Tag Archives: #Chinese Weaponized Artificial Intelligence

Fundamentals of Chinese Military Intelligent Warfare

中國軍事情報戰基礎

現代英語:

[Abstract] Modern warfare is rapidly evolving into information warfare, and the emergence of intelligent warfare is beginning. Intelligent combat systems are becoming the main force form in intelligent warfare, giving rise to new combat styles such as adaptive warfare, cluster attrition warfare, and simultaneous parallel warfare. “Intelligence control” has become a new high ground for control in warfare. In the future, intelligent warfare will exhibit a phased and accelerated evolution. The development of intelligent technology will determine the direction of intelligent warfare, profoundly transforming the contradictory laws of war, and continuously strengthening war ethics and legal regulations. To meet the challenges of intelligent warfare, we must proactively design intelligent warfare, accelerate the development of intelligent equipment, shape intelligent organizational forms, and strengthen intelligent strategic management.

[Keywords] Intelligent warfare, Information warfare, Evolution of form of warfare, Strategic measures

[Chinese Library Classification Number] E0 [Document Identification Code] A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.002

Guo Ming is the Vice President, Researcher, and Doctoral Supervisor of the Institute of War Studies at the Academy of Military Sciences of the Chinese People’s Liberation Army. His research focuses on military command. His major works include *Tactics of War* (chief editor) and *A Course in Special Operations* (chief editor).

In recent years, driven by a new round of technological, industrial, and military revolutions, the form of warfare is rapidly evolving towards information warfare, and intelligent warfare is on the verge of emerging. As a new form of future warfare, intelligent warfare is not only revolutionizing people’s understanding of war and military affairs, but is also increasingly attracting the attention of countries around the world. Exploring and mastering the characteristics and laws of intelligent warfare and accelerating the development of military intelligence are contemporary challenges for safeguarding the overall strategic situation of the great rejuvenation of the Chinese nation.

A deep understanding of the driving forces behind the evolution of intelligent warfare

The form of war is the historical stage of war, characterized by the technical attributes of the main weapons, and is the manifestation of human society’s mode of production and movement in the military field. [1] Historically, the form of war has undergone several evolutions from cold weapon war, hot weapon war, mechanized war to information warfare, and is currently evolving towards intelligent warfare. This is the result of the combined effects of multiple factors such as politics, economy, military, science and technology, and culture.

The new round of technological revolution is the fundamental driving force behind the evolution of intelligent warfare. Science and technology are the primary productive forces and the core combat power of modern warfare. Major breakthroughs in military technology and landmark developments in dominant weaponry have triggered entirely new changes in military organization, combat methods, and operational theories, leading to a holistic transformation of warfare and the emergence of new forms of conflict. Since the beginning of the 21st century, new technologies characterized by “intelligence, ubiquity, and greenness” have emerged in rapid succession. In particular, artificial intelligence, driven by new technologies and theories such as mobile internet, big data, supercomputing, and brain science, exhibits new characteristics such as deep learning, cross-disciplinary integration, human-machine collaboration, collective intelligence development, and autonomous control. This has triggered a chain of breakthroughs in the military field, significantly changing the way people, weapons, and the ways in which people and weapons, and weapons and weapons, are combined. Various intelligent equipment projects have emerged, including “multi-purpose unmanned tactical transport” ground vehicles, “loyal wingman” drones, “Stingray” shipborne unmanned refueling aircraft, “Sea Hunter” anti-submarine unmanned surface vessels, satellite robots, “cyberspace vehicles,” “adaptive radar countermeasures,” and the “Alpha” beyond-visual-range air combat system. Human-machine hybrid formations, unmanned swarm warfare, and system-based cognitive deception will become possible. Systemic major innovations have emerged in various fields such as combat methods, command and control, organizational structure, logistics support, and military training. Intelligent warfare, which “uses intelligence to control capabilities,” has begun to emerge.

Strategic competition among major powers is the driving force behind the evolution of intelligent warfare. Military affairs are subordinate to politics, and strategy is subordinate to political strategy. Comrade Mao Zedong pointed out that war is “the highest form of struggle used to resolve contradictions between classes, nations, states, and political groups at a certain stage of development.” [2] Strategic competition among major powers and the resulting military demands are key factors driving the evolution of warfare. During World War II, although the armies of Britain, France, Germany, the United States, and the Soviet Union all possessed tanks, aircraft, and radio communication equipment, only Germany successfully implemented “blitzkrieg.” One very important reason was that Germany attempted to use this to break the strategic dilemma of fighting on two fronts. Currently, the world is undergoing profound changes unseen in a century, and the international balance of power is undergoing the most revolutionary changes since modern times, with profound adjustments taking place in the international political and economic landscape. Out of strategic considerations to maintain its world hegemony, the United States proposed the “Third Offset Strategy,” which clearly prioritizes artificial intelligence and autonomy as the technological pillars for development. It accelerates the development of military intelligence from aspects such as war design, operational concept development, technology research and development, and military spending, actively seizing the initiative in the military intelligence revolution and seeking to gain strategic initiative with new technological advantages. Russia insists on investing its limited scientific and technological resources in areas with high strategic value, cutting-edge technology, and great practicality, and regards intelligence as the key to the modernization of weapons and equipment. It has clearly proposed to increase the proportion of unmanned combat systems to 30% by 2025. [3] Other major powers such as Britain, France, India, and Japan are not to be outdone and have increased their investment and deployment in military intelligence. The fierce international strategic competition not only affects the strategic focus of military intelligence development in various countries, but also promotes the evolution and development of intelligent warfare.

Military theoretical innovation is the ideological precursor driving the evolution of intelligent warfare. It plays a significant guiding role in the development of military technology and the evolution of warfare. Human warfare history shows that for cutting-edge technologies and their materialized weaponry to truly achieve combat capability, they must be guided by advanced military theory. There are numerous examples of clinging to existing military theories and missing opportunities to build and utilize new combat capabilities. The US military has always emphasized designing warfare from a technological perspective, using the development of new operational concepts to drive innovation and leaps in defense technology, weaponry, and combat capabilities. The new operational concepts proposed by the US military in recent years all revolve around the top-level operational concept of “cross-domain collaboration.” For example, the US Air Force’s “distributed operations” decouples capabilities through “distribution” and then aggregates them through “collaboration,” thereby constructing a complete operational system. Reflected in force allocation and application, this means a small number of manned aircraft collaborating with a large number of intelligent unmanned aerial vehicles (UAVs) with decomposed functions to form an operational system. In August 2020, the US Defense Advanced Research Projects Agency (DARPA) organized the third human-machine air combat concept demonstration. In the final virtual duel, the artificial intelligence team decisively defeated the human pilot team. Russia has clearly identified military robots as a key direction for the development of military intelligence. In April of this year, Russian media disclosed that its Aerospace Forces’ “Lightning” multi-functional unmanned system has completed group deployment tests and is capable of achieving the Russian military’s “swarm” combat concept attack mission. [4] The core of these combat concepts that already have certain intelligent characteristics is to explore how intelligent warfare can coordinate the use of various military forces through the improvement of “intelligence” to defeat the opponent and achieve a complete victory with cross-domain asymmetric advantages. The formation of intelligent warfare depends on a deep understanding of intelligent technology, keen insight into its military application potential, and a high degree of integration of the art of war with intelligent technology innovation and development of intelligent military theory.

Exploring practical warfare is the primary means of driving the evolution of intelligent warfare. The evolution of warfare is a dynamic process; each form of warfare undergoes a process of quantitative change leading to qualitative change, and gradual change leading to sudden change. Compared to the rise of information warfare, intelligent warfare currently lacks a complete and typical practical example like the Gulf War. However, experiments and practices in intelligent warfare are propelling intelligent warfare from its inception to its nascent stage, and from its early stages to its advanced levels. In 2015, Russia, in the Syrian war, for the first time deployed four tracked Platform-M combat robots and two wheeled Argo combat robots in a structured manner, along with unmanned reconnaissance aircraft and the Andromeda-D automated command system, pioneering ground combat operations primarily based on combat robots. In January 2018, the Russian military, for the first time in the Syrian theater, used anti-intelligent equipment to destroy, jam, and capture 13 incoming drones. In September 2019, more than a dozen drones attacked two Saudi oil facilities, halving their oil production. In the 2020 Nagorno-Karabakh conflict, during the Azerbaijani army’s attack on the Armenian army, unmanned combat platforms exceeded manned platforms for the first time, reaching more than 75%. The number, frequency, and intensity of drone use were all the highest in the history of human warfare. [5] These practical explorations in intelligent warfare will not only promote the application of intelligent equipment on the battlefield to a wider range, a larger number of deployments, and more complex combat scenarios, but will also promote the gradual upgrading of intelligent warfare methods and anti-intelligent warfare methods in the confrontation, thereby accelerating the profound evolution of intelligent warfare.

Accurately grasp the essential characteristics of intelligent warfare

The mechanized era, represented by steam engines and internal combustion engines, greatly expanded human physical capabilities; the information age, represented by the internet and precision-guided systems, achieved an unprecedented leap in human perception; and the rapid development of intelligent technologies, represented by deep learning and autonomous decision-making, is accumulating the material and capability foundation for the intelligent era of “intelligent control of energy.” From a military perspective, the new combat forces composed of intelligent payloads, intelligent platforms, and intelligent systems will give rise to new combat styles such as unmanned swarm warfare, cognitive control warfare, and intelligent algorithm warfare. Seizing “intellectual control” will become a new commanding height in warfare.

Intelligent combat systems have become the primary form of force. The core essence of intelligent combat systems lies in “human command, machine autonomy, and network support,” a key difference from the mechanized and information-based eras. Intelligence is not unmanned; intelligent combat systems are “unmanned platforms, manned systems”—weapons in the foreground, personnel in the background. Intelligence is not about weapons becoming human, but rather the transplantation of human intelligence into weapons, achieving a high degree of integration between humans and weapons. While current artificial intelligence technology is developing rapidly, it is still human-led and human-mediated, essentially reflecting progress in human understanding of intelligence. Regardless of breakthroughs in intelligent technology, humans will remain the initiators, designers, and ultimate decision-makers of warfare. Human operational thinking is materialized into intelligent weapons in the form of rules, algorithms, software, and data. In war, intelligent weapons implement human operational intentions and achieve predetermined operational objectives. Behind the autonomous operation of intelligent weapons remains a contest of human operational methods, command styles, and willpower. Autonomy is the core attribute of military intelligence and the essential characteristic of intelligent combat forces. In other words, weaponry possesses some of the intellectual attributes of humans, enabling it to adapt to the battlefield environment, self-coordinate complex actions, and self-organize force formations under human decision-making and control. Therefore, all the advantages of intelligent combat forces derive from this characteristic of autonomy. Intelligent combat forces also possess speed; as combat operations are increasingly autonomous, the cycle time of “observation-judgment-decision-strike” will be shortened to near-instantaneous response, thus achieving a generational leap in action speed and combat rhythm. Network technology has spurred the iterative development of the Internet, the Internet of Things, and the Internet of Intelligence, forming the foundation for improving mechanization, achieving informatization, and supporting intelligence. The rapid development of new network technologies such as the Internet of Everything and human-machine interaction is leading combat formations towards a hybrid “manned/unmanned” approach, supporting intelligent combat forces through efficient collaborative networks, enabling mission customization, autonomous formation, and flexible collaboration. Once the network environment on which intelligent combat systems heavily rely is disrupted or the links are broken, their combat functions will suffer significant damage or even paralysis. This has prompted countries worldwide to pay close attention to the resilience of intelligent combat systems against interference and attacks.

Autonomous warfare has become the primary mode of combat. With the widespread application of intelligent combat systems to the armed forces and their gradual emergence as the main combat force on the battlefield, autonomous warfare has risen to become the primary mode of combat, profoundly changing combat styles in terms of autonomy, scale, flexibility, and cognition. Based on the current development trend of military intelligence, it can be predicted that the following combat styles will emerge in the future. First, adaptive warfare. This relies on the autonomous learning capabilities of intelligent weapons to react quickly to complex battlefield environments, achieving autonomous judgment, decision-making, and execution of combat actions, maximizing combat effectiveness. Specific applications include “rapid pinpoint warfare,” “intelligent network paralysis warfare,” and “bionic special operations warfare.” The main advantage of this combat style is that it can greatly overcome inherent weaknesses such as human psychological limitations, combat time limitations, and combat mobility limitations, making it particularly suitable for carrying out combat missions deep into enemy-occupied areas, nuclear radiation zones, and other high-risk areas. Simultaneously, leveraging the agility of intelligent weapons, the rapid pace of attack prevents the enemy from organizing an effective response, thus elevating the use of speed to a new level. Second, cluster attrition warfare. This refers to a combat style that primarily utilizes intelligent unmanned swarms, supplemented by a small number of manned combat systems. It mimics the “collective intelligence” exhibited by animal groups in nature, executing combat missions through a group-based autonomous and collaborative model. Specific applications include “swarm” warfare, “fish school” warfare, and “wolf pack” warfare. The main advantage of this style is the use of low-cost, small intelligent weapons to destroy high-value enemy targets through saturation or suicide attacks, transforming numerical superiority into an asymmetric system advantage over traditional large main battle platforms. Thirdly, there is synchronous parallel warfare. This involves decomposing combat functions into multiple heterogeneous small manned and unmanned combat platforms deployed across the entire domain. By establishing a distributed communication network among these platforms, synchronization is achieved in combat time, space, and hierarchy, enabling a systematic approach to completing combat missions. The main advantage of this style is the use of intelligent networks extending to widely distributed intelligent sensors, combat platforms, and individual soldier systems to conduct synchronous and parallel strikes, seizing combat superiority.

“Intelligence dominance” has become the core of warfare. The development of warfare dominance aligns with the evolution of warfare itself. Firepower and mobility are the dominant factors for victory in mechanized warfare, with land, sea, and air dominance becoming the core of the struggle for dominance. Information power is the dominant factor for victory in informationized warfare, with space and information dominance becoming the core of the struggle for dominance. Intelligent superiority is the dominant factor for victory in intelligent warfare, with “intelligence dominance” becoming the core of the struggle for dominance. Intelligent dominance, autonomous energy control, and winning through intelligence will become the fundamental principles of intelligent warfare. The struggle for “intelligence dominance” is essentially a comprehensive contest of “algorithms + data + cognition.” Algorithms are the core of intelligent technology; “algorithms as tactics, software-defined warfare” have become distinctive features of intelligent warfare. The core of algorithm construction is creating abstract models based on problems and selecting different methods to complete the algorithm design according to the target problem. The side with algorithmic advantage can accurately simulate combat scenarios, precisely estimate combat results, and maximize the deduction of optimal combat plans, providing a powerful means to achieve victory before the battle even begins. “Whoever has the most advanced algorithm will gain the upper hand” has become a new law of warfare. Data is a core resource for many disruptive technologies in the era of intelligence. Mastering, analyzing, and competing for data, and applying it to warfare, has become crucial to victory in intelligent warfare. Intelligent weapons possess some human intellectual characteristics, making the cognitive domain a focal point of conflict. Targeting cognitive loops, relying on intelligent technology to limit the enemy’s acquisition of effective information, force them to use incorrect information, delay cognitive speed, induce cognitive patterns, and block cognitive output, can disrupt enemy command and decision-making, undermine their morale, and achieve customizable and controllable application of the ancient war rule of “winning hearts and minds.” In information warfare, the side that loses information control, although its personnel and platforms may not be destroyed, loses smooth communication and cannot form an organic whole. In intelligent warfare, without intelligent advantage, even with information and energy superiority, the loss of human-machine coordination and autonomous decision-making failures will lead to a significant reduction in overall combat effectiveness.

Intelligentization has not changed the essential nature of war. Marshal Ye Jianying pointed out that “war is fought in two ways: first, politics, and second, technology. Politics determines the nature of war, and technology determines the style of war”[6]. Intelligent warfare has not overturned the basic principles of Marxist war theory, but many new developments and changes will occur in its basic scope. On the one hand, the political determinism of intelligent warfare has not changed, and it is still a tool of politics. Politics determines the motivation, purpose and nature of war. Without the purpose of war determined by politics, war becomes blind killing, and war has no soul. In the present era, hegemonism and power politics are still the main sources of war. Ethnic and religious contradictions, energy resource competition, territorial sovereignty and maritime rights disputes will still be the direct causes of war. The widespread use of unmanned autonomous systems has blurred the boundary between war and non-war. The reduction of strategic and military risks may lead to a reduction in the threshold of future wars. In particular, the dual-use nature of intelligent technologies and the widespread adoption of “open source sharing” models such as crowdsourcing, crowdfunding, and maker initiatives have made the acquisition of equipment and technologies increasingly commercialized. This will profoundly change the main actors in warfare in the intelligent era, leading to a more diversified landscape of war actors, primarily non-state actors. On the other hand, the political factors determining victory in intelligent warfare remain unchanged, still determined by the nature of war itself. Wars that promote historical progress and reflect the political goals of the majority of society are just wars; conversely, those that do not are unjust wars. The principle that just wars will inevitably win, and that the people are the foundation of victory, will remain the ironclad rule for victory in the era of intelligent warfare. However, as intelligent technologies give rise to intelligent societies, the role and status of the public in intelligent warfare will be redefined, significantly expanding the breadth and depth of public participation. The public will increasingly become the direct targets of attack, the main body of defense, and a strong support in intelligent warfare. Therefore, it is essential to examine intelligent warfare dialectically and comprehensively, avoiding purely military or technological perspectives, recognizing the “changes” and “unchanging aspects” of intelligent warfare, and thus exploring the path to victory in intelligent warfare.

Scientific prediction of the development trend of intelligent warfare

At present, intelligent warfare is still in its infancy. Predicting the development trend of intelligent warfare is both necessary and challenging. Some scholars have pointed out that although we can roughly judge the future development trends of technologies such as machine learning, industrial robots, and materials science, we cannot accurately predict how these technologies will be combined and what specific impact they will have on future warfare. [7] This requires us to break away from the mindset of starting from individual technologies and focus on understanding the possible development trends of intelligent warfare as a whole.

Intelligent warfare will evolve in stages. With the exponential, combined, and data-driven progress of modern science and technology, as well as the accelerated transformation and application in the military field, the process of weapon and equipment transformation is constantly shortening. In addition, the world is currently in a period of great development, great change, and great adjustment. Regional turmoil and local wars will become the norm, and the exploration of intelligent combat practices will become more frequent. All of these will promote the accelerated development of intelligent warfare. At the same time, due to the limitations of subjective and objective conditions such as the development of intelligent technology, the integration of intelligent forces into the combat system, and the updating of military viewpoints, the evolution of intelligent warfare will show obvious stages. Some scholars have proposed that in order to truly enter intelligent warfare, artificial intelligence technology needs to reach four levels, namely computational intelligence, perceptual intelligence, cognitive intelligence, and human-machine integrated enhanced intelligence. When artificial intelligence technology reaches the second level, intelligent warfare will begin. When it reaches the fourth level, the era of intelligent warfare will be fully opened. [8] Based on this, it can be preliminarily judged that a relatively typical intelligent warfare will appear in the next 15 years or so, and intelligent warfare may become the basic form of warfare in the next 30 years. Practice shows that every change in the military field and every evolution of the form of warfare originates from the rise of new-type combat forces. New-type combat forces, due to their unique and advanced military technologies, possess a “trump card” nature, often disrupting the balance of power on the battlefield and becoming key forces for victory. Once these new-type combat forces are integrated into the combat system and deployed on a large scale in actual warfare, it signifies a fundamental change in the nature of warfare. The true emergence of intelligent warfare will inevitably be the result of the development and expansion of new combat forces such as intelligent unmanned combat platforms and intelligent unmanned combat swarms, integrating them into the existing combat system. This is a gradual and deepening long-term process, and achieving deep integration from initial integration will not be accomplished overnight.

The development of intelligent technology will determine the direction of intelligent warfare. Intelligent technology is a science and technology that comprehensively develops and utilizes cutting-edge technologies such as brain and cognition, biological intersection, advanced computing, big data, and micro-nano technology to study the mechanisms of intelligent behavior and its realization. As the fundamental driving force and material basis for the evolution of intelligent warfare, the development trend, industrial foundation, technological maturity, and depth and breadth of its application in the military field directly determine the future direction of intelligent warfare. In its more than 60 years of development, artificial intelligence technology has experienced three rises and two falls. Currently, the development of artificial intelligence is still in the early stages of statistical learning and may remain in the stage of weak artificial intelligence for a long time. Strong artificial intelligence, which can evolve independently of humans, is difficult to achieve in the short term. The development and breakthroughs of intelligent technology directly determine whether intelligentization is a higher stage of informatization or a stage even higher than informatization. Currently, the driving force of intelligent technology development on intelligent warfare is concentrated in the following aspects: First, intelligent technology empowers existing weapons and equipment. Although current development primarily focuses on dedicated intelligent systems for specific application scenarios, it has already continuously improved the combat effectiveness of traditional main combat platforms such as aircraft carriers and aircraft, gradually evolving from direct human control to the ability to autonomously complete specific combat missions. Secondly, intelligent technology is transforming future combat command models. The integration and transformation of command and control systems by intelligent technology will promote the hybridization of command entities, the flexibility of command structures, and the agility of command models. Competition for adaptive, self-organizing, and self-coordinating command advantages at the operational level will intensify. Thirdly, intelligent technology is updating future combat processes. Intelligent technology will converge and integrate multiple kill chains across land, sea, air, and space combat domains into a cross-domain kill network, fundamentally changing the traditional single-process combat “from sensor to shooter.”

The laws of contradiction in intelligent warfare will undergo profound changes. Applying the laws of contradiction in warfare is a primary means of understanding its laws, and the confrontation between opposing sides is the fundamental contradiction in war. For intelligent warfare, these fundamental contradictions will manifest as competitive relationships such as concealment versus detection, cognition versus deception, network resilience versus network incapacity, attack versus interception, speed of action versus speed of decision-making, winning popular support versus undermining morale, attrition versus effectiveness, and delivery versus denial. With the accelerated development of intelligent technology, these core combat confrontations will become increasingly intense, and the exchange of advantages will become more frequent, thus driving intelligent warfare towards maturity. The confrontation between concealment and detection on the future battlefield will evolve towards greater intelligence, faster response, smaller size, and lower cost. Intelligent technology, as a strategic high ground technology for wielding the “double-edged sword” of information explosion, will intensify the confrontation of enhancing one’s own battlefield situational awareness and misleading, deceiving, and confusing the enemy. Intelligent network information system design and dynamic target defense technologies provide new ideas for network construction in future warfare, while cognitive electromagnetic manipulation and electromagnetic spectrum warfare, and intelligent cyberspace confrontation technologies provide new ways to attack enemy networks. The development of autonomous unmanned systems and smart munitions is expected to optimize attack methods and enhance offensive power in future warfare. The development of autonomous homing weapons and ultra-short-range interception and active protection capabilities will significantly improve the ability to defend against new threats. Autonomous unmanned systems and swarm collaboration technologies will significantly improve operational speed, while intelligent decision-making assistance and swarm intelligence operating systems can greatly improve decision-making speed. The ubiquitous network, social media, and smart terminals are deeply integrated into human life, unprecedentedly increasing the speed, scope, and accuracy of information dissemination. With the emergence of low-cost swarm drones and missiles, future warfare may well overwhelm enemy defenses with low-cost combat platforms, forcing the enemy into a war they cannot defend against or afford.

The ethical and legal regulations governing intelligent warfare will continue to strengthen. Intelligent technology is a double-edged sword; while driving the evolution of warfare towards intelligent warfare, it also brings a series of new ethical issues and legal dilemmas. For example, is it ethical to entrust machines with the power to decide human life and death? When machines possess the power to control human life and death, humanity may not be facing a brighter future, but rather a bottomless abyss of darkness. Another example is who should be held accountable for war crimes committed by intelligent weapons? This may involve the weapons themselves, users, designers, and manufacturers, and a series of resulting dilemmas regarding responsibility and rights. In recent years, the international community has increasingly emphasized the legal regulation of intelligent weapons, conducting international dialogues through international conferences, establishing relevant institutions to study legal regulatory principles, and issuing ethical guidelines for artificial intelligence, among other things. In July 2017, the Chinese government released the “New Generation Artificial Intelligence Development Plan,” proposing at the national strategic level to “initially establish a legal, ethical, and policy system for artificial intelligence” and “ensure the safe, reliable, and controllable development of artificial intelligence.” In April 2019, the European Commission released ethical guidelines for artificial intelligence, proposing seven conditions including transparency, fairness, safety, and human oversight. In October 2019, the U.S. Defense Innovation Board proposed five principles for the application of military artificial intelligence: responsibility, fairness, traceability, reliability, and controllability. Looking to the future, there is an urgent need for the international community to prioritize security and reliability as a key development direction for intelligent technologies. Strategic dialogue is crucial in areas such as the explainability and transparency of military intelligence, preventing the security risks of “instantaneous collapse” of autonomous weapon systems, and the design of new rules of engagement. This dialogue aims to promote the establishment of international rules for the military application of artificial intelligence and jointly address the global challenges that intelligent warfare may bring.

Strategic initiatives to meet the challenges of intelligent warfare

The advent of intelligent warfare may create a new military generation gap, militarily impacting the balance of power between nations and even triggering a new round of great power rise and fall. Intelligent warfare presents both new and unprecedented challenges to national security and a rare strategic opportunity for our military to achieve a leapfrog development. Faced with these opportunities and challenges, there is an urgent need for forward-looking planning, strategic deployment, and comprehensive measures to seize the strategic high ground in future military competition and firmly grasp the strategic initiative in safeguarding national security and winning intelligent warfare.

Proactively design intelligent warfare. First-rate armies design warfare, second-rate armies respond to warfare, and third-rate armies follow warfare. Facing the impending intelligent warfare, we must anticipate and proactively design warfare as early as possible, aiming to transform from following, keeping pace, to leading, and strive to become visionaries and rule-makers of future warfare. First, we must focus on designing intelligent warfare from a technological perspective, enhancing our understanding of cutting-edge technologies, keenly grasping new trends in technological development, and identifying key areas, directions, and technologies that can trigger the evolution of warfare. We must design the initiative of warfare through technological advancement, the flexibility of warfare through technological integration, and the asymmetry of warfare through technological disruption. Second, we must focus on strengthening the development of new intelligent combat concepts, considering the future security threats facing my country and the missions undertaken by our military. Based on the development, application, and impact of military intelligence, we must focus on how to leverage intelligent warfare to overcome the war threats and strategic dilemmas facing my country. Around various strategic directions and new security fields, we must systematically envision the intelligent combat scenarios that may be faced in the future, vigorously promote innovation in intelligent combat theory, and accelerate the construction of an intelligent combat theory system with Chinese characteristics. Third, we should focus on strengthening the demand-driven development of intelligent warfare, focusing on new intelligent warfare styles, systematically describing the required capabilities, systems, and equipment, and using operational needs to drive the development of military intelligence, ensuring that operational needs are implemented in all aspects and throughout the entire process of military intelligence development, and comprehensively improving the combat effectiveness of military intelligence development.

Developing intelligent weaponry and equipment. Intelligent weaponry and equipment are the material foundation of intelligent warfare and an important symbol of an intelligent military. First, we must adhere to system construction. Information warfare is about systems, and intelligent warfare is even more about systems. Currently, intelligent weaponry and equipment, represented by intelligent command and control systems, intelligent drones, intelligent tanks, intelligent missiles, and intelligent landmines, are still in a stage of fragmented development and far from forming a systematic development. How to build an intelligent weaponry and equipment system, especially an intelligent network information system, has become a major strategic issue facing us. Second, we must adhere to a balanced approach of offense and defense. Where there is a spear, there will inevitably be a shield; where there is intelligent weaponry and equipment, there will inevitably be anti-intelligent weaponry and equipment. We must coordinate the development of offensive and defensive intelligent weaponry and equipment. For intelligent weaponry and equipment, once the enemy obtains the source code, it is equivalent to gaining the right to use the weapon. This places new and higher demands on the construction of intelligent weaponry and equipment that combines offense and defense. Third, we must coordinate the integrated development of mechanization, informatization, and intelligence. We must adhere to the principle of supporting intelligence with mechanization and informatization, and driving mechanization and informatization with intelligence. Through the coupling, proportional optimization, and system integration of elements of mechanization, informatization, and intelligence, we can accelerate the transformation, upgrading, and efficiency improvement of intelligent weaponry and equipment construction.

Shaping an intelligent organizational structure. Without the modernization of the military’s organizational structure, there can be no modernization of national defense and the armed forces. The fundamental function of the military’s organizational system is to ensure the effective integration of personnel and equipment, enabling the formation and continuous improvement of the military’s overall combat capability. To win intelligent wars and build an intelligent military, it is essential to establish an intelligent organizational system and construct an intelligent military force system. An intelligent military force system is an organic whole comprised of combat forces with intelligent weapon platforms as its backbone, organized according to human-machine collaboration and machine self-organization collaboration, conducting combat operations under authorized control or supervision by humans, as well as combat support forces providing reconnaissance, intelligence, communication, and algorithm design, and logistics and equipment support forces. Following the principles of “emphasizing coordinated development, focusing on competitive advantages, and promoting system integration,” and centering on expanding the scale and optimizing troop composition, while inheriting the traditional tree-like structure and service branch structure organizational models, a dual organizational system balancing stability and innovation should be established. Efforts should be made to construct a command system with a virtualized center of gravity, explore and innovate new organizational methods such as cross-domain mixed forces and manned/unmanned mixed formations, and strive to achieve the flexible, organic, and efficient operation of the intelligent military force system.

Strengthening Strategic Management of Intelligentization. The evolution of intelligent warfare begins with technology and is perfected through management. To meet the challenges of intelligent warfare and accelerate the development of military intelligence, we must prioritize strategic management, focusing on improving the quality and efficiency of military intelligence development and the operational efficiency of intelligent military systems. From a holistic perspective, we must strengthen overall planning, system design, centralized management, and categorized guidance, forging a path of intensive and efficient intelligent development. Adapting to the rapid response capabilities required by intelligent warfare, we must optimize management systems and mechanisms, adopting networked and autonomous management models. We must improve the planning and implementation of cutting-edge intelligent technology research and development and the transformation and application of scientific and technological achievements, increasing R&D investment and support to ensure that technological innovation remains at the forefront of the times. We must strengthen the construction of a military standard system for artificial intelligence, promptly promulgate relevant laws, regulations, and rules concerning intelligent facilities, intelligent systems, intelligent weaponry, intelligent personnel, and intelligent warfare, and continuously improve key policies and systems supporting the development of military intelligence. Given the ubiquitous and easily disseminated nature of artificial intelligence technology, and the high degree of coupling between national strategic capabilities, social productivity, and military combat effectiveness, we must further optimize the open and integrated layout of intelligentization construction, streamline organizational leadership mechanisms, build a favorable development environment, and promote the organic unity of national prosperity and military strength.

現代國語:

【摘要】現代戰爭正迅速向資訊戰演進,智能戰的興起已然開始。智慧作戰系統正成為智慧戰的主力運動形態,催生出適應性戰爭、集群消耗戰、同步並行戰等新型作戰方式。 「智慧控制」已成為戰爭控制的新制高點。未來,智能戰將呈現階段性、加速演進的趨勢。智慧科技的發展將決定智慧戰的方向,深刻變革戰爭中相互矛盾的規律,並不斷強化戰爭倫理和法律規範。為因應智慧戰的挑戰,必須積極主動地進行智慧戰設計,加速智慧裝備的研發,塑造智慧化的組織形態,並加強智慧化的策略管理。

【關鍵字】智能戰,資訊戰,戰爭形式演變,戰略措施

【中國圖書館分類號】E0 【文獻識別碼】A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.002

郭明,中國人民解放軍軍事科學學院戰爭研究所副所長、研究員、博士生導師。研究方向為軍事指揮。主要著作包括《戰爭戰術》(編)和《特種作戰教程》(編)。

近年來,在新一輪技術、工業和軍事革命的推動下,戰爭形式正迅速向資訊戰演變,智慧戰即將興起。作為一種新型的未來戰爭形式,智能戰不僅正在革新人們對戰爭和軍事事務的理解,也日益受到世界各國的關注。探索和掌握智慧戰爭的特徵和規律,加速軍事情報發展,是維護中華民族偉大復興整體戰略情勢的當代挑戰。

深入理解智慧戰爭演進的驅動力

戰爭形式是戰爭的歷史階段,以主要武器的技術屬性為特徵,是人類社會在軍事領域的生產和運動方式的體現。 [1] 從歷史上看,戰爭形式經歷了冷戰、熱戰、機械化戰爭、資訊戰等多次演進,目前正朝著智慧戰爭演進。這是政治、經濟、軍事、科技、文化等多種因素共同作用的結果。

新一輪科技革命是智慧戰爭演進的根本驅動力。科技是現代戰爭的主要生產力和核心戰鬥力。軍事技術的重大突破和主導武器裝備的里程碑式發展,引發了軍事組織、作戰方式和作戰理論的徹底變革,導致戰爭的全面轉型和新型衝突形式的出現。自21世紀初以來,以「智慧化、普及化、綠色化」為特徵的新技術層出不窮。特別是人工智慧,在行動互聯網、大數據、超級運算、腦科學等新技術和理論的驅動下,展現出深度學習、跨學科融合、人機協作、集體智慧發展和自主控制等新特徵。這引發了軍事領域的一系列突破,顯著改變了人員、武器以及人員與武器、武器與武器的結合方式。各種智慧裝備計畫相繼湧現,包括「多用途無人戰術運輸」地面車輛、「忠誠僚機」無人機、「魟魚」艦載無人加油機、「海上獵人」反潛無人水面艦艇、衛星機器人、「網路空間車輛」、「自適應雷達對抗」以及「阿爾法」超視距空戰系統。人機混合編隊、無人群聚作戰和基於系統的認知欺騙將成為可能。作戰方式、指揮控制、組織結構、後勤支援、軍事訓練等各領域都出現了系統性的重大創新。 「以情報控制能力」的智慧戰爭開始出現。

大國間的戰略競爭是智慧戰爭演進的驅動力。軍事從屬於政治,戰略從屬於政治戰略。毛澤東同志指出戰爭是「在特定發展階段,為解決階級、民族、國家和政治團體之間矛盾而採取的最高形式的鬥爭」。 [2] 大國間的戰略競爭及其所產生的軍事需求是推動戰爭演變的關鍵因素。二戰期間,儘管英國、法國、德國、美國和蘇聯的軍隊都擁有坦克、飛機和無線電通訊設備,但只有德國成功實施了「閃電戰」。一個非常重要的原因是,德國試圖利用閃電戰來打破兩線作戰的戰略困境。目前,世界正經歷百年未有之大變局,國際力量平衡正經歷近代以來最劇烈的變革,國際政治經濟格局正在發生深刻的調整。出於維護其世界霸權的戰略考量,美國提出了“第三次抵消戰略”,該戰略明確將人工智慧和自主性作為發展的兩大技術支柱。它從戰爭設計、作戰概念發展、技術研發和軍費開支等各方面加速軍事情報的發展,積極在軍事情報革命中搶佔先機,力求憑藉新的技術優勢獲得戰略主動權。俄羅斯堅持將有限的科技資源投入到具有高戰略價值、尖端技術和實用性的領域,並將情報視為武器裝備現代化的關鍵。俄羅斯已明確提出2025年將無人作戰系統的比例提高到30%。 [3] 英國、法國、印度和日本等其他大國也不甘示弱,紛紛加大對軍事情報的投入與部署。激烈的國際戰略競爭不僅影響各國軍事情報發展的戰略重點,也推動智慧戰的演進與發展。

軍事理論創新是推動智慧戰演進的思想先導,在軍事技術發展和戰爭演進中扮演重要的指導角色。人類戰爭史表明,尖端技術及其物質化武器要真正發揮作戰能力,必須以先進的軍事理論為指導。固守現有軍事理論而錯失建構和運用新型作戰能力的案例不勝枚舉。美軍始終強調從技術角度設計戰爭,透過發展新的作戰概念來推動國防技術、武器裝備和作戰能力的創新與飛躍。近年來美軍提出的新作戰概念均圍繞著「跨域協同」這一最高作戰概念。例如,美軍的「分散式作戰」透過「分散式」將各項能力解耦,再透過「協同」將其聚合,從而建構一個完整的作戰系統。這體現在兵力部署和運用上,意味著少量有人駕駛飛機與大量功能分解的智慧無人機協同作戰,形成一個完整的作戰系統。 2020年8月,美國國防高級研究計畫局(DARPA)組織了第三次人機空戰概念展示。在最終的虛擬對決中,人工智慧團隊取得了決定性的勝利。俄羅斯已明確將軍用機器人視為軍事情報發展的關鍵方向。今年4月,俄羅斯媒體揭露,其空天軍「閃電」多功能無人系統已完成集群部署測試,能夠執行俄軍「集群」作戰概念的攻擊任務。 [4] 這些已具備一定智慧特質的作戰概念的核心在於探索如何透過提升「智慧」來協調各軍事力量的運用,從而憑藉跨域非對稱優勢擊敗對手並取得全面勝利。智慧戰的形成依賴於對智慧技術的深刻理解、對其軍事應用潛力的敏銳洞察,以及戰爭藝術與智慧技術創新和智慧軍事理論發展的高度融合。

探索實戰是推動智能戰演進的首要途徑。戰爭的演變是一個動態過程;每一種戰爭形式都會經歷一個從數量變化到質量變化的過程。漸進式變革最終會導致突發式變革。與資訊戰的興起相比,智能戰目前尚缺乏像海灣戰爭那樣完整且典型的實戰案例。然而,智慧戰領域的實驗和實踐正推動智慧戰從萌芽階段發展到雛形階段,再從早期階段邁向高階階段。 2015年,俄羅斯在敘利亞戰爭中首次系統性地部署了四台履帶式「平台-M」戰鬥機器人和兩台輪式「阿爾戈」戰鬥機器人,並配合無人偵察機和「仙女座-D」自動化指揮系統,開創了以戰鬥機器人為主的地面作戰先河。 2018年1月,俄羅斯軍隊首次在敘利亞戰場使用反情報設備,摧毀、幹擾並捕獲了13架來襲無人機。 2019年9月,十幾架無人機襲擊了沙烏地阿拉伯的兩處石油設施,導致其石油產量減半。在2020年納戈爾諾-卡拉巴赫衝突中,阿塞拜疆軍隊進攻亞美尼亞軍隊期間,無人作戰平台的使用率首次超過有人作戰平台,達到75%以上。無人機的使用數量、頻率和強度均創人類戰爭史新高。 [5] 這些在智慧戰領域的實踐探索,不僅將推動智慧裝備在戰場上更廣泛地應用、部署更多種類、應對更複雜的作戰場景,還將促進對抗中智能戰方法和反智能戰方法的逐步升級,從而加速智能戰的深刻演進。

準確掌握智能戰的本質特徵

以蒸汽機和內燃機為代表的機械化時代極大地拓展了人類的體能;以互聯網和精確導引系統為代表的資訊時代,使人類的感知能力實現了前所未有的飛躍;以深度學習和自主決策為代表的智能技術的快速發展,正在為“智能能源控制”的智能時代積累物質和能力基礎。從軍事角度來看,由智慧載荷、智慧平台和智慧系統構成的新型作戰力量將催生無人集群戰、認知控制戰和智慧演算法戰等新型作戰方式。 「智慧控制」將成為戰爭的新制高點。

智慧作戰系統已成為主要作戰形式。智慧作戰系統的核心在於“人指揮、機器自主、網路支援”,這與機械化和資訊時代有著關鍵區別。智慧並非無人化;智慧作戰系統是「無人平台、有人系統」──武器在前,人員在後。智慧並非武器人性化,而是將人類智慧移植到武器中,實現人與武器的高度融合。儘管目前的人工智慧技術發展迅速,但它仍然是由人主導和人類操控的,本質上反映了人類對智慧理解的進步。無論智慧科技如何突破,人類仍將是戰爭的發起者、設計者和最終決策者。人類的作戰思維以規則、演算法、軟體和資料的形式物化為智慧武器。在戰爭中,智慧武器執行人類的作戰意圖並實現預定的作戰目標。智慧武器的自主運作背後,仍是人類作戰方法、指揮風格和意志力的較量。自主性是軍事智慧的核心屬性,也是智慧作戰部隊的本質特徵。換句話說,武器具備人類的部分智慧屬性,使其能夠在人類的決策和控制下適應戰場環境、自主協調複雜行動並自主組織部隊陣型。因此,智慧作戰部隊的所有優勢都源自於自主性這項特質。智慧作戰部隊也具備速度優勢;隨著作戰行動日益自主化,「觀察-判斷-決策-打擊」的周期將縮短至近乎瞬時響應,從而實現行動速度和作戰節奏的代際飛躍。網路技術推動了互聯網、物聯網和智慧互聯網的迭代發展,為提升機械化水平、實現資訊化和支援情報化奠定了基礎。萬物互聯、人機互動等新型網路技術的快速發展正引領作戰編隊向著作為一種混合「有人/無人」模式,智慧作戰系統透過高效的協同網路支援智慧作戰力量,實現任務客製化、自主編隊和靈活協同。一旦智慧作戰系統高度依賴的網路環境遭到破壞或連結中斷,其作戰功能將遭受重大損害甚至癱瘓。這促使世界各國高度重視智慧作戰系統抵禦幹擾和攻擊的能力。

自主作戰已成為主要作戰模式。隨著智慧作戰系統在軍隊中的廣泛應用及其逐漸成為戰場主力,自主作戰已成為主要作戰模式,從自主性、規模、靈活性和認知等方面深刻改變了作戰方式。基於當前軍事智慧的發展趨勢,可以預測未來將出現以下幾種作戰模式。首先是自適應作戰。這種作戰模式依賴智慧武器的自主學習能力,快速回應複雜的戰場環境,實現自主判斷、決策和作戰行動執行,以最大限度地提高作戰效能。具體應用包括「快速精確打擊」、「智慧網路癱瘓戰」和「仿生特種作戰」。這種作戰方式的主要優勢在於能夠大幅克服人類心理、作戰時間、作戰機動性等方面的固有弱點,使其特別適用於深入敵佔區、核輻射區等高風險區域執行作戰任務。同時,憑藉著智慧武器的敏捷性,快速的攻擊節奏能夠阻止敵人組織有效的應對措施,從而將速度的運用提升到一個新的水平。其次是集群消耗戰。這種作戰方式主要利用智慧無人集群,輔以少量有人作戰系統。它模仿自然界動物群體所展現的“集體智慧”,透過基於群體的自主協作模式執行作戰任務。具體應用包括「蜂群戰」、「魚群戰」和「狼群戰」。這種作戰方式的主要優勢在於利用低成本、小型智慧武器,透過飽和攻擊或自殺式攻擊摧毀高價值敵方目標,從而將數量優勢轉化為對傳統大型主戰平台的不對稱系統優勢。第三種是同步並行作戰。這種作戰方式將作戰功能分解為部署在整個作戰域的多個異質小型有人和無人作戰平台。透過在這些平台之間建立分散式通訊網絡,實現作戰在時間、空間和層級上的同步,從而能夠系統地完成作戰任務。這種作戰方式的主要優點在於利用智慧網絡,將智慧感測器、作戰平台和單兵系統廣泛分佈,進行同步並行打擊,奪取作戰優勢。

「情報優勢」已成為戰爭的核心。戰爭優勢的發展與戰爭本身的演變一致。火力和機動性是機械化戰爭中取得勝利的關鍵因素,陸海空優勢成為爭奪優勢的核心。資訊力量是資訊化戰爭中致勝的關鍵因素,空間和資訊優勢成為爭奪主導權的核心。智慧優勢是智慧戰爭中致勝的關鍵因素,「智能主導」成為爭奪主導權的核心。智慧主導、自主能源控制和以智慧取勝將成為智慧戰爭的基本原則。 「智能主導」的爭奪本質上是「演算法+資料+認知」的綜合較量。演算法是智慧技術的核心;「演算法即戰術,軟體定義戰爭」已成為智慧戰爭的顯著特徵。演算法建構的核心是基於問題創建抽像模型,並根據目標問題選擇不同的方法完成演算法設計。擁有演算法優勢的一方可以精確模擬作戰場景,準確評估作戰結果,並最大限度地推導出最優作戰方案,從而在戰鬥開始前就擁有製勝的強大手段。 「誰擁有最先進的演算法誰就佔優勢」已成為新的戰爭法則。在智慧時代,數據是許多顛覆性技術的核心資源。在智慧戰爭中,掌握、分析和爭奪數據並將其應用於戰爭,已成為取得勝利的關鍵。智慧武器具​​備某些人類智力特徵,使得認知領域成為衝突的焦點。透過智慧技術,針對認知迴路,限制敵方獲取有效訊息,迫使其使用錯誤訊息,延緩其認知速度,誘導其認知模式,並阻斷其認知輸出,可以擾亂敵方的指揮和決策,打擊其士氣,從而實現對「贏得民心」這一古老戰爭法則的可定制化和可控應用。在資訊戰中,失去資訊控制的一方,即使其人員和平台可能未被摧毀,也會失去順暢的溝通,無法形成一個有機的整體。在智慧戰爭中,即使擁有資訊和能源優勢,如果沒有智慧優勢,人機協調的喪失和自主決策的失敗也會導致整體作戰效能的顯著下降。

智能化並未改變戰爭的本質。葉劍英元帥指出,「戰爭有兩種方式:一是政治,二是技術。政治決定戰爭的本質,技術決定戰爭的方式」[6]。智慧戰爭並未顛覆馬克思主義戰爭理論的基本原則,但其基本範圍將出現許多新的發展和變化。一方面,智慧戰爭的政治決定性並未改變,它仍是政治的工具。政治決定戰爭的動機、目的和本質。如果戰爭的目的沒有政治的確定,戰爭就變成了盲目的殺戮,戰爭失去了靈魂。在當今時代,霸權主義和強權政治仍然是戰爭的主要根源。民族和宗教矛盾、能源資源競爭、領土主權和海洋權益爭端仍將是戰爭的直接原因。無人自主系統的廣泛應用模糊了戰爭與非戰爭的界線。戰略和軍事風險的降低可能導致未來戰爭門檻的降低。尤其值得注意的是,智慧科技的雙重用途特性以及眾包、眾籌、創客計畫等「開源共享」模式的廣泛應用,使得裝備和技術的獲取日益商業化。這將深刻改變智慧時代戰爭的主要參與者,導致戰爭行為體更加多元化,其中非國家行為者特別突出。另一方面,決定智慧戰爭勝負的政治因素依然不變,仍取決於戰爭本身的本質。促進歷史進步並反映社會大多數人政治目標的戰爭是正義戰爭;反之,則為非正義戰爭。正義戰爭必勝、人民是勝利基石的原則,仍將是智慧戰爭時代勝利的鐵律。然而,隨著智慧科技催生智慧社會,公眾在智慧戰爭中的角色和地位將被重新定義,公眾參與的廣度和深度將顯著提升。公眾將日益成為攻擊的直接目標、防禦的主力軍以及智慧戰爭的強大後盾。因此,必須辯證、全面地審視智能戰,避免純粹的軍事或技術視角,認識到智能戰的“變化”與“不變”,從而探索智能戰的製勝之道。

智慧戰發展趨勢的科學預測

目前,智能戰仍處於起步階段。預測智能戰的發展趨勢既必要又具有挑戰性。一些學者指出,雖然我們可以大致判斷機器學習、工業機器人、材料科學等技術的未來發展趨勢,但我們無法準確預測這些技術將如何融合,以及它們將對未來戰爭產生何種具體影響。 [7] 這就要求我們摒棄從單一技術出發的思維模式,並著眼於理解智能戰整體可能的發展趨勢。

智能戰將分階段演進。隨著現代科技呈指數級、整合式和數據驅動式發展,以及在軍事領域的加速轉型應用,武器裝備的轉型升級進程也不斷縮短。此外,世界目前正處於大發展、大變革和大調整時期。區域動盪和局部戰爭將成為常態,情報探索也將日益頻繁。智慧作戰實踐將日益頻繁,所有這些都將促進智慧戰爭的加速發展。同時,由於智慧科技發展、智慧力量融入作戰體系、軍事觀點更新等主客觀條件的限制,智慧戰爭的演進將呈現明顯的階段性。一些學者提出,要真正進入智慧戰爭階段,人工智慧技術需要達到四個層次,即計算智能、感知智能、認知智能和人機融合增強智能。當人工智慧技術達到第二層次時,智慧戰爭將開始;當達到第四層次時,智慧戰爭時代將全面開啟。 [8] 基於此,可以初步判斷,未來15年左右將出現較為典型的智慧戰爭,未來30年內智能戰爭可能成為戰爭的基本形式。實踐表明,軍事領域的每一次變革和戰爭形式的每一次演進都源於新型作戰力量的出現。新型作戰力量憑藉著獨特而先進的軍事技術,具有「王牌」性質,往往能夠打破戰場上的力量平衡,成為決定勝負的關鍵力量。一旦這些新型作戰力量融入作戰體系並在實戰中大規模部署,就標誌著戰爭性質的根本性轉變。智慧戰爭的真正出現,必然是智慧無人作戰平台、智慧無人作戰集群等新型作戰力量發展壯大並融入現有作戰體系的結果。這是一個循序漸進、不斷深化的長期過程,從初步融合到深度融合並非一朝一夕之功。

智慧技術的發展將決定智慧戰爭的方向。智慧技術是一門綜合發展與運用腦與認知、生物交叉、先進計算、大數據、微納技術等尖端技術,研究智慧行為機制及其實現方式的科學技術。作為智慧戰爭演進的根本驅動力和物質基礎,人工智慧的發展趨勢、產業基礎、技術成熟度以及在軍事領域的應用深度和廣度直接決定智慧戰爭的未來發展方向。人工智慧技術在60多年的發展歷程中經歷了三次崛起和兩次衰落。目前,人工智慧的發展仍處於統計學習的早期階段,並且可能在很長一段時間內都停留在弱人工智慧階段。能夠獨立於人類演進的強人工智慧,短期內難以實現。智慧科技的發展與突破直接決定智慧化是資訊化的更高階段,還是超越資訊化的更高階段。目前,智慧科技發展對智慧戰爭的驅動力主要集中在以下幾個面向:首先,智慧科技賦能現有武器裝備。雖然目前發展主要集中於針對特定應用場景的專用智慧系統,但它已經不斷提升了航空母艦、飛機等傳統主戰平台的作戰效能,逐步從直接由人類操控發展到能夠自主完成特定作戰任務。其次,智慧技術正在改變未來的作戰指揮模式。智慧技術對指揮控制系統的整合與改造將促進指揮實體的混合化、指揮結構的彈性與指揮模式的敏捷性。作戰層面上對適應性、自組織性和自協調性指揮優勢的競爭將更加激烈。第三,智慧科技正在更新未來的作戰流程。智慧技術將陸、海、空、天等多個作戰領域的多條殺傷鏈融合整合為跨域殺傷網絡,從根本上改變傳統的「從感測器到射手」的單一作戰流程。

智慧戰爭中的矛盾規律將會發生深刻變化。運用戰爭中的矛盾規律是理解戰爭規律的主要途徑,而交戰雙方的對抗是戰爭的根本矛盾。對於智慧戰爭而言,這些根本矛盾將表現為競爭關係。諸如隱藏與偵測、認知與欺騙、網路韌性與網路癱瘓、攻擊與攔截、行動速度與決策速度、贏得民眾支持與打擊士氣、消耗戰與實效、投送與拒止等核心對抗手段,隨著智慧科技的加速發展,這些核心對抗將愈發激烈,優勢交換也將更加頻繁,從而推動智慧戰爭走向成熟。未來戰場上隱蔽與偵測的對抗將朝著更高智慧化、更快反應速度、更小規模和更低成本的方向發展。智慧技術作為運用資訊爆炸這把「雙面刃」的戰略制高點技術,將加劇提升自身戰場態勢感知能力與誤導、欺騙、迷惑敵方之間的對抗。智慧網路資訊系統設計和動態目標防禦技術為未來戰爭中的網路建設提供了新的思路,而認知電磁操控、電磁頻譜戰以及智慧網路空間對抗技術則為攻擊敵方網路提供了新的途徑。自主無人系統和智慧彈藥的發展有望優化未來戰爭的攻擊方式,並增強進攻能力。自主導引武器、超短程攔截和主動防護能力的提升將顯著增強防禦新型威脅的能力。自主無人系統和叢集協同技術將顯著提升作戰速度,而智慧決策輔助和叢集智慧作業系統則能大幅提升決策速度。無所不在的網路、社群媒體和智慧終端已深度融入人類生活,以前所未有的速度、範圍和準確性提升了資訊傳播。隨著低成本集群無人機和飛彈的出現,未來戰爭很可能憑藉低成本作戰平台壓倒敵方防禦,迫使敵方陷入一場既無力抵抗也無法承擔的戰爭。

有關智慧戰爭的倫理和法律規範將不斷完善。智慧科技是一把雙面刃;在推動戰爭向智慧戰爭演進的同時,也帶來了一系列新的倫理問題和法律困境。例如,將決定人類生死的權力賦予機器是否合乎倫理?當機器擁有掌控人類生死的權力時,人類面臨的可能並非更光明的未來,而是無底的黑暗深淵。另一個例子是,誰應該為智慧武器所犯下的戰爭罪行負責?這可能涉及武器本身、使用者、設計者和製造商,以及由此產生的一系列關於責任和權利的難題。近年來,國際社會日益重視智慧武器的法律監管,透過國際會議進行國際對話,建立相關機構研究法律監管原則,並發佈人工智慧倫理準則等。 2017年7月,中國政府發布了《新一代人工智慧發展規劃》,在國家戰略層面提出“初步建立人工智慧的法律、倫理和政策體系”,並“確保人工智慧安全、可靠、可控發展”。 2019年4月,歐盟委員會發布了人工智慧倫理準則,提出了包括透明度、公平性、安全性和人工監督在內的七項條件。同年10月,美國國防創新委員會提出了軍事人工智慧應用的五個原則:責任性、公平性、可追溯性、可靠性和可控制性。展望未來,國際社會迫切需要將安全性和可靠性作為智慧技術發展的關鍵方向。在軍事情報的可解釋性和透明度、防止自主武器系統「瞬間崩潰」帶來的安全風險以及製定新的交戰規則等領域,戰略對話至關重要。此次對話旨在促進制定人工智慧軍事應用的國際規則,並共同應對智慧戰爭可能帶來的全球性挑戰。

因應智慧戰爭挑戰的戰略舉措

智慧戰爭的出現可能會造成新的軍事世代差距,對國家間的軍事力量平衡產生影響,甚至引發新一輪的大國興衰。智慧戰爭既為國家安全帶來了前所未有的新挑戰,也為我軍實現跨越式發展提供了難得的戰略機會。面對這些機會和挑戰,亟需進行前瞻性規劃、戰略部署和綜合措施,在未來的軍事競爭中佔據戰略制高點,牢牢掌握維護國家安全和贏得智慧戰爭的戰略主動權。

主動設計智慧戰爭。一流軍隊設計戰爭,二流軍隊應對戰爭,三流軍隊跟隨戰爭。面對即將到來的智慧戰爭,我們必須儘早預判並主動設計戰爭,力爭從跟隨、並駕齊驅轉變為引領,努力成為未來戰爭的先行者和規則制定者。首先,我們必須從技術角度出發,著力設計智慧戰爭,加深對尖端技術的理解,敏銳掌握技術發展的新趨勢,辨識能夠引發戰爭演進的關鍵領域、方向和技術。我們必須透過科技進步來設計戰爭的主動性,透過科技融合來設計戰爭的彈性,透過科技顛覆來設計戰爭的非對稱性。其次,我們必須著重加強新型智慧作戰概念的研發,結合我國未來面臨的安全威脅和軍隊的任務,在軍事情報發展、應用和影響的基礎上,重點研究如何利用智慧作戰來應對我國面臨的戰爭威脅和戰略困境。圍繞著不同的戰略方向和新的安全領域,我們必須有系統地構想未來可能面臨的智慧作戰場景,大力推動智慧作戰理論創新,加速建構具有中國特色的智慧作戰理論體系。第三,我們應該著重加強智慧作戰需求驅動型發展,聚焦新型智慧作戰模式,系統地描述所需的能力、系統和裝備,以作戰需求為導向,推動軍事情報發展,確保作戰需求在軍事情報發展的各個面向和整個過程中得到貫徹落實,全面提升軍事情報發展的作戰效能。

研發智慧武器裝備。智慧武器裝備是智慧戰爭的物質基礎,也是智慧軍隊的重要像徵。首先,必須堅持系統化建設。資訊戰的核心在於系統,而智慧戰爭更是如此。目前,以智慧指揮控制系統、智慧無人機、智慧坦克、智慧飛彈、智慧地雷等為代表的智慧武器裝備仍處於分散發展階段,距離系統化發展還很遠。如何建構智慧武器裝備系統,特別是智慧網路資訊系統,已成為我們面臨的重大戰略問題。其次,必須堅持攻守平衡發展。有矛必有盾,有智慧武器裝備必有反智能武器裝備。必須協調發展攻防兼備的智慧武器裝備。對於智慧武器裝備而言,一旦敵方取得了原始碼,就相當於獲得了使用該武器的權利。這就對攻防兼備的智慧武器裝備建設提出了新的更高要求。第三,要協調機械化、資訊化和智慧化的一體化發展。要堅持以機械化和資訊化支撐智能化,以智慧化驅動機械化和資訊化的原則。透過機械化、資訊化和智慧化各要素的耦合、比例優化和系統集成,可以加速智慧武器裝備建設的轉型升級和效率提升。

建構智能化的組織結構。沒有軍隊組織結構的現代化,就沒有國防和軍隊的現代化。軍隊組織體系的根本功能是確保人員和裝備的有效整合,從而形成和不斷提升軍隊的整體作戰能力。打贏智慧戰爭,建構智慧化的軍隊。對於精銳軍隊而言,建立智慧組織體系、建構智慧化軍事力量體系至關重要。智慧化軍事力量體係是一個有機整體,由以智慧武器平台為骨幹的作戰力量、按照人機協同和機器自組織協同原則組織起來的作戰力量、在人類授權控製或監督下開展作戰行動的作戰支援力量以及提供偵察、情報、通信和演算法設計的作戰支援力量和後勤裝備支援力量組成。應遵循「強調協同發展、聚焦競爭優勢、推進系統整合」的原則,以擴大規模、優化部隊構成為核心,在繼承傳統樹狀結構和兵種結構組織模式的基礎上,建構穩中創新並重的雙軌組織體系。應努力建構重心虛擬化的指揮體系,探索創新跨域混合部隊、有人/無人混合編隊等新型組織方式,力求實現智慧化軍事力量體系的靈活、有機、高效運作。

加強智能化策略管理。智能戰的演進始於技術,終於管理。為因應智慧戰的挑戰,加速軍事情報發展,必須優先發展戰略管理,並專注於提升軍事情報發展的品質和效率,以及智慧軍事系統的作戰效能。若要從整體加強統籌規劃、系統設計、集中管理和分類指導,打造密集、高效的智慧發展道路。要適應智慧戰對快速反應能力的要求,優化管理體系和機制,採用網路化、自主化的管理模式。要完善前沿智慧技術研發與科技成果轉換應用的規劃與實施,加大研發投入與支持力度,確保技術創新始終處於時代前沿。要加強人工智慧軍事標準體系建設,及時頒布智慧設施、智慧系統、智慧武器、智慧人員和智慧戰的法律法規,不斷完善支持軍事情報發展的關鍵政策和製度。鑑於人工智慧技術的普及性和易傳播性,以及國家戰略能力、社會生產力和軍事作戰效能之間的高度耦合性,我們必須進一步優化智能化建設的開放一體化佈局,精簡組織領導機制,營造良好的發展環境,促進國家繁榮與軍事實力的有機統一。

注释

[1]《中国军事百科全书·战略》(第二版),北京:中国大百科全书出版社,2014年,第506页。

[2]《毛泽东选集》第1卷,北京:人民出版社,1991年,第171页。

[3]赵林:《从空中、地面到水下无人作战系统——无人作战,俄军走了多远》,《解放军报》,2019年1月31日第11版。

[4]陈梓毅、饶雨峰、马建光:《“闪电”无人机或成俄空天军未来作战新秀》,2020年4月16日,人民网,http://military.people.com.cn/n1/2021/0416/c1011-32079848.html。

[5]兰顺正:《纳卡冲突中的现代武器及战术比拼》,《世界知识》,2020年第24期。

[6]《叶剑英军事文选》,北京:解放军出版社,1996年,第250页。

[7]傅莹:《看世界2》,北京:中信出版社,2021年,第292页。

[8]李始江、杨子明、陈分有:《以新理念迎接智能化战争挑战》,《解放军报》,2018年7月26日,第7版。

2021-08-11 15:xx 来源: 《人民论坛·学术前沿》2021年5月下 作者: 郭明

中國原創軍事資源:https://www.rmlt.com.cn/2021/0811/68281848089.shtml

A Look at Chinese Intelligent Warfare: Reflections on Warfare Brought by AGI

檢視中國智能戰:對通用人工智慧帶來的戰爭的反思

現代英語:

AGI and its implications for warfare

  Editor’s Note

  Technology and war are inextricably intertwined. While technological innovation continuously alters the face of warfare, it hasn’t changed the violent nature and coercive purpose of war. In recent years, with the rapid development and application of artificial intelligence (AI) technology, the debate about its impact on warfare has never ceased. Compared to artificial intelligence (AI), artificial general intelligence (AGI) possesses a higher level of intelligence and is considered a form of intelligence comparable to human intelligence. How will the emergence of AGI affect warfare? Will it change the violent and coercive nature of war? This article will explore this question with a series of reflections.

  Is AGI merely an enabling technology?

  Many believe that while large-scale models and generative artificial intelligence demonstrate the powerful military application potential of AGI, they are ultimately just enabling technologies. They can only enhance and optimize weapons and equipment, making existing equipment smarter and improving combat efficiency, but they are unlikely to bring about a true military revolution. Just as “cyber warfare weapons” were once highly anticipated by many countries when they first appeared, but now it seems that these expectations were somewhat exaggerated.

  The disruptive nature of AGI is entirely different. It brings profound changes to the battlefield with reaction speeds and knowledge far exceeding those of humans. More importantly, it fosters rapid technological advancement, resulting in massive disruptive outcomes. On the future battlefield, autonomous weapons will be endowed with advanced intelligence by AGI, their performance will be universally enhanced, and they will become “strong in offense and difficult in defense” due to their speed and swarm advantages. At that time, the highly intelligent autonomous weapons predicted by some scientists will become a reality, with AGI playing a crucial role. Currently, the military applications of artificial intelligence include autonomous weapons, intelligence analysis, intelligent decision-making, intelligent training, and intelligent support, applications that are difficult to summarize simply as “empowerment.” Moreover, AGI develops rapidly, with short iteration cycles, and is constantly evolving. Future warfare requires prioritizing AGI and paying close attention to its potential changes.

  Will AGI make wars disappear?

  Historian Jeffrey Blainey argues that “wars always occur because of misjudgments of each other’s strength or will,” and that with the application of AGI in the military field, misjudgments will become increasingly rare. Therefore, some scholars speculate that wars will decrease or even disappear. Indeed, relying on AGI can significantly reduce misjudgments, but even so, it’s impossible to eliminate all uncertainty, as uncertainty is a defining characteristic of war. Moreover, not all wars arise from misjudgments, and the inherent unpredictability and unexplainability of AGI, along with the lack of experience in using AGI, will introduce new uncertainties, plunging people into an even deeper “fog of artificial intelligence.”

  AGI algorithms also present rational challenges. Some scholars believe that AGI’s ability to mine and accurately predict crucial intelligence has a dual impact. In practice, AGI does indeed make fewer mistakes than humans, improving intelligence accuracy and reducing misjudgments; however, it can sometimes lead to overconfidence and encourage reckless actions. The offensive advantage brought by AGI results in the optimal defensive strategy being “preemptive strike,” disrupting the balance between offense and defense, triggering a new security dilemma, and ultimately increasing the risk of war.

  AGI (Automatic Generative Technology) is highly versatile and easily integrated into weaponry. Unlike nuclear, biological, and chemical technologies, it has a low barrier to entry and is particularly prone to proliferation. Due to technological gaps between countries, immature AGI weapons could potentially be deployed on the battlefield, posing significant risks. For example, the application of drones in recent local wars has spurred many small and medium-sized countries to begin large-scale drone procurement. The low-cost equipment and technologies offered by AGI could very well trigger a new arms race.

  Will AGI be the ultimate deterrent?

  Deterrence is maintaining a capability to intimidate an adversary from taking actions that exceed one’s own interests. Ultimate deterrence is when it becomes so powerful as to be unusable, such as nuclear deterrence that ensures mutual destruction. But ultimately, however, it is “human nature” that determines the outcome—a crucial element that will never be absent from war.

  Without the considerations of “humanity,” will AGI become a formidable deterrent? AGI is fast but lacks empathy; its execution is resolute, severely compressing the space for strategic maneuvering. AGI is a key factor on the future battlefield, but due to a lack of practical experience, accurate assessment is difficult, easily leading to overestimation of the opponent’s capabilities. Furthermore, regarding autonomous weapon control, whether to have humans on-site, providing full supervision, or to have humans off-site, completely relinquishing control, undoubtedly requires careful consideration. Can the firing control of intelligent weapons be handed over to AGI? If not, the deterrent effect will be greatly diminished; if so, can human life and death truly be decided by machines unrelated to them? Research at Cornell University shows that large-scale wargaming models frequently escalate wars with a “sudden nuclear attack,” even when in a neutral state.

  Perhaps one day in the future, AGI will surpass human capabilities, rendering us unable to regulate and control it. Jeffrey Hinton, who coined the term “deep learning,” says he has never seen a case where something with a higher level of intelligence was controlled by something with a lower level of intelligence. Some research teams believe that humans may not be able to supervise super-intelligent AI. Faced with powerful AGI in the future, will we truly be able to control them? This is a question worth pondering.

  Will AGI change the nature of warfare?

  With the widespread use of AGI, will battlefields filled with violence and bloodshed disappear? Some argue that AI warfare far exceeds human capabilities, potentially pushing humanity out of the fray. When AI transforms warfare into a conflict entirely between autonomous robots, will it still be a “violent and bloody war”? When adversaries with unequal capabilities clash, the weaker party may not even have a chance to act. Can war be ended before it even begins through war games? Will AGI fundamentally alter the nature of warfare? Is a “war” without human intervention still a war?

  Yuval Noah Harari, author of *Sapiens: A Brief History of Humankind*, states that all human behavior is mediated by language and influences our history. The Large Language Model (AGI) is a typical example of AGI, differing from other inventions in its ability to create entirely new ideas and cultures. “Artificial intelligence that can tell stories will change the course of human history.” When AGI gains control over language, the entire system of civilization built by humanity could be overturned, without even requiring AGI to develop consciousness. Like Plato’s Allegory of the Cave, will humanity worship AGI as a new “god”?

  AGI (Artificial Intelligence Generative Devices) establishes a close relationship with humans through human language and alters their perceptions, making them difficult to discern and identify. This poses a risk that the will to fight could be controlled by those with ulterior motives. Harari stated that computers don’t need to deploy killer robots; if necessary, they will allow humans to pull the trigger themselves. AGI precisely manufactures and refines situational information, controlling battlefield perception through deepfakes. This can be achieved through drones faking battlefield situations and pre-war propaganda, as evidenced in recent local wars. The cost of war would thus decrease significantly, leading to new forms of warfare. Would small and weak nations still have a chance? Can the will to fight be changed without bloodshed? Is “force” no longer a necessary condition for the definition of war?

  The form of war may change, but its essence remains. Regardless of how “bloody” war is, it will still force the enemy to submit to its will and inflict significant “collateral damage,” only the methods of confrontation may be entirely different. The essence of war lies in the deep-seated “human nature,” which is determined by culture, history, behavior, and values. It is difficult to completely replicate using any artificial intelligence technology. Therefore, we cannot outsource all ethical, political, and decision-making issues to artificial intelligence, nor can we expect it to automatically generate “human nature.” Artificial intelligence technology may be abused due to impulsive passions, so it must be under human control. Since artificial intelligence is trained by humans, it will never be without bias, so it cannot be completely free from human supervision. In the future, artificial intelligence can become a creative tool or partner, enhancing “tactical imagination,” but it must be “aligned” with human values. These issues require continuous reflection and understanding in practice.

  Will AGI revolutionize war theory?

  Most academic knowledge is expressed in natural language. A comprehensive language model, encompassing the vast body of human writing, can connect seemingly incompatible linguistic works with scientific research. For example, some have input classical works, and even works from philosophy, history, political science, and economics, into a comprehensive language model for analysis and reconstruction. They’ve found that it can comprehensively analyze all scholars’ viewpoints and also offer its own “insights,” without sacrificing originality. Therefore, some have suggested that AGI could also be used to re-analyze and interpret war theory, stimulating human innovation and driving significant evolution and reconstruction of war theory and its systems. Perhaps theoretically, this could indeed lead to some improvements and developments, but war science is not only theoretical but also practical, and practicality and realism are fundamentally beyond AGI’s capabilities. Can classical war theory truly be reinterpreted? If so, what is the significance of the theory?

  In short, AGI’s disruptive impact on the concept of warfare will far exceed “mechanization” and “informatization.” We must embrace AGI boldly, yet remain cautious. Understanding the concept prevents ignorance; in-depth research prevents falling behind; and strengthened oversight prevents oversight. How to cooperate with AGI and guard against adversaries’ AGI technological surprise attacks is our primary concern for the future. (Rong Ming, Hu Xiaofeng)

 Postscript

  Think ahead and envision the future with an open mind

  Futurist Roy Amara famously asserted that people tend to overestimate the short-term benefits of a technology while underestimating its long-term impact, a principle known as “Amara’s Law.” This law emphasizes the non-linear nature of technological development, meaning that the actual impact of technology often only becomes fully apparent over a longer timescale. It reflects the pulse and trends of technological development, and embodies humanity’s acceptance and aspirations towards technology.

  Currently, in the development of artificial intelligence from weak AI to strong AI, and from specialized AI to general AI, every time people think they have completed 90% of the process, looking back, they may have only completed less than 10%. The driving role of technological revolution in military revolution is becoming increasingly prominent, especially as high-tech, represented by AI, penetrates the military field in multiple ways, profoundly changing the mechanisms, elements, and methods of winning wars.

  In the foreseeable future, intelligent technologies such as AGI will continue to iterate, and the cross-evolution of intelligent technologies and their empowering applications in the military field will become increasingly diversified, perhaps even transcending the boundaries of humanity’s current understanding of warfare. The development of technology is unstoppable, and no one can halt it. Whoever can use keen insight and a clear mind to see the trends and future of technology, to recognize its potential and power, and to penetrate the “fog of war,” is more likely to seize the initiative and gain the upper hand.

  This reminds us that exploring the future forms of warfare requires a broader perspective and more nuanced thinking to get closer to the underestimated reality. Where is AGI headed? Where is intelligent warfare headed? These questions test human wisdom. (Ye Chaoyang)

現代國語:

通用人工智慧及其對戰爭的影響

編按

科技與戰爭密不可分。科技創新不斷改變戰爭的面貌,卻並未改變戰爭的暴力本質與脅迫目的。近年來,隨著人工智慧(AI)技術的快速發展和應用,關於其對戰爭影響的爭論從未停止。與人工智慧(AI)相比,通用人工智慧(AGI)擁有更高層次的智能,被認為是一種可與人類智能相媲美的智能形式。 AGI的出現將如何影響戰爭?它會改變戰爭的暴力和脅迫本質嗎?本文將透過一系列思考來探討這個問題。

AGI只是一種賦能技術嗎?

許多人認為,儘管大規模模型和生成式人工智慧展現了AGI強大的軍事應用潛力,但它們最終只是賦能技術。它們只能增強和優化武器裝備,使現有裝備更加智能,提高作戰效率,但不太可能帶來真正的軍事革命。正如「網路戰武器」最初出現時曾被許多國家寄予厚望,但現在看來,這些期望有些過高。

通用人工智慧(AGI)的顛覆性本質則截然不同。它以遠超人類的反應速度和知識水平,為戰場帶來深刻變化。更重要的是,它促進了技術的快速發展,從而產生巨大的顛覆性影響。在未來的戰場上,AGI將賦予自主武器先進的智能,使其性能全面提升,並憑藉其速度和集群優勢,成為「攻守難攻」的武器。屆時,一些科學家預測的高智慧自主武器將成為現實,而AGI將在其中扮演至關重要的角色。目前,人工智慧的軍事應用包括自主武器、情報分析、智慧決策、智慧訓練和智慧支援等,這些應用很難簡單地用「賦能」來概括。此外,通用人工智慧(AGI)發展迅速,迭代周期短,並且不斷演進。未來的戰爭需要優先考慮AGI,並密切關注其潛在的變化。

AGI會讓戰爭消失嗎?

歷史學家杰弗裡·布萊尼認為,“戰爭總是由於對彼此實力或意志的誤判而發生的”,而隨著AGI在軍事領域的應用,誤判將變得越來越少見。因此,一些學者推測戰爭將會減少甚至消失。的確,依賴AGI可以顯著減少誤判,但即便如此,也無法完全消除不確定性,因為不確定性是戰爭的本質特徵。此外,並非所有戰爭都源自於誤判,AGI固有的不可預測性和不可解釋性,以及缺乏使用AGI的經驗,將會帶來新的不確定性,使人們陷入更深的「人工智慧迷霧」。

通用人工智慧(AGI)演算法也帶來了理性方面的挑戰。一些學者認為,AGI挖掘和準確預測關鍵情報的能力具有雙重影響力。在實踐中,AGI確實比人類犯錯更少,提高了情報準確性並減少了誤判;然而,它有時會導致過度自信,並助長魯莽行動。 AGI帶來的進攻優勢使得最佳防禦策略成為“先發製人”,打破了攻防平衡,引發了新的安全困境,並最終增加了戰爭風險。

AGI(自動生成技術)用途廣泛,易於整合到武器系統中。與核武、生物武器和化學武器不同,AGI的進入門檻低,且極易擴散。由於各國之間存在技術差距,不成熟的AGI武器有可能部署到戰場上,造成重大風險。例如,無人機在近期局部戰爭中的應用促使許多中小國家開始大規模採購無人機。通用人工智慧(AGI)提供的低成本裝備和技術很可能引發一場新的軍備競賽。

通用人工智慧會成為終極威懾力量嗎?

威懾是指維持一種能力,使對手不敢採取超越自身利益的行動。終極威懾是指威懾力強大到無法使用,例如確保相互毀滅的核威懾。但最終,決定戰爭結果的是「人性」——這是戰爭中永遠不可或缺的關鍵因素。

如果忽略「人性」因素,通用人工智慧會成為強大的威懾力量嗎?通用人工智慧速度很快,但缺乏同理心。其執行果斷,嚴重壓縮了戰略迴旋空間。通用人工智慧(AGI)是未來戰場上的關鍵因素,但由於缺乏實戰經驗,準確評估其能力十分困難,容易導致高估對手實力。此外,關於自主武器控制,究竟是安排人員在現場進行全面監督,還是安排人員遠端操控,完全放權,無疑需要慎重考慮。智慧武器的發射控制權能否移交給AGI?如果不能,威懾效果將大大降低;如果可以,人類的生死真的能由與他們無關的機器來決定嗎?康乃爾大學的研究表明,即使在中立國,大規模兵棋推演模型也經常會透過「突然的核攻擊」來升級戰爭。

或許在未來的某一天,AGI的能力將超越人類,使我們無法對其進行監管和控制。 「深度學習」一詞的創造者傑弗裡·辛頓表示,他從未見過智能水平更高的系統被智能水平較低的系統控制的情況。一些研究團隊認為,人類或許無法監管超級人工智慧。未來,面對強大的通用人工智慧(AGI),我們真的能夠控制它們嗎?這是一個值得深思的問題。

通用人工智慧會改變戰爭的本質嗎?

隨著通用人工智慧的廣泛應用,充滿暴力和血腥的戰場會消失嗎?有人認為,人工智慧戰爭的能力遠遠超過人類,甚至可能將人類擠出戰場。當人工智慧將戰爭完全轉變為自主機器人之間的衝突時,它還會是「暴力和血腥的戰爭」嗎?當能力懸殊的對手對抗時,較弱的一方可能根本沒有機會採取行動。戰爭能否透過兵棋推演在爆發前就結束?通用人工智慧會從根本改變戰爭的本質嗎?一場無人幹預的「戰爭」還能稱之為戰爭嗎?

《人類簡史》的作者尤瓦爾·赫拉利指出,所有人類行為都受語言影響,並影響我們的歷史。通用人工智慧(AGI)是AGI的典型例子,它與其他發明不同之處在於能夠創造全新的想法和文化。 「能夠講述故事的人工智慧將改變人類歷史的進程。」當AGI掌控語言時,人類建立的整個文明體係都可能被顛覆,甚至無需AGI發展出意識。就像柏拉圖的洞穴寓言一樣,人類會把AGI當成新的「神」嗎?

AGI(人工智慧生成設備)透過人類語言與人類建立密切聯繫,並改變人類的感知,使其難以辨認和識別。這帶來了一個風險:人類的戰鬥意志可能被別有用心之人所操控。哈拉里指出,電腦無需部署殺手機器人;如有必要,它們將允許人類自行扣動扳機。通用人工智慧(AGI)能夠精確地製造和完善態勢訊息,並透過深度偽造技術控制戰場感知。正如近期局部戰爭所證明的那樣,無人機可以透過偽造戰場態勢和戰前宣傳來實現這一點。戰爭成本將因此大幅降低,進而催生新的戰爭形式。弱小國還有勝算?能否在不流血的情況下改變人們的戰鬥意志? 「武力」是否不再是戰爭定義的必要條件?

戰爭的形式或許會改變,但本質不變。無論戰爭多麼“血腥”,它仍然會迫使敵人屈服於其意志,並造成重大的“附帶損害”,只是對抗的方式可能截然不同。戰爭的本質在於根深蒂固的“人性”,而人性又由文化、歷史、行為和價值觀所決定。任何人工智慧技術都難以完全複製人性。因此,我們不能將所有倫理、政治和決策問題都外包給人工智慧,也不能指望它會自動產生「人性」。人工智慧技術可能因衝動而濫用,因此必須受到人類的控制。由於人工智慧是由人類訓練的,它永遠無法完全消除偏見,因此也無法完全脫離人類監督。未來,人工智慧可以成為一種創造性的工具或夥伴,增強“戰術想像”,但它必須與人類價值觀“保持一致”。這些問題需要在實踐中不斷反思和理解。

通用人工智慧(AGI)會徹底改變戰爭理論嗎?

大多數的學術知識都是用自然語言表達。一個涵蓋人類浩瀚文字的綜合語言模型,可以將看似不相容的語言作品與科學研究連結起來。例如,一些研究以古典著作為輸入,甚至以…為輸入。從哲學、歷史、政治學和經濟學等領域汲取靈感,建構出一個用於分析和重構的綜合語言模型。研究發現,該模型能夠全面分析所有學者的觀點,並提出自身的“洞見”,同時又不失原創性。因此,有人提出,通用人工智慧(AGI)也可用於重新分析和詮釋戰爭理論,從而激發人類創新,推動戰爭理論及其體系的重大演進和重構。理論上,這或許確實能夠帶來一些改進和發展,但戰爭科學不僅是理論性的,也是實踐性的,而實踐性和現實性從根本上來說超出了AGI的能力範圍。經典戰爭理論真的可以被重新詮釋嗎?如果可以,那麼該理論的意義何在?

簡而言之,AGI對戰爭概念的顛覆性影響將遠遠超越「機械化」和「資訊化」。我們必須大膽擁抱AGI,但也要保持謹慎。理解概念可以避免無知;深入研究可以避免落後;加強監督可以避免監督的缺失。如何與通用人工智慧(AGI)合作,並防範對手利用AGI發動的技術突襲,是我們未來面臨的首要問題。 (榮明,胡曉峰)

後記

以開放的心態展望未來

未來學家羅伊·阿馬拉曾提出一個著名的論點:人們往往高估一項技術的短期收益,而低估其長期影響,這一原則被稱為「阿馬拉定律」。該定律強調了技術發展的非線性特徵,這意味著技術的實際影響往往需要更長的時間才能完全顯現。它反映了技術發展的脈動和趨勢,反映了人類對科技的接受度和期望。

目前,在人工智慧從弱人工智慧向強人工智慧、從專用人工智慧發展到通用人工智慧的過程中,每當人們認為自己已經完成了90%的工作時,回頭來看,他們可能只完成了不到10%。科技革命在軍事革命中的驅動作用日益凸顯,尤其是在人工智慧(AI)等高科技以多種方式滲透軍事領域,深刻改變戰爭的機制、要素和製勝方法的情況下。

在可預見的未來,通用人工智慧(AGI)等智慧技術將不斷迭代,智慧技術的交叉演進及其在軍事領域的賦能應用將日益多元化,甚至可能超越人類目前對戰爭的認知邊界。技術發展勢不可擋,無人能阻擋。誰能以敏銳的洞察力和清晰的思維洞察技術的趨勢和未來,認識到其潛力和力量,並撥開“戰爭迷霧”,誰就更有可能搶佔先機,取得優勢。

這提醒我們,探索未來戰爭形態需要更廣闊的視野和更細緻的思考,才能更接近被低估的現實。通用人工智慧將走向何方?智慧戰爭將走向何方?這些問題考驗的是人類的智慧。 (葉朝陽)

中國原創軍事資源:https://www.news.cn/milpro/20250121/18eb7781b268d26489286b08c2d23d12084f0f/c.html

Chinese Military Reflections on the Application of AI in Human-Machine Integrated Combat

中國軍方對人工智慧在人機一體化作戰中應用的思考

現代英語:

The principle of training troops to fight future battles is a fundamental tenet of military strategy throughout history. An army that does not study and predict warfare is a foolish army, destined to fail when war strikes.

To date, there have been four major military transformations in the world: the first was the shift from primarily using wooden and stone weapons to primarily using metal weapons; the second was the shift from primarily using cold weapons (metal weapons) to primarily using firearms (gunpowder weapons); the third was the shift from firearms to mechanized weapons; and the fourth occurred after the 1990 Gulf War, when warfare shifted from primarily using mechanized weapons to primarily using precision-guided weapons, driving the transformation of military development from mechanization to informatization.

The fourth military revolution, also known as the new military revolution by academics, involves the world’s major military powers engaging in comprehensive competition in areas such as information technology, network technology, precision-guided technology, aerospace technology, new energy technology, biotechnology, and stealth technology. This competition has now culminated in the pursuit of advantages in big data, cloud computing, and intelligent robots, aiming to create real-life versions of “Iron Man,” “Batman,” and “Terminator.” The revolution is actively promoting the transformation of military construction from informatization and networking to intelligentization and unmanned aerial vehicle (UAV) deployment. The military is developing towards a lean, small, efficient, intelligent, and integrated “human-machine (robot/UAV)” model, seeking to enable robot soldiers, UAVs, and human soldiers to fight together.

According to statistics, the militaries of more than 60 countries worldwide have already equipped themselves with military robots, encompassing over 150 different types. It is projected that by 2040, half of the world’s major military powers may be comprised of robots. In addition to the US, Russia, the UK, France, Japan, Israel, Turkey, and Iran, which have already launched their own robot warriors and drones, other countries are also investing in the research and development of unmanned weapons, which will inevitably give rise to unmanned combat forces.

The term “unmanned combat force” is a general term for combat robots or battlefield killing robot systems. With the development of various information-based, precision-based, and data-driven weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of “human and machine” confrontation has become the key to defeating the enemy. In the future, the battlefield space forces will highlight the development trend of three-dimensional unmanned operation and human-machine integration across land, sea, and air.

In combat command and control, AI can automatically and rapidly generate combat plans. War is fought, but it is also designed. With the emergence of various information-based, precision, and intelligent weapons and equipment, and the widespread application of artificial intelligence, big data, and 5G networks, the future battlefield will essentially achieve integrated “human-machine” collaborative combat, inevitably revolutionizing traditional combat methods. Intelligent platforms, leveraging the advantages of big data, will become the behind-the-scenes directors of pre-designed battlefields, providing more accurate predictions and technical parameters, making future battlefield design more precise and efficient. Using AI technology, by inputting elements such as the deployment of enemy and friendly forces, equipment performance, personnel numbers, and battlefield environment into the combat command information system template, AI-based combat plans can be quickly generated for commanders’ operational decision-making. If commanders feel something is amiss and want to fight a battle they are confident of winning, they can also use intelligent simulated combat laboratories, employing artificial intelligence, big data, 5G networks, and simulation equipment and materials, to simulate the technical performance of enemy and friendly weapons and equipment, battlefield conditions, personnel quality, and combat actions, to test and refine the scientific and rational nature of the war design scheme, striving to find the optimal combat plan. 5G’s massive machine-to-machine communication capabilities can be combined with artificial intelligence to accelerate the comprehensive analysis and systematic research of combat effectiveness elements and combat processes using new intelligent algorithms, and to quickly derive combat capability assessment indices. This provides technical means for the large-scale use of unmanned weapons.

AI-generated combat plans differ from traditional automated combat command systems, though they share some similarities, they also have fundamental differences. In a sense, both are automated systems, but combat command automation, by inputting various combat elements, aims to output combat command decisions—these are essentially fixed. AI-generated combat plans, however, are different. The input combat elements can be fixed or variable, but the output is invariably unpredictable, almost entirely unpredictable. For example, even with the same total number of elements and parameters, different input orders will generate different results, potentially producing unexpected outcomes—this is the essence of artificial intelligence.

In terms of surprise in warfare, the coordinated operations of drones or manned aircraft have ushered in a new era. Night warfare, whether in the past or modern, has been a more effective way to achieve tactical and operational surprise. Today, night warfare is even more favored by informationized and intelligent armies. At night and in the early morning, people are in a state of sleep or semi-awakeness, and are relatively tired or complacent. Therefore, launching a war at this time makes it easier to achieve surprise. In the Kosovo War, the US launched its airstrikes at 8 PM. In the Afghan War, the US launched its airstrikes late at night. In the Iraq War, after launching its airstrikes at 5:36 AM, the US extensively used various means, including space reconnaissance satellites, aerial reconnaissance aircraft, and ground reconnaissance, to build a comprehensive information reconnaissance network system covering the air, space, and ground, firmly controlling “information superiority” and ensuring the smooth conduct of air strikes and nighttime ground military operations. With the development of night vision equipment and the increasing sophistication of night warfare methods, night and early morning have become common means of achieving surprise in air strikes. Seizing the favorable opportunities of darkness and early morning to launch surprise air strikes is the spark that will ignite future wars. Before the outbreak of future wars, unmanned reconnaissance aircraft will cooperate with manned high-altitude reconnaissance aircraft and space satellites to conduct reconnaissance of enemy forward and deep-space targets. In particular, once a drone detects a target, it can quickly transmit image information such as the target’s location and size to its own command center, drone operator, or manned aircraft pilot for decision-making reference and to issue long-range strike orders. During the Gulf War, multinational forces deployed drones to conduct day and night reconnaissance over Iraqi front-line positions, providing real-time images and guiding ground troops to destroy Iraqi positions. During the conflict between Armenia and Azerbaijan last year, Armenian media released a video showing the Armenian army using the Seahawk-10 drone to guide ground artillery attacks on Azerbaijani infantry units. In the video, the Armenian army’s Seahawk-10 drone transmitted information about a group of soldiers advancing in skirmish lines detected at high altitude to the drone operator. After several zoom-in confirmations, the drone operator used the drone to collect data on the target and transmit it to the artillery at the rear. After receiving the target coordinates, the Armenian artillery first conducted multiple single-shot test firings. The Seahawk-10 UAV then conducted real-time assessments of the test firing results in the air and promptly adjusted the target coordinate parameters to transmit to the Armenian artillery for concentrated and precise firing.

In future wars, drones are poised to replace conventional fighter jets, becoming one of the mainstays of aerial warfare. Their ability to execute precise, real-time strikes will revolutionize the traditional manned aircraft-based surprise attack methods employed in the dark or early morning. Currently, the UK is developing a new high-tech unmanned stealth fighter with stealth capabilities. It can test and drop munitions over multiple targets and defend itself against attacks from other manned and unmanned aircraft. Even without ground command, it can communicate with command centers via satellite and operate autonomously, executing precision strikes against long-range targets. Thus, drones, as a rapidly emerging force, have evolved from “reconnaissance and support” to “offensive protagonists.” They not only effectively supplement satellite reconnaissance but also perform diverse combat missions such as long-range reconnaissance, border patrol, target identification, electromagnetic interference, supply delivery, precision strikes, autonomous strikes, integrated reconnaissance and strike operations, and damage assessment. They are destined to become the vanguard in future wars.

On the land battlefield, unmanned tanks, unmanned armored vehicles, and combat robots are charging to the front lines, forming mixed formations with ground soldiers to fight collaboratively. To execute battlefield missions more efficiently and reduce casualties, future battlefields may see a large number of unmanned vehicles such as tanks, armored vehicles, and logistics transport vehicles. Leveraging the high speed, low latency, and interconnectivity of 5G networks, these vehicles can autonomously traverse various complex terrains and obstacles without human intervention, making instantaneous decisions to effectively ensure safety and reliability. Land robots can not only perform offensive and defensive combat missions but also deliver ammunition, medical supplies, and food, conduct patrols, and carry out reconnaissance and surveillance. Unmanned tanks allow soldiers to remotely control them, automatically load ammunition, and autonomously conduct indirect precision strikes. In 2019, Russia tested a robotic system called “Wooden Boat” to unify the command of several military robots. The Russian military and robotics research institutions also conducted collaborative exercises with newly developed combat robots, achieving good results and summarizing training methods in practice. According to Russian media reports, Russia is preparing to establish a combat robot force, a completely new type of military unit. These robots can achieve maximum automation, requiring minimal human intervention and essentially completing battlefield combat missions independently. Russian military-industrial complexes will begin developing the “Comrade” and “Assault” robot systems, composed of medium and heavy robots respectively, starting in 2020. They are currently working to improve the performance of some robots to better enable them to perform tasks in urban and coastal environments. In August 2015, on the Syrian battlefield, in addition to deploying traditional combat forces, the Russian military deployed for the first time a fully-fledged robot combat company, primarily composed of unmanned combat platforms, to conduct positional assault operations. Employing a new combat model of mixed manned and unmanned formations, they captured a high ground that Russian soldiers would find difficult to conquer in just 20 minutes, achieving a victory with zero casualties and 77 enemy kills. On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorist groups, publicly deploying armed unmanned combat vehicles equipped with machine guns as the vanguard for the first time. Following large-scale testing of combat robots at an event called “Autonomous Warrior 2018,” the British Army has unified drones, unmanned vehicles, and combat personnel as a common practice for world-class militaries in the coming decades. The US Army, having formally established unmanned platoons, plans to form unmanned combat brigades and has already developed a standardized set of hardware and software. Once installed on vehicles, these can be remotely controlled, even semi-autonomously, automatically following predetermined routes or choosing the smoothest, most direct path, or driven by a human driver. One emerging project, the “optional manned tank,” aims to propel the Army into a new generation of joint operations. It may be capable of firing lasers, controlling drones, high-speed maneuvering, destroying enemy helicopters, penetrating enemy armored formations, and performing highly lethal robotic combat missions against enemy fire. The US Army has also made rapid progress in manned-unmanned combined arms operations. This means that robotic systems will increasingly operate with greater autonomy, while still being commanded and controlled by human decision-makers. Robotic vehicles deployed at the front lines can directly attack enemy mechanized formations at close range, launch weapons, perform high-risk surveillance missions, and deliver munitions when necessary. The U.S. Marine Corps tested its unmanned combat vehicle, nicknamed “Hunter Wolf,” in Arizona. Equipped with a 30mm M230LF “short-barreled” chain gun, the vehicle conducted a rapid-fire live-fire demonstration, achieving a perfect 6-for-6 hit. The “Hunter Wolf” is 2.3 meters long, 1.4 meters wide, and 1.17 meters high, weighing only 1.1 tons, yet capable of carrying a 450-kilogram modular combat payload. It uses a hybrid electric system, offering a maximum range of 100 kilometers without refueling, a top speed of 32 kilometers per hour, a maximum endurance of 72 hours, and the ability to climb slopes with a gradient of 30 degrees.

In the naval battlefield, unmanned ghost fleets, composed of unmanned surface and underwater vessels, are mixed with manned fleets and operate in coordinated formations. Since the 1990s, the increasing application of artificial intelligence and big data in the military field has ushered in a true golden age for unmanned surface and underwater vessels, giving rise to underwater robots (AUVs) and surface robots (ASVs). Various unmanned submarines and unmanned underwater vehicles perform a variety of tasks such as underwater search, reconnaissance, and mine clearance. Unmanned warships can travel thousands of miles and perform various maritime combat missions without onboard personnel. After the Iraq War in 2003, countries around the world saw the great potential and broad prospects of unmanned marine systems, which also reduce manpower and improve combat effectiveness, thus initiating a competition to build unmanned ghost fleets. Israel, as a country that places particular emphasis on reducing soldier casualties, took the lead in launching the development of modern “Protector” unmanned surface vessels, which are used to patrol the Lebanese coast and monitor Hezbollah activities and deployments. France and Russia already possess manned submersible research vessels capable of diving to depths of 6,000 meters. Japan has proposed a concept for the “Shinkai 12000,” a new manned submersible research vessel capable of diving to the world’s deepest point. Following its “Future Maritime Aviation Acceleration Day” event, the UK continues to develop a “plug-and-play” autonomous maritime platform development system. This system, once integrated into Royal Navy vessels, will simplify the acquisition and use of automation and unmanned technologies.

In the aerial battlefield, drones and manned aircraft are mixed in formation and cooperate in combat. In 2019, approximately 30 countries worldwide had developed over 50 types of drones, and more than 50 countries had deployed drones. The main types include: cryptographic drones, multi-functional drones, AI-powered drones, long-endurance drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, aerial photography drones, armed drones, and drone wingmen. With the widespread application of advanced technologies such as artificial intelligence and big data in the military field, the performance of equipment on drones is constantly improving. They will integrate multiple functions such as reconnaissance, fire correction, surveillance, battle result assessment, target identification, attack guidance, radio relay, and ground attack. They can conduct electronic jamming and deception at long distances from the enemy, and can also autonomously attack important ground targets when necessary. The future aerial battlefield will essentially realize unmanned or human-machine (drone) cooperative air strikes, or autonomous drone air strikes, which will inevitably revolutionize traditional air combat methods. In the future, fighter pilots will control unmanned attack aircraft or bombers from their cockpits to evade enemy air defense systems, while offensive forces will receive real-time intelligence data more quickly—all thanks to the rapid advancements in artificial intelligence technology. In future air strikes, swarms of drones will swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance. Once they lock onto targets, they will calmly launch missiles, possessing integrated reconnaissance and strike capabilities, autonomous attack, and human-machine collaborative strike capabilities. The Russian Aerospace Forces will equip themselves with heavy attack drones capable of maneuvering around enemy air defense systems without command, autonomously searching for and striking the most important targets, and then retreating safely back to base. This aircraft will be equipped with artificial intelligence components and can be remotely controlled by Su-57 fighter jets. According to RIA Novosti, the Russian S-70 “Hunter” heavy attack drone can attack targets according to instructions issued from Su-57 stealth fighter jets. Currently, the control station where the “Hunter” ground operators are located is equipped with joysticks, keyboards, and several multi-function LCD screens, similar to those used in manned fighter jets. These screens display various information transmitted from the “Hunter’s” onboard systems and sensors. In the near future, this ground-based remote control equipment may achieve full automation. The S-70 “Hunter” UAV, developed by the Sukhoi Design Bureau, is designed and manufactured based on a flying wing aerodynamic layout. According to public information, the “Hunter” is 14 meters long, has a wingspan of 19 meters, and a takeoff weight of 20 tons. The “Hunter” has a maximum speed of 1000 kilometers per hour and uses stealth materials to reduce its radar cross-section (detection signal). The “Hunter’s” first flight was on August 3, 2019. Reportedly, as part of the flight test program, the first prototype of the “Hunter” has begun weapons testing: including test flights with a functional simulator carrying air-to-air missiles, and bombing ground targets at the Ashuluk test range. Currently, the Novosibirsk Chkalov Aircraft Plant is building three more “Hunter” UAV prototypes. Russia has completed combat formation flights of its multi-role fifth-generation Su-57 fighter jets and heavy “Hunter” reconnaissance and combat drones. These drones will be organized into multiple air regiments, likely joining Su-57 air regiments. The plan is for 2-3 Su-57 squadrons to each have a drone squadron, operating together and employing new strategies and artificial intelligence elements. The UK also plans to enable a single manned aircraft to simultaneously command five drones, while France plans to achieve mixed formation operations of Rafale fighter jets and Neuron drones.

The use of drones for military reconnaissance began in the 1960s and has been widely applied in various wars. During the Vietnam War, the US military deployed over 3,000 drone sorties for reconnaissance, with over 1,000 failing to return safely and disappearing without a trace. In the Gulf War, multinational forces deployed drones day and night to reconnoiter Iraqi frontline positions, providing real-time imagery and guiding ground troops to destroy Iraqi positions. In the Bosnian War, the US military used Predator drones to monitor the withdrawal of Serbian heavy weapons from Sarajevo and provided a wealth of target data for aircraft participating in airstrikes. In the Kosovo War, the US military deployed over 100 drones for battlefield reconnaissance and surveillance, contributing significantly to the 78-day air campaign. In the US operations against the Taliban, the US military used unmanned attack aircraft, carrying weapons, for the first time in actual combat. On September 14, 2019, after an attack on a Saudi Aramco oil company’s “world’s largest oil processing facility” and oil field, the Houthi rebels in Yemen claimed responsibility, stating they used 10 drones to attack the facility. On January 3, 2020, Qassem Soleimani, commander of the Quds Force of Iran’s Islamic Revolutionary Guard Corps, was killed in a US drone strike on Baghdad International Airport in the early morning. In late 2020, drones played a significant role in the conflict between Armenia and Azerbaijan in Nagorno-Karabakh. Many military experts were particularly impressed by the videos released by the Azerbaijani Ministry of Defense showing TB-2 “Standard” drones, recently purchased from Turkey, and Harop suicide drones, purchased from Israel, attacking Armenian armored vehicles, artillery, cars, and even infantry positions. While the videos clearly show the targets destroyed by the drones, the visual impact of the attacks was undeniably striking. The localized conflicts that occurred in the Middle East and the South Caucasus last December demonstrate the growing role of drones. No wonder some military strategists have even predicted that the 21st century will be the “golden age” for drone development, with drones inevitably replacing manned fighter jets and becoming the “protagonists of the battlefield” in the 21st century.

It can be predicted that future wars will inevitably see unmanned land, sea and air weapons replacing soldiers in performing high-risk missions, and the future battlefield will inevitably be a joint operation combining “human” and “machine”.

Combat-driven training means building an army based on how battles are fought. Future military equipment, whether tanks, robots, or drones, will likely take many forms. Future military personnel must be proficient in intelligent technologies, big data applications, and cloud computing, and master the programming methods for controlling intelligent robots and drones. The future army will inevitably be a “human-machine” integrated force, establishing “human-machine” integrated platoons, companies, combat simulation centers, adversary units, special forces, intelligent command headquarters, and unmanned battalions, regiments, and brigades. At that time, military commanders may have one human and one robot as assistants or deputies. Platoon and company commanders will gradually be replaced by robots, and robots will gradually transition from human control to autonomous decision-making or mind control via human brain cells. As early as the 2014 Brazil World Cup, a paralyzed teenager wearing a “mechanical exoskeleton armor” kicked the first ball through mind control. Today, the technology of mind control over objects or experimental animals is becoming increasingly sophisticated.

In future warfare, it will become possible for a small number of soldiers to lead a massive swarm of unmanned robots, such as bees, ants, or schools of fish, to carry out combat missions. Through thought-based group control, soldiers’ mission comprehension and battlefield control capabilities can be greatly enhanced, enabling efficient identification of friend or foe, remote real-time command, intelligent mission planning, and efficient autonomous collaboration. The Russian Foundation for Future Research states that they have mastered brain-computer interface technology for controlling machines through thought. Previously, British researchers developed a brain-computer interface device for controlling a spacecraft simulator; when worn on a test subject, it successfully controlled the flight of a model spacecraft. However, there is still a long way to go before soldiers can effectively control complex unmanned combat swarms using this technology. Military camps may also see further changes. Troop management may involve one or a few military commanders leading teams of multiple or even dozens of intelligent robots with different tasks to complete tasks previously performed manually. Alternatively, military training may involve a single military commander in a command and control center, using video to control all intelligent robots in the training field for adversarial training, or remotely controlling robot commanders to issue new training instructions, adjust mission deployments, and change training grounds in real time.

現代國語:

000

訓練軍隊應對未來戰爭的原則是軍事戰略縱觀歷史的根本信條。一支不研究和預測戰爭的軍隊是愚蠢的軍隊,注定在戰爭爆發時失敗。 迄今為止,世界經歷了四次重大軍事變革:第一次是從主要使用木製和石製武器轉向主要使用金屬武器;第二次是從主要使用冷兵器(金屬武器)轉向主要使用火器(火藥武器);第三次是從火器轉向機械化武器;第四次發生在1990年海灣戰爭之後,戰爭從主要使用機械化武器化為使用機械化武器轉型,從主要使用機械化武器轉型為機械化武器化從主要使用機械化武器到了主要使用機械化武器轉型,從主要使用機械化武器化向武器化,從主要使用機械化武器轉變為從主要使用機械化武器轉型,從主要使用機械化武器轉向了主要使用機械化武器轉變為主要使用機械化武器。 第四次軍事革命,也被學術界稱為新軍事革命,指的是世界主要軍事強國在資訊科技、網路技術、精確導引技術、航空航天技術、新能源技術、生物技術和隱身技術等領域展開全面競爭。這場競爭如今已演變為對大數據、雲端運算和智慧機器人領域優勢的爭奪,旨在打造現實版的「鋼鐵人」、「蝙蝠俠」和「終結者」。這場革命正積極推動軍事建設從資訊化和網路化向智慧化和無人機(UAV)部署轉型。軍隊正朝著精簡、小型化、高效化、智慧化和一體化的「人機(機器人/無人機)」模式發展,力求實現機器人士兵、無人機和人類士兵的協同作戰。 根據統計,全球已有超過60個國家的軍隊裝備了軍用機器人,涵蓋150多種不同類型。預計到2040年,世界主要軍事強國中將有一半以上由機器人組成。除了美國、俄羅斯、英國、法國、日本、以色列、土耳其和伊朗等已推出各自機器人戰士和無人機的國家外,其他國家也在加大對無人武器研發的投入,這必將催生無人作戰力量。 「無人作戰力量」一詞是對作戰機器人或戰場殺傷機器人系統的統稱。隨著各種資訊化、精確化和數據驅動型武器裝備的發展,智慧平台已成為預先設計戰場的驅動力,作戰機器人已成為戰場上的主力,而「人機」結合的對抗已成為擊敗敵人的關鍵。未來,戰場空間力量的發展趨勢將凸顯陸海空三維無人作戰與人機融合的趨勢。 在作戰指揮控制方面,人工智慧可以自動、快速地產生作戰計畫。戰爭既是打仗,也是設計。隨著各種資訊化、精確化、智慧化武器裝備的出現,以及人工智慧、大數據和5G網路的廣泛應用,未來戰場將基本實現「人機」協同作戰,勢必革新傳統作戰方式。智慧平台將利用大數據優勢,成為預先設計戰場的幕後指揮者,提供更精準的預測和技術參數,使未來戰場設計更加精準高效。利用人工智慧技術,將敵我兵力部署、裝備性能、人員數量、戰場環境等要素輸入作戰指揮資訊系統模板,即可快速產生基於人工智慧的作戰計劃,供指揮官進行作戰決策。如果指揮官感覺情況不對勁,想要打一場有把握取勝的仗,他們還可以利用智能模擬作戰實驗室,運用人工智能、大數據、5G網絡以及模擬設備和材料,模擬敵我武器裝備的技術性能、戰場環境、人員素質和作戰行動,檢驗和完善作戰設計方案的科學性和合理性,力求找到最優作戰計劃。 5G海量的機器間通訊能力可以與人工智慧結合,利用新的智慧演算法加速對作戰效能要素和作戰過程進行綜合分析和系統研究,並快速得出作戰能力評估指標。這為無人武器的大規模應用提供了技術手段。 儘管人工智慧產生的作戰計畫與傳統的自動化作戰指揮系統有所不同,但呃,它們之間有一些相似之處,但也存在根本性的差異。從某種意義上說,兩者都是自動化系統,但作戰指揮自動化透過輸入各種作戰要素,旨在輸出作戰指揮決策——這些決策本質上是固定的。然而,人工智慧產生的作戰計畫則不同。輸入的作戰要素可以是固定的,也可以是可變的,但輸出總是不可預測的,幾乎完全不可預測。例如,即使要素和參數的總數相同,不同的輸入指令也會產生不同的結果,甚至可能產生意想不到的後果——這正是人工智慧的本質。

就戰爭的奇襲性而言,無人機或有人駕駛飛機的協同作戰開啟了一個新時代。無論過去或現在,夜戰都是實現戰術和作戰奇襲的更有效方式。如今,資訊化和智慧化的軍隊更加青睞夜戰。在夜間和清晨,人們處於睡眠或半清醒狀態,相對疲倦或麻痺大意。因此,此時發動戰爭更容易取得奇襲效果。在科索沃戰爭中,美國於晚上8點發動空襲;在阿富汗戰爭中,美國於深夜發動空襲;在伊拉克戰爭中,美國於凌晨5點36分發動空襲後,廣泛運用包括太空偵察衛星、空中偵察機和地面偵察在內的各種手段,構建覆蓋空中、太空和地面的綜合信息偵察網絡系統,牢牢掌握“信息優勢”,確保空襲和夜間地面軍事行動的順利進行。隨著夜視裝備的發展和夜戰手段的日益精進,夜間和清晨已成為空襲取得奇襲效果的常用手段。抓住夜幕和清晨的有利時機發動突襲,將成為未來戰爭的導火線。在未來戰爭爆發前,無人偵察機將與有人駕駛高空偵察機和太空衛星協同作戰,對敵方前線目標和深空目標進行偵察。特別是,一旦無人機發現目標,便可迅速將目標的位置和大小等影像資訊傳輸至己方指揮中心、無人機操作員或有人駕駛飛機飛行員,供其決策參考並下達遠端打擊指令。在海灣戰爭期間,多國部隊部署無人機對伊拉克前線陣地進行晝夜偵察,提供即時影像並引導地面部隊摧毀伊拉克陣地。去年亞美尼亞和阿塞拜疆衝突期間,亞美尼亞媒體發布了一段視頻,顯示亞美尼亞軍隊使用“海鷹-10”無人機引導地面砲兵對阿塞拜疆步兵部隊進行攻擊。影片中,亞美尼亞軍隊的「海鷹-10」無人機將高空偵測到的正在散兵線上推進的士兵群的訊息傳輸給了無人機操作員。經過多次放大確認後,無人機操作員利用無人機收集目標數據並將其傳輸至後方砲兵部隊。亞美尼亞砲兵部隊收到目標座標後,先進行了多次單發試射。隨後,海鷹-10無人機對試射結果進行空中即時評估,並迅速調整目標座標參數,將其傳輸至亞美尼亞砲兵部隊,以便進行集中精確射擊。

在未來的戰爭中,無人機有望取代傳統戰鬥機,成為空中作戰的主力之一。它們執行精確即時打擊的能力將徹底改變傳統的有人駕駛飛機在夜間或清晨進行的突襲方式。目前,英國正在研發一種新型高科技隱形無人戰鬥機,該戰鬥機具備隱身能力。它可以對多個目標進行彈藥測試和投放,並能防禦來自其他有人駕駛和無人駕駛飛機的攻擊。即使沒有地面指揮,它也能透過衛星與指揮中心通信,自主作戰,精確打擊遠程目標。因此,無人機作為一股迅速崛起的力量,已從「偵察支援」發展成為「進攻主力」。它們不僅能有效補充衛星偵察,還能執行多種作戰任務,例如遠程偵察、邊境巡邏、目標識別、電磁幹擾、物資補給、精確打擊、自主打擊、偵察打擊一體化作戰以及損毀評估。它們注定將成為未來戰爭的先鋒。

在陸戰場上,無人坦克、無人裝甲車和作戰機器人正衝鋒陷陣,與地面部隊組成混合編隊。為了更有效率地執行戰場任務並減少傷亡,未來的戰場上可能會出現大量無人車輛,例如坦克、裝甲車和後勤運輸車。借助5G網路的高速、低延遲和互聯互通特性,這些車輛無需人工幹預即可自主穿越各種複雜地形和障礙物,並能瞬間做出決策,從而有效確保安全性和可靠性。陸地機器人不僅可以執行進攻和防禦作戰任務,還可以運送彈藥、醫療用品和食品,進行巡邏以及執行偵察監視任務。無人坦克允許士兵遠端操控,自動裝填彈藥,並自主進行間接精確打擊。 2019年,俄羅斯測試了一套名為「木船」的機器人系統,用於統一指揮多個軍用機器人。俄羅斯軍事和機器人研究機構也利用新開發的作戰機器人進行了協同演習,取得了良好的成果,並總結了實踐中的訓練方法。根據俄羅斯媒體報道,俄羅斯正準備組建一支作戰機器人部隊,這是一個全新的軍事單位。這些機器人能夠實現高度自動化,只需極少的人工幹預,即可基本獨立完成戰場作戰任務。俄羅斯軍工企業將於2020年開始研發「同志」(Comrade)和「突擊」(Assault)機器人系統,分別由中型和重型機器人組成。目前,他們正致力於提升部分機器人的效能,使其更適應城市和沿海環境。 2015年8月,在敘利亞戰場上,除了部署傳統作戰部隊外,俄羅斯軍隊首次部署了一支完整的機器人作戰連,主要由無人作戰平台組成,用於執行陣地突擊作戰。他們採用了一種新型的有人與無人混合作戰模式,僅用20分鐘就奪取了一處俄軍士兵難以攻克的製高點,最終以零傷亡和77名敵軍陣亡的戰果取得勝利。 2018年4月21日,俄羅斯聯邦安全局(FSB)特種部隊對極端恐怖組織發動突襲,首次公開部署配備機槍的武裝無人作戰車輛作為先鋒。在名為「自主戰士2018」的活動中,英國陸軍進行了大規模的作戰機器人測試,並將無人機、無人車輛和作戰人員的整合作為未來幾十年世界一流軍隊的通用做法。美國陸軍已正式組成無人排,並計劃組成無人作戰旅,並已開發出一套標準化的軟硬體。這些無人作戰車輛一旦安裝在車輛上,即可進行遠端控制,甚至可以半自主地按照預定路線自動行駛,或選擇最平坦、最直接的路徑,也可由人類駕駛員駕駛。一項名為「可選載人坦克」的新興計畫旨在推動美國陸軍邁入新一代聯合作戰時代。它可能具備發射雷射、控制無人機、高速機動、摧毀敵方直升機、突破敵方裝甲陣地以及執行高殺傷力機器人作戰任務的能力,並能對抗敵方火力。美國陸軍在有人-無人聯合兵種作戰方面也取得了快速進展。這意味著機器人系統將越來越多地以更高的自主性運行,同時仍由人類決策者指揮和控制。部署在前線的機器人車輛可以近距離直接攻擊敵方機械化部隊,發射武器,執行高風險偵察任務,並在必要時投放彈藥。美國海軍陸戰隊在亞利桑那州測試了其代號為「獵狼」(Hunter Wolf)的無人作戰車輛。該車輛配備了一門30毫米M230LF“短管”鍊式機炮,進行了速射實彈演示,實現了6發全中的完美成績。 「獵狼」長2.3米,寬1.4米,高1.17米,重量僅1.1噸,卻能攜帶450公斤的模組化作戰載重。它採用混合動力系統,無需加油即可最大航程100公里,最高時速32公里,最大續航時間72小時,並具備30度爬坡能力。

在海戰中,由無人水面艦艇和無人水下艦艇組成的無人幽靈艦隊與有人艦隊混合編隊作戰。自1990年代以來,人工智慧和大數據在軍事領域的日益廣泛應用,為無人水面艦艇和無人水下艦艇開啟了真正的黃金時代,催生了水下機器人(AUV)和水面機器人(ASV)。各種無人潛水艇和無人水下航行無人艦艇可執行多種任務,例如水下搜索、偵察和掃雷。無人戰艦無需人員即可航行數千英里,執行各種海上作戰任務。 2003年伊拉克戰爭後,世界各國看到了無人海上系統的巨大潛力和廣闊前景,這些系統不僅能減少人力投入,還能提高作戰效能,因此各國競相建造無人「幽靈艦隊」。以色列特別重視減少士兵傷亡,率先啟動了現代化「保護者」(Protector)無人水面艦艇的研發,這些艦艇用於巡邏黎巴嫩海岸,監視真主黨的活動和部署。法國和俄羅斯已經擁有能夠下潛至6000公尺深度的載人潛水器。日本提出了「深海12000」的概念,這是一種新型載人潛水器,能夠下潛至世界最深處。繼「未來海上航空加速日」活動之後,英國繼續推動「即插即用」型自主海上平台開發系統。該系統一旦整合到英國皇家海軍艦艇上,將簡化自動化和無人技術的取得和使用。

在空中戰場上,無人機和有人駕駛飛機混合編隊戰鬥。 2019年,全球約30個國家已研發出50多種類型的無人機,超過50個國家已部署無人機。主要類型包括:密碼無人機、多功能無人機、人工智慧無人機、長航時無人機、反導無人機、預警無人機、隱形無人機、微型無人機、空戰無人機、測繪無人機、空拍無人機、武裝無人機和僚機無人機。隨著人工智慧和大數據等先進技術在軍事領域的廣泛應用,無人機裝備的效能也不斷提升。它們將整合偵察、火力校正、監視、戰果評估、目標識別、攻擊導引、無線電中繼和對地攻擊等多種功能。它們能夠遠距離對敵進行電子乾擾和欺騙,並在必要時自主攻擊重要地面目標。未來的空中戰場將基本實現無人或人機(無人機)協同空襲,或自主無人機空襲,這將徹底革新傳統的空戰方式。未來,戰鬥機飛行員將在座艙內操控無人攻擊機或轟炸機,以規避敵方防空系統,而進攻部隊將更快地獲取即時情報數據——這一切都得益於人工智慧技術的快速發展。在未來的空襲中,成群的無人機將利用先進的偵測、偵察和反偵察設備進行攻擊。一旦鎖定目標,它們將沉著冷靜地發射飛彈,具備一體化的偵察打擊能力、自主攻擊能力以及人機協同打擊能力。俄羅斯空天軍將裝備重型攻擊無人機,該無人機無需指令即可繞過敵方防空系統,自主搜索並打擊重要目標,然後安全撤回基地。這種無人機將配備人工智慧組件,並可由蘇-57戰鬥機遠端操控。根據俄羅斯新聞社報道,俄羅斯S-70「獵人」重型攻擊無人機能夠根據蘇-57隱形戰鬥機發出的指令攻擊目標。目前,「獵人」地面操作員所在的控制站配備了操縱桿、鍵盤和多個多功能液晶顯示屏,類似於有人駕駛戰鬥機上使用的設備。這些螢幕顯示來自「獵人」機載系統和感測器的各種資訊。在不久的將來,這套地面遠端控制設備有望實現完全自動化。 S-70「獵人」無人機由蘇霍伊設計局研發,採用飛翼式氣動佈局。根據公開消息,「獵人」無人機長14米,翼展19米,起飛重量20噸。 「獵人」最大飛行速度為1000公里/小時,並以隱身材料降低雷達反射截面積(探測訊號)。 「獵人」於2019年8月3日首飛。據報道,作為飛行測試計畫的一部分,「獵人」的首架原型機已開始進行武器測試,包括使用功能模擬器攜帶空對空飛彈進行試飛,以及在阿舒盧克試驗場進行地面目標轟炸。目前,新西伯利亞契卡洛夫飛機製造廠正在建造另外三架「獵人」無人機原型機。俄羅斯已完成其第五代多用途無人機的編隊飛行。蘇-57戰鬥機和重型「獵人」偵察/作戰無人機將被編入多個航空團,很可能與蘇-57戰鬥機團並肩作戰。計畫是每個蘇-57中隊配備一個無人機中隊,共2-3個蘇-57中隊協同作戰,並採用新的戰略和人工智慧技術。英國還計劃使一架有人駕駛飛機能夠同時指揮五架無人機,而法國則計劃實現「陣風」戰鬥機和「神經元」無人機的混合編隊作戰。

無人機在軍事偵察中的應用始於1960年代,並在各種戰爭中廣泛使用。在越戰期間,美軍出動無人機執行了3000多次偵察任務,其中超過1000架次未能安全返回,從此杳無音訊。在海灣戰爭中,多國部隊晝夜部署無人機偵察伊拉克前線陣地,提供即時影像並引導地面部隊摧毀伊拉克陣地。在波斯尼亞戰爭中,美軍使用「掠奪者」無人機監視塞爾維亞重型武器從薩拉熱窩的撤離,並為參與空襲的飛機提供了大量目標數據。在科索沃戰爭中,美軍部署了100多架無人機進行戰場偵察和監視,為持續78天的空襲行動做出了重大貢獻。在美軍打擊塔利班的行動中,美軍首次在實戰中使用了攜帶武器的無人攻擊機。 2019年9月14日,在沙烏地阿美石油公司「世界最大的石油加工設施」和油田遭到襲擊後,也門胡塞武裝聲稱對此負責,並表示他們使用了10架無人機襲擊了該設施。 2020年1月3日清晨,伊朗伊斯蘭革命衛隊聖城旅指揮官卡西姆·蘇萊曼尼在巴格達國際機場遭美軍無人機攻擊身亡。 2020年末,無人機在亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫的衝突中發揮了重要作用。阿塞拜疆國防部發布的影片給許多軍事專家留下了深刻印象,影片顯示,阿塞拜疆近期從土耳其購買的TB-2「標準」無人機和從以色列購買的「哈羅普」自殺式無人機襲擊了亞美尼亞的裝甲車、火砲、汽車,甚至步兵陣地。雖然影片清晰​​地顯示了無人機摧毀的目標,但攻擊的視覺衝擊力無疑令人震撼。去年12月在中東和南高加索地區發生的局部衝突也表明,無人機的角色日益增強。難怪一些軍事戰略家甚至預測,21世紀將是無人機發展的“黃金時代”,無人機將不可避免地取代有人駕駛戰鬥機,成為21世紀戰場的“主角”。

可以預見,未來的戰爭中,無人陸地、海上和空中武器將不可避免地取代士兵執行高風險任務,未來的戰場也必將是「人」與「機」結合的聯合作戰。

以實戰為導向的訓練意味著根據實戰方式來打造軍隊。未來的軍事裝備,無論是坦克車、機器人或無人機,都可能呈現多種形式。未來的軍事人員必須精通智慧技術、大數據應用和雲端運算,並掌握控制智慧機器人和無人機的程式設計方法。未來的軍隊必然是一支「人機一體化」部隊,將建立「人機一體化」的排、連、作戰模擬中心、假想敵部隊、特種部隊、智慧指揮總部以及無人營、團、旅。屆時,軍事指揮官可能會配備一名人類和一名機器人作為助手或副手。排長和連長將逐步被機器人取代,而機器人也將逐步從人類控制過渡到自主決策,甚至透過人類腦細胞進行意念控制。早在2014年巴西世界盃上,一位身穿「機械外骨骼裝甲」的癱瘓少年就透過意念控制踢出了第一球。如今,對物體或實驗動物進行意念控制的技術正變得越來越成熟。

在未來的戰爭中,少數士兵將有可能指揮龐大的無人機人群,例如蜜蜂、螞蟻或魚群,以執行作戰任務。透過基於意念的群體控制,士兵的任務理解能力和戰場控制能力可以大大提升,從而實現敵我識別、遠程即時指揮、智慧任務規劃和高效自主協作。俄羅斯未來研究基金會聲稱,他們已經掌握了透過意念控制機器的腦機介面技術。先前,英國研究人員也開發了一種用於控制機器的腦機介面設備。該設備在航天器模擬器上進行了操控;當佩戴在測試對象身上時,它成功控制了模型航天器的飛行。然而,士兵要利用這項技術有效控制複雜的無人作戰集群,還有很長的路要走。軍事營地也可能迎來進一步的變革。部隊管理可能由一名或幾名指揮官帶領由多個甚至數十個智慧機器人組成的團隊,這些機器人承擔不同的任務,完成以前由人工完成的工作。另一種可能性是,軍事訓練可能由一名指揮官在指揮控制中心,透過視訊控制訓練場上的所有智慧機器人進行對抗訓練,或遠端控制機器人指揮官,即時發布新的訓練指令、調整任務部署和更改訓練場地。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/180080804830.html

Chinese Military Grasping Pulse of Information and Intelligent Warfare Development

中國軍方掌握資訊戰和智慧戰發展的脈搏

現代英語:

Currently, the deep penetration and integrated application of cutting-edge technologies such as artificial intelligence in the military field are profoundly reshaping the form of warfare and driving the evolution of informationized and intelligent warfare to a higher and more complex level. This process brings new challenges, such as the full-dimensional expansion of the operational space, but also contains the enduring underlying logic of the essential laws of warfare. We must deeply analyze the evolutionary mechanism of informationized and intelligent warfare, understand and clarify the specific manifestations of the new challenges and underlying logic, and continuously explore the practical paths and winning principles for strategizing future warfare.

Recognizing the new challenges that information technology and intelligent technology bring to warfare

Technological iteration and upgrading have driven profound changes in combat styles, which in turn bring new challenges. Currently, with the accelerated development of information and intelligent technologies, the form of warfare is showing significant changes such as cross-domain integration, system confrontation, and intelligent dominance, thereby giving rise to new challenges such as mixed-domain nature, intelligence, and all-personnel involvement.

The Challenges of Multi-Domain Operations. In future warfare, the physical boundaries of traditional operational domains will be broken, with information and social domains deeply nested, forming a new type of battlefield characterized by multi-domain coordination. This multi-dimensional battlefield environment presents two challenges to current combat systems. First, system compatibility is difficult. In a multi-domain operational environment, combat operations “span” multiple physical and virtual spaces, while traditional combat systems are often built based on specific operational domains, making seamless compatibility of their technical standards and information interfaces difficult. Second, command and control are highly complex. In informationized and intelligent warfare, combat operations unfold simultaneously or alternately across multiple dimensions, with various demands exhibiting non-linear, explosive, and multi-domain characteristics. Traditional, hierarchical, tree-like command structures are ill-suited to handle this complex multi-domain coordination situation.

The Challenges of Intelligence. The deep integration of technologies such as artificial intelligence into the war decision-making and action chain presents new challenges to traditional decision-making models and action logic. On the one hand, defining the boundaries and dominance of human-machine collaboration is challenging. Intelligent systems demonstrate superior capabilities in information processing, decision support, and even autonomous action, but over-reliance on algorithms can lead to a “decision black box”; excessive restrictions on machine intelligence may result in the loss of the speed and efficiency advantages of intelligent algorithms. Therefore, how to construct a human-machine symbiotic, human-led, and intelligence-assisted decision-making model has become an unavoidable “test” in winning informationized and intelligent warfare. On the other hand, the complexity and vulnerability of algorithmic warfare are becoming increasingly prominent. The higher the level of intelligence in warfare, the stronger the dependence on core algorithms. Adversaries may launch attacks through data pollution, model deception, and network intrusion, inducing intelligent systems to misjudge and fail. This kind of “bottom-up” attack based on algorithmic vulnerabilities is far more covert and destructive than traditional methods, placing higher demands on the construction and maintenance of defense systems.

A challenge affecting all personnel. Informationized and intelligent warfare blurs the lines between wartime and peacetime, front lines and rear areas. Combat operations are no longer confined to professional soldiers and traditional battlefields; non-military sectors such as economics, finance, and technology, along with related personnel, may all be integrated into modern combat systems to varying degrees, bringing entirely new challenges. Specifically, non-military sectors may become new focal points of offense and defense. In an information society, critical infrastructure such as energy networks, transportation hubs, and information platforms are highly interconnected and interdependent, with broad social coverage and significant influence, making them prime targets for attack or disruption in hybrid warfare, thus significantly increasing the difficulty of protection. The national defense mobilization system faces transformation pressure. The traditional “peacetime-wartime conversion” model is ill-suited to the demands of high-intensity, fast-paced, and high-consumption informationized and intelligent warfare. There is an urgent need to build a modern mobilization mechanism that is “integrated in peacetime and wartime, military-civilian integrated, precise, and efficient,” ensuring the rapid response and efficient transformation of core resources such as technological potential, industrial capabilities, and professional talent.

Clarifying the underlying logic of information-based and intelligent warfare

Although the development of information and intelligent technologies has profoundly reshaped the mode of force application, the inherent attributes of war have not been fundamentally shaken. Ensuring that strategy follows policy, adhering to the principle that people are the decisive factor, and recognizing that the “fog of war” will persist for a long time are still key measures for us to understand, plan, and respond to future wars.

Strategic subordination with political strategy is paramount. Currently, the proliferation of new technologies and attack methods easily fosters “technocentrism”—when algorithms and computing power are seen as the key to victory, and when technological superiority in equipment is considered an absolute advantage, military operations risk deviating from the political and strategic trajectory. This necessitates that we always integrate military operations within the overall national political framework, ensuring that technological advantages serve strategic objectives. Under informationized and intelligent conditions, strategic subordination with political strategy transcends the purely military level, requiring precise alignment with core national political goals such as diplomatic maneuvering and domestic development and stability. Therefore, it is essential to clearly define the boundaries, intensity, and scope of information and intelligent means of application, avoid significant political and strategic risks arising from the misuse of technology, and strive for a dynamic unity between political objectives and military means.

The decisive factor remains human. While intelligent technology can indeed endow weapons with superior autonomous perception and decision-making capabilities, the ultimate control and winning formula in war always firmly rests in human hands. Marxist warfare theory reveals that regardless of how warfare evolves, humans are always the main actors and the ultimate decisive force. Weapons, as tools, ultimately rely on human creativity in their effective use. Therefore, facing the wave of informationized and intelligent warfare, we must achieve deep integration and synchronous development of human-machine intelligence, building upon a foundation of human dominance. Specifically, intelligentization must not only “transform” things—improving equipment performance—but also “transform” people—enhancing human cognitive abilities, decision-making levels, and human-machine collaborative efficiency, ensuring that no matter how high the “kites” of intelligent equipment fly, humanity always firmly grasps the “control chain” that guides their development.

Recognizing the persistent nature of the “fog of war,” while information technology has significantly improved battlefield transparency, technological means can only reduce the density of the “fog,” not completely dispel it. The fundamental reason is that war is a dynamic game; the deception generated by the continuous strategic feints and other maneuvers employed by opposing sides transcends the scope of mere technological deconstruction, possessing an inherent unpredictability. Therefore, we must acknowledge the perpetual nature of the “fog of war” and employ appropriate measures to achieve the goal of “reducing our own fog and increasing the enemy’s confusion.” Regarding the former, we must strengthen our own reconnaissance advantages by integrating multi-source intelligence, including satellite reconnaissance, drone surveillance, and ground sensors, to achieve a real-time dynamic map of the battlefield situation. Regarding the latter, we must deepen the enemy’s decision-making dilemma by using techniques such as false signals and electronic camouflage to mislead their intelligence gathering, forcing them to expend resources in a state of confusion between truth and falsehood, directly weakening their situational awareness.

Exploring the winning factors of information-based and intelligent warfare

To plan for future wars, we must recognize the new challenges they bring, follow the underlying logic they contain, further explore the winning principles of informationized and intelligent warfare, and work hard to strengthen military theory, make good strategic plans, and innovate tactics and methods.

Strengthening theoretical development is crucial. Scientific military theory is combat power, and maintaining the advancement of military theory is essential for winning informationized and intelligent warfare. On the one hand, we must deepen the integration and innovation of military theory. We must systematically integrate modern scientific theories such as cybernetics, game theory, and information theory, focusing on new combat styles such as human-machine collaborative operations and cross-domain joint operations, to construct an advanced military theoretical system that is forward-looking, adaptable, and operable. On the other hand, we must adhere to practical testing and iterative updates. We must insist on linking theory with practice, keenly observing problems, systematically summarizing experiences, and accurately extracting patterns from the front lines of military struggle preparation and training, forming a virtuous cycle of “practice—understanding—re-practice—re-understanding,” ensuring that theory remains vibrant and effectively guides future warfare.

Strategic planning is crucial. Future-oriented strategic planning is essentially a proactive shaping process driven by technology, driven by demand, and guaranteed by dynamic adaptation. It requires a broad technological vision and flexible strategic thinking, striving to achieve a leap from “responding to war” to “designing war.” First, we must anticipate technological changes. We must maintain a high degree of sensitivity to disruptive technologies that may reshape the rules of war and deeply understand the profound impact of the cross-integration of various technologies. Second, we must focus on key areas. Emerging “high frontiers” such as cyberspace, outer space, the deep sea, and the polar regions should be the focus of strategic planning, concentrating on shaping the rules of operation and seizing advantages to ensure dominance in the invisible battlefield and emerging spaces. Third, we must dynamically adjust and adapt. The future battlefield is constantly changing and full of uncertainty. Strategic planning cannot be a static, definitive text, but rather a resilient, dynamic framework. We must assess the applicability, maturity, and potential risks of various solutions in conjunction with reality to ensure that the direction of military development is always precisely aligned with the needs of future warfare.

Promoting Tactical Innovation. Specific tactics serve as a bridge connecting technological innovation and combat operations. Faced with the profound changes brought about by informationized and intelligent warfare, it is imperative to vigorously promote tactical innovation and explore “intelligent strategies” adapted to the future battlefield. On the one hand, it is necessary to deeply explore the combat potential of emerging technologies. We should actively explore new winning paths such as “algorithms as combat power,” “data as firepower,” “networks as the battlefield,” and “intelligence as advantage,” transforming technological advantages into battlefield victories. On the other hand, it is necessary to innovatively design future combat processes. Various combat forces can be dispersed and deployed across multiple intelligent and networked nodes, constructing a more flattened, agile, and adaptive “observation-judgment-decision-action” cycle. Simultaneously, we must strengthen multi-domain linkage, breaking down inherent barriers between different services and combat domains, striving to achieve cross-domain collaboration, system-wide synergy, autonomous adaptation, and dynamic reorganization, promoting the overall emergence of combat effectiveness.

現代國語:

目前,人工智慧等尖端技術在軍事領域的深度滲透與融合應用,正深刻重塑戰爭形態,推動資訊化、智慧化戰爭朝向更高、更複雜的層面演進。這個過程帶來了作戰空間全方位擴展等新挑戰,同時也蘊含著戰爭基本法則的持久邏輯。我們必須深入分析資訊化、智慧化戰爭的演進機制,理解並釐清新挑戰的具體表現及其內在邏輯,不斷探索未來戰爭戰略的實踐路徑與勝利原則。

認識資訊科技和智慧科技為戰爭帶來的新挑戰

技術的迭代升級推動了作戰方式的深刻變革,進而帶來了新的挑戰。目前,隨著資訊科技與智慧科技的加速發展,戰爭形態呈現出跨域融合、系統對抗、智慧主導等顯著變化,由此產生了混合域作戰、智慧化作戰、全員參與等新挑戰。

多域作戰的挑戰。在未來的戰爭中,傳統作戰領域的物理邊界將被打破,資訊領域和社會領域將深度交織,形成以多域協同為特徵的新型戰場。這種多維戰場環境對現有作戰系統提出了兩大挑戰。首先,系統相容性面臨挑戰。在多域作戰環境中,作戰行動「跨越」多個實體和虛擬空間,而傳統作戰系統通常基於特定的作戰領域構建,難以實現技術標準和資訊介面的無縫相容。其次,指揮控制高度複雜。在資訊化和智慧化戰爭中,作戰行動在多個維度上同時或交替展開,各種需求呈現出非線性、爆發性和多域性的特徵。傳統的層級式、樹狀指揮結構難以應付這種複雜的多域協同局面。

情報的挑戰。人工智慧等技術深度融入戰爭決策和行動鏈,對傳統的決策模型和行動邏輯提出了新的挑戰。一方面,界定人機協作的邊界和主導地位極具挑戰性。智慧型系統在資訊處理、決策支援乃至自主行動方面展現出卓越的能力,但過度依賴演算法可能導致「決策黑箱」;對機器智慧的過度限制則可能喪失智慧演算法的速度和效率優勢。因此,如何建構人機共生、人主導、智慧輔助的決策模型,已成為贏得資訊化和智慧化戰爭的必經「考驗」。另一方面,演算法戰的複雜性和脆弱性日益凸顯。戰爭智能化程度越高,對核心演算法的依賴性就越強。敵方可能透過資料污染、模型欺騙和網路入侵等手段發動攻擊,誘使智慧型系統誤判和失效。這種基於演算法漏洞的「自下而上」攻擊比傳統手段更加隱蔽和破壞性,對防禦系統的建構和維護提出了更高的要求。

這是一項影響全體人員的挑戰。資訊化與智慧化戰爭模糊了戰時與和平時期、前線與後方的界線。作戰行動不再侷限於職業軍人和傳統戰場;經濟、金融、科技等非軍事領域及其相關人員都可能在不同程度上融入現代作戰體系,帶來全新的挑戰。具體而言,非軍事領域可能成為攻防的新焦點。在資訊社會中,能源網路、交通樞紐、資訊平台等關鍵基礎設施高度互聯互通、相互依存,覆蓋範圍廣、影響力大,使其成為混合戰爭中攻擊或破壞的主要目標,大大增加了防禦難度。國防動員體系面臨轉型壓力。傳統的「和平時期向戰爭時期轉換」模式已無法滿足高強度、快節奏、高消耗的資訊化和智慧化戰爭的需求。迫切需要…建構「和平時期與戰爭時期一體化、軍民融合、精準高效」的現代化動員機制,確保技術潛力、產業能力、專業人才等核心資源的快速反應與高效轉換。

釐清資訊化與智慧化戰爭的內在邏輯

儘管資訊和智慧科技的發展深刻地重塑了兵力運用方式,但戰爭的固有屬性並未發生根本性改變。確保戰略服從政策,堅持以人為本的原則,並認識到「戰爭迷霧」將長期存在,仍然是我們理解、規劃和應對未來戰爭的關鍵。

戰略服從政治戰略至關重要。目前,新技術和新攻擊手段的湧現容易滋生「技術中心主義」——當演算法和運算能力被視為取勝的關鍵,裝備的技術優勢被視為絕對優勢時,軍事行動就有可能偏離政治戰略軌道。這就要求我們始終將軍事行動納入國家整體政治框架,確保技術優勢服務於戰略目標。在資訊化和智慧化條件下,戰略對政治戰略的服從超越了純粹的軍事層面,需要與外交斡旋、國內發展穩定等核心國家政治目標精準契合。因此,必須明確界定資訊和智慧手段應用的邊界、強度和範圍,避免因技術濫用而引發重大政治和戰略風險,並努力實現政治目標與軍事手段的動態統一。

決定性因素仍然是人。雖然智慧科技確實可以賦予武器卓越的自主感知和決策能力,但戰爭的最終控制權和勝利之道始終牢牢掌握在人手中。馬克思主義戰爭理論表明,無論戰爭如何演變,人類始終是主要行動者和最終的決定性力量。武器作為工具,其有效使用最終依賴於人的創造力。因此,面對資訊化、智慧化戰爭的浪潮,我們必須在人類主導的基礎上,實現人機智慧的深度融合與同步發展。具體而言,智慧化不僅要「改造」物——提升裝備性能——更要「改造」人——增強人類的認知能力、決策水平和人機協同效率,確保無論智慧裝備的「風箏」飛得多高,人類始終牢牢掌控著引導其發展的「控制鏈」。

認識到「戰爭迷霧」的持久性,儘管資訊技術顯著提升了戰場透明度,但技術手段只能降低「迷霧」的密度,而無法徹底驅散它。根本原因在於戰爭是一場動態賽局;交戰雙方不斷進行的戰略佯攻和其他戰術動作所產生的欺騙性,遠非簡單的技術解構所能及,具有固有的不可預測性。因此,我們必須正視「戰爭迷霧」的永恆性,並採取適當措施,實現「減少自身迷霧,增加敵方混亂」的目標。就前者而言,我們必須整合衛星偵察、無人機監視、地面感測器等多源情報,強化自身偵察優勢,以實現戰場態勢的即時動態測繪。就後者而言,我們必須運用假訊號、電子偽裝等手段,誤導敵方情報蒐集,使其在真假難辨的狀態下耗費資源,從而直接削弱其態勢感知能力,加深敵方決策困境。

探索資訊化、智慧化戰爭的勝利要素

為因應未來戰爭,我們必須體認到戰爭帶來的新挑戰,掌握其內在邏輯,進一步探索資訊化、智慧化戰爭的勝利原則,努力加強軍事理論建設,制定完善的戰略規劃,並創新戰術方法。

加強理論發展至關重要。科學的軍事理論就是戰鬥力,維持軍事理論的進步是贏得資訊化、智慧化戰爭的關鍵。一方面,我們必須深化軍事理論的整合與創新,有系統地將現代科學融入軍事理論。

運用控制論、博弈論、資訊理論等理論,著重研究人機協同作戰、跨域聯合作戰等新型作戰方式,建構前瞻性、適應性和可操作性的先進軍事理論體系。另一方面,必須堅持實戰檢驗、迭代更新。必須堅持理論與實踐結合,敏銳觀察問題,系統總結經驗,準確提煉軍事鬥爭前線備戰訓練中的規律,形成「實踐—理解—再實踐—再理解」的良性循環,確保理論保持活力,有效指導未來戰爭。

策略規劃至關重要。面向未來的策略規劃本質上是一個由技術驅動、需求驅動、動態調適保障的主動塑造過程。它需要廣闊的技術視野和靈活的戰略思維,力求實現從「應對戰爭」到「設計戰爭」的飛躍。首先,我們必須預見技術變革。我們必須對可能重塑戰爭規則的顛覆性技術保持高度敏感,並深刻理解各種技術交叉融合的深遠影響。其次,我們必須聚焦重點領域。網路空間、外太空、深海、極地等新興「高前沿」應成為戰略規劃的重點,著力塑造作戰規則,奪取優勢,確保在無形戰場和新興空間佔據主導地位。第三,我們必須動態調整與適應。未來的戰場瞬息萬變,充滿不確定性。策略規劃不能是一成不變的固定文本,而應是一個具有韌性的動態架構。我們必須結合實際情況,評估各種解決方案的適用性、成熟度和潛在風險,確保軍事發展方向始終與未來戰爭的需求精準契合。

推進戰術創新。具體戰術是連結技術創新與作戰行動的橋樑。面對資訊化、智慧化戰爭帶來的深刻變革,必須大力推動戰術創新,探索適應未來戰場的「智慧戰略」。一方面,要深入挖掘新興技術的作戰潛力,積極探索「演算法即戰力」、「數據即火力」、「網路即戰場」、「情報即優勢」等新的致勝路徑,將技術優勢轉化為戰場勝利。另一方面,要創新地設計未來作戰流程,使各類作戰力量分散部署於多個智慧化、網路化的節點,建構更扁平、更敏捷、適應性更強的「觀察-判斷-決策-行動」循環。同時,要加強多域連結,打破不同軍種、不同作戰域之間的固有壁壘,力爭實現跨域協同、系統協同、自主適應、動態重組,進而提升整體作戰效能。

(編:任嘉慧、彭靜)

李书吾 丁 盛

2026年01月27日0x:xx | 来源:解放军报

中國原創軍事資源:https://military.people.com.cn/n1/2026/08127/c10811-4808868538648.html

Where is the Transformation of Chinese Military Intelligent War Preparedness Heading?

中國軍事情報戰備轉型將走向何方?

現代英語:

Where should the intelligent transformation for combat readiness go?

Currently, the form of warfare is rapidly evolving towards intelligence, and the era of intelligent warfare is imminent. To adapt to the development of military intelligent technology, the changing mechanisms of war, and the high-quality development of the armed forces, it is imperative to accelerate the advancement of intelligent combat readiness. Modern combat readiness must, while advancing the transformation from mechanization and semi-mechanization to informatization, further proactively address the challenges of military intelligence, adhere to intelligence as the guiding principle, and accelerate the integrated development of mechanization, informatization, and intelligence. In short, vigorously promoting intelligent combat readiness is a practical necessity for driving the high-quality development of national defense and the armed forces; only by successfully transforming to intelligent combat readiness can we promote the leapfrog development of the military’s combat capabilities.

Construct an intelligent warfare theoretical system. Focusing on solving key and difficult issues in intelligent warfare theory, such as war prediction, war forms, war design, operational concepts, operational styles, operational systems, troop formation, and troop training, we will deepen research on the application of intelligent warfare, explore the winning mechanisms, characteristics, laws, tactics, action methods, and comprehensive support of intelligent warfare, enrich the theories of intelligent warfare, intelligent operations, and the construction of intelligent combat forces, and gradually construct an intelligent warfare theoretical system.

Establish an intelligent command and control paradigm. Strengthen the development of technologies such as adversarial and game-theoretic operational planning, digital twin parallel simulation, and efficient organization and precise scheduling of complex operational resources. Enhance capabilities such as automatic planning of operational plans under large-scale, high-intensity conditions and autonomous decomposition of cross-domain and cross-level tasks. Achieve deep integration of military knowledge and machine intelligence, reliable and explainable auxiliary decision-making, and self-learning and self-evolving adversarial strategies. Integrate technological achievements such as sensing, networking, cloud computing, and quantum computing to enhance intelligent auxiliary capabilities in situation generation, operational command, and staff operations. Accelerate the development of intelligent staff business systems and intelligently upgrade and transform operational command information systems. Achieve intelligent information Q&A, intelligent plan generation, and decision support suggestions for typical campaign/tactical command, greatly reducing the workload of staff personnel and significantly improving the timeliness of command operations.

Develop intelligent weapon and equipment systems. Strengthen the intelligent upgrading and transformation of traditional weapons, promote the practical application of intelligent technologies in backbone equipment, and deploy low-cost, expendable unmanned combat platforms on a large scale. Develop intelligent individual soldier integrated systems, air-to-ground unmanned swarm collaborative attack systems, and underground space swarm warfare systems, etc., research and develop intelligent flexible wearable technologies and mobile intelligent terminal technologies, develop intelligent wearable equipment, brain-computer interface helmets, and human implant devices, etc., and accelerate the application of intelligent new weapon platforms, using the pioneering development of key equipment to drive overall breakthroughs.

Increase the proportion of intelligent combat forces. Focusing on optimizing structure and function, implement intelligent design for the existing organizational structure of the armed forces, and gradually increase the proportion of intelligent combat forces. Formulate talent development plans, cultivate the intelligent literacy of combat personnel, and explore a talent cultivation path that integrates military and civilian sectors, services, and enterprises. Build a new generation of combat forces that are intelligently led, cross-domain collaborative, all-domain mobile, and precise and multi-functional; focus on research on intelligent air defense and anti-missile systems, passive detection and intelligent identification of aerial targets, and build intelligent air combat forces such as anti-aircraft unmanned combat aircraft and “swarm” aircraft; emphasize research on intelligent missiles and develop long-range missile deterrence and strike capabilities; deepen research on the architecture design of intelligent attack and defense systems in cyberspace and the intelligent generation of attack strategies, upgrade the new generation of cyberspace reconnaissance, attack, and defense forces, and comprehensively enhance intelligent combat capabilities.

Optimize intelligent autonomous collaboration methods. Focusing on the human-machine “interaction-understanding-co-progress” framework, break through human-machine hybrid perception enhancement and human-machine adaptive multi-task collaboration to improve human-machine hybrid perception capabilities, cognitive abilities, and overall combat effectiveness in complex battlefield environments, achieving complementarity and intelligent enhancement between human wisdom and machine intelligence. Accelerate the development of applied research in areas such as intelligent swarm distributed elastic architecture, self-organizing anti-jamming communication and interaction, distributed autonomous collaboration in complex confrontation scenarios, and swarm intelligent command and control adapted to complex environments and tasks. Enhance the autonomous elastic planning and swarm intelligence confrontation learning capabilities of unmanned swarms in complex scenarios, promoting an overall leap in the combat effectiveness of multi-domain/cross-domain heterogeneous swarms.

Innovate an intelligent, all-dimensional support model. Facing the overall requirements of comprehensive support for future battlefields, including all-time intelligent perception, precise control of supplies and ammunition, and accurate delivery of combat supplies, enhance the intelligent combat logistics equipment support capabilities. Develop capabilities such as comprehensive multi-dimensional support demand mining across all domains, online networked dynamic monitoring of equipment status, autonomous early warning of support risks, and on-demand allocation of support resources. Promote research and verification of intelligent network information systems, intelligent military logistics systems, intelligent support for battlefield facilities and environment information, smart individual soldier support, intelligent rapid medical treatment for future battlefields, and intelligent energy support and transportation delivery, achieving the organic integration of combat, technology, and logistics support elements with combat command and troop movements.

現代國語:

智慧戰備轉型應走向何方?

當前,戰爭形式正迅速朝向智慧化演進,智慧戰時代迫在眉睫。為適應軍事智慧技術的發展、戰爭機制的轉變以及軍隊高品質發展,加速推動智慧戰備勢在必行。現代戰備在推動從機械化、半機械化轉型為資訊化的同時,必須更積極主動地應對軍事情報挑戰,堅持以情報為指導原則,加速機械化、資訊化、情報化整合發展。總之,大力推動智慧戰備是推動國防和軍隊高品質發展的現實需求;只有成功實現智慧戰備轉型,才能推動軍隊作戰能力的跨越式發展。

建構智能戰理論體系。我們將著力解決智慧戰理論中的關鍵難點問題,例如戰爭預測、戰爭形態、戰爭設計、作戰理念、作戰風格、作戰體系、部隊編組和部隊訓練等,深化智能戰應用研究,探索智能戰的製勝機制、特徵、規律、戰術、行動方法和綜合保障,豐富智能戰、智能作戰和智能作戰力量建設的理論,逐步構建的理論體系。

建立智慧指揮控制範式。加強對抗性與博弈論作戰規劃、數位孿生並行模擬、複雜作戰資源高效組織和精確調度等技術的研發。提升大規模、高強度條件下作戰計畫的自動規劃、跨域、跨層級任務的自主分解等能力。實現軍事知識與機器智慧的深度融合,實現可靠、可解釋的輔助決策,以及對抗策略的自學習、自我演化。整合感知、網路、雲端運算、量子運算等技術成果,提升態勢生成、作戰指揮、參謀運作等方面的智慧輔助能力。加速智慧參謀業務系統建設,實現作戰指揮資訊系統的智慧升級改造。實現典型戰役/戰術指揮的智慧資訊問答、智慧計畫生成、決策支援建議,大幅減輕參謀人員工作負擔,顯著提升指揮運作的時效性。

發展智慧武器裝備系統。加強傳統武器的智慧升級改造,推動智慧技術在骨幹裝備的實際應用,大規模部署低成本、消耗型無人作戰平台。研發智慧單兵一體化系統、空地無人群聚協同攻擊系統、地下空間集群作戰系統等,研發智慧柔性穿戴技術與行動智慧終端技術,開發智慧穿戴設備、腦機介面頭盔、人體植入式設備等,加速智慧新型武器平台的應用,以關鍵裝備的先導研發為驅動力,實現整體突破。

提高智慧作戰力量比例。著力優化結構與功能,對現有軍隊組織結構進行智慧化設計,逐步提升智慧作戰力量比例。制定人才培育計劃,提升作戰人員的智慧素養,探索軍民融合、服務業與企業融合的人才培育路徑。建構智慧主導、跨域協同、全域機動、精準多功能的新一代作戰力量;重點研發智慧防空反導系統、空中目標被動偵測與智慧辨識技術,建構以防空無人作戰飛機、「群聚」飛機等為代表的智慧空戰力量;重視智慧飛彈研發,發展遠程飛彈威懾與打擊能力;深化網路空間太空防空防電系統設計與智慧飛彈威懾策略的新一代攻擊能力。全面提升網路空間偵察、攻擊和防禦力量的智慧作戰能力。

優化智慧自主協同作戰方式。圍繞人機「互動-理解-協同-進步」框架,突破人機混合感知增強和人機自適應多任務協同作戰,提升複雜戰場環境下人機混合感知能力、認知能力和整體作戰效能,實現人機智慧互補與智能增強。加速智慧集群分散式彈性架構、自組織抗干擾通訊與互動、複雜對抗場景下的分散式自主協同作戰、適應複雜環境和任務的集群智慧指揮控制等領域的應用研究。增強複雜場景下無人群集的自主彈性規劃與群集智慧對抗學習能力,推動多域/跨域異質群集作戰效能的全面飛躍。

創新智能化全維度支援模式。面對未來戰場全面保障的整體需求,包括全時智慧感知、物資彈藥精準管控、作戰物資準確投放等,提升智慧作戰後勤裝備保障能力。發展跨域多維綜合保障需求挖掘、裝備狀態線上網路動態監控、保障風險自主預警、保障資源按需調配等能力。推動智慧網路資訊系統、智慧軍事後勤系統、戰場設施及環境資訊智慧保障、智慧單兵保障、未來戰場智慧快速醫療救治、智慧能源保障及運輸配送等研究驗證,實現作戰、技術、後勤支援要素與作戰指揮、部隊調動有機融合。

陶利民,秦昊

來源:中國軍網-解放軍報 作者:陶立民 秦浩 責任編輯:王粲

中國原創軍事資源:http://www.81.cn/ll_20888543/186482825186.html

Chinese Military New Requirements of Combat-Oriented Training in the Era of Intelligentization

智慧化時代中國軍隊作戰導向訓練的新要求

現代英語:

As a high-intensity, targeted training closely aligned with actual combat, realistic combat training plays a crucial role in enhancing the combat effectiveness of the armed forces and is an inevitable choice for adapting to the evolving nature of warfare and responding to complex security threats. In the intelligent era, the deep integration of military technology, the suddenness of war outbreaks, and the rapid pace of offensive and defensive transitions are becoming increasingly prominent, posing systemic challenges to realistic combat training in areas such as demand guidance, environment construction, tactical innovation, and technological empowerment. To this end, we should focus on building a new training management model that accurately maps needs, deeply embeds adversaries, makes tactics flexible and effective, and deeply integrates technology, so as to achieve resonance between training scenarios and combat environments, dynamic coupling between training content and combat actions, and precise alignment between training results and actual combat needs, thereby comprehensively improving the overall quality and efficiency of combat-oriented training.

The need to meet the demands of “combat” necessitates intensive training based on specific plans.

In the intelligent era, the diversification of weapons, equipment, and combat methods has brought more variables to combat operations. Realistic training must be aligned with actual combat needs, calibrate training objectives through testing in real scenarios, continuously enhance the flexibility of combat plans, and improve the adaptability of troops.

Operational guidance calibrates training targets. As a form of training closely aligned with actual combat, realistic training can only achieve maximum effectiveness by closely adhering to the needs of intelligent warfare, transforming abstract operational concepts into concrete training topics, and deconstructing strategic and operational requirements into quantifiable and assessable tactical indicators. Emphasis should be placed on battlefield adaptability training in complex and ever-changing battlefield environments, strengthening training on challenging issues such as cyber and electronic warfare, autonomous coordination, and the integration of new technologies, to ensure that a proactive battlefield advantage is always maintained. Training content should be dynamically optimized by closely monitoring cutting-edge operational concepts, continuously promoting the interaction and coupling of actual combat and training, and consistently maintaining a high level of combat readiness training.

Practice refines and strengthens the resilience of operational plans. Intelligent warfare is fast-paced and rapidly changing; only through repeated verification and refinement in realistic training can the feasibility and adaptability of operational plans be guaranteed. A multi-functional, intelligent, and professional training ground system should be constructed to continuously refine key aspects such as command and decision-making, force deployment, and operational coordination in scenario-based training, constantly testing the resilience of the command chain, the robustness of coordination mechanisms, and the sustainability of the support system. In fact, testing and improving operational plans through realistic training is timeless. Prior to the Normandy landings, the Allied forces conducted Exercise Tiger at Slapton Beach to improve combat skills, enhance combat experience, and test coordination efficiency. Despite a series of oversights and errors, serious deficiencies in command and communication, landing and unloading were also discovered. By revising and improving the combat plan and addressing the shortcomings, the actual combat casualty rate was greatly reduced, laying a solid foundation for the successful implementation of the final landing operation.

Mission-driven training strengthens capabilities. High-intensity, near-real combat training effectively exposes weaknesses and deficiencies, forcing units to develop targeted measures and ultimately boosting combat capabilities. Close attention should be paid to the specific tasks undertaken by the troops, such as reconnaissance and surveillance, information warfare, force projection, and unmanned operations. Problems should be identified during exercises and practical training, and countermeasures should be developed according to local conditions to address weaknesses in combat capabilities. Before the Hundred Regiments Offensive during the War of Resistance Against Japan, a unit of the Eighth Route Army, recognizing its weak railway sabotage capabilities, conducted targeted intensive training focusing on reconnaissance and surveillance, explosives demolition, and dismantling and transportation. This significantly improved the unit’s railway sabotage capabilities, laying a crucial foundation for victory.

Based on the standard of “war”, we insist on independent confrontation.

In the intelligent era, intelligent unmanned equipment is being used extensively, new combat forces with new characteristics are constantly emerging, and the features of hybrid games and system confrontation are becoming more prominent. This requires that combat-oriented training must be based on actual combat standards and targeted confrontation training must be carried out against strong adversaries.

Reconstructing cognitive benchmarks through re-enactment of enemy situations. Accurate understanding of the operational target system and the adversary’s combat capabilities is not only a prerequisite for winning intelligent warfare but also the foundation for planning and organizing effective combat-oriented training. We must closely monitor the adversary, comprehensively, accurately, and systematically grasp the latest military intelligence dynamics regarding their operational theories, command methods, tactics, operational deployments, and the performance of key weapons and equipment. Furthermore, we must deeply study countermeasures, cultivate the ability to win, and ensure that we anticipate the enemy’s moves and achieve surprise victories in wartime. We should systematically deconstruct the future battlefield environment, starting from multiple dimensions such as the strategic domain, physical domain, network domain, and electromagnetic domain, and use multiple methods to construct a training environment that matches information-based and intelligent warfare, providing strong support for key training subjects and seeking winning strategies.

Red-Blue competition drives a qualitative leap in capabilities. In the context of intelligent warfare, combat-oriented training places greater emphasis on targeted and intense confrontation, requiring the creation of simulated “Blue Force” forces to higher standards, the design of appropriate training content, and the effective implementation of adversarial red-Blue confrontation training. It is essential to focus on tactical confrontation training, operational confrontation exercises, and in-depth strategic game-based confrontation simulations, ensuring their effective implementation at all levels of combat-oriented training. Emphasis should be placed on both virtual simulation confrontation exercises and live-fire confrontation exercises, combining virtual and real elements to provide strong support for combat-oriented training. The training should not only present the size and weaponry of the adversary but also reflect their tactical applications and systemic operations, providing a reliable and credible “touchstone” for combat-oriented training.

Extreme training is essential for honing systemic capabilities. Only by benchmarking against actual combat and organizing realistic training with the standards and intensity of “war” can we objectively assess the combat effectiveness of the troops and promote the improvement of their systemic capabilities. Based on specific enemy situations and complex battlefields, we must deeply anticipate unforeseen circumstances, starting with the most difficult, complex, and passive situations. We should create numerous dangerous, stalemate, difficult, critical, and dire situations to cultivate the confidence and courage to fight and win, and the ability to adapt and achieve victory in perilous circumstances, thereby comprehensively testing and refining the troops’ combat capabilities.

Anchoring “Battle” Effectiveness Innovations in Tactics and Combat Methods

Combat operations in the intelligent era exhibit some new characteristics, emphasizing information dominance and system integration, as well as precise control and accurate energy release. This also requires combat-oriented training to focus on combat effectiveness and seek more effective methods and measures for innovative tactics and maneuvers.

Training and research should be integrated to drive tactical innovation. Effective tactics are often gradually refined and formed through actual combat training. By leveraging the “tempering” process of realistic combat training, weaknesses in tactical application can be exposed to the greatest extent, prompting the innovation and improvement of tactics and methods. Based on the fundamental orientation of practicality and effectiveness, we should strengthen the innovative application of tactics and training methods, deeply analyze combat patterns, capability chains, key nodes, force organization, and tactical means in theoretical research and practical exercises, accelerate the integration of new domains and new quality systems, and ensure the effective implementation of new combat concepts, tailoring “trump cards” and “tactical sets” for countering and defeating the enemy.

Realistic combat training drives the testing of tactics. Tactics that remain at the theoretical level have no vitality; only tactics that have undergone repeated testing in realistic combat can quickly adapt to the future battlefield. Therefore, realistic combat training places greater emphasis on tactics originating from practice, being tested in practice, and being applied to practice. Through repeated simulation training, deduction exercises, and live-fire drills, scientific and applicable command principles, action points, and support essentials should be formed. Tactics should be tested, enriched, and improved in practice to fully adapt to future informationized and intelligent warfare.

Advancing the evolution of tactics in accordance with the times. No matter how times change, surprise and flexibility remain the “soul” of tactical application and the prerequisite for gaining the initiative on the battlefield. In the intelligent era, new equipment and tactics supported by model algorithms are constantly emerging. Only by keeping pace with the trends of military reform, proactively analyzing the laws of war and the mechanisms of victory, and being one step ahead in discovering and updating tactics, can we ensure that we can deploy our forces and exert our strength one step ahead of the enemy in wartime. Recent local conflicts have repeatedly demonstrated to us the practical application of new operational concepts and the continuous emergence of new tactics and methods. We should focus on strong enemy targets, confront threats and challenges head-on, actively adapt to changes, and proactively seek changes. Based on operational concepts such as flexible mobility and asymmetric enemy control, we should develop and design strategies and tactics to defeat the enemy and comprehensively improve our battlefield adaptability.

Strengthen technological capabilities in line with the trends of “warfare”.

In the intelligent era, the extensive and in-depth application of new-generation military technologies has not only accelerated the pace of warfare, changed the form of war, and given rise to new threats, but also provided more options for combat-oriented training.

Knowledge reshaping elevates cognitive thinking. Cognitive thinking reflects the depth of understanding of warfare and the degree of adaptability to the battlefield. Therefore, some consider cognitive thinking a key foundational element of command ability. In the intelligent era, only those with keen technological awareness and battlefield perception can accurately grasp the battlefield situation, precisely control forces, and flexibly manage actions to gain a combat advantage. It is crucial to strengthen the learning of the latest technologies such as big data, the Internet of Things, cloud computing, and blockchain, and through targeted training, systematically master the characteristics and laws of informationized and intelligent warfare, establish a systemic warfare mindset, and enhance technological effectiveness for realistic combat training.

Simulation interaction optimizes environmental conditions. Virtual simulation technology not only has advantages in reducing material input and lowering safety risks, but also in constructing intelligent warfare scenarios to improve training quality. Emphasis should be placed on utilizing virtual reality, augmented reality, and mixed reality technologies to construct highly immersive and interactive virtual battlefield spaces, providing trainees with realistic visual, auditory, and tactile experiences. Emphasis should also be placed on leveraging intelligent wearable devices, sensor arrays, and virtual simulation systems to construct training scenarios that closely resemble actual combat, supporting trainees in battlefield awareness and action simulation training, and comprehensively improving the quality of combat-oriented training.

Intelligent empowerment revitalizes data and information. In the intelligent era, the multidimensionality of the environment, the diversity of force equipment, and the variety of offensive and defensive confrontations have led to a massive surge of combat training data, making its management and application a major challenge in training practice. Data mining technology should be fully utilized, leveraging big data, algorithms, and large models to transform the vast amounts of scattered behavioral, physiological, and environmental data generated in training practice into quantifiable, traceable, and optimizable digital resources. This will enable the centralized delivery and innovative application of training information. Based on this, a closed-loop management system for training information—”decision-planning-collection-processing-evaluation”—can be established to drive the transformation of combat training from generalized, extensive management to intelligent, precise management.

現代國語:

實戰化訓練作為一種緊貼實戰的高強度針對性訓練,對於提升部隊戰斗力發揮著至關重要的作用,是適應戰爭形態發展、應對復雜安全威脅的必然選項。智能時代,軍事技術的深介入、戰爭爆發的突然性、攻防轉換的快節奏越發凸顯,使得實戰化訓練在需求傳導、環境構建、戰法創新、科技賦能等方面面臨系統性挑戰。為此,應著力構建需求精准映射、對手深度嵌入、戰法靈活有效、技術深度融入的新型訓練管理模式,實現訓練場景與作戰環境同頻共振、訓練內容與作戰行動動態耦合、訓練成果與實戰需求精確對接,全方位提升實戰化訓練綜合質效。

對接“戰”的需求突出依案強訓

智能時代,武器裝備、作戰手段的多樣化,使得作戰行動具有更多變量。實戰化訓練必須對接實戰需求,在實案實情檢驗中校准訓練指向,不斷強化作戰方案柔韌性,提升部隊能力適應性。

作戰牽引校准訓練靶向。作為一種緊貼實戰的訓練形式,實戰化訓練唯有緊扣智能化戰爭需求,將抽象作戰構想轉化為具體訓練課題,將戰略戰役需求解構為可量化、可評估的戰術指標,方能求得最大訓練實效。應突出復雜多變戰場環境下的戰場適應性訓練,強化網電攻防、自主協同、新質融入等重難問題訓練,以確保始終佔據戰場優勢主動。應緊盯前沿作戰理念,動態優化訓練內容,不斷推動實戰與訓練互動耦合,始終保持戰備訓練的高水准。

實踐淬煉強化方案韌性。智能化戰爭節奏緊湊、瞬息萬變,只有在實戰化訓練中歷經反復驗證打磨,才能保證作戰方案的可行性適應性。應構建多功能、智能化、專業化訓練場地體系,在基於實案的訓練中持續推敲指揮決策、兵力運用、作戰協同等關鍵環節,不斷考驗指揮鏈路抗毀性、協同機制穩健性、保障體系持續性。事實上,通過實戰化訓練檢驗完善作戰方案,無論在哪個年代都不過時。諾曼底登陸前,盟軍為提升作戰技能、增強實戰體驗、檢驗協同效率,在斯拉普頓海灘組織參戰部隊開展“猛虎演習”,盡管出現了一系列疏忽失誤,但也發現了指揮通聯、登陸卸載等多項嚴重缺陷,進而通過修訂完善作戰方案、改進問題不足,大大降低了實際作戰傷亡率,為最後登陸作戰行動的成功實施打下了堅實基礎。

任務驅動補強能力短板。高強度近實戰的實戰化訓練,能夠最大程度暴露能力短板缺陷,倒逼部隊制定針對性措施,反哺作戰能力躍升。應緊盯部隊擔負的偵察監視、信息攻防、力量投送、無人作戰等具體任務,在演訓實踐中發現矛盾問題,因地制宜研究對策,補足作戰能力弱環。抗日戰爭百團大戰前,八路軍某部針對鐵路破襲能力薄弱的現實狀況,圍繞偵察警戒、炸藥爆破、拆除搬運等展開針對性強化訓練,大大提高了部隊道路破襲能力,奠定了作戰勝利的重要基礎。

基於“戰”的標准堅持自主對抗

智能時代,智能無人裝備大量運用,新域新質作戰力量不斷湧現,混合博弈、體系對抗的特征更加鮮明,要求實戰化訓練必須基於實戰標准,緊盯強敵對手展開針對性對抗訓練。

敵情復現重構認知基准。對作戰目標體系和對手作戰能力的精准認知,既是打贏智能化戰爭的前提,也是籌劃組織好實戰化訓練的基礎。應緊盯作戰對手,全面、准確、系統掌握其作戰理論、指揮方式、戰法打法、作戰部署、關鍵武器裝備性能等最新軍情動態,進而深研應對策略,鍛造打贏能力,確保戰時料敵於先、出奇制勝。應系統解構未來戰場環境,從戰略域、物理域、網絡域、電磁域等多維空間入手,多法並舉構設與信息化智能化戰爭相匹配的演訓環境,為演練重點課目、尋求制勝招法等提供強力支撐。

紅藍競技催生能力質變。智能化戰爭背景下,實戰化訓練更加強調訓練的針對性、強對抗,要求以更高標准打造模擬“藍軍”力量、設置適配訓練內容,開展好互為對手紅藍對抗訓練。既要抓實戰術對抗訓練,也要抓牢戰役對抗演練,還要抓深戰略博弈對抗推演,落地落位各層級實戰化訓練。既要注重虛擬仿真對抗演訓,也要關注實兵實裝對抗演練,虛實結合為實戰化訓練提供強力支持。既要呈現出作戰對手的編制規模、武器裝備,更要反映出其戰法運用、體系運轉,為實戰化訓練提供可靠可信“試金石”。

極限磨礪鍛造體系能力。只有對標對表實戰,以“戰”的標准強度組織實戰化訓練,才能客觀檢驗部隊戰斗力水平,推動部隊體系能力提升。要依據具體敵情、復雜戰場,深度預想突發情況,從應對最困難、最復雜、最被動局面出發,多設險局、僵局、難局、危局、殘局,在近似實戰的環境中培養敢打必勝的信心勇氣、險中求勝的應變能力,全面檢驗和錘煉部隊實戰能力。

錨定“戰”的效能創新戰法打法

智能時代的作戰行動呈現出一些全新特征,更加強調信息主導、體系集成,更加強調精確調控、精准釋能,這也要求實戰化訓練要錨定作戰效能,在創新戰法打法上尋求更多行之有效的方法措施。

研訓一體驅動戰術革新。行之有效的戰術,往往在實戰實訓中逐步凝練形成。借助實戰化訓練這一“淬火”環節,可以最大限度暴露戰術運用弱點,牽引推動戰法打法破舊立新、修訂完善。應基於實用管用根本導向,強化戰法訓法創新運用,在理論攻關和演訓實踐中深度解析作戰樣式、能力鏈路、節點樞紐、力量編組和戰法手段等,加快推動新域新質體系融入、新型作戰概念落地見效,量身打造抗敵制敵的“撒手鐧”“戰法集”。

真打實訓推動戰法檢驗。停留在理論層面的戰法是沒有生命力的,只有歷經真打實訓反復檢驗的戰法才能迅速適應未來戰場。因此,實戰化訓練更加強調戰法打法源於實踐、驗於實踐、用於實踐。要通過反復開展模擬訓練、仿真推演、實兵實裝演練,形成科學適用的指揮要則、行動要點、保障要義,在實踐中檢驗、豐富和完善戰法打法,全面適應未來信息化智能化戰爭。

因時順勢推進戰法演進。無論時代如何變遷,出敵不意、靈活機動始終是戰法運用的“魂”,是獲取戰場主動的前提。智能時代,模型算法支撐下的新裝備、新戰法不斷湧現,只有緊跟軍事變革潮流主動解析戰爭規律、制勝機理,先人一步挖掘戰法、更新戰法,才能保證戰時先敵一步布勢、先敵一步發力。近幾場局部戰爭沖突,一再向我們展示新型作戰概念的真切運用,新型戰法打法的層出不窮。應聚焦強敵靶標,直面威脅挑戰,積極適變、主動求變,基於靈活機動、非對稱制敵等作戰理念,開發設計克敵之策、制敵之計,全面提升戰場適應能力。

緊扣“戰”的趨向強化科技賦能

智能時代,由於新一代軍事技術的廣泛深度運用,在加速作戰節奏、改變戰爭形態、催生新型威脅的同時,也為實戰化訓練提供了更多選項。

知識重塑抬升認知思維。思維認知能力反映對戰爭的認識高度,折射對戰場的適應程度。因此,有人將思維認知能力看作指揮能力的關鍵基礎要素。在智能時代,只有具備敏銳的科技認知、戰場感知,才可能在戰時精准掌握戰場態勢、精密調控力量、靈活控制行動,取得作戰優勢勝勢。要注重強化大數據、物聯網、雲計算、區塊鏈等最新科技知識學習,並通過針對性訓練,系統掌握信息化智能化戰爭特性規律,樹牢體系化戰爭思維,為實戰化訓練疊加科技效能。

仿真交互優化環境條件。虛擬仿真技術不僅在減少耗材投入、降低安全風險方面佔據優勢,而且在構設智能化戰爭場景提高訓練質量方面具有優勢。應注重運用虛擬現實、增強現實、混合現實等技術,構建高度沉浸式可交互的虛擬戰場空間,為受訓人員提供視覺、聽覺、觸覺的真實感受。應注重依托智能穿戴設備、傳感器陣列和虛擬仿真系統等,構建貼近實戰的訓練場景,支撐受訓人員展開戰場感知、行動模擬等訓練,全面提升實戰化訓練的質量層次。

智能賦能盤活數據信息。智能時代,環境空間的多維性、力量裝備的多元性、攻防對抗的多樣性,使得實戰化訓練數據信息海量湧現,其管理運用也成為訓練實踐中的一大難題。應充分利用數據挖掘技術,借助大數據、算法、大模型等,將訓練實踐中大量離散的行為數據、生理數據、環境數據等轉化為可量化、可追溯、可優化的數字資源,進而實現訓練信息的歸口推送、創新運用。在此基礎上,通過形成訓練信息“決策—計劃—采集—處理—評估”閉環管理體系,推動實戰化訓練從概略粗放管理向智能精准管理轉變。

中國軍網 國防部網 // 2025年10月31日 星期四

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-10-31&paperNumber=03&articleid=964349

Chinese Military Era of Intelligent Warfare Rapidly Approaching

中國軍事智能化戰爭時代迅速來臨

現代英語:

Since the beginning of the new century, the rapid development of intelligent technologies, with artificial intelligence (AI) at its core, has accelerated the process of a new round of military revolution, and competition in the military field is rapidly moving towards an era of intellectual dominance. Combat elements represented by “AI, cloud, network, cluster, and terminal,” combined in diverse ways, constitute a new battlefield ecosystem, completely altering the mechanisms of victory in warfare. AI systems based on models and algorithms will be the core combat capability, permeating all aspects and stages, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made to decision by AI. Traditional human-centric tactics are being replaced by AI models and algorithms, making intellectual dominance the core control in future warfare. The stronger the intelligent combat capability, the greater the hope of subduing the enemy without fighting.

[Author Biography] Wu Mingxi is the Chief Scientist and Researcher of China Ordnance Industry Group, Deputy Secretary-General of the Science and Technology Committee of China Ordnance Industry Group, and Deputy Director of the Science and Technology Committee of China Ordnance Science Research Institute. His research focuses on national defense science and technology and weaponry development strategies and planning, policies and theories, management and reform research. His major works include “Intelligent Warfare – AI Military Vision,” etc.

Competition in the Age of Intellectual Property

The history of human civilization is a history of understanding and transforming nature, and also a history of understanding and liberating oneself. Through the development of science and technology and the creation and application of tools, humanity has continuously enhanced its capabilities, reduced its burdens, freed itself from constraints, and liberated itself. The control of war has also constantly changed, enriched, and evolved with technological progress, the expansion of human activity space, and the development of the times. Since the 19th century, humanity has successively experienced the control and struggle for land power, sea power, air power, space power, and information power. With the rapid development of intelligent technologies such as artificial intelligence (AI), big data, cloud computing, bio-interdisciplinary technologies, unmanned systems, and parallel simulation, and their deep integration with traditional technologies, humanity’s ability to understand and transform nature has been transformed in terms of epistemology, methodology, and operational mechanisms. This is accelerating the major technological revolutions in machine intelligence, bionic intelligence, swarm intelligence, human-machine integrated intelligence, and intelligent perception, intelligent decision-making, intelligent action, intelligent support, as well as intelligent design, research and development, testing, and manufacturing, thus accelerating the evolution of warfare towards the control and struggle for intellectual power.

The rapid development of intelligent technology has garnered significant attention from major countries worldwide, becoming a powerful driving force for the leapfrog development of military capabilities. The United States and Russia have placed intelligent technology at the core of maintaining their strategic status as global military powers, and significant changes have occurred in their development concepts, models, organizational methods, and innovative applications. They have also carried out substantive applications and practices of military intelligence (see Figure 1).

Wu Mingxi 1

In August 2017, the U.S. Department of Defense stated that future AI warfare was inevitable and that the U.S. needed to “take immediate action” to accelerate the development of AI warfare technologies. The U.S. military’s “Third Offset Strategy” posits that a military revolution, characterized by intelligent armies, autonomous equipment, and unmanned warfare, is underway; therefore, they have identified intelligent technologies such as autonomous systems, big data analytics, and automation as key development directions. In June 2018, the U.S. Department of Defense announced the establishment of the Joint Artificial Intelligence Center, which, guided by the national AI development strategy, coordinates the planning and construction of the U.S. military’s intelligent military system. In February 2019, then-President Trump signed the “American Artificial Intelligence Initiative” executive order, emphasizing that maintaining U.S. leadership in AI is crucial for safeguarding U.S. economic and national security, and requiring the federal government to invest all resources in promoting innovation in the U.S. AI field. In March 2021, the U.S. National Security Council on Artificial Intelligence released a research report stating that, “For the first time since World War II, the technological advantage that has been the backbone of U.S. economic and military power is under threat. If current trends do not change, China possesses the power, talent, and ambition to surpass the United States as the global leader in artificial intelligence within the next decade.” The report argues that the United States must use artificial intelligence swiftly and responsibly to prepare for these threats in order to safeguard national security and enhance defense capabilities. The report concludes that artificial intelligence will transform the world, and the United States must take a leading role.

Russia also attaches great importance to the technological development and military application of artificial intelligence. The Russian military generally believes that artificial intelligence will trigger the third revolution in the military field, following gunpowder and nuclear weapons. In September 2017, Russian President Vladimir Putin publicly stated that artificial intelligence is the future of Russia, and whoever becomes the leader in this field will dominate the world. In October 2019, Putin approved the “Russian National Strategy for the Development of Artificial Intelligence until 2030,” aiming to accelerate the development and application of artificial intelligence in Russia and seek a world-leading position in the field.

In July 2017, the State Council of China issued the “New Generation Artificial Intelligence Development Plan,” which put forward the guiding ideology, strategic goals, key tasks and safeguard measures for the development of new generation artificial intelligence towards 2030, and deployed efforts to build a first-mover advantage in the development of artificial intelligence and accelerate the construction of an innovative country and a world-class science and technology power.

Other major countries and military powers around the world have also launched their own artificial intelligence development plans, indicating that the global struggle for “intellectual power” has fully unfolded. Land power, sea power, air power, space power, information power, and intellectual power are all results of technological progress and products of their time, each with its own advantages and disadvantages, and some theories are constantly expanding with the changing times. From the development trend of control over warfare since modern times, it can be seen that information power and intellectual power involve the overall situation, carrying greater weight and influence. In the future, with the accelerated pace of intelligent development, intellectual power will become a rapidly growing new type of battlefield control with greater strategic influence on the overall combat situation.

The essence of military intelligence lies in leveraging intelligent technologies to establish diverse identification, decision-making, and control models for the war system. These models constitute artificial intelligence (AI), the core of the new era’s intellectual power struggle. The war system encompasses: equipment systems such as individual units, clusters, manned/unmanned collaborative operations, and multi-domain and cross-domain warfare; combat forces such as individual soldiers, squads, detachments, combined arms units, and theater command; operational links such as networked perception, mission planning and command, force coordination, and comprehensive support; specialized systems such as network attack and defense, electronic warfare, public opinion control, and infrastructure management; and military industrial capabilities such as intelligent design, research and development, production, mobilization, and support. AI, in the form of chips, algorithms, and software, is embedded in every system, level, and link of the war system, forming a systematic brain. Although AI is only a part of the war system, its increasingly powerful “brain-like” functions and capabilities “surpassing human limits” will inevitably dominate the overall situation of future warfare.

Battlefield Ecosystem Reconstruction

Traditional warfare involves relatively independent and separate combat elements, resulting in a relatively simple battlefield ecosystem, primarily consisting of personnel, equipment, and tactics. In the intelligent era, warfare is characterized by significant integration, correlation, and interaction among various combat elements. This will lead to substantial changes in the battlefield ecosystem, forming a combat system, cluster system, and human-machine system comprised of an AI brain, distributed cloud, communication networks, collaborative groups, and various virtual and physical terminals—collectively known as the “AI, Cloud, Network, Cluster, Terminal” intelligent ecosystem (see Figure 2). Among these, AI plays a dominant role.

Wu Mingxi 2

AI Brain System. The AI ​​brain system of the intelligent battlefield is a networked and distributed system that is inseparable from and interdependent with combat platforms and missions. It can be classified in several ways. Based on function and computing power, it mainly includes cerebellum, swarm brain, midbrain, hybrid brain, and cerebrum; based on combat missions and stages, it mainly includes sensor AI, combat mission planning and decision-making AI, precision strike and controllable destruction AI, network attack and defense AI, electronic warfare AI, intelligent defense AI, and integrated support AI; based on form, it mainly includes embedded AI, cloud AI, and parallel system AI.

The cerebellum mainly refers to the embedded AI in sensor platforms, combat platforms, and support platforms, which mainly performs tasks such as battlefield environment detection, target recognition, rapid maneuver, precision strike, controlled destruction, equipment support, maintenance support, and logistical support.

“Swarm brain” mainly refers to the AI ​​that enables intelligent control of unmanned swarm platforms on the ground, in the air, at sea, in the water, and in space. It mainly performs tasks such as collaborative perception of the battlefield environment, swarm maneuver, swarm attack, and swarm defense. The key components include algorithms for homogeneous swarm systems and algorithms for heterogeneous systems such as manned-unmanned collaboration.

The midbrain mainly refers to the AI ​​system of the command center, data center, and edge computing of the front-line units on the battlefield. It mainly performs dynamic planning, autonomous decision-making, and auxiliary decision-making for tactical unit combat missions under online and offline conditions.

Hybrid brain mainly refers to a hybrid decision-making system in which commanders and machine AI collaborate in combat operations of organized units. Before the battle, it mainly performs human-based combat mission planning; during the battle, it mainly performs adaptive dynamic mission planning and adjustment based on machine AI; and after the battle, it mainly performs hybrid decision-making tasks oriented towards counter-terrorism and defense.

The “brain” primarily refers to the model, algorithm, and tactical libraries of the theater command center and data center, playing a key supporting role in campaign and strategic decision-making. Due to the abundant data, various battlefield AI systems can be trained and modeled here, and then loaded into different mission systems once mature.

In future battlefields, there will be other AIs of different functions, types, and sizes, such as sensor AI, which mainly includes image recognition, electromagnetic spectrum recognition, sound recognition, speech recognition, and human activity behavior recognition. With the rapid development and widespread application of intelligence, AIs of all sizes will exist throughout society, serving the public and society in peacetime, and potentially serving the military in wartime.

Distributed cloud. Military cloud differs from civilian cloud. Generally speaking, a military cloud platform is a distributed resource management system that uses communication networks to search, collect, aggregate, analyze, calculate, store, and distribute operational information and data. By constructing a distributed system and a multi-point fault-tolerant backup mechanism, a military cloud platform possesses powerful intelligence sharing capabilities, data processing capabilities, resilience, and self-healing capabilities. It can provide fixed and mobile, public and private cloud services, achieving “one-point collection, everyone sharing,” greatly reducing information flow links, making command processes flatter and faster, and avoiding redundant and decentralized construction at all levels.

From the perspective of future intelligent warfare needs, military cloud needs to construct at least a four-tiered system: tactical front-end cloud, troop cloud, theater cloud, and strategic cloud. Based on operational elements, it can also be divided into specialized cloud systems such as intelligence cloud, situational awareness cloud, firepower cloud, information warfare cloud, support cloud, and nebula.

1. Front-end cloud primarily refers to computing services provided by units, squads, and platforms, including information perception, target identification, battlefield environment analysis, autonomous and assisted decision-making, and operational process and effect evaluation. The role of front-end cloud is mainly reflected in two aspects. First, it facilitates the sharing and collaboration of computing and storage resources among platforms, and the interactive integration of intelligent combat information. For example, if a platform or terminal is attacked, relevant perception information, damage status, and historical data will be automatically backed up, replaced, and updated through a networked cloud platform, and the relevant information will be uploaded to the higher command post. Second, it provides online information services and intelligent software upgrades for offline terminals.

2. Military cloud primarily refers to the cloud systems built at the battalion and brigade level for operations. Its focus is on providing computing services such as intelligent perception, intelligent decision-making, autonomous action, and intelligent support in response to different threats and environments. The goal of military cloud construction is to establish a networked, automatically backed-up, distributed cloud system connected to multiple links with higher-level units. This system should meet the computing needs of different forces, including reconnaissance and perception, mobile assault, command and control, firepower strikes, and logistical support, as well as the computing needs of various combat missions such as tactical joint operations, manned/unmanned collaboration, and swarm offense and defense.

3. Theater Cloud primarily provides battlefield weather, geographical, electromagnetic, human, and social environmental factors and information data for the entire operational area. It offers comprehensive information on troop deployments, weaponry, movement changes, and combat losses for both sides, as well as relevant information from higher command, friendly forces, and civilian support. Theater Cloud should possess networked, customized, and intelligent information service capabilities. It should interconnect with various operational units through military communication networks (space-based, airborne, ground-based, maritime, and underwater) and civilian communication networks (under secure measures) to ensure efficient, timely, and accurate information services.

4. Strategic cloud is mainly established by a country’s defense system and military command organs. It is primarily based on military information and covers comprehensive information and data related to defense technology, defense industry, mobilization support, economic and social support capabilities, as well as politics, diplomacy, and public opinion. It provides core information, assessments, analyses, and suggestions such as war preparation, operational planning, operational schemes, operational progress, battlefield situation, and battle situation analysis; and provides supporting data such as strategic intelligence, the military strength of adversaries, and war mobilization potential.

The various clouds mentioned above are interconnected, exhibiting both hierarchical and horizontal relationships of collaboration, mutual support, and mutual service. The core tasks of the military cloud platform are twofold: first, to provide data and computing support for building an AI-powered intelligent warfare system; and second, to provide operational information, computing, and data support for various combat personnel and weapon platforms. Furthermore, considering the needs of terminals and group operations, it is necessary to pre-process some cloud computing results, models, and algorithms into intelligent chips and embed them into weapon platforms and group terminals, enabling online upgrades or offline updates.

Communication networks. Military communication and network information constitute a complex super-network system. Since military forces primarily operate in land, sea, air, space, field maneuver, and urban environments, their communication networks encompass strategic and tactical communications, wired and wireless communications, secure communications, and civilian communications. Among these, wireless, mobile, and free-space communication networks are the most crucial components of the military network system, and related integrated electronic information systems are gradually established based on these communication networks.

Military communications in the mechanized era primarily followed the platform, terminal, and user, satisfying specific needs but resulting in numerous silos and extremely poor interconnectivity. In the information age, this situation is beginning to change. Currently, military communication networks are adopting new technological systems and development models, characterized by two main features: first, “network-data separation,” where information transmission does not depend on any specific network transmission method—”network access is all that matters”—any information can be delivered as long as the network link is unobstructed; second, internet-based architecture, utilizing IP addresses, routers, and servers to achieve “all roads lead to Beijing,” i.e., military networking or grid-based systems. Of course, military communication networks differ from civilian networks. Strategic and specialized communication needs exist at all times, such as nuclear button communications for nuclear weapons and command and control of strategic weapons, information transmission for satellite reconnaissance, remote sensing, and strategic early warning, and even specialized communications in individual soldier rooms and special operations conditions. These may still adopt a mission-driven communication model. Even so, standardization and internet connectivity are undoubtedly the future trends in military communication network development. Otherwise, not only will the number of battlefield communication frequency bands, radios, and information exchange methods increase, leading to self-interference, mutual interference, and electromagnetic compatibility difficulties, but radio spectrum management will also become increasingly complex. More importantly, it will be difficult for platform users to achieve automatic communication based on IP addresses and routing structures, unlike email on the internet where a single command can be sent to multiple users. Future combat platforms will certainly be both communication user terminals and also function as routers and servers.

Military communication network systems mainly include space-based communication networks, military mobile communication networks, data links, new communication networks, and civilian communication networks.

1. Space-Based Information Networks. The United States leads in the construction and utilization of space-based information networks. This is because more than half of the thousands of orbiting platforms and payloads in space are American-owned. Following the Gulf War, and especially during the Iraq War, the US military accelerated the application and advancement of space-based information networks through wartime experience. After the Iraq War, through the utilization of space-based information and the establishment of IP-based interconnection, nearly 140 vertical “chimneys” from the Gulf War period were completely interconnected horizontally, significantly shortening the “Out-of-Target-Action” (OODA) loop time. The time from space-based sensors to the shooter has been reduced from tens of hours during the Gulf War to approximately 20 seconds currently using artificial intelligence for identification.

With the rapid development of small satellite technology, low-cost, multi-functional small satellites are becoming increasingly common. As competition intensifies in commercial launches, costs are dropping dramatically, and a single launch can carry several, a dozen, or even dozens of small satellites. If miniaturized electronic reconnaissance, visible light and infrared imaging, and even quantum dot micro-spectroscopy instruments are integrated onto these satellites, achieving integrated reconnaissance, communication, navigation, meteorological, and mapping functions, the future world and battlefield will become much more transparent.

2. Military Mobile Communication Networks. Military mobile communication networks have three main uses. First, command and control between various branches of the armed forces and combat units in joint operations; this type of communication requires a high level of confidentiality, reliability, and security. Second, communication between platforms and clusters, requiring anti-jamming capabilities and high reliability. Third, command and control of weapon systems, mostly handled through data links.

Traditional military mobile communication networks are mostly “centralized, vertically focused, and tree-like structures.” With the acceleration of informatization, the trend towards “decentralized, self-organizing networks, and internet-based” is becoming increasingly apparent. As cognitive radio technology matures and is widely adopted (see Figure 3), future network communication systems will be able to automatically identify electromagnetic interference and communication obstacles on the battlefield, quickly locate available spectrum resources, and conduct real-time communication through frequency hopping and other methods. Simultaneously, software and cognitive radio technology can be compatible with different communication frequency bands and waveforms, facilitating seamless transitions from older to newer systems.

Wu Mingxi 3

3. Data Links. A data link is a specialized communication technology that uses time division, frequency division, and code division to transmit pre-agreed, periodic, or irregular, regular or irregular critical information between various combat platforms. Unless fully understood or deciphered by the enemy, it is very difficult to interfere with. Data links are mainly divided into two categories: dedicated and general-purpose. Joint operations, formation coordination, and swarm operations primarily utilize general-purpose data links. Satellite data links, UAV data links, missile-borne data links, and weapon fire control data links are currently mostly dedicated. In the future, generalization will be a trend, and specialization will decrease. Furthermore, from the perspective of the relationship between platforms and communication, the information transmission and reception of platform sensors and internal information processing generally follow the mission system, exhibiting strong specialization characteristics, while communication and data transmission between platforms are becoming increasingly general-purpose.

4. New Communication Technologies. Traditional military communication primarily relies on microwave communication. Due to its large divergence angle and numerous application platforms, corresponding electronic jamming and microwave attack methods have developed rapidly, making it easy to carry out long-range interference and damage. Therefore, new communication technologies such as millimeter waves, terahertz waves, laser communication, and free-space optical communication have become important choices that are both anti-jamming and easy to implement high-speed, high-capacity, and high-bandwidth communication. Although high-frequency electromagnetic waves have good anti-jamming performance due to their smaller divergence angle, achieving precise point-to-point aiming and omnidirectional communication still presents certain challenges, especially under conditions of high-speed maneuvering and rapid trajectory changes of combat platforms. How to achieve alignment and omnidirectional communication is still under technological exploration.

5. Civilian Communication Resources. The effective utilization of civilian communication resources is a strategic issue that must be considered and cannot be avoided in the era of intelligentization. In the future, leveraging civilian communication networks, especially 5G/6G mobile communications, for open-source information mining and data correlation analysis to provide battlefield environment, target, and situational information will be crucial for both combat and non-combat military operations. In non-combat military operations, especially overseas peacekeeping, rescue, counter-terrorism, and disaster relief, the military’s dedicated communication networks can only be used within limited areas and regions, raising the question of how to communicate and connect with the outside world. There are two main ways to utilize civilian communication resources: one is to utilize civilian satellite communication resources, especially small satellite communication resources; the other is to utilize civilian mobile communication and internet resources.

The core issue in the interactive utilization of military and civilian communication resources is addressing security and confidentiality. One approach is to employ firewalls and encryption, directly utilizing civilian satellite communications and global mobile communication infrastructure for command and communication; however, the risks of hacking and cyberattacks remain. Another approach is to utilize emerging technologies such as virtualization, intranets, semi-physical isolation, one-way transmission, mimicry defense, and blockchain to address these challenges.

Collaborative swarms. By simulating the behavior of bee colonies, ant colonies, flocks of birds, and schools of fish in nature, this research studies the autonomous collaborative mechanisms of swarm systems such as drones and smart munitions to accomplish combat missions such as attacking or defending against enemy targets. This can achieve strike effects that are difficult to achieve with traditional combat methods and approaches. Collaborative swarms are an inevitable trend in intelligent development and a major direction and key area of ​​intelligent construction. No matter how advanced the combat performance or how powerful the functions of a single combat platform, it cannot form a collective or scalable advantage. Simply accumulating quantity and expanding scale, without autonomous, collaborative, and orderly intelligent elements, is just a disorganized mess.

Collaborative swarms mainly comprise three aspects: first, manned/unmanned collaborative swarms formed by the intelligent transformation of existing platforms, primarily constructed from large and medium-sized combat platforms; second, low-cost, homogeneous, single-function, and diverse combat swarms, primarily constructed from small unmanned combat platforms and munitions; and third, biomimetic swarms integrating human and machine intelligence, possessing both biological and machine intelligence, primarily constructed from highly autonomous humanoid, reptile-like, avian-like, and marine-like organisms. Utilizing collaborative swarm systems for cluster warfare, especially swarm warfare, offers numerous advantages and characteristics.

1. Scale Advantage. A large unmanned system can disperse combat forces, increasing the number of targets the enemy can attack and forcing them to expend more weapons and ammunition. The survivability of a swarm, due to its sheer number, is highly resilient and resilient; the survivability of a single platform becomes less important, while the overall advantage becomes more pronounced. The sheer scale prevents drastic fluctuations in combat effectiveness, because unlike high-value manned combat platforms and complex weapon systems such as the B-2 strategic bomber and advanced F-22 and F-35 fighter jets, the loss of a low-cost unmanned platform, once attacked or destroyed, results in a sharp decline in combat effectiveness. Swarm operations can launch simultaneous attacks, overwhelming enemy defenses. Most defensive systems have limited capabilities, able to handle only a limited number of threats at a time. Even with dense artillery defenses, a single salvo can only hit a limited number of targets, leaving some to escape. Therefore, swarm systems possess extremely strong penetration capabilities.

2. Cost Advantage. Swarm warfare, especially bee warfare, primarily utilizes small and medium-sized UAVs, unmanned platforms, and munitions. These have simple product lines, are produced in large quantities, and have consistent quality and performance requirements, facilitating low-cost mass production. While the pace of upgrades and replacements for modern weapons and combat platforms has accelerated significantly, the cost increases have also been staggering. Since World War II, weapons development and procurement prices have shown that equipment costs and prices have risen much faster than performance improvements. Main battle tanks during the Gulf War cost 40 times more than those during World War II, while combat aircraft and aircraft carriers cost as much as 500 times more. From the Gulf War to 2020, the prices of various main battle weapons and equipment increased several times, tens of times, or even hundreds of times. In comparison, small and medium-sized UAVs, unmanned platforms, and munitions with simple product lines have a clear cost advantage.

3. Autonomous Advantage. Under a unified spatiotemporal reference platform, through networked active and passive communication and intelligent perception of battlefield targets, individual platforms in the group can accurately perceive the distance, speed, and positional relationships between each other. They can also quickly identify the nature, size, priority, and distance of target threats, as well as their own distance from neighboring platforms. With pre-defined operational rules, one or more platforms can conduct simultaneous or wave-based attacks according to the priority of target threats, or they can attack in groups simultaneously or in multiple waves (see Figure 4). Furthermore, the priority order for subsequent platforms to replace a damaged platform can be clearly defined, ultimately achieving autonomous decision-making and action according to pre-agreed operational rules. This intelligent combat operation, depending on the level of human involvement and the difficulty of controlling key nodes, can be either completely autonomous, or semi-autonomous, with human intervention.

Wu Mingxi 4

4. Decision-making advantage. The future battlefield environment is becoming increasingly complex, with combatants vying for dominance in intense strategic maneuvering and confrontation. Therefore, relying on humans to make decisions in a high-intensity confrontation environment is neither timely nor reliable. Thus, only by entrusting automated environmental adaptation, automatic target and threat identification, autonomous decision-making, and coordinated action to collaborative groups can adversaries be rapidly attacked or effective defenses implemented, thereby gaining battlefield advantage and initiative.

The coordination group brings new challenges to command and control. How to implement command and control of the cluster is a new strategic issue. Control can be implemented in a hierarchical and task-based manner, which can be roughly divided into centralized control mode, hierarchical control mode, consistent coordination mode, and spontaneous coordination mode. [1] Various forms can be adopted to achieve human control and participation. Generally speaking, the smaller the tactical unit, the more autonomous action and unmanned intervention should be adopted; at the level of organized unit operations, since the control of multiple combat groups is involved, centralized planning and hierarchical control are required, and human participation should be limited; at the higher strategic and operational levels, the cluster is only used as a platform weapon and combat style, which requires unified planning and layout, and the degree of human participation will be higher. From the perspective of mission nature, the operation and use of strategic weapons, such as nuclear counterattacks, requires human operation and is not suitable for autonomous handling by weapon systems. When conducting offensive and defensive operations against important or high-value targets, such as decapitation strikes, full human participation and control are necessary, while simultaneously leveraging the autonomous functions of the weapon systems. For offensive operations against tactical targets, if the mission requires lethal strikes and destruction, limited human participation is permissible, or, after human confirmation, the coordinated group can execute the operation automatically. When performing non-strike missions such as reconnaissance, surveillance, target identification, and clearance, or short-duration missions such as air defense and missile defense where human involvement is difficult, the coordinated group should primarily execute these tasks automatically, without human involvement. Furthermore, countermeasures for swarm operations must be carefully studied. Key research should focus on countermeasures against electronic deception, electromagnetic interference, cyberattacks, and high-power microwave weapons, electromagnetic pulse bombs, and artillery-missile systems, as their effects are relatively significant. Simultaneously, research should be conducted on countermeasures such as laser weapons and swarm-to-swarm tactics, gradually establishing a “firewall” that humans can effectively control against coordinated groups.

Virtual and physical terminals. Virtual and physical terminals mainly refer to various terminals linked to the cloud and network, including sensors with pre-embedded intelligent modules, command and control platforms, weapon platforms, support platforms, related equipment and facilities, and combat personnel. Future equipment and platforms will be cyber-physical systems (CPS) and human-computer interaction systems with diverse front-end functions, cloud-based back-end support, virtual-physical interaction, and online-offline integration. Simple environmental perception, path planning, platform maneuverability, and weapon operation will primarily rely on front-end intelligence such as bionic intelligence and machine intelligence. Complex battlefield target identification, combat mission planning, networked collaborative strikes, combat situation analysis, and advanced human-computer interaction will require information, data, and algorithm support from back-end cloud platforms and cloud-based AI. The front-end intelligence and back-end cloud intelligence of each equipment platform should be combined for unified planning and design, forming a comprehensive advantage of integrated front-end and back-end intelligence. Simultaneously, virtual soldiers, virtual staff officers, virtual commanders, and their intelligent and efficient interaction with humans are also key areas and challenges for future research and development.

Qualitative change in the form of warfare

Since modern times, human society has mainly experienced large-scale mechanized warfare and smaller-scale informationized local wars. The two world wars that occurred in the first half of the 20th century were typical examples of mechanized warfare. The Gulf War, the Kosovo War, the Afghanistan War, the Iraq War, and the Syrian War since the 1990s fully demonstrate the form and characteristics of informationized warfare. In the new century and new stage, with the rapid development and widespread application of intelligent technologies, the era of intelligent warfare, characterized by data and computing, models and algorithms, is about to arrive (see Figure 5).

Wu Mingxi 5

Mechanization is a product of the industrial age, focusing on mechanical power and electrical technology. Its weaponry primarily manifests as tanks, armored vehicles, artillery, aircraft, and ships, corresponding to mechanized warfare. Mechanized warfare is mainly based on classical physics, represented by Newton’s laws, and large-scale socialized production. It is characterized by large-scale, linear, and contact warfare. Tactically, it typically involves on-site reconnaissance, terrain surveys, understanding the opponent’s forward and rear deployments, making decisions based on one’s own capabilities, implementing offensive or defensive maneuvers, and assigning tasks, coordinating operations, and ensuring logistical support. It exhibits clear characteristics such as hierarchical command and control and sequential temporal and spatial operations.

Information technology, a product of the information age, focuses on information technologies such as computers and network communications. Its equipment primarily manifests as radar, radios, satellites, missiles, computers, military software, command and control systems, cyber and electronic warfare systems, and integrated electronic information systems, corresponding to the form of information warfare. Information warfare is mainly based on the three laws of computers and networks (Moore’s Law, Gilder’s Law, and Metcalfe’s Law), emphasizing integrated, precise, and three-dimensional operations. It establishes a seamless and rapid information link from sensor to shooter, seizing information dominance and achieving preemptive detection and strike. Tactically, it requires detailed identification and cataloging of the battlefield and targets, highlighting the role of networked perception and command and control systems, and placing new demands on the interconnectivity and other information functions of platforms. Due to the development of global information systems and diversified network communications, information warfare blurs the lines between front and rear lines, emphasizing horizontal integration of reconnaissance, control, strike, assessment, and support, as well as the integration and flattening of strategy, campaign, and tactics.

Intelligentization is a product of the knowledge economy era. Technologically, it focuses on intelligent technologies such as artificial intelligence, big data, cloud computing, cognitive communication, the Internet of Things, biological cross-disciplinary, hybrid enhancement, swarm intelligence, autonomous navigation and collaboration. In terms of equipment, it mainly manifests as unmanned platforms, intelligent munitions, swarm systems, intelligent sensing and database systems, adaptive mission planning and decision-making systems, combat simulation and parallel training systems, military cloud platforms and service systems, public opinion early warning and guidance systems, and intelligent wearable systems, which correspond to the form of intelligent warfare.

Intelligent warfare, primarily based on biomimetic, brain-like principles, and AI-driven battlefield ecosystems, is a new combat form characterized by “energy mobility and information interconnection,” supported by “network communication and distributed cloud,” centered on “data computing and model algorithms,” and focused on “cognitive confrontation.” It features multi-domain integration, cross-domain offense and defense, unmanned operation, cluster confrontation, and integrated interaction between virtual and physical spaces.

Intelligent warfare aims to meet the needs of nuclear and conventional deterrence, joint operations, all-domain operations, and non-war military operations. It focuses on multi-domain integrated operations encompassing cognitive, informational, physical, social, and biological domains, exhibiting characteristics such as distributed deployment, networked links, flattened structures, modular combinations, adaptive reconfiguration, parallel interaction, focused energy release, and nonlinear effects. Its winning mechanisms overturn traditions, its organizational forms undergo qualitative changes, its operational efficiency is unprecedentedly improved, and its combat power generation mechanisms are transformed. These substantial changes are mainly reflected in the following ten aspects.

The Winning Mechanism Dominated by AI. Under intelligent conditions, new combat elements represented by “AI, cloud, network, cluster, and terminal” will reshape the battlefield ecosystem, completely changing the winning mechanism of war. Among them, AI systems based on models and algorithms are the core combat capability, permeating all aspects and links, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made by AI. The traditional human-based combat methods are being replaced by AI models and algorithms. Algorithmic warfare will play a decisive role in war, and the combat system and process will ultimately be dominated by AI. The right to intelligence will become the core control in future warfare.

Different eras and different forms of warfare result in different battlefield ecosystems, with entirely different compositions of combat elements and winning mechanisms. Mechanized warfare is platform-centric warfare, with “movement” as its core and firepower and mobility as its dominant forces, pursuing energy delivery and release through equipment. Combat elements mainly include: personnel + mechanized equipment + tactics. The winning mechanism is based on human-led decision-making in the operational use of mechanized equipment, achieving victory with superior numbers, overwhelming smaller forces, and controlling slower forces, with comprehensive, efficient, and sustainable mobilization capabilities playing decisive or important roles. Informationized warfare is network-centric warfare, with “connectivity” as its core and information power as its dominant force, pursuing energy aggregation and release through networks. Combat elements and their interrelationships mainly consist of “personnel + informationized equipment + tactics” based on network information. Information permeates personnel, equipment, and tactics, establishing seamless information connections “from sensor to shooter,” achieving system-wide and networked combat capabilities, using systems against localized forces, networks against discrete forces, and speed against slow forces, becoming a crucial mechanism for achieving victory in war. Information plays a multiplier role in equipment and combat systems, but the platform remains human-centric. Information assists in decision-making, but most decisions are still made by humans. Intelligent warfare is cognitive-centric warfare, with “computation” at its core and intelligence as the dominant force. Intelligence will carry more weight than firepower, mobility, and information power, pursuing the use of intelligence to control and dominate capabilities, using the virtual to overcome the real, and achieving victory through superiority. The side with more AI and whose AI is smarter will have greater initiative on the battlefield. The main combat elements and their interrelationships are: AI × (cloud + network + swarm + human + equipment + tactics), which can be simplified to an interconnected and integrated battlefield ecosystem composed of “AI, cloud, network, swarm, and terminal” elements. In the future, AI’s role in warfare will become increasingly significant and powerful, ultimately playing a decisive and dominant role.

Emphasizing the leading role of AI does not deny the role of humans in warfare. On the one hand, human intelligence has been pre-emptively utilized and endowed into AI; on the other hand, at the pre-war, post-war, and strategic levels, for a considerable period of time and in the foreseeable future, AI cannot replace humans.

Modern warfare is becoming increasingly complex, with combat operations moving at ever faster paces. The ability to quickly identify and process massive amounts of information, respond rapidly to battlefield situations, and formulate decisive strategies is far beyond human capability and exceeds the limits of current technology (see Tables 1 and 2). As AI becomes more widely applied and plays a more significant role in warfare, operational processes will be reshaped, and the military kill chain will be accelerated and made more efficient. Rapid perception, decision-making, action, and support will become crucial factors for victory in future intelligent warfare.

Wu Mingxi - Table 1
Wu Mingxi - Table 2

In the future, intelligent recognition and pattern recognition of images, videos, electromagnetic spectrum, and voice will enable rapid and accurate target identification from complex battlefield information gathered by air, land, and sea sensor networks. Utilizing big data technology, through multi-source, multi-dimensional directional search and intelligent correlation analysis, not only can various targets be accurately located, but also human behavior, social activities, military operations, and public opinion trends can be precisely modeled, gradually improving the accuracy of early warning and prediction. Based on precise battlefield information, each theater and battlefield can adaptively implement mission planning, autonomous decision-making, and operational process control through extensive parallel modeling and simulation training in virtual space. AI on various combat platforms and cluster systems can autonomously and collaboratively execute tasks around operational objectives according to mission planning, and proactively adjust to changes that may occur at any time. By establishing a distributed, networked, intelligent, and multi-modal support system and pre-positioned deployment, rapid and precise logistics distribution, material supply, and intelligent maintenance can be implemented. In summary, through the widespread application of intelligent technologies and the proactive and evolving capabilities of various AI systems, the entire operational process—including planning, prediction, perception, decision-making, implementation, control, and support—can be re-engineered to achieve a “simple, fast, efficient, and controllable” operational workflow. This will gradually free humanity from the burdens of arduous combat tasks. Operational workflow re-engineering will accelerate the pace, compress time, and shorten processes on the future battlefield.

The winning mechanism dominated by AI is mainly manifested in combat capabilities, methods, strategies, and measures. It fully integrates human intelligence, approaches human intelligence, surpasses human limits, leverages the advantages of machines, and embodies advancement, disruption, and innovation. This advancement and innovation is not a simple extension or increase in quantity in previous wars, but a qualitative change and leap, a higher-level characteristic. This higher-level characteristic is reflected in intelligent warfare possessing “brain-like” functions and many “capabilities that surpass human limits” that traditional warfare lacks. As AI continues to optimize and iterate, it will one day surpass ordinary soldiers, staff officers, commanders, and even elite and expert groups, becoming a “super brain” and a “super brain group.” This is the core and key of intelligent warfare, a technological revolution in the fields of epistemology and methodology, and a high-level combat capability that humanity can currently foresee, achieve, and evolve.

The role of cyberspace is rising. With the progress of the times and the development of technology, the operational space has gradually expanded from physical space to virtual space. The role and importance of virtual space in the operational system are gradually rising and becoming increasingly important, and it is increasingly deeply integrated with physical space and other fields. Virtual space is an information space based on network electromagnetics constructed by humans. It can reflect human society and the material world from multiple perspectives, and can be utilized by transcending many limitations of the objective world. It is constructed by the information domain, connected by the physical domain, reflected by the social domain, and utilized by the cognitive domain. In a narrow sense, virtual space mainly refers to the civilian Internet; in a broad sense, virtual space mainly refers to cyberspace, including various Internet of Things, military networks, and dedicated networks. Cyberspace is characterized by being easy to attack but difficult to defend, using software to fight hard, integrating peacetime and wartime, and blurring the lines between military and civilian sectors. It has become an important battlefield for conducting military operations, strategic deterrence, and cognitive confrontation.

The importance of cyberspace is mainly reflected in three aspects: First, through network information systems, it connects dispersed combat forces and elements into a whole, forming a systematic and networked combat capability, which becomes the foundation of information warfare; second, it becomes the main battlefield and basic support for cognitive confrontation such as cyberspace, intelligence, public opinion, psychology, and consciousness; and third, it establishes virtual battlefields, conducts combat experiments, realizes virtual-real interaction, and forms the core and key to parallel operations and the ability to use the virtual to defeat the real.

In the future, with the accelerated upgrading of global interconnection and the Internet of Things, and with the establishment, improvement and widespread application of systems such as space-based networked reconnaissance, communication, navigation, mobile internet, Wi-Fi, high-precision global spatiotemporal reference platforms, digital maps, and industry big data, human society and global military activities will become increasingly “transparent,” increasingly networked, perceived, analyzed, correlated, and controlled (see Figure 6). This will have a profound, all-round, and ubiquitous impact on military construction and operations. The combat system in the intelligent era will gradually expand from closed to open, and from military-led to a “source-open and ubiquitous” direction that integrates military and civilian sectors.

Wu Mingxi 6

In the era of intelligentization, information and data from the physical, informational, cognitive, social, and biological fields will gradually flow freely. Combat elements will achieve deep interconnection and the Internet of Things. Various combat systems will evolve from basic “capability combinations” to advanced “information fusion, data linking, and integrated behavioral interaction,” possessing powerful all-domain perception, multi-domain fusion, and cross-domain combat capabilities, and the ability to effectively control important targets, sensitive groups, and critical infrastructure anytime, anywhere. A report from the U.S. Army Joint Arms Center argues that the world is entering an era of “ubiquitous global surveillance.” Even if the world cannot track all activities, the proliferation of technology will undoubtedly cause the potential sources of information to grow exponentially.

Currently, network-based software attacks have acquired the capability to cause physical damage, and cyberattacks by militarily advanced countries possess operational capabilities such as intrusion, deception, interference, and sabotage. Cyberspace has become another important battlefield for military operations and strategic deterrence. The United States has already used cyberattacks in actual combat. Ben Ali of Tunisia, Gaddafi of Libya, and Saddam Hussein of Iraq were all influenced by US cyberattacks and WikiLeaks, causing shifts in public opinion, psychological breakdowns, and social unrest, leading to the rapid collapse of their regimes and having a disruptive impact on traditional warfare. Through the Snowden revelations, a list of 49 cyber reconnaissance projects across 11 categories used by the United States was gradually exposed. Incidents such as the Stuxnet virus’s sabotage of Iranian nuclear facilities, the Gauss virus’s mass intrusion into Middle Eastern countries, and the Cuban Twitter account’s control of public opinion demonstrate that the United States possesses powerful monitoring capabilities, as well as soft and hard attack and psychological warfare capabilities over the internet, closed networks, and mobile wireless networks.

The war began with virtual space experiments. The US military began exploring combat simulation, operational experiments, and simulation training in the 1980s. Later, the US military pioneered the use of virtual reality, wargaming, and digital twin technologies in virtual battlefields and combat experiments. Analysis shows that the US military conducted combat simulations in military operations such as the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War, striving to find the optimal operational and action plans. It has been reported that before Russia intervened militarily in Syria, it conducted pre-war exercises in its war labs. Based on the experimental simulations, it formulated the “Center-2015” strategic exercise plan, practicing “mobility and accessibility in unfamiliar areas” for combat in Syria. After the exercise, Russian Chief of the General Staff Gerasimov emphasized that the primary means would be political, economic, and psychological warfare, supplemented by long-range precision air strikes and special operations, ultimately achieving political and strategic objectives. Practice shows that the process of Russia’s intervention in Syria was largely consistent with these experiments and exercises.

In the future, with the application and development of virtual simulation, mixed reality, big data, and intelligent software, a parallel military artificial system can be established, allowing physical forces in the physical space to map and iterate with virtual forces in the virtual space. This will enable rapid, high-intensity adversarial training and supercomputing that are difficult to achieve in the physical space. It can also engage in combat and games against highly realistic “blue force systems,” continuously accumulating data, building models and algorithms, and ultimately using the optimal solutions to guide the construction and combat of physical forces, achieving the goal of virtual-real interaction, using the virtual to control the real, and winning with the virtual. On January 25, 2019, DeepMind, Google’s AI team, and Blizzard Entertainment, the developer of StarCraft, announced the results of the December 2018 match between AlphaSTAR and professional players TLO and MANA. In the best-of-five series, AlphaSTAR won both matches 5-0. AlphaSTAR completed the training workload that would take human players 200 years in just two weeks, demonstrating the enormous advantages and bright prospects of simulated adversarial training in virtual space.

The combat style is dominated by unmanned operations. In the era of intelligentization, unmanned warfare will become the basic form, and the integration and development of artificial intelligence and related technologies will gradually push this form to an advanced stage. Unmanned systems represent the full pre-positioning of human intelligence in the combat system and are a concentrated manifestation of the integrated development of intelligence, informatization, and mechanization. Unmanned equipment first appeared in the field of drones. In 1917, Britain built the world’s first drone, but it was not used in actual combat. With the development of technology, drones were gradually used in target drones, reconnaissance, and reconnaissance-strike integrated operations. Since the beginning of the 21st century, unmanned technologies and equipment have achieved tremendous leaps and major breakthroughs in exploration and application due to their advantages such as mission-centric design, no need to consider crew requirements, and high cost-effectiveness. They have shown a rapid and comprehensive development trend, and their application scope has expanded rapidly, covering various fields such as air, surface, underwater, ground, and space.

In recent years, technologies such as artificial intelligence, bionic intelligence, human-machine integrated intelligence, and swarm intelligence have developed rapidly. With the help of satellite communication and navigation, and autonomous navigation, unmanned combat platforms can effectively achieve remote control, formation flight, and swarm collaboration. Currently, unmanned combat aerial vehicles, underwater unmanned platforms, and space-based unmanned autonomous robots have emerged one after another. Bipedal, quadrupedal, multi-legged, and cloud-based intelligent robots are developing rapidly and have entered the fast lane of engineering and practical application, with military applications not far off.

Overall, unmanned warfare in the era of intelligentization will enter three stages of development. The first stage is the initial stage, characterized by manned dominance and unmanned support, where “unmanned warfare under manned leadership” means that combat behavior is completely controlled and dominated by humans before, during, and after the operation. The second stage is the intermediate stage, characterized by manned support and unmanned dominance, where “unmanned warfare under limited control” means that human control is limited, auxiliary, but crucial throughout the entire combat process, and in most cases, the autonomous action capabilities of the platform can be relied upon. The third stage is the advanced stage, characterized by manned rules and unmanned action, where “unmanned warfare with manned design and minimal control” means that humans conduct overall design in advance, clarifying autonomous behavior and rules of the game under various combat environments, and the execution phase is mainly entrusted to unmanned platforms and unmanned forces for autonomous execution.

Autonomous behavior or autonomy is the essence of unmanned warfare and a common and prominent feature of intelligent warfare, manifested in many aspects.

First, the autonomy of combat platforms, mainly including the autonomous capabilities and intelligence level of unmanned aerial vehicles, ground unmanned platforms, precision-guided weapons, underwater and space robots.

Second, the detection system is autonomous, which mainly includes automatic search, tracking, association, aiming, and intelligent recognition of information such as images, voice, video, and electronic signals.

Thirdly, there is autonomous decision-making, the core of which is AI-based autonomous decision-making within the combat system. This mainly includes automatic analysis of the battlefield situation, automatic planning of combat missions, automated command and control, and intelligent human-machine interaction.

Fourthly, autonomous coordination in combat operations, which initially includes autonomous coordination between manned and unmanned systems, and later includes autonomous unmanned swarms, such as various combat formations, bee swarms, ant swarms, fish swarms, and other combat behaviors.

Fifth, autonomous network attack and defense behaviors, including automatic identification, automatic tracing, automatic protection, and autonomous counterattack against various viruses and network attacks.

Sixth, cognitive electronic warfare, which automatically identifies the power, frequency band, and direction of electronic interference, automatically hops frequencies and autonomously forms networks, and engages in active and automatic electronic interference against adversaries.

Seventh, other autonomous behaviors, including intelligent diagnosis, automatic repair, and self-protection.

In the future, with the continuous upgrading of the integration and development of artificial intelligence and related technologies, unmanned operations will rapidly develop towards autonomy, biomimicry, swarming, and distributed collaboration, gradually pushing unmanned warfare to an advanced stage and significantly reducing direct confrontation between human forces on the battlefield. Although manned platforms will continue to exist in the future, biomimetic robots, humanoid robots, swarm weapons, robot armies, and unmanned system warfare will become the norm in the intelligent era. Since unmanned systems can replace human beings in many combat domains and can accomplish tasks autonomously, unmanned combat systems will always be there to protect humans before they suffer physical attacks or injuries. Therefore, unmanned combat systems in the intelligent era are humanity’s main protective barrier, its shield and shield.

All-domain operations and cross-domain offense and defense. In the era of intelligent warfare, all-domain operations and cross-domain offense and defense are also a fundamental style of combat, manifested in many combat scenarios and aspects. From land, sea, air, and space to multiple domains including physical, information, cognitive, social, and biological domains, as well as the integration and interaction of virtual and physical elements, from peacetime strategic deterrence to wartime high-confrontation, high-dynamic, and high-response operations, the time and space span is enormous. It involves not only physical space operations and cyberspace cyber offense and defense, information warfare, public opinion guidance, and psychological warfare, but also tasks such as global security governance, regional security cooperation, counter-terrorism, and rescue, and the control of critical infrastructure such as networks, communications, power, transportation, finance, and logistics.

Since 2010, supported by advancements in information and intelligent technologies, the U.S. military has proposed concepts such as operational cloud, distributed lethality, multi-domain warfare, algorithmic warfare, mosaic warfare, and joint all-domain operations. The aim is to maintain battlefield and military superiority by using system-wide systems against localized ones, multi-functional systems against simpler ones, multi-domain systems against single-domain ones, integrated systems against discrete ones, and intelligent systems against non-intelligent ones. The U.S. military proposed the concept of multi-domain warfare in 2016 and joint all-domain operations in 2020, aiming to develop cross-service and cross-domain joint operational capabilities, ensuring that each service’s operations are supported by all three services, and possessing all-domain capabilities against multi-domain and single-domain ones.

In the future, with breakthroughs in key technologies for the cross-disciplinary integration of artificial intelligence and multidisciplinary collaboration, multi-domain integration and cross-domain offense and defense based on AI and human-machine hybrid intelligence will become a distinctive feature of intelligent warfare. This will be achieved across functional domains such as physics, information, cognition, society, and biology, as well as geographical domains such as land, sea, air, and space.

In the intelligent era, multi-domain and cross-domain operations will expand from mission planning, physical collaboration, and loose coordination to heterogeneous integration, data linking, tactical interoperability, and cross-domain offensive and defensive integration.

First, multi-domain integration. Based on different battlefields and adversaries in a multi-domain environment, different combat styles, combat procedures and missions are planned in accordance with the requirements of joint operations, and unified as much as possible. This achieves the overall planning and integration of information, firepower, defense, support and command and control, and the integration of combat capabilities at the strategic, operational and tactical levels, forming the capability of one-domain operations and multi-domain joint rapid support.

Second, cross-domain offense and defense. Supported by a unified network information system, and through a unified battlefield situation and data information exchange based on unified standards, the information links for cross-domain joint operations reconnaissance, control, strike, and assessment are completely opened up, enabling seamless integration of operational elements and capabilities at the tactical and fire control levels, as well as collaborative actions between services, cross-domain command and interoperability.

Third, the entire process is interconnected. Multi-domain integration and cross-domain offense and defense are treated as a whole, with coordinated design and interconnectedness throughout. Before the war, intelligence gathering and analysis are conducted, along with public opinion warfare, psychological warfare, propaganda warfare, and necessary cyber and electronic warfare attacks. During the war, special operations and cross-domain actions are used to carry out decapitation strikes, key point raids, and precise and controllable strikes (see Figure 7). After the war, defense against cyberattacks on information systems, elimination of negative public opinion’s impact on the public, and prevention of enemy damage to infrastructure are addressed through post-war governance, public opinion control, and the restoration of social order across multiple areas.

Wu Mingxi 7

Fourth, AI support. Through combat experiments, simulation training, and necessary test verification and real-world testing, we continuously accumulate data, optimize models, and establish AI combat models and algorithms for different combat styles and adversaries, forming an intelligent brain system to better support joint operations, multi-domain operations, and cross-domain offense and defense.

Human-AI hybrid decision-making. The continuous improvement, optimization, upgrading, and perfection of the AI ​​brain system in intelligent battlefields will enable it to surpass humans in many aspects. The human-dominated command, control, and decision-making model of human warfare for thousands of years will be completely transformed. Humans commanding AI, AI commanding humans, and AI commanding AI are all possible scenarios in warfare.

Distributed, networked, flattened, and parallel structures are key characteristics of intelligent combat systems. The centralized, human-centric single-decision-making model is gradually being replaced by decentralized or weakly centralized models based on AI, such as unmanned systems, autonomous swarms, and manned-unmanned collaboration. Hybrid compatibility among these models is becoming a development trend. The lower the operational level and the simpler the mission, the more prominent the role of unmanned and decentralized systems; the higher the level and the more complex the mission, the more important human decision-making and centralized systems become. Pre-war decision-making is primarily human, supplemented by AI; during war, AI is primarily AI, supplemented by human; post-war, both are used, with hybrid decision-making becoming the dominant approach (see Table 3).

Wu Mingxi - Table 3

In the future battlefield, combat situations will be highly complex, rapidly changing, and exceptionally intense. The convergence of various information sources will generate massive amounts of data, which cannot be processed quickly and accurately by the human brain alone. Only by achieving a collaborative operation mode of “human brain + AI,” based on technologies such as combat cloud, databases, network communication, and the Internet of Things, can “commanders” cope with the ever-changing battlefield and complete command and control tasks. With the increasing autonomy of unmanned systems and the enhancement of swarm and system-wide AI functions, autonomous decision-making is gradually emerging. Once command and control achieve different levels of intelligence, the Out-of-Loop (OODA) loop time will be significantly reduced, and efficiency will be significantly improved. In particular, pattern recognition for network sensor image processing, “optimization” algorithms for combat decision-making, and particle swarm optimization and bee swarm optimization algorithms for autonomous swarms will endow command and control systems with more advanced and comprehensive decision-making capabilities, gradually realizing a combat cycle where “humans are outside the loop.”

Nonlinear amplification and rapid convergence. Future intelligent warfare will no longer be a gradual release of energy and a linear superposition of combat effects, but rather a rapid amplification of multiple effects such as nonlinearity, emergence, self-growth, and self-focusing, and a rapid convergence of results.

Emergence primarily refers to the process by which each individual within a complex system, following local rules and continuously interacting, generates a qualitative change in the overall system through self-organization. In the future, while battlefield information will be complex and ever-changing, intelligent recognition of images, voice, and video, along with processing by military cloud systems, will enable “one-point collection, multi-user sharing.” Through big data technology, it will be rapidly linked with relevant information and integrated with various weapon fire control systems to implement distributed strikes, swarm strikes, and cyber psychological warfare. This will allow for “detection and destruction,” “aggressive attacks at the first sign of trouble,” and “numerical superiority generating psychological panic”—these phenomena constitute the emergence effect.

The emergent effects of intelligent warfare are mainly reflected in three aspects: first, the acceleration of the kill chain caused by the speed of AI decision-making chain; second, the combat effect caused by the numerical advantage of manned and unmanned collaborative systems, especially swarm systems; and third, the rapid swarm emergence behavior based on network interconnection.

As military intelligence develops to a certain stage, the combined effects of advanced AI, quantum computing, IPv6, and hypersonic technologies will result in combat systems exhibiting nonlinear, asymmetric, self-growing, rapid-response, and uncontrollable amplification and operational effects. This is particularly evident in unmanned, swarm, cyber warfare, and cognitive confrontation. The emergence of intelligence from collective ignorance, increased efficiency through sheer numbers, nonlinear amplification, and other emergent effects will become increasingly prominent. AI-driven cognitive, informational, and energy confrontations will intertwine and rapidly converge around a target, with time becoming increasingly compressed and the speed of confrontation accelerating. This will manifest as a dramatic amplification of multiple effects and a rapid convergence of outcomes. Energy shockwaves, rapid-fire combat, AI terminators, public opinion reversals, social unrest, psychological breakdowns, and the chain reaction of the Internet of Things will become prominent characteristics of intelligent warfare.

In unmanned swarm attacks, assuming roughly the same platform performance, the Lanchester equation applies: combat effectiveness is proportional to the square of the number of units; quantity advantage translates to quality advantage. Network attack and defense, and psychological and public opinion effects, follow Metcalfe’s Law, being proportional to the square of the number of interconnected users, with nonlinear and emergent effects becoming more pronounced. The quantity and intelligence of battlefield AI determine the overall level of intelligence in the combat system, impacting battlefield intelligence control and influencing the outcome of war. In the era of intelligent warfare, how to manage the interrelationships between energy, information, cognition, quantity, quality, virtuality, and physicality, and how to skillfully design, control, utilize, and evaluate nonlinear effects, are major new challenges and requirements for future warfare.

In the future, whether it is a reversal of public opinion, psychological panic, swarm attacks, mass operations, or autonomous combat by humans outside the ring, their emergence effects and strike effects will become relatively common phenomena and easy-to-implement actions, forming a capability that is compatible with deterrence and actual combat. It is also a form of warfare that human society must strictly manage and control.

An organically symbiotic relationship between humans and equipment. In the era of intelligence, the relationship between humans and weapons will undergo fundamental changes, becoming increasingly distant physically but increasingly closer in thought. The form of equipment and its development and management models will be completely transformed. Human thought and wisdom will be deeply integrated with weaponry through AI, fully integrated in the early stages of equipment development, optimized and iterated during the use and training phase, and further upgraded and improved after combat verification, in a continuous cycle of progress.

First, with the rapid development of technologies such as network communication, mobile internet, cloud computing, big data, machine learning, and bionics, and their widespread application in the military field, the structure and form of traditional weapons and equipment will be completely changed, exhibiting diverse functions such as front-end and back-end division of labor and cooperation, efficient interaction, and adaptive adjustment. They will be complex entities integrating mechanics, information, networks, data, and cognition.

Secondly, while humans and weapons are gradually becoming physically detached, they are also becoming increasingly integrated into an organic symbiotic entity in terms of mindset. The gradual maturation of drones and robots is shifting their focus from assisting humans in combat to replacing them, with humans taking a more backseat. The integration of humans and weapons will take on entirely new forms. Human thought and wisdom will participate in the entire lifecycle of design, research and development, production, training, use, and support. Unmanned combat systems will perfectly combine human creativity and intellect with the precision, speed, reliability, and fatigue resistance of machines.

Third, profound changes are taking place in equipment development and management models. Mechanized equipment becomes increasingly outdated with use, while information technology software becomes increasingly new, and intelligent algorithms become increasingly sophisticated with use. Traditional mechanized equipment is delivered to the troops using a “pre-research—development—finalization” model, resulting in a decline in combat performance over time and vehicle hours. Information technology equipment is a product of the combined development of mechanization and informatization; the platform remains the same, but the information system is constantly iterated and updated with the development of computer CPUs and storage devices, exhibiting a step-by-step development characteristic of “information-led, software-driven hardware, rapid replacement, and spiral ascent.” Intelligent equipment, based on mechanization and informatization, continuously optimizes and improves training models and algorithms with the accumulation of data and experience, showing an upward curve of becoming stronger and better with use over time and frequency. Therefore, the development, construction, use, training, and support models for intelligent equipment will undergo fundamental changes.

Evolving through learning and confrontation. Evolution will undoubtedly be a defining characteristic of future intelligent warfare and combat systems, and a commanding height in future strategic competition. Combat systems in the intelligent era will gradually acquire adaptive, self-learning, self-confrontational, self-repairing, and self-evolving capabilities, becoming an evolvable ecosystem and game-theoretic system.

The most distinctive and unique feature of intelligent combat systems lies in the combination of human-like and human-like intelligence with the advantages of machines, achieving “superhuman” combat capabilities. The core of this capability is that numerous models and algorithms improve and refine with use, possessing an evolutionary function. If future combat systems resemble the human body, with the brain as the command and control center, the nervous system as the network, and the limbs as weapons and equipment controlled by the brain, like a living organism, possessing self-adaptive, self-learning, self-defense, self-repair, and self-evolutionary capabilities, then we believe it possesses the ability and function of evolution. Because intelligent combat systems are not entirely the same as living organisms, while a single intelligent system is similar to a living organism, a multi-system combat system is more like an “ecosystem + adversarial game system,” more complex than a single living organism, and more adversarial, social, collective, and emergent.

Preliminary analysis suggests that with the development and application of technologies such as combat simulation, virtual reality, digital twins, parallel training, intelligent software, brain-inspired chips, brain-like systems, bionic systems, natural energy harvesting, and novel machine learning, future combat systems can gradually evolve from single-function, partial-system evolution to multi-functional, multi-element, multi-domain, and multi-system evolution. Each system will be able to rapidly formulate response strategies and take action based on changes in the battlefield environment, different threats, different adversaries, and its own strengths and capabilities, drawing upon accumulated experience, extensive simulated adversarial training, and models and algorithms built through reinforcement learning. These strategies will then be continuously revised, optimized, and self-improved through practical warfare. Single-mission systems will possess characteristics and functions similar to living organisms, while multi-mission systems, like species in a forest, will have a cyclical function and evolutionary mechanism of mutual restraint and survival of the fittest, possessing the ability to engage in game-theoretic confrontation and competition under complex environmental conditions, forming an evolvable ecological and game-theoretic system.

The evolution of combat systems mainly manifests in four aspects: First, the evolution of AI. With the accumulation of data and experience, it will inevitably be continuously optimized, upgraded, and improved. This is relatively easy to understand. Second, the evolution of combat platforms and cluster systems, mainly moving from manned control to semi-autonomous and autonomous control. Because it involves not only the evolution of platform and cluster control AI, but also the optimization and improvement of related mechanical and information systems, it is relatively more complex. Third, the evolution of mission systems, such as detection systems, strike systems, defense systems, and support systems. Because it involves multiple platforms and multiple missions, the factors and elements involved in the evolution are much more complex, and some may evolve quickly, while others may evolve slowly. Fourth, the evolution of the combat system itself. Because it involves all elements, multiple missions, cross-domain operations, and confrontations at various levels, its evolutionary process is extremely complex. Whether a combat system can evolve cannot rely entirely on its own growth; it requires the proactive design of certain environments and conditions, and must follow the principles of biomimicry, survival of the fittest, mutual restraint, and full-system lifecycle management to possess the function and capability for continuous evolution.

Intelligent design and manufacturing. In the era of intelligentization, the defense industry will shift from a relatively closed, physical-based, and time-consuming research and manufacturing model to an open-source, intelligent design and manufacturing model that can rapidly meet military needs.

The defense industry is a strategic industry of the nation, a powerful pillar of national security and defense construction. In peacetime, it primarily provides the military with advanced, high-quality, and reasonably priced weaponry and equipment. In wartime, it is a crucial force for operational support and a core pillar for ensuring victory. The defense industry is a high-tech intensive sector. The research and development and manufacturing of modern weaponry and equipment are technology-intensive, knowledge-intensive, systemically complex, and highly integrated. The development of weapons and equipment such as large aircraft carriers, fighter jets, ballistic missiles, satellite systems, and main battle tanks typically takes ten, twenty, or even more years before finalization and delivery to the armed forces, involving large investments, long cycles, and high costs. From the post-World War II period to the end of the last century, the defense industrial system and capability structure were products of the mechanized era and warfare. Its research, testing, manufacturing, and support were primarily geared towards the needs of the military branches and industry systems, mainly including weaponry, shipbuilding, aviation, aerospace, nuclear, and electronics industries, as well as civilian supporting and basic industries. After the Cold War, the US defense industry underwent strategic adjustments and mergers and reorganizations, generally forming a defense industrial structure and layout adapted to the requirements of informationized warfare. The top six defense contractors in the United States can provide specialized combat platforms and systems for relevant branches of the armed forces, as well as overall solutions for joint operations, making them cross-service and cross-domain system integrators. Since the beginning of the 21st century, with the changing demands of system-of-systems and information-based warfare and the development of digital, networked, and intelligent manufacturing technologies, the traditional development model and research and production capabilities of weapons and equipment have begun to gradually change, urgently requiring reshaping and adjustment in accordance with the requirements of informationized warfare, especially intelligent warfare.

In the future, the defense science and technology industry will, in accordance with the requirements of joint operations, all-domain operations, and the integrated development of mechanization, informatization, and intelligence, shift from the traditional focus on service branches and platform construction to cross-service and cross-domain system integration. It will also shift from relatively closed, self-contained, independent, fragmented, physical-based, and long-cycle research, design, and manufacturing to open-source, democratic crowdsourcing, virtual design and integration verification, adaptive manufacturing, and rapid fulfillment of military needs (see Figure 8). This will gradually form a new innovation system and intelligent manufacturing system that combines hardware and software, virtual and real interaction, intelligent human-machine-object-environment interaction, effective vertical industrial chain connection, horizontal distributed collaboration, and military-civilian integration. Joint design and demonstration by multiple military and civilian parties, joint research and development by supply and demand sides for construction and use, iterative optimization based on parallel military systems in both virtual and real environments, and improvement through combat training and real-world verification—a model of simultaneous research, testing, use, and construction—is the basic mode for the development and construction of intelligent combat systems and the generation of combat power.

Wu Mingxi 8

Wu Mingxi 8

The risk of spiraling out of control. Since intelligent warfare systems theoretically possess the ability to self-evolve and reach “superhuman” levels, if humans do not pre-design control programs, control nodes, and a “stop button,” the result could very well be destruction and disaster. A critical concern is that numerous hackers and malicious warmongers may exploit intelligent technology to design uncontrollable warfare programs and combat methods, allowing numerous machine brains (AIs) and swarms of robots to fight adaptively and self-evolving according to pre-set combat rules, becoming invincible and relentlessly advancing, ultimately leading to an uncontrollable situation and irreparable damage. This is a major challenge facing humanity in the process of intelligent warfare and a crucial issue requiring research and resolution. This problem needs to be recognized and prioritized from the perspective of a shared future for all humanity and the sustainable development of human civilization. It requires designing rules of war, formulating international conventions, and regulating these systems technically, procedurally, ethically, and legally, implementing mandatory constraints, checks, and management.

The above ten transformations and leaps constitute the main content of the new form of intelligent warfare. Of course, the development and maturity of intelligent warfare is not a castle in the air or a tree without roots, but is built upon mechanization and informatization. Without mechanization and informatization, there is no intelligence. Mechanization, informatization, and intelligence form an organic whole, interconnected and mutually reinforcing, iteratively optimizing and leapfrog developing. Currently, mechanization is the foundation, informatization is the guiding principle, and intelligence is the direction. Looking to the future, mechanization will remain the foundation, informatization will provide support, and intelligence will be the guiding principle.

A Bright Future

In the time tunnel of the new century, we see the train of intelligent warfare speeding along. Will humanity’s greed and technological might lead us into a more brutal darkness, or will it propel us towards a more civilized and enlightened future? This is a major philosophical question that humanity needs to ponder. Intelligentization is the future, but it is not everything. Intelligentization can handle diverse military tasks, but it is not omnipotent. Faced with sharp contradictions between civilizations, religions, nations, and social classes, and with extreme events such as thugs wielding knives, suicide bombings, and mass riots, the role of intelligentization remains limited. Without resolving global political imbalances, unequal rights, unfair trade, and social contradictions, war and conflict will be inevitable. Ultimately, the world is determined by strength, and technological, economic, and military strength are extremely important. While military strength cannot determine politics, it can influence it; it cannot determine the economy, but it can bring security for economic development. The stronger the intelligent warfare capabilities, the stronger its deterrent and war-preventing function, and the greater the hope for peace. Like nuclear deterrence, it plays a crucial role in preventing large-scale wars to avoid terrible consequences and uncontrolled disasters.

The level of intelligence in warfare, in a sense, reflects the progress of civilization in warfare. The history of human warfare, initially a struggle between groups for food and habitation, has evolved into land occupation, resource plunder, expansion of political power, and domination of the spiritual world—all fraught with bloodshed, violence, and repression. As the ultimate solution to irreconcilable contradictions in human society, war’s ideal goal is civilization: subjugation without fighting, minimal resource input, minimal casualties, and minimal damage to society… However, past wars have often failed to achieve this due to political struggles, ethnic conflicts, competition for economic interests, and the brutality of technological destructive methods, frequently resulting in the utter destruction of nations, cities, and homes. Past wars have failed to achieve these ideals, but future intelligent warfare, due to technological breakthroughs, increased transparency, and deeper mutual sharing of economic benefits, especially as the confrontation of human forces gradually gives way to confrontation between robots and AI, will see decreasing casualties, material consumption, and collateral damage. This presents a significant possibility of achieving civilization, offering humanity hope. We envision future warfare gradually transitioning from the mutual slaughter of human societies and the immense destruction of the material world to wars between unmanned systems and robots. This will evolve into deterrence and checks and balances limited to combat capabilities and overall strength, AI confrontations in the virtual world, and highly realistic war games… The energy expenditure of human warfare will be limited to a certain scale of unmanned systems, simulated confrontations and experiments, or even merely the energy needed to wage a war game. Humanity will transform from the planners, designers, participants, leaders, and victims of war into rational thinkers, organizers, controllers, observers, and adjudicators. Human bodies will no longer suffer trauma, minds will no longer be frightened, wealth will no longer be destroyed, and homes will no longer be devastated. Although this beautiful ideal and aspiration may always fall short of harsh reality, we sincerely hope that this day will arrive, and arrive as soon as possible. This is the highest stage of intelligent warfare development, the author’s greatest wish, and humanity’s beautiful vision!

(Thanks to my colleague, Researcher Zhou Xumang, for his support and assistance in writing this paper. He has unique thoughts and insights into the development and construction of intelligent systems.)

Notes

[1] Robert O. Walker et al., 20YY: War in the Age of Robots, translated by Zou Hui et al., Beijing: National Defense Industry Press, 2016, p. 148.

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

現代國語:

2021-08-18 18:53 来源: 《人民论坛·学术前沿》5月下 作者: 吴明曦

【摘要】新世纪以来,以人工智能(AI)为核心的智能科技快速发展,加快了新一轮军事革命的进程,军事领域的竞争正加速走向智权时代。以“AI、云、网、群、端”为代表的作战要素与多样化组合,构成了新的战场生态系统,战争的制胜机理完全改变。基于模型和算法的AI系统将是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,制智权成为未来战争的核心制权。智能化作战能力越强大,不战而屈人之兵就越有希望。

【关键词】人工智能 无人化 战场生态 战争形态

【中图分类号】TP18 【文献标识码】A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.005

【作者简介】吴明曦,中国兵器首席科学家、研究员,中国兵器工业集团科技委副秘书长,中国兵器科学研究院科技委副主任。研究方向为国防科技和武器装备发展战略与规划、政策与理论、管理与改革研究。主要著作有《智能化战争——AI军事畅想》等。

智权时代竞争

人类文明的历史,是认识自然、改造自然的历史,也是认识自我、解放自我的历史。人类通过发展科学技术、开发和运用工具,不断增强能力、减轻负担、摆脱束缚、解放自己。战争的控制权也随着科技的进步、人类活动空间的拓展、时代的发展而不断变化、不断丰富和不断演进。19世纪以来,人类先后经历了陆权、海权、空权、天权、信息权的控制与争夺。随着人工智能(AI)、大数据、云计算、生物交叉、无人系统、平行仿真等智能科技的迅速发展及其与传统技术的深度融合,从认识论、方法论和运行机理上,改变了人类认识和改造自然的能力,正在加快推动机器智能、仿生智能、群体智能、人机融合智能和智能感知、智能决策、智能行动、智能保障以及智能设计、研发、试验、制造等群体性重大技术变革,加速战争形态向智权的控制与争夺演变。

智能科技迅速发展,受到世界主要国家的高度重视,成为支撑军事能力跨越发展的强大动力。美俄已将智能科技置于维持其全球军事大国战略地位的核心,其发展理念、发展模式、组织方式、创新应用等已发生重大转变,并开展了军事智能化的实质性应用与实践(见图1)。

吴明曦1

2017年8月,美国国防部表示,未来人工智能战争不可避免,美国需要“立即采取行动”加速人工智能战争科技的开发工作。美军提出的“第三次抵消战略”认为,以智能化军队、自主化装备和无人化战争为标志的军事变革风暴正在到来;为此,他们已将自主系统、大数据分析、自动化等为代表的智能科技列为主要发展方向。2018年6月,美国国防部宣布成立联合人工智能中心,该中心在国家人工智能发展战略的牵引下,统筹规划美军智能化军事体系建设。2019年2月,时任美国总统特朗普签署《美国人工智能倡议》行政令,强调美国在人工智能领域保持持续领导地位对于维护美国的经济和国家安全至关重要,要求联邦政府投入所有资源来推动美国人工智能领域创新。2021年3月,美国人工智能国家安全委员会发布研究报告,指出:“自第二次世界大战以来,作为美国经济和军事力量支柱的技术优势首次受到威胁。如果当前的趋势不改变,中国就拥有未来十年内超越美国成为人工智能全球领导者的力量、人才和雄心。”报告认为,美国为维护国家安全和提升国防能力,必须迅速而负责任地使用人工智能,为抵御这些威胁作好准备。报告得出结论,人工智能将改变世界,美国必须发挥带头作用。

俄罗斯也高度重视人工智能的技术发展及其军事运用。俄军方普遍认为,人工智能将引发继火药、核武器之后军事领域的第三次革命。俄罗斯总统普京2017年9月公开提出,人工智能是俄罗斯的未来,谁能成为该领域的领导者,谁就将主宰世界。2019年10月,普京批准《2030年前俄罗斯国家人工智能发展战略》,旨在加快推进俄罗斯人工智能发展与应用,谋求在人工智能领域的世界领先地位。

中国国务院2017年7月印发《新一代人工智能发展规划》,提出了面向2030年新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

世界其他主要国家和军事大国,也纷纷推出各自的人工智能发展规划,表明全球范围内围绕“智权”的争夺已经全面展开。陆权、海权、空权、天权、信息权、智权等,都是科技进步的结果、时代的产物,都有各自的优势,也有各自的不足,并且有些理论随着时代的变化,又在不断拓展。从近代以来战争的控制权发展趋势可以看出,信息权与智权是涉及全局的,其权重更重,影响力更大。未来,随着智能化发展步伐的加快,智权将成为一种快速增长的、对作战全局有更大战略影响力的新型战场控制权。

军事智能的本质是利用智能科技为战争体系建立多样化识别、决策和控制模型。这些模型就是人工智能(AI),是新时代智权争夺的核心。其中,战争体系包括:单装、集群、有人无人协同、多域与跨域作战等装备系统;单兵、班组、分队、合成作战单元、战区联指等作战力量;网络化感知、任务规划与指控、力量协同、综合保障等作战环节;网络攻防、电子对抗、舆情控制、基础设施管控等专业系统;智能化设计、研发、生产、动员、保障等军工能力。AI以芯片、算法和软件等形式,嵌入战争体系的各个系统、各个层次、各个环节,是一个体系化的大脑。AI虽然是战争体系的一个局部,但由于其“类脑”功能和“超越人类极限”的能力越来越强,必将主宰未来战争全局。

战场生态重构

传统战争作战要素相对独立、相对分离,战场生态系统比较简单,主要包括人、装备和战法等。智能时代的战争,各作战要素之间融合、关联、交互特征明显,战场生态系统将发生实质性变化,形成由AI脑体系、分布式云、通信网络、协同群、各类虚实端等构成的作战体系、集群系统和人机系统,简称“AI、云、网、群、端”智能化生态系统(见图2)。其中,AI居于主导地位。

吴明曦2

AI脑体系。智能化战场的AI脑体系,是一个网络化、分布式的体系,是与作战平台和作战任务相生相伴、如影随形的,其分类方法有多种。按功能和计算能力分,主要包括小脑、群脑、中脑、混合脑和大脑等;按作战任务和环节分,主要包括传感器AI、作战任务规划和决策AI、精确打击和可控毁伤AI、网络攻防AI、电子对抗AI、智能防御AI和综合保障AI等;按形态分,主要包括嵌入式AI、云端AI和平行系统AI等。

小脑,主要指传感器平台、作战平台和保障平台的嵌入式AI,主要执行战场环境探测、目标识别、快速机动、精确打击、可控毁伤、装备保障、维修保障和后勤保障等任务。

群脑,主要指地面、空中、海上、水中和太空无人化集群平台智能控制的AI,主要执行战场环境协同感知、集群机动、集群打击和集群防御等任务,重点包括同构集群系统的算法和有人无人协同等异构系统的算法。

中脑,主要指战场前沿一线分队指挥中心、数据中心、指挥所边缘计算的AI系统,主要执行在线和离线条件下战术分队作战任务动态规划、自主决策与辅助决策。

混合脑,主要指成建制部队作战中,指挥员与机器AI协同指挥和混合决策系统,战前主要执行以人为主的作战任务规划,战中主要执行以机器AI为主的自适应动态任务规划和调整,战后主要执行面向反恐和防卫的混合决策等任务。

大脑,主要指战区指挥中心、数据中心的模型库、算法库、战法库,重点为战役和战略决策起辅助支撑作用。由于数据充足,战场各类AI脑系统,都可以在此进行训练和建模,待成熟时再加载到各个任务系统中。

未来战场,还将有其他不同功能、不同种类、大大小小的AI,如传感器AI,主要包括图像识别、电磁频谱识别、声音识别、语音识别、人类活动行为识别等。随着智能化的快速发展和广泛应用,全社会都会存在大大小小的AI,平时为民众和社会服务,战时完全有可能为军事服务。

分布式云。军事云与民用云有所不同。一般来讲,军事云平台是利用通信网络搜索、采集、汇总、分析、计算、存储、分发作战信息和数据的分布式资源管理系统。军事云平台通过构建分布式系统、多点容错备份机制,具备强大的情报共享能力、数据处理能力、抗打击和自修复能力,可提供固定与机动、公有与私有的云服务,实现“一点采集,大家共享”,大大减少信息流转环节,使指挥流程扁平、快速,避免各级重复分散建设。

从未来智能化战争需求看,军事云至少需要构建战术前端云、部队云、战区云和战略云四级体系。按作战要素也可分为情报云、态势云、火力云、信息作战云、保障云、星云等专业化云系统。

1.前端云,主要是指分队、班组、平台之间的信息感知、目标识别、战场环境分析和行动自主决策与辅助决策,以及作战过程和效果评估等计算服务。前端云的作用主要体现在两个方面。一是平台之间计算、存储资源的相互共享和协同、智能作战信息的互动融合。例如,一旦某一平台或终端被攻击,相关的感知信息、毁伤状况和历史情况,就会通过网络化的云平台自动备份、自动替换、自动更新,并把相关信息上传到上级指挥所。二是离线终端的在线信息服务和智能软件升级。

2.部队云,主要指营、旅一级作战所构建的云系统,重点是针对不同的威胁和环境,开展智能感知、智能决策、自主行动和智能保障等计算服务。部队云建设的目标是要建立网络化、自动备份,并与上级多个链路相连的分布式云系统,满足侦察感知、机动突击、指挥控制、火力打击、后装保障等不同力量的计算需要,满足战术联合行动、有人/无人协同、集群攻防等不同作战任务的计算需要。

3.战区云,重点是提供整个作战区域的战场气象、地理、电磁、人文、社会等环境因素和信息数据,提供作战双方的兵力部署、武器装备配备、运动变化、战损情况等综合情况,提供上级、友军和民用支援力量等相关信息。战区云应具备网络化、定制化、智能化等信息服务功能,并通过天基、空中、地面、海上和水下等军用通信网络,以及采取保密措施下的民用通信网络,与各个作战部队互联互通,确保提供高效、及时、准确的信息服务。

4.战略云,主要是由一个国家国防系统和军队指挥机关建立起来的以军事信息为主,涵盖相关国防科技、国防工业、动员保障、经济和社会支撑能力,以及政治、外交、舆论等综合性的信息数据,提供战争准备、作战规划、作战方案、作战进程、战场态势、战况分析等核心信息及评估分析和建议;提供战略情报、作战对手军事实力和战争动员潜力等支撑数据。

上述各个云之间,既有大小关系、上下关系,也有横向协作、相互支撑、相互服务的关系。军事云平台的核心任务有两个:一是为构建智能化作战的AI脑体系提供数据和计算支撑;二是为各类作战人员和武器平台,提供作战信息、计算和数据保障。此外,从终端和群体作战需求来看,还需要把云计算的一些结果、模型、算法,事先做成智能芯片,嵌入武器平台和群终端,之后,可以在线升级,也可以离线更新。

通信网络。军用通信与网络信息,是一个复杂的超级网络系统。由于军事力量主要是在陆、海、空、天和野战机动、城镇等环境下作战,其通信网络包括战略通信与战术通信、有线通信与无线通信、保密通信和民用通信等。其中,无线、移动、自由空间通信网络是军用网络体系最重要的组成部分,相关的综合电子信息系统也是依托通信网络逐步建立起来的。

机械化时代的军用通信,主要是跟着平台、终端和用户走,专用性得到了满足,但烟囱太多、互联互通能力极差。信息化时代,这种状况开始改变。目前,军用通信网络正在采取新的技术体制和发展模式,主要有两个特征:一是“网数分离”,信息的传输不依赖于某种特定的网络传输方式,“网通即达”,只要网络链路畅通,所需任何信息即可送达;二是互联网化,基于IP地址和路由器、服务器实现“条条大路通北京”,即军用网络化或者栅格化。当然,军事通信网络与民用不同,任何时候都存在战略性、专用性通信需求,如核武器的核按钮通信和战略武器的指挥控制,卫星侦察、遥感和战略预警的信息传输,甚至单兵室内和特种作战等条件下的专用通信,可能仍然采取通信跟着任务走的模式。但即便如此,通用化、互联网化一定是未来军用通信网络发展的趋势,否则不仅造成战场通信频段、电台和信息交流方式越来越多,造成自扰、互扰和电磁兼容困难,无线电频谱管理也越来越复杂,更为重要的是,平台用户之间很难基于IP地址和路由结构等功能来实施自动联通,如同互联网上的电子邮件那样,一键命令可以传给多个用户。未来的作战平台,一定会既是通信的用户终端,也兼有路由器和服务器等功能。

军用通信网络体系主要包括天基通信网、军用移动通信网、数据链、新型通信网、民用通信网等。

1.天基信息网。在天基信息网络建设和天基信息利用方面,美国居于领先地位。因为太空中上千个在轨平台和载荷中,一半多是美国人的。美军在海湾战争后尤其是伊拉克战争期间,通过战争实践加快了天基信息网络的应用和推进步伐。伊拉克战争之后,通过天基信息的利用和基于IP方式互联互通的建立,彻底将海湾战争时期近140个纵向烟囱实现横向互联,大大缩短了“侦察—判断—决策—攻击”(OODA)回路的时间,从天基传感器到射手的时间由海湾战争时的几十个小时缩短到目前采用人工智能识别后仅20秒左右。

随着小卫星技术的飞速发展,低成本、多功能的小卫星越来越多。商用发射随着竞争越来越多,成本也开始急剧下降,并且一次发射可以携带几颗、十几颗甚至几十颗小卫星。如果再将小型化以后的电子侦察、可见光和红外成像,甚至是量子点微型光谱仪都集成在上面,实现侦察、通信、导航和气象、测绘等功能一体化,未来世界和战场将变得更加透明。

2.军用移动通信网。军用移动通信网络主要有三个方面的用途。一是联合作战各军兵种和作战部队之间的指挥控制,这类通信的保密等级较高,可靠性、安全性要求也高。二是平台、集群之间的通信联络,要求具备抗干扰和较高的可靠性。三是武器系统的指控和火控,大多通过数据链解决。

传统的军用移动通信网络,大多是“有中心、纵向为主、树状结构”。随着信息化进程的加快,“无中心、自组网、互联网化”的趋势愈加明显。随着认知无线电技术的逐步成熟和推广(见图3),未来的网络通信系统,能够自动识别战场中的电磁干扰和通信障碍,快速寻找可用频谱资源,通过跳频跳转等方式进行实时通信联络。同时,软件与认知无线电技术还能兼容不同通信频段与波形,便于在旧体制向新体制的过渡中兼容使用。

吴明曦3

3.数据链。数据链是一种特殊的通信技术,通过时分、频分、码分等形式,在各作战平台之间实现事先约定的、定期或不定期、有规则或无规则关键信息的传输,只要不被敌方完全掌握或破译,是很难被干扰的。数据链主要分为专用和通用两大类。联合作战、编队协同和集群作战等,主要采用通用数据链。卫星数据链、无人机数据链、弹载数据链、武器火控数据链等,目前多数还是专用的。未来,通用化是一种趋势,专用化将越来越少。此外,从平台和通信的关系来看,平台传感器的信息收发和内部信息处理一般跟着任务系统走,专用化特点较强,平台之间的通信联络和数据传输则越来越通用化。

4.新型通信。传统军用通信以微波通信为主,由于发散角较大,应用平台较多,相应的电子干扰和微波攻击手段发展也较快,容易实施较远距离的干扰与破坏。因此,毫米波、太赫兹、激光通信、自由空间光通信等新型通信手段,就成为既抗干扰,又容易实施高速、大容量、高带宽通信的重要选择。由于高频电磁波发散角较小,虽然抗干扰性能好,但要实现点对点的精确瞄准和全向通信,仍然有一定难度,尤其是在作战平台高速机动和快速变轨条件下,如何实现对准和全向通信,技术上仍在探索之中。

5.民用通信资源。民用通信资源的有效利用,是智能化时代需要重点考虑和无法回避的战略问题。未来通过民用通信网络尤其是5G/6G移动通信,进行开源信息挖掘和数据关联分析,提供战场环境、目标和态势信息,无论是对作战还是非战争军事行动来说都非常重要。在非战争军事行动任务中,尤其是海外维和、救援、反恐、救灾等行动中,军队的专用通信网络,只能在有限范围和地域中使用,而如何与外界交流和联系就成为一个问题。利用民用通信资源,主要有两种途径:一是利用民用卫星特别是小卫星通信资源;二是利用民用移动通信及互联网资源。

军用与民用通信资源的互动利用,核心是要解决安全与保密问题。一种方式是采取防火墙和加密形式,直接利用民用卫星通信和全球移动通信设施来指挥通信和联络,但黑客与网络攻击的风险依然存在。另一种方式是,采用近年发展起来的虚拟化、内联网、半物理隔离、单向传输、拟态防御、区块链等新技术予以解决。

协同群。通过模拟自然界蜂群、蚁群、鸟群及鱼群等行为,研究无人机、智能弹药等集群系统的自主协同机制,完成对敌目标进攻或防御等作战任务,可以起到传统作战手段和方式难以达到的打击效果。协同群是智能化发展的一个必然趋势,也是智能化建设的主要方向和重点领域。单一作战平台,无论战技性能多高、功能多强,也无法形成群体、数量规模上的优势。简单数量的堆积和规模的扩展,如果没有自主、协同、有序的智能元素,也是一盘散沙。

协同群主要包括三个方面:一是依托现有平台智能化改造形成的有人/无人协同群,其中以大、中型作战平台为主构建;二是低成本、同质化、功能单一、种类不同的作战蜂群,其中以小型无人作战平台和弹药为主构建;三是人机融合、兼具生物和机器智能的仿生集群,其中以具有高度自主能力的仿人、仿爬行动物、仿飞禽动物、仿海洋生物为主构建。利用协同群系统实施集群作战特别是蜂群作战,具有多方面的优势与特点。

1.规模优势。庞大的无人系统可以分散作战力量,增加敌方攻击的目标数,迫使敌人消耗更多的武器和弹药。集群的生存能力,因数量足够多而具有较大的弹性和较强的恢复能力,单个平台的生存能力变得无关紧要,而整体的优势更为明显。数量规模使战斗力的衰减不会大起大落,因为消耗一个低成本的无人平台,不像高价值的有人作战平台与复杂武器系统,如B2战略轰炸机,F22、F35先进作战飞机,一旦受到攻击或被击毁,战斗力将急剧下降。集群作战可以同时发起攻击,使敌人的防线不堪重负,因为大部分防御系统能力有限,一次只能处理一定数量的威胁,即便是密集火炮防御,一次齐射也只能击中有限目标,总有漏网之鱼,所以集群系统突防能力极强。

2.成本优势。集群作战特别是蜂群作战大多以中小无人机、无人平台和弹药为主,型谱简单、数量规模较大,质量性能要求相同,便于低成本大规模生产。现代武器装备和作战平台,虽然升级换代的速度明显加快,但成本上涨也极其惊人。二战以后,武器装备研发和采购价格表明,装备成本和价格上涨比性能提升快得多。海湾战争时期的主战坦克是二战时期的40倍,作战飞机和航母则高达500倍。海湾战争之后到2020年,各类主战武器装备价格又分别上涨了几倍、十几倍、甚至几十倍。与此相比,型谱简单的中小无人机、无人平台和弹药具有明显的成本优势。

3.自主优势。在统一的时空基准平台下,通过网络化的主动、被动通信联络和对战场环境目标的智能感知,群体中的单个平台可以准确感知到相互之间的距离、速度和位置关系,也可以快速识别目标威胁的性质、大小、轻重缓急,以及自身与友邻平台距离的远近。在事先制定好作战规则的前提下,可以让一个或数个平台,按照目标威胁的优先级,进行同时攻击和分波次攻击,也可以分组同时攻击、多次攻击(见图4),还可以明确某个平台一旦受损后,后续平台的优先替补顺序,最终达到按照事先约定好的作战规则,自主决策、自主行动。这种智能化作战行动,根据人的参与程度和关键节点控制难度,既可以完全交给群体自主行动,也可以实施有人干预下的半自主行动。

吴明曦4

4.决策优势。未来的战场环境日趋复杂,作战双方是在激烈的博弈和对抗中较量。因此,快速变化的环境和威胁,依靠人在高强度对抗环境下参与决策,时间上来不及,决策质量也不可靠。因此,只有交由协同群进行自动环境适应,自动目标和威胁识别,自主决策和协同行动,才能快速地攻击对手或实施有效防卫,取得战场优势和主动权。

协同群给指挥控制带来了新挑战。怎么对集群实施指挥控制是一个新的战略课题。可以分层级、分任务实施控制,大致包括集中控制模式、分级控制模式、一致协同模式、自发协同模式。[1]可以采取多种形式,实现人为的控制和参与。一般来讲,越是在战术层面的小分队行动,越是要采取自主行动和无人干预;在成建制的部队作战层面,由于涉及对多个作战群的控制,需要采取集中规划、分级控制,人要有限参与;在更高级的战略和战役层次,集群只是作为一种平台武器和作战样式来使用,需要统一规划和布局,人为参与的程度就会更高。从任务性质来看,执行战略武器的操作使用,如核反击,就需要由人操作,不适合交给武器系统自主处理;执行重要目标、高价值目标的攻防时,如斩首行动,也需要人全程参与和控制,同时发挥武器系统的自主功能;对于战术目标的进攻,如果需要实施致命打击和毁伤任务的作战行动,可以让人有限参与,或者经人确认后,让协同群去自动执行;执行侦察、监视和目标识别、排查等非打击任务,或执行防空反导等时间短、人难以参与的任务时,主要交由协同群自动执行,而人不需要参与,也无法参与。此外,集群作战也要重视研究其反制措施。重点研究电子欺骗、电磁干扰、网络攻击和高功率微波武器、电磁脉冲炸弹、弹炮系统等反制措施,其相关作用和效果比较明显。同时,还要研究激光武器、蜂群对蜂群等反制措施,逐步建立人类能有效控制的、对付协同群的“防火墙”。

虚实端。虚实端主要指各类与“云、网”链接的终端,包括预先置入智能模块的各类传感器、指控平台、武器平台、保障平台、相关设备设施和作战人员。未来各种装备、平台,都是前台功能多样、后台云端支撑、虚实互动、在线离线结合的赛博实物系统CPS和人机交互系统。在简单环境感知、路径规划、平台机动、武器操作等方面,主要依靠前端智能如仿生智能、机器智能来实现。复杂的战场目标识别、作战任务规划、组网协同打击、作战态势分析、高级人机交互等,需要依靠后端云平台和云上AI提供信息数据与算法支撑。每个装备平台的前端智能与后端云上智能应结合,进行统筹规划与设计,形成前后端一体化智能的综合优势。同时,虚拟士兵、虚拟参谋、虚拟指挥员及其与人类的智能交互、高效互动等,也是未来研究发展的重点与难点。

战争形态质变

近代以来,人类社会主要经历了大规模的机械化战争和较小规模的信息化局部战争。20世纪前半叶发生的两次世界大战,是典型的机械化战争。20世纪90年代以来的海湾战争、科索沃战争、阿富汗战争、伊拉克战争和叙利亚战争,充分体现了信息化战争的形态与特点。新世纪新阶段,随着智能科技的快速发展与广泛应用,以数据和计算、模型和算法为主要特征的智能化战争时代即将到来(见图5)。

吴明曦5

机械化是工业时代的产物,技术上以机械动力和电气技术为重点,武器装备形态主要表现为坦克、装甲车辆、大炮、飞机、舰船等,对应的是机械化战争形态。机械化战争,主要基于以牛顿定律为代表的经典物理学和社会化大生产,以大规模集群、线式、接触作战为主,在战术上通常要进行现地侦察、勘查地形、了解对手前沿与纵深部署情况,结合己方能力下定决心,实施进攻或防御,进行任务分工、作战协同和保障,呈现出明显的指控层次化、时空串行化等特点。

信息化是信息时代的产物,技术上以计算机、网络通信等信息技术为重点,装备形态主要表现为雷达、电台、卫星、导弹、计算机、军用软件、指挥控制系统、网电攻防系统、综合电子信息系统等,对应的是信息化战争形态。信息化战争,主要基于计算机与网络三大定律(摩尔定律、吉尔德定律和梅特卡夫定律),以一体化联合、精确、立体作战为主,建立“从传感器到射手的无缝快速信息链接”,夺取制信息权,实现先敌发现与打击。在战术上则要对战场和目标进行详细识别和编目,突出网络化感知和指挥控制系统的作用,对平台的互联互通等信息功能提出了新的要求。由于全球信息系统和多样化网络通信的发展,信息化战争淡化了前后方的界限,强调“侦控打评保”横向一体化和战略、战役、战术的一体化与扁平化。

智能化是知识经济时代的产物,技术上以人工智能、大数据、云计算、认知通信、物联网、生物交叉、混合增强、群体智能、自主导航与协同等智能科技为重点,装备形态主要表现为无人平台、智能弹药、集群系统、智能感知与数据库系统、自适应任务规划与决策系统、作战仿真与平行训练系统、军事云平台与服务系统、舆情预警与引导系统、智能可穿戴系统等,对应的是智能化战争形态。

智能化战争,主要基于仿生、类脑原理和AI的战场生态系统,是以“能量机动和信息互联”为基础、以“网络通信和分布式云”为支撑、以“数据计算和模型算法”为核心、以“认知对抗”为中心,多域融合、跨域攻防,无人为主、集群对抗,虚拟与物理空间一体化交互的全新作战形态。

智能化战争以满足核常威慑、联合作战、全域作战和非战争军事行动等需求为目标,以认知、信息、物理、社会、生物等多域融合作战为重点,呈现出分布式部署、网络化链接、扁平化结构、模块化组合、自适应重构、平行化交互、聚焦式释能、非线性效应等特征,制胜机理颠覆传统,组织形态发生质变,作战效率空前提高,战斗力生成机制发生转变。其实质性的变化主要体现在以下十个方面。

AI主导的制胜机理。在智能化条件下,以“AI、云、网、群、端”为代表的全新作战要素将重构战场生态系统,战争的制胜机理将完全改变。其中,基于模型和算法的AI系统是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,算法战将在战争中起到决定性作用,作战体系和进程最终将以AI为主导,制智权成为未来战争的核心制权。

不同时代、不同战争形态,战场生态系统是不一样的,作战要素构成、制胜机理完全不同。机械化战争是平台中心战,核心是“动”,主导力量是火力和机动力,追求以物载能、以物释能。作战要素主要包括:人+机械化装备+战法。制胜机理是基于机械化装备作战运用的以人为主导的决策,以多胜少、以大吃小、以快制慢,全面、高效、可持续的动员能力,分别起到决定性或重要的作用。信息化战争是网络中心战,核心是“联”,主导力量是信息力,追求以网聚能、以网释能。作战要素及相互关系主要是:基于网络信息的“人+信息化装备+战法”。信息贯穿于人、装备和战法,建立“从传感器到射手”的无缝信息连接,实现体系化网络化作战能力,以体系对局部、以网络对离散、以快制慢,成为取得战争胜利的重要机理。其中,信息对装备和作战体系起到了倍增的作用,但平台仍然以有人为主,信息围绕人发挥辅助决策的作用,但多数决策还是以人为主。智能化战争是认知中心战,核心是“算”,主导力量是智力,智力所占权重将超过火力、机动力和信息力,追求的将是以智驭能、以智制能,以虚制实、以优胜劣,作战双方谁的AI多,谁的AI更聪明,战场主动权就越大。作战要素及相互关系主要是:AI×(云+网+群+人+装备+战法),可以简化为“AI、云、网、群、端”要素构成的相互关联与融合的战场生态系统。未来,AI在战争中的作用将越来越大、越来越强,最终将发挥决定和主导作用。

强调AI的主导作用,并不否认人在战争中的作用。一方面,人的聪明才智已经前置并赋予了AI;另一方面,在战前、后台和战略层面,在相当长一段时间和可预见的未来,AI是无法取代人类的。

现代战争战场环境越来越复杂、作战对抗速度越来越快,如何快速识别处理海量信息、快速响应战场态势、快速制定决策方案,已远非人力所能,也超出了现有技术手段的极限(见表1、表2)。随着AI在战争体系中的应用越来越广、作用越来越大,作战流程将重新塑造,军事杀伤链将提速增效,感知快、决策快、行动快、保障快,成为未来智能化战争制胜的重要砝码。

吴明曦-表1
吴明曦-表2

未来,通过图像、视频、电磁频谱、语音等智能识别与模式识别,对天空地海传感器网络复杂战场信息能够快速精确实施目标识别。利用大数据技术,通过多源多维定向搜索与智能关联分析,不仅能够对各种打击目标进行准确定位,还能够对人类行为、社会活动、军事行动和舆情态势精准建模,逐步提高预警预测准确率。各战区和战场基于精准战场信息,通过事先虚拟空间的大量平行建模和模拟训练,能够自适应地实施任务规划、自主决策与作战进程控制。各作战平台、集群系统的AI,根据任务规划能够围绕作战目标自主、协同执行任务,并针对随时出现的变化进行能动调整。通过事先建立分布式、网络化、智能化、多模式的保障体系与预置布局,能够快速实施精准物流配送、物资供应和智能维修等。总之,通过智能科技的广泛应用和各种AI系统的能动作用、进化功能,在谋划、预测、感知、决策、实施、控制、保障等作战全过程,实现“简单、快捷、高效、可控”的作战流程再造,能够让人类从繁重的作战事务中逐步解脱出来。作战流程再造将促使未来战场节奏加快、时间压缩、过程变短。

AI主导的制胜机理,主要表现在作战能力、手段、策略和措施方面,全面融合了人的智力,接近了人的智能,超越了人的极限,发挥了机器的优势,体现了先进性、颠覆性和创新性。这种先进与创新,不是以往战争简单的延长线和增长量,而是一种质的变化和跃升,是一种高阶特征。这种高阶特征体现为智能化战争具有传统战争形态所不具备的“类脑”功能和很多方面“超越人类极限的能力”。随着AI的不断优化迭代,它总有一天将超过普通士兵、参谋、指挥员甚至精英和专家群体,成为“超级脑”和“超级脑群”。这是智能化战争的核心和关键,是认识论和方法论领域的技术革命,是人类目前可预见、可实现、可进化的高级作战能力。

虚拟空间作用上升。随着时代的进步和科技的发展,作战空间逐步从物理空间拓展到虚拟空间。虚拟空间在作战体系中的地位作用逐步上升且越来越重要,越来越同物理空间和其他领域实现深度融合与一体化。虚拟空间是由人类构建的基于网络电磁的信息空间,它可以多视角反映人类社会和物质世界,同时可以超越客观世界的诸多限制来利用它。构建它的是信息域,连接它的是物理域,反映出的是社会域,利用它的是认知域。狭义上的虚拟空间主要指民用互联网,广义上的虚拟空间主要指赛博空间(Cyberspace),包括各种物联网、军用网和专用网构成的虚拟空间。赛博空间具有易攻难防、以软搏硬、平战一体、军民难分等特征,已成为实施军事行动、战略威慑和认知对抗的重要战场。

虚拟空间的重要性主要体现在三个方面:一是通过网络信息系统,把分散的作战力量、作战要素连接为一个整体,形成体系化网络化作战能力,成为信息化战争的基础;二是成为网电、情报、舆情、心理、意识等认知对抗的主战场和基本依托;三是建立虚拟战场,开展作战实验,实现虚实互动,形成平行作战和以虚制实能力的核心与关键。

未来,随着全球互联、物联的加速升级,随着天基网络化侦察、通信、导航、移动互联、Wi-Fi和高精度全球时空基准平台、数字地图、行业大数据等系统的建立完善与广泛应用,人类社会和全球军事活动将越来越“透明”,越来越被联网、被感知、被分析、被关联、被控制(见图6),对军队建设和作战呈现全方位、泛在化的深刻影响,智能化时代的作战体系将逐步由封闭向开放、由以军为主向军民融合的“开源泛在”方向拓展。

吴明曦6

智能化时代,物理、信息、认知、社会、生物等领域的信息数据将逐渐实现自由流动,作战要素将实现深度互联与物联,各类作战体系将从初级的“能力组合”向高级的“信息融合、数据交链、一体化行为交互”方向发展,具备强大的全域感知、多域融合、跨域作战能力,具备随时随地对重要目标、敏感人群和关键基础设施实施有效控制的能力。美国陆军联合兵种中心的一份报告认为,这个世界正在进入“全球监控无处不在”的时代。即使这个世界无法跟踪所有的活动,技术的扩散也无疑会使潜在的信息来源以指数方式增长。

目前,基于网络的软件攻击已具备物理毁伤能力,军事发达国家的网络攻击已具备入侵、欺骗、干扰、破坏等作战能力,赛博空间已经成为实施军事行动和战略威慑的又一重要战场。美国的网络攻击已经用于实战。突尼斯的本·阿里、利比亚的卡扎菲、伊拉克的萨达姆都曾经被美国的网络攻防和维基解密影响,造成舆情转向、心理失控、社会动荡,导致政权的迅速垮台,对传统战争形态产生了颠覆性影响。通过斯诺登事件,美国使用的11类49项“赛博空间”侦察项目目录清单陆续被曝光,“震网”病毒破坏伊朗核设施、“高斯”病毒群体性入侵中东有关国家、“古巴推特网”控制大众舆情等事件,表明美国已具备对互联网、封闭网络、移动无线网络的强大监控能力、软硬攻击和心理战能力。

战争从虚拟空间实验开始。美军从20世纪80年代就开始了作战仿真、作战实验和模拟训练的探索。后来,美军又率先将虚拟现实、兵棋推演、数字孪生等技术用于虚拟战场和作战实验。据分析,海湾战争、科索沃战争、阿富汗战争、伊拉克战争等军事行动,美军都开展了作战模拟推演,力图找出的最优作战和行动方案。据报道,俄罗斯出兵叙利亚之前,就在战争实验室进行了作战预演,依据实验推演情况,制定了“中央-2015”战略演习计划,针对叙利亚作战演练了“在陌生区域的机动和可到达性”。演习结束后,俄军格拉西莫夫总参谋长强调,以政治、经济及舆论心理战等手段为主,辅之以远程精确的空中打击、特种作战等措施,最终达成政治和战略目的。实践表明,俄出兵叙利亚的进程,与实验、演习基本一致。

未来,随着虚拟仿真、混合现实、大数据、智能软件的应用和发展,通过建立一个平行军事人工系统,使物理空间的实体部队与虚拟空间的虚拟部队相互映射、相互迭代,可以在虚拟空间里解决物理空间难以实现的快速、高强度对抗训练和超量计算,可以与高仿真的“蓝军系统”进行对抗和博弈,不断积累数据,建立模型和算法,从而把最优解决方案用于指导实体部队建设和作战,达到虚实互动、以虚制实、以虚制胜的目的。2019年1月25日,谷歌旗下人工智能团队DeepMind与《星际争霸》开发公司暴雪,公布了2018年12月AlphaSTAR与职业选手TLO、MANA的比赛结果,最终在五局三胜赛制中,AlphaSTAR均以5:0取胜。AlphaSTAR只用了两周时间就完成了人类选手需要200年时间的训练量,展示了在虚拟空间进行仿真对抗训练的巨大优势与光明前景。

无人化为主的作战样式。智能化时代,无人化作战将成为基本形态,人工智能与相关技术的融合发展将逐步把这种形态推向高级阶段。无人系统是人类智慧在作战体系中的充分前置,是智能化、信息化、机械化融合发展的集中体现。无人装备最早出现在无人机领域,1917年,英国造出了世界上第一架无人机,但未用于实战。随着技术发展,无人机逐步用于靶机、侦察、察打一体等领域。进入21世纪以来,无人技术与装备由于具有以任务为中心设计、不必考虑乘员需求、作战效费比高等优势,其探索应用已经实现了巨大跨越,取得了重大突破,显现出快速全方位发展的态势,应用范围迅速拓展,涵盖了空中、水面、水下、地面、空间等各个领域。

近年来,人工智能、仿生智能、人机融合智能、群体智能等技术飞速发展,借助卫星通信与导航、自主导航,无人作战平台能够很好地实现远程控制、编队飞行、集群协同。目前,无人作战飞行器、水下无人平台和太空无人自主操作机器人相继问世,双足、四足、多足和云端智能机器人等正在加速发展,已经步入工程化和实用化快车道,军事应用为期不远。

总体上看,智能化时代的无人化作战,将进入三个发展阶段。第一阶段是有人为主、无人为辅的初级阶段,其主要特点是“有人主导下的无人作战”,也就是事前、事中、事后都是由人完全控制和主导的作战行为。第二阶段是有人为辅、无人为主的中级阶段,其主要特点是“有限控制下的无人作战”,即在作战全过程中人的控制是有限度、辅助性但又是关键性的,多数情况可以依靠平台自主行动能力。第三阶段是规则有人、行动无人的高级阶段,其主要特点是“有人设计、极少控制的无人作战”,人类事先进行总体设计,明确各种作战环境条件下的自主行为与游戏规则,在行动实施阶段主要交由无人平台和无人部队自主执行。

自主行为或者自主性,是无人化作战的本质,是智能化战争既普遍又显著的特征,体现在很多方面。

一是作战平台的自主,主要包括无人机、地面无人平台、精确制导武器、水下和太空机器人等自主能力和智能化水平。

二是探测系统的自主,主要包括自动搜索、跟踪、关联、瞄准和图像、语音、视频、电子信号等信息的智能识别。

三是决策的自主,核心是作战体系中基于AI的自主决策,主要包括战场态势的自动分析、作战任务的自动规划、自动化的指挥控制、人机智能交互等。

四是作战行动的自主协同,前期包括有人无人系统的自主协同,后期包括无人化的自主集群,如各类作战编队集群、蜂群、蚁群、鱼群等作战行为。

五是网络攻防的自主行为,包括各种病毒和网络攻击行为的自动识别、自动溯源、自动防护、自主反击等。

六是认知电子战,自动识别电子干扰的功率、频段、方向等,自动跳频跳转和自主组网,以及面向对手的主动、自动电子干扰等。

七是其他自主行为,包括智能诊断、自动修复、自我保障等。

未来,随着人工智能和相关技术融合发展的不断升级,无人化将向自主、仿生、集群、分布式协同等方向快速发展,逐步把无人化作战推向高级阶段,促使战场上有生力量的直接对抗显著减少。虽然未来有人平台会一直存在,但仿生机器人、类人机器人、蜂群武器、机器人部队、无人化体系作战,在智能化时代将成为常态。由于在众多作战领域都可以用无人系统来替代,都可以通过自主行为去完成,人类在遭到肉体打击和损伤之前,一定有无人化作战体系在前面保驾护航。因此,智能化时代的无人化作战体系,是人类的主要保护屏障,是人类的护身符和挡箭牌。

全域作战与跨域攻防。智能化时代全域作战与跨域攻防,也是一种基本作战样式,体现在很多作战场景、很多方面。从陆、海、空、天到物理、信息、认知、社会、生物多领域,以及虚拟和实体的融合互动,从平时的战略威慑到战时的高对抗、高动态、高响应,时间和空间跨度非常大。既面临物理空间作战和虚拟空间网络攻防、信息对抗、舆情引导、心理战等认知对抗,还面临全球安全治理、区域安全合作、反恐、救援等任务,面临网络、通信、电力、交通、金融、物流等关键基础设施的管控。

2010年以来,以信息化智能化技术成果为支撑,美军提出了作战云、分布式杀伤、多域战、算法战、马赛克战、联合全域作战等概念,目的是以体系对局部、以多能对简能、以多域对单域、以融合对离散、以智能对非智能,维持战场优势和军事优势。美军2016年提出多域战、2020年提出联合全域作战概念,目的是发展跨军种跨领域的联合作战能力,实现单一军种作战背后都有三军的支持,具备全域对多域、对单域的能力优势。

未来,随着人工智能与多学科交叉融合、跨介质攻防关键技术群的突破,在物理、信息、认知、社会、生物等功能域之间,在陆、海、空、天等地理域之间,基于AI与人机混合智能的多域融合与跨域攻防,将成为智能化战争一个鲜明的特征。

智能时代的多域与跨域作战,将从任务规划、物理联合、松散协同为主,向异构融合、数据交链、战术互控、跨域攻防一体化拓展。

一是多域融合。根据多域环境下不同的战场与对手,按照联合行动的要求把不同的作战样式、作战流程和任务规划出来,尽量统一起来,实现信息、火力、防御、保障和指控的统筹与融合,实现战略、战役和战术各层次作战能力的融合,形成一域作战、多域联合快速支援的能力。

二是跨域攻防。在统一的网络信息体系支撑下,通过统一的战场态势,基于统一标准的数据信息交互,彻底打通跨域联合作战侦控打评信息链路,实现在战术和火控层面军种之间协同行动、跨域指挥与互操作、作战要素与能力的无缝衔接。

三是全程关联。把多域融合和跨域攻防作为一个整体,统筹设计、全程关联。战前,开展情报收集与分析,实施舆论战、心理战、宣传战和必要的网电攻击。战中,通过特种作战和跨域行动,实施斩首、要点破袭和精确可控打击(见图7)。战后,防御信息系统网络攻击、消除负面舆论对民众影响、防止基础设施被敌破坏,从多个领域实施战后治理、舆情控制和社会秩序恢复。

吴明曦7

四是AI支持。通过作战实验、模拟训练和必要的试验验证、实战检验,不断积累数据、优化模型,建立不同作战样式与对手的AI作战模型和算法,形成一个智能化的脑体系,更好地支撑联合作战、多域作战和跨域攻防。

人与AI混合决策。智能化战场AI脑体系的不断健全、优化、升级和完善,使其将在许多方面超越人类。几千年来,人类战争以人为主的指挥控制和决策模式将彻底改变,人指挥AI、AI指挥人、AI指挥AI等,都有可能在战争中出现。

分布式、网络化、扁平化、平行化是智能化作战体系的重要特征,有中心、以人为主的单一决策模式,逐步被基于AI的无人化、自主集群、有人无人协同等无中心、弱中心模式所改变,相互之间的混合兼容成为发展趋势。作战层级越低、任务越简单,无人化、无中心的作用越突出;层级越高、任务越复杂,人的决策、有中心的作用越重要。战前以人决策为主、以AI决策为辅,战中以AI决策为主、以人决策为辅,战后两者都有、以混合决策为主(见表3)。

吴明曦-表3

未来战场,作战对抗态势高度复杂、瞬息万变、异常激烈,多种信息交汇形成海量数据,仅凭人脑难以快速、准确处理,只有实现“人脑+AI”的协作运行方式,基于作战云、数据库、网络通信、物联网等技术群,“指挥员”才能应对瞬息万变的战场,完成指挥控制任务。随着无人系统自主能力的增加,集群和体系AI功能的增强,自主决策逐步显现。一旦指挥控制实现不同程度的智能化,侦察—判断—决策—攻击(OODA)回路时间将大大压缩,效率将明显提升。尤其是用于网络传感器图像处理的模式识别、用于作战决策的“寻优”算法、用于自主集群的粒子群算法和蜂群算法等,将赋予指挥控制系统更加高级、完善的决策能力,逐步实现“人在回路外”的作战循环。

非线性放大与快速收敛。未来的智能化作战,不再是能量的逐步释放和作战效果的线性叠加,而是非线性、涌现性、自生长、自聚焦等多种效应的急剧放大和结果的快速收敛。

涌现主要指复杂系统内每个个体都遵从局部规则,不断进行交互后,以自组织方式产生出整体质变效应的过程。未来,战场信息虽然复杂多变,但通过图像、语音、视频等智能识别和军事云系统处理后,具备“一点采集、大家共享”能力,通过大数据技术与相关信息快速关联,并与各类武器火控系统快速交链后,实施分布式打击、集群打击和网络心理战等,能够实现“发现即摧毁”“一有情况群起而攻之”和“数量优势滋生心理恐慌效应”,这些现象就是涌现效应。

智能化作战的涌现效应主要体现在三个方面:一是基于AI决策链的快速而引发的杀伤链的加速;二是有人无人协同特别蜂群系统数量优势所引发的作战效应;三是基于网络互联互通所产生的快速群体涌现行为。

军事智能化发展到一定阶段后,在高级AI、量子计算、IPV6、高超声速等技术共同作用下,作战体系将具备非线性、非对称、自生长、快速对抗、难以控制的放大效应和行动效果,特别在无人、集群、网络舆情、认知对抗等方面尤为明显,群愚生智、以量增效、非线性放大、涌现效应越来越突出,AI主导下的认知、信息、能量对抗相互交织并围绕着目标迅速聚焦,时间越来越被压缩,对抗速度越来越快,即呈现多种效应的急剧放大和结果的快速收敛。能量冲击波、对抗极速战、AI终结者、舆情反转、社会动荡、心理失控、物联网连锁效应等,将成为智能化战争的显著特征。

无人化集群攻击,作战双方在平台性能大致相同的条件下,遵循兰切斯特方程,作战效能与数量的平方成正比,数量优势就是质量优势。网络攻防和心理舆情效应,遵循梅特卡夫定律,与信息互联用户数的平方成正比,非线性、涌现效应更加明显。战场AI数量的多少和智商的高低,更决定着作战体系智能化的整体水平,关系到战场智权的控制,影响战争胜负和结局。智能化时代,如何处理好能量、信息、认知、数量、质量、虚拟、实体之间的相互关系,如何巧妙地设计、把控、运用和评估非线性效应,是未来战争面临的重大新挑战和新要求。

未来,无论是舆情反转、心理恐慌,还是蜂群攻击、集群行动,以及人在环外自主作战,其涌现效应和打击效果,将成为相对普遍的现象和容易实施的行动,形成威慑与实战兼容的能力,也是人类社会必须严加管理和控制的战争行为。

有机共生的人装关系。在智能化时代,人与武器的关系将发生根本性改变,在物理上越来越远、在思维上越来越近。装备形态和发展管理模式将完全改变,人的思想和智慧通过AI与武器装备深度交链,在装备发展阶段充分前置、在使用训练阶段优化迭代、在作战验证之后进一步升级完善,如此循环往复、不断递进。

第一,随着网络通信、移动互联、云计算、大数据、机器学习和仿生等技术的快速发展及其在军事领域的广泛应用,传统武器装备的结构和形态将彻底改变,呈现出前后台分工协作、高效互动、自适应调整等多样化功能,是集机械、信息、网络、数据、认知于一体的复合体。

第二,人与武器逐渐物理脱离,但在思维上逐步深度融合为有机共生体。无人机、机器人的逐步成熟,从辅助人作战转向代替人作战,人更加退居到后台。人与武器的结合方式,将以崭新形态出现。人的思想和智慧将全寿命周期地参与设计、研发、生产、训练、使用和保障过程,无人作战系统将把人的创造性、思想性和机器的精准性、快速性、可靠性、耐疲劳性完美结合起来。

第三,装备建设与管理模式发生深刻变化。机械化装备越用越旧、信息化软件越来越新、智能化算法越用越精。传统的机械化装备采用“预研—研制—定型”的模式交付部队,战技性能随时间和摩托小时呈下降趋势;信息化装备是机械化、信息化复合发展的产物,平台不变,但信息系统随计算机CPU和存储设备的发展不断迭代更新,呈现“信息主导、以软牵硬,快速更替、螺旋上升”的阶梯式发展特点;智能化装备以机械化、信息化为基础,随着数据和经验的积累,不断地优化提升训练模型和算法,呈现随时间和使用频率越用越强、越用越好的上升曲线。因此,智能化装备发展建设及使用训练保障模式,将发生根本性改变。

在学习对抗中进化。进化,一定是未来智能化战争和作战体系的一个鲜明特点,也是未来战略竞争的一个制高点。智能化时代的作战体系将逐步具备自适应、自学习、自对抗、自修复、自演进能力,成为一个可进化的类生态和博弈系统。

智能化作战体系与系统,最大的特点和与众不同之处,就在于其“类人、仿人”的智能与机器优势的结合,实现“超人类”的作战能力。这种能力的核心是众多模型和算法越用越好、越用越精,具备进化的功能。如果未来作战体系像人体一样,大脑是指挥控制中枢,神经系统是网络,四肢是受大脑控制的武器装备,就像一个生命体一样,具备自适应、自学习、自对抗、自修复、自演进能力,我们认为它就具备进化的能力和功能。由于智能化作战体系与生命体不完全一样,单一的智能化系统与生命体类似,但多系统的作战体系,更像一个“生态系统+对抗博弈系统”,比单一的生命体更复杂,更具有对抗性、社会性、群体性和涌现性。

经初步分析判断,随着作战仿真、虚拟现实、数字孪生、平行训练、智能软件、仿脑芯片、类脑系统、仿生系统、自然能源采集和新型机器学习等技术的发展应用,未来的作战体系可以逐步从单一功能、部分系统的进化向多功能、多要素、多领域、多系统的进化发展。各系统能够根据战场环境变化、面临的威胁不同、面临的对手不同、自身具备的实力和能力,按照以往积累的经验知识、大量仿真对抗性训练和增强学习所建立的模型算法,快速形成应对策略并采取行动,进而在战争实践中不断修正、优化和自我完善、自我进化。单一任务系统将具备类似生命体的特征和机能,多任务系统就像森林中的物种群那样具备相生相克、优胜劣汰的循环功能和进化机制,具备复杂环境条件下的博弈对抗和竞争能力,形成可进化的类生态和博弈系统。

作战体系的进化途径,主要体现在四个方面:一是AI的进化,随着数据和经验的积累,一定会不断优化、升级和提升。这一点比较容易理解。二是作战平台和集群系统的进化,主要从有人控制为主向半自主、自主控制迈进。由于不仅涉及平台和集群控制AI的进化,还涉及相关机械与信息系统的优化和完善,所以要相对复杂一点。三是任务系统的进化。如探测系统、打击系统、防御系统、保障系统的进化等,由于涉及多平台、多任务,所以进化涉及的因素和要素就复杂得多,有的可能进化快,有的可能进化慢。四是作战体系的进化,由于涉及全要素、多任务、跨领域,涉及各个层次的对抗,其进化过程就非常复杂。作战体系能否进化,不能完全依靠自生自长,而需要主动设计一些环境和条件,需要遵循仿生原则、适者生存原则、相生相克原则和全系统全寿命管理原则,才能具备持续进化的功能和能力。

智能设计与制造。智能化时代的国防工业,将从相对封闭、实物为主、周期较长的研究制造模式向开源开放、智能设计与制造、快速满足军事需求转变。

国防工业是国家战略性产业,是国家安全和国防建设的强大支柱,平时主要为军队提供性能先进、质量优良、价格合理的武器装备,战时是实施作战保障的重要力量,是确保打赢的核心支撑。国防工业是一个高科技密集的行业,现代武器装备研发和制造,技术密集、知识密集、系统复杂、综合性强,大型航母、战斗机、弹道导弹、卫星系统、主战坦克等武器装备的研发,一般都要经过十年、二十年甚至更长时间,才能定型交付部队,投入大、周期长、成本高。二战以后到上世纪末,国防工业体系和能力结构是机械化时代与战争的产物,其科研、试验、生产制造、保障等,重点面向军兵种需求和行业系统组织科研与生产,主要包括兵器、船舶、航空、航天、核和电子等行业,以及民口配套和基础支撑产业等。冷战后,美国国防工业经过战略调整和兼并重组,总体上形成了与信息化战争体系对抗要求相适应的国防工业结构和布局。美国排名前六位的军工巨头,既可以为相关军兵种提供专业领域的作战平台与系统,也可以为联合作战提供整体解决方案,是跨军兵种跨领域的系统集成商。进入21世纪以来,随着体系化、信息化作战需求的变化和数字化、网络化、智能化制造技术的发展,传统武器装备发展模式和科研生产能力开始逐步改变,迫切需要按照信息化战争特别是智能化战争的要求进行重塑和调整。

未来,国防科技工业将按照联合作战、全域作战、机械化信息化智能化融合发展要求,从传统以军兵种、平台建设为主向跨军兵种、跨领域系统集成转变,从相对封闭、自成体系、各自独立、条块分割、实物为主、周期较长的研究设计制造向开源开放、民主化众筹、虚拟化设计与集成验证、自适应制造、快速满足军事需求转变(见图8),逐步形成软硬结合、虚实互动、人机物环智能交互、纵向产业链有效衔接、横向分布式协同、军民一体化融合的新型创新体系和智能制造体系。军地多方联合论证设计,建设和使用供需双方共同研发,基于平行军事系统的虚实迭代优化,通过作战训练和实战验证来完善提升,边研边试边用边建,是智能化作战体系发展建设和战斗力生成的基本模式。

吴明曦8

吴明曦8

失控的风险。由于智能化作战体系在理论上具备自我进化并达到“超人类”的能力,如果人类不事先设计好控制程序、控制节点,不事先设计好“终止按钮”,结果很可能会带来毁灭和灾难。需要高度关注的是,众多黑客和“居心不良”的战争狂人,会利用智能化技术来设计难以控制的战争程序和作战方式,让众多机器脑AI和成群结队的机器人,按照事先设定的作战规则,自适应和自演进地进行战斗,所向披靡,勇往直前,最终酿成难以控制的局面,造成难以恢复的残局。这是人类在智能化战争进程中面临的重大挑战,也是需要研究解决的重大课题。需要从全人类命运共同体和人类文明可持续发展的高度,认识和重视这个问题,设计战争规则,制定国际公约,从技术上、程序上、道德上和法律上进行规范,实施强制性的约束、检查和管理。

以上十个方面的突变和跨越,是智能化战争新形态的主要内容。当然,智能化战争的发展与成熟,并不是空中楼阁、无本之木,而是建立在机械化和信息化之上。没有机械化和信息化,就没有智能化。机械化、信息化、智能化“三化”是一个有机整体,相互联系、相互促进,迭代优化、跨越发展。从目前看,机械化是基础,信息化是主导,智能化是方向。从未来看,机械化是基础,信息化是支撑,智能化是主导。

未来美好远景

在新世纪的时空隧道里,我们看到智能化战争的列车正快速行驶,是任由人类的贪婪和科技的强大走向更加残酷的黑暗,还是迈向更加文明和光明的彼岸,这是人类需要思索的重大哲学命题。智能化是未来,但不是全部。智能化能胜任多样化军事任务,但不是全能。面对文明之间、宗教之间、国家之间、阶层之间的尖锐矛盾,面对手持菜刀的暴徒、自杀式爆炸、群体性骚乱等极端事件,智能化作用仍然有限。全球政治不平衡、权利不平等、贸易不公平、社会矛盾不解决,战争和冲突将不可避免。世界最终靠实力说了算,而其中科技实力、经济实力和军事实力极其重要。军事实力虽然决定不了政治,但可以影响政治,决定不了经济,但可以为经济发展带来安全。智能化作战能力越强大,其威慑强敌、遏制战争的功能越强,和平就越有希望。就像核威慑那样,为避免可怕的后果和失控的灾难,在防止大规模战争方面发挥着重要的作用。

战争的智能化程度,在某种意义上体现了战争文明的进程。人类战争的历史,最初由族群之间食物和居住区域的争夺,到土地占领、资源掠夺、政治实力扩张、精神世界统治,无不充满血腥、暴力和镇压。战争作为人类社会不可调和矛盾的最终解决手段,其所追求的理想目标是文明化:不战而屈人之兵、资源投入最少、人员伤亡最小、对社会的破坏最轻……但以往的战争实践,往往因政治斗争、民族矛盾、经济利益争夺、科技毁伤手段的残酷等原因而事与愿违,常常把国家、城市和家园毁坏殆尽。以往的战争未能实现上述理想,而未来智能化战争由于技术上的突破、透明度的增加、经济利益互利共享的加深,特别是有生力量的对抗逐步让位于机器人之间的对抗、AI之间的博弈,人员伤亡、物质消耗、附带损伤会越来越小,在很大程度上存在实现文明化的可能性,给人类带来了希望。我们期待,未来战争,从人类社会的相互残杀、物质世界的极大破坏,逐步过渡到无人系统和机器人之间的战争,发展到仅限于作战能力和综合实力的威慑与制衡、虚拟世界中AI之间的对抗、高仿真的战争游戏……人类战争的消耗,只限于一定规模的无人系统、模拟对抗与仿真实验,甚至仅仅是打一场战争游戏的能源。人类由战争的谋划者、设计者、参与者、主导者和受害者,转变为理性的思想者、组织者、控制者、旁观者和裁决者。人类的身体不再受到创伤,精神不再受到惊吓,财富不再遭到破坏,家园不再遭到摧毁。虽然美好的理想和愿望,与残酷的现实可能始终存在差距,但衷心希望这一天能够到来,尽早到来。这是智能化战争发展的最高阶段,作者的最大愿望,人类的美好远景!

(感谢同事周旭芒研究员为论文撰写提供支持和帮助,他在智能化发展和建设方面有独到的思想和见解)

注释

[1][美]罗伯特·O.沃克等:《20YY:机器人时代的战争》,邹辉等译,北京:国防工业出版社,2016年,第148页。

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. The AI system based on models and algorithms will be the core combat capability, running through all aspects and links and playing a multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

中國原創軍事資源:https://www.rmlt.com.cn/2021/0818/622318889.shtml

STRENGTHENING THE FOUNDATION FOR CHINESE MILITARY INTELLIGENT TRANSFORMATION

加強中國軍事情報轉型的基礎

現代英語:

The nature of warfare is rapidly evolving towards intelligence. The intelligent transformation of the military is not merely a simple accumulation of technologies, but a systemic change supported by data, algorithms, and computing power. These three elements mutually empower and organically integrate, forming the technological foundation for generating new combat capabilities. To accelerate the intelligent development of the military, we must deeply grasp the technological logic of intelligent transformation, solidify the data foundation, activate the algorithm engine, and strengthen computing power support to provide a solid guarantee for winning future intelligent wars.

Operational data: the “digital cornerstone” of intelligent transformation

Data is the “lifeblood” of intelligence. Without the accumulation of high-quality, large-scale, and multi-dimensional operational data, the transformation of military intelligence will be like water without a source or a tree without roots. In intelligent warfare, all activities across the entire chain, including battlefield perception, command and decision-making, and combat operations, are essentially processes of data generation, flow, processing, and application. The completeness, accuracy, and timeliness of operational data directly determine the perception precision, decision-making speed, and strike accuracy of intelligent systems, and are an indispensable cornerstone for the intelligent transformation of the military field.

The core value of operational data lies in breaking through the “fog of war” and enabling a shift from experience-driven to data-driven approaches. In traditional warfare, commanders primarily rely on battlefield reconnaissance, intelligence analysis, and combat experience to make decisions. Limited by the breadth and depth of information acquisition, these decisions often carry a degree of subjectivity and limitation. However, in the era of intelligent warfare, a single reconnaissance drone can transmit 5GB of image data per second, and satellite networks constantly track tens of thousands of ground targets, resulting in a geometrical increase in the rate of battlefield data generation. This operational data, originating from multiple domains including land, sea, air, space, cyber, electronic, and psychological domains, can, after standardized processing and in-depth analysis, construct a transparent battlefield situation across all domains, providing commanders with precise decision-making support.

Building a comprehensive operational data resource system requires focusing on key aspects of the entire lifecycle governance. In the data acquisition phase, it’s essential to base data acquisition on the needs of all-domain operations, broaden data source channels, and achieve full coverage of data in both traditional and new domains. Traditional domains should focus on land, sea, and air battlefields, accurately collecting data on troop deployments, equipment performance, and terrain. New domains should extend to outer space, deep sea, polar regions, and cyberspace, prioritizing the collection of data on space target trajectories, deep-sea environmental parameters, and cyberspace situational awareness. In the data fusion and processing phase, a unified data standard system must be established to address prominent issues such as multiple values ​​for a single data point and inconsistent formats, achieving interconnectivity between data from different sources and of different types. In the data sharing phase, a sound cross-domain sharing mechanism must be established, along with tiered and categorized sharing rules, breaking down service-specific barriers, departmental boundaries, and network isolation to build a ubiquitous, all-encompassing, and interconnected data sharing environment, maximizing the utilization of data resources.

To fully leverage the multiplier effect of combat data, the key lies in cultivating data-driven thinking and building a strong professional team. Data-driven thinking is the prerequisite for activating data value. It is essential to guide officers and soldiers to develop the habit of “thinking with data, speaking with data, managing with data, and making decisions with data,” abandoning traditional thinking patterns based on experience and intuition. In operational planning, quantitative analysis should be based on data; in training evaluation, precise measurement should be based on data standards; and in equipment development, iterative optimization should be supported by data. Simultaneously, efforts should be focused on building a professional data talent team, clarifying the responsibilities of each position, and connecting the entire process from data generation to data application. Through various means such as academic training, on-the-job experience, and specialized training, the professional skills of officers and soldiers in data collection, processing, analysis, and application should be improved, creating a composite talent team that understands both military operations and data technology, providing talent support for releasing the value of data.

Specialized Algorithms: The “Digital Engine” of Intelligent Transformation

If data is the “fuel” of intelligence, then algorithms are the “engine” that transforms fuel into power. Specialized algorithms, as the core driving force of military intelligence, are the key link in realizing the transformation of data into knowledge, knowledge into decision-making, and decision-making into combat effectiveness. In intelligent warfare, the quality of algorithms directly determines the reaction speed, decision-making accuracy, and combat effectiveness of the combat system, becoming the engine of intelligent transformation in the military field.

The core advantage of algorithms lies in reconstructing the operational chain and achieving rapid iteration of the OODA loop. In traditional warfare, the chain of observation, judgment, decision-making, and action is lengthy and often struggles to adapt to rapidly changing battlefield situations due to limitations in human processing capabilities. Intelligent algorithms, however, can leverage machine learning, deep learning, and other technologies to process massive amounts of operational data in seconds, perform real-time analysis, and uncover patterns, significantly shortening the decision-making cycle. In simulation tests, foreign military AI command systems generated multiple complete operational plans in a very short time, demonstrating response speed and decision-making efficiency far exceeding that of human command teams, fully showcasing the enormous advantages of algorithms in accelerating the decision-making process. In combat operations, algorithms can span the entire chain, from reconnaissance and perception, command and decision-making, fire strikes, and effect assessment, constructing an autonomous, closed-loop “kill chain.” From target identification to threat ranking, from plan generation to fire allocation, from strike implementation to damage assessment, algorithms can autonomously complete a series of complex tasks, achieving a “detect and destroy” operational effect.

Enhancing the practical application effectiveness of algorithms requires strengthening technological innovation and scenario empowerment. In terms of technological innovation, it is essential to keep pace with the development trends of artificial intelligence and accelerate the military application transformation of cutting-edge algorithms. Focusing on emerging technologies such as generative AI, neuromorphic computing, and brain-computer interfaces, we should explore pathways for the deep integration of algorithms with military needs. Regarding scenario empowerment, we must build diverse typical scenarios for algorithms based on actual combat requirements, develop specialized algorithms for target recognition, situational assessment, and virtual training, overcome bottlenecks in information processing in complex electromagnetic environments, promote the modularization and lightweight transformation of algorithms, and rapidly integrate them with command and control systems and unmanned equipment systems. This will allow algorithms to continuously iterate and optimize in specific tasks within typical scenarios, transforming algorithmic advantages into practical combat capabilities.

Strengthening algorithm security is crucial for ensuring the steady and sustainable development of intelligent transformation. While algorithms enhance combat effectiveness, they also face security risks such as tampering, deception, and misuse, potentially leading to serious consequences like “algorithmic runaway.” It is essential to establish an algorithm security review mechanism to conduct full-process security assessments of algorithm models in military intelligent systems, focusing on their reliability, transparency, and controllability to prevent algorithmic bias and logical vulnerabilities. Strengthening the research and development of algorithmic countermeasures technologies is also vital. This involves improving the anti-interference and anti-attack capabilities of our own algorithms while mastering techniques to interfere with and deceive enemy algorithms, thus gaining the initiative in algorithmic confrontation. Simultaneously, it is crucial to emphasize algorithmic ethics, clearly defining the boundaries and rules of algorithm application to ensure that algorithm development and use comply with international laws and ethical standards, avoiding any violations of war ethics.

Supercomputing Power: The “Digital Energy” for Intelligent Transformation

Computing power is the fundamental capability supporting data processing and algorithm execution, much like the “energy support” for intelligent systems. In the transformation towards military intelligence, the explosive growth of data and the increasing complexity of algorithms have placed unprecedented demands on computing power. The scale, speed, and reliability of supercomputing power directly determine the operational efficiency and combat effectiveness of military intelligent systems, becoming the driving force behind the intelligent transformation of the military field.

The core role of computing power lies in overcoming performance bottlenecks and supporting the efficient operation of complex intelligent tasks. The demand for computing power in intelligent warfare exhibits an “exponential growth” characteristic: an advanced AI command system needs to run thousands of algorithm models simultaneously when processing battlefield data across the entire domain; a swarm of drones performing collaborative combat missions requires real-time interaction and decision-making calculations involving massive amounts of data; a large-scale virtual combat training exercise needs to simulate the interactive behaviors of tens or even hundreds of thousands of combat units. The completion of these complex tasks is inseparable from powerful computing power. Without sufficient computing power, even the highest quality data cannot be processed quickly, and even the most advanced algorithms cannot operate effectively. Currently, computing power has become a crucial indicator for measuring the level of military intelligence; whoever possesses stronger computing power holds the initiative in intelligent warfare.

Building a computing power system adapted to the needs of intelligent transformation requires creating a collaborative computing power layout across the cloud, edge, and terminal. In the cloud, distributed cloud computing centers need to be constructed to build a computing power foundation that covers the entire domain and is elastically scalable. Relying on infrastructure such as big data centers and supercomputing centers, various computing resources should be integrated to form a large-scale, intensive computing power supply capability. At the edge, computing power should be deployed more readily, enhancing the autonomous computing capabilities of the battlefield. For special scenarios such as forward positions, naval vessels, and air platforms, miniaturized, low-power, and highly reliable edge computing nodes should be developed to transfer some computing tasks from the cloud to the edge. This reduces reliance on communication links and data transmission latency, and ensures that combat units can autonomously complete basic tasks such as target identification, path planning, and coordination even in extreme environments such as communication interruptions or signal blackouts, thus improving the system’s survivability. At the terminal, the built-in computing power of equipment should be strengthened to improve the intelligence level of individual combat platforms. By embedding high-performance AI chips into platforms such as drones, unmanned vehicles, and missile weapons, equipment is endowed with the ability to autonomously perceive, make decisions, and act, making it an intelligent unit with independent combat capabilities and laying the foundation for cluster collaboration and system-on-system confrontation.

Enhancing the combat readiness of computing power support requires strengthening technological innovation and security protection. In terms of technological innovation, it is crucial to keep pace with the development trends of computing power technology and accelerate the military application of new computing technologies. Focusing on cutting-edge areas such as quantum computing, photonic computing, and neuromorphic computing, we must break through the performance bottlenecks of traditional computing architectures and develop disruptive new computing power equipment. Simultaneously, we must strengthen the construction of computing power networks, building high-bandwidth, low-latency, and interference-resistant computing power transmission networks. By integrating technologies such as 5G, 6G, and satellite communication, we can ensure computing power collaboration and data interaction between the cloud, edge, and terminals, achieving seamless connection and efficient scheduling of computing power resources. In terms of security protection, we must establish a computing power security system to prevent the risks of attacks, hijacking, and misuse of computing power resources. By adopting technologies such as encrypted computing and trusted computing, we can ensure the security and privacy of data during the computing process; strengthen the physical and network protection of computing power facilities, and build a multi-layered, all-round protective barrier to ensure that the computing power system can operate stably in wartime and is not subject to enemy interference or damage.

現代國語:

戰爭形態正加速向智慧化演進,軍事領域的智慧轉型絕非單純的技術疊加,而是以數據、演算法、算力為核心支撐的體系性變革,三者相互賦能、有機融合,構成了新型戰鬥力生成的技術基礎。加速軍事領域智慧化發展進程,應深刻掌握智慧轉型的技術邏輯,夯實數據基石、啟動演算法引擎、做強力支撐,為打贏未來智慧化戰爭提供堅實保障。

作戰數據:智慧轉型的“數位基石”

數據是智慧化的“血液”,沒有高品質、大規模、多維度的作戰數據積累,軍事智慧轉型就會成為無源之水、無本之木。在智慧化戰爭中,戰場感知、指揮決策、作戰行動等全連結活動,本質上都是資料的產生、流轉、處理與應用過程。作戰數據的完備性、準確性和時效性,直接決定了智慧系統的感知精度、決策速度和打擊準度,是軍事領域智慧轉型不可或缺的基石。

作戰資料的核心價值在於打破“戰爭迷霧”,實現從經驗驅動到數據驅動的轉變。在傳統戰爭中,指揮官主要依賴戰場偵察、情報研判和實戰經驗來做出決策,受限於資訊獲取的廣度和深度,決策往往帶有一定的主觀性和限制。而在智慧化戰爭時代,一架偵察無人機每秒可傳回5GB影像數據,衛星網路時刻追蹤成千上萬個地面目標,戰場數據生成速率呈幾何級數增長。這些來自陸、海、空、天、網、電、心理等多域的作戰數據,經過規範化處理和深度挖掘後,能夠建構起全局透明的戰場態勢,為指揮官提供精準決策支撐。

建構全域覆蓋的作戰資料資源體系,需要抓好全生命週期治理的關鍵環節。在資料擷取環節,要立足全域作戰需求,拓寬資料來源管道,實現傳統空間與新域空間的資料全覆蓋。傳統空間要聚焦陸戰場、海戰場、空戰場等傳統領域,精準採集兵力部署、裝備性能、地形地形等資料;新域空間要向太空、深海、極地、網路空間等領域延伸,重點收集太空目標軌跡、深海環境參數、網路空間態勢等資料。在資料融合處理環節,要建立統一的資料標準體系,解決「一數多值」「格式不一」等突出問題,實現不同來源、不同類型資料的互聯互通。在資料共享環節,要健全跨域共享機制,建立分級分類共享規則,打破軍種壁壘、部門界限和網路隔離,建構「無所不在、無所不含、無所不聯」的數據共享環境,實現數據資源的最大化利用。

發揮作戰數據的戰鬥力倍增效應,關鍵在於培育數據思維與建強專業隊伍。數據思維是啟動數據價值的前提,要引導官兵養成「用數據思考、用數據說話、用數據管理、用數據決策」的行為習慣,摒棄憑經驗、靠直覺的傳統思維模式。在作戰籌劃中,要以數據為依據進行量化分析;在訓練評估中,要以數據為標準進行精準衡量;在裝備研發中,要以數據為支撐進行迭代優化。同時,要著力建構專業化的資料人才隊伍,明確各環節職務職責,貫通從資料產生到資料運用的全流程連結。透過院校培養、職缺歷練、專案訓練等多種方式,提升官兵資料收集、處理、分析、運用的專業技能,打造一支既懂軍事業務又通資料技術的複合型人才隊伍,為資料價值釋放提供人才支撐。

專業演算法:智慧轉型的“數位引擎”

如果說數據是智慧化的“燃料”,那麼演算法就是將燃料轉化為動力的“引擎”。專業演算法作為軍事智慧的核心驅動力,是實現數據向知識、知識向決策、決策轉化為戰鬥力的關鍵環節。在智慧化戰爭中,演算法的優劣直接決定了作戰體系的反應速度、決策精準度和對抗效能,成為軍事領域智慧轉型的引擎。

演算法的核心優勢在於重構作戰鏈路,實現OODA循環的極速迭代。傳統作戰中,觀察、判斷、決策、行動的連結較長,受限於人工處理能力,往往難以適應瞬息萬變的戰場態勢。而智慧演算法能夠依賴機器學習、深度學習等技術,對海量作戰資料進行秒級處理、即時分析與規律挖掘,大幅縮短決策週期。外軍AI軍事指揮系統在模擬測試中,僅用很短時間就生成多套完整作戰方案,響應速度和決策效率遠超人類指揮團隊,充分展現了演算法在加速決策流程中的巨大優勢。在作戰行動中,演算法能夠貫穿偵察感知、指揮決策、火力打擊、效果評估等全鏈路,建構自主閉環的「殺傷鏈」。從目標識別到威脅排序,從方案生成到火力分配,從打擊實施到毀傷評估,演算法能夠自主完成一系列複雜任務,實現「發現即摧毀」的作戰效果。

提升演算法的實戰應用效能,需要強化技術創新與場景賦能。在技​​術創新方面,要緊跟人工智慧發展趨勢,加速前沿演算法的軍事應用轉換。聚焦生成式AI、神經形態運算、腦機介面等新技術方向,探索演算法與軍事需求的深度融合路徑。在場景賦能方面,要立足實戰需求建構多元演算法典型場景,研發目標辨識、態勢研判、虛擬訓練等專用演算法,突破複雜電磁環境資訊處理瓶頸,推動演算法模組化、輕量化改造,與指揮控制系統、無人裝備系統快速整合,讓演算法在典型場景具體任務中不斷迭代優化,讓優勢轉化為最佳化演算法。

築牢演算法安全防線,是確保智慧轉型行穩致遠的重要保障。演算法在帶來作戰效能提升的同時,也面臨被竄改、被欺騙、被濫用等安全風險,甚至可能出現「演算法失控」的嚴重後果。要建立演算法安全審查機制,對軍事智慧系統中的演算法模型進行全流程安全評估,重點在於審查演算法的可靠性、透明度和可控性,防止演算法偏見、邏輯漏洞等問題。加強演算法對抗技術研發,既要提升己方演算法的抗干擾、抗攻擊能力,也要掌握幹擾、欺騙敵方演算法的技術手段,在演算法對抗中佔據主動。同時,要注重演算法倫理建設,明確演算法應用的邊界和規則,確保演算法的研發和使用符合國際法律和倫理標準,避免違反戰爭倫理的情況。

超智算力:智慧轉型的“數位能量”

算力是支撐資料處理和演算法運作的基礎能力,如同智慧化體系的「能量支撐」。在軍事智慧轉型中,數據的爆炸性成長和演算法的複雜化發展,對算力提出了前所未有的高要求。超智算力的規模、速度和可靠性,直接決定了軍事智慧系統的運作效率和實戰效能,成為軍事領域智慧轉型的動力系統。

算力的核心作用在於突破性能瓶頸,支撐複雜智慧任務的高效運作。智慧化戰爭對算力的需求呈現出「指數級增長」特徵:一套先進的AI指揮系統,在處理全局戰場數據時,需要同時運行數千個演算法模型;一支無人機蜂群在執行協同作戰任務時,需要實時進行海量數據交互和決策計算;一次大規模的虛擬對抗訓練,需要模擬數萬甚至數十萬作戰單元的互動行為。這些複雜任務的完成,離不開強大的算力支撐。沒有足夠的算力,再優質的數據也無法快速處理,再先進的演算法也無法有效運作。目前,算力已成為衡量軍事智慧化程度的重要指標,誰掌握了更強的算力,誰就掌握了智慧對抗的主動權。

建構適應智慧轉型需求的算力體系,需要打造「雲端端」協同的算力佈局。在雲端,要建置分散式雲算力中心,建構覆蓋全域、彈性伸縮的算力基座。依託大資料中心、超級運算中心等基礎設施,整合各類運算資源,形成規模化、集約化的算力供給能力。在邊端,要推進算力下沉部署,提升戰場末端的自主運算能力。針對前線陣地、海上艦艇、空中平台等特殊場景,研發小型化、低功耗、高可靠的邊緣運算節點,將部分運算任務從雲端轉移至邊緣端。這樣既可以降低對通訊鏈路的依賴,減少資料傳輸延遲,又能在通訊中斷或訊號黑障等極端環境下,保障作戰單元自主完成目標辨識、路徑規劃、協同配合等基本任務,提升體系生存能力。在終端,要強化裝備內置算力,提升單一作戰平台的智慧等級。透過在無人機、無人車、飛彈武器等平台中嵌入高性能AI晶片,賦予裝備自主感知、自主決策、自主行動的能力,使其成為具備獨立作戰能力的智慧單元,為集群協同和體系對抗奠定基礎。

提升算力保障的實戰化水平,需要強化技術創新與安全防護。在技​​術創新方面,要緊跟算力技術發展趨勢,加速新型計算技術的軍事應用。聚焦量子運算、光子運算、神經形態運算等前沿方向,突破傳統運算架構的效能瓶頸,研發具有顛覆性的新型算力裝備。同時,要加強算力網路建設,建構高頻寬、低時延、抗干擾的算力傳輸網路。透過融合5G、6G、衛星通訊等技術,確保雲端、邊端、終端之間的算力協同與資料交互,實現算力資源的無縫銜接與高效調度。在安全防護方面,要建立算力安全保障體系,防範算力資源被攻擊、被劫持、被濫用的風險。透過採用加密運算、可信任運算等技術,確保資料在運算過程中的安全性和隱私性;加強算力設施的實體防護和網路防護,建構多層次、全方位的防護屏障,確保算力系統在戰時能夠穩定運行,不受敵方幹擾破壞。 (李建平、紀鳳珠、趙輓)

2025年12月30日09 | 資料來源:解放軍報

中國原創軍事資源:https://military.people.com.cn/n1/2025/1230/c1011-40688835461.html

A Look at Chinese Intelligent Warfare | “Order Dispatch”: A New Style of Precision Strike

中國情報戰概覽 | 「命令派遣」:一種新型的精確打擊方式

現代英語:

“Order Dispatch”: Precise Targeting of New Patterns

  introduction

  As Lenin said, “Without understanding the times, one cannot understand war.” In recent years, the widespread application of information and intelligent technologies in the military field has promoted the deep integration of technology and tactics. Relying on intelligent network information systems, it has given rise to “order-based” precision strikes. Commanders and command organs can generate strike requirements in a formatted manner according to combat missions. The decision-making system intelligently matches strike platforms, autonomously plans action paths, and scientifically selects strike methods based on personalized requirements such as strike time, operational space, and damage indicators, thereby rapidly and accurately releasing strike effectiveness.

  The operational characteristics of “order dispatch” type precision strike

  As the informatization and intelligence of weapons and ammunition continue to improve, the cost of modern warfare is also constantly increasing. How to achieve the highest cost-effectiveness ratio with limited strike resources and maximize combat effectiveness has become a central issue for commanders and command organs in operational planning. “Order-based” precision strikes can provide a “feasible solution” for this.

  Real-time, precise, and targeted strikes. Modern warfare places greater emphasis on structurally disrupting enemy operational systems, achieving operational objectives through the rapid and precise release of combat effectiveness. This requires commanders and command organs to seize fleeting “windows of opportunity” to strike high-value, nodal, and critical targets within an enemy’s operational system before the enemy can react. The traditional “detection-guided-strike-assessment” operational loop is time-consuming and ineffective. Therefore, “order-based” precision strikes rely on advanced intelligent network information systems, without pre-determining strike platforms. Target lists are released in real-time, and auxiliary decision-making systems rapidly assess the strike performance of various weapon platforms and the expected damage to targets. Tasks are autonomously allocated to strike platforms, rapidly linking and controlling multi-domain firepower, autonomously closing the kill chain, and conducting rapid strikes against key targets.

  Multi-domain coordinated strike. The advantage of modern precision strike over traditional firepower lies in its information-based and intelligent combat system. It requires no human intervention and autonomously completes tasks such as reconnaissance, control, strike, and assessment based on a closed strike chain. This not only saves strike costs and reduces resource waste but also enables adaptive coordination based on unified operational standards. Therefore, “order-based” precision strikes require firepower forces distributed across various operational domains to establish a unified standard grid. Once a demand is issued from one point, multiple points can respond and coordinate globally, flexibly concentrating forces and firepower, using multiple means to rapidly and multi-domain convergence, and determining the strike direction, sequence, and method for each strike platform while on the move. Through system integration, time is effectively saved, enabling multi-domain precision strikes against key enemy nodes and critical parts of core targets, fully leveraging the combined power of the integrated combat effectiveness of various operational units.

  The key to victory lies in swift and decisive action. Modern warfare is a “hybrid war” conducted simultaneously across multiple domains, where the interplay and confrontation of new domains and new types of forces, such as information, aerospace, and artificial intelligence, are becoming increasingly pronounced. This necessitates that both sides be able to detect and act faster than the enemy, crippling their operational systems and reducing their operational efficiency. On the one hand, it is crucial to pinpoint key nodes in the enemy’s system and launch timely and precise strikes; on the other hand, it is essential to conceal one’s own intentions and strike forces, striking swiftly and unexpectedly. “Order-based” precision strikes perfectly meet these two requirements. Supported by network information systems, they intelligently integrate firepower from various domains, achieving multi-source information perception, data interconnection, and multi-domain coordinated strikes. This enables seamless and high-speed operation of “target perception—decision and command—firepower strike—damage assessment,” resulting in a high degree of information and firepower integration and the rapid achievement of operational objectives.

  The system of “order dispatch” type precision strike

  ”Order dispatch” precision strikes compress action time and improve strike effectiveness by building an efficient closed strike chain, enabling various fire strike platforms to better integrate into the joint fire strike system and provide rapid and accurate battlefield fire support. Its key lies in the “network” and its focus is on the “four” systems.

  Multi-domain platform access network. Supported by information and intelligent technologies, an integrated information network system with satellite communication as the backbone is established. Firepower strike platforms distributed across multiple domain battlefields are integrated into the combat network to create a battlefield “cloud.” Different combat modules are distinguished, and “sub-network clouds” such as “reconnaissance, control, strike, and assessment” are established. Relying on an integrated communication network, the “sub-network clouds” are linked to the “cloud.” This can enhance the firepower strike platform’s capabilities in all domains, all times, on the move, autonomous networking, and spectrum planning, and realize network interconnection between firepower platforms, domain combat systems, and joint combat systems, as well as the interconnection and interoperability of internal strike forces.

  Joint reconnaissance and sensing system. This system leverages various reconnaissance and surveillance forces within the joint operations system to achieve all-weather, multi-directional, and high-precision battlefield awareness of the operational area. This requires constructing a ubiquitous, multi-dimensional reconnaissance and sensing force system encompassing physical and logical spaces, tangible and intangible spaces. It involves widely deploying intelligent sensing devices to form an intelligence data “cloud.” Through this intelligence data “cloud,” the system analyzes the enemy situation, identifies key points in the enemy’s operational system and time-sensitive targets, updates reconnaissance information in real time, and displays target dynamics.

  Intelligent Command and Decision-Making System. Relying on a new command and control system with certain intelligent control capabilities, this system constructs various planning and analysis models, expands functions such as intelligent intelligence processing, intelligent mission planning, automatic command generation, and precise action control, and expands and improves databases such as target feature database, decision-making knowledge base, and action plan database. It strengthens the system support capabilities for mission planning, action decision-making, and control during combat organization and implementation, enhances planning and decision-making and combat action control capabilities, clarifies “how to fight, where to fight, and who will fight,” and achieves precise “order dispatch.”

  Distributed fire strike system. Relying on intelligent network information systems, on the one hand, it integrates multi-dimensional fire strike platforms across land, sea, air, and space, enhancing functions such as intelligent target identification and remote-controlled strike, enabling various combat modes such as remote-controlled operations, manned-unmanned collaborative operations, and flexible mobile operations; on the other hand, it can construct a low-cost fire strike platform mainly composed of low-altitude and ultra-low-altitude unmanned strike platforms such as racing drones and loitering munitions. By adding different functional combat payloads, it can closely coordinate with high-end fire strike platforms to carry out tasks such as battlefield guidance, precision strikes, and fire assessment, efficiently completing “orders”.

  Autonomous Damage Assessment System. This system, built upon reconnaissance and surveillance capabilities within the joint operations system, autonomously assesses the effectiveness of attacks on targets after the firepower platform has completed its strike. It conducts real-time, dynamic, objective, and systematic analysis and evaluation of the target’s external condition and degree of functional loss, and promptly transmits relevant information back to decision-making and command centers at all levels via video images. The assessment centers then determine “how well it went” and whether the expected damage requirements were met. If not, operational actions can be adjusted in a timely manner for supplementary strikes, providing strong support for maximizing operational effectiveness.

  The planning and implementation of “order dispatch” style precision strikes

  The “order dispatch” style of precision strike is similar to the operation of ride-hailing services. Through a series of processes such as formatted “order” generation, intelligent target matching, and autonomous route planning, it autonomously completes the “OODA” combat cycle, making its actions more efficient, its strikes more precise, and its collaboration closer.

  Real-time reporting of firepower requirements allows combat units to submit orders on demand. Reconnaissance elements distributed across different operational areas and multi-dimensional battlefield spaces are acquired through radar, optical, infrared, and technical reconnaissance methods, forming battlefield target intelligence information across a wide area and multiple sources. This information is transmitted to the battlefield information network via intelligence links, and is constantly relayed to combat units. Combat units then perform correlation processing, multi-source comparison and verification, and comprehensively compile battlefield target information to generate precise mission orders. Combat units analyze target value and connect to the decision-making platform as needed, constructing a closed-loop strike chain based on these orders, and submitting mission orders in real time, achieving dynamic optimization and precise adaptation.

  The decision-making center intelligently “dispatches” fire support missions, differentiating them from actual fire strike missions. Through the battlefield information network and relying on an intelligent mission planning system, the center can automatically analyze the mission “order” information data submitted by combat units. Based on the nature, coordinates, movement status, and threat level of battlefield targets, it automatically generates mission requirements such as the type and quantity of ammunition needed for fire strike operations, the strike method, and damage indicators, forming a fire support mission “order.” By intelligently matching the optimal fire support platform and connecting link nodes as needed, the center conducts intelligent command-based “order dispatch,” delivering the orders instantly to the standby fire support platforms.

  Optimal target matching is performed continuously, and firepower platforms swiftly “accept orders.” Multiple firepower platforms distributed across the battlefield respond rapidly to these orders via the battlefield information network. The platforms autonomously establish links with combat units, mutually verifying their identities before directly establishing a guided strike chain. They coordinate firepower strikes, adjusting strike methods and firing parameters in a timely manner based on target damage and battlefield target dynamics before conducting further strikes until the assigned mission is completed. Firepower platforms consistently adhere to the principle of “strike-relocate-strike-relocate,” completing strike missions and rapidly relocating to new positions, maintaining a state of constant readiness and receiving orders online in real time. After the mission concludes, the guided strike chain between the firepower platform and the combat unit is automatically terminated.

  Multi-source damage information acquisition and real-time assessment by the evaluation center. Utilizing a comprehensive range of long-range, intelligent, and information-based reconnaissance methods, including satellite, radar, and drone reconnaissance, multi-domain, three-dimensional reconnaissance is conducted to acquire real-time target fire damage information, providing accurate assessments for precision fire strikes. A comprehensive assessment of damage effects is performed, quantitatively and qualitatively evaluating the strike results, distinguishing between physical, functional, and systemic damage states, and promptly feeding back to the decision-making center. Based on the damage assessment results, timely adjustment suggestions are made to modify fire strike plans, optimize operational actions, and achieve precise control of fire strikes. This facilitates commanders’ accurate control of the operational process and efficient command and control of fire strike effectiveness.

現代國語:

「訂單派單」:精確打擊新樣式

引言

列寧說過,「不理解時代,就不能理解戰爭」。近年來,資訊化智慧化技術在軍事領域的廣泛運用,促進了技術與戰術深度融合,依托智能化網路資訊體系,催生出「訂單派單」式精確打擊。指揮及指揮機關可依據作戰任務格式化產生打擊清單需求,決策系統依據打擊時間、作戰空間、毀傷指標等個人化需求智慧匹配打擊平台、自主規劃行動路徑、科學選擇打擊方式,進而快速精準釋放打擊效能。

「訂單派單」式精準打擊的作戰特點

隨著武器彈藥資訊化智慧化程度不斷提升,現代作戰成本也不斷提高。如何運用有限打擊資源打出最高效費比,實現作戰效能最大化,已成為指揮員及指揮機關作戰籌劃的中心問題,「訂單派單」式精準打擊可為此提供「可行解」。

即時聚優精確釋能。現代作戰更強調對敵作戰體系進行結構性打擊破壞,透過快速且精準地釋放作戰效能來實現作戰目的。這就要求指揮官及指揮機關能夠抓住稍縱即逝時機的“窗口”,在敵未做出反應之時對其作戰體系內高價值、節點性、關鍵性目標實施打擊。傳統的「發現—引導—打擊—評估」的作戰環路耗時長,作戰效果不佳。因此,「訂單派單」式精確打擊,需要依托先進的智慧化網路資訊體系,不預先確定打擊平台,即時發布打擊目標清單,由輔助決策系統對各種武器平台的打擊性能與目標打擊毀傷預期等進行快速評估,自主分配打擊平台任務,快速連結調控多領域火力打擊力量,自主閉合殺傷鏈,對關鍵目標實施快速打擊。

多域聚能協同打擊。現代作戰精準打擊較以往火力打擊的優勢在於資訊化智能化的作戰體系,不需人工介入,依托閉合打擊鏈自主完成「偵、控、打、評」等任務,不僅能夠節省打擊成本,減少資源浪費,還能夠實現基於統一作戰標準的自適應協同。因此,「訂單派單」式精確打擊,需要分佈在各作戰領域的火力打擊力量能夠建立統一標準網格,只要一點發出需求,就能夠多點響應、全局聯動,靈活集中兵力、火力,多手段、快速多域聚能,動中確定各打擊平台打擊方向、打擊次序以及打擊方式。透過體系整合有效節約時間,對敵關鍵節點目標以及核心目標的關鍵部位實施多域精確打擊,充分發揮各作戰單元作戰效能疊加融合的整體威力。

擊要破體速戰速決。現代作戰是在多領域同步實施的“混合戰爭”,資訊、空天、智慧等新域新質力量交織影響、對抗更加明顯。這就需要作戰雙方能夠快敵一秒發現、快敵一步行動,毀癱敵作戰體系、降低敵體系運作效率。一方面,要透過找準敵體系節點,即時聚優精準打擊;另一方面,要隱藏己方企圖及打擊力量,乘敵不備快速打擊。 「訂單派單」式精確打擊能夠很好地契合這兩點需求,在網路資訊系統的支撐下,智慧融合各領域火力打擊力量,實現資訊多源感知、數據交鍊、多域協同打擊,實現「目標感知—決策指揮—火力打擊—毀傷評估」無縫高速運轉,資訊火力高度融合,快速達成作戰目的。

「訂單派單」式精確打擊的體系構成

“訂單派單”式精確打擊通過構建高效閉合打擊鏈,壓縮行動時間,提高打擊效果,使各火力打擊平台能夠更好地融入聯合火力打擊體系,並提供快速精準的戰場火力支援,其關鍵在“網”,重點在“四個”系統。

多領域平台接入網。在資訊化智慧化技術支撐下,建立以衛星通訊為骨幹的一體化資訊網系,將分佈在多維域戰場的火力打擊平台融入作戰網路建立戰場“雲”,區分不同作戰模組,建立“偵、控、打、評”等“子網雲”,並依託一體化的通訊網鏈將“子網雲”鏈入“雲端”,能夠提升火力打擊平台全局全時、動中接入、自主組網、頻譜規劃的能力,實現火力平台、分域作戰體系與聯合作戰體系的網絡互聯,以及內部打擊力量的互聯互通。

聯合偵察感知系統。依托聯合作戰體系內的各種偵察監視力量對作戰地域進行全天候、多方位、高精度戰場感知。這就要建構物理空間和邏輯空間、有形空間和無形空間泛在存在的全維域偵察感知力量系統,廣域佈設智能感知設備,形成情報數據“雲”,通過情報數據“雲”分析敵情態勢,找出敵作戰體系關鍵點以及時敏性目標,實時更新偵察信息,展現目標動態。

智能指揮決策系統。依托具備一定智能控制能力的新型指控系統,建構各類規劃分析模型,擴展情報智能處理、任務智能規劃、指令自動生成、行動精確控制等功能,擴充完善目標特徵庫、決策知識庫、行動預案庫等資料庫,強化戰鬥組織與實施過程中的任務規劃、行動決策和控制的系統支撐能力,提昇決定決策和戰鬥能力,明確怎麼打」。

分佈火力打擊系統。依托智慧網路資訊系統,一方面,融入陸、海、空、天等多維域火力打擊平台,強化目標智慧識別、遠程遙控打擊等功能,實現作戰單元遠程遙控作戰、有人無人協同作戰、靈活機動作戰等多種作戰方式;另一方面,可建構以穿越機、巡飛彈等低空超低空無人打擊平台為主的低成本火力打擊平台,透過加掛不同功能作戰載重,與高端火力打擊平台密切協同來實施戰場引導、精確打擊、火力評估等任務,高效完成「訂單」。

自主毀傷評估系統。依托聯合作戰體系內的偵察監視力量建構毀傷評估系統,在火力平台打擊完畢後,自主對目標實施打擊效果查核。主要就目標的外觀狀態、功能喪失程度等進行實時、動態、客觀、系統的分析和評估,並及時通過視頻圖像的方式將相關信息回傳至各級決策指揮中心,由評估中心判斷“打得怎麼樣”,是否達到預期毀傷要求。如不符合,可適時調控作戰行動,進行補充打擊,為最大限度釋放作戰效能提供強力支撐。

「訂單派單」式精確打擊的規劃實施

「訂單派單」式精準打擊就如同叫車的運作方式一樣,透過格式化「訂單」產生、智慧化物件配對、自主化路徑規劃等一系列流程,自主完成「OODA」作戰循環,其行動更為高效、打擊更為精準、協同更為密切。

即時提報火力需求,作戰單元按需「提單」。分佈在不同作戰地域、多維戰場空間的偵察要素,透過雷達、光學、紅外線和技術偵察等方式,廣域多源偵獲形成戰場目標情報資訊。這些資訊依托情報鏈路接入戰場資訊網,隨時隨地被傳至作戰單元,由作戰單元進行關聯處理、多方對比印證,綜合整編戰場目標訊息,產生精確的任務「訂單」。作戰單元分析目標價值按需連通決策平台,建構“訂單”式閉合打擊鏈,實時提報任務“訂單”,實現動中集優、精準適配。

區分火力打擊任務,決策中心智能「派單」。決策中心透過戰場資訊網,依托智能任務規劃系統,能夠自動解析作戰單元提報的任務「訂單」資訊數據,根據戰場目標性質、座標方位、移動狀態、威脅程度等,自動產生火力打擊行動所需彈種彈量、打擊方式和毀傷指標等任務要求,形成火力支援任務「訂單」,透過智慧服務火力平台,按需使用火力平台節點,按需通路,支援任務「訂單」。

全時匹配最優目標,火力平台迅即「接單」。多點分佈在戰場區域內的火力平台,透過戰場資訊網迅即響應“接單”,火力平台與作戰單元之間自主建鏈,相互核驗“身份”後直接建立引導打擊鏈,協同配合火力打擊行動,並根據打擊後目標毀傷情況以及戰場目標動態,及時調整打擊方式、射擊參數等,而後再次實施火力打擊,直至完成“派單”任務。火力平台始終遵循「打擊—轉移—打擊—轉移」的原則,完成打擊任務,迅即轉移陣地,全時保持待戰狀態,即時在線接收「訂單」。任務結束後,火力平台與作戰單元之間的引導打擊鏈會自動取消。

多源獲取毀傷訊息,評估中心即時「評單」。綜合運用衛星偵察、雷達偵察、無人機偵察等遠距離資訊化智慧化偵察手段,實施多域立體偵察,即時取得目標的火力毀傷訊息,為進行精確火力打擊提供準確評估。綜合判定毀傷效果,對打擊效果進行定量和定性評估,區分目標物理、功能和系統三種毀傷狀態,及時回饋至決策中心。根據打擊目標的毀傷評估結果,適時提出調控建議,調整火力打擊計劃,優化作戰行動,實現對火力打擊的精確控制,便於指揮員精準把控作戰進程,達成對火力打擊效能的高效指揮控制。 (高凱 陳良)

中國原創軍事資源:https://www.news.cn/milpro/20250123/8f71783cff6a4284a43871e996bc31888a7/c.html

Chinese Military Exclusive Requirements for Strategies & Tactics of People’s War in The New Era

新時代中國軍隊對人民戰爭戰略戰術的獨特要求

現代英語:

Looking back on its glorious combat history, the People’s Army has consistently adhered to the absolute leadership of the Party, proposing and implementing a comprehensive set of strategies and tactics for people’s war. These strategies and tactics are a crucial weapon for the People’s Army to defeat the strong with the weak and to conquer the enemy. Over the past 98 years, with the changing times and evolving forms of warfare, the specific content and manifestations of the strategies and tactics for people’s war have continuously evolved. To confront the challenges of information-based and intelligent warfare, we must firmly grasp the essential requirements and value orientations of the strategies and tactics for people’s war amidst the rapidly evolving global trends and practices, unifying the inherently unchanging laws of conduct with the external realities of change, and continuously innovating and developing the strategies and tactics for people’s war in the new era.

President Xi Jinping emphasized that no matter how the situation develops, the magic weapon of people’s war must never be lost. However, we must grasp the new characteristics and new requirements of people’s war in the new era, innovate its content, methods and approaches, and unleash its overall power. Currently, facing profound challenges brought about by changes in science and technology, warfare, and our adversaries, we must not only inherit and carry forward the fine traditions of people’s war, but also be sensitive to changes, actively respond to them, and proactively seek change. We must accurately grasp the inherent requirements of the strategies and tactics of people’s war in the new era, consciously update our thinking and concepts, and innovate strategic guidance, so that this magic weapon of defeating the enemy can be demonstrated on future battlefields.

Adhere to relying on the people and deeply rooted

In the long practice of revolutionary war, the people are the most profound force for victory. The people are the primary force behind the strategies and tactics of people’s war, a magic weapon for victory. People’s war has its roots deeply rooted in the people, and its confidence comes from the people. Regardless of how the times change or how the war evolves, relying closely on the people and fully mobilizing them will always be the fundamental condition and the only way to carry out people’s war. Developing the strategies and tactics of people’s war in the new era requires adhering to the mass perspective of history and the fundamental requirement that soldiers and civilians are the foundation of victory. We must integrate the traditional strategic advantages of people’s war with the mass line, broaden the sources of vitality for the strategies and tactics of people’s war, draw strategic wisdom and tactical methods from the people, and develop an intellectual advantage for people’s war in the new era. We must solidly carry out national defense education throughout the nation, continuously foster a strong sense of patriotism, inspire patriotism, strengthen awareness of potential dangers, and enhance national defense awareness. We must guide the masses to actively care about and support national defense, thereby infusing powerful spiritual strength into people’s war in the new era. We must focus on promoting high-quality population development, comprehensively improve the cultural, scientific, and innovative qualities of the entire population, accelerate the development of a modern human resource base of high quality, sufficient in volume, optimized in structure, and rationally distributed, and promote the shift of the dominant force in people’s war from quantitative to qualitative. Further improve the national defense mobilization system and mechanism, promote the establishment of a rapid response system that is connected with the national emergency response mechanism and integrated with the joint combat system, fully tap and gather the unlimited war potential contained in the people, and give full play to the resource aggregation and value-added effect.

Focus on overall planning and full-area offense and defense

In the long-term practice of revolutionary warfare, the strategies and tactics of people’s war require the comprehensive mobilization of diverse forces and resources in the political, economic, cultural, diplomatic, and military sectors, and the integrated use of various forms of struggle and methods of operation. This holistic approach compensates for local deficiencies and disadvantages, ultimately defeating powerful adversaries. Modern warfare is not only a fierce confrontation in the military sphere, but also a comprehensive struggle in the political, economic, and diplomatic spheres, exhibiting the distinct characteristics of hybrid warfare. To develop the strategies and tactics of people’s war in the new era, we must establish a broad systemic mindset, relying on the national strategic system and supported by the joint operations system, explore the implementation methods of people’s war strategies and tactics, and win the total war of people’s war in the new era. We should fully leverage the advantages of the new national system, relying on the integrated national strategic system and capabilities, efficiently aggregate superior resources across the board, fully activate the country’s national defense potential, and weave various forces and resources into a network. We should integrate and plan the subsystems of people’s war, including leadership, organization, personnel, command, technology, equipment, and support, to maximize the effectiveness of holistic linkage and systemic operation, and achieve the maximum benefits of all-round effort and multiplied energy. We must strengthen comprehensive coordination across the physical, information, and social domains, focusing on seeking breakthroughs in new domains and new qualities, and making achievements in new dimensions such as unmanned warfare, human-machine collaborative warfare, network and electronic warfare, space and deep-sea warfare, and intelligent and autonomous warfare. Military and non-military means must be coordinated, integrating various forms of struggle, including political, economic, diplomatic, public opinion, and military. Comprehensive measures must be implemented to effectively wage diplomatic offensive and defensive battles, financial and trade battles, psychological defense battles, and public opinion and legal battles. We must leverage the combined effectiveness of political offensives and armed strikes to effectively fight the political and military battles.

Strengthen active defense and take the initiative

Through the long practice of revolutionary warfare, the People’s Army has developed a comprehensive strategic philosophy of active defense, emphasizing, for example, the unity of strategic defense and offensive action in campaigns and battles, the principles of defense, self-defense, and preemptive strike, and the principle of “if no one offends me, I will not offend; if someone offends me, I will certainly offend.” Active defense is fundamentally defensive, its essence lies in activeness, and its inherent characteristic is proactiveness. Currently, profound changes have taken place in the international, national, and Party, military, and political landscapes. The strategies and tactics of people’s war in the new era generally adhere to the fundamental principle of defense and are not aimed at hegemony, aggression, or oppression of other countries. Consequently, they will win the support and endorsement of the vast majority of the Chinese people, as well as the understanding and assistance of peace-loving and justice-loving countries and peoples around the world. Developing the strategies and tactics of people’s war in the new era must adapt to the times and circumstances. We must adhere to a defensive national defense policy, implement the military strategic guidelines of the new era, excel at observing and analyzing issues from a political perspective, and be adept at considering and applying strategies from regional and global perspectives to consolidate the political foundation for victory in people’s war. We must persist in neither provoking trouble nor fearing it, strengthen the regular and diversified use of military force, firmly and flexibly carry out military struggle, and while adhering to the strategic preemptive strike, we must not give up campaign and combat offensives under favorable conditions and when necessary. We must advance steadily, make progress within stability, and be proactive within stability, effectively shape the security situation, contain crises and conflicts, and firmly grasp the initiative in the struggle.

Highlight new quality dominance and technological empowerment

In the long practice of revolutionary warfare, while emphasizing that victory in war is primarily determined by people, not objects, the People’s Army has also placed great emphasis on the research and development of advanced military technology, particularly weaponry. Comrade Mao Zedong once emphasized that without modern equipment, it would be impossible to defeat the armies of imperialism. The technological content of modern warfare has undergone a qualitative leap, with advanced technologies and new weaponry such as artificial intelligence, big data, quantum computing, unmanned aerial vehicles, and brain control being widely applied in the military. While the people remain the decisive force in determining victory in war, the manifestation of this power has undergone significant changes. Science and technology are core combat power, and People’s War will place greater emphasis on the application of scientific and technological means and rely even more heavily on the wisdom and creativity of the people. Developing the strategies and tactics of People’s War in the new era should prioritize winning information-based and intelligent warfare. We should deeply study the essential characteristics, winning mechanisms, and strategies and tactics of high-end warfare, accelerate the shift from “winning by numbers” to “winning by talent,” and from “winning by manpower” to “winning by intelligence,” effectively enhance our ability to win through scientific and technological empowerment and digital intelligence, and truly unleash the crucial role of science and technology and talent in People’s War in the new era. We will accelerate the development of high-tech industries, vigorously strengthen the construction of new forces in new domains such as ocean, space, cyberspace, artificial intelligence, and quantum technology, increase military-civilian collaboration in high-tech fields, accelerate the transformation and application of new productive forces into new combat capabilities, and promote the expansion of war potential reserves into emerging fields and the focus on new forces. We will integrate and coordinate military and civilian scientific and technological advantages, shifting the focus from traditional support and guarantee elements such as human and material resources to new support and guarantee elements such as information, technology, and intelligence. We will build information, resource, and technology pools with profound foundations and rich reserves, actively cultivate capable, strong, and professional professional support units, and continuously expand the breadth and depth of people’s participation in the war and scientific and technological support.

Emphasis on flexibility, maneuverability, innovation and checks and balances

In the long-term practice of revolutionary warfare, the strategies and tactics of People’s War are highly flexible and maneuverable. Their most essential requirement is to prioritize self-reliance, attacking the enemy without being attacked by them. Based on the actual situation of both sides, we fight the battles based on our weapons, against the enemy, and at the right time and place. We identify the enemy’s weaknesses and vulnerabilities, leverage our strengths and advantages, and defeat the enemy with our own strengths, always seizing the initiative on the battlefield. Flexible and maneuverable strategies and tactics are the magic weapon for defeating an enemy with superior equipment with inferior equipment. “You fight yours, I fight mine” is a summary and generalization of the long-term experience of China’s revolutionary war and the soul and essence of the strategies and tactics of People’s War. Developing the strategies and tactics of People’s War in the new era must grasp the methodological requirements of asymmetric checks and balances, leverage innovative operational concepts, adhere to the mechanisms of victory in modern warfare, and continuously develop practical and effective tactics to defeat the enemy. We must proceed from the actual circumstances of both sides, gaining a deep understanding of operational missions, adversaries, and the evolving operational environment. We must thoroughly grasp the concepts, elements, and methods of victory, objectively analyze and study the strengths and weaknesses, advantages and disadvantages of both sides, know the enemy and ourselves, adapt to the situation, and flexibly utilize various combat forces and methods, striving to achieve maximum results at the lowest cost. We must adhere to the principle of “attacking the enemy without being attacked by them,” capitalize on strengths and avoid weaknesses, avoid the real and attack the weak, attack where the enemy is least prepared, and attack where they must be defended. We must proactively create opportunities, flexibly maneuver the enemy, and fight wherever we are most advantageous and wherever we are most skilled. We must adhere to the principle of “using what we can to defeat what we cannot,” advancing the research and application of military theory, operational guidance, tactics, and training methods in a timely manner, innovating core operational concepts, and developing new types of combat methods. We must fight against the enemy’s tactics, targeting their weaknesses, and leveraging our military’s strengths, thus creating new winning advantages in people’s war through asymmetric checks and balances.

Emphasis on accumulating small things into big things and focusing on unity of purpose

Throughout the long practice of revolutionary warfare, our army has been at an overall disadvantage for considerable periods. Therefore, the strategies and tactics of people’s war emphasize leveraging strength against weakness locally, persisting in accumulating small victories into larger ones, and concentrating forces to wage annihilation campaigns. This has become a key strategy for the people’s army to defeat powerful foes. Compared to previous eras, modern warfare often unfolds across multiple dimensions and domains, providing greater scope for implementing this strategy of “accumulating small victories into larger ones.” Developing the strategies and tactics of people’s war in the new era requires strengthening the concept of “dispersed in appearance, yet focused in spirit; dispersed in form, yet united in strength.” This involves dynamically consolidating and uniting the numerous combat forces distributed across the multidimensional battlefield. Through the fusion of capabilities and immediate optimization, we can launch rapid localized focused-energy attacks, wide-area guerrilla harassment, and deliver annihilating and destructive strikes against key enemy locations. This not only creates a hammering effect, but also continuously wears down the enemy, gradually depriving them of the initiative on the battlefield. This highly integrated distributed warfare emphasizes the wide-area dispersion of troop deployment and the discrete distribution of capabilities. Based on the needs of achieving operational intent, objectives, and missions, it prioritizes the best operational elements, units, and forces. Through the integration of operational capabilities and the accumulation of operational impacts, it aggregates optimal operational effects, unleashes maximum operational potential, maximizes operational effectiveness, and achieves optimal operational results. This distributed warfare has evolved from “geographical dispersion” to “dynamic coupling across all domains and dimensions”: no longer limited to the physical dispersion of personnel and equipment, it extends to multi-dimensional battlefields such as cyber, electromagnetic, and cognitive. Relying on data links, artificial intelligence, and distributed command systems to achieve cross-domain collaboration, it significantly enhances battlefield survivability and multiplies strike effectiveness.

現代國語:

編者按

回望輝煌戰鬥歷程,人民軍隊始終堅持在黨的絕對領導下,提出並實施了一整套人民戰爭戰略戰術,這是人民軍隊以弱勝強、克敵制勝的重要法寶。 98年來,隨著時代變遷和戰爭形態演變,人民戰爭戰略戰術的具體內容和表現形式不斷發展變化。直面資訊化智慧化戰爭挑戰,我們要在快速變化發展的世界大勢和實踐樣態中,牢牢把握人民戰爭戰略戰術的本質要求和價值取向,把內在不變的規律性特徵與外在變化的現實性特徵統一起來,不斷創新發展新時代人民戰爭戰略戰術。

習主席強調指出,無論形勢如何發展,人民戰爭這個法寶永遠不能丟,但要把握新的時代條件下人民戰爭的新特點新要求,創新內容和方式方法,充分發揮人民戰爭的整體威力。當前,面對科技之變、戰爭之變、對手之變帶來的深刻挑戰,我們既要繼承發揚人民戰爭優良傳統,也要敏銳識變、積極應變、主動求變,準確把握新時代人民戰爭戰略戰術內在要求,自覺更新思維理念,創新戰略指導,讓克敵制勝的法寶顯威未來戰場。

堅持依靠人民、深根基

在長期革命戰爭實踐中,人民群眾是戰爭勝利最深厚的偉力。人民戰爭戰略戰術,人民是構成這一制勝法寶的主體,人民戰爭的根基深植於人民、底氣來自於人民,無論時代如何發展、戰爭如何演進,緊緊依靠人民、充分動員群眾,永遠是開展人民戰爭的基礎條件和不二法門。新時代條件下發展人民戰爭戰略戰術,必須堅持群眾史觀和兵民是勝利之本的根本要求,把人民戰爭的傳統謀略優勢和群眾路線結合起來,拓展人民戰爭戰略戰術的源頭活水,從人民群眾中汲取戰略智慧和策略方法,形成新時代人民戰爭的智力優勢。札實開展全民防衛教育,不斷厚植家國情懷,激發愛國動力,強化憂患意識,增強國防觀念,引導廣大群眾主動關心國防事業、支持國防建設,為新時代人民戰爭注入強大精神力量。聚力推進人口高品質發展,全面提升全民文化素質、科技素質和創新能力,加速塑造素質優良、總量充裕、結構優化、分佈合理的現代化人力資源,推動人民戰爭主體由數量優勢向質量優勢轉變。進一步完善國防動員體制機制,推動建立與國家應急響應機制相銜接、與聯合作戰體系相融合的快速響應制度,把內含於人民群眾中的無限戰爭潛力充分挖掘出來、聚攏起來,充分發揮資源集聚增值效應。

注重整體運籌、全域攻防

在長期革命戰爭實踐中,人民戰爭戰略戰術要求整體動員政治、經濟、文化、外交、軍事等多方面的力量資源,綜合運用多種鬥爭形式和作戰方式,以整體合力彌補局部的不足和劣勢,從而戰勝強大對手。現代戰爭既是軍事領域的激烈對抗,也是政治、經濟、外交等領域的全面角力,整體呈現混合戰爭的鮮明特徵。新時代條件下發展人民戰爭戰略戰術,必須確立大體系思維模式,以國家戰略體係為依托,以聯合作戰體係為支撐,探索人民戰爭戰略戰術的實現形式,打贏新時代人民戰爭總體戰。應充分發揮新型舉國體制優勢,依託一體化國家戰略體系與能力,高效能聚合全域優勢資源,全方位激活國家國防潛力,將各種力量資源擰線成繩、結繩成網,把人民戰爭的領導要素、組織要素、人員要素、指揮要素、技術要素、裝備要素、保障要素等分系統結合起來,統合、統合方式要加強物理域、資訊域、社會域等領域全面統籌,重點在新域新質上尋求突破,在無人作戰、人機協同作戰、網電作戰、太空深海作戰、智慧自主作戰等新維度有所作為。軍事與非軍事手段相互配合,把政治、經濟、外交、輿論和軍事鬥爭等多種形式結合起來,綜合施策著力打好外交攻防戰、金融貿易戰、心理防護戰、輿論法理戰等,發揮政治攻勢和武裝打擊的綜合效能,統籌打好政治軍事仗。

強化積極防禦、主動進取

在長期革命戰爭實踐中,人民軍隊形成了一整套積極防禦戰略思想,如堅持戰略上防禦與戰役戰斗上進攻的統一,堅持防禦、自衛、後發製人的原則,堅持“人不犯我,我不犯人;人若犯我,我必犯人”,等等。積極防禦,根本在防禦、要義在積極,主動進取是其內在特質。當前,世情國情黨情軍情發生深刻變化,新時代人民戰爭的戰略戰術在總體上堅持防禦性的根本原則,不以霸道霸權和侵略欺壓他國為目的,因此也會贏得國內最廣大人民群眾擁護和支持以及世界上愛好和平與正義的國家和人民的理解和幫助。新時代條件下發展人民戰爭戰略戰術,須應時而變、應勢而動。堅持奉行防禦性國防政策,貫徹落實新時代軍事戰略方針,善於從政治高度出發觀察和分析問題,善於從地區和全球視角來思考和運用策略,夯實人民戰爭制勝的政治基礎。堅持不惹事也不怕事,加強軍事力量常態化多樣化運用,堅定靈活開展軍事鬥爭,在堅持戰略上後發製人的同時,不放棄有利條件下和必要時的戰役戰鬥進攻,穩紮穩打、穩中有進、穩中有為,有效塑造安全態勢,遏止危機沖突,牢牢把握爭鬥主動權。

突顯新質主導、科技賦能

在長期革命戰爭實踐中,人民軍隊在強調決定戰爭勝負的主要因素是人而不是物的同時,同樣高度重視對先進軍事技術特別是武器裝備的研發。毛澤東同志就曾強調,沒有現代的裝備,要戰勝帝國主義的軍隊是不可能的。現代戰爭的科技含量發生了質的飛躍,人工智慧、大數據、量子計算、無人自主、腦控等高新技術與新型武器裝備廣泛應用於軍事領域。雖然人民群眾依然是戰爭勝負的決定性力量,但是這種力量的表現形式發生了重要變化。科技是核心戰鬥力,人民戰爭將更重視科技手段的運用,更依賴人民群眾的智慧和創造力。新時代條件下發展人民戰爭戰略戰術,應把打贏資訊化智能化戰爭作為戰爭準備的著眼點,深研高端戰爭的本質特徵、制勝機理、戰略戰法,加速推動從「人多製勝」向「人才制勝」、從「人力製勝」向「智力製勝」轉變,切實提高新科技賦能、數智者發揮勝利能力、數智性的科技人才、新人民主義中的關鍵人民發揮作用。加速推進高新產業發展,大力加強海洋、太空、網路空間、人工智慧、量子科技等新域新質力量建設,加大高新技術領域軍地協作力度,加速新質生產力向新質戰鬥力轉化運用,推動戰爭潛力儲備向新興領域拓展、向新質力量聚焦。聚合協同軍地科技優勢,由聚焦人力物力等傳統支撐保障要素向聚焦資訊、技術、智慧等新質支撐保障要素轉變,建設底蘊深厚、儲備豐富的資訊池、資源池、技術池,積極打造精幹強能、專業性強的專業支前分隊,不斷拓展人民參戰與科技支前的廣度與深度。

講究靈活機動、創新制衡

在長期革命戰爭實踐中,人民戰爭戰略戰術是高度靈活機動的戰略戰術,最本質的要求是堅持以我為主,致人而不致於人,根據敵我雙方的實際情況,有什麼武器打什麼仗,對什麼敵人打什麼仗,在什麼時間地點打什麼時間地點的仗,找準敵之弱點和軟肋,發揚我之長主動和優勢,能永遠不能掌握戰場。靈活機動的戰略戰術是以劣勢裝備戰勝優勢裝備之敵的致勝法寶。 “你打你的、我打我的”,是中國革命戰爭長期經驗的總結和概括,是人民戰爭戰略戰術的靈魂和精髓。新時代條件下發展人民戰爭戰略戰術,必須掌握非對稱制衡的方法論要求,以作戰概念創新為抓手,遵循現代戰爭制勝機理,不斷推出實用管用的克敵制勝招法。堅持一切從敵我雙方的實際情況出發,深刻洞悉作戰任務、作戰對手、作戰環境變化,深刻把握制勝觀念、制勝要素、制勝方式發展,客觀分析研究敵我雙方的強弱、優劣,知彼知己、因勢而變,靈活運用各種作戰力量和作戰方法,努力以最小代價取得最大戰果。堅持“致人而不致於人”,揚長避短、避實就虛,出其不趨、攻其必救,主動創造戰機,靈活調動敵人,怎麼有利就怎麼打,怎麼擅長就怎麼打。堅持“以能擊不能”,與時俱進推進軍事理論、作戰指導、戰法訓法研究運用,創新核心作戰概念,發展新質作戰手段,不按敵人套路打、盯著敵人軟肋打、發揮我軍優長打,在非對稱制衡中創造人民戰爭新的製勝優勢。

重視積小為大、神聚力合

在長期革命戰爭實踐中,我軍在相當長的時間內都是處於全局上的劣勢地位,所以人民戰爭戰略戰術重視局部上以強對弱,堅持積小勝為大勝,集中力量打殲滅戰,這成為人民軍隊戰勝強敵的關鍵一招。相較於以往,現代戰爭作戰往往在多維多域中展開,為實施「積小勝為大勝」提供了更加廣闊空間。新時代條件下發展人民戰爭戰略戰術,要強化「貌散而神聚,形散而力合」的理念,將分佈在多維戰場的諸多作戰力量動態集中聯合起來,通過效能融合、即時聚優,實施局部快速聚能攻擊、廣域遊擊襲擾,對敵分佈的要點實施殲這種神聚力合的分散式作戰更強調兵力部署廣域分散、能力狀態離散分佈,根據實現作戰企圖、達成作戰目的、遂行作戰任務需要,優選最佳作戰要素、單元、力量,通過作戰能力融合、行動作用累積,聚合最優作戰效應,激發最大作戰潛能,實現作戰效益最大化,達成最佳作戰效果。這種分散式作戰已經從「地理空間的分散」上升為「全局全維的動態耦合」:不再局限於人員裝備在物理空間的分散,而是拓展到網絡、電磁、認知等多維戰場;依託數據鏈、人工智能和分佈式指揮系統實現跨域協同,既極大提升了戰場生存力,又倍增了打擊效能。

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-08-01&paperNumber=07&articleid=960384888