other types of production, and thus its relations also determine the status and influence of all other relations. This is a pervasive light that obscures all other colors and alters their characteristics. Concepts of war practice that are too far ahead of their time often struggle to succeed due to a lack of hardware and software support that aligns with the development of contemporary social practice. For example, the concept of joint operations was unlikely to emerge in the era of cold weapons. Even if military theorists had anticipated this concept a priori, they would have been unable to apply it in practice. Modern joint operations, however, are in fact a microcosm of large-scale socialized joint production in military practice. Therefore, the design of war should return to social practice itself, seeking inspiration and reflection from it. Ignoring the overall level of development in production relations and prematurely designing war scenarios for the intelligent era can lead to scenarios and objectives that become sci-fi, game-like, and fictional.

  The winning effect of intelligent warfare practice requires further testing in war

  The goal of the evolution of warfare practice is always to enhance operational superiority and achieve victory. However, this does not mean that the evolutionary process will naturally lead to this goal. Sometimes, in the early stages of a change in warfare practice, the effectiveness of victory is not obvious, and the effectiveness of various combat methods must be continuously evaluated during the development process.

  A first-mover advantage does not guarantee victory on the battlefield. While it’s undeniable that whoever first masters the latest winning strategies will be able to seize the initiative on the battlefield through technical and tactical advantages, this first-mover advantage does not necessarily lead to ultimate victory. While a first-mover advantage does have a significant impact on winning wars, the history of warfare demonstrates that technical and tactical advantages can be offset by mistakes or disadvantages in other areas. In World War II, the German army, which was the first to master the winning strategies of mechanized warfare, gained an advantage in the initial battles on the Western Front in Europe and the Eastern Front between the Soviet Union and Germany. However, this initial advantage was quickly eroded by strategic errors and overall disadvantages.

  First-mover advantage rarely creates an absolutely overwhelming advantage. In the era of globalization, human social practices are closely interconnected, and technological innovations from one country or region quickly spread abroad. Therefore, technological and tactical advantages in the intelligent era are often short-term and localized, making it difficult for a single country or region to establish a long-term, global, monopolistic lead. Currently, the rapid development of network communications technology is bringing humans closer than ever before. Similarly, in the practice of intelligent warfare, various advanced reconnaissance methods will continue to penetrate the secrecy of both sides. Sometimes, after the emergence of a new weapon, countervailing weapons or methods will quickly be invented.

  The advantages of intelligence don’t necessarily create optimal combat situations. Currently, the intelligence content of war practice has yet to become a decisive factor in determining victory or defeat. Currently, the practice of intelligent warfare is still in its infancy. The mechanisms of victory in war require in-depth research, many equipment require further development and verification, and various experimental pre-war practices require further testing and improvement. In comparison, the practice of informationized warfare is relatively mature, with various types of weapons and equipment, as well as supporting operational and tactical means, becoming more stable. This leaves much room for the application of informationized warfare methods. Therefore, as war practice evolves, we must continuously innovate the means of intelligent warfare practice while fully tapping the operational potential of informationized warfare practice.

  The development and transformation of intelligent warfare practice requires the integrated promotion of people and technology

  There are many factors that drive the evolution of intelligent practice. On the premise of clarifying development support and evaluating the effectiveness of combat methods, it is necessary to comprehensively analyze various contradictions, grasp the key points, distinguish the main points, and highlight the leading role of people.

  Technological change is the most dynamic factor. Science and technology are core combat capabilities. As the most revolutionary factor in the development of war practice, every major scientific and technological innovation has a profound impact on the nature of warfare. Engels once pointed out that once technological advances can be applied to military purposes and have already been applied to military purposes, they immediately and almost forcibly, and often against the will of the commander, lead to changes or even revolutions in combat methods. However, equating the intelligent military revolution with the high-tech revolution, leading to an overemphasis on intelligent technology and an excessive pursuit of the development of various intelligent weapons, undoubtedly fails to correctly grasp the essence of the evolution of intelligent warfare practice. While technology plays an important role, it is not the only decisive factor; culture, politics, and individuals themselves also play a role. In his book A History of World Wars, British historian Jeremy Black repeatedly reminds readers not to fall into the trap of technological determinism and simply attribute all major changes in military history to technological innovation.

  Institutional innovation is a challenge. To fully leverage the combat effectiveness of equipment in the evolution of intelligent warfare, all operational elements must be integrated into a unified system, integrating ideology, combat methods, organizational structures, education and training, and military technology. Renowned military theorist Dupuy argued in his book The Evolution of Weapons and Warfare that no matter how much a weapon’s lethality improves, its compatibility with military tactics and organizational structure is far more important than its invention and adoption. Only when the advantages of equipment are integrated into scientific organizational structures can optimal combat effectiveness be achieved. Historically, Britain was the first country to possess aircraft carriers and tanks, but it was not the country that successfully led the mechanized warfare revolution. While the most easily achieved transformation in warfare practice is the upgrading of weaponry and equipment, comprehensive innovation in warfare practice requires holistic innovation at the institutional level to achieve a comprehensive effect. A military that only upgrades equipment without institutional reform will struggle to develop sustained and effective combat effectiveness and cannot truly lead a revolution in warfare practice.

  The integration of people and weapons is crucial. People are the primary actors in the practice of warfare. In the era of intelligent warfare, the decisive role of people in warfare remains unchanged and remains the driving force behind its evolution. From the perspective of the two major categories of people and weapons, military technology falls more heavily on the “weapons” side, while other elements of warfare, such as military strategy, organizational structure, strategic tactics, and combat methods, fall more heavily on the “people” side. The more advanced high-tech equipment becomes, the more it requires human expertise to master and utilize it. In the era of intelligent warfare, greater emphasis must be placed on the importance of wisdom and strategy, relying more heavily on individuals equipped with the concepts and thinking of the intelligent era to direct and design operations. Therefore, promoting the evolution of warfare requires focusing on people as the decisive factor, fully integrating “people” and “weapons,” vigorously developing joint education within the context of intelligent warfare, and focusing on cultivating scientific and technical personnel and command personnel who meet the requirements of intelligent warfare.

現代國語:

近年來的世界局部戰爭和軍事衝突表明,現代戰爭實踐正逐步朝向資訊化智慧化形態演變。面對新一波軍事革命浪潮,為充分探究智慧化戰爭實踐演進規律,需要進一步釐清戰爭實踐演進的基礎支撐,充分評估戰爭實踐的技術優勢,找準推動當前戰爭實踐演進的重難。

智能化戰爭實踐的演進需要社會實踐基礎作為支撐

作為社會活動的重要組成部分,軍事活動與社會活動有著十分密切的關係。同樣,作為軍事活動的一種具體形式,戰爭實踐也不能離開社會實踐的大系統去孤立地考察。

生產力發展水準決定實踐演進的高度。戰爭實踐是人類社會實踐的一部分,始終與社會生產水準相適應。人類怎樣進行物質生產活動,往往就怎樣組織戰爭,人類從事戰爭的方式,反映了它們的生產方式。恩格斯提出,暴力的勝利是以武器生產為基礎的,而武器的生產又是以整個生產為基礎的。因此,伴隨生產力的發展,戰爭實踐手段也不斷發展。正如在冷兵器時代無法尋覓到一件資訊化時代武器一樣,在資訊化時代的戰場上也難以運用典型的冷兵器時代的武器。即使是資訊化時代生產的匕首,也已然不同於冷兵器時代的匕首,從合金成分比例到鍛造造成型技術,它本身蘊含了資訊化時代的工藝水平,屬於資訊化時代的武器。

生產關係系統變化影響實踐演進的結果。作為一種特殊形式的社會實踐,戰爭實踐發展變化緊緊圍繞著社會實踐演進方向和速度。也就是說,一場戰爭實踐變革背後,也同步進行著相似的社會變革實踐,需要伴隨整個生產關係的系統變革完成才能成功。馬克思精闢地指出,在一切社會形式中都有一種一定的生產決定其他一切生產的地位和影響,因而它的關係也決定其他一切關係的地位和影響,這是一種普照的光,它掩蓋了一切其他色彩,改變著它們的特點。過於超越時代的戰爭實踐設想,往往會因缺乏符合同時代社會實踐發展所匹配的軟硬體支撐而難以成功。例如聯合作戰概念很難在冷兵器時代出現,即使有軍事理論家先驗地預想到這種理念,也無法在實踐中運用。而現代聯合作戰實踐其實正是社會化聯合大生產在軍事上的縮影。因此,設計戰爭應回歸社會實踐本身,從中尋找靈感與鏡像。若忽略生產關係的整體發展水平,超前設計智慧化時代戰爭場景,將可能使場景目標變得科幻化、遊戲化和虛構化。

智能化戰爭實踐的勝利效果需要戰爭的進一步檢驗

戰爭實踐演進的目標總是瞄準提高作戰優勢和勝利效果展開,然而這並不意味著演進過程會自然指向這一目標。有時候在戰爭實踐變革初期,其致勝效果並不明顯,需要在發展的過程中持續評估各種作戰手段的效果。

先發優勢不等於戰場上的必勝之勢。毫無疑問,誰先掌握了最新戰爭制勝機理,誰就能夠憑藉技戰術優勢掌握戰場主動權,但這種先發優勢並不會必然導致戰爭最終勝利。先發優勢的確對贏得戰爭有巨大影響,但戰爭實踐發展史表明,技戰術先發優勢會被其他方面的失誤或劣勢抵消。在第二次世界大戰中,率先掌握了機械化戰爭制勝機理的德軍,儘管在西線歐洲戰場以及東線蘇德戰場的最初較量中獲得了優勢,然而這種初始優勢很快因其戰略上的失誤以及總體實力上的劣勢而被消耗殆盡。

先發優勢難以構成絕對的壓倒性態勢。在全球化時代,人類社會實踐緊密相連,一個國家或地區的技術創新很快就會被外溢傳播,所以智慧化時代的技戰術優勢往往是短期局域性的,一個國家或一個地區很難形成長期全局性的壟斷式領先。目前,網路通訊技術迅速發展,讓人類空前地彼此接近。同樣,在智慧化戰爭實踐中,各類先進偵察手段將不斷洞穿作戰雙方的保密堡壘,有時一種新型武器出現以後,其製衡性武器或手段很快會被發明創造出來。

智能化優勢未必造成最佳作戰局勢。從目前來看,戰爭實踐的智慧化含量尚未成為影響戰爭勝負的決定因素。目前,智慧化戰爭實踐尚處於不成熟的萌芽期,戰爭制勝機理有待深入研究,許多裝備有待進一步開發驗證,各類試驗性的戰爭預實踐有待進一步檢驗和完善。相較而言,資訊化戰爭實踐已相對成熟,各類武器裝備以及配套的戰役戰術手段已趨於穩定,資訊化作戰方式仍有很大應用空間。因此在戰爭實踐演進中,要在不斷創新智慧化戰爭實踐手段的同時,充分發展資訊化戰爭實踐的作戰潛能。

智能化戰爭實踐的發展變革需要人與技術綜合推動

推動智慧化實踐演進的因素很多,需要在釐清發展支撐、評估作戰方式成效的前提下,綜合分析各類矛盾,抓住關鍵、區分要點,突顯人的主導作用。

技術變革是最活躍因素。科技是核心戰鬥力。作為戰爭實踐發展中最具革命性的因素,每一次重大科技創新都會對戰爭形態產生深遠影響。恩格斯曾指出,一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。但是,將智能化軍事革命等同於高新技術革命,以至於過於注重對智能化技術的強調,過於追求各類智能化武器的研發,無疑是沒能正確掌握智能化戰爭實踐的演進本質。科技雖然發揮重要作用,但並非起決定性的唯一因素,文化、政治以及人本身都在發揮作用。英國歷史學家傑瑞米·布萊克在《世界戰爭史》一書中不斷提醒讀者,不要掉進技術決定論的陷阱,不能簡單地把軍事史上所有重大變革都歸因於科技革新。

制度化創新是難點。為充分發揮好智慧化戰爭演進中的裝備作戰效能,需要將所有作戰要素凝聚為一個體系,將思想理論、作戰方式、編制體制、教育訓練等與軍事技術融為一體。著名軍事理論家杜普伊在《武器與戰爭的演變》一書中提出,無論兵器的殺傷力有多大提高,新兵器跟軍事戰術和編制的兼容統一,要比新兵器的發明和採用重要得多。裝備的優勢只有融入科學的組織形態,才能創造出最佳戰鬥力。從歷史實踐來看,英國是第一個擁有航空母艦和坦克的國家,但並不是成功引領機械化戰爭革命的國家。戰爭實踐變革中,最容易實現的是武器裝備的更新換代,但戰爭實踐全面創新需要在製度層面進行整體創新,形成整體效應。只有裝備更新而無制度變革的軍隊,是難以形成持久有效戰鬥力的,也無法真正引領戰爭實踐革命。

人與武器結合是關鍵。人是戰爭實踐的主體。在智慧化戰爭時代,人對戰爭實踐的決定性作用絲毫沒有改變,仍是推動戰爭實踐演進的主導。從人與武器這兩大範疇看,軍事技術比較屬於「武器」這一方面,而戰爭實踐中的其他要素,如軍事謀略、編制體制、組織結構、戰略戰術、作戰方式等則更屬於「人」這一方面。高新技術裝備越先進,越需要有人去掌握運用,智能化戰爭時代需要更多關注智慧和謀略的重要性,需要更多依靠具備智能化時代觀念和思維的人去指揮和設計。因此,推動戰爭實踐演進要聚焦人這一決定性要素,把「人」和「武器」充分結合起來,大力發展智能化戰爭背景下的聯合教育,聚力培養符合智能化戰爭要求的科技人才、指揮人才。 (沈文科 宋騰淵 岳明峰)

中國原創軍事資源:http://www.xinhuanet.com/milpro/20250313/e495926c8f4d41f8bf0350a4c5b93f8e/c888.html

Chinese Military Exclusive Requirements for Strategies & Tactics of People’s War in The New Era

新時代中國軍隊對人民戰爭戰略戰術的獨特要求

現代英語:

Looking back on its glorious combat history, the People’s Army has consistently adhered to the absolute leadership of the Party, proposing and implementing a comprehensive set of strategies and tactics for people’s war. These strategies and tactics are a crucial weapon for the People’s Army to defeat the strong with the weak and to conquer the enemy. Over the past 98 years, with the changing times and evolving forms of warfare, the specific content and manifestations of the strategies and tactics for people’s war have continuously evolved. To confront the challenges of information-based and intelligent warfare, we must firmly grasp the essential requirements and value orientations of the strategies and tactics for people’s war amidst the rapidly evolving global trends and practices, unifying the inherently unchanging laws of conduct with the external realities of change, and continuously innovating and developing the strategies and tactics for people’s war in the new era.

President Xi Jinping emphasized that no matter how the situation develops, the magic weapon of people’s war must never be lost. However, we must grasp the new characteristics and new requirements of people’s war in the new era, innovate its content, methods and approaches, and unleash its overall power. Currently, facing profound challenges brought about by changes in science and technology, warfare, and our adversaries, we must not only inherit and carry forward the fine traditions of people’s war, but also be sensitive to changes, actively respond to them, and proactively seek change. We must accurately grasp the inherent requirements of the strategies and tactics of people’s war in the new era, consciously update our thinking and concepts, and innovate strategic guidance, so that this magic weapon of defeating the enemy can be demonstrated on future battlefields.

Adhere to relying on the people and deeply rooted

In the long practice of revolutionary war, the people are the most profound force for victory. The people are the primary force behind the strategies and tactics of people’s war, a magic weapon for victory. People’s war has its roots deeply rooted in the people, and its confidence comes from the people. Regardless of how the times change or how the war evolves, relying closely on the people and fully mobilizing them will always be the fundamental condition and the only way to carry out people’s war. Developing the strategies and tactics of people’s war in the new era requires adhering to the mass perspective of history and the fundamental requirement that soldiers and civilians are the foundation of victory. We must integrate the traditional strategic advantages of people’s war with the mass line, broaden the sources of vitality for the strategies and tactics of people’s war, draw strategic wisdom and tactical methods from the people, and develop an intellectual advantage for people’s war in the new era. We must solidly carry out national defense education throughout the nation, continuously foster a strong sense of patriotism, inspire patriotism, strengthen awareness of potential dangers, and enhance national defense awareness. We must guide the masses to actively care about and support national defense, thereby infusing powerful spiritual strength into people’s war in the new era. We must focus on promoting high-quality population development, comprehensively improve the cultural, scientific, and innovative qualities of the entire population, accelerate the development of a modern human resource base of high quality, sufficient in volume, optimized in structure, and rationally distributed, and promote the shift of the dominant force in people’s war from quantitative to qualitative. Further improve the national defense mobilization system and mechanism, promote the establishment of a rapid response system that is connected with the national emergency response mechanism and integrated with the joint combat system, fully tap and gather the unlimited war potential contained in the people, and give full play to the resource aggregation and value-added effect.

Focus on overall planning and full-area offense and defense

In the long-term practice of revolutionary warfare, the strategies and tactics of people’s war require the comprehensive mobilization of diverse forces and resources in the political, economic, cultural, diplomatic, and military sectors, and the integrated use of various forms of struggle and methods of operation. This holistic approach compensates for local deficiencies and disadvantages, ultimately defeating powerful adversaries. Modern warfare is not only a fierce confrontation in the military sphere, but also a comprehensive struggle in the political, economic, and diplomatic spheres, exhibiting the distinct characteristics of hybrid warfare. To develop the strategies and tactics of people’s war in the new era, we must establish a broad systemic mindset, relying on the national strategic system and supported by the joint operations system, explore the implementation methods of people’s war strategies and tactics, and win the total war of people’s war in the new era. We should fully leverage the advantages of the new national system, relying on the integrated national strategic system and capabilities, efficiently aggregate superior resources across the board, fully activate the country’s national defense potential, and weave various forces and resources into a network. We should integrate and plan the subsystems of people’s war, including leadership, organization, personnel, command, technology, equipment, and support, to maximize the effectiveness of holistic linkage and systemic operation, and achieve the maximum benefits of all-round effort and multiplied energy. We must strengthen comprehensive coordination across the physical, information, and social domains, focusing on seeking breakthroughs in new domains and new qualities, and making achievements in new dimensions such as unmanned warfare, human-machine collaborative warfare, network and electronic warfare, space and deep-sea warfare, and intelligent and autonomous warfare. Military and non-military means must be coordinated, integrating various forms of struggle, including political, economic, diplomatic, public opinion, and military. Comprehensive measures must be implemented to effectively wage diplomatic offensive and defensive battles, financial and trade battles, psychological defense battles, and public opinion and legal battles. We must leverage the combined effectiveness of political offensives and armed strikes to effectively fight the political and military battles.

Strengthen active defense and take the initiative

Through the long practice of revolutionary warfare, the People’s Army has developed a comprehensive strategic philosophy of active defense, emphasizing, for example, the unity of strategic defense and offensive action in campaigns and battles, the principles of defense, self-defense, and preemptive strike, and the principle of “if no one offends me, I will not offend; if someone offends me, I will certainly offend.” Active defense is fundamentally defensive, its essence lies in activeness, and its inherent characteristic is proactiveness. Currently, profound changes have taken place in the international, national, and Party, military, and political landscapes. The strategies and tactics of people’s war in the new era generally adhere to the fundamental principle of defense and are not aimed at hegemony, aggression, or oppression of other countries. Consequently, they will win the support and endorsement of the vast majority of the Chinese people, as well as the understanding and assistance of peace-loving and justice-loving countries and peoples around the world. Developing the strategies and tactics of people’s war in the new era must adapt to the times and circumstances. We must adhere to a defensive national defense policy, implement the military strategic guidelines of the new era, excel at observing and analyzing issues from a political perspective, and be adept at considering and applying strategies from regional and global perspectives to consolidate the political foundation for victory in people’s war. We must persist in neither provoking trouble nor fearing it, strengthen the regular and diversified use of military force, firmly and flexibly carry out military struggle, and while adhering to the strategic preemptive strike, we must not give up campaign and combat offensives under favorable conditions and when necessary. We must advance steadily, make progress within stability, and be proactive within stability, effectively shape the security situation, contain crises and conflicts, and firmly grasp the initiative in the struggle.

Highlight new quality dominance and technological empowerment

In the long practice of revolutionary warfare, while emphasizing that victory in war is primarily determined by people, not objects, the People’s Army has also placed great emphasis on the research and development of advanced military technology, particularly weaponry. Comrade Mao Zedong once emphasized that without modern equipment, it would be impossible to defeat the armies of imperialism. The technological content of modern warfare has undergone a qualitative leap, with advanced technologies and new weaponry such as artificial intelligence, big data, quantum computing, unmanned aerial vehicles, and brain control being widely applied in the military. While the people remain the decisive force in determining victory in war, the manifestation of this power has undergone significant changes. Science and technology are core combat power, and People’s War will place greater emphasis on the application of scientific and technological means and rely even more heavily on the wisdom and creativity of the people. Developing the strategies and tactics of People’s War in the new era should prioritize winning information-based and intelligent warfare. We should deeply study the essential characteristics, winning mechanisms, and strategies and tactics of high-end warfare, accelerate the shift from “winning by numbers” to “winning by talent,” and from “winning by manpower” to “winning by intelligence,” effectively enhance our ability to win through scientific and technological empowerment and digital intelligence, and truly unleash the crucial role of science and technology and talent in People’s War in the new era. We will accelerate the development of high-tech industries, vigorously strengthen the construction of new forces in new domains such as ocean, space, cyberspace, artificial intelligence, and quantum technology, increase military-civilian collaboration in high-tech fields, accelerate the transformation and application of new productive forces into new combat capabilities, and promote the expansion of war potential reserves into emerging fields and the focus on new forces. We will integrate and coordinate military and civilian scientific and technological advantages, shifting the focus from traditional support and guarantee elements such as human and material resources to new support and guarantee elements such as information, technology, and intelligence. We will build information, resource, and technology pools with profound foundations and rich reserves, actively cultivate capable, strong, and professional professional support units, and continuously expand the breadth and depth of people’s participation in the war and scientific and technological support.

Emphasis on flexibility, maneuverability, innovation and checks and balances

In the long-term practice of revolutionary warfare, the strategies and tactics of People’s War are highly flexible and maneuverable. Their most essential requirement is to prioritize self-reliance, attacking the enemy without being attacked by them. Based on the actual situation of both sides, we fight the battles based on our weapons, against the enemy, and at the right time and place. We identify the enemy’s weaknesses and vulnerabilities, leverage our strengths and advantages, and defeat the enemy with our own strengths, always seizing the initiative on the battlefield. Flexible and maneuverable strategies and tactics are the magic weapon for defeating an enemy with superior equipment with inferior equipment. “You fight yours, I fight mine” is a summary and generalization of the long-term experience of China’s revolutionary war and the soul and essence of the strategies and tactics of People’s War. Developing the strategies and tactics of People’s War in the new era must grasp the methodological requirements of asymmetric checks and balances, leverage innovative operational concepts, adhere to the mechanisms of victory in modern warfare, and continuously develop practical and effective tactics to defeat the enemy. We must proceed from the actual circumstances of both sides, gaining a deep understanding of operational missions, adversaries, and the evolving operational environment. We must thoroughly grasp the concepts, elements, and methods of victory, objectively analyze and study the strengths and weaknesses, advantages and disadvantages of both sides, know the enemy and ourselves, adapt to the situation, and flexibly utilize various combat forces and methods, striving to achieve maximum results at the lowest cost. We must adhere to the principle of “attacking the enemy without being attacked by them,” capitalize on strengths and avoid weaknesses, avoid the real and attack the weak, attack where the enemy is least prepared, and attack where they must be defended. We must proactively create opportunities, flexibly maneuver the enemy, and fight wherever we are most advantageous and wherever we are most skilled. We must adhere to the principle of “using what we can to defeat what we cannot,” advancing the research and application of military theory, operational guidance, tactics, and training methods in a timely manner, innovating core operational concepts, and developing new types of combat methods. We must fight against the enemy’s tactics, targeting their weaknesses, and leveraging our military’s strengths, thus creating new winning advantages in people’s war through asymmetric checks and balances.

Emphasis on accumulating small things into big things and focusing on unity of purpose

Throughout the long practice of revolutionary warfare, our army has been at an overall disadvantage for considerable periods. Therefore, the strategies and tactics of people’s war emphasize leveraging strength against weakness locally, persisting in accumulating small victories into larger ones, and concentrating forces to wage annihilation campaigns. This has become a key strategy for the people’s army to defeat powerful foes. Compared to previous eras, modern warfare often unfolds across multiple dimensions and domains, providing greater scope for implementing this strategy of “accumulating small victories into larger ones.” Developing the strategies and tactics of people’s war in the new era requires strengthening the concept of “dispersed in appearance, yet focused in spirit; dispersed in form, yet united in strength.” This involves dynamically consolidating and uniting the numerous combat forces distributed across the multidimensional battlefield. Through the fusion of capabilities and immediate optimization, we can launch rapid localized focused-energy attacks, wide-area guerrilla harassment, and deliver annihilating and destructive strikes against key enemy locations. This not only creates a hammering effect, but also continuously wears down the enemy, gradually depriving them of the initiative on the battlefield. This highly integrated distributed warfare emphasizes the wide-area dispersion of troop deployment and the discrete distribution of capabilities. Based on the needs of achieving operational intent, objectives, and missions, it prioritizes the best operational elements, units, and forces. Through the integration of operational capabilities and the accumulation of operational impacts, it aggregates optimal operational effects, unleashes maximum operational potential, maximizes operational effectiveness, and achieves optimal operational results. This distributed warfare has evolved from “geographical dispersion” to “dynamic coupling across all domains and dimensions”: no longer limited to the physical dispersion of personnel and equipment, it extends to multi-dimensional battlefields such as cyber, electromagnetic, and cognitive. Relying on data links, artificial intelligence, and distributed command systems to achieve cross-domain collaboration, it significantly enhances battlefield survivability and multiplies strike effectiveness.

現代國語:

編者按

回望輝煌戰鬥歷程,人民軍隊始終堅持在黨的絕對領導下,提出並實施了一整套人民戰爭戰略戰術,這是人民軍隊以弱勝強、克敵制勝的重要法寶。 98年來,隨著時代變遷和戰爭形態演變,人民戰爭戰略戰術的具體內容和表現形式不斷發展變化。直面資訊化智慧化戰爭挑戰,我們要在快速變化發展的世界大勢和實踐樣態中,牢牢把握人民戰爭戰略戰術的本質要求和價值取向,把內在不變的規律性特徵與外在變化的現實性特徵統一起來,不斷創新發展新時代人民戰爭戰略戰術。

習主席強調指出,無論形勢如何發展,人民戰爭這個法寶永遠不能丟,但要把握新的時代條件下人民戰爭的新特點新要求,創新內容和方式方法,充分發揮人民戰爭的整體威力。當前,面對科技之變、戰爭之變、對手之變帶來的深刻挑戰,我們既要繼承發揚人民戰爭優良傳統,也要敏銳識變、積極應變、主動求變,準確把握新時代人民戰爭戰略戰術內在要求,自覺更新思維理念,創新戰略指導,讓克敵制勝的法寶顯威未來戰場。

堅持依靠人民、深根基

在長期革命戰爭實踐中,人民群眾是戰爭勝利最深厚的偉力。人民戰爭戰略戰術,人民是構成這一制勝法寶的主體,人民戰爭的根基深植於人民、底氣來自於人民,無論時代如何發展、戰爭如何演進,緊緊依靠人民、充分動員群眾,永遠是開展人民戰爭的基礎條件和不二法門。新時代條件下發展人民戰爭戰略戰術,必須堅持群眾史觀和兵民是勝利之本的根本要求,把人民戰爭的傳統謀略優勢和群眾路線結合起來,拓展人民戰爭戰略戰術的源頭活水,從人民群眾中汲取戰略智慧和策略方法,形成新時代人民戰爭的智力優勢。札實開展全民防衛教育,不斷厚植家國情懷,激發愛國動力,強化憂患意識,增強國防觀念,引導廣大群眾主動關心國防事業、支持國防建設,為新時代人民戰爭注入強大精神力量。聚力推進人口高品質發展,全面提升全民文化素質、科技素質和創新能力,加速塑造素質優良、總量充裕、結構優化、分佈合理的現代化人力資源,推動人民戰爭主體由數量優勢向質量優勢轉變。進一步完善國防動員體制機制,推動建立與國家應急響應機制相銜接、與聯合作戰體系相融合的快速響應制度,把內含於人民群眾中的無限戰爭潛力充分挖掘出來、聚攏起來,充分發揮資源集聚增值效應。

注重整體運籌、全域攻防

在長期革命戰爭實踐中,人民戰爭戰略戰術要求整體動員政治、經濟、文化、外交、軍事等多方面的力量資源,綜合運用多種鬥爭形式和作戰方式,以整體合力彌補局部的不足和劣勢,從而戰勝強大對手。現代戰爭既是軍事領域的激烈對抗,也是政治、經濟、外交等領域的全面角力,整體呈現混合戰爭的鮮明特徵。新時代條件下發展人民戰爭戰略戰術,必須確立大體系思維模式,以國家戰略體係為依托,以聯合作戰體係為支撐,探索人民戰爭戰略戰術的實現形式,打贏新時代人民戰爭總體戰。應充分發揮新型舉國體制優勢,依託一體化國家戰略體系與能力,高效能聚合全域優勢資源,全方位激活國家國防潛力,將各種力量資源擰線成繩、結繩成網,把人民戰爭的領導要素、組織要素、人員要素、指揮要素、技術要素、裝備要素、保障要素等分系統結合起來,統合、統合方式要加強物理域、資訊域、社會域等領域全面統籌,重點在新域新質上尋求突破,在無人作戰、人機協同作戰、網電作戰、太空深海作戰、智慧自主作戰等新維度有所作為。軍事與非軍事手段相互配合,把政治、經濟、外交、輿論和軍事鬥爭等多種形式結合起來,綜合施策著力打好外交攻防戰、金融貿易戰、心理防護戰、輿論法理戰等,發揮政治攻勢和武裝打擊的綜合效能,統籌打好政治軍事仗。

強化積極防禦、主動進取

在長期革命戰爭實踐中,人民軍隊形成了一整套積極防禦戰略思想,如堅持戰略上防禦與戰役戰斗上進攻的統一,堅持防禦、自衛、後發製人的原則,堅持“人不犯我,我不犯人;人若犯我,我必犯人”,等等。積極防禦,根本在防禦、要義在積極,主動進取是其內在特質。當前,世情國情黨情軍情發生深刻變化,新時代人民戰爭的戰略戰術在總體上堅持防禦性的根本原則,不以霸道霸權和侵略欺壓他國為目的,因此也會贏得國內最廣大人民群眾擁護和支持以及世界上愛好和平與正義的國家和人民的理解和幫助。新時代條件下發展人民戰爭戰略戰術,須應時而變、應勢而動。堅持奉行防禦性國防政策,貫徹落實新時代軍事戰略方針,善於從政治高度出發觀察和分析問題,善於從地區和全球視角來思考和運用策略,夯實人民戰爭制勝的政治基礎。堅持不惹事也不怕事,加強軍事力量常態化多樣化運用,堅定靈活開展軍事鬥爭,在堅持戰略上後發製人的同時,不放棄有利條件下和必要時的戰役戰鬥進攻,穩紮穩打、穩中有進、穩中有為,有效塑造安全態勢,遏止危機沖突,牢牢把握爭鬥主動權。

突顯新質主導、科技賦能

在長期革命戰爭實踐中,人民軍隊在強調決定戰爭勝負的主要因素是人而不是物的同時,同樣高度重視對先進軍事技術特別是武器裝備的研發。毛澤東同志就曾強調,沒有現代的裝備,要戰勝帝國主義的軍隊是不可能的。現代戰爭的科技含量發生了質的飛躍,人工智慧、大數據、量子計算、無人自主、腦控等高新技術與新型武器裝備廣泛應用於軍事領域。雖然人民群眾依然是戰爭勝負的決定性力量,但是這種力量的表現形式發生了重要變化。科技是核心戰鬥力,人民戰爭將更重視科技手段的運用,更依賴人民群眾的智慧和創造力。新時代條件下發展人民戰爭戰略戰術,應把打贏資訊化智能化戰爭作為戰爭準備的著眼點,深研高端戰爭的本質特徵、制勝機理、戰略戰法,加速推動從「人多製勝」向「人才制勝」、從「人力製勝」向「智力製勝」轉變,切實提高新科技賦能、數智者發揮勝利能力、數智性的科技人才、新人民主義中的關鍵人民發揮作用。加速推進高新產業發展,大力加強海洋、太空、網路空間、人工智慧、量子科技等新域新質力量建設,加大高新技術領域軍地協作力度,加速新質生產力向新質戰鬥力轉化運用,推動戰爭潛力儲備向新興領域拓展、向新質力量聚焦。聚合協同軍地科技優勢,由聚焦人力物力等傳統支撐保障要素向聚焦資訊、技術、智慧等新質支撐保障要素轉變,建設底蘊深厚、儲備豐富的資訊池、資源池、技術池,積極打造精幹強能、專業性強的專業支前分隊,不斷拓展人民參戰與科技支前的廣度與深度。

講究靈活機動、創新制衡

在長期革命戰爭實踐中,人民戰爭戰略戰術是高度靈活機動的戰略戰術,最本質的要求是堅持以我為主,致人而不致於人,根據敵我雙方的實際情況,有什麼武器打什麼仗,對什麼敵人打什麼仗,在什麼時間地點打什麼時間地點的仗,找準敵之弱點和軟肋,發揚我之長主動和優勢,能永遠不能掌握戰場。靈活機動的戰略戰術是以劣勢裝備戰勝優勢裝備之敵的致勝法寶。 “你打你的、我打我的”,是中國革命戰爭長期經驗的總結和概括,是人民戰爭戰略戰術的靈魂和精髓。新時代條件下發展人民戰爭戰略戰術,必須掌握非對稱制衡的方法論要求,以作戰概念創新為抓手,遵循現代戰爭制勝機理,不斷推出實用管用的克敵制勝招法。堅持一切從敵我雙方的實際情況出發,深刻洞悉作戰任務、作戰對手、作戰環境變化,深刻把握制勝觀念、制勝要素、制勝方式發展,客觀分析研究敵我雙方的強弱、優劣,知彼知己、因勢而變,靈活運用各種作戰力量和作戰方法,努力以最小代價取得最大戰果。堅持“致人而不致於人”,揚長避短、避實就虛,出其不趨、攻其必救,主動創造戰機,靈活調動敵人,怎麼有利就怎麼打,怎麼擅長就怎麼打。堅持“以能擊不能”,與時俱進推進軍事理論、作戰指導、戰法訓法研究運用,創新核心作戰概念,發展新質作戰手段,不按敵人套路打、盯著敵人軟肋打、發揮我軍優長打,在非對稱制衡中創造人民戰爭新的製勝優勢。

重視積小為大、神聚力合

在長期革命戰爭實踐中,我軍在相當長的時間內都是處於全局上的劣勢地位,所以人民戰爭戰略戰術重視局部上以強對弱,堅持積小勝為大勝,集中力量打殲滅戰,這成為人民軍隊戰勝強敵的關鍵一招。相較於以往,現代戰爭作戰往往在多維多域中展開,為實施「積小勝為大勝」提供了更加廣闊空間。新時代條件下發展人民戰爭戰略戰術,要強化「貌散而神聚,形散而力合」的理念,將分佈在多維戰場的諸多作戰力量動態集中聯合起來,通過效能融合、即時聚優,實施局部快速聚能攻擊、廣域遊擊襲擾,對敵分佈的要點實施殲這種神聚力合的分散式作戰更強調兵力部署廣域分散、能力狀態離散分佈,根據實現作戰企圖、達成作戰目的、遂行作戰任務需要,優選最佳作戰要素、單元、力量,通過作戰能力融合、行動作用累積,聚合最優作戰效應,激發最大作戰潛能,實現作戰效益最大化,達成最佳作戰效果。這種分散式作戰已經從「地理空間的分散」上升為「全局全維的動態耦合」:不再局限於人員裝備在物理空間的分散,而是拓展到網絡、電磁、認知等多維戰場;依託數據鏈、人工智能和分佈式指揮系統實現跨域協同,既極大提升了戰場生存力,又倍增了打擊效能。

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-08-01&paperNumber=07&articleid=960384888

Space and the Internet China’s Battlegrounds for Military Strategists: Discussion of Mysterious Strategic Support Force Capabilities of the Chinese People’s Liberation Army

太空與互聯網 中國軍事戰略家的戰場:探討中國人民解放軍神秘的戰略支援部隊能力

現代英語:

With the continuous advancement of space technology and the rapid spread of the Internet world, space and the Internet have almost become a battleground for military strategists. America Establish a space force Japan A Space Operations Team was established, the Russian Air Force was renamed the Aerospace Forces, and the French Air Force followed suit and incorporated into the mission establishment of space operations. And China Then established Strategic Support Force , and after the Rocket Force, it became the fifth largest service branch of the Chinese People’s Liberation Army.

Simply put, the Strategic Support Force has jurisdiction over new areas such as space, electromagnetism, and the Internet that are not part of the traditional land, sea, and air battlefields. In addition to focusing on the development of space combat capabilities, it also brings together electronic combat units, cyber offensive and defensive units and intelligence reconnaissance systems scattered across various services in the past to establish a unified command system and integrate these different fields. Its most important purpose is to use this new non-traditional combat method to support front-line troops and gain future battlefield advantages.

Since China is an opaque country and the People’s Liberation Army has always been mysterious, the outside world’s understanding of strategic support forces is still very limited. However, judging from the publicly available information, the Strategic Support Force has several main components, including the “Space Systems Department”, “Cyber Systems Department”, “Political Work Department” and related administrative units, which are responsible for “space development”, “electronic confrontation”, “cyber offensive and defensive”, “cognitive operations”, and “intelligence reconnaissance” respectively.

The PLA’s Strategic Support Force: Space Development Contending with the United States

The “Aerospace Systems Department” responsible for “space development” has jurisdiction over the past satellite research, production, launch, and ground control centers, and is currently the backbone of China’s development of space combat capabilities. It is mainly divided into three major directions, covering space image reconnaissance, anti-satellite operations, and the construction and maintenance of navigation and communication satellite systems. It also uses a large number of “military-civilian integration” strategies, uses civilian use as cover, and introduces, steals or imitates space technology from European and American countries. For military purposes. For example, general civilian communication satellites are also of great help to the People’s Liberation Army’s drone development or combat communications.

The best examples are Beidou satellite This space navigation system independently developed by China has now developed into the third generation, and its signal service scope covers the world. Although the Beidou satellite has high commercial value, it is widely used in automobile navigation, maritime shipping, land surveying, etc. But more importantly, in the military field, it can significantly increase the PLA’s missile accuracy, assist troops and military unmanned vehicles in positioning and navigation, and become the basis for information-based joint operations together with communication satellites. Leaving the strategic support force responsible for maintaining and operating these satellite systems will undoubtedly further coordinate with the People’s Liberation Army’s combat tasks and development direction, and can also ensure the safety of these satellites.

In addition, China has frequently launched various resource detection and scientific research satellites in recent years, many of which are suspected to be related to military purposes. Like Ocean Satellite Series , ostensibly used for ocean research, but because this series of satellites has the ability to monitor, identify and track maritime targets, it is also a powerful weapon for the People’s Liberation Army to carry out anti-access operations at sea in the future, and will have a great impact on China’s control of disputed waters such as the South China Sea and the East China Sea. Great help. Another series High-score satellite It has reconnaissance capabilities. Although it is euphemistically used for resource protection and improving land planning efficiency, it is actually an out-and-out spy satellite. More than 20 have been launched into space.

China’s strategic support forces not only operate and protect their own satellites, but are also actively studying how to attack other countries’ satellites. For example, China’s long-term development of kinetic energy series anti-satellite weapons has successfully shot down abandoned Chinese satellites. In recent years, China has continuously tested new anti-ballistic missile systems and is also considered to have the ability to attack space satellites. The recently launched Shijian-21 satellite was also found in space orbit, directly grabbing a retired Beidou navigation satellite with a robotic arm, towing it to a higher orbit and discarding it, which attracted the attention of foreign media. Beautiful National Army General Fang has long stated in his testimony before Congress that China has the ability to use these technologies to destroy American satellites during wartime and compete with the United States on the space battlefield.

PLA’s Strategic Support Force: Capturing the Advantage of the Cyber Area

The “Network Systems Department” responsible for “electronic operations” and “cyber offensive and defensive” was restructured from the electronic listening and electronic warfare units of the past, and integrated the network forces established in recent years to specialize in electromagnetic space and virtual space. offensive and defensive. In terms of electronic warfare, it is divided into two parts: passive electronic signal interception and analysis, and active interference destruction. The two are actually two sides of the same coin. For example, the J-16D and J-15D electric fighters of the Chinese Air Force are equipped with electronic warfare systems that rely on electronic reconnaissance aircraft and electronic signal intelligence collected by spy ships on weekdays. Because this information will be analyzed by the “Network Systems Department” to develop countermeasures and interference methods, it has become a key basis for electronic warfare systems to launch attacks.

Cyber warfare is the latest and hottest field, and China is also developing very vigorously in this regard. On more than one occasion, the United States has directly accused hackers related to the People’s Liberation Army of hacking into sensitive units to steal data. In this information age, it has long been common to use the far-reaching characteristics of the Internet to carry out theft, destruction and psychological warfare. The theft of data online is not limited to military secrets, but is more about business technology and even personal privacy. It is not news that China systematically steals foreign information on a large scale to assist domestic technological development. It is a common method to use stealing the privacy of overseas dissidents or officials to achieve the purpose of threatening and inducing.

In addition to stealing information in peacetime, in wartime, you can directly attack the enemy’s infrastructure through the Internet. Such as electricity, communications, water supply and transportation networks, etc., to create chaos, slow down the enemy’s response speed and counterattack ability, and even supplement it with psychological warfare to disintegrate the enemy’s will to resist. Take the recent conflict between Armenia and Azerbaijan as an example. After the war broke out, the two countries continued to publish videos of destroying each other’s fighter planes or armored vehicles on the Internet, supplemented by news that it was difficult to distinguish between true and false, in order to boost each other’s morale. This new model of “cognitive warfare” has received more and more attention as the Internet spreads pervasively.

The use of psychological warfare to achieve military or political goals has been a common tactic since ancient times, and China is particularly good at using united front methods. It can even be said to be one of the keys to the People’s Liberation Army’s victory in the civil war between the Kuomintang and the Communist Party. In recent years, the tactic of integrating public opinion warfare, psychological warfare, and legal warfare has been developed, referred to as the “Three Wars”, and is also written into the political and labor regulations of the People’s Liberation Army. Its highest command unit is the “Political Work Department” of the Central Military Commission. The “Political Work Department” of the Strategic Support Force accepts orders from superiors to monitor the troops internally and ensure the loyalty of personnel. To the outside world, it uses its own satellite communication channels and electronic warfare. Interference and destruction technology, online public opinion guidance skills, etc. to support the “Three Wars”. Various infiltrations were carried out at the same time to carry out “intelligence reconnaissance” work.

Increase alertness to new combat modes

This new war, which combines information gathering, destruction and theft, public opinion infiltration, and cognitive warfare, is something we have never seen before. From state-of-the-art space and electronics to the oldest gossip, everything is used to help frontline combat forces gain an advantage. At the same time, the Strategic Support Force also has jurisdiction over the “Strategic Support Force Aerospace Engineering University” and the “Strategic Support Force Information Engineering University”, merging many colleges and universities in the past to cultivate talents for the “Aerospace Systems Department” and “Network Systems Department”. And use these academic units to develop the latest tactics and tactics. The threat to Taiwan cannot be underestimated.

Such as a few that have been exposed Strategic Support Force Base 311 Fuzhou City, located in Fujian Province, is responsible for conducting the People’s Liberation Army’s “Three Wars”. It is only separated from Taiwan by one water, and the targets it targets are self-evident. In addition to preventing regular military attacks, Taiwan must also be more vigilant against this new form of aggression. In recent years, the National Army has also actively developed this invisible combat power and established the “Information and Telecommunications Army”, which is responsible for operations in the fields of network, communications, electronic warfare and other fields, and is positioned as the fourth service. However, due to national strength, it has not been able to invest significantly in the space field. In addition, Taiwan is a democratic country, and the military is unable to use the Internet to develop public opinion warfare and psychological warfare, which puts Taiwan at a great disadvantage in this competition.

China’s strategic support forces support front-line combat forces from various fields. This concept is worth learning from Taiwan, because although the government’s slogan of “National Defense for All” is often shouted at sky-high prices, ministries other than the Ministry of National Defense often lack the concept of enemy situation and fail to think about whether it will have an impact on national security when formulating policies.

Hybrid warfare in the new era is a battlefield everywhere and is no longer something that the Ministry of National Defense can deal with or deal with alone. Taiwanese society faces a huge threat from the enemy, but its failure to establish a universal national defense concept is really frustrating, let alone integrate resources and provide strategic support to the national army.

現代國語:

隨著太空技術的不斷進步、網路世界的快速普及,太空與網路幾乎已成為兵家必爭之地。美國設立太空軍,日本設立宇宙作戰隊,俄羅斯空軍更名為航空太空軍,法國空軍也隨之跟進,納入太空作戰的任務編制。而中國則成立戰略支援部隊,並在火箭軍之後,成為中國人民解放軍的第五大軍種。

簡單來說,戰略支援部隊管轄太空、電磁、網路等不屬於傳統陸、海、空戰場的全新領域。除了重點發展的太空戰力,還匯集過去散布於各軍種的電子作戰部隊、網路攻防單位與情報偵察系統,以建立統一的指揮體系,整合這些不同領域。其最重要的目的,是利用這種新型態的非傳統作戰方式,來支援第一線部隊,取得未來戰場上的優勢。

由於中國是個不透明的國家,解放軍也一向神秘,因此外界對於戰略支援部隊的瞭解仍非常有限。但從可以公開取得的資料來看,戰略支援部隊擁有幾個主要組成部分,包括「航天系統部」、「網路系統部」、「政治工作部」與相關行政單位,分別負責「太空發展」、「電子對抗」、「網路攻防」、「認知作戰」、「情報偵察」五大方面。

解放軍的戰略支援部隊:與美國抗衡的太空發展

負責「太空發展」的「航天系統部」,下轄過去的衛星研究、生產、發射、地面控制中心,是目前中國發展太空戰力的骨幹。主要分為三大方向,涵蓋太空影像偵察、反衛星作戰、導航與通信衛星系統的建置與維護,並大量運用「軍民融合」策略,以民用為掩護,引進、竊取或仿製歐美等國的太空技術,用於軍事用途。例如一般的民用通訊衛星,對於解放軍的無人機發展或作戰通訊也有極大的助益。

最好的例子是北斗衛星,這套中國自行研發的太空導航系統,目前已經發展到第三代,訊號服務範圍涵蓋全球。雖然北斗衛星擁有很高的商業價值,在汽車導航、海上航運、土地測量等方面用途廣泛。但更重要的是在軍用領域,能大幅增加解放軍的飛彈精確度,協助部隊與軍用無人載具進行定位與導航,並與通訊衛星一起成為資訊化聯合作戰的基礎。交由戰略支援部隊來負責維護與操作這些衛星系統,無疑能進一步配合解放軍的作戰任務與發展方向,也可確保這些衛星的安全。

此外,中國近年來頻繁發射各種資源探測與科學研究衛星,許多都被懷疑與軍事用途有關。如海洋衛星系列,表面上用於海洋研究,但由於這一系列衛星具備監視、識別與追蹤海上目標的能力,也是解放軍未來在海上執行反介入作戰的利器,對中國控制南海、東海等爭議海域,有極大的助益。另一系列的高分衛星,具備偵照能力,雖然美其名是用於資源保護,提升國土規劃效率,但其實是不折不扣的間諜衛星,已發射二十餘枚進入太空之中。

中國的戰略支援部隊不止操作與保護自己的衛星,也正在積極研究如何攻擊別國的衛星。如中國長期發展的動能系列反衛星武器,已成功擊落過廢棄的中國衛星,而中國近年來不斷測試新型的反彈道飛彈系統,也被認為有攻擊太空衛星的能力。最近剛發射的實踐21號衛星,還被發現在太空軌道中,直接以機械手臂抓取一顆退役的北斗導航衛星,拖往更高的軌道上丟棄,引起國外媒體的關注。美國軍方將領在國會作證時早已表示,中國有能力運用這些技術,於戰時破壞美國的衛星,在太空戰場上與美國分庭抗禮。

解放軍的戰略支援部隊:奪得網路區域的優勢

負責「電子作戰」與「網路攻防」的「網路系統部」,是由過去的電子監聽與電戰單位改制而來,並整合近年來設立的網路部隊,專精電磁空間與虛擬空間的攻防。在電子作戰方面,分為被動的電子訊號截收與分析,與主動的干擾破壞兩大部分,兩者其實是一體兩面。如中國空軍的殲-16D、殲-15D電戰機,配備的電戰系統,就仰賴電子偵察機與間諜船平日所蒐集的電子訊號情報。因為這些資料會交由「網路系統部」進行分析,以研發出反制與干擾的辦法,成為電戰系統發動攻擊時的關鍵依據。

網路戰則是最新、最熱門的領域,中國在這方面也有非常蓬勃的發展。美國已經不只一次,直接指控與解放軍有關的駭客,入侵敏感單位竊取資料。在這個資訊時代,利用網路無遠弗屆的特性,來進行竊取、破壞與心理戰,早已屢見不鮮。網路竊取資料並不侷限於軍事機密,更多的是商業技術,甚至是個人的隱私。中國有計畫地大規模竊取國外資訊,以協助國內的科技發展,並不是什麼新聞。利用竊取海外異議分子或官員的隱私,來達成威脅利誘的目的,更是常見的手法。

除了在承平時期竊取資訊外,在戰時則可直接透過網路,攻擊敵方的各項基礎設施。如電力、通訊、供水與交通網等,以製造混亂,拖慢敵方的應變速度與反擊能力,甚至輔以心理戰,瓦解敵方的抵抗意志。以近期亞美尼亞與亞塞拜然的衝突為例,兩國在戰事爆發後,不斷把擊毀對方戰機或裝甲車的影片公布在網路上,輔以真假難辨的消息,以打擊對方的士氣。這種「認知作戰」的新模式,已隨著網路傳播的無孔不入,越來越受到重視。

利用心理戰來達成軍事或政治目的,是自古以來很常見的戰術,而中國又特別擅長運用統戰手段,甚至可以說是國共內戰中,解放軍致勝的關鍵之一。在近年來更發展出整合輿論戰、心理戰、法律戰的戰術,簡稱為「三戰」,還寫入解放軍的政工條例中。其最高指揮單位是中央軍委會的「政治工作部」,戰略支援部隊的「政治工作部」接受上級命令,對內監控部隊,確保人員的忠誠,對外則利用本身所掌握的衛星通訊傳播管道、電戰干擾破壞技術、網路輿論引導技巧等,來支援「三戰」。同時進行各種滲透,執行「情報偵察」工作。

提高對全新作戰模式的警覺

這種結合資訊情蒐、破壞竊取、輿論滲透、認知作戰的全新戰爭,是我們過去所未曾見過的。從最先進的太空與電子技術,到最古老的流言蜚語,無所不用其極地協助第一線作戰部隊取得優勢。同時,戰略支援部隊還下轄「戰略支援部隊航天工程大學」與「戰略支援部隊信息工程大學」,合併過去多所院校,專為「航天系統部」與「網路系統部」培養人材。並利用這些學術單位,發展最新的戰術戰法,對台灣的威脅不容小覷。

如少數已曝光的戰略支援部隊311基地,位於福建省的福州市,負責進行解放軍的「三戰」,與台灣只有一水之隔,所針對的目標已不言可喻。台灣除了要防範正規的軍事攻擊,對於這種新形態的侵略,更要提高警覺。國軍近年來也積極發展這種看不見的戰力,成立「資通電軍」,負責網路、通訊、電戰等領域的作戰,並定位為第四軍種。但受限於國力,未能大幅投資太空領域,再加上台灣是個民主國家,軍方無法利用網路來發展輿論戰、心理戰,都讓台灣在這場競爭中處於極不利的處境。

中國的戰略支援部隊,從各個領域來支援第一線的作戰部隊,這樣的概念值得台灣學習,因為政府「全民國防」的口號雖然常喊得震天價響,但國防部以外的部會,卻往往缺少敵情觀念,在擬定政策時未能思考是否會對國家安全造成衝擊。

新時代的混合式戰爭,無處不是戰場,早已經不是國防部可以獨自應付或處理的。台灣社會面臨巨大的敵情威脅,卻未能建立普遍的國防觀念,實在令人扼腕,更遑論整合資源,給予國軍戰略支援了。

中國原創軍事資源:https://opinion.udn.com/opinion/story/120873/6088490