The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.
The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.
At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.
Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.
Satellite navigation becomes a “standard” element of the intelligent battlefield
The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.
Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.
The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.
Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.
Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.
Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”
Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.
Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.
In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.
Intelligent battlefield requires satellite navigation to have new “responsibilities”
As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.
In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.
Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.
For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.
The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.
The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.
Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system
Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.
The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:
The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.
The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.
The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.
The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.
(The author is an academician of the Chinese Academy of Engineering)
Above: Schematic diagram of satellite navigation system supporting operations.
The prelude to the era of intelligent warfare has begun. Command information systems with intelligent characteristics will become the “central nerve” of future intelligent combat command and control, and are the supporting means of intelligent combat command and control. Accelerating the construction of intelligent command information systems is an inherent requirement for the development of military intelligence. Only by clarifying the development essentials of intelligent command information systems, grasping the key points of intelligent command information system research and development, and exploring the key points of intelligent command information system development can we better promote the construction and development of intelligent command information systems and gain the upper hand in future intelligent combat.
Clarify the key points of developing intelligent command information system
Intelligent command information system is the inevitable choice for the development of war form towards information-based intelligent warfare, the inevitable result of the development of scientific and technological revolution, and the era’s call for the development of military intelligence. Clarifying the development essentials of intelligent command information system will help to guide the construction direction of intelligent command information system and establish the long-term goal of system development.
Promote the intelligent evolution of war. In the future intelligent warfare, the battlefield situation is changing rapidly and the battlefield environment is complex and severe. In order to take the initiative on the battlefield, “control of intelligence” has become a new commanding height, and the intelligent command information system is undoubtedly an important means of supporting future combat command and action. Its intelligent development can promote the evolution of war to intelligence, and is an important support for intelligent warfare to gain the initiative and seek victory.
Support intelligent innovation of combat concepts. Future intelligent combat requires a combat command concept that is compatible with it, and the intelligent command information system is an important support for the practical application of the combat command concept, and is the soil for the innovation and development of the intelligent combat command concept. New intelligent combat command concepts such as human-machine hybrid command formation, data-driven command activities, open development command mode, and intelligent force-focused command process are inseparable from the support of the intelligent command information system. The intelligent command information system will serve as the extension of the human brain, breaking through the physiological limits of the human body and realizing the organic integration of combat command art and intelligent technology.
Promote the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about major changes in the combat victory mechanism. Intelligence has surpassed firepower and information power and has become the primary factor in determining the outcome of a war. The construction and development of intelligent command information systems will promote the transformation of combat methods to intelligence, making the combat methods change from “combat networks + precision-guided weapons” in the information age to “intelligent Internet of Things + manned/unmanned combat platforms” in the intelligent age, and the basic combat style will evolve from “network-centric warfare” to “cognitive-centric warfare” accordingly.
Grasp the key points of intelligent command information system research and development
The command information system is a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent combat winning mechanisms, the intelligent upgrade of the command information system is imminent. We should highlight the key points of functional research and development and create a new intelligent command information system.
“Super-brainization” assists decision-making. In the future intelligent warfare, the amount of battlefield information data is huge and complex and changeable. Commanders are easily trapped in the “sea of information” during the command process, resulting in information confusion and affecting command decisions. With the emergence of intelligent decision-making technology and “cloud brain” and “digital staff”, a new decision-making model based on the collaboration of “human brain + artificial intelligence” is quietly taking shape. The intelligent command information system will break through the limits of human intelligence, as an extension of the human brain, assist the commander’s work, and develop war decisions from simple human brain decisions to “human brain + artificial intelligence” super-brainized command decisions.
“Full-dimensional” situational awareness. In future intelligent combat, the space will be multi-dimensional, the forces will be diversified, the styles will be diverse, and the pace will be accelerated. Comprehensive and flexible grasp of battlefield situations will become the basis for commanders to make decisions, and multi-domain integration and intelligent dynamic presentation of full-dimensional battlefield situations will become an inevitable requirement for the construction and development of command information systems. The command information system’s perception, understanding, integration and prediction of battlefield situations such as target identification, threat level estimation, combat action prediction and future war situation prediction are expanding from land, sea, air, space, electromagnetic, network and other spaces to cognitive and social domains, realizing “full-dimensional” situational awareness.
“Intelligent” network communication. In the future, intelligent warfare will use a large number of intelligent command and control platforms and intelligent weapon platforms, and the intelligent information and communication system must be connected to the command and control platform and the weapon platform. Like the nerves and blood vessels of the human body, the intelligent information and communication system plays a linking and lubricating role in intelligent warfare. Therefore, it is necessary to establish an intelligent information network with full-dimensional coverage and uninterrupted communication to support the connection and control of intelligent equipment, form intelligent optimization of network structure, intelligent reorganization of network anti-destruction, and intelligent anti-interference capabilities, so as to ensure intelligent collaborative operations between platforms and exert the best overall combat effectiveness.
“Unmanned” autonomous collaboration. In recent local conflicts around the world, drones have been used in large numbers and have played an important role in determining the direction of war, which has attracted widespread attention from all parties. Unmanned weapons and equipment are the material basis of intelligent warfare, and have formed disruptive combat styles based on this, such as invasive lone wolf warfare, manned/unmanned collaborative system sabotage warfare, unmanned system formation independent warfare, and drone swarm cluster warfare. Although unmanned warfare is led by humans, machines are given a certain degree of autonomous action authority in the background, thereby realizing unmanned combat operations on the front line. However, the unmanned battlefield is changing rapidly, and the destruction of human-machine collaboration will become the norm. The command and control system of the unmanned intelligent equipment platform must be more intelligent and be able to conduct autonomous and coordinated combat according to the purpose of the operation.
“Active” information defense. Intelligent warfare will inevitably face all-dimensional and diverse information attacks from powerful enemies. The level of information security protection capabilities directly affects the outcome of the “intellectual power” struggle on the battlefield and is a key link in the construction of intelligent command information systems. Therefore, we should take the initiative to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of high-tech information security technologies, strengthen the anti-interference and anti-intervention capabilities of various wireless transmission methods, and strengthen intelligent traceability and countermeasure capabilities to effectively curb information attacks.
Exploring the key to the development of intelligent command information system
The development of intelligent command information system is not only a technological innovation, but also requires further emancipation of mind and updating of concepts. To promote the development of intelligent command information system, we must change the traditional idea of adding hardware, building a large “network”, collecting and storing various types of data, break through the inherent hierarchical settings, create an open and service-oriented system, aim at the needs of intelligent combat command and action, and explore and study the key points of the development of intelligent command information system.
Innovative concepts. Adhere to the guidance of innovative thinking concepts, learn from the development ideas of intelligent command information systems of military powers, combine actual needs, and explore a development path with its own characteristics. We must break the traditional “building chimneys” approach, adhere to the top-level design and overall planning of command information systems, unify interfaces, protocols and standards, and form an open and sustainable system architecture layout; adhere to the system development ideas that combine research, construction and use, formulate short-term, medium-term and long-term development strategies, and standardize the direction of system construction and development; adhere to iterative upgrades and optimization and improvement strategies, and continuously improve the intelligence level of various subsystems such as command control, intelligence reconnaissance, communications, information confrontation and comprehensive support, to ensure the continuous and healthy development of intelligent command information systems.
Focus on the key. Focusing on the construction of key capabilities of intelligent command information systems is an important support for intelligent warfare to gather intelligence and win with intelligence, and is the key to intelligent warfare to gain the “right to win”. Algorithms, computing power, and data are not only the internal driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command information systems. The development of intelligent command information systems must adhere to algorithm innovation research to improve the system’s cognitive advantages, speed advantages, and decision-making advantages; accelerate the research and development of the next generation of computers represented by quantum computers to provide stronger computing power support for intelligent command information systems; deeply explore the deeper and wider dimensional information value in massive combat data resources to seek the initiative to win.
Gather wisdom to tackle key problems. The construction and development of intelligent command information systems is one of the main projects of military intelligence. It is a multi-domain, multi-disciplinary, multi-departmental and multi-unit integrated and coordinated project. The construction and development of intelligent command information systems must adhere to the spirit of collective wisdom, collective wisdom, pioneering and innovation, aiming at strategic forward-looking fields such as sensors, quantum information, network communications, integrated circuits, key software, big data, artificial intelligence, and blockchain, and insist on high-tech promotion and intelligent combat demand. Carry out in-depth research and exchanges in multiple fields, multiple levels, and multiple forms, continuously break through innovation, iterative upgrades, and make the intelligent command information system more complete and more intelligent.
Collaborative development. To further promote the construction and development of intelligent command information systems, we must fully absorb local advanced technological achievements and integrate into the era of innovation and development of artificial intelligence in the world. At present, the world’s artificial intelligence technology is booming, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application and broad prospects for the transformation and application of technological achievements. It is an important way to achieve the construction and development of intelligent command information systems. We must study and formulate general technical standards, remove barriers, break the ice, facilitate military-civilian cooperation, and realize the sharing and linkage of technological achievements. We must cultivate and shape new military talents through collaboration, so that they can constantly adapt to the needs of various positions under intelligent conditions and give full play to the effectiveness of intelligent command information systems.
Defeating dozens of top Go players in a man-machine battle, defeating a retired US Air Force pilot in a simulated air combat… In recent years, artificial intelligence has been like an omnipotent “magician”, creating endless miracles, shocking many people and constantly refreshing people’s imagination.
As a technical science dedicated to simulating, extending and expanding human intelligence, artificial intelligence has long surpassed scientists’ initial imagination and entered a “booming period” of rapid development. It is profoundly changing the way of production and life of human beings, and promoting the social form to accelerate from digitalization and networking to intelligence. At the same time, the widespread use of artificial intelligence technology in the military field will fundamentally change the winning mechanism and combat methods of modern warfare, give birth to new combat means and combat ideas, and promote the war form to accelerate into the intelligent era.
In intelligent warfare, intelligent equipment, intelligent command, intelligent maintenance, and intelligent combat methods are all conceivable – “fake news” created by artificial intelligence is everywhere in the entire process of war preparation, conduct and conclusion, and it is “false and true”; the role of inanimate intelligent entities and robot fighters in intelligent warfare is prominent, and artificial intelligence combat forces such as “cloud brain”, “digital staff” and “virtual warehouse” used for information support, command and control, effect evaluation and logistics support will play an increasingly important role in future wars. Intelligent machines and intelligent weapons will become the main force on future battlefields; remote and precise Specific, miniaturized, and large-scale unmanned attacks will become the main form of attack. “Man-to-man” warfare will expand to “machine autonomous warfare” warfare; intelligent swarm attrition warfare, cross-domain mobile warfare, and cognitive control warfare will become basic combat types; decentralized deployment of humans and machines, autonomous coordination, and concentrated energy offensive and defensive operations will become the basic principles of cross-domain integration and global operations; the “observation-judgment-decision-action” link will be greatly shortened, the combat rhythm will be faster, the actions will be more precise, and the efficiency will be higher; upgrading and training artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will become an important way to enhance combat effectiveness. Intelligence will surpass firepower, mobility, and information power and become the most critical factor in determining the outcome of a war. As a result, the meaning of battlefield control will need to be redefined, new topics will be added to international arms negotiations, and textbooks on intimidation theory will need to be rewritten.
The world’s military powers, represented by the United States, have foreseen the broad application prospects of artificial intelligence technology in the military field. They believe that future wars will be intelligent wars and future arms competitions will be intelligent competitions. They have also laid out a series of research plans in advance, hoping to seize the initiative in the military application of artificial intelligence and strive to open up a “generation gap” with potential opponents. In recent years, NASA, the Department of Defense and various military services have deployed a series of artificial intelligence technology research projects in the military field. The U.S. Department of Defense has also proposed the establishment of a “Joint Artificial Intelligence Center” to jointly promote artificial intelligence projects with the U.S. military and 17 intelligence agencies, and coordinate the planning and construction of an intelligent military system supported by military technology and military applications. Russia also sees artificial intelligence as the commanding heights of future military competition. The Russian military is stepping up the development of humanoid robots that can drive vehicles and build robot troops that can fight side by side with human soldiers. Russian President Vladimir Putin said: “Artificial intelligence is not only the future of Russia, but also the future of all mankind. It contains huge opportunities and threats that are difficult to predict today.” Countries such as the United Kingdom, Japan, Australia, South Korea, and India are also increasingly paying attention to the development and application of artificial intelligence in the military field.
Today, the pace of military application of artificial intelligence may be difficult to stop. Faced with the new situation, we need to firmly grasp the major historical opportunities for the development of artificial intelligence, judge the general trend, take the initiative to plan, grasp the direction, seize the initiative, and effectively safeguard national security. At the same time, from the perspective of the future and destiny of mankind, the international community should establish a mechanism to prevent the excessive military application of artificial intelligence as soon as possible. After all, the power of human beings to create civilization should not become a tool to destroy civilization, and scientific and technological progress should be a blessing for the benefit of mankind, rather than a death knell that threatens human survival and development.
The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.
AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.
Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.
Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.
We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.
To this end, we call for:
– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.
– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.
– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.
– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.
– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.
– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.
——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.
– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.
Through the smoke of war, we can see that today’s war has evolved from the bloody fights of ignorant barbarism and the battles of conquering cities to the precise beheadings dominated by information and the fierce competition on the battlefield of intelligence. This objective fact tells us that war, as a specific complex social phenomenon, will present different war forms and winning mechanisms in different historical periods. As American futurist Alvin Toffler pointed out, “artificial intelligence is like the missiles and satellites before. Whether you are prepared or not, it will enter the historical stage of human civilization war.” President Xi Jinping clearly pointed out: “If we do not understand the winning mechanism of modern warfare, we will only be able to see through a mirror and miss the point.” The winning mechanism of war refers to the way in which various factors of war play a role in order to win the war, as well as the laws and principles of their mutual connection and interaction. Compared with the traditional information warfare, the winning mechanism of future intelligent warfare has undergone significant changes.
The confrontation mode has changed from “system confrontation” to “algorithm game”, and the algorithm advantage dominates the war advantage
Algorithms are strategic mechanisms for solving problems. In fact, “algorithms” are a series of clear instructions for solving problems, and are clear steps to solve a certain type of problem according to certain rules. In future wars, the side that has the advantage of algorithms will be able to quickly and accurately predict battlefield situations, innovate the best combat methods, and achieve the war goal of “winning before fighting.”
Algorithms are the key to dominating intelligent warfare. First, algorithmic advantage dominates cognitive advantage. After big data is processed by high-performance and efficient algorithms, massive amounts of data are quickly converted into useful intelligence. Therefore, the party with algorithmic advantage can dispel the “battlefield fog” caused by the failure to process data in a timely manner, making cognition more profound. Second, algorithmic advantage dominates speed advantage. Compared with classical algorithms, quantum algorithms have achieved an exponential acceleration effect. In addition, quantum computers have increased from 1 quantum bit in 2003 to 1,000 quantum bits in 2015, and their computing efficiency is 100 million times faster than that of classical computers, making artificial intelligence a qualitative leap. Third, algorithmic advantage dominates decision-making advantage. With its high-speed and accurate calculations, the algorithm replaces human “deep thinking” and repeated exploration, thereby accelerating knowledge iteration. Mastering super-powerful algorithms can quickly propose flexible and diverse combat plans and countermeasures in response to changes in the enemy’s situation, constantly disrupting the enemy’s established intentions and deployments.
Algorithms are the core of the leap in war effectiveness. First, wars are more efficient. With the support of algorithms, the reaction speed of artificial intelligence is hundreds or thousands of times that of humans. In 2016, the “Alpha” intelligent software developed by the United States reacted 250 times faster than humans and controlled a third-generation aircraft to defeat a manned fourth-generation aircraft in a simulated air battle. Second, war endurance is stronger. Artificial intelligence is not limited by physiological functions and can continuously perform repetitive and mechanical tasks. In September 2016, an F-16 fighter jet reached 8 times the gravity overload during training, causing the pilot to lose consciousness. However, before the aircraft hit the ground, the onboard “automatic collision avoidance system” automatically pulled the aircraft up, avoiding the tragedy. Third, the war ends better. With the support of massive data and supercomputing capabilities, AI’s judgment and prediction results are more accurate. The US military’s search and killing of Osama bin Laden, which combined manned and unmanned equipment, is a successful example.
The elements of combat are changing from “information-led” to “machine-led”, and machine-led combat is reshaping the combat process.
In the future, intelligent technology will penetrate all elements and processes of war. The Internet of Things, the Internet of Intelligence and the Internet of Brains will become the foundation of war. The four domains of physical domain, information domain, cognitive domain and social domain will be deeply integrated, making the battlefield holographically transparent, with humans controlling the war and no humans fighting on the battlefield. Intelligent weapons and equipment will reshape the combat process from “sensor to shooter”.
Smart eyes “detect”. “Detection” means intelligent intelligence detection. It can virtualize collaborative networking, self-organized dynamic scheduling, automatic multi-source intelligence mining, and order-based on-demand use of multi-dimensional sensors such as land, sea, air, space, and electricity, to the greatest extent possible to dispel the “war fog” caused by insufficient or redundant information and open the “smart eyes” to see through intelligent warfare.
Loop “control”. “Control” refers to intelligent command and control. Focusing on the core of decision-making advantage, the “man-in-the-loop” human-machine collaborative technology is used. According to the autonomy of the machine, three decision-making and control methods are adopted: “man-in-the-loop”, “man-on-the-loop” and “man-out-of-the-loop”, to form a comprehensive advantage with superior decision-making quality and action speed.
Intelligent “fighting”. “Fighting” means intelligent offensive and defensive operations. Relying on the advantages of system structure and algorithm, it mobilizes multi-dimensional, manned and unmanned combat platforms in real time, quickly couples combat forces, builds combat systems on demand, focuses on targets, and independently implements “distributed” and “swarm” collaborative operations. After the battle, it quickly decouples and waits for battle, so that the troops are in a state of flux and gather and disperse at random. At the end of 2015, Russia deployed 6 tracked unmanned combat vehicles, 4 wheeled unmanned combat vehicles and 1 drone to support the Syrian government forces in their assault on the strongholds of Islamic extremist forces, and won the world’s first offensive battle dominated by unmanned combat vehicles. About 70 extremist militants were killed in the battle, while only 4 Syrian government forces were injured.
The decision-making method changes from “human brain decision-making” to “intelligent decision-making”, and intelligent decision-making optimizes combat operations
With the emergence of intelligent decision-making technology and “cloud brain”, “digital staff” and “virtual warehouse”, war decision-making has evolved from simple human brain decision-making to human-machine hybrid decision-making, cloud brain intelligent decision-making and neural network decision-making.
Human-machine hybrid decision-making. Reasonable division of labor and interactive collaboration between humans and machines is the best solution to explore and solve problems. The advantages of the human brain lie in creativity, flexibility, and initiative; the advantages of machines lie in speed, high precision, and fatigue resistance. High-level decision-making and other highly artistic tasks are handled by the human brain, while big data calculations are completed by machines. Human-machine interaction enables machines to “listen” to human language, “see” human movements and expressions, and “understand” human emotions and intentions, and present the calculation process and results in a way that is easy for people to understand.
Cloud brain intelligent decision-making. In the future intelligent warfare, there will be a metaphorical center of “brain”, and distributed combat units will be linked through the cloud brain. This cloud brain is not only a physical information, physiological information and psychological information center, but also a military command center. Cloud brain decision-making is based on the intelligent “network, cloud, terminal” system. “Network” is an intelligent combat infrastructure network that integrates intelligent battlefield perception, decision-making and weapon control systems. “Cloud” is built on the “network” and is based on the intelligent resource service layer. It is not only a “resource pool” that integrates various combat resources, but also an “intelligent cloud” that provides intelligent services for combat operations. Due to the coupling of multiple centers, networking and decision-making can be quickly established even if it is bombarded with information. “End” refers to the combat resource end. The discrete intelligence and networked intelligence in the combat process can not only make autonomous decisions, but also provide distributed intelligent resources for the war system, enabling the new war system to emerge with collective intelligence.
Neural network decision-making. In July 2018, Russia developed fully automatic artificial neural network software that can destroy as soon as it is found. The intelligent decision-making tool developed by the US military aims to shorten the decision-making cycle and improve decision-making efficiency. The application of neural networks was once limited to tactical-level calculations, and it was difficult to make qualitative analysis and decisions on macroscopic and complex strategic situations. “AlphaGo” has made a breakthrough in the field of Go by simulating the working mechanism of human brain neural networks. In the future, the super self-evolution and strategic decision-making capabilities of deep neural networks will realize the “man-out-of-the-loop” combat cycle.
The combat style has changed from “breaking the chain and destroying the body” to “extreme combat”, which subverts traditional combat methods.
Extreme warfare has broken through the boundaries of traditional warfare, overturned traditional combat patterns, greatly increased the effectiveness of warfare, and brought about truly all-weather, all-time, all-dimensional, and all-domain intelligent warfare.
Break through the limits of human physiology and thinking. First, the combat space and domain are greatly expanded. In the future, intelligent combat will be three-dimensional, full-dimensional, and full-domain combat. The combat space will expand from the traditional space domain to the extremes of the polar regions, deep sea, and space, especially to the cognitive domain and information domain. Penetrate and penetrate other domains, and the combat domain will become more blurred. Second, the combat process is greatly accelerated. Unmanned autonomous combat greatly compresses the “observation-judgment-decision-action” cycle, and develops from the “instant destruction” of information warfare to the “instant destruction” of intelligent warfare. The victory of intelligent warfare is achieved by advancing the warning time, shortening the decision-making time, and extending the combat actions forward, so as to achieve the effect of preemptive layout and preemptive strike. Third, combat actions are extremely flexible. In intelligent warfare, artificial intelligence can propose extremely rich combat plans, and unmanned combat platforms can quickly switch between different functional roles, making combat actions more bold and adventurous, and tactics more unexpected. Even if one of the combat elements loses its function, the “decentralized” function will ensure that the group function is not affected.
Subvert the traditional combat style. The first is invasive lone wolf combat. That is, a single unmanned system fights independently. The second is manned and unmanned collaborative system sabotage warfare. That is, based on intelligent unmanned systems, through mixed combat with manned and unmanned equipment, the combat objectives can be quickly achieved. The third is the independent combat of unmanned system formations. Multiple unmanned systems constitute combat units, which can perform complex tasks such as multi-target attacks. The fourth is mother ship swarm cluster combat. With the mother ship as the transport carrier and command center, a manned and unmanned mixed cluster combat style is formed.
It has the combat effectiveness of “nuclear power”. Intelligent warfare has brought the characteristics and potential of intelligent robots to the extreme, resulting in combat effectiveness close to the limit. First, the target is small and difficult to detect. For example, miniaturized stealth robots are difficult to detect by radar and sound. The hybrid drone embedded with the “optical electrode” chip in the “Dragonfly” by the United States is smaller, lighter and more stealthy, with a flight time of up to several months. Second, it is difficult to confront and the cost is high. For example, a beetle-sized micro-drone can directly crash into the target’s head as long as it scans the human face, and the ammunition it carries is enough to penetrate the brain. Third, the cost is low and the damage is great. In the future, the use of intelligent weapons in extreme combat will have the power of nuclear weapons, especially the extremely large-scale intelligent weapon equipment, extremely low-cost robot automatic production, and extremely flexible robot swarm combat, which may surpass the maximization of nuclear weapon explosion power.
Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. In recent years, it has developed rapidly and has been widely used in the military field, constantly giving rise to new asymmetric advantages, and profoundly changing the basic form, combat methods and winning mechanisms of future wars. We should have a deep understanding of artificial intelligence as a revolutionary technological driving force, accurately recognize changes, respond to changes scientifically, and actively seek changes, strive to explore ways to win future wars, and gain the initiative in the accelerating intelligent war.
Information mechanism
Knowing yourself and the enemy will ensure victory in a hundred battles. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situations, intelligent analysis of massive data, and intelligent processing of multiple information, and can form a “transparent” advantage on the battlefield.
Autonomous implementation of battlefield perception. By embedding intelligent modules into the wartime reconnaissance system, various reconnaissance node units can realize random networking, ad hoc coordination, and organic integration, and can autonomously capture battlefield information in all directions and dimensions, build a relatively “transparent” digital battlefield environment and combat situation, and then dispel the “fog” of war and present the combat scene in a panoramic manner.
Accurately identify massive amounts of data. Relying on intelligent technologies such as precise sensing technology and analytical recognition technology, it accurately judges, analyzes, compares, and integrates diversified voice, text, pictures, videos, and other data to obtain faster, more complete, more accurate, and deeper battlefield situation results, far exceeding the speed and accuracy of human brain processing.
Efficient response to key information. Based on intelligent technologies such as combat cloud, big data, and the Internet of Things, it can quickly discover large quantities of non-standardized and heterogeneous intelligence data, autonomously discover symptoms, identify intentions, analyze trends, find patterns, and respond to commanders’ needs for key information in real time and accurately.
Synchronous sharing of integrated situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air, space and radio networks, and play an important hub role in sharing information and unified cognition, building a situation based on “one picture”, “one network” and “one chain”, so that all combat units can synchronously share the required information from different spaces, distances and frequencies in all domains and at all times, realizing intelligent sharing.
Decision-making mechanism
Those who can plan for victory before the battle have made more calculations. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can conduct dynamic battlefield simulation and deduction, quickly give feasible decisions, greatly shorten the decision-making cycle of combat planning, and form a decision-making advantage.
Intelligent strategic situation analysis. The decision-making support system that incorporates artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analysis capabilities, maximize the separation of false and true, correlation verification, and link thinking, and automatically conduct big data analysis such as enemy situation, our situation, and battlefield environment, forming comparative data on related forces and weapons, which can efficiently assist combat commanders and help commanders quickly make combat decisions.
Intelligent optimization of combat plans. Relying on the intelligent combat simulation system, it automatically generates multiple sets of intuitive plans and programs based on the pre-input combat missions and strike target information, comprehensively evaluates their advantages and disadvantages and potential risks, and selects the plan that is most conducive to realizing the commander’s intention for the commander to make the final decision. After receiving the combat missions and target requirements from the superior, each combat unit will further screen the battlefield target information in combination with the tasks and requirements of its own level, and independently formulate the best plan and program at its own level to maximize combat effectiveness.
Intelligent prediction of decision-making effectiveness. The intelligent decision-making auxiliary system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system a more advanced “brain-like” ability, which can think more rationally about unexpected situations on the battlefield and quickly come to a relatively objective combat result.
Power control mechanism
The dominant position is to control power by taking advantage of the situation. Seizing control power is the key factor to win the war. Artificial intelligence can “transplant” part of human intelligence to weapons, making the combination of humans and weapon systems more and more close. The deep interaction between humans and machines has changed the traditional control elements, endowed new control connotations, and can help gain new control advantages.
The dominance of the domain is expanding to the high frontier. In the future, highly intelligent unmanned systems will be able to carry out a variety of combat missions even in harsh conditions such as high temperature, extreme cold, high pressure, lack of oxygen, toxicity, radiation, and in extreme environments such as extreme height, extreme distance, extreme depth, extreme micro, extreme darkness, and extreme brightness. The competition for dominance of the combat domain and combat space will extend to the high frontier, the far frontier, and the deep frontier.
The right to control information is expanding to multiple means. The traditional way to seize the right to control information is to control the channels of information acquisition, processing, and distribution by attacking the enemy’s reconnaissance and early warning system and destroying its command and control system. However, information warfare under the guidance of artificial intelligence uses information itself as “ammunition”, and the means to seize the right to control information are more diverse.
The network control power is expanding to distributed. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services, which can realize modular organization and automatic reorganization of combat forces. The traditional purpose of disconnecting the network and destroying the chain by striking key nodes will no longer be achieved. It is inevitable to respond to the “decentralized” battlefield with an intelligent distributed strike mode.
The power to control the brain is expanding to new dimensions. Brain-like technology and simulation technology are gradually militarized, forming new areas of competition and confrontation. The focus has shifted from focusing on confrontation in the physical and information domains to more emphasis on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can confuse the real with the fake. “Core attack” can quietly change the enemy’s command and control system algorithm. “Brain control” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, and will, the goal of stopping and winning the war can be achieved at the lowest cost.
Mechanism of action
The key to victory in war is speed. Taking unexpected actions against the enemy is the key to victory in war. Artificial intelligence can improve the intelligence level of weapons and equipment, command and control systems, and action decisions, making mobile response capabilities faster and joint strike capabilities more accurate, creating a super action advantage.
The speed of action is “killed in seconds”. The intelligent combat system can see, understand, learn and think, effectively shortening the “OODA” cycle. Once an “opportunity” is found, it will use intelligently controlled hypersonic weapons, kinetic weapons, laser weapons, etc. to quickly “kill” the target at a long distance.
Action style is “unmanned”. “Unmanned + intelligent” is the future development direction of weapons and equipment. Low-cost unmanned vehicles, drones, unmanned submarines and other unmanned autonomous equipment, with the support of cluster autonomous decision-making systems, can plan the task division of each unit according to combat targets, and unmanned devices can accurately dock, autonomously combine, and covertly penetrate to carry out cluster saturation attacks on the enemy.
The action space is “fuzzy”. In future wars, using interference means to carry out soft strikes on the enemy’s intelligent combat systems and intelligent weapons, and using intelligent weapons to delay or influence the enemy’s decision-making and psychology will become the key to victory. Most of these actions are completed unconsciously or silently, presenting a “fuzzy” state where the enemy and us are invisible, the boundaries between the front and the rear are unclear, and it is difficult to distinguish between the visible and the invisible.
The action deployment is “stealth”. The intelligent command system and weapon equipment have bionic and stealth properties. As long as they are deployed in advance in possible combat areas during peacetime preparations or training exercises, they can be hidden and dormant and ready for combat. Once they are activated in time in wartime, they can launch a sudden attack on the enemy, which will help to quickly seize the initiative in the war.
System Mechanism
Five things and seven strategies determine victory or defeat. Future wars will be full-domain, full-system, full-element, full-process system confrontations, and a stable and efficient combat system is the basic support for winning the war. With the continuous expansion of the application of artificial intelligence in the military field, the combat system is becoming more and more intelligent, and the full-domain integrated combat system will produce a strong system advantage.
There are more means of “detection”. Intelligent combat clusters rely on network information systems to connect with various large sensors, electronic warfare systems and other human-machine interaction platforms, use the detection and perception equipment of each combat unit to obtain battlefield data, give play to the self-organizing characteristics of intelligent groups, strengthen real-time detection and support for joint combat systems and back-end intelligence analysis, and can achieve full-domain detection, joint early warning, and coordinated verification, forming a multi-dimensional, full-domain coverage of large-area joint detection intelligence system.
The scope of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of the senses, and the physical limits of existence, and replace humans to enter traditional life restricted areas such as the deep sea, space, polar regions, and strong radiation areas, and stay there for a long time to implement “unconventional warfare”, thereby further expanding the combat space and having the ability to continuously repel opponents in a wider range of fields.
The speed of “fighting” is faster. With the support of intelligent network information system, the intelligence chain, command chain and killing chain are seamlessly connected, the speed of information transmission, decision-making speed and action speed are accelerated simultaneously, and the intelligent combat units can be flexibly organized, autonomously coordinated and quickly strike. All of these make the time utilization efficiency extremely high and the battlefield response speed extremely fast.
The “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavioral systems, the intelligent combat evaluation system can autonomously complete the collection, aggregation, grading and classification of multi-means action effect evaluation information, accurately perceive battlefield actions based on big data and panoramic images, dynamically identify combat processes and correct defects, predict complex battlefield changes, and make comprehensive plans and flexibly respond.
The “security” is more efficient. The widespread application of intelligent comprehensive security systems represented by equipment maintenance expert systems and intelligent sensing equipment can efficiently respond to security needs in various domains, intelligently plan security resources, and ensure that the “cloud” aggregates various battlefield resources, effectively improving the comprehensive security capabilities of the networked battlefield.
As a strategic technology leading a new round of scientific and technological revolution and industrial transformation, artificial intelligence is profoundly changing the form of modern warfare. Countries have taken a national strategic approach to Focus on the military field and develop artificial intelligence.
Currently, artificial intelligence is profoundly changing people’s thinking, lifestyles and exploration directions. Its application and development in the military field will also have a profound impact on future war fighting styles, combat spaces and means. While major countries have elevated artificial intelligence to a national strategy, they are also taking various measures to promote the military application of artificial intelligence.
Russia–
Highlight military priority
Focus on actual combat testing
As the importance of artificial intelligence technology gradually becomes apparent, Russia has listed artificial intelligence as a priority development area to promote military modernization and intelligence and compete for strategic commanding heights.
Russia has successively introduced strategic plans such as the “National Weapons and Equipment Plan 2018-2025” and the “National Artificial Intelligence Development Strategy before 2030”, and established the National Artificial Intelligence Center, the Robotics Technology Development Center, etc. to carry out theoretical and applied research in the fields of artificial intelligence and information technology.
The Russian military has currently developed and applied artificial intelligence technology in all combat domains on land, sea and air, and possesses a considerable scale of unmanned combat forces.
On land, China has unmanned combat vehicles represented by the “Uranus” series, “Platform-M” and “Argo” models. In the air, China has “Pomegranate”-4, “Fast Light Particle” short-range UAVs, “Sea Eagle”-10, “Outpost” and other medium-sized UAVs that perform reconnaissance, command and communication relay tasks. Underwater, China has in service large-scale “Harpsichord”-1R, small-scale “Marlin-350”, “Vision-600” micro-unmanned submarines, especially the “Poseidon” nuclear-powered unmanned submarine, which can carry a nuclear warhead with a TNT equivalent of 2 million tons.
Since 2015, the Russian army has formed combat robot companies in various military regions and fleets, equipped a large number of robots, and continuously organized artificial intelligence exercises. In addition, the Russian army has accelerated the research on combat theory and the development of new equipment systems, and conducted actual combat tests in the battlefields of Syria and eastern Ukraine, providing a reliable basis for the development and improvement of unmanned combat systems. In the Syrian military operation in early 2016, the Russian army used six “Platform-M” tracked unmanned combat vehicles and four “Codeword” wheeled unmanned reconnaissance vehicles for the first time to participate in the attack and occupy enemy positions, creating a practical precedent for ground unmanned equipment to move from auxiliary combat to main combat.
Currently, the Russian military is stepping up efforts to integrate artificial intelligence systems with drones, missiles, etc. to cope with the future era of intelligent warfare.
USA–
Develop long-term plans
Strengthening technology leadership
The U.S. military has always focused on the research and development of artificial intelligence technology, and has made arrangements at the national strategic level, with a clear development strategy, specific tactical models and strong technical support. Since 2000, the U.S. Department of Defense has strengthened the top-level planning of unmanned equipment and technology development by regularly updating the unmanned equipment development strategy and roadmap.
In 2014, the United States proposed the “Third Offset Strategy” with artificial intelligence as the key supporting technology. In October 2016, then-US President Obama released a report at the White House, “National Artificial Intelligence Research and Development Strategic Plan”, which proposed seven strategic directions and two suggestions for the priority development of artificial intelligence in the United States. The US military has successively formulated artificial intelligence technology research and development plans, key project ideas, and technical standards and specifications, focusing on building a research and development production and combat application system, and promoting the deployment of projects such as intelligent missiles and unmanned autonomous aerial refueling.
At present, the U.S. military’s active unmanned equipment is still mainly controlled by remote control or pre-programming. It is expected that in the future, major breakthroughs will be made in the autonomy of unmanned equipment and manned-unmanned collaboration. The U.S. military also hopes to further develop neural technology to enable combat personnel to interact with the system on the battlefield in the future, and ultimately achieve consciousness connection and human-like thinking of artificial intelligence systems.
With the deployment of a series of new combat concepts and related military application projects, the United States is accelerating the transformation of artificial intelligence technology into weapons and equipment systems and unmanned combat systems to offset the combat capabilities of its opponents, maintain absolute military advantages, and safeguard its global hegemony.
Yingde is based on——
Promoting resource integration
Each has its own development path
The UK has defined its AI strategy as a key national strategy and has developed a development path of “universities as the source and military-civilian integration”, focusing on cooperating with the world’s top universities and mature companies to explore ways to maintain military advantages on future battlefields. In September 2018, the UK announced that it had developed an AI military robot called “Sapiens” that can scan urban battlefields, detect hidden enemies, and send information to soldiers.
As a traditional industrial power, Germany regards artificial intelligence as the key to maintaining Germany’s competitiveness and safeguarding Germany’s future. Germany, which has the world’s largest artificial intelligence research center, released the national “Artificial Intelligence Strategy” in 2018, planning to invest about 3 billion euros at the federal level by 2025 to create an “artificial intelligence made in Germany” brand. In terms of military applications of artificial intelligence, Germany has also achieved many important results. The German army has been equipped with digital systems with intelligent information perception and processing capabilities in large quantities. The German Air Force’s “Typhoon” fighter has successfully achieved interconnection with remote-controlled vehicles and can receive and execute combat missions at the same time.
Israel has a small territory and a complex surrounding situation. A strong sense of insecurity is a powerful driving force for its development of artificial intelligence, and deep military-civilian integration has provided advanced technology, abundant funds and high-level talents for the rapid development of artificial intelligence in the Israeli military. Its national artificial intelligence program, the “Tower” program, a collaboration between the military and the Hebrew University, has provided a number of outstanding talents for the Israel Defense Forces to improve their intelligence level.
Today, Israel has become the world’s largest exporter of military drones, accounting for about 60% of the world’s exports. Among them, drones such as “Hermes” and “Skylark” represent the world’s advanced level. Many of the Azerbaijani drones that have attracted attention in the recent war between India and Pakistan were imported from Israel. Israel’s “Guardian” unmanned vehicle is the world’s first controllable autonomous unmanned vehicle. The Israeli Navy is equipped with multiple types of unmanned surface vessels such as “Protector”, “Stingray” and “Seagull”, among which the “Seagull” unmanned surface vessel can perform a variety of tasks such as anti-submarine, anti-mine, and anti-frogman.
Artificial intelligence is a general term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future war form, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.
With the rapid development of technology and the continuous acceleration of competition, major countries have launched their own artificial intelligence development plans, and accelerated the promotion of organizational mechanism reform, scientific and technological research and development, and tactical and combat innovation, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.
Accelerate organizational form innovation
Promote technology transformation and application
Unlike traditional technologies, the research and development and transformation of artificial intelligence have their own characteristics. The institutional settings and operation methods of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, breaking the institutional barriers in the process of artificial intelligence technology research and development, and accelerating the transformation and application of related technologies.
Emphasize “connection between the near and the far”. The United Kingdom, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Future Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative application of existing platforms in a “potential tapping and efficiency increase” manner, while buying time for the medium- and long-term technological innovation of the Defense Advanced Research Projects Agency, so as to effectively balance practical needs and long-term development.
Attach importance to “research and use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat selection, and other aspects. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements transformation, and promote the widespread application of artificial intelligence in the U.S. Department of Defense and various services.
Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Committee”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.
Highlight the “combination of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department, which fully demonstrates new technologies, new theories, and new concepts based on the specific effects of various systems organically integrated into various services and arms, so as to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of national defense technology innovation and application by re-establishing the position of Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, concepts, and methods, so as to select the focus of various technology research and development and the direction of strategic and tactical research, and achieve a benign interaction between technology development and theoretical innovation.
Project establishment for military needs
Seize the opportunity for future development
In recent years, various military powers have aimed at the research and development of cutting-edge artificial intelligence technologies, and have widely established projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, intending to seize the opportunity for future development.
Situational awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” with blurred peace and war, integration of soldiers and civilians, internal and external linkage, and full-domain integration, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use intelligent information analysis and data sharing platforms to improve the fire support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.
Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and operational advantages. Russia’s “Combat Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, and other aspects, and improving commanders’ ability to control complex battlefields and command effectiveness.
Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, using artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, event roots, and relationships behind the war; the “Marvin” project uses machine learning algorithms and face recognition technology to screen and sort out various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.
Unmanned combat field. In some technologically advanced countries, unmanned combat systems are becoming more mature and equipment types are becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and transport and recovery of drones in all-terrain and all-time conditions. The Russian military’s “Outpost-R” drone system, which has the ability to detect and strike in one, can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s effectiveness in performing combat missions such as reconnaissance and surveillance, auxiliary targeting, battle damage assessment, and communication relay.
Adapting to the transformation of future battlefields
Continuously exploring new tactics
In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the participation efficiency of artificial intelligence in key military decisions and actions.
Algorithmic warfare, that is, relying on big data and artificial intelligence technology, fully utilizing the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side always leads the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the U.S. Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the U.S. military’s algorithmic warfare further moving towards actual combat.
Unmanned warfare, guided by low-cost attrition warfare of saturated quantity attack and system attack and defense operations, strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat mode. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”.
Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses shallow footprints, low-feature, fast-paced forces such as special forces to form small groups of multi-group mobile formations, disperse and infiltrate the combat area in a multi-directional and multi-domain manner, continuously break the enemy’s system shortcomings and chain dependence, and increase the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.
Fusion warfare, relying on network quantum communication and other means, builds an anti-interference, high-speed “combat cloud” to eliminate the technical barriers of data link intercommunication, interconnection and interoperability between military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break data barriers and greatly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information of various services, which improved the integration between services and enhanced the effectiveness of joint command and control.
(Author’s unit: National University of Defense Technology)
The weaponization of artificial intelligence is an inevitable trend in the new round of military transformation. Local wars and conflicts in recent years have further stimulated relevant countries to promote the strategic deployment of artificial intelligence weaponization and seize the commanding heights of future wars. The potential risks of artificial intelligence weaponization cannot be ignored. It may intensify the arms race and break the strategic balance; empower the combat process and increase the risk of conflict; increase the difficulty of accountability and increase collateral casualties; lower the threshold of proliferation and lead to misuse and abuse. In this regard, we should strengthen international strategic communication to ensure consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on the construction of laws and regulations to form a unified and standardized legal framework; strengthen the ethical constraints of artificial intelligence to ensure that technological development meets ethical standards; actively participate in global security governance cooperation and jointly maintain peace and stability in the international community.
The weaponization of artificial intelligence is to apply artificial intelligence-related technologies, platforms and services to the military field, making it an important driving force for enabling military operations, thereby improving the efficiency, accuracy and autonomy of military operations. With the widespread application of artificial intelligence technology in the military field, major powers and military powers have increased their strategic and resource investment and accelerated the pace of research and development and application. The frequent regional wars and conflicts in recent years have further stimulated the battlefield application of artificial intelligence, and profoundly shaped the form of war and the future direction of military transformation.
It cannot be ignored that, as a rapidly developing technology, AI itself may have potential risks due to the immaturity of its inherent technology, inaccurate scene matching, and incomplete supporting conditions. It is also easy to bring various risks and challenges to the military field and even the international security field due to human misuse, abuse, or even malicious use. To conscientiously implement the global security initiative proposed by General Secretary Xi Jinping, we must face the development trend of weaponization of AI worldwide, conduct in-depth analysis of the security risks that may be brought about by the weaponization of AI, and think about scientific and feasible governance ideas and measures.
Current trends in the weaponization of artificial intelligence
In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of war, changing the future combat system, and affecting the future direction of military reform. Major military powers have regarded artificial intelligence as a subversive key technology that will change the rules of future wars, and have invested a lot of resources to promote the research and development and application of artificial intelligence weapons.
The weaponization of artificial intelligence is an inevitable trend in military transformation.
With the rapid development of science and technology, the necessity and urgency of military reform have become increasingly prominent. Artificial intelligence can simulate human thinking processes, extend human brainpower and physical strength, realize rapid information processing, analysis and decision-making, and develop increasingly complex unmanned weapon system platforms, thus providing unprecedented intelligent support for military operations.
First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, and it is difficult to effectively respond to large-scale, high-speed and high-complexity intelligence processing needs. The introduction of artificial intelligence technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of artificial intelligence technology can build an intelligent monitoring system to provide high-precision and real-time intelligence perception services. In the field of intelligence reconnaissance, artificial intelligence technology has the ability to process multiple “information flows” in real time, thereby greatly improving analysis efficiency. ① By using technical tools such as deep learning, it is also possible to “see the essence through the phenomenon”, dig out the deep context and causal relationship in various types of fragmented intelligence information, and quickly transform massive fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.
Second, provide data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situation awareness. ② Its advantage lies in the ability to perform key tasks such as data mining, data fusion, and predictive analysis. In information-based and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is huge, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become an important tool to assist commanders in managing intelligence data, making enemy situation judgments, proposing combat plan suggestions, and formulating plans and orders. Taking the US military as an example, the ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system developed by Raytheon Technologies Corporation of the United States covers intelligence collection, surveillance, target identification and tracking functions, and can gather data from multiple information sources such as satellites, ships, aircraft and ground stations, and conduct in-depth analysis and processing. This not only significantly improves the speed at which commanders obtain information, but also can provide data support with the help of intelligent analysis systems, making decisions faster, more efficient and more accurate.
Third, it provides important support for unmanned combat systems. Unmanned combat systems are a new type of weapon and equipment system that can independently complete military tasks without direct human manipulation. They mainly include intelligent unmanned combat platforms, intelligent ammunition, and intelligent combat command and control systems, and have significant autonomy and intelligent features. As a technical equipment that leads the transformation of future war forms, unmanned combat systems have become an important bargaining chip in military competition between countries. The system has achieved adaptability to different battlefield environments and combat spaces by using key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise strikes on targets. The design concept of this system is “unmanned platform, manned system”, and its essence is an intelligent extension of manned combat systems. For example, the “MQM-57 Falconer” drone developed by the US Department of Defense’s Advanced Research Projects Agency (DARPA) uses advanced artificial intelligence technology and has highly autonomous target recognition and tracking functions.
Fourth, provide technical support for military logistics and equipment support. In the context of information warfare, the war process has accelerated, mobility has improved, and combat consumption has increased significantly. The traditional “excessive pre-storage” support model can no longer adapt to the rapidly changing needs of the modern battlefield. Therefore, higher requirements are placed on combat troops to provide timely, appropriate, appropriate, appropriate, and appropriate rapid and accurate after-sales support. As a technology with spillover and cross-integration characteristics, artificial intelligence is integrated with cutting-edge technologies such as the Internet of Things, big data, and cloud computing, allowing artificial intelligence knowledge groups, technology groups, and industrial groups to fully penetrate the military after-sales field, significantly improving the logistics equipment support capabilities.
Major countries are planning to develop military applications of artificial intelligence.
In order to enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan have stepped up their strategic layout for the military application of artificial intelligence. First, by updating and adjusting the top-level strategic planning in the field of artificial intelligence, they provide clear guidance for future development; second, in response to future war needs, they accelerate the deep integration of artificial intelligence technology and the military field, and promote the intelligent, autonomous, and unmanned development of equipment systems; in addition, they actively innovate combat concepts to drive combat force innovation, thereby improving combat effectiveness and competitive advantages.
The first is to formulate a strategic plan. Based on the strategic paranoia of pursuing military hegemony, political hegemony, and economic hegemony with technological hegemony, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense issued the “Data, Analysis and Artificial Intelligence Adoption Strategy”, which aims to expand the advanced capabilities of the entire Department of Defense system to gain lasting military decision-making advantages. The Russian military promulgated the “Russian Weapons and Equipment Development Outline from 2024 to 2033”, known as the “3.0 version”, which aims to provide guidance for the development of weapons and equipment in the next 10 years. The outline emphasizes the continued advancement of nuclear and conventional weapons construction, and focuses on the research of artificial intelligence and robotics technology, hypersonic weapons and other strike weapons based on new physical principles.
The second is to develop advanced equipment systems. Since 2005, the U.S. military has released a version of the “Unmanned System Roadmap” every few years to look forward to and design unmanned system platforms in various fields such as air, ground, surface/underwater, and connect the development chain of unmanned weapons and equipment such as research and development-production-testing-training-combat-support. At present, more than 70 countries in the world can develop unmanned system platforms, and various types of drones, unmanned vehicles, unmanned ships (boats), and unmanned submarines are springing up like mushrooms after rain. On July 15, 2024, Mark Milley, former chairman of the U.S. Joint Chiefs of Staff, said in an interview with U.S. Defense News that by 2039, one-third of the U.S. military will be composed of robots. The Platform-M combat robot, the “Lancet” suicide drone, and the S70 “Hunter” heavy drone developed by the Russian army have been put into actual combat testing.
The third is to innovate future combat concepts. The combat concept is a forward-looking study of future war styles and combat methods, which can often lead to the leapfrog development of new combat force formations and weapons and equipment. In recent years, the US military has successively proposed combat concepts such as “distributed lethality”, “multi-domain warfare” and “mosaic warfare” in an attempt to lead the development direction of military transformation. Taking “mosaic warfare” as an example, this combat concept regards various sensors, communication networks, command and control systems, weapon platforms, etc. as “mosaic fragments”. These “fragment” units, with the support of artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems to form an on-demand integrated, highly flexible, and flexible killing network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan”, which aims to expand multi-domain operations to all-domain operations concepts, connect sensors of various services to a unified “Internet of Things”, and use artificial intelligence algorithms to help improve combat command decisions. ③
War conflicts stimulate the weaponization of artificial intelligence.
In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukrainian crisis, and the Israeli-Kazakh conflict have continued, further stimulating the development of the weaponization of artificial intelligence.
In the Libyan conflict, the warring parties used various types of drones to perform reconnaissance and combat missions. According to a report released by the United Nations Panel of Experts on Libya, the Turkish-made Kargu-2 drone carried out a “hunt and engage remotely” operation in Libya in 2020, and could autonomously attack retreating enemy soldiers. This incident marked the first use of lethal autonomous weapon systems in actual combat. As American scholar Zachary Cullenborn said, if someone unfortunately died in such an autonomous attack, this would most likely be the first known example in history of artificial intelligence autonomous weapons being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan used a formation of Turkish-made “Flagship” TB2 drones and Israeli-made “Harop” drones to successfully break through the Armenian air defense system and gain air superiority and initiative on the battlefield. ④ The remarkable results of the Azerbaijani army’s drone operations are largely due to the Armenian army’s “underestimation of the enemy” mentality and insufficient understanding of the importance and threat of drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They flexibly use advanced equipment such as reconnaissance and strike drones and cruise missiles, which not only improves combat efficiency, but also greatly enhances the suddenness and lethality of combat. ⑤
During the Ukrainian crisis that broke out in 2022, both Russia and Ukraine widely used military-grade and commercial drones to perform reconnaissance, surveillance, artillery targeting and strike missions. The Ukrainian army used the “Flagship” TB2 drone and the “Switchblade” series of suicide drones assisted by the United States to carry out precision strikes and efficient killings, becoming a “battlefield killer” that attracted worldwide attention. In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock bombing targets in Gaza. It once marked as many as 37,000 Palestinians in Gaza as suspected “militants” and identified them as targets that could be directly “assassinated”. The Israeli military’s actions have attracted widespread attention and condemnation from the international community. ⑥
Security risks posed by weaponization of artificial intelligence
From automated command systems to intelligent unmanned combat platforms, to intelligent decision-making systems in network defense, the application of artificial intelligence technology in the military field is becoming more and more common and has become an indispensable part of modern warfare. However, with the trend of weaponization of artificial intelligence, its misuse, abuse and even malicious use will also bring risks and challenges to international security that cannot be ignored.
Intensify the arms race and disrupt the strategic balance.
In the information and intelligent era, the disruptive potential of artificial intelligence is hard for major military powers to resist. They are all focusing on the development and application of artificial intelligence military capabilities, fearing that they will fall behind in this field and lose strategic opportunities. Deepening the military application of artificial intelligence can gain “asymmetric advantages” at a lower cost and with higher efficiency.
First, countries are scrambling to seize the “first mover advantage”. When a country achieves technological leadership in the development of intelligent weapon systems, it means that the country has more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and emergency response. This advantage includes higher autonomy, intelligence, and adaptability, which increases the country’s military strength and strategic competitive advantage. At the same time, the military advantage of the first mover may become a security threat to competitors, leading to a scramble among countries in the military application of advanced technologies. ⑦ In August 2023, US Deputy Secretary of Defense Kathryn Hicks announced the “Replicator initiative”, which seeks to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧
Second, the opacity of AI armament construction in various countries may intensify the arms race. There are two main reasons for this: First, AI technology is an “enabling technology” that can be used to design a variety of applications, which means that it is difficult to verify the specific situation of AI military applications. It is difficult to determine whether a country is developing or deploying nuclear weapons by monitoring uranium, centrifuges, weapons and delivery systems, as is the case with nuclear weapons. The difference between semi-autonomous and fully autonomous weapon systems is mainly due to different computer software algorithms, and it is difficult to verify the implementation of treaties by various countries through physical verification. Second, in order to maintain their strategic advantages, countries often take confidentiality measures for the details of the military application of advanced technologies, so that opponents cannot detect their strategic intentions. In the current international environment, this opacity not only intensifies the arms race, but also lays the groundwork for future escalation of conflicts.
Third, the uncertainty of the strategic intentions of various countries will also intensify the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence and war escalation depends largely on other countries’ perception of its capabilities rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often have the characteristics of risk competition, which is more of a test of courage than force. The relationship between major opponents is determined by which side is ultimately willing to invest more power, or make it look like it is about to invest more power. ⑨ An actor’s perception of the capabilities of others, whether true or false, will greatly affect the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors will become suspicious of their competitors’ armament capabilities and intentions to develop armaments without being sure of the other party’s intentions, and often take reciprocal measures, that is, to meet their own security needs by developing armaments. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.
Empowering operational processes increases the risk of conflict.
Empowered by big data and artificial intelligence technologies, traditional combat processes will be rebuilt intelligently, that is, from “situational awareness – command decision-making – attack and defense coordination – comprehensive support” to “intelligent cognition of global situation – human-machine integrated hybrid decision-making – manned/unmanned autonomous coordination – proactive on-demand precise support”. However, although the intelligent reconstruction of combat processes has improved the efficiency and accuracy of operations, it has also increased the risk of conflict and misjudgment.
First, wars that break out at “machine speed” will increase the risk of hasty actions. Artificial intelligence weapon systems have demonstrated strong capabilities in accuracy and response speed, making future wars break out at “machine speed”. ⑩ However, too fast a war will also increase the risk of conflict. In areas such as missile defense, autonomous weapon systems, and cyberspace that value autonomy and response speed, faster response speeds will bring huge strategic advantages, but will also greatly compress the time window for the defender to respond to military actions, causing combat commanders and decision makers to be under tremendous “time pressure”, exacerbating the risk of “hasty action” and increasing the possibility of accidental escalation of crises.
Second, reliance on system autonomy may increase the chance of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on the dynamic changes in mission parameters, and efficiently achieve human preset goals. The increase in autonomy not only greatly reduces dependence on manpower and improves overall operational efficiency, but is also regarded by defense planners as a key factor in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, since human commanders cannot respond quickly enough, they may gradually delegate control to autonomous systems, increasing the chance of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly marked a friendly Tornado fighter as an anti-radiation missile. The commander chose to launch the missile under the pressure of only a few seconds to react, resulting in the death of two pilots. ⑫
Third, it weakens the effectiveness of the crisis termination mechanism. During the Cold War, the United States and the Soviet Union led the construction of a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear wars. In these measures, humans play a vital role as “supervisors”. When risks may get out of control, they can initiate termination measures in sufficient time to avoid large-scale humanitarian disasters. However, with the improvement of the computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become faster, more precise and destructive, and humans’ termination intervention mechanism for crises may be weakened.
War accountability is difficult and collateral casualties increase.
Artificial intelligence weapon systems make it more difficult to define responsibility for war. In traditional combat modes, weapons systems are controlled by humans. Once errors or crises occur, human operators or developers of operating systems will bear corresponding responsibilities. Artificial intelligence technology itself weakens human initiative and control capabilities, making the attribution of responsibility for technical behavior unclear.
The first is the problem of the “black box” of artificial intelligence. Although artificial intelligence has significant advantages in processing and analyzing data, its internal operating rules and causal logic are often difficult for humans to understand and explain, which makes it difficult for programmers to correct errors in the algorithm. This problem is often referred to as the “black box” of the algorithm model. Once the artificial intelligence weapon system poses a safety hazard, the “algorithm black box” may become a rational excuse for the relevant responsible parties to shirk responsibility. Those who pursue responsibility can only face generalized shirking and shirking of responsibility, and point the finger of responsibility at the artificial intelligence weapon system. In practice, if the decision-making process of artificial intelligence cannot be understood and explained, it may cause a series of problems, such as decision-making errors, trust crises, and information abuse.
The second is the division of responsibilities between humans and machines in military operations. When an AI system fails or makes a wrong decision, should it be considered an independent entity to bear responsibility? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this division of responsibilities lies not only in the technical level, but also in the ethical and legal levels. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human preset procedures and algorithms, so their responsibilities cannot be completely independent of humans. On the other hand, AI systems may go beyond the preset scope of humans and make independent decisions in some cases. How to define their responsibilities at this time has also become a difficult problem in the field of arms control.
The third is the issue of the allocation of decision-making power between humans and artificial intelligence weapon systems. According to the different autonomous powers of the machine, the artificial intelligence system can perform tasks in three decision-making and control modes: semi-autonomous, supervised autonomous, and fully autonomous. In a semi-autonomous system, the decision-making power of the action is controlled by humans; in supervised autonomous actions, humans supervise and intervene when necessary; in fully autonomous actions, humans do not participate in the action process. With the gradual deepening of the military application of artificial intelligence, the role of humans in the combat system is undergoing a gradual transformation from the traditional “man in the loop” mode to the “man on the loop”, and humans have evolved from direct operators inside the system to supervisors outside the system. However, this transformation has also raised new problems. How to ensure that artificial intelligence weapon systems can still follow human ethics and values when operating independently is a major challenge facing the current field of artificial intelligence weapon research and development.
Lowering the threshold for proliferation leads to misuse and abuse.
Traditional strategic competition usually involves large-scale research and development and procurement of weapons systems, which requires a lot of money and technical support. After AI technology matures and spreads, it has the advantages of being easy to obtain and inexpensive. Even small and medium-sized countries may have the ability to develop advanced intelligent weapon systems. At present, strategic competition in the field of military AI is mainly concentrated between major military powers such as the United States and Russia. However, in the long run, the spread of AI technology will expand the scope of strategic competition and pose a destructive threat to the existing strategic balance. Once smaller countries that master AI technology have relatively strong competitiveness, their willingness to initiate confrontation when facing threats from major powers may increase.
First, artificial intelligence helps develop some lightweight and agile means of warfare, thereby encouraging some small and medium-sized countries or non-state actors to use it to carry out small, opportunistic military adventures, achieving their strategic goals at a lower cost and with more abundant channels. Second, the rapid development of artificial intelligence has made new forms of warfare such as cyber warfare and electronic warfare increasingly prominent. In a highly competitive battlefield environment, malicious third-party actors can influence military planning and strategic deterrence by manipulating information, leading to an escalation of the situation. In the Ukrainian crisis that broke out in 2022, a lot of false information was spread on the Internet to confuse the public. Third, the widespread application of artificial intelligence technology has also reduced strategic transparency. Traditional military strategies often rely on a large amount of intelligence collection, analysis and prediction, and with the assistance of artificial intelligence technology, combat planning and decision-making processes have become more complex and unpredictable. This opacity may lead to misunderstandings and misjudgments, thereby increasing the risk of escalating conflicts.
Governance Path for Security Risks of Weaponized Artificial Intelligence
To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework; strengthen the constraints on artificial intelligence ethics to ensure that technological development complies with ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.
Attach great importance to strategic communication at the international level.
AI governance is a global issue that requires the concerted efforts of all countries to solve. On the international stage, countries have both mixed and conflicting interests. Therefore, dealing with global issues through effective communication channels has become the key to maintaining world peace and development.
On the one hand, we need to accurately grasp the challenges of international governance of AI. We need to grasp the consensus of various countries on the development of weaponized AI, pay close attention to the policy differences among countries in the security governance of weaponized AI applications, and coordinate relevant initiatives with the UN agenda through consultation and cooperation, so as to effectively prevent the military abuse of AI and promote the use of AI for peaceful purposes.
On the other hand, governments should be encouraged to reach relevant agreements and establish strategic mutual trust through official or semi-official dialogues. Compared with the “Track 1 Dialogue” at the government level, the “Track 1.5 Dialogue” refers to dialogues between government officials and civilians, while the “Track 2 Dialogue” is a non-official dialogue between scholars, retired officials, etc. These two forms of dialogue have higher flexibility and are important supplements and auxiliary means to official dialogues between governments. Through a variety of dialogue and communication methods, officials and civilians can widely discuss possible paths to arms control, share experiences and expertise, and avoid the escalation of the arms race and the deterioration of tensions. These dialogue mechanisms will provide countries with a continuous communication and cooperation platform, help enhance mutual understanding, strengthen strategic mutual trust, and jointly respond to the challenges brought about by the militarization of artificial intelligence.
Scientifically formulate laws and ethical norms for artificial intelligence.
Artificial intelligence technology itself is neither right nor wrong, good nor evil, but there are differences in good and bad intentions in the design, development, manufacturing, use, operation and maintenance of artificial intelligence. The weaponization of artificial intelligence has aroused widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on a complex battlefield? In addition, if artificial intelligence weapon systems cause unexpected harm, how to define the responsibility? Is it in line with moral and ethical standards to give machines the decision-making power of life and death? These concerns highlight the need to strengthen the ethical constraints of artificial intelligence.
On the one hand, we must insist on ethics first and integrate the concept of “intelligent for good” from the source of technology. In the design process of artificial intelligence military systems, values such as people-oriented and intelligent for good will be embedded in the system. The purpose is to eliminate the indiscriminate killing and injury that may be caused by artificial intelligence from the source, control its excessive lethality, and prevent accidental damage, so as to limit the damage caused by artificial intelligence weapon systems to the smallest possible range. At present, nearly 100 institutions or government departments at home and abroad have issued various artificial intelligence ethical principle documents, and academia and industry have also reached a consensus on the basic ethical principles of artificial intelligence. In 2022, China’s “Position Paper on Strengthening the Ethical Governance of Artificial Intelligence” submitted to the United Nations provided an important reference for the development of global artificial intelligence ethical supervision. The document clearly emphasizes that artificial intelligence ethical supervision should be promoted through institutional construction, risk control, collaborative governance and other measures.
On the other hand, we need to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of AI entities. We need to formulate strict technical review standards to ensure the security and reliability of AI systems. We need to conduct comprehensive tests before AI systems go online to ensure that they do not have a negative impact on human life and social order. We need to clarify the legal responsibilities of developers, users, maintainers and other parties throughout the life cycle of AI systems, and establish corresponding accountability mechanisms.
Pragmatically participate in international cooperation on artificial intelligence security governance.
The strategic risks brought about by the military application of artificial intelligence further highlight the importance of pragmatic cooperation in international security. It is recommended to focus on three aspects:
First, promote the formulation of guidelines for the use of artificial intelligence in the military field. Formulating a code of conduct for the military application of artificial intelligence is an important responsibility of all countries to regulate the military application of artificial intelligence, and it is also a necessary measure to promote international consensus and comply with international laws and regulations. In 2021, the Chinese government submitted the “China’s Position Paper on Regulating the Military Application of Artificial Intelligence” to the United Nations Convention on Certain Conventional Weapons Conference, and issued the “Global Artificial Intelligence Governance Initiative” in 2023. These have provided constructive references for improving the code of conduct for regulating the military application of artificial intelligence.
The second is to establish an applicable regulatory framework. The dual-use nature of AI involves many stakeholders. Some non-state actors, such as non-governmental organizations, technology communities, and technology companies, will play a more prominent role in the global governance of AI and become an important force in the construction of a regulatory framework for the military application of AI. The technical regulatory measures that countries can take include: clarifying the scope of use of AI technology, responsible entities, and penalties for violations; strengthening technology research and development to improve the security and controllability of technology; establishing a regulatory mechanism to supervise the development and application of technology throughout the process, and promptly discover and solve problems.
Third, jointly develop AI security prevention technologies and solutions. Encourage bilateral or multilateral negotiations between governments and militaries to be included in the dialogue options for military AI applications, conduct extensive exchanges on military AI security prevention technologies, operating procedures and practical experience, promote the sharing and reference of relevant risk management technical standards and usage specifications, and continuously inject new stability factors into the international security mutual trust mechanism under the background of AI militarization.
(The author is the director, researcher, and doctoral supervisor of the National Defense Science and Technology Strategic Research Think Tank of the National University of Defense Technology; Liu Hujun, a master’s student at the School of Foreign Languages of the National University of Defense Technology, also contributed to this article)
三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來提出「分散式殺傷」「多域戰」「馬賽克戰」等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種感測器、通訊網路、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智慧技術賦能支援下,透過網路資訊系統可動態連結、自主規劃、協同組合,從而形成一個按需整合、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計畫》,該計畫旨在將多域作戰向全局作戰概念拓展,將各軍種感測器連接到一個統一「物聯網」中,利用人工智慧演算法幫助改善作戰指揮決策。 ③
Modern war presents the explosive growth of battlefield information and new combat style. With the continuous emergence of new technologies such as artificial intelligence and edge computing, a new generation of command information system is coming. Based on the international fourth generation command information system, this paper imagines the overall architecture of the fifth generation command information system, expounds the technical characteristics of its knowledge center, intelligent enabling, cloud edge integration, independent evolution and resilience adaptation, analyze its key technologies, continuously improves the battlefield information advantage, and transforms to the battlefield cognitive advantage, decision-making advantage and action advantage.
Abstract
Modern war presents the explosive growth of battlefield information and new combat style. With the continuous emergence of new technologies such as artificial intelligence and edge computing, a new generation of command information system is coming. Based on the international fourth generation command information system, this paper imagines the overall architecture of the fifth generation command information system, expounds the technical characteristics of its knowledge center, intelligent enabling, cloud edge integration, independent evolution and resilience adaptation, analyze its key technologies, continuously improves the battlefield information advantage, and transforms to the battlefield cognitive advantage, decision-making advantage and action advantage.
Download CitationsZHANG Zhi-hua , WANG Fan . The Fifth Generation Command Information System and Its Intelligent Technology. Command Control and Simulation . 2021, 43(5): 1-7 https://doi.org/10.3969/j.issn.1673-3819.2021.05.001
Previous Article Next Article In his report to the 19th CPC National Congress, President Xi Jinping clearly pointed out that “we should accelerate the development of military intelligence and improve the joint combat capability and all-domain combat capability based on network information systems”
[ 1 ] . This statement indicates that future wars will be based on networked and intelligent system operations. The fifth-generation command information system will focus on intelligence, strengthen battlefield information advantages, and strive for battlefield cognitive advantages, decision-making advantages, and action advantages. According to relevant reports, the international command information system has gone through four stages of development
[ 2 ] and is evolving towards the fifth-generation command information system. The system architecture is developing towards intelligence, knowledge, cloud edge, and service. The fourth-generation system in the world mainly uses networking, service, and cloud to build an overall coordinated command information system
[ 2 ] , which meets the needs of coordinated operations to a certain extent and achieves information advantages. However, with the explosive growth of battlefield information, it is difficult to transform the system information advantage into the commander’s cognitive and decision-making advantages. With the emergence of new combat styles such as unmanned combat and cyber warfare, in order to adapt to the complexity and nonlinear characteristics of combat command, the command information system must break through cognitive technology and provide accurate battlefield situation cognition and planning and decision-making capabilities. The fifth-generation command information system is envisioned to be centered on artificial intelligence, edge computing, and cloud brain technology to enhance battlefield cognitive advantages, decision-making advantages, and action advantages, support combat command to move from the information domain to the cognitive domain, and realize capabilities such as information knowledge, intelligent decision-making, agile command and control, multi-domain collaboration, and edge services.
1 New Concept of Command and Control
1.1 Intelligent command and control
Intelligent command and control is to use artificial intelligence methods to achieve the transformation from “information-based, network-centric” to “intelligent, knowledge-centric”, and assist commanders in solving perception, understanding, and cognitive problems in the command field. The system architecture and technical architecture of the command information system will change. The system will apply corresponding intelligent technologies around functional domains such as situation, command, control, and support to improve the cognitive and decision-making efficiency of combat command. Foreign militaries pay great attention to the intelligent application of combat command. Since 2007, the US DARPA has published three white papers on national and military development strategies for artificial intelligence, and has launched plans such as “Deep Green”
[ 3 ⇓ – 5 ] , “The High-Tech Holy Grail of the Third Offset Strategy”, and “Commander’s Virtual Staff”. In the field of intelligence perception and tactical decision-making, it has launched artificial intelligence projects such as “Insight”, “Xdata”, “Deep Learning”, “Deep Text Search and Filtering”, “Distributed Battlefield Management”, “Human-Machine Collaboration”, “Mind’s Eye”, “Trace”, “Human-Machine Collaboration”, “X-Plan”, “Cognitive Electronic Warfare”, and “AlphaAI Air Combat”, realizing the ability to deeply understand battlefield intelligence, predict situation cognition, and automatically generate and deduce tactical plans. Since then, the U.S. military has also set up projects such as “Autonomous Negotiation Formation”, “Big Dog”, and “Hummingbird” to improve the manned and unmanned collaborative control capabilities. Overall, the U.S. military currently has the world’s leading level of intelligent combat command. In addition, Germany, France, Russia and other countries have also conducted extensive research in intelligent information perception and processing, intelligent autonomous unmanned combat platforms, etc., and have achieved fruitful research results
With the development of military technology, traditional large-scale cluster combat methods are gradually transformed into small-scale asymmetric combat. Combat activities at the tactical edge will play an important role in war. The tactical edge is also known as the “first tactical mile”
[ 9 ] . It is far away from the command center and has limited communication, computing, and service resources. It is usually composed of combat platforms, tactical units, and special forces. In order to gain information and decision-making advantages, command units at all levels use ubiquitous networks, micro-clouds, and other technologies to achieve information and resource sharing. Mobile computing devices at the tactical edge use fog computing methods to integrate into larger combat units and form micro-clouds under self-organizing networks. The large amount of situation information obtained by the tactical edge is calculated, stored, and shared in the tactical micro-cloud, which simplifies the scale of interaction with the command center, improves the timeliness of information interaction, and solves the problem of insufficient service capabilities at the tactical frontier in the past.
1.3 Multi-Domain Battle Command and Control
In 2016, the U.S. Army proposed the concept of “multi-domain warfare”
[ 10 ] , taking “synchronous cross-domain firepower” and “all-domain mobility” as core elements, promoting the high integration of combat elements, enhancing all-domain strike capabilities, and attempting to eliminate the “anti-access/area denial” capabilities of China, Russia and other countries. It mainly has the following three characteristics
[ 10 ] . First, the combat domain is expanded in multiple dimensions, enabling the U.S. Army to deploy forces from the ground to multiple combat domains such as sea, air, electricity, and the Internet, and has the ability to integrate with other services. Second, the combat elements are highly integrated, and the various services and combat functional domains can share information, coordinate tactics, and synchronize actions, which promotes the transformation of joint services to the integration of combat capability elements. Third, the command chain is developing in a flat direction, and the command mechanism is efficient and flexible. It is necessary to have centralized planning and decentralized execution, and to share information and instructions with various command nodes and individual soldiers, extend the tactical command chain, and realize rapid, multi-line, and multi-domain combat command.
1.4 Mosaic Combat Command and Control
In 2017, DARPA proposed the concept of “mosaic warfare”
[ 11-12 ] , which takes into account both ” threat-based” and “capability-based” equipment construction methods, and flexibly combines sensors, command and control nodes, combat platforms, and cooperative manned and unmanned systems in multiple combat domains on demand to form a mission system. System integration uses a building block approach to dynamically link dispersed fine-grained systems together to form a combat system similar to a “mosaic block”. “Mosaic warfare” uses intelligent decision-making tools to provide distributed situational awareness and adaptive planning and control, assist in combat mission planning, and implement distributed combat management. “Mosaic warfare” requires the replacement of fixed combat force composition with adaptive system reorganization, and the combat command has a resilient and adaptable information system that can customize physically dispersed mixed combat units on demand and meet various dynamic and collaborative combat requirements
2. Transformation of the Characteristics of the Fifth Generation Command Information System
1) The system shifts from network-centric to knowledge-centric. The network-centric approach brings battlefield information advantage, which is then transformed into cognitive advantage and decision-making advantage. The information sharing between systems shifts to knowledge-centric intelligence sharing, which promotes the transformation of the entire command system into decision-making and action advantage.2) The cloud architecture is transformed into cloud-edge-end integration. Expand the original cloud resource sharing capabilities
[ 2 ] and extend them to the platforms, teams, and individual soldiers at the tactical edge, realize the integrated hybrid service capabilities of the battlefield center cloud, mobile cloud, and edge micro-cloud in a mobile environment, and enhance the tactical frontier resource service capabilities.3) Transformation from scheduled integration to resilient adaptability. Currently, the system is deployed and operated according to preset rules. When the mission changes, it must be regulated according to the pre-planned plan. In the future, battlefield systems are vulnerable to attacks and paralysis, requiring the system to have the ability to self-reconstruct, resilient and adaptable when disturbances occur to ensure that the core mission is uninterrupted
[ 13-14 ] .4) Transformation from computational intelligence to cognitive intelligence. Intelligence is manifested in computational intelligence, perceptual intelligence, and cognitive intelligence. Currently, computational intelligence provides a tactical deterministic solution method. In the future battlefield, intelligent technology must be used to improve the accuracy and real-time degree of cognition in terms of massive intelligence processing, situational awareness, and decision-making reasoning.5) Performance changes from fixed fixed to autonomous learning evolution. The system’s algorithm and performance are generally determined and fixed during the design period, and performance improvement is achieved through upgrading and transformation. Intelligent systems have the ability of self-learning and self-evolution, and can learn algorithms for situational awareness and intelligent decision-making online to improve system performance.6) Construction shifts from capability-based to knowledge-based. Command information systems are generally constructed based on capability elements, and system integration is integrated based on capability elements. Intelligent systems pay more attention to the intellectual construction of the system, focusing on the construction of system knowledge, rules, algorithms, and data.7) The interaction mode will shift to human-machine fusion intelligent interaction. Human-machine fusion intelligent perception, anthropomorphic interaction, intention-oriented intelligent human-machine interface interaction, wearable human-machine fusion computing, and fusion and linkage interaction will become the main interaction mode of future systems, and the human-machine control system will progress towards human-machine fusion.8) The separation of combat and training has shifted to the integration of combat, training, exercise and research. The fifth-generation command information system tightly couples combat command and tactical training, and has parallel simulation and reasoning capabilities. It can not only update intelligent algorithms, but also conduct combat and tactics confrontation research, obtain tactical data, and promote algorithm learning. Exercise training has developed from war game simulation to battlefield virtual game.
3 Overall Architecture Concept
The overall architecture of the future fifth-generation command information system should be a command information system that is knowledge-centric, human-machine integrated, intelligently empowered, cloud-edge integrated, autonomously evolving, and resilient and adaptable. The following article mainly describes the overall system from the perspectives of system architecture, service architecture, and technical architecture
[ 15 ] . The system architecture mainly refers to the composition of the system’s logical elements and their relationships, the service architecture describes the integration model of information and computing resources between systems, and the technical architecture describes the system’s technical reference model.
3.1 System Architecture Concept
The system is changing from “information-based, network-centric” to “intelligent, knowledge-centric”, while extending to the tactical edge. Based on the original system integration, the system integrates knowledge and algorithms, applies intelligent technology in functional domains such as situation, command, control, and support, and improves the cognition and decision-making efficiency of combat command. The system architecture is envisioned as follows:
Figure 1 Conceptualization of the fifth-generation command information system architecture
第五代指揮資訊系統架構概念
The fifth-generation system expands the functional domain of parallel deduction and learning training on the basis of functional elements such as situational awareness, command decision-making, action control, support and guarantee, and information services to meet the needs of combat branch evaluation and algorithm learning. In terms of situational awareness, it covers computational intelligence, perceptual intelligence, and cognitive intelligence, mainly completing battlefield intelligence processing and target identification, understanding and predicting the situation, having state and momentum, and improving information advantage; in terms of command decision-making, it is mainly based on cognitive intelligence, which can machine tactical reasoning, generate plans and plans, and improve decision-making level; in terms of action control, it is mainly based on computational intelligence and cognitive intelligence, completing task monitoring and temporary tactical control, and providing action optimization strategies based on knowledge reasoning, such as command guidance, firepower coordination, and unmanned cluster intelligent control; in terms of comprehensive guarantee, it is mainly based on computational intelligence, completing the optimal allocation of battlefield resources under prior knowledge and rules; in terms of parallel deduction and learning training, it combines command and control with simulation training, trains personnel and algorithms in peacetime, and conducts parallel plan deduction in wartime.In addition, the fifth-generation system has an autonomous evolving learning mechanism: first, autonomous learning within the node to optimize the algorithm and knowledge base; second, the nodes share intelligent algorithms and knowledge through the command cloud to collaboratively complete the evolution. Each node can upload the learned algorithms and knowledge to the command cloud to update the algorithms and knowledge of the knowledge center; third, the system issues instructions to tactical nodes, weapon nodes, detection nodes, and combat support nodes, and collects execution feedback. These feedback results can be used to learn and evolve the algorithm.Between the fifth-generation systems, based on the original comprehensive integration based on the cloud/end architecture, an integrated sharing method for knowledge and intelligent algorithms has been added. Each command information system uploads intelligent algorithms and knowledge rules to the knowledge center for plug-and-play sharing by heterogeneous nodes such as battlefield detection, command, and weapons. The command information system can obtain existing intelligent knowledge from the knowledge center and conduct secondary learning and training in combination with its own battlefield data to improve algorithm capabilities. The command cloud will eventually form an intelligent knowledge center for the battlefield, and a battlefield knowledge network will be formed between the intelligent command information systems.
3.2 Concept of cloud-edge-device service architecture
In the future, ubiquitous network connections will extend from command units to various squads, individual soldiers, and platforms at the tactical edge. The fifth-generation command information system will use fog computing and distributed computing technologies to build tactical mobile clouds, squad micro-clouds (Cloudlet), and individual task group pico-clouds (Pico-Cloud) based on cloud architecture technology
[ 9 , 16 ] , forming tactical frontier mobile cloud service capabilities, realizing the hybrid service capabilities of battlefield centralized combat clouds, mobile tactical clouds, and edge micro-clouds and pico-clouds, forming an integrated resource service structure of “cloud, edge, and end”, and quickly building command chains and strike chains.
Concept of cloud-edge-end service architecture of the fifth-generation command information system
第五代指揮資訊系統雲端端服務架構構想
The cloud-edge-end integrated service capability supports the fifth-generation system to achieve dynamic aggregation and release of combat resources through “cloud deployment, cloud aggregation, cloud attack, and cloud dissipation”, thereby improving the combat effectiveness of the entire system
[ 17 ] . The centralized combat cloud is deployed in the command center in a fixed cloud manner
[ 16 ] to provide services for various combat nodes; air, land, and sea tactical clouds provide information, algorithms, computing, and storage services under mobile conditions for aircraft, ships, armored forces, and other forces at the tactical frontier, thereby improving the resource sharing level at the tactical frontier
[ 9 , 16 , 18-19 ] ; in tactical edge military operations, micro-clouds and pico – clouds are constructed. Micro-clouds are deployed in fog computing on vehicles, aircraft, and boats within one hop of the communication distance of the frontier contact unit, expanding the tactical information processing and sharing capabilities of the frontier unit personnel. When individual soldiers and units cannot access micro-clouds, mobile ad hoc networks and distributed computing technologies can be used to construct pico-clouds to support dynamic information aggregation and resource sharing end-to-end under weak connections at the tactical edge, thereby extending the command chain.
3.3 Technical Architecture Concept
The fifth-generation command information system will extend the war from the physical domain and information domain to the cognitive domain, and will change the way of command and control. Its technical architecture is as follows:
Technical architecture of the fifth-generation command information system
第五代指揮資訊系統技術架構
The fifth generation command information system adds tactical edge services and intelligent computing environments based on the networked computing environment of the fourth generation command information system, which is compatible with the system architecture and meets the intelligent requirements of the system. The tactical edge service computing environment provides micro-cloud and pico-cloud basic computing, storage, and information service platforms for weakly connected terminals; the intelligent computing environment provides intelligent services for situation, decision-making, control, and human-computer interaction.The intelligent technology environment layer includes the following five parts. The intelligent computing hardware platform is equipped with AI acceleration processors such as GPU, FPGA, and TPU to adapt to the computing power required by deep learning. Some algorithms use brain-like chips with neuron processing mechanisms or solidified dedicated intelligent computing chips; the intelligent data management platform mainly manages data, samples, cases, models, and knowledge; the deep learning framework integrates the runtime library and basic algorithm library of deep learning and reinforcement learning; the traditional artificial intelligence computing framework includes traditional algorithm support libraries such as spark and bigflow for search and solution, data mining, and parallel processing; intelligent services include application-oriented intelligent algorithm service libraries, such as intelligent interactive recognition, valuation network calculation, and strategy network calculation services, which provide solution interfaces for application development.The intelligent application layer mainly provides functional elements such as intelligent situational awareness, planning and decision-making, action control and information services, human-computer interaction, learning and training. It is the system’s main functional interface for users and the core problem that intelligence needs to solve.The fifth-generation system technology architecture model mentioned above mainly uses cloud computing and intelligent technology support services to achieve the sharing of situations, instructions, algorithms and knowledge between systems, and supports system autonomous evolution, algorithm upgrades and knowledge updates. System intelligence can be divided into levels 0 to 4
[ 20 ] . Level 0: full manual control; Level 1: computing intelligence, deterministic complex tactical calculations and information automation processing; Level 2: having certain perceptual intelligence, able to understand, evaluate and predict battlefield situations; Level 3: having cognitive intelligence, able to provide machine decision-making and decision-making deduction capabilities; Level 4: having human-machine integration and symbiosis capabilities, and the core algorithm can self-learn and self-evolve. At present, the intelligence level of the fourth-generation system is generally at level 1, and situation understanding and command decisions are still controlled by humans. The intelligence of the fifth-generation system can reach the fourth level through three stages. The first stage is to realize the ability to perceive, understand and evaluate the battlefield situation; the second stage is to build a knowledge base of tactics and enable machine decision-making based on rules, knowledge and algorithms; the third stage is to realize machine self-learning and self-evolution of core tasks, and have the function of autonomous decision-making, reaching a highly intelligent level of human-machine integration
4 Key technologies of the system and its intelligent concept
The key technologies of the fifth-generation command information system mainly solve the above – mentioned problems of intelligence, cloud – edge-end integration, and system resilience and adaptability. The key technologies of the system and its intelligent concept is the following
Key technologies of the system and its intelligent concept
系統關鍵技術及智慧化理念
The key technologies of the fifth-generation command information system cover all aspects of the command and control OODA loop, and can support the system’s intelligence, resilience, and edge command and control requirements in terms of detection, decision-making, control, and strike, thereby building a precise perception chain, rapid control chain, precise strike chain, and agile service chain, extending to the tactical edge and improving command effectiveness.
1) Situational Awareness Machine Analysis TechnologyIntelligence compilation and analysis technology.
Use big data, deep learning, knowledge graphs and other technologies to perform intelligent information correlation matching, text semantics intelligent analysis, and public opinion intelligent search and extraction to obtain valuable intelligence from massive, multi-source, and heterogeneous battlefield information.
Multiple target rapid recognition technology. Using deep learning methods, a multi-layer CNN convolutional neural network is constructed, and sample feature parameter learning is used to complete feature extraction and rapid target recognition of optical, infrared, electromagnetic, and acoustic information.Situation recognition and understanding technology. Analyze the enemy’s combat intentions and combat capabilities, use the reinforcement learning valuation network technology to simulate the commander’s situation recognition process, and combine the CNN nonlinear battlefield situation fitting ability to establish a mapping from situation images to situation understanding
Situation machine prediction and assessment technology. Based on situation understanding, the enemy’s tactical behavior is estimated. First, the strategy network is used to obtain the enemy’s activity rules, and then the parallel deduction method is used to perform multi-branch situation deduction. Finally, a prediction network is constructed to predict the situation.
Combat mission space and strategy modeling technology. Modeling the state and action strategy of the combat mission space and determining the description method of the mission state, strategy, and feedback are the basis for deep reinforcement learning to make decisions.Mission planning machine decision-making technology. Use operations optimization to complete target analysis and task allocation. Use deep reinforcement learning and swarm intelligence algorithms to machine plan force composition, firepower configuration, and collaborative paths. Tactical planning tends to be rule-based reasoning and easy to break through; campaign planning tends to be knowledge-based reasoning based on experience, involving the art of command, and is more difficult to break through.
Parallel simulation technology for combat plans. With reference to the parallel simulation technology of the “deep green” system the Monte Carlo search tree and game test method are used to simulate enemy combat behavior, rehearse and evaluate the action process, and accumulate feedback reward and punishment functions for learning, training, and decision optimization.
Intelligent generation technology of combat plans. Using intelligent perception algorithms such as natural language understanding, voice command recognition, and sketch recognition, combined with the extraction of elements from the task model, the knowledge graph is used to automatically extract the plan to generate combat plans and command sequences .
Rapid decision-making technology on the spot. Based on the current situation, using the learning data accumulated by the game platform, automatically matching the most appropriate plan adjustment, making dynamic decisions on the plan based on Monte Carlo tree search and transfer learning algorithms, reverse reinforcement learning, and enhancing the generalization ability of the plan.3) Intelligent motion control technologySituation-based improvisation control technology. According to the effects and deviations of combat operations, the resources, paths, and coordination modes of the mission are dynamically adjusted, and parallel simulation multi-branch deduction and reinforcement learning technology are used to correct the deviations, thus realizing tactical “feedforward” control .
Swarm intelligence collaborative control technology. Promote the maximization of the overall effectiveness of battlefield intelligent bodies in collaborative operations, use ant colony and bee colony control algorithms and deep reinforcement learning methods to build a global tactical value network, establish an effect feedback model, and perform strategic control based on the value network.Firepower collaborative control technology. Improve the speed and accuracy of friend-or-foe identification, firepower allocation, and collaborative dispatch, use swarm intelligence and deep reinforcement learning algorithms to automatically plan, coordinate and optimize the strike chain, and have a certain degree of autonomous decision-making ability.
Multi-domain cluster system autonomous collaborative machine planning technology. Use branch search solution, knowledge reasoning, and deep reinforcement learning to plan and allocate collaborative tasks for manned/unmanned systems, and use swarm intelligence optimization algorithms to plan collaborative trajectories for unmanned and manned platforms.Multi-domain cluster system autonomous collaborative command and control technology. It monitors the missions of unmanned clusters and provides autonomous collaborative command and guidance. It uses swarm intelligence algorithms to detect conflicts and avoid collisions among multiple unmanned platforms, and coordinates grouping, routing, and load.
5) Intelligent information service technology.
Intelligent battlefield information sharing technology uses reinforcement learning and semantic association technology to analyze users’ information needs and preferences, generate information needs based on users’ differentiated characteristics, and intelligently push tactical information to users.
Human-computer fusion intelligent perception interaction technology. Construct multi-channel human-computer interaction methods including sketches, spoken language, gestures, head postures, expressions, eye movements, etc., and provide natural, sensitive, accurate and anthropomorphic interaction strategies . Intention-oriented intelligent human-computer interface technology. Using FCM fuzzy cognitive interactive reasoning technology, infer the user’s interactive intention, and organize the interactive interface output by integrating different means such as spoken language, gestures, sketches, and natural language according to the user’s interface needs and interaction preferences.Smart wearable human-machine fusion technology. It uses edge computing technology and new human-machine interaction methods such as voice, gestures, eye movements, brain-computer interfaces, and augmented reality to provide soldiers with smart wearable devices that have a collaborative, integrated, and linked human-machine interaction mode.
7) Virtual gaming and training evaluation technology.
The combat virtual game technology builds a game confrontation test platform, conducts combat knowledge modeling, and uses parallel simulation, branch decision, differential confrontation and other technologies to conduct red-blue confrontation, which not only trains tactics and methods, but also collects tactical data.Machine training and evaluation technology uses the data accumulated by the game platform and the experience of personnel to model, adopts small sample transfer learning technology to train and optimize the algorithm, replays the real data afterwards, performs transfer learning optimization on the decision model, and updates the decision plan.
8) System resilience adaptive reconstruction technology.
Environmental perception and autonomous fault detection technology. Under soft and hard damage, it can detect the main faults and analyze abnormal correlations, predict the occurrence of faults that affect task execution, evaluate the impact of faults on tasks, and realize active perception and rapid location of system resources and faults.System self-healing and reconstruction intelligent technology. When key nodes of the system fail, an adaptive mechanism is used to reallocate resources, achieve capacity regeneration, and continuously ensure the completion of core tasks. The system changes from a fault repair method with preset rules and manual participation to an intelligent system reconstruction method.
9) Tactical edge computing technology.
Mobile micro-cloud service platform technology. Deployed in fog computing mode on vehicles, aircraft, and boats within one hop of the enemy, it provides shared processing capabilities for combat teams and expands the tactical information processing capabilities of team members.Pi-cloud resource sharing technology under weak connection ad hoc network. Based on the individual soldier ad hoc network, the Pi-cloud is constructed using distributed computing technology to support end-to-end autonomous collaborative information sharing and resource sharing between individual soldier mobile devices under weak connection to meet tactical edge needs.
5 Development ideas and ideas
1) Gradually progress in stages, starting with the easy and then moving on to the difficult. In the first stage, image, voice, gesture, face recognition, and natural language understanding are applied to intelligence analysis; in the second stage, deep learning and reinforcement learning are applied to situational awareness and command decision-making; in the third stage, cloud computing is used to realize a knowledge-centered, intelligently empowered system.
2) Select intelligent algorithms for application. Focusing on the application of deep learning in situation and deep reinforcement learning in planning and decision-making, select appropriate tactical backgrounds to verify intelligent algorithms. Tactical-level planning of paths, firepower, tasks, etc. can be used as breakthroughs.
3) Strengthen the construction of knowledge engineering in the field of combat command. Expert rules, military regulations, and actual combat data are the basis of intelligent command. The existing combat rules should be modeled and represented in a knowledge-based manner, and the input and output mapping relationship between knowledge representation and deep learning should be established. The research on knowledge learning and knowledge reasoning methods should be strengthened .
4) Establish a virtual confrontation game platform to accumulate data. Intelligent algorithms require a large number of learning samples. The ways to accumulate samples are: Establish a confrontation game platform to conduct war games, human-machine confrontation, and red-blue confrontation to accumulate data; Collect tactical data from actual combat exercises and build models as training samples.
6 Conclusion
This paper proposes the overall and intelligent concept of the fifth-generation command information system, constructs a new generation of command information system architecture with “intelligent empowerment, human-machine integration, cloud-edge integration, autonomous evolution, cloud-intelligence sharing, and resilience and adaptability”, analyzes its key technologies and capability characteristics, and attempts to achieve cognitive advantages, decision-making advantages, and action advantages based on the fourth-generation system in the world .
There are not many technical verifications for the fifth-generation system in the world, so we should not rush for quick success and still need to conduct sufficient research.