Category Archives: Information Support Force

Looking at Intelligent Warfare: Focusing on Counter-AI Operations in Chinese Military Operations During Intelligent Warfare

檢視情報戰:聚焦中國軍事行動中的反空戰策略

現代英語:

Original Title: A Look at Intelligent Warfare: Focusing on Counter-AI Operations in Intelligent Warfare

    introduction

    The widespread application of science and technology in the military field has brought about profound changes in the form of warfare and combat methods. Military competition among major powers is increasingly manifested as technological subversion and counter-subversion, surprise attacks and counter-surprise attacks, and offsetting and counter-offsetting. To win future intelligent warfare, it is necessary not only to continuously promote the deep transformation and application of artificial intelligence technology in the military field, but also to strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-AI warfare theories and tactics, and proactively plan research on anti-AI technologies and the development of weapons and equipment to achieve victory through “breaking AI” and strive to seize the initiative in future warfare.

    Fully recognize the inevitability of anti-artificial intelligence warfare

    In his essay “On Contradiction,” Comrade Mao Zedong pointed out that “the law of contradiction in things, that is, the law of unity of opposites, is the most fundamental law of dialectical materialism.” Throughout the history of military technology development and its operational application, there has always been a dialectical relationship between offense and defense. The phenomenon of mutual competition and alternating suppression between the “spear” of technology and the “shield” of corresponding countermeasures is commonplace.

    In the era of cold weapons, people not only invented eighteen kinds of weapons such as knives, spears, swords, and halberds, but also corresponding helmets, armor, and shields. In the era of firearms, the use of gunpowder greatly increased attack range and lethality, but it also spurred tactical and technical innovations, exemplified by defensive fortifications such as trenches and bastions. In the mechanized era, tanks shone brightly in World War II, and the development of tank armor and anti-tank weapons continues to this day. In the information age, “electronic attack” and “electronic protection,” centered on information dominance, have sparked a new wave of interest, giving rise to electronic warfare units. Furthermore, numerous opposing concepts in the military field, such as “missiles” versus “anti-missile,” and “unmanned combat” versus “counter-unmanned combat,” abound.

    It should be recognized that “anti-AI warfare,” as the opposite concept of “intelligent warfare,” will inevitably emerge gradually with the widespread and in-depth application of intelligent technologies in the military field. Forward-looking research into the concepts, principles, and tactical implementation paths of anti-AI warfare is not only a necessity for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable step to seize the high ground in future military competition and implement asymmetric warfare.

    Scientific Analysis of Counter-AI Combat Methods and Paths

    Currently, artificial intelligence (AI) technology is undergoing a leapfrog development, moving from weak to strong and from specialized to general-purpose applications. From its underlying support perspective, data, algorithms, and computing power remain its three key elements. Data is the fundamental raw material for training and optimizing models, algorithms determine the strategies and mechanisms for data processing and problem-solving, and computing power provides the hardware support for complex calculations. Seeking ways to “break through” AI by addressing these three elements—data, algorithms, and computing power—is an important methodological approach for implementing counter-AI warfare.

    Counter-data warfare. Data is the raw material for artificial intelligence to learn and reason, and its quality and diversity significantly impact the accuracy and generalization ability of models. Numerous examples in daily life demonstrate how minute changes in data can cause AI models to fail. For instance, facial recognition models on mobile phones may fail to accurately identify individuals due to factors such as wearing glasses, changing hairstyles, or changes in ambient light; autonomous driving models may also misjudge road conditions due to factors like road conditions, road signs, and weather. The basic principle of counter-data warfare is to mislead the training and judgment processes of military intelligent models by creating “contaminated” data or altering its distribution characteristics. This “inferiority” in the data leads to “errors” in the model, thereby reducing its effectiveness. Since AI models can comprehensively analyze and cross-verify multi-source data, counter-data warfare should focus more on multi-dimensional features, packaging false data information to enhance its “authenticity.” In recent years, foreign militaries have conducted relevant experimental verifications in this area. For example, by using special materials for coating and infrared emitter camouflage, the optical and infrared characteristics of real weapon platforms, and even the vibration effects of engines, can be simulated to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage can be implemented to improve the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

    Anti-algorithm warfare. The essence of an algorithm is a strategy mechanism for solving problems described in computer language. Because the scope of application of such strategy mechanisms is limited, they may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “divine move” in the 2016 human-machine Go match. Many professional Go players, after reviewing the game, stated that the “divine move” was actually invalid, yet it worked against AlphaGo. AlphaGo developer Silva explained this by saying that Lee Sedol exploited a previously unknown vulnerability in the computer; other analyses suggest that this move might have contradicted AlphaGo’s Go logic or been outside its strategic learning range, making it unable to respond. The basic principle of anti-algorithm warfare is to target the vulnerabilities in the algorithm’s strategy mechanism and weaknesses in its model architecture through logical attacks or deception to reduce the algorithm’s effectiveness. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading and deceiving” the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithms to plan reconnaissance paths. In this case, irregular or abnormal actions can be created to reduce or disable the reward mechanism in the reinforcement learning algorithm model, thereby reducing its reconnaissance search efficiency.

    Counter-computing power warfare. The strength of computing power represents the speed at which data processing can be converted into information and decision-making advantages. Unlike counter-data warfare and counter-algorithm warfare, which primarily rely on soft confrontation, counter-computing power warfare employs a combination of hard and soft tactics. Hard destruction mainly refers to attacks on enemy computing centers and computing network infrastructure, crippling their AI models by cutting off their computing power. Soft confrontation focuses on increasing the enemy’s computing costs, primarily by creating a “fog of war” and data noise. For example, during operations, large quantities of meaningless data of various types, such as images, audio, video, and electromagnetic data, can be generated to constrain and deplete the enemy’s computing resources, reducing their effective utilization rate. Furthermore, attacks can also be launched against weak points in the defenses of the computing power support environment and infrastructure. Computing centers consume enormous amounts of electricity; attacking and destroying their power support systems can also achieve the effect of counter-computing power warfare.

    Forward-looking planning for the development of anti-artificial intelligence combat capabilities

    In all warfare, one engages with conventional tactics and wins with unconventional ones. Faced with intelligent warfare, while continuously advancing and improving intelligent combat capabilities, it is also necessary to strengthen preparedness for counter-AI warfare, proactively planning for theoretical innovation, supporting technology development, and equipment platform construction related to counter-AI warfare, ensuring the establishment of an intelligent combat system that integrates offense and defense, and combines defense and counter-attack.

    Strengthen theoretical innovation in counter-AI warfare. Scientific military theory is combat effectiveness. Whether it’s military strategic innovation, military technological innovation, or other aspects of military innovation, all are inseparable from theoretical guidance. We must adhere to liberating our minds, broadening our horizons, and strengthening dialectical thinking. We must use theoretical innovation in counter-AI warfare as a supplement and breakthrough to construct an intelligent warfare theoretical system that supports and serves the fight for victory. We must adhere to the principle of “you fight your way, I fight my way,” strengthening asymmetric thinking. Through in-depth research on the concepts, strategies, and tactics of counter-AI warfare, we must provide scientific theoretical support for seizing battlefield intelligence dominance and effectively leverage the leading role of military theory. We must adhere to the integration of theory and technology, enhancing our scientific and technological awareness, innovation, and application capabilities. We must establish a closed loop between counter-AI warfare theory and technology, allowing them to complement and support each other, achieving deep integration and positive interaction between theory and technology.

    Emphasis should be placed on accumulating military technologies for countering artificial intelligence. Science and technology are crucial foundations for generating and enhancing combat effectiveness. Breakthroughs in some technologies can have disruptive effects, potentially even fundamentally altering the traditional landscape of warfare. Currently, major world powers view artificial intelligence as a disruptive technology and have elevated the development of military intelligence to a national strategy. Simultaneously, some countries are actively conducting research on technologies related to countering artificial intelligence warfare, exploring methods to counter AI and aiming to reduce the effectiveness of adversaries’ military intelligent systems. Therefore, it is essential to both explore and follow up, strengthening research and tracking of cutting-edge technologies, actively discovering, promoting, and fostering the development of technologies with counter-disruptive capabilities, such as intelligent countermeasures, to seize the technological advantage at the outset of counter-AI warfare and prevent enemy technological surprise attacks; and to carefully select technologies, maintaining sufficient scientific rationality and accurate judgment to dispel the technological “fog” and avoid falling into the adversary’s technological traps.

Developing anti-AI warfare weapons and equipment. Designing weapons and equipment is designing future warfare; we develop weapons and equipment based on the types of warfare we will fight in the future. Anti-AI warfare is an important component of intelligent warfare, and anti-AI weapons and equipment will play a crucial role on the future battlefield. When developing anti-AI warfare weapons and equipment, we must first closely align with battlefield needs. We must closely integrate with the adversary, mission, and environment to strengthen anti-AI warfare research, accurately describe anti-AI warfare scenarios, and ensure that the requirements for anti-AI warfare weapons and equipment are scientifically sound, accurate, and reasonable. Secondly, we must adopt a cost-conscious approach. Recent local wars have shown that cost control is a crucial factor influencing the outcome of future wars. Anti-AI warfare focuses on interfering with and deceiving the enemy’s military intelligent systems. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulated decoy targets to deceive the enemy’s intelligent reconnaissance systems, the “de-intelligence” effect can be extended and amplified, aiming to deplete their high-value precision-guided missiles and other high-value strike weapons. Finally, we must emphasize simultaneous development, use, and upgrading. Intelligent technologies are developing rapidly and iterating quickly. It is crucial to closely monitor the application of cutting-edge military intelligent technologies by adversaries, accurately understand their intelligent model algorithm architecture, and continuously promote the upgrading of the latest counter-artificial intelligence technologies in weapon platforms to ensure their high efficiency in battlefield application. (Kang Ruizhi, Li Shengjie)

現代國語:

原文標題:智慧化戰爭面面觀-關注智慧化戰爭中的反人工智慧作戰

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力掌握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關係,技術之矛與反制止制、反制止制相較制、相較制抗擊現象之間的技術之緣關係。

冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之對應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「稜堡」等防禦工事為代表的技戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反坦克武器」相關技術戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「飛彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧科技在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,資料是訓練與最佳化模型的基礎原料,演算法決定了資料處理與問題解決的策略機制,算力則為複雜運算提供硬體支撐。從資料、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反資料作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉辨識模型,可能會因人戴上眼鏡、改變髮型或環境明暗變化等原因,而無法準確辨識身分;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路狀況的誤判。實施反數據作戰,其基本原理是透過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外線特徵甚至是引擎震動效果,用來欺騙智慧情報處理模型;在網路空間,實施流量資料偽裝,以提升網路攻擊靜默運作能力,降低網路攻擊偵測模型的效果。

反演算法作戰。演算法的本質,是用電腦語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一」。不少職業圍棋選手複盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。有別於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網路設施等實施的打擊,透過斷其算力的方式使其人工智慧模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭「迷霧」和資料雜訊為主。例如,作戰時大量產生影像、音訊、視訊、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達成反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建設

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推動提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展與裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開拓視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,透過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合與良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。目前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要建立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。透過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力求消耗其精確導引飛彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效性。 (康睿智 李聖傑)

中國原創軍事資源:https://mil.news.sina.com.cn/zonghe/2025-05-20/doc-inexeiih2818486808984.shtml

Where is the Transformation of Chinese Military Intelligent War Preparedness Heading?

中國軍事情報戰備轉型將走向何方?

現代英語:

Where should the intelligent transformation for combat readiness go?

Currently, the form of warfare is rapidly evolving towards intelligence, and the era of intelligent warfare is imminent. To adapt to the development of military intelligent technology, the changing mechanisms of war, and the high-quality development of the armed forces, it is imperative to accelerate the advancement of intelligent combat readiness. Modern combat readiness must, while advancing the transformation from mechanization and semi-mechanization to informatization, further proactively address the challenges of military intelligence, adhere to intelligence as the guiding principle, and accelerate the integrated development of mechanization, informatization, and intelligence. In short, vigorously promoting intelligent combat readiness is a practical necessity for driving the high-quality development of national defense and the armed forces; only by successfully transforming to intelligent combat readiness can we promote the leapfrog development of the military’s combat capabilities.

Construct an intelligent warfare theoretical system. Focusing on solving key and difficult issues in intelligent warfare theory, such as war prediction, war forms, war design, operational concepts, operational styles, operational systems, troop formation, and troop training, we will deepen research on the application of intelligent warfare, explore the winning mechanisms, characteristics, laws, tactics, action methods, and comprehensive support of intelligent warfare, enrich the theories of intelligent warfare, intelligent operations, and the construction of intelligent combat forces, and gradually construct an intelligent warfare theoretical system.

Establish an intelligent command and control paradigm. Strengthen the development of technologies such as adversarial and game-theoretic operational planning, digital twin parallel simulation, and efficient organization and precise scheduling of complex operational resources. Enhance capabilities such as automatic planning of operational plans under large-scale, high-intensity conditions and autonomous decomposition of cross-domain and cross-level tasks. Achieve deep integration of military knowledge and machine intelligence, reliable and explainable auxiliary decision-making, and self-learning and self-evolving adversarial strategies. Integrate technological achievements such as sensing, networking, cloud computing, and quantum computing to enhance intelligent auxiliary capabilities in situation generation, operational command, and staff operations. Accelerate the development of intelligent staff business systems and intelligently upgrade and transform operational command information systems. Achieve intelligent information Q&A, intelligent plan generation, and decision support suggestions for typical campaign/tactical command, greatly reducing the workload of staff personnel and significantly improving the timeliness of command operations.

Develop intelligent weapon and equipment systems. Strengthen the intelligent upgrading and transformation of traditional weapons, promote the practical application of intelligent technologies in backbone equipment, and deploy low-cost, expendable unmanned combat platforms on a large scale. Develop intelligent individual soldier integrated systems, air-to-ground unmanned swarm collaborative attack systems, and underground space swarm warfare systems, etc., research and develop intelligent flexible wearable technologies and mobile intelligent terminal technologies, develop intelligent wearable equipment, brain-computer interface helmets, and human implant devices, etc., and accelerate the application of intelligent new weapon platforms, using the pioneering development of key equipment to drive overall breakthroughs.

Increase the proportion of intelligent combat forces. Focusing on optimizing structure and function, implement intelligent design for the existing organizational structure of the armed forces, and gradually increase the proportion of intelligent combat forces. Formulate talent development plans, cultivate the intelligent literacy of combat personnel, and explore a talent cultivation path that integrates military and civilian sectors, services, and enterprises. Build a new generation of combat forces that are intelligently led, cross-domain collaborative, all-domain mobile, and precise and multi-functional; focus on research on intelligent air defense and anti-missile systems, passive detection and intelligent identification of aerial targets, and build intelligent air combat forces such as anti-aircraft unmanned combat aircraft and “swarm” aircraft; emphasize research on intelligent missiles and develop long-range missile deterrence and strike capabilities; deepen research on the architecture design of intelligent attack and defense systems in cyberspace and the intelligent generation of attack strategies, upgrade the new generation of cyberspace reconnaissance, attack, and defense forces, and comprehensively enhance intelligent combat capabilities.

Optimize intelligent autonomous collaboration methods. Focusing on the human-machine “interaction-understanding-co-progress” framework, break through human-machine hybrid perception enhancement and human-machine adaptive multi-task collaboration to improve human-machine hybrid perception capabilities, cognitive abilities, and overall combat effectiveness in complex battlefield environments, achieving complementarity and intelligent enhancement between human wisdom and machine intelligence. Accelerate the development of applied research in areas such as intelligent swarm distributed elastic architecture, self-organizing anti-jamming communication and interaction, distributed autonomous collaboration in complex confrontation scenarios, and swarm intelligent command and control adapted to complex environments and tasks. Enhance the autonomous elastic planning and swarm intelligence confrontation learning capabilities of unmanned swarms in complex scenarios, promoting an overall leap in the combat effectiveness of multi-domain/cross-domain heterogeneous swarms.

Innovate an intelligent, all-dimensional support model. Facing the overall requirements of comprehensive support for future battlefields, including all-time intelligent perception, precise control of supplies and ammunition, and accurate delivery of combat supplies, enhance the intelligent combat logistics equipment support capabilities. Develop capabilities such as comprehensive multi-dimensional support demand mining across all domains, online networked dynamic monitoring of equipment status, autonomous early warning of support risks, and on-demand allocation of support resources. Promote research and verification of intelligent network information systems, intelligent military logistics systems, intelligent support for battlefield facilities and environment information, smart individual soldier support, intelligent rapid medical treatment for future battlefields, and intelligent energy support and transportation delivery, achieving the organic integration of combat, technology, and logistics support elements with combat command and troop movements.

現代國語:

智慧戰備轉型應走向何方?

當前,戰爭形式正迅速朝向智慧化演進,智慧戰時代迫在眉睫。為適應軍事智慧技術的發展、戰爭機制的轉變以及軍隊高品質發展,加速推動智慧戰備勢在必行。現代戰備在推動從機械化、半機械化轉型為資訊化的同時,必須更積極主動地應對軍事情報挑戰,堅持以情報為指導原則,加速機械化、資訊化、情報化整合發展。總之,大力推動智慧戰備是推動國防和軍隊高品質發展的現實需求;只有成功實現智慧戰備轉型,才能推動軍隊作戰能力的跨越式發展。

建構智能戰理論體系。我們將著力解決智慧戰理論中的關鍵難點問題,例如戰爭預測、戰爭形態、戰爭設計、作戰理念、作戰風格、作戰體系、部隊編組和部隊訓練等,深化智能戰應用研究,探索智能戰的製勝機制、特徵、規律、戰術、行動方法和綜合保障,豐富智能戰、智能作戰和智能作戰力量建設的理論,逐步構建的理論體系。

建立智慧指揮控制範式。加強對抗性與博弈論作戰規劃、數位孿生並行模擬、複雜作戰資源高效組織和精確調度等技術的研發。提升大規模、高強度條件下作戰計畫的自動規劃、跨域、跨層級任務的自主分解等能力。實現軍事知識與機器智慧的深度融合,實現可靠、可解釋的輔助決策,以及對抗策略的自學習、自我演化。整合感知、網路、雲端運算、量子運算等技術成果,提升態勢生成、作戰指揮、參謀運作等方面的智慧輔助能力。加速智慧參謀業務系統建設,實現作戰指揮資訊系統的智慧升級改造。實現典型戰役/戰術指揮的智慧資訊問答、智慧計畫生成、決策支援建議,大幅減輕參謀人員工作負擔,顯著提升指揮運作的時效性。

發展智慧武器裝備系統。加強傳統武器的智慧升級改造,推動智慧技術在骨幹裝備的實際應用,大規模部署低成本、消耗型無人作戰平台。研發智慧單兵一體化系統、空地無人群聚協同攻擊系統、地下空間集群作戰系統等,研發智慧柔性穿戴技術與行動智慧終端技術,開發智慧穿戴設備、腦機介面頭盔、人體植入式設備等,加速智慧新型武器平台的應用,以關鍵裝備的先導研發為驅動力,實現整體突破。

提高智慧作戰力量比例。著力優化結構與功能,對現有軍隊組織結構進行智慧化設計,逐步提升智慧作戰力量比例。制定人才培育計劃,提升作戰人員的智慧素養,探索軍民融合、服務業與企業融合的人才培育路徑。建構智慧主導、跨域協同、全域機動、精準多功能的新一代作戰力量;重點研發智慧防空反導系統、空中目標被動偵測與智慧辨識技術,建構以防空無人作戰飛機、「群聚」飛機等為代表的智慧空戰力量;重視智慧飛彈研發,發展遠程飛彈威懾與打擊能力;深化網路空間太空防空防電系統設計與智慧飛彈威懾策略的新一代攻擊能力。全面提升網路空間偵察、攻擊和防禦力量的智慧作戰能力。

優化智慧自主協同作戰方式。圍繞人機「互動-理解-協同-進步」框架,突破人機混合感知增強和人機自適應多任務協同作戰,提升複雜戰場環境下人機混合感知能力、認知能力和整體作戰效能,實現人機智慧互補與智能增強。加速智慧集群分散式彈性架構、自組織抗干擾通訊與互動、複雜對抗場景下的分散式自主協同作戰、適應複雜環境和任務的集群智慧指揮控制等領域的應用研究。增強複雜場景下無人群集的自主彈性規劃與群集智慧對抗學習能力,推動多域/跨域異質群集作戰效能的全面飛躍。

創新智能化全維度支援模式。面對未來戰場全面保障的整體需求,包括全時智慧感知、物資彈藥精準管控、作戰物資準確投放等,提升智慧作戰後勤裝備保障能力。發展跨域多維綜合保障需求挖掘、裝備狀態線上網路動態監控、保障風險自主預警、保障資源按需調配等能力。推動智慧網路資訊系統、智慧軍事後勤系統、戰場設施及環境資訊智慧保障、智慧單兵保障、未來戰場智慧快速醫療救治、智慧能源保障及運輸配送等研究驗證,實現作戰、技術、後勤支援要素與作戰指揮、部隊調動有機融合。

陶利民,秦昊

來源:中國軍網-解放軍報 作者:陶立民 秦浩 責任編輯:王粲

中國原創軍事資源:http://www.81.cn/ll_20888543/186482825186.html

Chinese Military Embracing the Challenges of Intelligent Warfare with New Combat Concepts

中國軍隊以新的作戰概念迎接智慧戰爭的挑戰

現代英語:

Foreword

Breakthroughs in artificial intelligence technology, marked by deep learning, and their applications across various fields have propelled intelligentization to new heights globally, becoming a focal point of attention. In the military field, where technological innovation and application are never lagging behind, a new revolution is also actively brewing. We must accurately grasp the pulse of intelligent warfare’s evolution and analyze its intrinsic nature in order to embrace and master intelligent warfare with a fresh perspective.

How far away is intelligent warfare from us?

Intelligent warfare is warfare primarily supported by artificial intelligence technology. Imbuing weapon platforms with human-like intelligence and replacing human combatants on the battlefield has been a dream for humanity for millennia. With the powerful impact of AI systems like AlphaGo and Atlas, and the emerging concepts and platforms of new warfare such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The laws of historical development foreshadow the inevitable rise of intelligent warfare on the battlefield. Advances in science and technology drive the evolution of weaponry, triggering fundamental changes in military organization, combat methods, and military theory, ultimately forcibly propelling a historical transformation in the form of warfare. The arrival of intelligent warfare aligns with this inevitable historical trend. Looking back at the evolution of human warfare, every major advancement in science and technology has driven significant military transformations. The invention of gunpowder ushered in the era of firearms, wiping out infantry and cavalry formations under the linear warfare tactics of firearms. The application of the steam engine in the military led to the mechanized era, giving rise to large-scale mechanized warfare led by armored ships, tanks, and aircraft. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, once again triggering a major military revolution, and intelligent warfare will inevitably take center stage.

The development of artificial intelligence (AI) technology determines the pace of intelligent warfare. The continuous development and widespread application of AI technology are propelling intelligent warfare from its initial stages of uncertainty to reality, gradually emerging and growing, step by step approaching us. To truly enter the era of intelligent warfare, AI technology needs to advance through four stages. The first stage is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near real-time computing and storage capabilities—capabilities far beyond the reach of large computers and massive servers. The widespread application of cloud computing has already firmly placed humanity on this first stage. The second stage is perceptual intelligence, where machines can understand, see, distinguish, and recognize, enabling direct communication and dialogue with humans. Natural language understanding, image and graphics recognition, and biometric identification technologies based on big data have allowed humanity to reach this second stage. The third stage is cognitive intelligence, where machines can understand human thought, reason and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms are propelling humanity towards this third stage. The fourth stage is human-machine integrated augmented intelligence, which involves complementary and two-way closed-loop interaction between humans’ strengths in perception, reasoning, induction, and learning, and machines’ strengths in search, computation, storage, and optimization. Virtual reality augmentation technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humanity can reach this fourth stage. When humanity reached the second stage, the intelligent warfare began to approach; when we step onto the fourth stage, the era of intelligent warfare will fully begin.

Self-learning and growth are accelerating the sudden arrival of the intelligent warfare revolution. “Learning” ability is the core capability of artificial intelligence; once machines can learn on their own, their learning speed will be astonishing. Once machines possess self-learning capabilities, they will enter a rapid growth trajectory of continuous “intelligence enhancement and accelerated evolution.” All the technical difficulties in moving towards intelligent warfare will be readily resolved as “learning” deepens. The era of intelligent warfare may very well arrive suddenly in ways no one could have imagined!

What exactly will intelligent warfare change?

Intelligent warfare will break through the limits of traditional spatiotemporal cognition . In intelligent warfare, artificial intelligence technology can collect, calculate, and push information on the actions of all forces in combat in real time and across all domains. This will enable humans to break through the logical limits of thought, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space. It will allow for real-time and precise control over all actions of all forces, and enable the rapid transfer, aggregation, and attack of superior combat resources in multidimensional space and domains. Any time and any space may become a point in time and space where victory can be achieved.

Intelligent warfare will reshape the relationship between humans and weaponry . With the rapid advancement of intelligent technologies and the continuous improvement of their intelligence levels, weapon platforms and combat systems can not only passively and mechanically execute human commands, but also, based on deep understanding and prediction, leverage the computational, storage, and retrieval capabilities that machines excel at, thereby autonomously and proactively executing specific tasks to a certain extent. It can be said that weapon platforms and combat systems can also, to some extent, proactively exert human consciousness, even exceeding the scope of human understanding, autonomously and even creatively completing combat missions according to specific programs. The traditional distinction between humans and weaponry becomes blurred, even making it difficult to differentiate whether it is humans or machines at work. People are exclaiming that “humans and weaponry will become partners.” Therefore, in intelligent warfare, while humans remain the most important factor in combat effectiveness, the changing way humans and weaponry are integrated enriches the connotation of combat effectiveness, and the traditional relationship between humans and weaponry will be restructured on this basis.

Intelligent warfare will spur the emergence of new combat methods . Revolutionary advancements in science and technology inevitably lead to revolutionary changes in combat methods; significant progress in intelligent technologies will inevitably bring about a period of rapid transformation in combat methods. On the one hand, emerging technologies in fields such as deep cognition, deep learning, and deep neural networks, driven by computing, data, algorithms, and biology, along with their cross-integration with achievements in information, biology, medicine, engineering, and manufacturing, will inevitably drive an explosive emergence of new combat methods. On the other hand, the intense confrontation between intelligent weapon platforms and combat systems will inevitably become the target and driving force for innovative combat methods. The higher the level of intelligent technology in a war, the more it will become the focus of confrontation. Disadvantages in areas such as the limits of spatiotemporal cognition, massive information storage and computing capabilities, and neural network organization and generation capabilities will lead to new types of “blinding,” “deafening,” and “paralyzing” combat methods in new domains.

Intelligent warfare will incubate entirely new command and control methods. The advantages of command and control are a focal point in warfare, and intelligent warfare calls for entirely new command and control approaches. First, human-machine collaborative decision-making will become the primary command and decision-making method in intelligent warfare. In previous wars, command and decision-making was primarily driven by commanders, with technology playing a supporting role. In intelligent warfare, intelligent auxiliary decision-making systems will proactively urge or prompt commanders to make decisions based on changes in the battlefield situation. This is because the human brain can no longer quickly absorb and efficiently process the massive and rapidly changing battlefield situational information, and human senses can no longer withstand the extraordinary speed of change. Under such circumstances, decisions made solely by commanders are likely to be delayed and useless. Only human-machine collaborative decision-making driven by intelligent auxiliary decision-making systems can compensate for time and space differences and the gap between machine and brain, ensuring the advantage of command and decision-making. Second, brain-computer interface control will become the primary command and control method in intelligent warfare. In previous wars, commanders issued commands to control troops level by level through documents, radio, and telephone, in written or voice form. In intelligent warfare, commanders use intelligent, brain-like neurons to issue commands to troops through a neural network combat system platform. This reduces the conversion process of command presentation formats and shortens the time for commands to be converted across media, resulting in a faster pace and higher efficiency. When the combat system platform is attacked and partially damaged, this command and control method can autonomously repair or reconstruct the neural network, quickly restoring its main functions or even all functions, making it more resistant to attack.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content with lagging behind and following others. We must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Breakthroughs in intelligent technologies will drive a leap in the effectiveness of intelligent combat systems. While significant progress has been made in areas such as neural network algorithms, intelligent sensing and networking technologies, data mining, and knowledge graph technologies, intelligent technologies are still largely in the weak intelligence stage, far from reaching the advanced stage of strong intelligence, and there is still vast potential for future development. It is essential to strengthen basic research in artificial intelligence, follow the laws of scientific and technological development, scientifically plan the development direction of intelligent technologies, select appropriate technological breakthroughs, and strengthen key core technologies in artificial intelligence, especially fundamental research that plays a supporting role. Emphasis should be placed on research into key military technologies. Driven by military needs, and focusing on key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support, intelligent reconnaissance and perception systems, command and control systems, weapon systems, and combat support systems should be developed. Collaborative innovation between military and civilian technologies should be promoted, fully leveraging the advantages of civilian intelligent technology development, relying on the advantages of military and civilian resources, strengthening strategic cooperation between the military and civilian sectors, and building a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the integration of general standards between the military and civilian sectors, thus forming a new landscape of open, integrated, and innovative development of intelligent combat technologies.

Leading the innovation of combat methods with the concept of intelligent warfare. A shift in mindset is a prerequisite for welcoming the arrival of intelligent warfare. Mindset precedes action; if our mindset remains at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has brought about profound changes in technological support, combat forces, and winning mechanisms, requiring us to first establish the concept of intelligent warfare and use it to guide the innovation of our military’s future combat methods. First, we must strengthen the struggle for “intelligent control.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to utilize intelligence, while maintaining our own freedom to utilize intelligence, is fundamental to ensuring the smooth implementation of intelligent warfare. The militaries of developed Western countries are exploring various means, such as electromagnetic interference, electronic suppression, high-power microwave penetration, and takeover control, to block the opponent’s ability to utilize intelligence, seize “intelligent control,” and thus gain battlefield advantage. Second, we must innovate intelligent combat methods. We must focus on fully leveraging the overall effectiveness of the intelligent combat system, strengthening research on new intelligent combat methods such as human-machine collaborative intelligent warfare, intelligent robot warfare, and intelligent unmanned swarm warfare, as well as the processes and methods of intelligent combat command and intelligent combat support. With a view to effectively counter the threat of intelligent warfare from the enemy, we should study strategies to defeat the enemy, such as intelligent disruption warfare and intelligent interdiction warfare.

Intelligent training innovation is driving a transformation in combat capability generation. Intelligent warfare will be a war jointly waged by humans and machines, with intelligent unmanned combat systems playing an increasingly important role. It is imperative to adapt to the new characteristics of intelligent warfare force systems, innovate and develop intelligent training concepts, and explore new models for generating combat capability in intelligent warfare. On the one hand, it is necessary to strengthen training for humans in operating intelligent systems. By leveraging big data, cloud computing, VR technology, and other technologies to create new training environments, we can continuously improve human intelligence literacy, enhance human-machine cognition, understanding, and interaction quality, and improve the ability of humans to operate intelligent combat systems. On the other hand, it is necessary to explore new training models with machines as the primary focus. Previous training has primarily focused on humans, emphasizing the ability of humans to master and use weapons and equipment in specific environments to improve combat effectiveness. To adapt to the new characteristics of the force structure in intelligent warfare, the training organization concept and model of traditional training, which is centered on people, should be changed. Instead, the focus should be on improving the self-command, self-control, and self-combat capabilities of intelligent combat systems. By making full use of the characteristics of intelligent systems that can engage in self-competition and self-growth, a training system, training environment, and training mechanism specifically for intelligent combat systems should be formed. This will enable intelligent combat systems to achieve a geometric leap in combat capability after a short period of autonomous intensive training.

現代國語:

前言

以深度學習為代表的人工智慧技術的突破及其在各個領域的應用,已將全球智慧化推向新的高度,成為關注的焦點。在科技創新與應用從未落後的軍事領域,一場新的革命也正悄悄醞釀。我們必須精確掌握智慧戰爭演進的脈搏,分析其內在本質,才能以全新的視角擁抱和掌握智慧戰爭。

智慧戰爭離我們還有多遠?

智慧戰爭是指以人工智慧技術為主要的支撐戰爭。賦予武器平台類人智能,並在戰場上取代人類作戰人員,一直是人類數千年來的夢想。隨著AlphaGo和Atlas等人工智慧系統的強大影響力,以及集群作戰、飛行航空母艦等新型戰爭概念和平台的湧現,智慧戰爭的大門似乎正在悄悄開啟。

歷史發展的規律預示著智慧戰爭在戰場上的必然崛起。科技進步推動武器裝備的演進,引發軍事組織、作戰方式和軍事理論的根本性變革,最終強而有力地推動戰爭形式的歷史性轉型。智慧戰爭的到來正契合這不可避免的歷史趨勢。回顧人類戰爭的發展歷程,每一次科技的重大進步都帶來了意義深遠的軍事變革。火藥的發明開啟了火器時代,在火器線性戰術下,步兵和騎兵陣型被徹底摧毀。蒸汽機在軍事上的應用開啟了機械化時代,催生了以裝甲艦、坦克和飛機為主導的大規模機械化戰爭。智慧科技的出現與應用將深刻改變人類的認知、戰爭思維和作戰方式,再次引發一場重大的軍事革命,智慧戰爭必定成為戰爭的核心。

人工智慧(AI)技術的發展速度決定著智慧戰爭的進程。人工智慧技術的持續發展和廣泛應用正推動智慧戰爭從最初的不確定階段走向現實,逐步興起、發展壯大,一步步向我們逼近。要真正進入智慧戰爭時代,人工智慧技術需要經歷四個階段。第一階段是運算智能,這意味著突破運算能力和儲存空間的限制,實現近實時運算和儲存能力——這種能力遠遠超出大型電腦和海量伺服器的範疇。雲端運算的廣泛應用已經使人類穩固地邁入了這個階段。第二階段是感知智能,機器能夠理解、觀察、區分和識別,從而實現與人類的直接溝通和對話。基於大數據技術的自然語言理解、影像和圖形識別以及生物特徵識別技術,已經使人類邁入了第二階段。第三階段是認知智能,機器能夠理解人類的思維,像人類一樣進行推理、判斷和決策。知識探勘、知識圖譜、人工神經網路以及由深度學習演算法驅動的決策樹技術,正在推動人類邁向第三階段。第四階段是人機融合增強智能,它涉及人類在感知、推理、歸納和學習方面的優勢與機器在搜尋、計算、儲存和最佳化方面的優勢之間互補的雙向閉環互動。虛擬實境增強技術、類腦認知技術和類腦神經網路技術正在探索人類如何達到這個第四階段。當人類達到第二階段時,智慧戰爭開始逼近;當我們邁入第四階段時,智慧戰爭時代將全面開啟。

自主學習和成長正在加速智慧戰爭革命的到來。 「學習」能力是人工智慧的核心能力;一旦機器能夠自主學習,其學習速度將令人驚嘆。一旦機器擁有自主學習能力,它們將進入持續「智慧增強和加速進化」的快速成長軌跡。隨著「學習」能力的加深,邁向智慧戰爭的所有技術難題都將迎刃而解。智慧戰爭時代很可能以我們無法想像的方式突然降臨!

智慧戰爭究竟會帶來哪些改變?

智慧戰爭將突破…的限制。在傳統時空認知中,人工智慧技術能夠即時、跨域地收集、計算並推送所有作戰力量的行動資訊。這將使人類突破思維的邏輯限制、感官的生理限制以及存在的物理限制,大大拓展時空認知範圍。它將實現對所有作戰力量行動的即時精準控制,並能夠在多維空間和領域內快速調動、聚合和攻擊優勢作戰資源。任何時間、任何空間都可能成為取得勝利的時空點。

智慧戰爭將重塑人與武器之間的關係。隨著智慧技術的快速發展和智慧水準的不斷提升,武器平台和作戰系統不僅可以被動、機械地執行人類指令,還能基於深度理解和預測,充分利用機器強大的運算、儲存和檢索能力,在一定程度上自主、主動地執行特定任務。可以說,武器平台和作戰系統也能在某種程度上主動發揮人類意識,甚至超越人類理解的範疇,根據特定程序自主、甚至創造性地完成作戰任務。人與武器之間的傳統界線變得模糊,甚至難以區分究竟是人在工作還是機器在工作。人們開始高喊「人與武器將成為夥伴」。因此,在智慧戰爭中,雖然人仍是作戰效能的最重要因素,但人與武器融合方式的改變豐富了作戰效能的內涵,傳統的人與武器關係也將在此基礎上重構。

智慧戰爭將催生新的作戰方式。科技的革命性進步必然導致作戰方式的革命性變革;智慧技術的顯著進步必然會帶來作戰方式的快速轉型期。一方面,由計算、數據、演算法和生物學驅動的深度認知、深度學習和深度神經網路等領域的新興技術,以及它們與資訊、生物、醫學、工程和製造等領域成果的交叉融合,必將推動新型作戰方式的爆發式湧現。另一方面,智慧武器平台與作戰系統之間的激烈對抗,必將成為創新作戰方式的目標與驅動力。戰爭中智慧科技的程度越高,就越會成為對抗的焦點。時空認知能力、海量資訊儲存和運算能力以及神經網路組織和生成能力等方面的局限性,將導致在新的領域出現新型的「致盲」、「致聾」和「致癱」作戰方式。

智慧戰爭將孕育全新的指揮控制方式。指揮控制的優勢是戰爭的關鍵所在,而智慧戰爭需要全新的指揮控制方法。首先,人機協同決策將成為智慧戰中主要的指揮決策方式。以往戰爭中,指揮決策主要由指揮官主導,技術僅扮演輔助角色。而在智慧戰中,智慧輔助決策系統將根據戰場態勢的變化,主動敦促或提示指揮官做出決策。這是因為人腦已無法快速有效地吸收和處理大量且瞬息萬變的戰場態勢訊息,人類的感官也無法承受如此巨大的變化速度。在這種情況下,僅由指揮官做出的決策很可能滯後且無效。只有由智慧輔助決策系統驅動的人機協同決策才能彌補時空差異以及人機之間的差距,從而確保指揮決策的優勢。其次,腦機介面控制將成為智慧戰中主要的指揮控制方式。以往戰爭中,指揮官透過文件、無線電、電話等方式,以書面或語音形式,逐級下達命令來控制部隊。在智慧戰爭中,指揮官利用類似大腦的智慧神經元,透過神經網路作戰系統平台向部隊下達命令。這減少了命令呈現格式的轉換過程,並且 縮短跨媒介指令轉換時間,進而加快速度,提高效率。當作戰系統平台遭受攻擊並部分受損時,這種指揮控制方法可以自主修復或重建神經網絡,快速恢復其主要功能甚至全部功能,使其更具抗攻擊能力。

我們該如何應對智慧戰爭?

在智慧戰爭的研究和探索中,我們不能滿足於落後和跟隨他人。我們必須以贏得未來戰爭為目標,以更積極的態度、先進的理念和積極的行動迎接智慧戰爭的挑戰。

智慧技術的突破將推動智慧作戰系統效能的飛躍。雖然在神經網路演算法、智慧感知和網路技術、資料探勘和知識圖譜技術等領域已經取得了顯著進展,但智慧技術仍處於弱智慧階段,距離強智慧的先進階段還有很長的路要走,未來發展潛力巨大。必須加強人工智慧基礎研究,遵循科技發展規律,科學規劃智慧技術發展方向,選擇合適的技術突破點,強化人工智慧核心技術,特別是起到支撐作用的基礎研究。重點要加強關鍵軍事技術的研究。在軍事需求的驅動下,聚焦智慧感知、智慧決策、智慧控制、智慧打擊、智慧支援等關鍵軍事技術,發展智慧偵察感知系統、指揮控制系統、武器系統、作戰支援系統等。要推動軍民技術協同創新,充分發揮民用智慧技術發展優勢,依托軍民資源優勢,加強軍民戰略合作,建構人工智慧科技成果聯合研究共享、條件設施聯合建設共享、軍民通用標準融合的服務平台,形成智慧作戰技術開放、融合、創新發展的新格局。

以智慧戰理念引領作戰方式創新。思維方式的轉變是迎接智能戰到來的先決條件。思考方式先於行動;如果我們的思考方式仍停留在傳統層面,就難以適應智慧戰的需求。智能戰為技術保障、作戰力量和致勝機制帶來了深刻的變革,這就要求我們先確立智能戰的理念,並以此指導我軍未來作戰方式的創新。首先,我們必須加強對「智慧控制」的爭奪。人工智慧是智能戰的基礎。在保障自身智慧運用自由的同時,削弱和限制對手運用智慧的能力,是確保智能戰順利實施的根本。西方已開發國家的軍隊正在探索各種手段,例如電磁幹擾、電子壓制、高功率微波穿透和控制權奪取等,以阻斷對手運用智能的能力,奪取“智能控制權”,從而獲得戰場優勢。其次,我們必須創新智慧作戰方式。我們必須集中精力充分發揮智慧作戰系統的整體效能,加強對人機協同智能戰、智能機器人戰、智能無人集群戰等新型智能作戰方式以及智能作戰指揮、智能作戰支援的流程和方法的研究。為有效應對敵方智能戰的威脅,我們應研究擊敗敵方的策略,例如智慧幹擾戰、智慧封鎖戰等。

智慧訓練創新正在推動作戰能力產生方式的改變。智慧戰將是一場人機協同作戰,智慧無人作戰系統將發揮日益重要的作用。必須適應智慧戰部隊系統的新特點,創新發展智慧訓練理念,探索智慧作戰能力生成的新模式。智慧戰爭。一方面,需要加強操作智慧系統的人員的訓練。利用大數據、雲端運算、虛擬實境等技術創造新的訓練環境,可以不斷提高人員的智慧素養,增強人機認知、理解和互動質量,提高人員操作智慧作戰系統的能力。另一方面,需要探索以機器為核心的新型訓練模式。過去的訓練主要以人為中心,強調人員在特定環境下掌握和使用武器裝備以提升作戰效能的能力。為了適應智慧戰爭部隊結構的新特點,需要改變以人為中心的傳統訓練組織理念和模式,轉而專注於提升智慧作戰系統的自主指揮、自主控制和自主作戰能力。充分利用智慧系統能夠進行自我競爭和自我成長的特性,建構專門針對智慧作戰系統的訓練體系、訓練環境和訓練機制。這將使智慧作戰系統在經過短時間的自主強化訓練後,作戰能力實現幾何級的飛躍。

李始江 杨子明 陈分友

中国军网 国防部网
2018年7月26日 星期四

中國原創軍事資源:http://www.81.cn/jfjbmap/content/28018-07/286/content_28118827.htm

Inclusive Plan for Building Chinese Artificial Intelligence Capabilities

建構中國人工智慧能力的包容性規劃

現代英語:

To bridge the digital and intelligent divide, and particularly to ensure the Global South benefits equitably from the development of artificial intelligence, China believes it is essential to uphold the UN’s coordinating role in international development cooperation, adhere to genuine multilateralism, and, based on the principles of sovereign equality, development orientation, people-centeredness, inclusiveness, and collaborative cooperation, effectively implement the UN General Assembly resolution on strengthening international cooperation in artificial intelligence capacity building ( A/RES/78/311 ) through North-South cooperation, South-South cooperation, and trilateral cooperation, thereby promoting the implementation of the UN 2030 Agenda for Sustainable Development. To this end, China has proposed the “Inclusive Plan for Artificial Intelligence Capacity Building” and calls on all parties to increase investment in artificial intelligence capacity building.

I. Vision and Goals

(a) Promoting the connectivity of artificial intelligence and digital infrastructure    

Improve the global interoperability of artificial intelligence and digital infrastructure, actively assist countries, especially the Global South, in developing artificial intelligence technologies and services, and help the Global South truly access artificial intelligence and keep up with the pace of its development.

(II) Promoting the application of “AI+” to empower various industries

Explore and promote the all-round, full-chain, and multi-scenario empowerment of the real economy by artificial intelligence, promote the application of artificial intelligence in industrial manufacturing, traditional agriculture, green transformation and development, climate change response, biodiversity protection and other fields, and promote the construction of a rich, diverse, healthy and benevolent artificial intelligence development ecosystem in accordance with local conditions.

(III) Strengthening AI literacy and talent cultivation

Actively promote the widespread application of artificial intelligence in education, carry out talent training and exchange in artificial intelligence, increase the sharing of general professional knowledge and best practices, cultivate public awareness of artificial intelligence, protect and strengthen the digital and intelligent rights of women and children, and share knowledge, achievements and experiences in artificial intelligence.

(iv) Enhance the security and diversity of artificial intelligence data

Cooperation will promote the lawful, orderly, and free cross-border flow of data, explore the establishment of a global mechanism platform for data sharing, and safeguard personal privacy and data security. It will also promote the equality and diversity of AI data corpora, eliminate racism, discrimination, and other forms of algorithmic bias, and promote, protect, and preserve the diversity of civilizations.

(v) Ensure that artificial intelligence is safe, reliable and controllable

Upholding the principles of fairness and non-discrimination, we support the establishment of a globally interoperable framework, standards, and governance system for AI security risk assessment that takes into account the interests of developing countries within the framework of the United Nations. We will jointly assess the risks of AI research and application, actively promote and improve technologies and policies to address AI security risks, and ensure that the design, research and development, use, and application of AI promote human well-being.

II. China’s Actions

(i) China is willing to carry out North-South cooperation, South-South cooperation and trilateral cooperation in the field of artificial intelligence with all countries, jointly implement the outcomes of the UN Future Summit, actively cooperate with all countries, especially developing countries, in the construction of artificial intelligence infrastructure, and jointly build joint laboratories.

(ii) China is willing to carry out cooperation in the research and development and empowerment of artificial intelligence models, especially to promote the application of artificial intelligence in poverty reduction, medical care, agriculture, education and industrial manufacturing, deepen international cooperation in the artificial intelligence production and supply chain, and unleash the dividends of artificial intelligence as a new type of productive force.

(III) China is willing to work with all countries, especially developing countries, to explore the potential of artificial intelligence to empower green development, climate change response, and biodiversity conservation, and contribute to global climate governance and sustainable development.

(iv) China is willing to build an international cooperation platform for artificial intelligence capacity building. China’s artificial intelligence industry and industry alliances are willing to carry out various forms of exchange activities with all countries, especially developing countries, to share best practices, and to build an open source community for artificial intelligence in a responsible manner, so as to promote the construction of a multi-level and multi-industry cooperation ecosystem.

(v) The Chinese government will organize short- and medium-term education and training programs for artificial intelligence capacity building in developing countries, share artificial intelligence education resources, and carry out joint programs and exchanges in artificial intelligence to help developing countries cultivate high-level artificial intelligence science and technology and application talents.

(vi) The Chinese government is willing to strengthen cooperation with developing countries in human resources assistance. Building on the first artificial intelligence capacity building workshop held this year, it will hold ten more training and seminar programs in the field of artificial intelligence, focusing on developing countries, by the end of 2025.

(vii) China is willing to work with all countries, especially developing countries, to cultivate public awareness of artificial intelligence, and promote the popularization and professional knowledge of artificial intelligence in a multi-dimensional, multi-level and multi-platform manner through a combination of online and offline methods, and strive to improve the artificial intelligence literacy and skills of our people, especially to protect and improve the digital rights of women and children.

(viii) China is willing to work with all countries, especially developing countries, to jointly develop artificial intelligence corpora, take positive measures to eliminate racial, algorithmic, and cultural discrimination, and commit to maintaining and promoting linguistic and cultural diversity.

(ix) China is willing to work with all countries, especially developing countries, to promote and improve data infrastructure and jointly promote the fair and inclusive use of global data.

(x) China is willing to work with all countries, especially developing countries, to strengthen the alignment of artificial intelligence strategies and policy exchanges, actively share policies and technical practices in artificial intelligence testing, evaluation, certification and regulation, and work together to address the ethical and security risks of artificial intelligence.

現代國語:

為彌合數位落差和智慧鴻溝,尤其要確保全球南方國家公平地受益於人工智慧發展,中國認為必須維護聯合國在國際發展合作中的協調作用,堅持真正的多邊主義,並本著主權平等、發展導向、以人為本、包容性和協作性原則,透過南北合作、南南合作和三方合作,切實落實聯合國大會關於加強人工智慧能力建構國際合作的決議(A/RES/78/311),從而推動落實聯合國2030年永續發展議程。為此,中國提出了“人工智慧能力建設包容性方案”,並呼籲各方加大對人工智慧能力建設的投入。

一、願景與目標

(a) 促進人工智慧與數位基礎設施的互聯互通

提升人工智慧與數位基礎設施的全球互通性,積極協助各國,特別是全球南方國家,發展人工智慧技術和服務,幫助全球南方國家真正獲得人工智慧,並跟上其發展步伐。

(II) 推動「AI+」賦能各產業

探索並推動人工智慧對實體經濟的全方位、全鏈、多場景賦能,推動人工智慧在工業製造、傳統農業、綠色轉型發展、氣候變遷因應、生物多樣性保護等領域的應用,並根據當地實際情況,推動建構豐富多元、健康向善的人工智慧發展生態系統。

(三)加強人工智慧素養與人才培養

積極推動人工智慧在教育領域的廣泛應用,進行人工智慧人才培訓和交流,加強一般專業知識和最佳實踐的分享,提升大眾對人工智慧的認識,保護和加強婦女兒童的數位和智慧權利,分享人工智慧領域的知識、成果和經驗。

(四)增強人工智慧資料的安全性與多樣性

合作將促進資料合法、有序、自由的跨境流動,探索建立全球資料共享機制平台,保障個人隱私和資料安全。同時,也將促進人工智慧資料語料庫的平等性和多樣性,消除種族主義、歧視和其他形式的演算法偏見,促進、保護和維護文明多樣性。

(五)確保人工智慧安全、可靠、可控

秉持公平、非歧視原則,我們支持在聯合國框架內建立兼顧發展中國家利益的全球互通人工智慧安全風險評估架構、標準和治理體系。我們將共同評估人工智慧研發和應用風險,積極推動和改善應對人工智慧安全風險的技術和政策,確保人工智慧的設計、研發、使用和應用促進人類福祉。

二、中國的行動

(一)中國願與各國在人工智慧領域進行南北合作、南南合作與三方合作,共同落實聯合國未來高峰會成果,積極與各國,特別是發展中國家合作建置人工智慧基礎設施,共同建置聯合實驗室。

(二)中國願在人工智慧模型研發和賦能方面開展合作,尤其是在推動人工智慧在減貧、醫療、農業、教育和工業製造等領域的應用方面,深化人工智慧生產和供應鏈領域的國際合作,釋放人工智慧作為新型生產力的紅利。

(三)中國願與各國,特別是發展中國家,共同探索人工智慧在賦能綠色發展、應對氣候變遷和保護生物多樣性方面的潛力,為全球氣候治理和永續發展做出貢獻。

(四)中國願建構人工智慧能力建構國際合作平台。中國人工智慧產業和產業聯盟願進行各種形式的合作。

與各國,特別是發展中國家進行交流活動,分享最佳實踐,負責任地建構人工智慧開源社區,以促進多層次、多產業的合作生態系統建設。

(五)中國政府將在發展中國家組織進行短期和中期人工智慧能力建構教育培訓項目,共享人工智慧教育資源,進行人工智慧聯合項目和交流,幫助發展中國家培養高水準人工智慧科技及應用人才。

(六)中國政府願加強與發展中國家在人力資源援助的合作。在今年舉辦的首屆人工智慧能力建構研討會的基礎上,到2025年底,中國將再舉辦十期人工智慧領域的培訓和研討會,重點是發展中國家。

(七)中國願同各國,特別是發展中國家,共同努力,透過線上線下相結合的方式,多維度、多層次、多平台地普及人工智慧知識,提高國民人工智慧素養和技能,尤其要保護和改善婦女兒童的數位權利。

(八)中國願同各國,特別是發展中國家,共同建構人工智慧語料庫,積極消除種族歧視、演算法歧視和文化歧視,致力於維護和促進語言文化多樣性。

(九)中國願同各國,特別是發展中國家,共同促進資料基礎建設,共同推動全球資料的公平、包容性利用。

(十)中國願與各國,特別是發展中國家,加強人工智慧戰略和政策交流的協調一致,積極分享人工智慧測試、評估、認證和監管方面的政策和技術實踐,共同應對人工智慧的倫理和安全風險。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjbzhd/2028409/t2028409827_114984638.shtml

A Look at Chinese Intelligent Warfare: Warfare Considerations Brought by AGI

中國情報戰概覽:AGI帶來的戰爭考量

現代英語:

Technology and war have always been intertwined. While technological innovation constantly changes the face of war, it hasn’t altered its violent nature and coercive objectives. In recent years, with the rapid development and application of artificial intelligence (AI) technology, the debate about its impact on war has never ceased. Compared to artificial intelligence (AI), artificial general intelligence (AGI) is considered to be a higher level of intelligence, comparable to human intelligence. How will the emergence of AGI affect war? Will it change the violent and coercive nature of war? This article will explore this question with a series of reflections.

Is AGI just an enabling technology?

Many believe that while large-scale models and generative artificial intelligence (AGI) demonstrate great potential for future military applications, they are ultimately just enabling technologies. They can only enhance and optimize weapons and equipment, making existing equipment smarter and improving combat efficiency, but they are unlikely to bring about a true military revolution. Just like “cyber warfare weapons,” which were once highly anticipated by many countries when they first appeared, now seem somewhat exaggerated.

The disruptive nature of AGI is entirely different. It brings tremendous changes to the battlefield with reaction speeds and knowledge far exceeding those of humans. More importantly, it produces enormous disruptive results by accelerating technological progress. On the future battlefield, autonomous weapons will be endowed with advanced intelligence by AGI, their performance will be universally enhanced, and they will become “strong in offense and difficult in defense” due to their speed and swarm advantages. At that time, the highly intelligent autonomous weapons predicted by some scientists will become a reality, and AGI will play a key role in this. Currently, the military applications of artificial intelligence include autonomous weapons, intelligence analysis, intelligent decision-making, intelligent training, and intelligent support, which are difficult to summarize simply as “empowerment.” Moreover, AGI develops rapidly, has a short iteration cycle, and is in a state of continuous evolution. In future operations, AGI needs to be prioritized, and special attention should be paid to the potential changes it brings.

Will AGI make wars disappear?

Historian Jeffrey Breeny argues that “wars always occur due to misjudgments of each other’s strength or will,” and that with the application of AGI in the military field, misjudgments will become increasingly rare. Therefore, some scholars speculate that wars will decrease or even disappear. Indeed, relying on AGI can significantly reduce misjudgments, but even so, it’s impossible to eliminate all uncertainty, as uncertainty is a defining characteristic of war. Moreover, not all wars arise from misjudgments, and the inherent unpredictability and inexplicability of AGI, along with people’s lack of experience using AGI, will bring new uncertainties, plunging people into an even deeper “artificial intelligence fog.”

AGI algorithms also present rational challenges. Some scholars believe that AGI’s ability to mine and accurately predict critical intelligence has a dual impact. In practical operation, AGI does indeed make fewer mistakes than humans, improving intelligence accuracy and reducing misjudgments; however, it can sometimes lead to overconfidence and reckless actions. The offensive advantage brought by AGI results in the best defensive strategy being “preemptive strike,” disrupting the balance between offense and defense, creating a new security dilemma, and ultimately increasing the risk of war.

AGI (Automatic Genomics) is highly versatile and easily integrated with weaponry. Unlike nuclear, biological, and chemical technologies, it has a low barrier to entry and is particularly prone to proliferation. Due to technological gaps between countries, immature AGI weapons could potentially be deployed on the battlefield, posing significant risks. For example, the application of drones in recent local conflicts has spurred many small and medium-sized countries to begin large-scale drone procurement. The low-cost equipment and technology offered by AGI could very well stimulate a new arms race.

Will AGI be the ultimate deterrent?

Deterrence is the maintenance of a capability to intimidate an adversary into refraining from actions that exceed one’s own interests. Ultimate deterrence occurs when it becomes so powerful as to be unusable, such as nuclear deterrence that ensures mutual destruction. But ultimately, the deciding factor is “human nature,” a crucial element that will never be absent from war.

Without the considerations of “humanity,” would AGI become a formidable deterrent? AGI is fast but lacks empathy; its resolute execution severely compresses the strategic space. AGI is a key factor on the future battlefield, but due to a lack of practical experience, accurate assessment is difficult, easily leading to overestimation of the adversary’s capabilities. Furthermore, regarding autonomous weapon control, whether to have humans within the system for full-time supervision or to leave it entirely to the outside world requires careful consideration. Should the firing control of intelligent weapons be handed over to AGI? If not, the deterrent effect will be greatly diminished; if so, can the life and death of humanity truly be decided by machines unrelated to them? Research at Cornell University shows that large-scale wargaming models frequently escalate wars with “sudden nuclear attacks,” even when in a neutral state.

Perhaps one day in the future, AGI will surpass human capabilities. Will we then be unable to regulate and control it? Jeffrey Hinton, who proposed the concept of deep learning, said he has never seen a case where something with a higher level of intelligence was controlled by something with a lower level of intelligence. Some research teams believe that humans may not be able to supervise super artificial intelligence. Faced with powerful AGI in the future, will we really be able to control them? This is a question worth pondering.

Will AGI change the nature of war?

With the widespread use of AGI, will battlefields filled with violence and bloodshed disappear? Some argue that AI warfare far exceeds human capabilities and may even push humanity off the battlefield. When AI transforms warfare into a conflict entirely between autonomous robots, will it still be a “violent and bloody war”? When unequal adversaries clash, the weaker party may have no chance to act. Can wars be ended before they even begin through war games? Will AGI change the nature of warfare as a result? Is a “war” without humans still a war?

Yuval Noah Harari, author of Sapiens: A Brief History of Humankind, states that all human behavior is mediated by language and influences our history. The Large Language Model (AGI) is a typical example of AGI, differing from other inventions in its ability to create entirely new ideas and cultures; “storytelling AI will change the course of human history.” When AGI gains control over language, the entire system of human civilization could be overturned, without even requiring its own consciousness. Like Plato’s Allegory of the Cave, will humanity worship AGI as a new “god”?

AGI establishes a close relationship with humans through human language and alters their perceptions, making them difficult to distinguish and discern, thus posing a risk that the will to fight could be controlled by those with ulterior motives. Harari stated that computers don’t need to send out killer robots; if necessary, they will allow humans to pull the trigger themselves. AGI precisely manufactures and refines situational information, controlling battlefield perception through deep deception. This can be achieved through drones to fabricate battlefield situations and through pre-war public opinion manipulation, as already evident in recent local conflicts. The cost of war would thus decrease significantly, leading to the emergence of new forms of warfare. Would small and weak nations still have a chance? Can the will to fight be changed without bloodshed? Is “force” no longer a necessary condition for defining war?

The form of war may change, but its essence remains. Regardless of how “bloody” war is, it will still force the enemy to submit to its will and inflict significant “collateral damage,” only the methods of resistance may be entirely different. The essence of war lies in the deep-seated “human nature,” which is determined by culture, history, behavior, and values. It is difficult to completely replicate using any artificial intelligence technology, so we cannot outsource all ethical, political, and decision-making issues to AI, nor can we expect AI to automatically generate “human nature.” AI technology may be abused due to impulsive passions, so it must be under human control. Since AI is trained by humans, it will not always be without bias, therefore it cannot be completely free from human oversight. In the future, artificial intelligence can become a creative tool or partner, enhancing “tactical imagination,” but it must be “aligned” with human values. These issues need to be continuously considered and understood in practice.

Will AGI subvert war theory?

Most academic knowledge is expressed in natural language. A comprehensive language model, which integrates the best of human writing, can connect seemingly incompatible linguistic works with scientific research. For example, some have input classical works, and even works from philosophy, history, political science, and economics, into a comprehensive language model for analysis and reconstruction. They have found that it can comprehensively analyze all scholars’ viewpoints and also offer its own “insights,” without sacrificing originality. Therefore, some have asked whether it is possible to re-analyze and interpret war theory through AGI, stimulating human innovation and driving a major evolution and reconstruction of war theory and its systems. Perhaps there would indeed be some theoretical improvements and developments, but war science is not only theoretical but also practical, and AGI simply cannot achieve this practicality and realism. Can classical war theory really be reinterpreted? If so, what is the significance of the theory?

In short, AGI’s disruption of the concept of warfare will far exceed that of “mechanization” and “informatization.” We must embrace AGI boldly, yet remain cautious. Understanding the concept prevents ignorance; in-depth research prevents falling behind; and strengthened oversight prevents oversight. How to cooperate with AGI and guard against adversaries’ AGI technological surprise attacks is our primary concern for the future.

After editing

Look to the future with an open mind

■Ye Chaoyang

Futurist Roy Amalra famously asserted that people tend to overestimate the short-term benefits of a technology while underestimating its long-term impact, a principle known as “Amalra’s Law.” This law emphasizes the non-linear nature of technological development, meaning that the actual impact of technology often only becomes fully apparent over a longer timescale. It reflects the pulse and trends of technological development, and embodies humanity’s acceptance and aspirations towards technology.

Currently, in the development of artificial intelligence from weak AI to strong AI, and from specialized AI to general AI, each time people think they have completed 90% of the process, looking back, they may only have completed less than 10%. The driving role of technological revolution in military revolution is becoming increasingly prominent, especially as high-tech technologies, represented by artificial intelligence, penetrate the military field in multiple ways, causing profound changes in the mechanisms, factors, and methods of winning wars.

In the foreseeable future, intelligent technologies such as AGI will continue to iterate, and the cross-evolution of intelligent technologies and their empowering applications in the military field will become increasingly diversified, perhaps even transcending the boundaries of humanity’s current understanding of warfare. The development of technology is unstoppable and unstoppable. Whoever can use keen insight and a clear mind to see the trends and future of technology, to see its potential and power, and to penetrate the “fog of war,” will be more likely to seize the initiative.

This serves as a reminder that we should adopt a broader perspective and mindset in exploring the future forms of warfare in order to get closer to the underestimated reality. Where is AGI headed? Where is intelligent warfare headed? This tests human wisdom.

現代國語:

科技與戰爭始終密不可分。科技創新不斷改變戰爭的面貌,卻並未改變其暴力本質和強制目的。近年來,隨著人工智慧(AI)技術的快速發展和應用,關於其對戰爭影響的爭論從未停止。與人工智慧(AI)相比,通用人工智慧(AGI)被認為是一種更高層次的智能,堪比人類智能。 AGI的出現將如何影響戰爭?它會改變戰爭的暴力和強製本質嗎?本文將透過一系列思考來探討這個問題。

AGI只是一種賦能技術嗎?

許多人認為,儘管大規模模型和生成式人工智慧(AGI)展現出未來軍事應用的巨大潛力,但它們終究只是賦能技術。它們只能增強和優化武器裝備,使現有裝備更加智能,提高作戰效率,但不太可能帶來真正的軍事革命。就像曾經被許多國家寄予厚望的「網路戰武器」一樣,如今看來似乎有些誇大其詞。

通用人工智慧(AGI)的顛覆性本質截然不同。它以遠超人類的反應速度和知識儲備,為戰場帶來巨大改變。更重要的是,它透過加速技術進步,產生巨大的顛覆性影響。在未來的戰場上,AGI將賦予自主武器先進的智能,使其性能全面提升,並憑藉速度和集群優勢,成為「攻守難攻」的利器。屆時,一些科學家預測的高智慧自主武器將成為現實,而AGI將在其中扮演關鍵角色。目前,人工智慧的軍事應用涵蓋自主武器、情報分析、智慧決策、智慧訓練和智慧支援等領域,難以簡單地以「賦能」來概括。此外,AGI發展迅速,迭代週期短,處於持續演進的狀態。在未來的作戰行動中,AGI必須優先考慮,並應特別關注其可能帶來的潛在變革。

AGI會讓戰爭消失嗎?

歷史學家傑弗裡·布雷尼認為,“戰爭的發生總是源於對彼此實力或意志的誤判”,而隨著通用人工智慧(AGI)在軍事領域的應用,誤判將變得越來越罕見。因此,一些學者推測戰爭將會減少甚至消失。的確,依賴AGI可以顯著減少誤判,但即便如此,也無法完全消除不確定性,因為不確定性是戰爭的本質特徵。此外,並非所有戰爭都源自於誤判,AGI固有的不可預測性和不可解釋性,以及人們缺乏使用AGI的經驗,將會帶來新的不確定性,使人們陷入更深的「人工智慧迷霧」。

AGI演算法也帶來了理性方面的挑戰。一些學者認為,AGI挖掘和準確預測關鍵情報的能力具有雙重影響力。在實際操作中,AGI確實比人類犯的錯誤更少,提高了情報的準確性並減少了誤判;然而,它有時會導致過度自信和魯莽行動。通用人工智慧(AGI)帶來的進攻優勢使得最佳防禦策略成為“先發製人打擊”,打破了攻防平衡,製造了新的安全困境,並最終增加了戰爭風險。

通用人工智慧(AGI)用途廣泛,易於與武器系統整合。與核武、生物武器和化學武器不同,它的進入門檻低,且極易擴散。由於各國之間存在技術差距,不成熟的通用人工智慧武器可能被部署到戰場上,構成重大風險。例如,無人機在近期局部衝突的應用促使許多中小國家開始大規模採購無人機。通用人工智慧提供的低成本裝備和技術很可能引發新一輪軍備競賽。

通用人工智慧會成為最終的威懾力量嗎?

威懾是指維持一種能力,使對手不敢採取超越自身利益的行動。當威懾力量強大到無法使用時,例如確保相互毀滅的核威懾,就達到了終極威懾的境界。但歸根結底,決定性因素是“人性”,這是戰爭中永遠不可或缺的關鍵要素。

如果忽略“人性”,通用人工智慧(AGI)還能成為強大的威懾力量嗎? AGI速度很快,但缺乏同理心;其果斷的執行會嚴重壓縮戰略空間。 AGI是未來戰場上的關鍵因素,但由於缺乏…實務經驗表明,準確評估十分困難,很容易高估對手的能力。此外,關於自主武器控制,是否應該讓人類在系統中全天候監控,還是完全交給外部世界,都需要仔細斟酌。智慧武器的發射控制權是否應該交給通用人工智慧(AGI)?如果不行,威懾效果將大大降低;如果行,人類的生死真的能由與人類無關的機器來決定嗎?康乃爾大學的研究表明,大規模兵棋推演模型經常會透過「突然的核攻擊」來升級戰爭,即使在中立國也是如此。

或許在未來的某一天,通用人工智慧的能力將超越人類。到那時,我們是否就無法對其進行監管和控制了?深度學習概念的提出者傑弗裡·辛頓表示,他從未見過智能水平更高的系統被智能水平更低的系統控制的情況。一些研究團隊認為,人類或許無法監管超級人工智慧。面對未來強大的通用人工智慧,我們真的能夠控制它們嗎?這是一個值得深思的問題。

通用人工智慧(AGI)會改變戰爭的本質嗎?

隨著AGI的廣泛應用,充滿暴力和血腥的戰場會消失嗎?有人認為,人工智慧戰爭的能力遠遠超出人類,甚至可能將人類逐出戰場。當人工智慧將戰爭完全轉變為自主機器人之間的衝突時,它還會是「暴力和血腥的戰爭」嗎?當實力懸殊的對手交鋒時,弱勢一方可能毫無還手之力。戰爭能否透過戰爭演習在爆發前就結束? AGI會因此改變戰爭的本質嗎?一場沒有人類參與的「戰爭」還能稱之為戰爭嗎?

《人類簡史》的作者尤瓦爾·赫拉利指出,所有人類行為都受語言的製約,並影響我們的歷史。大型語言模型(AGI)是AGI的典型例子,它與其他發明不同之處在於它能夠創造全新的思想和文化;「講述故事的人工智慧將改變人類歷史的進程。」當通用人工智慧(AGI)掌控語言時,整個人類文明體係都可能被顛覆,甚至無需其自身意識。如同柏拉圖的「洞穴寓言」一般,人類會把AGI當成新的「神」嗎?

AGI透過人類語言與人類建立密切聯繫,並改變人類的感知,使其難以區分和辨別,從而構成一種風險:人類的戰鬥意志可能被別有用心之人操控。哈拉里指出,電腦無需派出殺手機器人;如有必要,它們會允許人類自行扣動扳機。 AGI能夠精確地製造和完善戰場訊息,透過深度欺騙控制戰場態勢感知。這可以透過無人機製造戰場環境以及戰前輿論操縱來實現,正如近期局部衝突中所展現的那樣。戰爭成本將因此大幅降低,進而催生新的戰爭形式。弱小國還有勝算?能否在不流血的情況下改變人類的戰鬥意志? 「武力」是否不再是定義戰爭的必要條件?

戰爭的形式或許會改變,但本質不變。無論戰爭多麼“血腥”,它最終都會迫使敵人屈服於己方意志,並造成重大的“附帶損害”,只是抵抗的方式可能截然不同。戰爭的本質在於根深蒂固的“人性”,而人性又是由文化、歷史、行為和價值觀決定的。任何人工智慧技術都難以完全複製人性,因此我們不能將所有倫理、政治和決策問題都外包給人工智慧,也不能指望人工智慧會自動產生「人性」。人工智慧技術可能因衝動而被濫用,因此必須置於人類的控制之下。由於人工智慧是由人類訓練的,它並非總是沒有偏見,因此無法完全脫離人類的監督。未來,人工智慧可以成為一種創造性的工具或夥伴,增強“戰術想像”,但它必須與人類價值觀“保持一致”。這些問題需要在實踐中不斷思考和理解。

通用人工智慧(AGI)會顛覆戰爭理論嗎?

大多數的學術知識都是用自然語言表達。一個整合了人類寫作精華的綜合語言模型,可以將看似不相容的語言學著作與科學研究連結起來。例如,一些學者將古典著作,甚至哲學、歷史、政治和經濟學等領域的著作輸入到綜合語言模型中進行分析和重構。他們發現,該模型既能全面分析所有學者的觀點,又能提出自身的“見解”,同時又不失原創性。因此,有人提出了這樣的問題:因此,我們有可能透過通用人工智慧(AGI)重新分析和詮釋戰爭理論,從而激發人類創新,並推動戰爭理論及其體系的重大演進和重構。或許確實會出現一些理論上的改進和發展,但戰爭科學不僅是理論性的,也是實踐性的,而AGI根本無法達到這種實踐性和現實性。經典戰爭理論真的可以被重新詮釋嗎?如果可以,那麼該理論的意義何在?

簡而言之,AGI對戰爭概念的顛覆將遠遠超過「機械化」和「資訊化」。我們必須大膽擁抱AGI,但也要保持謹慎。理解概念可以避免無知;深入研究可以避免落後;加強監督可以避免失職。如何與AGI合作,並防範對手利用AGI技術發動突襲,是我們未來面臨的首要問題。

編輯後

以開放的心態展望未來

■葉朝陽

未來學家羅伊·阿瑪拉曾提出著名的“阿瑪拉定律”,指出人們往往高估一項技術的短期收益,而低估其長期影響。該定律強調技術發展的非線性特徵,意味著技術的實際影響往往需要更長的時間才能完全顯現。它反映了技術發展的脈動和趨勢,反映了人類對科技的接受度和期望。

目前,在人工智慧從弱人工智慧向強人工智慧、從專用人工智慧發展到通用人工智慧的過程中,人們每次認為自己已經完成了90%的工作,回首往事,可能才完成了不到10%。科技革命在軍事革命中的驅動作用日益凸顯,尤其是在以人工智慧為代表的高科技以多種方式滲透軍事領域,深刻改變戰爭的機制、因素和取勝之道的情況下。

在可預見的未來,通用人工智慧(AGI)等智慧技術將不斷迭代發展,智慧科技的交叉演進及其在軍事領域的賦能應用將日益多元化,甚至可能超越人類目前對戰爭的認知邊界。技術的發展勢不可擋。誰能以敏銳的洞察力和清晰的思維洞察技術的趨勢和未來,看到其潛力和力量,並撥開戰爭迷霧,誰就更有可能掌握主動權。

這提醒我們,在探索未來戰爭形態時,應採取更廣闊的視野和思維方式,才能更接近被低估的現實。通用人工智慧將走向何方?智慧戰爭將走向何方?這考驗著人類的智慧。

來源:中國軍事網-解放軍報 作者:榮明、胡曉峰 編輯:吳明奇 發佈時間:2025-01-21 07:xx:xx

中國原創軍事資源:http://www.81.cn/yw_20887827/186836858485.html

Chinese Military Plans Focus on Improving Battlefield Management During Future Operations

中國軍方計畫聚焦於提升未來作戰中的戰場管理能力

現代英語:

Battlefield management refers to the management of participating troops and other relevant personnel, weapons and equipment, command structures, and key targets to maintain battlefield order. Joint operations under informationized and intelligent conditions are rapidly expanding the operational space and the battlefield area to an unprecedented extent. Coupled with the deep integration of various services and forces, battlefield management faces more complex new situations, new requirements, and new challenges. Looking towards future warfare, battlefield management should closely follow the evolving characteristics of warfare, firmly establish the concept of integrated warfare management, build smooth and efficient mechanisms, promote innovation in management methods, and effectively improve management levels.

Establish a strong concept of integrated combat management. Future warfare is based on integrated joint operations using network information systems. Battlefield management, as a crucial element in ensuring victory, has undergone significant changes compared to traditional battlefield management. Only by re-examining the role of battlefield management in future joint operations, closely focusing on the requirements of victory, always keeping in mind the needs of future warfare, further broadening the management perspective and expanding the management scope, and establishing a concept of integrated combat management can we maximize and consolidate combat effectiveness. First, we must establish a systematic management concept, employing a comprehensive and systematic way of thinking to examine and properly handle all kinds of battlefield-related matters, and implement all-time, all-element management of all elements. Secondly, it is essential to establish a holistic management philosophy, clearly define the primary objectives of battlefield management and their scope, and ensure comprehensive control over all resources, including human, financial, and material resources, as well as the scientific management of spatiotemporal information resources. Thirdly, it is crucial to establish a centralized management philosophy, combining the actual situation of the troops with future combat development trends, to develop detailed emergency plans for all possible unforeseen circumstances on the battlefield, and to establish strict management discipline based on the assigned tasks and personnel, ensuring coordinated and consistent troop actions.

Establish a smooth and efficient mechanism. Future joint operations will involve not only the joint operations of various services and arms, but also the overall joint operations of forces in other fields. The personnel composition will be complex, the forces will be intertwined and overlapping, and the high degree of dispersion of weapons, equipment, and key targets will further increase the difficulty of management. In joint operations, problems such as complex management relationships, loose management structures, and disrupted management chains are prone to arise. Establishing a smooth and efficient management mechanism can improve the quality and efficiency of battlefield management and effectively solve related problems. Therefore, based on the joint operations system, a top-down command structure and a smooth information exchange mechanism should be established to build a timely and efficient operational management system. This encompasses close collaboration between commanders at all levels and the command system, as well as real-time interconnection and coordination among various combat platforms and weapon systems. Throughout the process, a streamlined yet responsive and continuous management mechanism is established to meet the evolving needs of the battlefield environment.

Promote innovation in management methods. The large-scale application of cutting-edge technologies in the military has transformed combat forms and patterns, requiring corresponding innovation in battlefield management to adapt to the new challenges brought about by new situations and problems. Efforts should be focused on shifting from traditional, extensive, experience-based management to intensive, precise management, continuously simplifying management processes, further compressing management chains, and improving management efficiency. Instructions from superiors must be received, understood, and implemented quickly; emergencies must be grasped, judged, and handled quickly; and management problems must be identified, resolved, and reflected upon quickly to avoid unnecessary losses caused by complex management. The traditional, singular management model must be changed, focusing on all types of personnel and elements in management, managing flexibly according to time and place, continuously enhancing pertinence and effectiveness, and promoting overall management efficiency.

現代國語:

戰場管理是指對參戰部隊及其他相關人員、武器裝備、指揮體系及重點目標進行管理,以維持戰場秩序。資訊化、智慧化條件下的聯合作戰正以前所未有的規模迅速拓展作戰空間和戰場範圍。加之各軍種、各力量的深度融合,戰場管理面臨更複雜的新形勢、新要求和新挑戰。展望未來戰爭,戰場管理應緊跟戰爭演變特徵,堅定確立一體化作戰管理理念,建構流暢高效的機制,推動管理方式創新,有效提升管理水準。

確立一體化作戰管理理念。未來戰爭是建立在網路資訊系統基礎上的一體化聯合作戰。戰場管理作為確保勝利的關鍵要素,與傳統戰場管理相比發生了顯著變化。只有重新檢視戰場管理在未來聯合作戰中的作用,緊扣勝利要求,始終牢記未來戰爭的需求,進一步拓寬管理視野、擴大管理範圍,確立一體化作戰管理理念,才能最大限度地提升和鞏固作戰效能。首先,必須建立系統化的管理理念,運用全面系統的思維方式,對戰場各類事務進行全面、系統的審視和妥善處理,實行全時、全要素的統籌管理。其次,必須建立整體性的管理理念,明確戰場管理的主要目標和範圍,確保對人力、財力、物力等所有資源進行全面管控,並對時空資訊資源進行科學管理。第三,必須建立集中統一的管理理念,結合部隊實際情況和未來作戰發展趨勢,針對戰場上可能出現的各種突發情況制定詳細的應急預案,並根據任務和人員配置建立嚴格的管理紀律,確保部隊行動協調一致。

建立順暢高效的機制。未來的聯合作戰不僅涉及各軍種的聯合作戰,也涉及其他領域部隊的全面聯合作戰。人員構成複雜,兵力交織重疊,武器裝備和重點目標高度分散,進一步增加了管理難度。在聯合作戰中,管理關係複雜、管理結構鬆散、管理鏈斷裂等問題容易出現。建立順暢有效率的管理機制,能提升戰場管理的品質與效率,有效解決相關問題。因此,應基於聯合作戰體系,建立由上而下的指揮結構和順暢的資訊交流機制,建構及時且有效率的作戰管理體系。這包括各級指揮官與指揮系統的緊密協作,以及各作戰平台和武器系統之間的即時互聯互通和協同配合。在此過程中,建立精簡且有效率、反應迅速且持續的管理機制,以滿足不斷變化的戰場環境需求。

推進管理方法創新。尖端技術在軍事領域的大規模應用改變了作戰形式和格局,對戰場管理提出了相應的創新要求,以適應新形勢和新問題帶來的挑戰。應著重從傳統的、粗放的、經驗式的管理轉向精簡的、精準的管理,不斷簡化管理流程,進一步縮短管理鏈,提高管理效率。上級指示必須迅速接收、理解和執行;突發事件必須迅速掌握、判斷和處理;管理問題必須迅速發現、解決和反思,避免因管理過於複雜而造成不必要的損失。必須改變傳統的、單一的管理模式,關注各類人員和各類要素的管理,根據時間和地點靈活管理,不斷提高管理的針對性和有效性,從而提升整體管理效率。

中國軍網與國防部網 2024年5月14日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-05-14&paperNumber=078&articleid=9838089893

A Brief Analysis of the Characteristics and Patterns of Chinese Intelligent Warfare

中國情報戰的特徵和模式簡析

現代英語:

Currently, the rapid development of intelligent technologies, primarily artificial intelligence, has triggered a chain of breakthroughs in the military field, leading to significant changes in the concepts, elements, and methods of winning wars, and accelerating the evolution of warfare towards intelligence. Intelligent warfare, as a new form of warfare following mechanized and informationized warfare, represents a comprehensive upgrade and reshaping of force systems, combat methods, and battlefield space. A forward-looking analysis of the characteristics and patterns of intelligent warfare is crucial for accelerating the development of military intelligence, forging intelligent combat capabilities, seizing strategic initiative, and winning future intelligent wars.

Intellectual control becomes the core of winning wars.

Looking back at the history of human warfare, control of land, sea, air, and space has become the focus of contention in different historical periods. Control of physical space is crucial for winning mechanized warfare, while information warfare relies even more heavily on information superiority. Information superiority has surpassed physical space superiority to become the core superiority in information warfare. It is clear that technology has significantly influenced the historical trajectory of the evolution of war superiority. In the era of intelligent warfare, massive amounts of data need to be transmitted, acquired, and processed in real time. Manned, unmanned, and swarm combat platforms need to be more intelligent and autonomous, and the operational chain “OODA” (Output-Output-Action) needs to be efficiently and rapidly closed. All of these rely on intelligent technologies, primarily artificial intelligence, for empowerment. Intelligence superiority will dominate the outcome of future wars.

The pursuit of dominance in warfare has always been a relentless endeavor in the military practices of various countries. Since the 1990s, the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War have fully demonstrated the battlefield dominance brought about by information superiority. Currently, countries worldwide are vigorously promoting the military application of artificial intelligence, establishing relevant functional departments, and clarifying development priorities. The US Department of Defense’s “Data, Analytics, and Artificial Intelligence Adoption Strategy” and the UK Ministry of Defence’s “Defense Artificial Intelligence Strategy” are both aimed at building powerful militaries for the intelligent era. In the future, the competition among militaries for intelligent superiority will continue and intensify, pushing the control of intelligence to become a core element of victory in warfare.

Human-machine integration has become a basic form of combat force.

From the perspective of combat force development, the dominance of unmanned combat forces is an inevitable trend. The deployment of unmanned systems on the battlefield does not simply change the way humans fight, but rather alters the most basic unit involved in combat. Currently, unmanned combat forces have become a key focus of development for militaries worldwide. In August 2023, the US military announced the “Replicator” program, aiming to deploy thousands of low-cost, expendable unmanned autonomous systems within 18-24 months. In April 2025, the US Department of Defense released a memorandum titled “Army Transformation and Acquisition Reform,” planning to equip each combat division with approximately 1,000 drones. Early Russian military plans clearly stated that by 2025, unmanned equipment would account for over 30% of its force. In May 2025, the British Army released the “20-40-40” strategic doctrine, aiming for an overall unmanned force ratio of 80%. Objectively speaking, the level of intelligence of unmanned equipment currently used in the military is generally low, with most still relying on remote control by combat personnel. For a considerable period in the future, improving the autonomy of machines will remain a key focus and trend in the development of unmanned equipment, and this increased autonomy will, in turn, lead to wider application of unmanned equipment.

From the perspective of artificial intelligence technology development trends, human-machine integration is an inevitable choice for achieving complementary advantages between humans and machines while ensuring the safety and controllability of machines. On the one hand, human-machine integration is an inevitable choice for fully leveraging the respective strengths of biological and machine intelligence. Looking at the development history of artificial intelligence, machines possess advantages surpassing humans in computation and perception, excelling in data processing, classification and recognition, and real-time analysis. However, humans still retain advantages in situational awareness, forward-looking reasoning, and command and decision-making. Effectively leveraging the respective strengths of humans and machines is the optimal choice for solving complex problems. On the other hand, human-machine integration is an inevitable choice for ensuring the safety and controllability of machine intelligence. No matter how superior a machine’s performance, it cannot escape human control and cannot harm humanity itself. Human-machine integration enables macroscopic controllability and microscopic autonomy of machines, thereby achieving the optimal state where humans lead the operational intent while machines handle the operational details.

Unmanned intelligent warfare has become the main form of combat.

Currently, technologies such as artificial intelligence and unmanned autonomous systems are deeply embedded in the military field, driving the continuous upgrading and reshaping of combat styles. Engels once profoundly pointed out: “Once technological advancements can be used for military purposes and have been used for military purposes, they immediately, almost forcibly, and often against the will of the commanders, cause changes or even revolutions in the methods of warfare.” Unmanned warfare first appeared during World War II, but due to the limited technological development at the time, its application scenarios and combat functions were relatively simple. Since the 21st century, the functions of unmanned warfare have been continuously expanding. In the Afghan War, the US military used MQ-1 “Predator” drones to kill al-Qaeda leaders; in the Iraq War, the US-led coalition used more than 20 types of ground unmanned systems and unmanned underwater vehicles for reconnaissance, mine clearance, and obstacle removal. In the latest local wars, unmanned warfare has been widely used in reconnaissance and surveillance, fire strikes, terminal guidance, and communication relay missions. Meanwhile, manned/unmanned collaborative operations have become an important form, and unmanned swarm operations have played a crucial role. Practice shows that combat personnel are quietly moving away from the front lines, and unmanned warfare has become an important style of modern warfare. With continuous breakthroughs in intelligent technology, the intelligence and autonomy of equipment, as well as the degree of human-machine integration, will be significantly improved. At the same time, artificial intelligence will improve the speed, quality, and accuracy of commanders’ decision-making, and the intelligence chain, command and control chain, strike chain, and support chain will be efficiently linked, promoting a second-level response in the “observation-judgment-decision-action” closed loop. This will drive unmanned warfare to develop to a higher level of intelligence, such as intelligent “swarms,” ​​”Trojan horse” infiltration, and distributed autonomous combat styles, which will fundamentally change the form and rules of traditional warfare. Unmanned intelligent warfare will become the main combat mode of intelligent warfare.

Real-time, multi-dimensional, cross-domain operations have become a key requirement for the struggle for spacetime.

Time and space are the fundamental components and operational basis of warfare. In the era of intelligent warfare, the spatiotemporal perspective of war will undergo fundamental changes. First, time will be extremely compressed. Intelligent warfare has truly entered the “detect and destroy” era, significantly accelerating the pace of combat. The increasing autonomy of unmanned equipment further separates humans from equipment, continuously compressing the time for detection and strike. The intelligent interconnection of unmanned and manned equipment further enhances the ability to perceive the battlefield and respond to complex battlefield environments. The temporal segmentation of battlefield situation changes is more detailed and precise, with increasingly shorter time slots and smaller granularities, resulting in an unprecedented increase in the amount of combat content carried per unit of time and its utilization efficiency. Second, space will expand infinitely. The military application of unmanned intelligent technologies is constantly breaking through the logical limits of human thinking, the physiological limits of senses, and the physical limits of existence. The battlefield is further extending to polar regions, the deep sea, and deep space. The territory of war is expanding from physical space and information space to cognitive space, forming operational domains such as the physical domain and the information domain. Third, time and space will act in parallel. Intelligent warfare is subverting the spatiotemporal relationship of the traditional battlefield, making traditional strategies and tactics of trading time for space or space for time ineffective. With increasingly tighter combat schedules, expanded combat spaces, and more diverse combat methods, coupled with a more synchronized spatiotemporal relationship and a more integrated spatiotemporal effect, the human-machine collaborative approach of “humans leading the intent, machines executing the operation” may become the optimal solution. Intelligent auxiliary command and control systems can optimize various functional combinations from spatially distributed combat resources based on the characteristics and time-sensitive features of the targets. They can also dynamically adjust on the spot, forming a multi-target—multi-sensor—multi-shooter parallel strike mode with a multi-kill chain, leaving the enemy nowhere to hide spatially and no time to escape, maximizing the combined effect of spatiotemporal elements.

Self-learning can evolve into a new mode of combat power generation.

Combat power generation models are a relatively stable set of methods, approaches, and standard forms for forming and improving combat power. In the era of mechanized warfare, combat power generation mainly relied on the additive effect of personnel and weaponry; in the era of information warfare, it mainly relied on the multiplicative effect of personnel, weaponry, and information; in the era of intelligent warfare, it mainly relies on the exponential effect of personnel, weaponry, and intelligence. Intelligent technologies, represented by artificial intelligence, are endowing combat systems with the ability to learn, grow, and evolve on their own. Among these, algorithms are the “accelerators” of combat power generation. Combat power in the intelligent era is generated based on accelerated algorithmic processes. The sophistication of algorithms determines the “intelligence” of intelligent equipment. Algorithms can drive the acceleration of situational awareness through sensory elements, accelerate analysis and judgment through data fusion, and accelerate decision-making through precise calculations, detailed calculations, in-depth calculations, and deep reasoning. Data is the “multiplier” of combat power generation, influencing combat power through algorithms. The quantity and quality of data have a significant impact on combat power generation; more high-quality data results in higher algorithmic intelligence and more efficient combat power generation. Computing power is the “catalyst” for combat power generation. In past warfare, limited by technological development, war calculations were mostly rough estimates, and computing power played a minor, inconspicuous role in combat capability generation. In the era of intelligent warfare, however, computing power, through algorithms, significantly catalyzes combat capability generation, becoming an indispensable and crucial element. The rapidly developing artificial intelligence models of recent years, based on algorithmic improvements, large-scale high-quality data supply, and high-performance computing support, demonstrate powerful self-learning and evolutionary capabilities. This migration of capabilities to the military field will inevitably have a profound impact on combat capability generation models. The self-learning and evolutionary capabilities previously possessed only by biological organisms will become essential capabilities of intelligent combat systems, thus significantly distinguishing them from information-based combat systems.

現代國語:

目前,以人工智慧為代表的智慧技術的快速發展,引發了軍事領域的一系列突破,導致戰爭理念、要素和方式發生重大變革,加速了戰爭向智慧化的演進。智能戰作為繼機械化戰爭和資訊化戰爭之後的新型戰爭形式,代表部隊體系、作戰方式和戰場空間的全面升級和重塑。對智慧戰的特徵和格局進行前瞻性分析,對於加速軍事情報發展、鍛造智慧作戰能力、奪取戰略主動權、贏得未來智能戰至關重要。

智力控製成為戰爭取勝的核心。

回顧人類戰爭史,陸海空四大領域的控制權在不同歷史時期都曾是爭奪的焦點。物理空間的控制是贏得機械化戰爭的關鍵,而資訊戰則更依賴資訊優勢。資訊優勢已超越實體空間優勢,成為資訊戰的核心優勢。顯而易見,科技對戰爭優勢演進的歷史軌跡產生了重大影響。在智慧戰爭時代,海量資料需要即時傳輸、取得和處理。有人、無人和集群作戰平台需要更智慧和自主化,作戰鏈「OODA」(輸出-輸出-行動)需要有效率快速地閉合。所有這些都依賴智慧技術,尤其是人工智慧,來賦能。情報優勢將主導未來戰爭的走向。

追求戰爭優勢一直是各國軍事實踐中不懈的努力。自1990年代以來,海灣戰爭、科索沃戰爭、阿富汗戰爭和伊拉克戰爭充分展現了資訊優勢帶來的戰場優勢。目前,世界各國都在大力推動人工智慧的軍事應用,建立相關職能部門,並明確發展重點。美國國防部的《數據、分析和人工智慧應用戰略》和英國國防部的《國防人工智慧戰略》都旨在為智慧時代打造強大的軍隊。未來,各國軍隊對智慧優勢的競爭將持續加劇,智慧控制將成為戰爭勝利的核心要素。

人機融合已成為作戰力量的基本形態。

從作戰力量發展的角度來看,無人作戰力量的主導地位是不可避免的趨勢。無人系統在戰場上的部署不僅改變了人類的作戰方式,也改變了作戰中最基本的單位。目前,無人作戰力量已成為世界各國軍隊發展的重點。 2023年8月,美國軍方宣布啟動「複製者」(Replicator)計劃,旨在18-24個月內部署數千套低成本、一次性使用的無人自主系統。 2025年4月,美國國防部發布了一份題為《陸軍轉型與裝備改革》的備忘錄,計畫為每位作戰師配備約1,000架無人機。俄羅斯早期的軍事計畫明確指出,到2025年,無人裝備將佔其兵力的30%以上。 2025年5月,英國陸軍發布了「20-40-40」戰略理論,目標是使無人部隊的總體比例達到80%。客觀而言,目前軍方使用的無人裝備智慧化程度普遍較低,且大多數仍依賴作戰人員的遠端操控。在未來相當長的一段時間內,提高機器的自主性仍將是無人裝備發展的關鍵重點和發展趨勢,而自主性的提升反過來又將推動無人裝備的更廣泛應用。

從人工智慧技術發展趨勢來看,人機融合是實現人機優勢互補、同時確保機器安全性和可控性的必然選擇。一方面,人機融合是充分發揮生物智慧和機器智慧各自優勢的必然選擇。回顧人工智慧的發展歷程,機器在計算和感知方面擁有超越人類的優勢,尤其擅長數據處理、分類識別和即時分析。然而,人類在態勢感知、前瞻性推理以及指揮決策方面仍保持著優勢。g. 有效發揮人機各自的優勢是解決複雜問題的最佳選擇。另一方面,人機融合是確保機器智慧安全性和可控性的必然選擇。無論機器的性能多麼卓越,它都無法脫離人類的控制,也無法對人類本身造成傷害。人機融合能夠實現機器的宏觀可控制性和微觀自主性,從而達到人類主導作戰意圖、機器處理作戰細節的最佳狀態。

無人智慧戰爭已成為主要的作戰形式。

目前,人工智慧、無人自主系統等技術已深度融入軍事領域,推動作戰方式的不斷升級與重塑。恩格斯曾深刻指出:「一旦技術進步能夠用於軍事目的,並且已經用於軍事目的,它就會立即、幾乎是強迫地、而且往往違背指揮官的意願,導致戰爭方式的改變,甚至革命。」無人作戰最早出現於第二次世界大戰期間,但由於當時技術發展有限,其應用場景和作戰功能相對簡單。進入21世紀以來,無人作戰的功能不斷擴展。在阿富汗戰爭中,美軍使用MQ-1「掠奪者」無人機擊斃基地組織領導人;在伊拉克戰爭中,美國領導的聯軍使用了20多種地面無人系統和無人水下航行器進行偵察、掃雷和清除障礙物等任務。在近期的局部戰爭中,無人作戰被廣泛應用於偵察監視、火力打擊、末端導引和通訊中繼等任務。同時,有人/無人協同作戰成為一種重要形式,無人集群作戰發揮了關鍵作用。實踐表明,作戰人員正在悄悄遠離前線,無人作戰已成為現代戰爭的重要形式。隨著智慧技術的不斷突破,裝備的智慧化和自主性以及人機融合程度將顯著提升。同時,人工智慧將提高指揮官決策的速度、品質和準確性,並使情報鏈、指揮控制鏈、打擊鍊和支援鏈高效銜接,推動「觀察-判斷-決策-行動」閉環中的二級回應。這將推動無人作戰朝向更高層次的智慧化發展,例如智慧「集群」、「特洛伊木馬」滲透和分散式自主作戰模式,從根本上改變傳統戰爭的形式和規則。無人智慧作戰將成為智慧戰爭的主要作戰模式。

即時、多維、跨域作戰已成為爭奪時空的關鍵要求。

時間和空間是戰爭的基本組成部分和作戰基礎。在智慧戰爭時代,戰爭的時空觀將會發生根本性的改變。首先,時間將被極大壓縮。智慧戰爭已真正進入「探測與摧毀」時代,顯著加快了作戰節奏。無人裝備自主性的不斷提高進一步拉開了人與裝備的距離,持續壓縮了探測與打擊的時間。無人裝備與有人裝備的智慧互聯進一步增強了對戰場的感知能力和對複雜戰場環境的反應能力。戰場態勢變化的時間分割更加細緻、精確,時間間隔越來越短,粒度越來越小,從而以前所未有的速度提升了單位時間內作戰內容的承載量及其利用效率。其次,空間將無限擴展。無人智慧技術的軍事應用不斷突破人類思維的邏輯極限、感官的生理極限以及存在的物理極限。戰場進一步延伸至極地、深海和深空。戰爭的疆域正從物理空間和資訊空間擴展到認知空間,形成物理域和資訊域等作戰領域。第三,時間和空間將並行運作。智慧戰爭正在顛覆傳統戰場的時空關係,使得以時間換空間或以空間換時間的傳統戰略戰術失效。隨著作戰時間日益縮短、作戰空間不斷擴大、作戰方式日益多樣化,以及時空關係日益同步與更加…時空一體化效應使得「人引導意圖,機器執行操作」的人機協同作戰模式成為最優解。智慧輔助指揮控制系統能夠根據目標的特徵和時間敏感性,優化空間分佈作戰資源的各種功能組合,並能進行現場動態調整,形成多目標、多感測器、多射手並行打擊模式,實現多殺傷鏈,使敵人無處可藏,無處可逃,最大程度地發揮時空要素的綜合效應。

自學習可以演化成一種新的戰鬥力生成模式。

戰鬥力生成模式是一套相對穩定的形成和提升戰鬥力的方法、途徑和標準形式。在機械化戰爭時代,戰鬥力生成主要依靠人員和武器的疊加效應;在資訊戰時代,則主要依靠人員、武器和資訊的乘積效應。在智慧戰爭時代,作戰主要依賴人員、武器和情報的指數級成長效應。以人工智慧為代表的智慧技術賦予作戰系統自主學習、成長和演進的能力。其中,演算法是作戰能力生成的「加速器」。智慧時代的作戰能力正是基於加速的演算法流程而產生的。演算法的複雜程度決定了智慧裝備的「智能」程度。演算法可以透過感知元素加速態勢感知,透過資料融合加速分析判斷,並透過精確計算、詳細計算、深度計算和深度推理加速決策。數據是作戰能力產生的“倍增器”,它透過演算法影響作戰能力。數據的數量和品質對作戰能力的產生有著顯著的影響;更多的高品質數據能夠帶來更高的演算法智慧和更有效率的作戰能力產生。運算能力是作戰能力生成的「催化劑」。在以往受限於科技發展的戰爭中,戰爭計算大多是粗略估計,運算能力在作戰能力生成中扮演的角色微不足道。然而,在智慧戰爭時代,運算能力透過演算法顯著促進了作戰能力的生成,成為不可或缺的關鍵要素。近年來,基於演算法改進、大規模高品質數據供應和高效能運算支援的快速發展的人工智慧模型,展現出強大的自學習和進化能力。這種能力向軍事領域的遷移必將對作戰能力生成模型產生深遠影響。以往僅生物體才具備的自學習與進化能力,將成為智慧作戰系統的核心能力,因而顯著區別於資訊型作戰系統。

中國原創軍事資源:http://www.81.cn/ll_208543/186841829899.html

Functional Orientation of the Modern Combat System with Chinese Characteristics

中國特色現代作戰體系的功能定位

2018年08月14日 xx:xx 来源:解放军报

現代英語:

Functional Orientation of the Modern Combat System with Chinese Characteristics

  Key Points

  ● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.

  ● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.

  The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.

  Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.

  The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.

  A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.

  Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.

  Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.

  The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.

  Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.

  The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.

  Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.

  Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.

  The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.

  Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.

  (Author’s affiliation: Institute of War Studies, Academy of Military Sciences)

Zhang Qianyi

現代國語:

中國特色現代作戰體系的功能取向

要點提示

●機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。

●傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告提出,站在新的歷史起點上,面對強國強軍的時代要求,“構建中國特色現代作戰體系”。這是適應戰爭形態加速演變的時代要求,深入貫徹習近平強軍思想、全面推進國防和軍隊現代化、瞄準建設世界一流軍隊的戰略抉擇。其中,對中國特色現代作戰體系功能取向的把握,極大影響著體系構建的目標、方向和質量。

抓住時代機遇,以機械化信息化智能化融合發展為歷史方位

作戰體係是戰爭的物質基礎,與戰爭形態緊密關聯。當今世界,新一輪科技革命和產業革命正在孕育興起,一些重大科學問題的原創性顛覆性突破正在開闢新前沿新方向,促使人類社會向智能化快速轉型,戰爭形態向智能化加速演變。當前,我軍正處於機械化信息化複合發展階段,機械化尚未完成、信息化深入推進,又面臨智能化軍事革命帶來的機遇和挑戰。新時代為我們實現創新超越、快速發展提供了難得歷史機遇,也為我軍作戰體系建設實現跨代超越、彎道超車提供了難得歷史機遇。

新時代新起點,需要確立新的坐標系。機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。應準確把握戰爭形態演變的歷史進程,準確把握機械化信息化複合發展的歷史階段,準確把握智能化戰爭帶來的歷史機遇,堅持把軍事智能化建設擺在優先發展位置,以智能化引領帶動機械化信息化,在智能化建設全局中統籌機械化信息化,在智能化進程中完成機械化信息化發展的任務;注重搞好軍事智能化發展的頂層設計,研究制定軍事智能化發展戰略綱要和路線圖,明確智能化發展的關鍵領域、核心技術、重點項目和步驟措施等,加快軍事智能化作戰體系建設進程;盡快在深度學習、跨界融合、人機協同、自主操控、神經網絡等關鍵技術上取得重大進展,提高先進科技力物化為先進武器裝備的能力,為構建現代作戰體系提供物質條件。

突出體係對抗,以打造聯合作戰和全域作戰能力為核心指標

信息化局部戰爭,一體化聯合作戰成為基本形式,網絡支撐、信息主導、體係對抗成為主要特徵,戰鬥力生成模式向基於網絡信息體系轉變。當前及今後一個時期,我國地緣戰略環境仍然複雜,傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,同時隨著國家利益的拓展,海外利益安全問題日益凸顯,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告指出,“提高基於網絡信息體系的聯合作戰能力、全域作戰能力”,這是對新時代我軍作戰能力的新概括,也是中國特色現代作戰體系建設的核心指標。應積極探索現代戰爭特點規律和製勝機理,前瞻設計未來作戰行動模式、力量運用方式、指揮協同程式等,為構建中國特色現代作戰體系提供先進理論支撐;按照軍委管總、戰區主戰、軍種主建的新格局,適應聯合作戰指揮新體制、軍隊規模結構和力量編成改革,突出網絡信息體系這個核心支撐,打造能夠生成強大聯合作戰能力的作戰體系,充分發揮諸軍兵種作戰力量整體威力;著眼妥善應對各戰略方向、傳統和非傳統安全威脅,確保我軍可靠遂行各種作戰任務,打造能夠生成強大全域作戰能力的作戰體系,實現陸海空天電網多維戰場、多域戰場的整體聯動。

著眼現實威脅,以形成對敵非對稱作戰優勢為戰略指向

當今世界,國際形勢正處在新的轉折點上,大國戰略博弈呈現新態勢,圍繞國際和地區秩序主導權的鬥爭空前激烈。霸權主義和強權政治陰魂不散,一些國家加緊對華防範和遏制。我國地緣戰略環境日趨複雜,存在多重不穩定因素,面對多方向安全壓力,我海上安全環境日趨複雜等,這些都使得國家安全面臨的危險和挑戰增多。

有效應對現實軍事安全威脅,是我軍事鬥爭準備的重要戰略任務,也是中國特色現代作戰體系建設的戰略指向。應注重技術跟進,大力研發先進裝備,力避與潛在對手拉開新的技術代差,為作戰體系建設提供堅實物質支撐,同時注重發揮我軍歷來堅持的靈活機動、自主作戰原則,揚長避短,擊敵弱項、軟肋,不單純在高科技領域“與龍王比寶”,著眼懾敵止戰,加快發展非對稱制衡手段,加強常規戰略手段、新概念新機理和新型領域戰略威懾手段建設,支撐形成具有新質威懾與實戰能力的新型作戰體系;不懼直面過招,立足最複雜最困難情況,構建能夠提供多種手段、多種力量、多種方式應對多樣化戰爭威脅的作戰體系,確保一旦有事,充分發揮作戰體係綜合效能,確保戰而勝之、以戰止戰。

推進軍民融合,以國家戰略體系支撐打贏新時代人民戰爭為根本要求

戰爭偉力之最深厚根源存在於民眾之中。人民戰爭思想是我軍克敵制勝的法寶。現代戰爭是敵對雙方綜合實力的整體對抗,涉及政治、經濟、軍事、科技、文化等各條戰線,各種武裝力量緊密結合、各種鬥爭形式相互配合,民用技術和民間力量在戰爭中的地位作用日益提升,更加要求把國防體系融入國家經濟社會體系,努力打贏新時代人民戰爭。

發揮軍民融合時代偉力,以國家戰略體系支撐打贏新時代人民戰爭,是中國特色現代作戰體系建設的根本要求。要深入實施軍民融合發展國家戰略,推動我軍作戰體系建設深度融入國家戰略體系,利用國家資源和整體力量實現戰鬥力的持續躍升,最大限度發揮人民戰爭的整體威力;注重加強在新興戰略領域的軍民融合發展,積極搶占未來軍事競爭的製高點,不斷創造人民戰爭的新優勢;把軍事創新體系納入國家創新體系之中,加強需求對接、協同創新,增強自主創新、原始創新、集成創新能力,主動發現、培育和運用戰略性顛覆性前沿性技術,為構建現代作戰體系提供先進技術支撐;抓好民用資源深度挖掘,強化可服務於國防和軍隊建設的各種資源整合力度,防止重複浪費、自成體系、封閉運行,最大限度發揮民用資源對現代作戰體系構建的孵化效應。

(作者單位:軍事科學院戰爭研究院)

張謙一

中國原創軍事資源:https://www.chinanews.com.cn/mil/2018/08-14/8599617888.shtml

Chinese Military Intelligence Drives Accelerated Development of Cyberspace Warfare

中國軍事情報推動網絡空間戰爭加速發展

現代英語:

The report to the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint operational capabilities and all-domain operational capabilities based on network information systems.” Today’s *PLA Daily* published an article stating that military intelligence is a new trend and direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, while using intelligence to drive mechanization and informatization to a higher level and a higher standard. Cyberspace, as a new operational domain, is a new field with high technological content and the greatest innovative vitality. Under the impetus of military intelligence, it is ushering in a period of rapid development opportunities.Illustration: Lei Yu

Military intelligence is driving the accelerated development of cyberspace operations.

■ Respected soldiers Zhou Dewang Huang Anwei

Three key technologies support the intelligentization of cyberspace weapons.

Intelligence is a kind of wisdom and capability; it is the perception, cognition, and application of laws by all systems with life cycles. Intelligentization is the solidification of this wisdom and capability into a state. Cyberspace weapons are weapons used to carry out combat missions in cyberspace. Their form is primarily software and code, essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, there’s intelligent vulnerability discovery. Vulnerabilities are the foundation of cyber weapon design. The ransomware that spread globally this May exploited a vulnerability in the Microsoft operating system, causing a huge shock in the cybersecurity community. Vulnerabilities are expensive, with a single zero-day vulnerability costing tens to hundreds of thousands of dollars. Previously, vulnerability discovery relied mainly on experienced hackers using software tools to inspect and analyze code. However, at the International Cybersecurity Technology Competition finals held during this year’s China Internet Security Conference, participants demonstrated how intelligent robots could discover vulnerabilities on-site, then use these vulnerabilities to write network code, creating cyber weapons to breach target systems and capture the flag. This change signifies that vulnerability discovery has entered the era of intelligent technology.

Second, intelligent signal analysis and cryptography. Signals are the carriers of network data transmission, and cryptography is the last line of defense for network data security. Signal analysis and cryptography are core technologies for cyberspace warfare. Breaking through signals and cryptography is the fundamental path to entering cyberspace and a primary target of cyber weapons attacks. Intelligent signal analysis solves problems such as signal protocol analysis, modulation identification, and individual identification through technologies such as big data, cloud computing, and deep learning. Cryptography is the “crown jewel” of computational science. Intelligent cryptography, through the accumulation of cryptographic data samples, continuously learns and searches for patterns to find the key to decryption, thereby opening the last door of the network data “safe” and solving the critical links of network intrusion and access.

Thirdly, there is the design of intelligent weapon platforms. In 2009, the U.S. military proposed the “Cyber ​​Aircraft” project, providing platforms similar to armored vehicles, ships, and aircraft for cyberspace operations. These platforms can automatically conduct reconnaissance, load cyber weapons, autonomously coordinate, and autonomously attack in cyberspace. When threatened, they can self-destruct and erase traces, exhibiting a certain degree of intelligence. In the future, the weapons loaded onto “Cyber ​​Aircraft” will not be pre-written code by software engineers, but rather intelligent cyber weapons will be designed in real-time based on discovered vulnerabilities, enabling “order-based” development and significantly improving the targeting of cyberspace operations.

The trend of intelligentization in network-controlled weapons is becoming increasingly prominent.

Weapons controlled by cyberspace, or cyber-controlled weapons, are weapons that connect to a network, receive commands from cyberspace, execute cross-domain missions, and achieve combat effects in physical space. Most future combat weapon platforms will be networked, making military information networks essentially the Internet of Things (IoT). These networks connect to satellites, radars, drones, and other network entities, enabling control from perception and detection to tracking, positioning, and strike. The intelligence of cyber-controlled weapons is rapidly developing across land, sea, air, space, and cyber domains.

In 2015, Syria used a Russian robotic force to defeat militants. The operation employed six tracked robots, four wheeled robots, an automated artillery corps, several drones, and a command system. Commanders used the command system to direct drones to locate militants, and the robots then charged, supported by artillery and drone fire, inflicting heavy casualties. This small-scale battle marked the beginning of robotic “team” operations.

Network-controlled intelligent weapons for naval and air battlefields are under extensive research and development and verification. In 2014, the U.S. Navy used 13 unmanned surface vessels to demonstrate and verify the interception of enemy ships by unmanned surface vessel swarms, mainly by exchanging sensor data, and achieved good results. When tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became its prominent feature of intelligence.

The development of swarms of small, micro-sized drones for aerial combat is also rapid. In recent years, the U.S. Department of Defense has conducted multiple tests of the Partridge micro-drone, capable of deploying dozens or even hundreds at a time. By enhancing its coordination capabilities during reconnaissance missions, progress has been made in drone formation, command, control, and intelligent management.

Space-based cyber-control weapons are becoming increasingly “intelligent.” The space-based cyber-control domain primarily comprises two categories of weapons: reconnaissance and strike weapons. Satellites of various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various microsatellite constellations, satellites are exhibiting new characteristics: small size, rapid launch, large numbers, and greater intelligence. Microsatellite constellations offer greater flexibility and reliability in performing reconnaissance and communication missions, and currently, the world’s leading satellite powers are actively developing microsatellite constellation plans with broader coverage.

Various hypersonic strike weapons are cruising in the air, like a sword of Damocles hanging over people’s heads. The U.S. Air Force Research Laboratory stated that the “hypersonic strike weapon” will begin flight testing around 2018, and other countries are also actively developing similar weapons. The most prominent features of these weapons are their high speed, long range, and high level of intelligence.

Intelligent command information systems are changing traditional combat command methods.

Cyber ​​weapons and weapons controlled by cyberspace constitute the “fist” of intelligent warfare, while the command information systems that direct the use of these weapons are the “brain” of intelligent warfare. Cyberspace operational command information systems must keep pace with the process of intelligentization. Currently, almost all global command information systems face the challenge of “intelligent lag.” Future warfare requires rapid and autonomous decision-making, which places higher demands on intelligent support systems.

In 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) launched the “Deep Green Program,” a research and development program for command and control systems, aiming to enable computer-aided commanders to make rapid decisions and gain a decisive advantage. This is a campaign-level command information system, developed to be embedded into the U.S. Army’s brigade-level C4ISR wartime command information system, enabling intelligent command by commanders. Even today, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace warfare, network targets are represented by a single IP address accessing the network. Their sheer number makes efficient manual operation difficult, necessitating the support of intelligent command and information systems. Currently, intelligent command and information systems need to achieve functions such as intelligent intelligence analysis, intelligent sensing, intelligent navigation and positioning, intelligent decision support, intelligent collaboration, intelligent assessment, and intelligent unmanned combat. In particular, they must enable swarm operational control of unmanned network control systems. All of these requirements urgently demand intelligent command and information systems, necessitating accelerated research and development and application of relevant key technologies.

In conclusion, intelligent cyber weapons and network control weapons, coordinated through intelligent information systems, will form enormous combat capabilities, essentially enabling them to carry out all actions in current combat scenarios. Future warfare, from command force organization to target selection, action methods, and tactical applications, will all unfold within an intelligent context. The “gamification” of warfare will become more pronounced, and operational command methods will undergo significant changes.

In future battlefields, combat will require not only courage but also intelligence.

■ Yang Jian, Zhao Lu

Currently, artificial intelligence is entering a new stage of development and is rapidly penetrating various fields. Influenced by this process, military competition among nations surrounding intelligent technologies has begun. Our army has always been a brave and tenacious people’s army, determined to fight and win. On the future battlefield, we should continue to carry forward our glorious traditions while more broadly mastering and utilizing the latest technological achievements to develop more intelligent weapons and equipment, thereby gaining a decisive advantage on the future battlefield.

Intelligentization is a trend in human societal development, and intelligent warfare is rapidly approaching. The development of military intelligence has a solid foundation thanks to successful innovations that transcend existing computational models, the gradual popularization of nanotechnology, and breakthroughs in research on the mechanisms of the human brain. Consequently, intelligent weaponry is increasingly prominent, surpassing and even replacing human capabilities in areas such as intelligence analysis and combat response. Furthermore, intelligent weaponry offers significant advantages in terms of manpower requirements, comprehensive support, and operating costs, and is increasingly becoming the dominant force in warfare.

The development and application of intelligent weaponry have proven to expand the scope of military operations and significantly enhance the combat effectiveness of troops. In the battlefields of Afghanistan and Iraq, drones have undertaken most of the reconnaissance, intelligence, and surveillance support missions, and have been responsible for approximately one-third of the air strike missions. In the past two years, Russia has also repeatedly used highly intelligent unmanned reconnaissance aircraft and combat robots in the Syrian theater. Intelligent weaponry is increasingly demonstrating its significant value, surpassing that of traditional weapons.

In future wars, the contest of intelligent combat systems will be the key to victory in high-level competition and ultimate showdowns. As the development of technology-supported military means becomes increasingly uneven, whoever first acquires the capability to conduct intelligent warfare will be better positioned to seize the initiative on the battlefield. Those with a technological advantage will minimize the costs of war, while the weaker will inevitably suffer enormous losses and pay a heavy price. We must not only accelerate innovation in core technologies and the development of weaponry, but also research and explore organizational structures, command methods, and operational models adapted to the development of intelligent military operations. Furthermore, we must cultivate a talent pool capable of promoting intelligent military development and forging intelligent combat capabilities, fully leveraging the overall effectiveness of our military’s combat system, and winning wars in a more “intelligent” manner against our adversaries.

現代國語:

党的十九大报告指出,要“加快军事智能化发展,提高基于网络信息体系的联合作战能力、全域作战能力”。今天的《解放军报》刊发文章指出,军事智能化是机械化、信息化之后军事领域发展的新趋势和新方向,我们要在现有机械化和信息化基础上发展智能化,同时用智能化牵引机械化和信息化向更高水平、更高层次发展。网络空间作为新型作战领域,是科技含量高、最具创新活力的新领域,在军事智能化的牵引下,正在迎来快速发展的机遇期。制图:雷 煜

军事智能化牵引网络空间作战加速发展

■敬兵 周德旺 皇安伟

三大技术支撑网络空间武器智能化

智能是一种智慧和能力,是一切有生命周期的系统对规律的感应、认知与运用,智能化就是把这种智慧和能力固化下来,成为一种状态。网络空间武器是网络空间遂行作战任务的武器,其形态以软件和代码为主,本质上是一段数据。网络空间武器的智能化主要体现在以下三个方面:

一是智能化漏洞挖掘。漏洞是网络武器设计的基础,今年5月在全球范围内传播的勒索病毒软件,就是利用了微软操作系统漏洞,给网络安全界带来了巨大震动。漏洞价格昂贵,一个零日漏洞价值几万到几十万美元不等。以往漏洞的发现,主要依靠有经验的黑客,利用软件工具对代码进行检查和分析。在今年中国互联网安全大会期间举办的国际网络安全技术对抗联赛总决赛中,参赛人员演示由智能机器人现场进行漏洞挖掘,然后通过漏洞编写网络代码,形成网络武器,攻破目标系统,夺取旗帜。这一变化,意味着漏洞挖掘进入了智能化时代。

二是智能化信号分析和密码破译。信号是网络数据传输的载体,密码是网络数据安全最后的屏障,信号分析和密码破译是网络空间作战的核心技术,突破信号和密码是进入网络空间的基本路径,是网络武器攻击的首要目标。智能化信号分析将信号的协议分析、调制识别、个体识别等问题,通过大数据、云计算、深度学习等技术进行解决。密码破译是计算科学“皇冠上的明珠”,智能化密码破译通过对密码数据样本的积累,不断学习、寻找规律,能找到破译的钥匙,从而打开网络数据“保险柜”的最后一道门,解决网络入侵和接入的关键环节。

三是智能化武器平台设计。美军在2009年提出“网络飞行器”项目,为网络空间作战提供像战车、舰艇、飞机这样的平台,可以实现在网络空间里自动侦察、加载网络武器、自主协同、自主攻击,受到威胁时自我销毁、清除痕迹,具备了一定的智能化特征。未来“网络飞行器”加载的武器,不是软件人员编好的代码,而是根据侦察结果直接对发现的漏洞,现场实时进行智能化网络武器设计,实现“订购式”开发,从而极大地提高网络空间作战的针对性。

网控武器的智能化趋势愈加凸显

受网络空间控制的武器简称网控武器,是通过网络连接,接受网络空间指令,执行跨域任务,在物理空间达成作战效果的武器。未来的各种作战武器平台,大多是联网的武器平台,这样军事信息网本质上就是物联网,上联卫星、雷达、无人机等网络实体,从感知到发现、跟踪、定位、打击都可通过网络空间控制,网控武器的智能化已在陆海空天电等战场蓬勃发展。

2015年,叙利亚利用俄罗斯机器人军团击溃武装分子,行动采用了包括6个履带式机器人、4个轮式机器人、1个自动化火炮群、数架无人机和1套指挥系统。指挥员通过指挥系统调度无人机侦察发现武装分子,机器人向武装分子发起冲锋,同时伴随火炮和无人机攻击力量支援,对武装分子进行了致命打击。这仅仅是一场小规模的战斗,却开启了机器人“组团”作战的先河。

海空战场网控智能武器正在大量研发验证。2014年,美国海军使用13艘无人水面艇,演示验证无人艇集群拦截敌方舰艇,主要通过交换传感器数据,取得了不错的效果。2016年再次试验时,新增了协同任务分配、战术配合等功能,“蜂群意识”成为其智能化的显著特点。

用于空中作战的小微型无人机蜂群也在快速发展。近年来,美国国防部多次试验“山鹑”微型无人机,可一次投放数十架乃至上百架,通过提升其执行侦察任务时的协同能力,在无人机编队、指挥、控制、智能化管理等方面都取得了进展。

空天网控武器越来越“聪明”。空天领域主要包含侦察和打击两类网控武器,各种功能的卫星主要执行侦察任务,是典型的侦察传感器。随着各种小微卫星群的出现,使卫星表现出新的特征:体积小、发射快、数量多、更加智能。小微卫星群在执行侦察和通信任务时,有了更大的灵活度和可靠性,目前世界卫星强国都在积极制定覆盖范围更广的小微卫星群计划。

各种高超音速打击武器在空天巡航,仿佛悬在人们头顶的利剑。美国空军研究室称“高速打击武器”将在2018年前后启动飞行试验,其它各国也正在积极研发类似武器。这类武器最大的特点是速度快、航程远、智能化程度高。

智能化指挥信息系统改变传统作战指挥方式

网络空间武器和受网络空间控制的武器,是智能化战争的“拳头”,而指挥这些武器运用的指挥信息系统是智能化战争的“大脑”,网络空间作战指挥信息系统要同步跟上智能化的进程。当前,几乎全球的指挥信息系统都面临着“智能滞后”的难题,未来战争需要快速决策、自主决策,这对智能辅助系统提出了更高要求。

2007年,美国国防部高级研究计划局启动关于指挥控制系统的研发计划——“深绿计划”,以期能实现计算机辅助指挥员快速决策赢得制胜先机。这是一个战役战术级的指挥信息系统,其研发目的是将该系统嵌入美国陆军旅级C4ISR战时指挥信息系统中去,实现指挥员的智能化指挥。直到今天,美军也没有放松对智能化指挥信息系统的开发。

在网络空间作战中,网络目标表现为一个接入网络的IP地址,数量众多导致人工难以高效操作,作战更需要智能化指挥信息系统的辅助支撑。当前,智能化指挥信息系统需要实现智能情报分析、智能感知、智能导航定位、智能辅助决策、智能协同、智能评估、智能化无人作战等功能,尤其是实现对无人网控系统的集群作战操控,这都对智能化指挥信息系统提出了迫切需求,需要加快相应关键技术的研发和运用。

综上所述,智能化的网络武器和网控武器,通过智能化的信息系统调度,将形成巨大的作战能力,基本能遂行现行作战样式中的所有行动。未来战争,从指挥力量编组、到目标选择、行动方式、战法运用等,都将在智能化的背景下展开,战争“游戏化”的特点将更显著,作战指挥方式也将发生重大变化。

未来战场 斗勇更需斗“智”

■杨建 赵璐

当前,人工智能发展进入崭新阶段,并开始向各个领域加速渗透。受这一进程的影响,各国围绕智能化的军事竞争已拉开帷幕。我军历来是一支英勇顽强、敢打必胜的人民军队,未来战场上应继续发扬光荣传统,同时要更加广泛地掌握和利用最新的科技成果,研制出更多智能化的武器装备,在未来战场上掌握制胜先机。

智能化是人类社会发展的趋势,智能化战争正在加速到来。正是由于超越原有体系结构计算模型的成功创新、纳米制造技术的逐步普及,以及对人脑机理研究的突破性进展,军事智能化发展才拥有了坚实的基础。因此,智能化武器装备的表现日益突出,并在情报分析、战斗反应等方面开始超越并替代人类。此外,在人力需求、综合保障、运行成本等方面,智能化武器装备也具有明显的优势,正在日益成为战争的主导力量。

事实证明,智能化武器装备的发展应用,拓展了军事行动的能力范围,大幅提升了部队的作战效能。在阿富汗和伊拉克战场上,无人机已承担了大部分侦察、情报、监视等作战保障任务,并担负了约三分之一的空中打击任务。近两年,俄罗斯在叙利亚战场上也多次使用具有较高智能化程度的无人侦察机、战斗机器人等装备。智能化武器装备正在愈来愈多地展现出超越传统武器的重要价值。

未来战争中,作战体系智能化的较量将是高手过招、巅峰对决的制胜关键。随着以科技为支撑的军事手段发展的不平衡性越来越大,谁先具备实施智能化作战的能力,谁就更能掌握战场的主动权,拥有技术代差优势的强者会尽可能将战争成本降到最低,而弱者必然遭受巨大损失,付出惨重代价。我们不仅要加紧核心技术创新、武器装备研制,还要研究探索适应军事智能化发展的组织结构、指挥方式和运用模式,更要培养一支能够担起推进军事智能化发展、锻造智能化作战能力的人才队伍,充分发挥我军作战体系的整体效能,在与对手的较量中,以更加“智慧”的方式赢得战争。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841898885.htm

Chinese Military Era of Intelligent Warfare Rapidly Approaching

中國軍事智能化戰爭時代迅速來臨

現代英語:

Since the beginning of the new century, the rapid development of intelligent technologies, with artificial intelligence (AI) at its core, has accelerated the process of a new round of military revolution, and competition in the military field is rapidly moving towards an era of intellectual dominance. Combat elements represented by “AI, cloud, network, cluster, and terminal,” combined in diverse ways, constitute a new battlefield ecosystem, completely altering the mechanisms of victory in warfare. AI systems based on models and algorithms will be the core combat capability, permeating all aspects and stages, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made to decision by AI. Traditional human-centric tactics are being replaced by AI models and algorithms, making intellectual dominance the core control in future warfare. The stronger the intelligent combat capability, the greater the hope of subduing the enemy without fighting.

[Author Biography] Wu Mingxi is the Chief Scientist and Researcher of China Ordnance Industry Group, Deputy Secretary-General of the Science and Technology Committee of China Ordnance Industry Group, and Deputy Director of the Science and Technology Committee of China Ordnance Science Research Institute. His research focuses on national defense science and technology and weaponry development strategies and planning, policies and theories, management and reform research. His major works include “Intelligent Warfare – AI Military Vision,” etc.

Competition in the Age of Intellectual Property

The history of human civilization is a history of understanding and transforming nature, and also a history of understanding and liberating oneself. Through the development of science and technology and the creation and application of tools, humanity has continuously enhanced its capabilities, reduced its burdens, freed itself from constraints, and liberated itself. The control of war has also constantly changed, enriched, and evolved with technological progress, the expansion of human activity space, and the development of the times. Since the 19th century, humanity has successively experienced the control and struggle for land power, sea power, air power, space power, and information power. With the rapid development of intelligent technologies such as artificial intelligence (AI), big data, cloud computing, bio-interdisciplinary technologies, unmanned systems, and parallel simulation, and their deep integration with traditional technologies, humanity’s ability to understand and transform nature has been transformed in terms of epistemology, methodology, and operational mechanisms. This is accelerating the major technological revolutions in machine intelligence, bionic intelligence, swarm intelligence, human-machine integrated intelligence, and intelligent perception, intelligent decision-making, intelligent action, intelligent support, as well as intelligent design, research and development, testing, and manufacturing, thus accelerating the evolution of warfare towards the control and struggle for intellectual power.

The rapid development of intelligent technology has garnered significant attention from major countries worldwide, becoming a powerful driving force for the leapfrog development of military capabilities. The United States and Russia have placed intelligent technology at the core of maintaining their strategic status as global military powers, and significant changes have occurred in their development concepts, models, organizational methods, and innovative applications. They have also carried out substantive applications and practices of military intelligence (see Figure 1).

Wu Mingxi 1

In August 2017, the U.S. Department of Defense stated that future AI warfare was inevitable and that the U.S. needed to “take immediate action” to accelerate the development of AI warfare technologies. The U.S. military’s “Third Offset Strategy” posits that a military revolution, characterized by intelligent armies, autonomous equipment, and unmanned warfare, is underway; therefore, they have identified intelligent technologies such as autonomous systems, big data analytics, and automation as key development directions. In June 2018, the U.S. Department of Defense announced the establishment of the Joint Artificial Intelligence Center, which, guided by the national AI development strategy, coordinates the planning and construction of the U.S. military’s intelligent military system. In February 2019, then-President Trump signed the “American Artificial Intelligence Initiative” executive order, emphasizing that maintaining U.S. leadership in AI is crucial for safeguarding U.S. economic and national security, and requiring the federal government to invest all resources in promoting innovation in the U.S. AI field. In March 2021, the U.S. National Security Council on Artificial Intelligence released a research report stating that, “For the first time since World War II, the technological advantage that has been the backbone of U.S. economic and military power is under threat. If current trends do not change, China possesses the power, talent, and ambition to surpass the United States as the global leader in artificial intelligence within the next decade.” The report argues that the United States must use artificial intelligence swiftly and responsibly to prepare for these threats in order to safeguard national security and enhance defense capabilities. The report concludes that artificial intelligence will transform the world, and the United States must take a leading role.

Russia also attaches great importance to the technological development and military application of artificial intelligence. The Russian military generally believes that artificial intelligence will trigger the third revolution in the military field, following gunpowder and nuclear weapons. In September 2017, Russian President Vladimir Putin publicly stated that artificial intelligence is the future of Russia, and whoever becomes the leader in this field will dominate the world. In October 2019, Putin approved the “Russian National Strategy for the Development of Artificial Intelligence until 2030,” aiming to accelerate the development and application of artificial intelligence in Russia and seek a world-leading position in the field.

In July 2017, the State Council of China issued the “New Generation Artificial Intelligence Development Plan,” which put forward the guiding ideology, strategic goals, key tasks and safeguard measures for the development of new generation artificial intelligence towards 2030, and deployed efforts to build a first-mover advantage in the development of artificial intelligence and accelerate the construction of an innovative country and a world-class science and technology power.

Other major countries and military powers around the world have also launched their own artificial intelligence development plans, indicating that the global struggle for “intellectual power” has fully unfolded. Land power, sea power, air power, space power, information power, and intellectual power are all results of technological progress and products of their time, each with its own advantages and disadvantages, and some theories are constantly expanding with the changing times. From the development trend of control over warfare since modern times, it can be seen that information power and intellectual power involve the overall situation, carrying greater weight and influence. In the future, with the accelerated pace of intelligent development, intellectual power will become a rapidly growing new type of battlefield control with greater strategic influence on the overall combat situation.

The essence of military intelligence lies in leveraging intelligent technologies to establish diverse identification, decision-making, and control models for the war system. These models constitute artificial intelligence (AI), the core of the new era’s intellectual power struggle. The war system encompasses: equipment systems such as individual units, clusters, manned/unmanned collaborative operations, and multi-domain and cross-domain warfare; combat forces such as individual soldiers, squads, detachments, combined arms units, and theater command; operational links such as networked perception, mission planning and command, force coordination, and comprehensive support; specialized systems such as network attack and defense, electronic warfare, public opinion control, and infrastructure management; and military industrial capabilities such as intelligent design, research and development, production, mobilization, and support. AI, in the form of chips, algorithms, and software, is embedded in every system, level, and link of the war system, forming a systematic brain. Although AI is only a part of the war system, its increasingly powerful “brain-like” functions and capabilities “surpassing human limits” will inevitably dominate the overall situation of future warfare.

Battlefield Ecosystem Reconstruction

Traditional warfare involves relatively independent and separate combat elements, resulting in a relatively simple battlefield ecosystem, primarily consisting of personnel, equipment, and tactics. In the intelligent era, warfare is characterized by significant integration, correlation, and interaction among various combat elements. This will lead to substantial changes in the battlefield ecosystem, forming a combat system, cluster system, and human-machine system comprised of an AI brain, distributed cloud, communication networks, collaborative groups, and various virtual and physical terminals—collectively known as the “AI, Cloud, Network, Cluster, Terminal” intelligent ecosystem (see Figure 2). Among these, AI plays a dominant role.

Wu Mingxi 2

AI Brain System. The AI ​​brain system of the intelligent battlefield is a networked and distributed system that is inseparable from and interdependent with combat platforms and missions. It can be classified in several ways. Based on function and computing power, it mainly includes cerebellum, swarm brain, midbrain, hybrid brain, and cerebrum; based on combat missions and stages, it mainly includes sensor AI, combat mission planning and decision-making AI, precision strike and controllable destruction AI, network attack and defense AI, electronic warfare AI, intelligent defense AI, and integrated support AI; based on form, it mainly includes embedded AI, cloud AI, and parallel system AI.

The cerebellum mainly refers to the embedded AI in sensor platforms, combat platforms, and support platforms, which mainly performs tasks such as battlefield environment detection, target recognition, rapid maneuver, precision strike, controlled destruction, equipment support, maintenance support, and logistical support.

“Swarm brain” mainly refers to the AI ​​that enables intelligent control of unmanned swarm platforms on the ground, in the air, at sea, in the water, and in space. It mainly performs tasks such as collaborative perception of the battlefield environment, swarm maneuver, swarm attack, and swarm defense. The key components include algorithms for homogeneous swarm systems and algorithms for heterogeneous systems such as manned-unmanned collaboration.

The midbrain mainly refers to the AI ​​system of the command center, data center, and edge computing of the front-line units on the battlefield. It mainly performs dynamic planning, autonomous decision-making, and auxiliary decision-making for tactical unit combat missions under online and offline conditions.

Hybrid brain mainly refers to a hybrid decision-making system in which commanders and machine AI collaborate in combat operations of organized units. Before the battle, it mainly performs human-based combat mission planning; during the battle, it mainly performs adaptive dynamic mission planning and adjustment based on machine AI; and after the battle, it mainly performs hybrid decision-making tasks oriented towards counter-terrorism and defense.

The “brain” primarily refers to the model, algorithm, and tactical libraries of the theater command center and data center, playing a key supporting role in campaign and strategic decision-making. Due to the abundant data, various battlefield AI systems can be trained and modeled here, and then loaded into different mission systems once mature.

In future battlefields, there will be other AIs of different functions, types, and sizes, such as sensor AI, which mainly includes image recognition, electromagnetic spectrum recognition, sound recognition, speech recognition, and human activity behavior recognition. With the rapid development and widespread application of intelligence, AIs of all sizes will exist throughout society, serving the public and society in peacetime, and potentially serving the military in wartime.

Distributed cloud. Military cloud differs from civilian cloud. Generally speaking, a military cloud platform is a distributed resource management system that uses communication networks to search, collect, aggregate, analyze, calculate, store, and distribute operational information and data. By constructing a distributed system and a multi-point fault-tolerant backup mechanism, a military cloud platform possesses powerful intelligence sharing capabilities, data processing capabilities, resilience, and self-healing capabilities. It can provide fixed and mobile, public and private cloud services, achieving “one-point collection, everyone sharing,” greatly reducing information flow links, making command processes flatter and faster, and avoiding redundant and decentralized construction at all levels.

From the perspective of future intelligent warfare needs, military cloud needs to construct at least a four-tiered system: tactical front-end cloud, troop cloud, theater cloud, and strategic cloud. Based on operational elements, it can also be divided into specialized cloud systems such as intelligence cloud, situational awareness cloud, firepower cloud, information warfare cloud, support cloud, and nebula.

1. Front-end cloud primarily refers to computing services provided by units, squads, and platforms, including information perception, target identification, battlefield environment analysis, autonomous and assisted decision-making, and operational process and effect evaluation. The role of front-end cloud is mainly reflected in two aspects. First, it facilitates the sharing and collaboration of computing and storage resources among platforms, and the interactive integration of intelligent combat information. For example, if a platform or terminal is attacked, relevant perception information, damage status, and historical data will be automatically backed up, replaced, and updated through a networked cloud platform, and the relevant information will be uploaded to the higher command post. Second, it provides online information services and intelligent software upgrades for offline terminals.

2. Military cloud primarily refers to the cloud systems built at the battalion and brigade level for operations. Its focus is on providing computing services such as intelligent perception, intelligent decision-making, autonomous action, and intelligent support in response to different threats and environments. The goal of military cloud construction is to establish a networked, automatically backed-up, distributed cloud system connected to multiple links with higher-level units. This system should meet the computing needs of different forces, including reconnaissance and perception, mobile assault, command and control, firepower strikes, and logistical support, as well as the computing needs of various combat missions such as tactical joint operations, manned/unmanned collaboration, and swarm offense and defense.

3. Theater Cloud primarily provides battlefield weather, geographical, electromagnetic, human, and social environmental factors and information data for the entire operational area. It offers comprehensive information on troop deployments, weaponry, movement changes, and combat losses for both sides, as well as relevant information from higher command, friendly forces, and civilian support. Theater Cloud should possess networked, customized, and intelligent information service capabilities. It should interconnect with various operational units through military communication networks (space-based, airborne, ground-based, maritime, and underwater) and civilian communication networks (under secure measures) to ensure efficient, timely, and accurate information services.

4. Strategic cloud is mainly established by a country’s defense system and military command organs. It is primarily based on military information and covers comprehensive information and data related to defense technology, defense industry, mobilization support, economic and social support capabilities, as well as politics, diplomacy, and public opinion. It provides core information, assessments, analyses, and suggestions such as war preparation, operational planning, operational schemes, operational progress, battlefield situation, and battle situation analysis; and provides supporting data such as strategic intelligence, the military strength of adversaries, and war mobilization potential.

The various clouds mentioned above are interconnected, exhibiting both hierarchical and horizontal relationships of collaboration, mutual support, and mutual service. The core tasks of the military cloud platform are twofold: first, to provide data and computing support for building an AI-powered intelligent warfare system; and second, to provide operational information, computing, and data support for various combat personnel and weapon platforms. Furthermore, considering the needs of terminals and group operations, it is necessary to pre-process some cloud computing results, models, and algorithms into intelligent chips and embed them into weapon platforms and group terminals, enabling online upgrades or offline updates.

Communication networks. Military communication and network information constitute a complex super-network system. Since military forces primarily operate in land, sea, air, space, field maneuver, and urban environments, their communication networks encompass strategic and tactical communications, wired and wireless communications, secure communications, and civilian communications. Among these, wireless, mobile, and free-space communication networks are the most crucial components of the military network system, and related integrated electronic information systems are gradually established based on these communication networks.

Military communications in the mechanized era primarily followed the platform, terminal, and user, satisfying specific needs but resulting in numerous silos and extremely poor interconnectivity. In the information age, this situation is beginning to change. Currently, military communication networks are adopting new technological systems and development models, characterized by two main features: first, “network-data separation,” where information transmission does not depend on any specific network transmission method—”network access is all that matters”—any information can be delivered as long as the network link is unobstructed; second, internet-based architecture, utilizing IP addresses, routers, and servers to achieve “all roads lead to Beijing,” i.e., military networking or grid-based systems. Of course, military communication networks differ from civilian networks. Strategic and specialized communication needs exist at all times, such as nuclear button communications for nuclear weapons and command and control of strategic weapons, information transmission for satellite reconnaissance, remote sensing, and strategic early warning, and even specialized communications in individual soldier rooms and special operations conditions. These may still adopt a mission-driven communication model. Even so, standardization and internet connectivity are undoubtedly the future trends in military communication network development. Otherwise, not only will the number of battlefield communication frequency bands, radios, and information exchange methods increase, leading to self-interference, mutual interference, and electromagnetic compatibility difficulties, but radio spectrum management will also become increasingly complex. More importantly, it will be difficult for platform users to achieve automatic communication based on IP addresses and routing structures, unlike email on the internet where a single command can be sent to multiple users. Future combat platforms will certainly be both communication user terminals and also function as routers and servers.

Military communication network systems mainly include space-based communication networks, military mobile communication networks, data links, new communication networks, and civilian communication networks.

1. Space-Based Information Networks. The United States leads in the construction and utilization of space-based information networks. This is because more than half of the thousands of orbiting platforms and payloads in space are American-owned. Following the Gulf War, and especially during the Iraq War, the US military accelerated the application and advancement of space-based information networks through wartime experience. After the Iraq War, through the utilization of space-based information and the establishment of IP-based interconnection, nearly 140 vertical “chimneys” from the Gulf War period were completely interconnected horizontally, significantly shortening the “Out-of-Target-Action” (OODA) loop time. The time from space-based sensors to the shooter has been reduced from tens of hours during the Gulf War to approximately 20 seconds currently using artificial intelligence for identification.

With the rapid development of small satellite technology, low-cost, multi-functional small satellites are becoming increasingly common. As competition intensifies in commercial launches, costs are dropping dramatically, and a single launch can carry several, a dozen, or even dozens of small satellites. If miniaturized electronic reconnaissance, visible light and infrared imaging, and even quantum dot micro-spectroscopy instruments are integrated onto these satellites, achieving integrated reconnaissance, communication, navigation, meteorological, and mapping functions, the future world and battlefield will become much more transparent.

2. Military Mobile Communication Networks. Military mobile communication networks have three main uses. First, command and control between various branches of the armed forces and combat units in joint operations; this type of communication requires a high level of confidentiality, reliability, and security. Second, communication between platforms and clusters, requiring anti-jamming capabilities and high reliability. Third, command and control of weapon systems, mostly handled through data links.

Traditional military mobile communication networks are mostly “centralized, vertically focused, and tree-like structures.” With the acceleration of informatization, the trend towards “decentralized, self-organizing networks, and internet-based” is becoming increasingly apparent. As cognitive radio technology matures and is widely adopted (see Figure 3), future network communication systems will be able to automatically identify electromagnetic interference and communication obstacles on the battlefield, quickly locate available spectrum resources, and conduct real-time communication through frequency hopping and other methods. Simultaneously, software and cognitive radio technology can be compatible with different communication frequency bands and waveforms, facilitating seamless transitions from older to newer systems.

Wu Mingxi 3

3. Data Links. A data link is a specialized communication technology that uses time division, frequency division, and code division to transmit pre-agreed, periodic, or irregular, regular or irregular critical information between various combat platforms. Unless fully understood or deciphered by the enemy, it is very difficult to interfere with. Data links are mainly divided into two categories: dedicated and general-purpose. Joint operations, formation coordination, and swarm operations primarily utilize general-purpose data links. Satellite data links, UAV data links, missile-borne data links, and weapon fire control data links are currently mostly dedicated. In the future, generalization will be a trend, and specialization will decrease. Furthermore, from the perspective of the relationship between platforms and communication, the information transmission and reception of platform sensors and internal information processing generally follow the mission system, exhibiting strong specialization characteristics, while communication and data transmission between platforms are becoming increasingly general-purpose.

4. New Communication Technologies. Traditional military communication primarily relies on microwave communication. Due to its large divergence angle and numerous application platforms, corresponding electronic jamming and microwave attack methods have developed rapidly, making it easy to carry out long-range interference and damage. Therefore, new communication technologies such as millimeter waves, terahertz waves, laser communication, and free-space optical communication have become important choices that are both anti-jamming and easy to implement high-speed, high-capacity, and high-bandwidth communication. Although high-frequency electromagnetic waves have good anti-jamming performance due to their smaller divergence angle, achieving precise point-to-point aiming and omnidirectional communication still presents certain challenges, especially under conditions of high-speed maneuvering and rapid trajectory changes of combat platforms. How to achieve alignment and omnidirectional communication is still under technological exploration.

5. Civilian Communication Resources. The effective utilization of civilian communication resources is a strategic issue that must be considered and cannot be avoided in the era of intelligentization. In the future, leveraging civilian communication networks, especially 5G/6G mobile communications, for open-source information mining and data correlation analysis to provide battlefield environment, target, and situational information will be crucial for both combat and non-combat military operations. In non-combat military operations, especially overseas peacekeeping, rescue, counter-terrorism, and disaster relief, the military’s dedicated communication networks can only be used within limited areas and regions, raising the question of how to communicate and connect with the outside world. There are two main ways to utilize civilian communication resources: one is to utilize civilian satellite communication resources, especially small satellite communication resources; the other is to utilize civilian mobile communication and internet resources.

The core issue in the interactive utilization of military and civilian communication resources is addressing security and confidentiality. One approach is to employ firewalls and encryption, directly utilizing civilian satellite communications and global mobile communication infrastructure for command and communication; however, the risks of hacking and cyberattacks remain. Another approach is to utilize emerging technologies such as virtualization, intranets, semi-physical isolation, one-way transmission, mimicry defense, and blockchain to address these challenges.

Collaborative swarms. By simulating the behavior of bee colonies, ant colonies, flocks of birds, and schools of fish in nature, this research studies the autonomous collaborative mechanisms of swarm systems such as drones and smart munitions to accomplish combat missions such as attacking or defending against enemy targets. This can achieve strike effects that are difficult to achieve with traditional combat methods and approaches. Collaborative swarms are an inevitable trend in intelligent development and a major direction and key area of ​​intelligent construction. No matter how advanced the combat performance or how powerful the functions of a single combat platform, it cannot form a collective or scalable advantage. Simply accumulating quantity and expanding scale, without autonomous, collaborative, and orderly intelligent elements, is just a disorganized mess.

Collaborative swarms mainly comprise three aspects: first, manned/unmanned collaborative swarms formed by the intelligent transformation of existing platforms, primarily constructed from large and medium-sized combat platforms; second, low-cost, homogeneous, single-function, and diverse combat swarms, primarily constructed from small unmanned combat platforms and munitions; and third, biomimetic swarms integrating human and machine intelligence, possessing both biological and machine intelligence, primarily constructed from highly autonomous humanoid, reptile-like, avian-like, and marine-like organisms. Utilizing collaborative swarm systems for cluster warfare, especially swarm warfare, offers numerous advantages and characteristics.

1. Scale Advantage. A large unmanned system can disperse combat forces, increasing the number of targets the enemy can attack and forcing them to expend more weapons and ammunition. The survivability of a swarm, due to its sheer number, is highly resilient and resilient; the survivability of a single platform becomes less important, while the overall advantage becomes more pronounced. The sheer scale prevents drastic fluctuations in combat effectiveness, because unlike high-value manned combat platforms and complex weapon systems such as the B-2 strategic bomber and advanced F-22 and F-35 fighter jets, the loss of a low-cost unmanned platform, once attacked or destroyed, results in a sharp decline in combat effectiveness. Swarm operations can launch simultaneous attacks, overwhelming enemy defenses. Most defensive systems have limited capabilities, able to handle only a limited number of threats at a time. Even with dense artillery defenses, a single salvo can only hit a limited number of targets, leaving some to escape. Therefore, swarm systems possess extremely strong penetration capabilities.

2. Cost Advantage. Swarm warfare, especially bee warfare, primarily utilizes small and medium-sized UAVs, unmanned platforms, and munitions. These have simple product lines, are produced in large quantities, and have consistent quality and performance requirements, facilitating low-cost mass production. While the pace of upgrades and replacements for modern weapons and combat platforms has accelerated significantly, the cost increases have also been staggering. Since World War II, weapons development and procurement prices have shown that equipment costs and prices have risen much faster than performance improvements. Main battle tanks during the Gulf War cost 40 times more than those during World War II, while combat aircraft and aircraft carriers cost as much as 500 times more. From the Gulf War to 2020, the prices of various main battle weapons and equipment increased several times, tens of times, or even hundreds of times. In comparison, small and medium-sized UAVs, unmanned platforms, and munitions with simple product lines have a clear cost advantage.

3. Autonomous Advantage. Under a unified spatiotemporal reference platform, through networked active and passive communication and intelligent perception of battlefield targets, individual platforms in the group can accurately perceive the distance, speed, and positional relationships between each other. They can also quickly identify the nature, size, priority, and distance of target threats, as well as their own distance from neighboring platforms. With pre-defined operational rules, one or more platforms can conduct simultaneous or wave-based attacks according to the priority of target threats, or they can attack in groups simultaneously or in multiple waves (see Figure 4). Furthermore, the priority order for subsequent platforms to replace a damaged platform can be clearly defined, ultimately achieving autonomous decision-making and action according to pre-agreed operational rules. This intelligent combat operation, depending on the level of human involvement and the difficulty of controlling key nodes, can be either completely autonomous, or semi-autonomous, with human intervention.

Wu Mingxi 4

4. Decision-making advantage. The future battlefield environment is becoming increasingly complex, with combatants vying for dominance in intense strategic maneuvering and confrontation. Therefore, relying on humans to make decisions in a high-intensity confrontation environment is neither timely nor reliable. Thus, only by entrusting automated environmental adaptation, automatic target and threat identification, autonomous decision-making, and coordinated action to collaborative groups can adversaries be rapidly attacked or effective defenses implemented, thereby gaining battlefield advantage and initiative.

The coordination group brings new challenges to command and control. How to implement command and control of the cluster is a new strategic issue. Control can be implemented in a hierarchical and task-based manner, which can be roughly divided into centralized control mode, hierarchical control mode, consistent coordination mode, and spontaneous coordination mode. [1] Various forms can be adopted to achieve human control and participation. Generally speaking, the smaller the tactical unit, the more autonomous action and unmanned intervention should be adopted; at the level of organized unit operations, since the control of multiple combat groups is involved, centralized planning and hierarchical control are required, and human participation should be limited; at the higher strategic and operational levels, the cluster is only used as a platform weapon and combat style, which requires unified planning and layout, and the degree of human participation will be higher. From the perspective of mission nature, the operation and use of strategic weapons, such as nuclear counterattacks, requires human operation and is not suitable for autonomous handling by weapon systems. When conducting offensive and defensive operations against important or high-value targets, such as decapitation strikes, full human participation and control are necessary, while simultaneously leveraging the autonomous functions of the weapon systems. For offensive operations against tactical targets, if the mission requires lethal strikes and destruction, limited human participation is permissible, or, after human confirmation, the coordinated group can execute the operation automatically. When performing non-strike missions such as reconnaissance, surveillance, target identification, and clearance, or short-duration missions such as air defense and missile defense where human involvement is difficult, the coordinated group should primarily execute these tasks automatically, without human involvement. Furthermore, countermeasures for swarm operations must be carefully studied. Key research should focus on countermeasures against electronic deception, electromagnetic interference, cyberattacks, and high-power microwave weapons, electromagnetic pulse bombs, and artillery-missile systems, as their effects are relatively significant. Simultaneously, research should be conducted on countermeasures such as laser weapons and swarm-to-swarm tactics, gradually establishing a “firewall” that humans can effectively control against coordinated groups.

Virtual and physical terminals. Virtual and physical terminals mainly refer to various terminals linked to the cloud and network, including sensors with pre-embedded intelligent modules, command and control platforms, weapon platforms, support platforms, related equipment and facilities, and combat personnel. Future equipment and platforms will be cyber-physical systems (CPS) and human-computer interaction systems with diverse front-end functions, cloud-based back-end support, virtual-physical interaction, and online-offline integration. Simple environmental perception, path planning, platform maneuverability, and weapon operation will primarily rely on front-end intelligence such as bionic intelligence and machine intelligence. Complex battlefield target identification, combat mission planning, networked collaborative strikes, combat situation analysis, and advanced human-computer interaction will require information, data, and algorithm support from back-end cloud platforms and cloud-based AI. The front-end intelligence and back-end cloud intelligence of each equipment platform should be combined for unified planning and design, forming a comprehensive advantage of integrated front-end and back-end intelligence. Simultaneously, virtual soldiers, virtual staff officers, virtual commanders, and their intelligent and efficient interaction with humans are also key areas and challenges for future research and development.

Qualitative change in the form of warfare

Since modern times, human society has mainly experienced large-scale mechanized warfare and smaller-scale informationized local wars. The two world wars that occurred in the first half of the 20th century were typical examples of mechanized warfare. The Gulf War, the Kosovo War, the Afghanistan War, the Iraq War, and the Syrian War since the 1990s fully demonstrate the form and characteristics of informationized warfare. In the new century and new stage, with the rapid development and widespread application of intelligent technologies, the era of intelligent warfare, characterized by data and computing, models and algorithms, is about to arrive (see Figure 5).

Wu Mingxi 5

Mechanization is a product of the industrial age, focusing on mechanical power and electrical technology. Its weaponry primarily manifests as tanks, armored vehicles, artillery, aircraft, and ships, corresponding to mechanized warfare. Mechanized warfare is mainly based on classical physics, represented by Newton’s laws, and large-scale socialized production. It is characterized by large-scale, linear, and contact warfare. Tactically, it typically involves on-site reconnaissance, terrain surveys, understanding the opponent’s forward and rear deployments, making decisions based on one’s own capabilities, implementing offensive or defensive maneuvers, and assigning tasks, coordinating operations, and ensuring logistical support. It exhibits clear characteristics such as hierarchical command and control and sequential temporal and spatial operations.

Information technology, a product of the information age, focuses on information technologies such as computers and network communications. Its equipment primarily manifests as radar, radios, satellites, missiles, computers, military software, command and control systems, cyber and electronic warfare systems, and integrated electronic information systems, corresponding to the form of information warfare. Information warfare is mainly based on the three laws of computers and networks (Moore’s Law, Gilder’s Law, and Metcalfe’s Law), emphasizing integrated, precise, and three-dimensional operations. It establishes a seamless and rapid information link from sensor to shooter, seizing information dominance and achieving preemptive detection and strike. Tactically, it requires detailed identification and cataloging of the battlefield and targets, highlighting the role of networked perception and command and control systems, and placing new demands on the interconnectivity and other information functions of platforms. Due to the development of global information systems and diversified network communications, information warfare blurs the lines between front and rear lines, emphasizing horizontal integration of reconnaissance, control, strike, assessment, and support, as well as the integration and flattening of strategy, campaign, and tactics.

Intelligentization is a product of the knowledge economy era. Technologically, it focuses on intelligent technologies such as artificial intelligence, big data, cloud computing, cognitive communication, the Internet of Things, biological cross-disciplinary, hybrid enhancement, swarm intelligence, autonomous navigation and collaboration. In terms of equipment, it mainly manifests as unmanned platforms, intelligent munitions, swarm systems, intelligent sensing and database systems, adaptive mission planning and decision-making systems, combat simulation and parallel training systems, military cloud platforms and service systems, public opinion early warning and guidance systems, and intelligent wearable systems, which correspond to the form of intelligent warfare.

Intelligent warfare, primarily based on biomimetic, brain-like principles, and AI-driven battlefield ecosystems, is a new combat form characterized by “energy mobility and information interconnection,” supported by “network communication and distributed cloud,” centered on “data computing and model algorithms,” and focused on “cognitive confrontation.” It features multi-domain integration, cross-domain offense and defense, unmanned operation, cluster confrontation, and integrated interaction between virtual and physical spaces.

Intelligent warfare aims to meet the needs of nuclear and conventional deterrence, joint operations, all-domain operations, and non-war military operations. It focuses on multi-domain integrated operations encompassing cognitive, informational, physical, social, and biological domains, exhibiting characteristics such as distributed deployment, networked links, flattened structures, modular combinations, adaptive reconfiguration, parallel interaction, focused energy release, and nonlinear effects. Its winning mechanisms overturn traditions, its organizational forms undergo qualitative changes, its operational efficiency is unprecedentedly improved, and its combat power generation mechanisms are transformed. These substantial changes are mainly reflected in the following ten aspects.

The Winning Mechanism Dominated by AI. Under intelligent conditions, new combat elements represented by “AI, cloud, network, cluster, and terminal” will reshape the battlefield ecosystem, completely changing the winning mechanism of war. Among them, AI systems based on models and algorithms are the core combat capability, permeating all aspects and links, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made by AI. The traditional human-based combat methods are being replaced by AI models and algorithms. Algorithmic warfare will play a decisive role in war, and the combat system and process will ultimately be dominated by AI. The right to intelligence will become the core control in future warfare.

Different eras and different forms of warfare result in different battlefield ecosystems, with entirely different compositions of combat elements and winning mechanisms. Mechanized warfare is platform-centric warfare, with “movement” as its core and firepower and mobility as its dominant forces, pursuing energy delivery and release through equipment. Combat elements mainly include: personnel + mechanized equipment + tactics. The winning mechanism is based on human-led decision-making in the operational use of mechanized equipment, achieving victory with superior numbers, overwhelming smaller forces, and controlling slower forces, with comprehensive, efficient, and sustainable mobilization capabilities playing decisive or important roles. Informationized warfare is network-centric warfare, with “connectivity” as its core and information power as its dominant force, pursuing energy aggregation and release through networks. Combat elements and their interrelationships mainly consist of “personnel + informationized equipment + tactics” based on network information. Information permeates personnel, equipment, and tactics, establishing seamless information connections “from sensor to shooter,” achieving system-wide and networked combat capabilities, using systems against localized forces, networks against discrete forces, and speed against slow forces, becoming a crucial mechanism for achieving victory in war. Information plays a multiplier role in equipment and combat systems, but the platform remains human-centric. Information assists in decision-making, but most decisions are still made by humans. Intelligent warfare is cognitive-centric warfare, with “computation” at its core and intelligence as the dominant force. Intelligence will carry more weight than firepower, mobility, and information power, pursuing the use of intelligence to control and dominate capabilities, using the virtual to overcome the real, and achieving victory through superiority. The side with more AI and whose AI is smarter will have greater initiative on the battlefield. The main combat elements and their interrelationships are: AI × (cloud + network + swarm + human + equipment + tactics), which can be simplified to an interconnected and integrated battlefield ecosystem composed of “AI, cloud, network, swarm, and terminal” elements. In the future, AI’s role in warfare will become increasingly significant and powerful, ultimately playing a decisive and dominant role.

Emphasizing the leading role of AI does not deny the role of humans in warfare. On the one hand, human intelligence has been pre-emptively utilized and endowed into AI; on the other hand, at the pre-war, post-war, and strategic levels, for a considerable period of time and in the foreseeable future, AI cannot replace humans.

Modern warfare is becoming increasingly complex, with combat operations moving at ever faster paces. The ability to quickly identify and process massive amounts of information, respond rapidly to battlefield situations, and formulate decisive strategies is far beyond human capability and exceeds the limits of current technology (see Tables 1 and 2). As AI becomes more widely applied and plays a more significant role in warfare, operational processes will be reshaped, and the military kill chain will be accelerated and made more efficient. Rapid perception, decision-making, action, and support will become crucial factors for victory in future intelligent warfare.

Wu Mingxi - Table 1
Wu Mingxi - Table 2

In the future, intelligent recognition and pattern recognition of images, videos, electromagnetic spectrum, and voice will enable rapid and accurate target identification from complex battlefield information gathered by air, land, and sea sensor networks. Utilizing big data technology, through multi-source, multi-dimensional directional search and intelligent correlation analysis, not only can various targets be accurately located, but also human behavior, social activities, military operations, and public opinion trends can be precisely modeled, gradually improving the accuracy of early warning and prediction. Based on precise battlefield information, each theater and battlefield can adaptively implement mission planning, autonomous decision-making, and operational process control through extensive parallel modeling and simulation training in virtual space. AI on various combat platforms and cluster systems can autonomously and collaboratively execute tasks around operational objectives according to mission planning, and proactively adjust to changes that may occur at any time. By establishing a distributed, networked, intelligent, and multi-modal support system and pre-positioned deployment, rapid and precise logistics distribution, material supply, and intelligent maintenance can be implemented. In summary, through the widespread application of intelligent technologies and the proactive and evolving capabilities of various AI systems, the entire operational process—including planning, prediction, perception, decision-making, implementation, control, and support—can be re-engineered to achieve a “simple, fast, efficient, and controllable” operational workflow. This will gradually free humanity from the burdens of arduous combat tasks. Operational workflow re-engineering will accelerate the pace, compress time, and shorten processes on the future battlefield.

The winning mechanism dominated by AI is mainly manifested in combat capabilities, methods, strategies, and measures. It fully integrates human intelligence, approaches human intelligence, surpasses human limits, leverages the advantages of machines, and embodies advancement, disruption, and innovation. This advancement and innovation is not a simple extension or increase in quantity in previous wars, but a qualitative change and leap, a higher-level characteristic. This higher-level characteristic is reflected in intelligent warfare possessing “brain-like” functions and many “capabilities that surpass human limits” that traditional warfare lacks. As AI continues to optimize and iterate, it will one day surpass ordinary soldiers, staff officers, commanders, and even elite and expert groups, becoming a “super brain” and a “super brain group.” This is the core and key of intelligent warfare, a technological revolution in the fields of epistemology and methodology, and a high-level combat capability that humanity can currently foresee, achieve, and evolve.

The role of cyberspace is rising. With the progress of the times and the development of technology, the operational space has gradually expanded from physical space to virtual space. The role and importance of virtual space in the operational system are gradually rising and becoming increasingly important, and it is increasingly deeply integrated with physical space and other fields. Virtual space is an information space based on network electromagnetics constructed by humans. It can reflect human society and the material world from multiple perspectives, and can be utilized by transcending many limitations of the objective world. It is constructed by the information domain, connected by the physical domain, reflected by the social domain, and utilized by the cognitive domain. In a narrow sense, virtual space mainly refers to the civilian Internet; in a broad sense, virtual space mainly refers to cyberspace, including various Internet of Things, military networks, and dedicated networks. Cyberspace is characterized by being easy to attack but difficult to defend, using software to fight hard, integrating peacetime and wartime, and blurring the lines between military and civilian sectors. It has become an important battlefield for conducting military operations, strategic deterrence, and cognitive confrontation.

The importance of cyberspace is mainly reflected in three aspects: First, through network information systems, it connects dispersed combat forces and elements into a whole, forming a systematic and networked combat capability, which becomes the foundation of information warfare; second, it becomes the main battlefield and basic support for cognitive confrontation such as cyberspace, intelligence, public opinion, psychology, and consciousness; and third, it establishes virtual battlefields, conducts combat experiments, realizes virtual-real interaction, and forms the core and key to parallel operations and the ability to use the virtual to defeat the real.

In the future, with the accelerated upgrading of global interconnection and the Internet of Things, and with the establishment, improvement and widespread application of systems such as space-based networked reconnaissance, communication, navigation, mobile internet, Wi-Fi, high-precision global spatiotemporal reference platforms, digital maps, and industry big data, human society and global military activities will become increasingly “transparent,” increasingly networked, perceived, analyzed, correlated, and controlled (see Figure 6). This will have a profound, all-round, and ubiquitous impact on military construction and operations. The combat system in the intelligent era will gradually expand from closed to open, and from military-led to a “source-open and ubiquitous” direction that integrates military and civilian sectors.

Wu Mingxi 6

In the era of intelligentization, information and data from the physical, informational, cognitive, social, and biological fields will gradually flow freely. Combat elements will achieve deep interconnection and the Internet of Things. Various combat systems will evolve from basic “capability combinations” to advanced “information fusion, data linking, and integrated behavioral interaction,” possessing powerful all-domain perception, multi-domain fusion, and cross-domain combat capabilities, and the ability to effectively control important targets, sensitive groups, and critical infrastructure anytime, anywhere. A report from the U.S. Army Joint Arms Center argues that the world is entering an era of “ubiquitous global surveillance.” Even if the world cannot track all activities, the proliferation of technology will undoubtedly cause the potential sources of information to grow exponentially.

Currently, network-based software attacks have acquired the capability to cause physical damage, and cyberattacks by militarily advanced countries possess operational capabilities such as intrusion, deception, interference, and sabotage. Cyberspace has become another important battlefield for military operations and strategic deterrence. The United States has already used cyberattacks in actual combat. Ben Ali of Tunisia, Gaddafi of Libya, and Saddam Hussein of Iraq were all influenced by US cyberattacks and WikiLeaks, causing shifts in public opinion, psychological breakdowns, and social unrest, leading to the rapid collapse of their regimes and having a disruptive impact on traditional warfare. Through the Snowden revelations, a list of 49 cyber reconnaissance projects across 11 categories used by the United States was gradually exposed. Incidents such as the Stuxnet virus’s sabotage of Iranian nuclear facilities, the Gauss virus’s mass intrusion into Middle Eastern countries, and the Cuban Twitter account’s control of public opinion demonstrate that the United States possesses powerful monitoring capabilities, as well as soft and hard attack and psychological warfare capabilities over the internet, closed networks, and mobile wireless networks.

The war began with virtual space experiments. The US military began exploring combat simulation, operational experiments, and simulation training in the 1980s. Later, the US military pioneered the use of virtual reality, wargaming, and digital twin technologies in virtual battlefields and combat experiments. Analysis shows that the US military conducted combat simulations in military operations such as the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War, striving to find the optimal operational and action plans. It has been reported that before Russia intervened militarily in Syria, it conducted pre-war exercises in its war labs. Based on the experimental simulations, it formulated the “Center-2015” strategic exercise plan, practicing “mobility and accessibility in unfamiliar areas” for combat in Syria. After the exercise, Russian Chief of the General Staff Gerasimov emphasized that the primary means would be political, economic, and psychological warfare, supplemented by long-range precision air strikes and special operations, ultimately achieving political and strategic objectives. Practice shows that the process of Russia’s intervention in Syria was largely consistent with these experiments and exercises.

In the future, with the application and development of virtual simulation, mixed reality, big data, and intelligent software, a parallel military artificial system can be established, allowing physical forces in the physical space to map and iterate with virtual forces in the virtual space. This will enable rapid, high-intensity adversarial training and supercomputing that are difficult to achieve in the physical space. It can also engage in combat and games against highly realistic “blue force systems,” continuously accumulating data, building models and algorithms, and ultimately using the optimal solutions to guide the construction and combat of physical forces, achieving the goal of virtual-real interaction, using the virtual to control the real, and winning with the virtual. On January 25, 2019, DeepMind, Google’s AI team, and Blizzard Entertainment, the developer of StarCraft, announced the results of the December 2018 match between AlphaSTAR and professional players TLO and MANA. In the best-of-five series, AlphaSTAR won both matches 5-0. AlphaSTAR completed the training workload that would take human players 200 years in just two weeks, demonstrating the enormous advantages and bright prospects of simulated adversarial training in virtual space.

The combat style is dominated by unmanned operations. In the era of intelligentization, unmanned warfare will become the basic form, and the integration and development of artificial intelligence and related technologies will gradually push this form to an advanced stage. Unmanned systems represent the full pre-positioning of human intelligence in the combat system and are a concentrated manifestation of the integrated development of intelligence, informatization, and mechanization. Unmanned equipment first appeared in the field of drones. In 1917, Britain built the world’s first drone, but it was not used in actual combat. With the development of technology, drones were gradually used in target drones, reconnaissance, and reconnaissance-strike integrated operations. Since the beginning of the 21st century, unmanned technologies and equipment have achieved tremendous leaps and major breakthroughs in exploration and application due to their advantages such as mission-centric design, no need to consider crew requirements, and high cost-effectiveness. They have shown a rapid and comprehensive development trend, and their application scope has expanded rapidly, covering various fields such as air, surface, underwater, ground, and space.

In recent years, technologies such as artificial intelligence, bionic intelligence, human-machine integrated intelligence, and swarm intelligence have developed rapidly. With the help of satellite communication and navigation, and autonomous navigation, unmanned combat platforms can effectively achieve remote control, formation flight, and swarm collaboration. Currently, unmanned combat aerial vehicles, underwater unmanned platforms, and space-based unmanned autonomous robots have emerged one after another. Bipedal, quadrupedal, multi-legged, and cloud-based intelligent robots are developing rapidly and have entered the fast lane of engineering and practical application, with military applications not far off.

Overall, unmanned warfare in the era of intelligentization will enter three stages of development. The first stage is the initial stage, characterized by manned dominance and unmanned support, where “unmanned warfare under manned leadership” means that combat behavior is completely controlled and dominated by humans before, during, and after the operation. The second stage is the intermediate stage, characterized by manned support and unmanned dominance, where “unmanned warfare under limited control” means that human control is limited, auxiliary, but crucial throughout the entire combat process, and in most cases, the autonomous action capabilities of the platform can be relied upon. The third stage is the advanced stage, characterized by manned rules and unmanned action, where “unmanned warfare with manned design and minimal control” means that humans conduct overall design in advance, clarifying autonomous behavior and rules of the game under various combat environments, and the execution phase is mainly entrusted to unmanned platforms and unmanned forces for autonomous execution.

Autonomous behavior or autonomy is the essence of unmanned warfare and a common and prominent feature of intelligent warfare, manifested in many aspects.

First, the autonomy of combat platforms, mainly including the autonomous capabilities and intelligence level of unmanned aerial vehicles, ground unmanned platforms, precision-guided weapons, underwater and space robots.

Second, the detection system is autonomous, which mainly includes automatic search, tracking, association, aiming, and intelligent recognition of information such as images, voice, video, and electronic signals.

Thirdly, there is autonomous decision-making, the core of which is AI-based autonomous decision-making within the combat system. This mainly includes automatic analysis of the battlefield situation, automatic planning of combat missions, automated command and control, and intelligent human-machine interaction.

Fourthly, autonomous coordination in combat operations, which initially includes autonomous coordination between manned and unmanned systems, and later includes autonomous unmanned swarms, such as various combat formations, bee swarms, ant swarms, fish swarms, and other combat behaviors.

Fifth, autonomous network attack and defense behaviors, including automatic identification, automatic tracing, automatic protection, and autonomous counterattack against various viruses and network attacks.

Sixth, cognitive electronic warfare, which automatically identifies the power, frequency band, and direction of electronic interference, automatically hops frequencies and autonomously forms networks, and engages in active and automatic electronic interference against adversaries.

Seventh, other autonomous behaviors, including intelligent diagnosis, automatic repair, and self-protection.

In the future, with the continuous upgrading of the integration and development of artificial intelligence and related technologies, unmanned operations will rapidly develop towards autonomy, biomimicry, swarming, and distributed collaboration, gradually pushing unmanned warfare to an advanced stage and significantly reducing direct confrontation between human forces on the battlefield. Although manned platforms will continue to exist in the future, biomimetic robots, humanoid robots, swarm weapons, robot armies, and unmanned system warfare will become the norm in the intelligent era. Since unmanned systems can replace human beings in many combat domains and can accomplish tasks autonomously, unmanned combat systems will always be there to protect humans before they suffer physical attacks or injuries. Therefore, unmanned combat systems in the intelligent era are humanity’s main protective barrier, its shield and shield.

All-domain operations and cross-domain offense and defense. In the era of intelligent warfare, all-domain operations and cross-domain offense and defense are also a fundamental style of combat, manifested in many combat scenarios and aspects. From land, sea, air, and space to multiple domains including physical, information, cognitive, social, and biological domains, as well as the integration and interaction of virtual and physical elements, from peacetime strategic deterrence to wartime high-confrontation, high-dynamic, and high-response operations, the time and space span is enormous. It involves not only physical space operations and cyberspace cyber offense and defense, information warfare, public opinion guidance, and psychological warfare, but also tasks such as global security governance, regional security cooperation, counter-terrorism, and rescue, and the control of critical infrastructure such as networks, communications, power, transportation, finance, and logistics.

Since 2010, supported by advancements in information and intelligent technologies, the U.S. military has proposed concepts such as operational cloud, distributed lethality, multi-domain warfare, algorithmic warfare, mosaic warfare, and joint all-domain operations. The aim is to maintain battlefield and military superiority by using system-wide systems against localized ones, multi-functional systems against simpler ones, multi-domain systems against single-domain ones, integrated systems against discrete ones, and intelligent systems against non-intelligent ones. The U.S. military proposed the concept of multi-domain warfare in 2016 and joint all-domain operations in 2020, aiming to develop cross-service and cross-domain joint operational capabilities, ensuring that each service’s operations are supported by all three services, and possessing all-domain capabilities against multi-domain and single-domain ones.

In the future, with breakthroughs in key technologies for the cross-disciplinary integration of artificial intelligence and multidisciplinary collaboration, multi-domain integration and cross-domain offense and defense based on AI and human-machine hybrid intelligence will become a distinctive feature of intelligent warfare. This will be achieved across functional domains such as physics, information, cognition, society, and biology, as well as geographical domains such as land, sea, air, and space.

In the intelligent era, multi-domain and cross-domain operations will expand from mission planning, physical collaboration, and loose coordination to heterogeneous integration, data linking, tactical interoperability, and cross-domain offensive and defensive integration.

First, multi-domain integration. Based on different battlefields and adversaries in a multi-domain environment, different combat styles, combat procedures and missions are planned in accordance with the requirements of joint operations, and unified as much as possible. This achieves the overall planning and integration of information, firepower, defense, support and command and control, and the integration of combat capabilities at the strategic, operational and tactical levels, forming the capability of one-domain operations and multi-domain joint rapid support.

Second, cross-domain offense and defense. Supported by a unified network information system, and through a unified battlefield situation and data information exchange based on unified standards, the information links for cross-domain joint operations reconnaissance, control, strike, and assessment are completely opened up, enabling seamless integration of operational elements and capabilities at the tactical and fire control levels, as well as collaborative actions between services, cross-domain command and interoperability.

Third, the entire process is interconnected. Multi-domain integration and cross-domain offense and defense are treated as a whole, with coordinated design and interconnectedness throughout. Before the war, intelligence gathering and analysis are conducted, along with public opinion warfare, psychological warfare, propaganda warfare, and necessary cyber and electronic warfare attacks. During the war, special operations and cross-domain actions are used to carry out decapitation strikes, key point raids, and precise and controllable strikes (see Figure 7). After the war, defense against cyberattacks on information systems, elimination of negative public opinion’s impact on the public, and prevention of enemy damage to infrastructure are addressed through post-war governance, public opinion control, and the restoration of social order across multiple areas.

Wu Mingxi 7

Fourth, AI support. Through combat experiments, simulation training, and necessary test verification and real-world testing, we continuously accumulate data, optimize models, and establish AI combat models and algorithms for different combat styles and adversaries, forming an intelligent brain system to better support joint operations, multi-domain operations, and cross-domain offense and defense.

Human-AI hybrid decision-making. The continuous improvement, optimization, upgrading, and perfection of the AI ​​brain system in intelligent battlefields will enable it to surpass humans in many aspects. The human-dominated command, control, and decision-making model of human warfare for thousands of years will be completely transformed. Humans commanding AI, AI commanding humans, and AI commanding AI are all possible scenarios in warfare.

Distributed, networked, flattened, and parallel structures are key characteristics of intelligent combat systems. The centralized, human-centric single-decision-making model is gradually being replaced by decentralized or weakly centralized models based on AI, such as unmanned systems, autonomous swarms, and manned-unmanned collaboration. Hybrid compatibility among these models is becoming a development trend. The lower the operational level and the simpler the mission, the more prominent the role of unmanned and decentralized systems; the higher the level and the more complex the mission, the more important human decision-making and centralized systems become. Pre-war decision-making is primarily human, supplemented by AI; during war, AI is primarily AI, supplemented by human; post-war, both are used, with hybrid decision-making becoming the dominant approach (see Table 3).

Wu Mingxi - Table 3

In the future battlefield, combat situations will be highly complex, rapidly changing, and exceptionally intense. The convergence of various information sources will generate massive amounts of data, which cannot be processed quickly and accurately by the human brain alone. Only by achieving a collaborative operation mode of “human brain + AI,” based on technologies such as combat cloud, databases, network communication, and the Internet of Things, can “commanders” cope with the ever-changing battlefield and complete command and control tasks. With the increasing autonomy of unmanned systems and the enhancement of swarm and system-wide AI functions, autonomous decision-making is gradually emerging. Once command and control achieve different levels of intelligence, the Out-of-Loop (OODA) loop time will be significantly reduced, and efficiency will be significantly improved. In particular, pattern recognition for network sensor image processing, “optimization” algorithms for combat decision-making, and particle swarm optimization and bee swarm optimization algorithms for autonomous swarms will endow command and control systems with more advanced and comprehensive decision-making capabilities, gradually realizing a combat cycle where “humans are outside the loop.”

Nonlinear amplification and rapid convergence. Future intelligent warfare will no longer be a gradual release of energy and a linear superposition of combat effects, but rather a rapid amplification of multiple effects such as nonlinearity, emergence, self-growth, and self-focusing, and a rapid convergence of results.

Emergence primarily refers to the process by which each individual within a complex system, following local rules and continuously interacting, generates a qualitative change in the overall system through self-organization. In the future, while battlefield information will be complex and ever-changing, intelligent recognition of images, voice, and video, along with processing by military cloud systems, will enable “one-point collection, multi-user sharing.” Through big data technology, it will be rapidly linked with relevant information and integrated with various weapon fire control systems to implement distributed strikes, swarm strikes, and cyber psychological warfare. This will allow for “detection and destruction,” “aggressive attacks at the first sign of trouble,” and “numerical superiority generating psychological panic”—these phenomena constitute the emergence effect.

The emergent effects of intelligent warfare are mainly reflected in three aspects: first, the acceleration of the kill chain caused by the speed of AI decision-making chain; second, the combat effect caused by the numerical advantage of manned and unmanned collaborative systems, especially swarm systems; and third, the rapid swarm emergence behavior based on network interconnection.

As military intelligence develops to a certain stage, the combined effects of advanced AI, quantum computing, IPv6, and hypersonic technologies will result in combat systems exhibiting nonlinear, asymmetric, self-growing, rapid-response, and uncontrollable amplification and operational effects. This is particularly evident in unmanned, swarm, cyber warfare, and cognitive confrontation. The emergence of intelligence from collective ignorance, increased efficiency through sheer numbers, nonlinear amplification, and other emergent effects will become increasingly prominent. AI-driven cognitive, informational, and energy confrontations will intertwine and rapidly converge around a target, with time becoming increasingly compressed and the speed of confrontation accelerating. This will manifest as a dramatic amplification of multiple effects and a rapid convergence of outcomes. Energy shockwaves, rapid-fire combat, AI terminators, public opinion reversals, social unrest, psychological breakdowns, and the chain reaction of the Internet of Things will become prominent characteristics of intelligent warfare.

In unmanned swarm attacks, assuming roughly the same platform performance, the Lanchester equation applies: combat effectiveness is proportional to the square of the number of units; quantity advantage translates to quality advantage. Network attack and defense, and psychological and public opinion effects, follow Metcalfe’s Law, being proportional to the square of the number of interconnected users, with nonlinear and emergent effects becoming more pronounced. The quantity and intelligence of battlefield AI determine the overall level of intelligence in the combat system, impacting battlefield intelligence control and influencing the outcome of war. In the era of intelligent warfare, how to manage the interrelationships between energy, information, cognition, quantity, quality, virtuality, and physicality, and how to skillfully design, control, utilize, and evaluate nonlinear effects, are major new challenges and requirements for future warfare.

In the future, whether it is a reversal of public opinion, psychological panic, swarm attacks, mass operations, or autonomous combat by humans outside the ring, their emergence effects and strike effects will become relatively common phenomena and easy-to-implement actions, forming a capability that is compatible with deterrence and actual combat. It is also a form of warfare that human society must strictly manage and control.

An organically symbiotic relationship between humans and equipment. In the era of intelligence, the relationship between humans and weapons will undergo fundamental changes, becoming increasingly distant physically but increasingly closer in thought. The form of equipment and its development and management models will be completely transformed. Human thought and wisdom will be deeply integrated with weaponry through AI, fully integrated in the early stages of equipment development, optimized and iterated during the use and training phase, and further upgraded and improved after combat verification, in a continuous cycle of progress.

First, with the rapid development of technologies such as network communication, mobile internet, cloud computing, big data, machine learning, and bionics, and their widespread application in the military field, the structure and form of traditional weapons and equipment will be completely changed, exhibiting diverse functions such as front-end and back-end division of labor and cooperation, efficient interaction, and adaptive adjustment. They will be complex entities integrating mechanics, information, networks, data, and cognition.

Secondly, while humans and weapons are gradually becoming physically detached, they are also becoming increasingly integrated into an organic symbiotic entity in terms of mindset. The gradual maturation of drones and robots is shifting their focus from assisting humans in combat to replacing them, with humans taking a more backseat. The integration of humans and weapons will take on entirely new forms. Human thought and wisdom will participate in the entire lifecycle of design, research and development, production, training, use, and support. Unmanned combat systems will perfectly combine human creativity and intellect with the precision, speed, reliability, and fatigue resistance of machines.

Third, profound changes are taking place in equipment development and management models. Mechanized equipment becomes increasingly outdated with use, while information technology software becomes increasingly new, and intelligent algorithms become increasingly sophisticated with use. Traditional mechanized equipment is delivered to the troops using a “pre-research—development—finalization” model, resulting in a decline in combat performance over time and vehicle hours. Information technology equipment is a product of the combined development of mechanization and informatization; the platform remains the same, but the information system is constantly iterated and updated with the development of computer CPUs and storage devices, exhibiting a step-by-step development characteristic of “information-led, software-driven hardware, rapid replacement, and spiral ascent.” Intelligent equipment, based on mechanization and informatization, continuously optimizes and improves training models and algorithms with the accumulation of data and experience, showing an upward curve of becoming stronger and better with use over time and frequency. Therefore, the development, construction, use, training, and support models for intelligent equipment will undergo fundamental changes.

Evolving through learning and confrontation. Evolution will undoubtedly be a defining characteristic of future intelligent warfare and combat systems, and a commanding height in future strategic competition. Combat systems in the intelligent era will gradually acquire adaptive, self-learning, self-confrontational, self-repairing, and self-evolving capabilities, becoming an evolvable ecosystem and game-theoretic system.

The most distinctive and unique feature of intelligent combat systems lies in the combination of human-like and human-like intelligence with the advantages of machines, achieving “superhuman” combat capabilities. The core of this capability is that numerous models and algorithms improve and refine with use, possessing an evolutionary function. If future combat systems resemble the human body, with the brain as the command and control center, the nervous system as the network, and the limbs as weapons and equipment controlled by the brain, like a living organism, possessing self-adaptive, self-learning, self-defense, self-repair, and self-evolutionary capabilities, then we believe it possesses the ability and function of evolution. Because intelligent combat systems are not entirely the same as living organisms, while a single intelligent system is similar to a living organism, a multi-system combat system is more like an “ecosystem + adversarial game system,” more complex than a single living organism, and more adversarial, social, collective, and emergent.

Preliminary analysis suggests that with the development and application of technologies such as combat simulation, virtual reality, digital twins, parallel training, intelligent software, brain-inspired chips, brain-like systems, bionic systems, natural energy harvesting, and novel machine learning, future combat systems can gradually evolve from single-function, partial-system evolution to multi-functional, multi-element, multi-domain, and multi-system evolution. Each system will be able to rapidly formulate response strategies and take action based on changes in the battlefield environment, different threats, different adversaries, and its own strengths and capabilities, drawing upon accumulated experience, extensive simulated adversarial training, and models and algorithms built through reinforcement learning. These strategies will then be continuously revised, optimized, and self-improved through practical warfare. Single-mission systems will possess characteristics and functions similar to living organisms, while multi-mission systems, like species in a forest, will have a cyclical function and evolutionary mechanism of mutual restraint and survival of the fittest, possessing the ability to engage in game-theoretic confrontation and competition under complex environmental conditions, forming an evolvable ecological and game-theoretic system.

The evolution of combat systems mainly manifests in four aspects: First, the evolution of AI. With the accumulation of data and experience, it will inevitably be continuously optimized, upgraded, and improved. This is relatively easy to understand. Second, the evolution of combat platforms and cluster systems, mainly moving from manned control to semi-autonomous and autonomous control. Because it involves not only the evolution of platform and cluster control AI, but also the optimization and improvement of related mechanical and information systems, it is relatively more complex. Third, the evolution of mission systems, such as detection systems, strike systems, defense systems, and support systems. Because it involves multiple platforms and multiple missions, the factors and elements involved in the evolution are much more complex, and some may evolve quickly, while others may evolve slowly. Fourth, the evolution of the combat system itself. Because it involves all elements, multiple missions, cross-domain operations, and confrontations at various levels, its evolutionary process is extremely complex. Whether a combat system can evolve cannot rely entirely on its own growth; it requires the proactive design of certain environments and conditions, and must follow the principles of biomimicry, survival of the fittest, mutual restraint, and full-system lifecycle management to possess the function and capability for continuous evolution.

Intelligent design and manufacturing. In the era of intelligentization, the defense industry will shift from a relatively closed, physical-based, and time-consuming research and manufacturing model to an open-source, intelligent design and manufacturing model that can rapidly meet military needs.

The defense industry is a strategic industry of the nation, a powerful pillar of national security and defense construction. In peacetime, it primarily provides the military with advanced, high-quality, and reasonably priced weaponry and equipment. In wartime, it is a crucial force for operational support and a core pillar for ensuring victory. The defense industry is a high-tech intensive sector. The research and development and manufacturing of modern weaponry and equipment are technology-intensive, knowledge-intensive, systemically complex, and highly integrated. The development of weapons and equipment such as large aircraft carriers, fighter jets, ballistic missiles, satellite systems, and main battle tanks typically takes ten, twenty, or even more years before finalization and delivery to the armed forces, involving large investments, long cycles, and high costs. From the post-World War II period to the end of the last century, the defense industrial system and capability structure were products of the mechanized era and warfare. Its research, testing, manufacturing, and support were primarily geared towards the needs of the military branches and industry systems, mainly including weaponry, shipbuilding, aviation, aerospace, nuclear, and electronics industries, as well as civilian supporting and basic industries. After the Cold War, the US defense industry underwent strategic adjustments and mergers and reorganizations, generally forming a defense industrial structure and layout adapted to the requirements of informationized warfare. The top six defense contractors in the United States can provide specialized combat platforms and systems for relevant branches of the armed forces, as well as overall solutions for joint operations, making them cross-service and cross-domain system integrators. Since the beginning of the 21st century, with the changing demands of system-of-systems and information-based warfare and the development of digital, networked, and intelligent manufacturing technologies, the traditional development model and research and production capabilities of weapons and equipment have begun to gradually change, urgently requiring reshaping and adjustment in accordance with the requirements of informationized warfare, especially intelligent warfare.

In the future, the defense science and technology industry will, in accordance with the requirements of joint operations, all-domain operations, and the integrated development of mechanization, informatization, and intelligence, shift from the traditional focus on service branches and platform construction to cross-service and cross-domain system integration. It will also shift from relatively closed, self-contained, independent, fragmented, physical-based, and long-cycle research, design, and manufacturing to open-source, democratic crowdsourcing, virtual design and integration verification, adaptive manufacturing, and rapid fulfillment of military needs (see Figure 8). This will gradually form a new innovation system and intelligent manufacturing system that combines hardware and software, virtual and real interaction, intelligent human-machine-object-environment interaction, effective vertical industrial chain connection, horizontal distributed collaboration, and military-civilian integration. Joint design and demonstration by multiple military and civilian parties, joint research and development by supply and demand sides for construction and use, iterative optimization based on parallel military systems in both virtual and real environments, and improvement through combat training and real-world verification—a model of simultaneous research, testing, use, and construction—is the basic mode for the development and construction of intelligent combat systems and the generation of combat power.

Wu Mingxi 8

Wu Mingxi 8

The risk of spiraling out of control. Since intelligent warfare systems theoretically possess the ability to self-evolve and reach “superhuman” levels, if humans do not pre-design control programs, control nodes, and a “stop button,” the result could very well be destruction and disaster. A critical concern is that numerous hackers and malicious warmongers may exploit intelligent technology to design uncontrollable warfare programs and combat methods, allowing numerous machine brains (AIs) and swarms of robots to fight adaptively and self-evolving according to pre-set combat rules, becoming invincible and relentlessly advancing, ultimately leading to an uncontrollable situation and irreparable damage. This is a major challenge facing humanity in the process of intelligent warfare and a crucial issue requiring research and resolution. This problem needs to be recognized and prioritized from the perspective of a shared future for all humanity and the sustainable development of human civilization. It requires designing rules of war, formulating international conventions, and regulating these systems technically, procedurally, ethically, and legally, implementing mandatory constraints, checks, and management.

The above ten transformations and leaps constitute the main content of the new form of intelligent warfare. Of course, the development and maturity of intelligent warfare is not a castle in the air or a tree without roots, but is built upon mechanization and informatization. Without mechanization and informatization, there is no intelligence. Mechanization, informatization, and intelligence form an organic whole, interconnected and mutually reinforcing, iteratively optimizing and leapfrog developing. Currently, mechanization is the foundation, informatization is the guiding principle, and intelligence is the direction. Looking to the future, mechanization will remain the foundation, informatization will provide support, and intelligence will be the guiding principle.

A Bright Future

In the time tunnel of the new century, we see the train of intelligent warfare speeding along. Will humanity’s greed and technological might lead us into a more brutal darkness, or will it propel us towards a more civilized and enlightened future? This is a major philosophical question that humanity needs to ponder. Intelligentization is the future, but it is not everything. Intelligentization can handle diverse military tasks, but it is not omnipotent. Faced with sharp contradictions between civilizations, religions, nations, and social classes, and with extreme events such as thugs wielding knives, suicide bombings, and mass riots, the role of intelligentization remains limited. Without resolving global political imbalances, unequal rights, unfair trade, and social contradictions, war and conflict will be inevitable. Ultimately, the world is determined by strength, and technological, economic, and military strength are extremely important. While military strength cannot determine politics, it can influence it; it cannot determine the economy, but it can bring security for economic development. The stronger the intelligent warfare capabilities, the stronger its deterrent and war-preventing function, and the greater the hope for peace. Like nuclear deterrence, it plays a crucial role in preventing large-scale wars to avoid terrible consequences and uncontrolled disasters.

The level of intelligence in warfare, in a sense, reflects the progress of civilization in warfare. The history of human warfare, initially a struggle between groups for food and habitation, has evolved into land occupation, resource plunder, expansion of political power, and domination of the spiritual world—all fraught with bloodshed, violence, and repression. As the ultimate solution to irreconcilable contradictions in human society, war’s ideal goal is civilization: subjugation without fighting, minimal resource input, minimal casualties, and minimal damage to society… However, past wars have often failed to achieve this due to political struggles, ethnic conflicts, competition for economic interests, and the brutality of technological destructive methods, frequently resulting in the utter destruction of nations, cities, and homes. Past wars have failed to achieve these ideals, but future intelligent warfare, due to technological breakthroughs, increased transparency, and deeper mutual sharing of economic benefits, especially as the confrontation of human forces gradually gives way to confrontation between robots and AI, will see decreasing casualties, material consumption, and collateral damage. This presents a significant possibility of achieving civilization, offering humanity hope. We envision future warfare gradually transitioning from the mutual slaughter of human societies and the immense destruction of the material world to wars between unmanned systems and robots. This will evolve into deterrence and checks and balances limited to combat capabilities and overall strength, AI confrontations in the virtual world, and highly realistic war games… The energy expenditure of human warfare will be limited to a certain scale of unmanned systems, simulated confrontations and experiments, or even merely the energy needed to wage a war game. Humanity will transform from the planners, designers, participants, leaders, and victims of war into rational thinkers, organizers, controllers, observers, and adjudicators. Human bodies will no longer suffer trauma, minds will no longer be frightened, wealth will no longer be destroyed, and homes will no longer be devastated. Although this beautiful ideal and aspiration may always fall short of harsh reality, we sincerely hope that this day will arrive, and arrive as soon as possible. This is the highest stage of intelligent warfare development, the author’s greatest wish, and humanity’s beautiful vision!

(Thanks to my colleague, Researcher Zhou Xumang, for his support and assistance in writing this paper. He has unique thoughts and insights into the development and construction of intelligent systems.)

Notes

[1] Robert O. Walker et al., 20YY: War in the Age of Robots, translated by Zou Hui et al., Beijing: National Defense Industry Press, 2016, p. 148.

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

現代國語:

2021-08-18 18:53 来源: 《人民论坛·学术前沿》5月下 作者: 吴明曦

【摘要】新世纪以来,以人工智能(AI)为核心的智能科技快速发展,加快了新一轮军事革命的进程,军事领域的竞争正加速走向智权时代。以“AI、云、网、群、端”为代表的作战要素与多样化组合,构成了新的战场生态系统,战争的制胜机理完全改变。基于模型和算法的AI系统将是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,制智权成为未来战争的核心制权。智能化作战能力越强大,不战而屈人之兵就越有希望。

【关键词】人工智能 无人化 战场生态 战争形态

【中图分类号】TP18 【文献标识码】A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.005

【作者简介】吴明曦,中国兵器首席科学家、研究员,中国兵器工业集团科技委副秘书长,中国兵器科学研究院科技委副主任。研究方向为国防科技和武器装备发展战略与规划、政策与理论、管理与改革研究。主要著作有《智能化战争——AI军事畅想》等。

智权时代竞争

人类文明的历史,是认识自然、改造自然的历史,也是认识自我、解放自我的历史。人类通过发展科学技术、开发和运用工具,不断增强能力、减轻负担、摆脱束缚、解放自己。战争的控制权也随着科技的进步、人类活动空间的拓展、时代的发展而不断变化、不断丰富和不断演进。19世纪以来,人类先后经历了陆权、海权、空权、天权、信息权的控制与争夺。随着人工智能(AI)、大数据、云计算、生物交叉、无人系统、平行仿真等智能科技的迅速发展及其与传统技术的深度融合,从认识论、方法论和运行机理上,改变了人类认识和改造自然的能力,正在加快推动机器智能、仿生智能、群体智能、人机融合智能和智能感知、智能决策、智能行动、智能保障以及智能设计、研发、试验、制造等群体性重大技术变革,加速战争形态向智权的控制与争夺演变。

智能科技迅速发展,受到世界主要国家的高度重视,成为支撑军事能力跨越发展的强大动力。美俄已将智能科技置于维持其全球军事大国战略地位的核心,其发展理念、发展模式、组织方式、创新应用等已发生重大转变,并开展了军事智能化的实质性应用与实践(见图1)。

吴明曦1

2017年8月,美国国防部表示,未来人工智能战争不可避免,美国需要“立即采取行动”加速人工智能战争科技的开发工作。美军提出的“第三次抵消战略”认为,以智能化军队、自主化装备和无人化战争为标志的军事变革风暴正在到来;为此,他们已将自主系统、大数据分析、自动化等为代表的智能科技列为主要发展方向。2018年6月,美国国防部宣布成立联合人工智能中心,该中心在国家人工智能发展战略的牵引下,统筹规划美军智能化军事体系建设。2019年2月,时任美国总统特朗普签署《美国人工智能倡议》行政令,强调美国在人工智能领域保持持续领导地位对于维护美国的经济和国家安全至关重要,要求联邦政府投入所有资源来推动美国人工智能领域创新。2021年3月,美国人工智能国家安全委员会发布研究报告,指出:“自第二次世界大战以来,作为美国经济和军事力量支柱的技术优势首次受到威胁。如果当前的趋势不改变,中国就拥有未来十年内超越美国成为人工智能全球领导者的力量、人才和雄心。”报告认为,美国为维护国家安全和提升国防能力,必须迅速而负责任地使用人工智能,为抵御这些威胁作好准备。报告得出结论,人工智能将改变世界,美国必须发挥带头作用。

俄罗斯也高度重视人工智能的技术发展及其军事运用。俄军方普遍认为,人工智能将引发继火药、核武器之后军事领域的第三次革命。俄罗斯总统普京2017年9月公开提出,人工智能是俄罗斯的未来,谁能成为该领域的领导者,谁就将主宰世界。2019年10月,普京批准《2030年前俄罗斯国家人工智能发展战略》,旨在加快推进俄罗斯人工智能发展与应用,谋求在人工智能领域的世界领先地位。

中国国务院2017年7月印发《新一代人工智能发展规划》,提出了面向2030年新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

世界其他主要国家和军事大国,也纷纷推出各自的人工智能发展规划,表明全球范围内围绕“智权”的争夺已经全面展开。陆权、海权、空权、天权、信息权、智权等,都是科技进步的结果、时代的产物,都有各自的优势,也有各自的不足,并且有些理论随着时代的变化,又在不断拓展。从近代以来战争的控制权发展趋势可以看出,信息权与智权是涉及全局的,其权重更重,影响力更大。未来,随着智能化发展步伐的加快,智权将成为一种快速增长的、对作战全局有更大战略影响力的新型战场控制权。

军事智能的本质是利用智能科技为战争体系建立多样化识别、决策和控制模型。这些模型就是人工智能(AI),是新时代智权争夺的核心。其中,战争体系包括:单装、集群、有人无人协同、多域与跨域作战等装备系统;单兵、班组、分队、合成作战单元、战区联指等作战力量;网络化感知、任务规划与指控、力量协同、综合保障等作战环节;网络攻防、电子对抗、舆情控制、基础设施管控等专业系统;智能化设计、研发、生产、动员、保障等军工能力。AI以芯片、算法和软件等形式,嵌入战争体系的各个系统、各个层次、各个环节,是一个体系化的大脑。AI虽然是战争体系的一个局部,但由于其“类脑”功能和“超越人类极限”的能力越来越强,必将主宰未来战争全局。

战场生态重构

传统战争作战要素相对独立、相对分离,战场生态系统比较简单,主要包括人、装备和战法等。智能时代的战争,各作战要素之间融合、关联、交互特征明显,战场生态系统将发生实质性变化,形成由AI脑体系、分布式云、通信网络、协同群、各类虚实端等构成的作战体系、集群系统和人机系统,简称“AI、云、网、群、端”智能化生态系统(见图2)。其中,AI居于主导地位。

吴明曦2

AI脑体系。智能化战场的AI脑体系,是一个网络化、分布式的体系,是与作战平台和作战任务相生相伴、如影随形的,其分类方法有多种。按功能和计算能力分,主要包括小脑、群脑、中脑、混合脑和大脑等;按作战任务和环节分,主要包括传感器AI、作战任务规划和决策AI、精确打击和可控毁伤AI、网络攻防AI、电子对抗AI、智能防御AI和综合保障AI等;按形态分,主要包括嵌入式AI、云端AI和平行系统AI等。

小脑,主要指传感器平台、作战平台和保障平台的嵌入式AI,主要执行战场环境探测、目标识别、快速机动、精确打击、可控毁伤、装备保障、维修保障和后勤保障等任务。

群脑,主要指地面、空中、海上、水中和太空无人化集群平台智能控制的AI,主要执行战场环境协同感知、集群机动、集群打击和集群防御等任务,重点包括同构集群系统的算法和有人无人协同等异构系统的算法。

中脑,主要指战场前沿一线分队指挥中心、数据中心、指挥所边缘计算的AI系统,主要执行在线和离线条件下战术分队作战任务动态规划、自主决策与辅助决策。

混合脑,主要指成建制部队作战中,指挥员与机器AI协同指挥和混合决策系统,战前主要执行以人为主的作战任务规划,战中主要执行以机器AI为主的自适应动态任务规划和调整,战后主要执行面向反恐和防卫的混合决策等任务。

大脑,主要指战区指挥中心、数据中心的模型库、算法库、战法库,重点为战役和战略决策起辅助支撑作用。由于数据充足,战场各类AI脑系统,都可以在此进行训练和建模,待成熟时再加载到各个任务系统中。

未来战场,还将有其他不同功能、不同种类、大大小小的AI,如传感器AI,主要包括图像识别、电磁频谱识别、声音识别、语音识别、人类活动行为识别等。随着智能化的快速发展和广泛应用,全社会都会存在大大小小的AI,平时为民众和社会服务,战时完全有可能为军事服务。

分布式云。军事云与民用云有所不同。一般来讲,军事云平台是利用通信网络搜索、采集、汇总、分析、计算、存储、分发作战信息和数据的分布式资源管理系统。军事云平台通过构建分布式系统、多点容错备份机制,具备强大的情报共享能力、数据处理能力、抗打击和自修复能力,可提供固定与机动、公有与私有的云服务,实现“一点采集,大家共享”,大大减少信息流转环节,使指挥流程扁平、快速,避免各级重复分散建设。

从未来智能化战争需求看,军事云至少需要构建战术前端云、部队云、战区云和战略云四级体系。按作战要素也可分为情报云、态势云、火力云、信息作战云、保障云、星云等专业化云系统。

1.前端云,主要是指分队、班组、平台之间的信息感知、目标识别、战场环境分析和行动自主决策与辅助决策,以及作战过程和效果评估等计算服务。前端云的作用主要体现在两个方面。一是平台之间计算、存储资源的相互共享和协同、智能作战信息的互动融合。例如,一旦某一平台或终端被攻击,相关的感知信息、毁伤状况和历史情况,就会通过网络化的云平台自动备份、自动替换、自动更新,并把相关信息上传到上级指挥所。二是离线终端的在线信息服务和智能软件升级。

2.部队云,主要指营、旅一级作战所构建的云系统,重点是针对不同的威胁和环境,开展智能感知、智能决策、自主行动和智能保障等计算服务。部队云建设的目标是要建立网络化、自动备份,并与上级多个链路相连的分布式云系统,满足侦察感知、机动突击、指挥控制、火力打击、后装保障等不同力量的计算需要,满足战术联合行动、有人/无人协同、集群攻防等不同作战任务的计算需要。

3.战区云,重点是提供整个作战区域的战场气象、地理、电磁、人文、社会等环境因素和信息数据,提供作战双方的兵力部署、武器装备配备、运动变化、战损情况等综合情况,提供上级、友军和民用支援力量等相关信息。战区云应具备网络化、定制化、智能化等信息服务功能,并通过天基、空中、地面、海上和水下等军用通信网络,以及采取保密措施下的民用通信网络,与各个作战部队互联互通,确保提供高效、及时、准确的信息服务。

4.战略云,主要是由一个国家国防系统和军队指挥机关建立起来的以军事信息为主,涵盖相关国防科技、国防工业、动员保障、经济和社会支撑能力,以及政治、外交、舆论等综合性的信息数据,提供战争准备、作战规划、作战方案、作战进程、战场态势、战况分析等核心信息及评估分析和建议;提供战略情报、作战对手军事实力和战争动员潜力等支撑数据。

上述各个云之间,既有大小关系、上下关系,也有横向协作、相互支撑、相互服务的关系。军事云平台的核心任务有两个:一是为构建智能化作战的AI脑体系提供数据和计算支撑;二是为各类作战人员和武器平台,提供作战信息、计算和数据保障。此外,从终端和群体作战需求来看,还需要把云计算的一些结果、模型、算法,事先做成智能芯片,嵌入武器平台和群终端,之后,可以在线升级,也可以离线更新。

通信网络。军用通信与网络信息,是一个复杂的超级网络系统。由于军事力量主要是在陆、海、空、天和野战机动、城镇等环境下作战,其通信网络包括战略通信与战术通信、有线通信与无线通信、保密通信和民用通信等。其中,无线、移动、自由空间通信网络是军用网络体系最重要的组成部分,相关的综合电子信息系统也是依托通信网络逐步建立起来的。

机械化时代的军用通信,主要是跟着平台、终端和用户走,专用性得到了满足,但烟囱太多、互联互通能力极差。信息化时代,这种状况开始改变。目前,军用通信网络正在采取新的技术体制和发展模式,主要有两个特征:一是“网数分离”,信息的传输不依赖于某种特定的网络传输方式,“网通即达”,只要网络链路畅通,所需任何信息即可送达;二是互联网化,基于IP地址和路由器、服务器实现“条条大路通北京”,即军用网络化或者栅格化。当然,军事通信网络与民用不同,任何时候都存在战略性、专用性通信需求,如核武器的核按钮通信和战略武器的指挥控制,卫星侦察、遥感和战略预警的信息传输,甚至单兵室内和特种作战等条件下的专用通信,可能仍然采取通信跟着任务走的模式。但即便如此,通用化、互联网化一定是未来军用通信网络发展的趋势,否则不仅造成战场通信频段、电台和信息交流方式越来越多,造成自扰、互扰和电磁兼容困难,无线电频谱管理也越来越复杂,更为重要的是,平台用户之间很难基于IP地址和路由结构等功能来实施自动联通,如同互联网上的电子邮件那样,一键命令可以传给多个用户。未来的作战平台,一定会既是通信的用户终端,也兼有路由器和服务器等功能。

军用通信网络体系主要包括天基通信网、军用移动通信网、数据链、新型通信网、民用通信网等。

1.天基信息网。在天基信息网络建设和天基信息利用方面,美国居于领先地位。因为太空中上千个在轨平台和载荷中,一半多是美国人的。美军在海湾战争后尤其是伊拉克战争期间,通过战争实践加快了天基信息网络的应用和推进步伐。伊拉克战争之后,通过天基信息的利用和基于IP方式互联互通的建立,彻底将海湾战争时期近140个纵向烟囱实现横向互联,大大缩短了“侦察—判断—决策—攻击”(OODA)回路的时间,从天基传感器到射手的时间由海湾战争时的几十个小时缩短到目前采用人工智能识别后仅20秒左右。

随着小卫星技术的飞速发展,低成本、多功能的小卫星越来越多。商用发射随着竞争越来越多,成本也开始急剧下降,并且一次发射可以携带几颗、十几颗甚至几十颗小卫星。如果再将小型化以后的电子侦察、可见光和红外成像,甚至是量子点微型光谱仪都集成在上面,实现侦察、通信、导航和气象、测绘等功能一体化,未来世界和战场将变得更加透明。

2.军用移动通信网。军用移动通信网络主要有三个方面的用途。一是联合作战各军兵种和作战部队之间的指挥控制,这类通信的保密等级较高,可靠性、安全性要求也高。二是平台、集群之间的通信联络,要求具备抗干扰和较高的可靠性。三是武器系统的指控和火控,大多通过数据链解决。

传统的军用移动通信网络,大多是“有中心、纵向为主、树状结构”。随着信息化进程的加快,“无中心、自组网、互联网化”的趋势愈加明显。随着认知无线电技术的逐步成熟和推广(见图3),未来的网络通信系统,能够自动识别战场中的电磁干扰和通信障碍,快速寻找可用频谱资源,通过跳频跳转等方式进行实时通信联络。同时,软件与认知无线电技术还能兼容不同通信频段与波形,便于在旧体制向新体制的过渡中兼容使用。

吴明曦3

3.数据链。数据链是一种特殊的通信技术,通过时分、频分、码分等形式,在各作战平台之间实现事先约定的、定期或不定期、有规则或无规则关键信息的传输,只要不被敌方完全掌握或破译,是很难被干扰的。数据链主要分为专用和通用两大类。联合作战、编队协同和集群作战等,主要采用通用数据链。卫星数据链、无人机数据链、弹载数据链、武器火控数据链等,目前多数还是专用的。未来,通用化是一种趋势,专用化将越来越少。此外,从平台和通信的关系来看,平台传感器的信息收发和内部信息处理一般跟着任务系统走,专用化特点较强,平台之间的通信联络和数据传输则越来越通用化。

4.新型通信。传统军用通信以微波通信为主,由于发散角较大,应用平台较多,相应的电子干扰和微波攻击手段发展也较快,容易实施较远距离的干扰与破坏。因此,毫米波、太赫兹、激光通信、自由空间光通信等新型通信手段,就成为既抗干扰,又容易实施高速、大容量、高带宽通信的重要选择。由于高频电磁波发散角较小,虽然抗干扰性能好,但要实现点对点的精确瞄准和全向通信,仍然有一定难度,尤其是在作战平台高速机动和快速变轨条件下,如何实现对准和全向通信,技术上仍在探索之中。

5.民用通信资源。民用通信资源的有效利用,是智能化时代需要重点考虑和无法回避的战略问题。未来通过民用通信网络尤其是5G/6G移动通信,进行开源信息挖掘和数据关联分析,提供战场环境、目标和态势信息,无论是对作战还是非战争军事行动来说都非常重要。在非战争军事行动任务中,尤其是海外维和、救援、反恐、救灾等行动中,军队的专用通信网络,只能在有限范围和地域中使用,而如何与外界交流和联系就成为一个问题。利用民用通信资源,主要有两种途径:一是利用民用卫星特别是小卫星通信资源;二是利用民用移动通信及互联网资源。

军用与民用通信资源的互动利用,核心是要解决安全与保密问题。一种方式是采取防火墙和加密形式,直接利用民用卫星通信和全球移动通信设施来指挥通信和联络,但黑客与网络攻击的风险依然存在。另一种方式是,采用近年发展起来的虚拟化、内联网、半物理隔离、单向传输、拟态防御、区块链等新技术予以解决。

协同群。通过模拟自然界蜂群、蚁群、鸟群及鱼群等行为,研究无人机、智能弹药等集群系统的自主协同机制,完成对敌目标进攻或防御等作战任务,可以起到传统作战手段和方式难以达到的打击效果。协同群是智能化发展的一个必然趋势,也是智能化建设的主要方向和重点领域。单一作战平台,无论战技性能多高、功能多强,也无法形成群体、数量规模上的优势。简单数量的堆积和规模的扩展,如果没有自主、协同、有序的智能元素,也是一盘散沙。

协同群主要包括三个方面:一是依托现有平台智能化改造形成的有人/无人协同群,其中以大、中型作战平台为主构建;二是低成本、同质化、功能单一、种类不同的作战蜂群,其中以小型无人作战平台和弹药为主构建;三是人机融合、兼具生物和机器智能的仿生集群,其中以具有高度自主能力的仿人、仿爬行动物、仿飞禽动物、仿海洋生物为主构建。利用协同群系统实施集群作战特别是蜂群作战,具有多方面的优势与特点。

1.规模优势。庞大的无人系统可以分散作战力量,增加敌方攻击的目标数,迫使敌人消耗更多的武器和弹药。集群的生存能力,因数量足够多而具有较大的弹性和较强的恢复能力,单个平台的生存能力变得无关紧要,而整体的优势更为明显。数量规模使战斗力的衰减不会大起大落,因为消耗一个低成本的无人平台,不像高价值的有人作战平台与复杂武器系统,如B2战略轰炸机,F22、F35先进作战飞机,一旦受到攻击或被击毁,战斗力将急剧下降。集群作战可以同时发起攻击,使敌人的防线不堪重负,因为大部分防御系统能力有限,一次只能处理一定数量的威胁,即便是密集火炮防御,一次齐射也只能击中有限目标,总有漏网之鱼,所以集群系统突防能力极强。

2.成本优势。集群作战特别是蜂群作战大多以中小无人机、无人平台和弹药为主,型谱简单、数量规模较大,质量性能要求相同,便于低成本大规模生产。现代武器装备和作战平台,虽然升级换代的速度明显加快,但成本上涨也极其惊人。二战以后,武器装备研发和采购价格表明,装备成本和价格上涨比性能提升快得多。海湾战争时期的主战坦克是二战时期的40倍,作战飞机和航母则高达500倍。海湾战争之后到2020年,各类主战武器装备价格又分别上涨了几倍、十几倍、甚至几十倍。与此相比,型谱简单的中小无人机、无人平台和弹药具有明显的成本优势。

3.自主优势。在统一的时空基准平台下,通过网络化的主动、被动通信联络和对战场环境目标的智能感知,群体中的单个平台可以准确感知到相互之间的距离、速度和位置关系,也可以快速识别目标威胁的性质、大小、轻重缓急,以及自身与友邻平台距离的远近。在事先制定好作战规则的前提下,可以让一个或数个平台,按照目标威胁的优先级,进行同时攻击和分波次攻击,也可以分组同时攻击、多次攻击(见图4),还可以明确某个平台一旦受损后,后续平台的优先替补顺序,最终达到按照事先约定好的作战规则,自主决策、自主行动。这种智能化作战行动,根据人的参与程度和关键节点控制难度,既可以完全交给群体自主行动,也可以实施有人干预下的半自主行动。

吴明曦4

4.决策优势。未来的战场环境日趋复杂,作战双方是在激烈的博弈和对抗中较量。因此,快速变化的环境和威胁,依靠人在高强度对抗环境下参与决策,时间上来不及,决策质量也不可靠。因此,只有交由协同群进行自动环境适应,自动目标和威胁识别,自主决策和协同行动,才能快速地攻击对手或实施有效防卫,取得战场优势和主动权。

协同群给指挥控制带来了新挑战。怎么对集群实施指挥控制是一个新的战略课题。可以分层级、分任务实施控制,大致包括集中控制模式、分级控制模式、一致协同模式、自发协同模式。[1]可以采取多种形式,实现人为的控制和参与。一般来讲,越是在战术层面的小分队行动,越是要采取自主行动和无人干预;在成建制的部队作战层面,由于涉及对多个作战群的控制,需要采取集中规划、分级控制,人要有限参与;在更高级的战略和战役层次,集群只是作为一种平台武器和作战样式来使用,需要统一规划和布局,人为参与的程度就会更高。从任务性质来看,执行战略武器的操作使用,如核反击,就需要由人操作,不适合交给武器系统自主处理;执行重要目标、高价值目标的攻防时,如斩首行动,也需要人全程参与和控制,同时发挥武器系统的自主功能;对于战术目标的进攻,如果需要实施致命打击和毁伤任务的作战行动,可以让人有限参与,或者经人确认后,让协同群去自动执行;执行侦察、监视和目标识别、排查等非打击任务,或执行防空反导等时间短、人难以参与的任务时,主要交由协同群自动执行,而人不需要参与,也无法参与。此外,集群作战也要重视研究其反制措施。重点研究电子欺骗、电磁干扰、网络攻击和高功率微波武器、电磁脉冲炸弹、弹炮系统等反制措施,其相关作用和效果比较明显。同时,还要研究激光武器、蜂群对蜂群等反制措施,逐步建立人类能有效控制的、对付协同群的“防火墙”。

虚实端。虚实端主要指各类与“云、网”链接的终端,包括预先置入智能模块的各类传感器、指控平台、武器平台、保障平台、相关设备设施和作战人员。未来各种装备、平台,都是前台功能多样、后台云端支撑、虚实互动、在线离线结合的赛博实物系统CPS和人机交互系统。在简单环境感知、路径规划、平台机动、武器操作等方面,主要依靠前端智能如仿生智能、机器智能来实现。复杂的战场目标识别、作战任务规划、组网协同打击、作战态势分析、高级人机交互等,需要依靠后端云平台和云上AI提供信息数据与算法支撑。每个装备平台的前端智能与后端云上智能应结合,进行统筹规划与设计,形成前后端一体化智能的综合优势。同时,虚拟士兵、虚拟参谋、虚拟指挥员及其与人类的智能交互、高效互动等,也是未来研究发展的重点与难点。

战争形态质变

近代以来,人类社会主要经历了大规模的机械化战争和较小规模的信息化局部战争。20世纪前半叶发生的两次世界大战,是典型的机械化战争。20世纪90年代以来的海湾战争、科索沃战争、阿富汗战争、伊拉克战争和叙利亚战争,充分体现了信息化战争的形态与特点。新世纪新阶段,随着智能科技的快速发展与广泛应用,以数据和计算、模型和算法为主要特征的智能化战争时代即将到来(见图5)。

吴明曦5

机械化是工业时代的产物,技术上以机械动力和电气技术为重点,武器装备形态主要表现为坦克、装甲车辆、大炮、飞机、舰船等,对应的是机械化战争形态。机械化战争,主要基于以牛顿定律为代表的经典物理学和社会化大生产,以大规模集群、线式、接触作战为主,在战术上通常要进行现地侦察、勘查地形、了解对手前沿与纵深部署情况,结合己方能力下定决心,实施进攻或防御,进行任务分工、作战协同和保障,呈现出明显的指控层次化、时空串行化等特点。

信息化是信息时代的产物,技术上以计算机、网络通信等信息技术为重点,装备形态主要表现为雷达、电台、卫星、导弹、计算机、军用软件、指挥控制系统、网电攻防系统、综合电子信息系统等,对应的是信息化战争形态。信息化战争,主要基于计算机与网络三大定律(摩尔定律、吉尔德定律和梅特卡夫定律),以一体化联合、精确、立体作战为主,建立“从传感器到射手的无缝快速信息链接”,夺取制信息权,实现先敌发现与打击。在战术上则要对战场和目标进行详细识别和编目,突出网络化感知和指挥控制系统的作用,对平台的互联互通等信息功能提出了新的要求。由于全球信息系统和多样化网络通信的发展,信息化战争淡化了前后方的界限,强调“侦控打评保”横向一体化和战略、战役、战术的一体化与扁平化。

智能化是知识经济时代的产物,技术上以人工智能、大数据、云计算、认知通信、物联网、生物交叉、混合增强、群体智能、自主导航与协同等智能科技为重点,装备形态主要表现为无人平台、智能弹药、集群系统、智能感知与数据库系统、自适应任务规划与决策系统、作战仿真与平行训练系统、军事云平台与服务系统、舆情预警与引导系统、智能可穿戴系统等,对应的是智能化战争形态。

智能化战争,主要基于仿生、类脑原理和AI的战场生态系统,是以“能量机动和信息互联”为基础、以“网络通信和分布式云”为支撑、以“数据计算和模型算法”为核心、以“认知对抗”为中心,多域融合、跨域攻防,无人为主、集群对抗,虚拟与物理空间一体化交互的全新作战形态。

智能化战争以满足核常威慑、联合作战、全域作战和非战争军事行动等需求为目标,以认知、信息、物理、社会、生物等多域融合作战为重点,呈现出分布式部署、网络化链接、扁平化结构、模块化组合、自适应重构、平行化交互、聚焦式释能、非线性效应等特征,制胜机理颠覆传统,组织形态发生质变,作战效率空前提高,战斗力生成机制发生转变。其实质性的变化主要体现在以下十个方面。

AI主导的制胜机理。在智能化条件下,以“AI、云、网、群、端”为代表的全新作战要素将重构战场生态系统,战争的制胜机理将完全改变。其中,基于模型和算法的AI系统是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,算法战将在战争中起到决定性作用,作战体系和进程最终将以AI为主导,制智权成为未来战争的核心制权。

不同时代、不同战争形态,战场生态系统是不一样的,作战要素构成、制胜机理完全不同。机械化战争是平台中心战,核心是“动”,主导力量是火力和机动力,追求以物载能、以物释能。作战要素主要包括:人+机械化装备+战法。制胜机理是基于机械化装备作战运用的以人为主导的决策,以多胜少、以大吃小、以快制慢,全面、高效、可持续的动员能力,分别起到决定性或重要的作用。信息化战争是网络中心战,核心是“联”,主导力量是信息力,追求以网聚能、以网释能。作战要素及相互关系主要是:基于网络信息的“人+信息化装备+战法”。信息贯穿于人、装备和战法,建立“从传感器到射手”的无缝信息连接,实现体系化网络化作战能力,以体系对局部、以网络对离散、以快制慢,成为取得战争胜利的重要机理。其中,信息对装备和作战体系起到了倍增的作用,但平台仍然以有人为主,信息围绕人发挥辅助决策的作用,但多数决策还是以人为主。智能化战争是认知中心战,核心是“算”,主导力量是智力,智力所占权重将超过火力、机动力和信息力,追求的将是以智驭能、以智制能,以虚制实、以优胜劣,作战双方谁的AI多,谁的AI更聪明,战场主动权就越大。作战要素及相互关系主要是:AI×(云+网+群+人+装备+战法),可以简化为“AI、云、网、群、端”要素构成的相互关联与融合的战场生态系统。未来,AI在战争中的作用将越来越大、越来越强,最终将发挥决定和主导作用。

强调AI的主导作用,并不否认人在战争中的作用。一方面,人的聪明才智已经前置并赋予了AI;另一方面,在战前、后台和战略层面,在相当长一段时间和可预见的未来,AI是无法取代人类的。

现代战争战场环境越来越复杂、作战对抗速度越来越快,如何快速识别处理海量信息、快速响应战场态势、快速制定决策方案,已远非人力所能,也超出了现有技术手段的极限(见表1、表2)。随着AI在战争体系中的应用越来越广、作用越来越大,作战流程将重新塑造,军事杀伤链将提速增效,感知快、决策快、行动快、保障快,成为未来智能化战争制胜的重要砝码。

吴明曦-表1
吴明曦-表2

未来,通过图像、视频、电磁频谱、语音等智能识别与模式识别,对天空地海传感器网络复杂战场信息能够快速精确实施目标识别。利用大数据技术,通过多源多维定向搜索与智能关联分析,不仅能够对各种打击目标进行准确定位,还能够对人类行为、社会活动、军事行动和舆情态势精准建模,逐步提高预警预测准确率。各战区和战场基于精准战场信息,通过事先虚拟空间的大量平行建模和模拟训练,能够自适应地实施任务规划、自主决策与作战进程控制。各作战平台、集群系统的AI,根据任务规划能够围绕作战目标自主、协同执行任务,并针对随时出现的变化进行能动调整。通过事先建立分布式、网络化、智能化、多模式的保障体系与预置布局,能够快速实施精准物流配送、物资供应和智能维修等。总之,通过智能科技的广泛应用和各种AI系统的能动作用、进化功能,在谋划、预测、感知、决策、实施、控制、保障等作战全过程,实现“简单、快捷、高效、可控”的作战流程再造,能够让人类从繁重的作战事务中逐步解脱出来。作战流程再造将促使未来战场节奏加快、时间压缩、过程变短。

AI主导的制胜机理,主要表现在作战能力、手段、策略和措施方面,全面融合了人的智力,接近了人的智能,超越了人的极限,发挥了机器的优势,体现了先进性、颠覆性和创新性。这种先进与创新,不是以往战争简单的延长线和增长量,而是一种质的变化和跃升,是一种高阶特征。这种高阶特征体现为智能化战争具有传统战争形态所不具备的“类脑”功能和很多方面“超越人类极限的能力”。随着AI的不断优化迭代,它总有一天将超过普通士兵、参谋、指挥员甚至精英和专家群体,成为“超级脑”和“超级脑群”。这是智能化战争的核心和关键,是认识论和方法论领域的技术革命,是人类目前可预见、可实现、可进化的高级作战能力。

虚拟空间作用上升。随着时代的进步和科技的发展,作战空间逐步从物理空间拓展到虚拟空间。虚拟空间在作战体系中的地位作用逐步上升且越来越重要,越来越同物理空间和其他领域实现深度融合与一体化。虚拟空间是由人类构建的基于网络电磁的信息空间,它可以多视角反映人类社会和物质世界,同时可以超越客观世界的诸多限制来利用它。构建它的是信息域,连接它的是物理域,反映出的是社会域,利用它的是认知域。狭义上的虚拟空间主要指民用互联网,广义上的虚拟空间主要指赛博空间(Cyberspace),包括各种物联网、军用网和专用网构成的虚拟空间。赛博空间具有易攻难防、以软搏硬、平战一体、军民难分等特征,已成为实施军事行动、战略威慑和认知对抗的重要战场。

虚拟空间的重要性主要体现在三个方面:一是通过网络信息系统,把分散的作战力量、作战要素连接为一个整体,形成体系化网络化作战能力,成为信息化战争的基础;二是成为网电、情报、舆情、心理、意识等认知对抗的主战场和基本依托;三是建立虚拟战场,开展作战实验,实现虚实互动,形成平行作战和以虚制实能力的核心与关键。

未来,随着全球互联、物联的加速升级,随着天基网络化侦察、通信、导航、移动互联、Wi-Fi和高精度全球时空基准平台、数字地图、行业大数据等系统的建立完善与广泛应用,人类社会和全球军事活动将越来越“透明”,越来越被联网、被感知、被分析、被关联、被控制(见图6),对军队建设和作战呈现全方位、泛在化的深刻影响,智能化时代的作战体系将逐步由封闭向开放、由以军为主向军民融合的“开源泛在”方向拓展。

吴明曦6

智能化时代,物理、信息、认知、社会、生物等领域的信息数据将逐渐实现自由流动,作战要素将实现深度互联与物联,各类作战体系将从初级的“能力组合”向高级的“信息融合、数据交链、一体化行为交互”方向发展,具备强大的全域感知、多域融合、跨域作战能力,具备随时随地对重要目标、敏感人群和关键基础设施实施有效控制的能力。美国陆军联合兵种中心的一份报告认为,这个世界正在进入“全球监控无处不在”的时代。即使这个世界无法跟踪所有的活动,技术的扩散也无疑会使潜在的信息来源以指数方式增长。

目前,基于网络的软件攻击已具备物理毁伤能力,军事发达国家的网络攻击已具备入侵、欺骗、干扰、破坏等作战能力,赛博空间已经成为实施军事行动和战略威慑的又一重要战场。美国的网络攻击已经用于实战。突尼斯的本·阿里、利比亚的卡扎菲、伊拉克的萨达姆都曾经被美国的网络攻防和维基解密影响,造成舆情转向、心理失控、社会动荡,导致政权的迅速垮台,对传统战争形态产生了颠覆性影响。通过斯诺登事件,美国使用的11类49项“赛博空间”侦察项目目录清单陆续被曝光,“震网”病毒破坏伊朗核设施、“高斯”病毒群体性入侵中东有关国家、“古巴推特网”控制大众舆情等事件,表明美国已具备对互联网、封闭网络、移动无线网络的强大监控能力、软硬攻击和心理战能力。

战争从虚拟空间实验开始。美军从20世纪80年代就开始了作战仿真、作战实验和模拟训练的探索。后来,美军又率先将虚拟现实、兵棋推演、数字孪生等技术用于虚拟战场和作战实验。据分析,海湾战争、科索沃战争、阿富汗战争、伊拉克战争等军事行动,美军都开展了作战模拟推演,力图找出的最优作战和行动方案。据报道,俄罗斯出兵叙利亚之前,就在战争实验室进行了作战预演,依据实验推演情况,制定了“中央-2015”战略演习计划,针对叙利亚作战演练了“在陌生区域的机动和可到达性”。演习结束后,俄军格拉西莫夫总参谋长强调,以政治、经济及舆论心理战等手段为主,辅之以远程精确的空中打击、特种作战等措施,最终达成政治和战略目的。实践表明,俄出兵叙利亚的进程,与实验、演习基本一致。

未来,随着虚拟仿真、混合现实、大数据、智能软件的应用和发展,通过建立一个平行军事人工系统,使物理空间的实体部队与虚拟空间的虚拟部队相互映射、相互迭代,可以在虚拟空间里解决物理空间难以实现的快速、高强度对抗训练和超量计算,可以与高仿真的“蓝军系统”进行对抗和博弈,不断积累数据,建立模型和算法,从而把最优解决方案用于指导实体部队建设和作战,达到虚实互动、以虚制实、以虚制胜的目的。2019年1月25日,谷歌旗下人工智能团队DeepMind与《星际争霸》开发公司暴雪,公布了2018年12月AlphaSTAR与职业选手TLO、MANA的比赛结果,最终在五局三胜赛制中,AlphaSTAR均以5:0取胜。AlphaSTAR只用了两周时间就完成了人类选手需要200年时间的训练量,展示了在虚拟空间进行仿真对抗训练的巨大优势与光明前景。

无人化为主的作战样式。智能化时代,无人化作战将成为基本形态,人工智能与相关技术的融合发展将逐步把这种形态推向高级阶段。无人系统是人类智慧在作战体系中的充分前置,是智能化、信息化、机械化融合发展的集中体现。无人装备最早出现在无人机领域,1917年,英国造出了世界上第一架无人机,但未用于实战。随着技术发展,无人机逐步用于靶机、侦察、察打一体等领域。进入21世纪以来,无人技术与装备由于具有以任务为中心设计、不必考虑乘员需求、作战效费比高等优势,其探索应用已经实现了巨大跨越,取得了重大突破,显现出快速全方位发展的态势,应用范围迅速拓展,涵盖了空中、水面、水下、地面、空间等各个领域。

近年来,人工智能、仿生智能、人机融合智能、群体智能等技术飞速发展,借助卫星通信与导航、自主导航,无人作战平台能够很好地实现远程控制、编队飞行、集群协同。目前,无人作战飞行器、水下无人平台和太空无人自主操作机器人相继问世,双足、四足、多足和云端智能机器人等正在加速发展,已经步入工程化和实用化快车道,军事应用为期不远。

总体上看,智能化时代的无人化作战,将进入三个发展阶段。第一阶段是有人为主、无人为辅的初级阶段,其主要特点是“有人主导下的无人作战”,也就是事前、事中、事后都是由人完全控制和主导的作战行为。第二阶段是有人为辅、无人为主的中级阶段,其主要特点是“有限控制下的无人作战”,即在作战全过程中人的控制是有限度、辅助性但又是关键性的,多数情况可以依靠平台自主行动能力。第三阶段是规则有人、行动无人的高级阶段,其主要特点是“有人设计、极少控制的无人作战”,人类事先进行总体设计,明确各种作战环境条件下的自主行为与游戏规则,在行动实施阶段主要交由无人平台和无人部队自主执行。

自主行为或者自主性,是无人化作战的本质,是智能化战争既普遍又显著的特征,体现在很多方面。

一是作战平台的自主,主要包括无人机、地面无人平台、精确制导武器、水下和太空机器人等自主能力和智能化水平。

二是探测系统的自主,主要包括自动搜索、跟踪、关联、瞄准和图像、语音、视频、电子信号等信息的智能识别。

三是决策的自主,核心是作战体系中基于AI的自主决策,主要包括战场态势的自动分析、作战任务的自动规划、自动化的指挥控制、人机智能交互等。

四是作战行动的自主协同,前期包括有人无人系统的自主协同,后期包括无人化的自主集群,如各类作战编队集群、蜂群、蚁群、鱼群等作战行为。

五是网络攻防的自主行为,包括各种病毒和网络攻击行为的自动识别、自动溯源、自动防护、自主反击等。

六是认知电子战,自动识别电子干扰的功率、频段、方向等,自动跳频跳转和自主组网,以及面向对手的主动、自动电子干扰等。

七是其他自主行为,包括智能诊断、自动修复、自我保障等。

未来,随着人工智能和相关技术融合发展的不断升级,无人化将向自主、仿生、集群、分布式协同等方向快速发展,逐步把无人化作战推向高级阶段,促使战场上有生力量的直接对抗显著减少。虽然未来有人平台会一直存在,但仿生机器人、类人机器人、蜂群武器、机器人部队、无人化体系作战,在智能化时代将成为常态。由于在众多作战领域都可以用无人系统来替代,都可以通过自主行为去完成,人类在遭到肉体打击和损伤之前,一定有无人化作战体系在前面保驾护航。因此,智能化时代的无人化作战体系,是人类的主要保护屏障,是人类的护身符和挡箭牌。

全域作战与跨域攻防。智能化时代全域作战与跨域攻防,也是一种基本作战样式,体现在很多作战场景、很多方面。从陆、海、空、天到物理、信息、认知、社会、生物多领域,以及虚拟和实体的融合互动,从平时的战略威慑到战时的高对抗、高动态、高响应,时间和空间跨度非常大。既面临物理空间作战和虚拟空间网络攻防、信息对抗、舆情引导、心理战等认知对抗,还面临全球安全治理、区域安全合作、反恐、救援等任务,面临网络、通信、电力、交通、金融、物流等关键基础设施的管控。

2010年以来,以信息化智能化技术成果为支撑,美军提出了作战云、分布式杀伤、多域战、算法战、马赛克战、联合全域作战等概念,目的是以体系对局部、以多能对简能、以多域对单域、以融合对离散、以智能对非智能,维持战场优势和军事优势。美军2016年提出多域战、2020年提出联合全域作战概念,目的是发展跨军种跨领域的联合作战能力,实现单一军种作战背后都有三军的支持,具备全域对多域、对单域的能力优势。

未来,随着人工智能与多学科交叉融合、跨介质攻防关键技术群的突破,在物理、信息、认知、社会、生物等功能域之间,在陆、海、空、天等地理域之间,基于AI与人机混合智能的多域融合与跨域攻防,将成为智能化战争一个鲜明的特征。

智能时代的多域与跨域作战,将从任务规划、物理联合、松散协同为主,向异构融合、数据交链、战术互控、跨域攻防一体化拓展。

一是多域融合。根据多域环境下不同的战场与对手,按照联合行动的要求把不同的作战样式、作战流程和任务规划出来,尽量统一起来,实现信息、火力、防御、保障和指控的统筹与融合,实现战略、战役和战术各层次作战能力的融合,形成一域作战、多域联合快速支援的能力。

二是跨域攻防。在统一的网络信息体系支撑下,通过统一的战场态势,基于统一标准的数据信息交互,彻底打通跨域联合作战侦控打评信息链路,实现在战术和火控层面军种之间协同行动、跨域指挥与互操作、作战要素与能力的无缝衔接。

三是全程关联。把多域融合和跨域攻防作为一个整体,统筹设计、全程关联。战前,开展情报收集与分析,实施舆论战、心理战、宣传战和必要的网电攻击。战中,通过特种作战和跨域行动,实施斩首、要点破袭和精确可控打击(见图7)。战后,防御信息系统网络攻击、消除负面舆论对民众影响、防止基础设施被敌破坏,从多个领域实施战后治理、舆情控制和社会秩序恢复。

吴明曦7

四是AI支持。通过作战实验、模拟训练和必要的试验验证、实战检验,不断积累数据、优化模型,建立不同作战样式与对手的AI作战模型和算法,形成一个智能化的脑体系,更好地支撑联合作战、多域作战和跨域攻防。

人与AI混合决策。智能化战场AI脑体系的不断健全、优化、升级和完善,使其将在许多方面超越人类。几千年来,人类战争以人为主的指挥控制和决策模式将彻底改变,人指挥AI、AI指挥人、AI指挥AI等,都有可能在战争中出现。

分布式、网络化、扁平化、平行化是智能化作战体系的重要特征,有中心、以人为主的单一决策模式,逐步被基于AI的无人化、自主集群、有人无人协同等无中心、弱中心模式所改变,相互之间的混合兼容成为发展趋势。作战层级越低、任务越简单,无人化、无中心的作用越突出;层级越高、任务越复杂,人的决策、有中心的作用越重要。战前以人决策为主、以AI决策为辅,战中以AI决策为主、以人决策为辅,战后两者都有、以混合决策为主(见表3)。

吴明曦-表3

未来战场,作战对抗态势高度复杂、瞬息万变、异常激烈,多种信息交汇形成海量数据,仅凭人脑难以快速、准确处理,只有实现“人脑+AI”的协作运行方式,基于作战云、数据库、网络通信、物联网等技术群,“指挥员”才能应对瞬息万变的战场,完成指挥控制任务。随着无人系统自主能力的增加,集群和体系AI功能的增强,自主决策逐步显现。一旦指挥控制实现不同程度的智能化,侦察—判断—决策—攻击(OODA)回路时间将大大压缩,效率将明显提升。尤其是用于网络传感器图像处理的模式识别、用于作战决策的“寻优”算法、用于自主集群的粒子群算法和蜂群算法等,将赋予指挥控制系统更加高级、完善的决策能力,逐步实现“人在回路外”的作战循环。

非线性放大与快速收敛。未来的智能化作战,不再是能量的逐步释放和作战效果的线性叠加,而是非线性、涌现性、自生长、自聚焦等多种效应的急剧放大和结果的快速收敛。

涌现主要指复杂系统内每个个体都遵从局部规则,不断进行交互后,以自组织方式产生出整体质变效应的过程。未来,战场信息虽然复杂多变,但通过图像、语音、视频等智能识别和军事云系统处理后,具备“一点采集、大家共享”能力,通过大数据技术与相关信息快速关联,并与各类武器火控系统快速交链后,实施分布式打击、集群打击和网络心理战等,能够实现“发现即摧毁”“一有情况群起而攻之”和“数量优势滋生心理恐慌效应”,这些现象就是涌现效应。

智能化作战的涌现效应主要体现在三个方面:一是基于AI决策链的快速而引发的杀伤链的加速;二是有人无人协同特别蜂群系统数量优势所引发的作战效应;三是基于网络互联互通所产生的快速群体涌现行为。

军事智能化发展到一定阶段后,在高级AI、量子计算、IPV6、高超声速等技术共同作用下,作战体系将具备非线性、非对称、自生长、快速对抗、难以控制的放大效应和行动效果,特别在无人、集群、网络舆情、认知对抗等方面尤为明显,群愚生智、以量增效、非线性放大、涌现效应越来越突出,AI主导下的认知、信息、能量对抗相互交织并围绕着目标迅速聚焦,时间越来越被压缩,对抗速度越来越快,即呈现多种效应的急剧放大和结果的快速收敛。能量冲击波、对抗极速战、AI终结者、舆情反转、社会动荡、心理失控、物联网连锁效应等,将成为智能化战争的显著特征。

无人化集群攻击,作战双方在平台性能大致相同的条件下,遵循兰切斯特方程,作战效能与数量的平方成正比,数量优势就是质量优势。网络攻防和心理舆情效应,遵循梅特卡夫定律,与信息互联用户数的平方成正比,非线性、涌现效应更加明显。战场AI数量的多少和智商的高低,更决定着作战体系智能化的整体水平,关系到战场智权的控制,影响战争胜负和结局。智能化时代,如何处理好能量、信息、认知、数量、质量、虚拟、实体之间的相互关系,如何巧妙地设计、把控、运用和评估非线性效应,是未来战争面临的重大新挑战和新要求。

未来,无论是舆情反转、心理恐慌,还是蜂群攻击、集群行动,以及人在环外自主作战,其涌现效应和打击效果,将成为相对普遍的现象和容易实施的行动,形成威慑与实战兼容的能力,也是人类社会必须严加管理和控制的战争行为。

有机共生的人装关系。在智能化时代,人与武器的关系将发生根本性改变,在物理上越来越远、在思维上越来越近。装备形态和发展管理模式将完全改变,人的思想和智慧通过AI与武器装备深度交链,在装备发展阶段充分前置、在使用训练阶段优化迭代、在作战验证之后进一步升级完善,如此循环往复、不断递进。

第一,随着网络通信、移动互联、云计算、大数据、机器学习和仿生等技术的快速发展及其在军事领域的广泛应用,传统武器装备的结构和形态将彻底改变,呈现出前后台分工协作、高效互动、自适应调整等多样化功能,是集机械、信息、网络、数据、认知于一体的复合体。

第二,人与武器逐渐物理脱离,但在思维上逐步深度融合为有机共生体。无人机、机器人的逐步成熟,从辅助人作战转向代替人作战,人更加退居到后台。人与武器的结合方式,将以崭新形态出现。人的思想和智慧将全寿命周期地参与设计、研发、生产、训练、使用和保障过程,无人作战系统将把人的创造性、思想性和机器的精准性、快速性、可靠性、耐疲劳性完美结合起来。

第三,装备建设与管理模式发生深刻变化。机械化装备越用越旧、信息化软件越来越新、智能化算法越用越精。传统的机械化装备采用“预研—研制—定型”的模式交付部队,战技性能随时间和摩托小时呈下降趋势;信息化装备是机械化、信息化复合发展的产物,平台不变,但信息系统随计算机CPU和存储设备的发展不断迭代更新,呈现“信息主导、以软牵硬,快速更替、螺旋上升”的阶梯式发展特点;智能化装备以机械化、信息化为基础,随着数据和经验的积累,不断地优化提升训练模型和算法,呈现随时间和使用频率越用越强、越用越好的上升曲线。因此,智能化装备发展建设及使用训练保障模式,将发生根本性改变。

在学习对抗中进化。进化,一定是未来智能化战争和作战体系的一个鲜明特点,也是未来战略竞争的一个制高点。智能化时代的作战体系将逐步具备自适应、自学习、自对抗、自修复、自演进能力,成为一个可进化的类生态和博弈系统。

智能化作战体系与系统,最大的特点和与众不同之处,就在于其“类人、仿人”的智能与机器优势的结合,实现“超人类”的作战能力。这种能力的核心是众多模型和算法越用越好、越用越精,具备进化的功能。如果未来作战体系像人体一样,大脑是指挥控制中枢,神经系统是网络,四肢是受大脑控制的武器装备,就像一个生命体一样,具备自适应、自学习、自对抗、自修复、自演进能力,我们认为它就具备进化的能力和功能。由于智能化作战体系与生命体不完全一样,单一的智能化系统与生命体类似,但多系统的作战体系,更像一个“生态系统+对抗博弈系统”,比单一的生命体更复杂,更具有对抗性、社会性、群体性和涌现性。

经初步分析判断,随着作战仿真、虚拟现实、数字孪生、平行训练、智能软件、仿脑芯片、类脑系统、仿生系统、自然能源采集和新型机器学习等技术的发展应用,未来的作战体系可以逐步从单一功能、部分系统的进化向多功能、多要素、多领域、多系统的进化发展。各系统能够根据战场环境变化、面临的威胁不同、面临的对手不同、自身具备的实力和能力,按照以往积累的经验知识、大量仿真对抗性训练和增强学习所建立的模型算法,快速形成应对策略并采取行动,进而在战争实践中不断修正、优化和自我完善、自我进化。单一任务系统将具备类似生命体的特征和机能,多任务系统就像森林中的物种群那样具备相生相克、优胜劣汰的循环功能和进化机制,具备复杂环境条件下的博弈对抗和竞争能力,形成可进化的类生态和博弈系统。

作战体系的进化途径,主要体现在四个方面:一是AI的进化,随着数据和经验的积累,一定会不断优化、升级和提升。这一点比较容易理解。二是作战平台和集群系统的进化,主要从有人控制为主向半自主、自主控制迈进。由于不仅涉及平台和集群控制AI的进化,还涉及相关机械与信息系统的优化和完善,所以要相对复杂一点。三是任务系统的进化。如探测系统、打击系统、防御系统、保障系统的进化等,由于涉及多平台、多任务,所以进化涉及的因素和要素就复杂得多,有的可能进化快,有的可能进化慢。四是作战体系的进化,由于涉及全要素、多任务、跨领域,涉及各个层次的对抗,其进化过程就非常复杂。作战体系能否进化,不能完全依靠自生自长,而需要主动设计一些环境和条件,需要遵循仿生原则、适者生存原则、相生相克原则和全系统全寿命管理原则,才能具备持续进化的功能和能力。

智能设计与制造。智能化时代的国防工业,将从相对封闭、实物为主、周期较长的研究制造模式向开源开放、智能设计与制造、快速满足军事需求转变。

国防工业是国家战略性产业,是国家安全和国防建设的强大支柱,平时主要为军队提供性能先进、质量优良、价格合理的武器装备,战时是实施作战保障的重要力量,是确保打赢的核心支撑。国防工业是一个高科技密集的行业,现代武器装备研发和制造,技术密集、知识密集、系统复杂、综合性强,大型航母、战斗机、弹道导弹、卫星系统、主战坦克等武器装备的研发,一般都要经过十年、二十年甚至更长时间,才能定型交付部队,投入大、周期长、成本高。二战以后到上世纪末,国防工业体系和能力结构是机械化时代与战争的产物,其科研、试验、生产制造、保障等,重点面向军兵种需求和行业系统组织科研与生产,主要包括兵器、船舶、航空、航天、核和电子等行业,以及民口配套和基础支撑产业等。冷战后,美国国防工业经过战略调整和兼并重组,总体上形成了与信息化战争体系对抗要求相适应的国防工业结构和布局。美国排名前六位的军工巨头,既可以为相关军兵种提供专业领域的作战平台与系统,也可以为联合作战提供整体解决方案,是跨军兵种跨领域的系统集成商。进入21世纪以来,随着体系化、信息化作战需求的变化和数字化、网络化、智能化制造技术的发展,传统武器装备发展模式和科研生产能力开始逐步改变,迫切需要按照信息化战争特别是智能化战争的要求进行重塑和调整。

未来,国防科技工业将按照联合作战、全域作战、机械化信息化智能化融合发展要求,从传统以军兵种、平台建设为主向跨军兵种、跨领域系统集成转变,从相对封闭、自成体系、各自独立、条块分割、实物为主、周期较长的研究设计制造向开源开放、民主化众筹、虚拟化设计与集成验证、自适应制造、快速满足军事需求转变(见图8),逐步形成软硬结合、虚实互动、人机物环智能交互、纵向产业链有效衔接、横向分布式协同、军民一体化融合的新型创新体系和智能制造体系。军地多方联合论证设计,建设和使用供需双方共同研发,基于平行军事系统的虚实迭代优化,通过作战训练和实战验证来完善提升,边研边试边用边建,是智能化作战体系发展建设和战斗力生成的基本模式。

吴明曦8

吴明曦8

失控的风险。由于智能化作战体系在理论上具备自我进化并达到“超人类”的能力,如果人类不事先设计好控制程序、控制节点,不事先设计好“终止按钮”,结果很可能会带来毁灭和灾难。需要高度关注的是,众多黑客和“居心不良”的战争狂人,会利用智能化技术来设计难以控制的战争程序和作战方式,让众多机器脑AI和成群结队的机器人,按照事先设定的作战规则,自适应和自演进地进行战斗,所向披靡,勇往直前,最终酿成难以控制的局面,造成难以恢复的残局。这是人类在智能化战争进程中面临的重大挑战,也是需要研究解决的重大课题。需要从全人类命运共同体和人类文明可持续发展的高度,认识和重视这个问题,设计战争规则,制定国际公约,从技术上、程序上、道德上和法律上进行规范,实施强制性的约束、检查和管理。

以上十个方面的突变和跨越,是智能化战争新形态的主要内容。当然,智能化战争的发展与成熟,并不是空中楼阁、无本之木,而是建立在机械化和信息化之上。没有机械化和信息化,就没有智能化。机械化、信息化、智能化“三化”是一个有机整体,相互联系、相互促进,迭代优化、跨越发展。从目前看,机械化是基础,信息化是主导,智能化是方向。从未来看,机械化是基础,信息化是支撑,智能化是主导。

未来美好远景

在新世纪的时空隧道里,我们看到智能化战争的列车正快速行驶,是任由人类的贪婪和科技的强大走向更加残酷的黑暗,还是迈向更加文明和光明的彼岸,这是人类需要思索的重大哲学命题。智能化是未来,但不是全部。智能化能胜任多样化军事任务,但不是全能。面对文明之间、宗教之间、国家之间、阶层之间的尖锐矛盾,面对手持菜刀的暴徒、自杀式爆炸、群体性骚乱等极端事件,智能化作用仍然有限。全球政治不平衡、权利不平等、贸易不公平、社会矛盾不解决,战争和冲突将不可避免。世界最终靠实力说了算,而其中科技实力、经济实力和军事实力极其重要。军事实力虽然决定不了政治,但可以影响政治,决定不了经济,但可以为经济发展带来安全。智能化作战能力越强大,其威慑强敌、遏制战争的功能越强,和平就越有希望。就像核威慑那样,为避免可怕的后果和失控的灾难,在防止大规模战争方面发挥着重要的作用。

战争的智能化程度,在某种意义上体现了战争文明的进程。人类战争的历史,最初由族群之间食物和居住区域的争夺,到土地占领、资源掠夺、政治实力扩张、精神世界统治,无不充满血腥、暴力和镇压。战争作为人类社会不可调和矛盾的最终解决手段,其所追求的理想目标是文明化:不战而屈人之兵、资源投入最少、人员伤亡最小、对社会的破坏最轻……但以往的战争实践,往往因政治斗争、民族矛盾、经济利益争夺、科技毁伤手段的残酷等原因而事与愿违,常常把国家、城市和家园毁坏殆尽。以往的战争未能实现上述理想,而未来智能化战争由于技术上的突破、透明度的增加、经济利益互利共享的加深,特别是有生力量的对抗逐步让位于机器人之间的对抗、AI之间的博弈,人员伤亡、物质消耗、附带损伤会越来越小,在很大程度上存在实现文明化的可能性,给人类带来了希望。我们期待,未来战争,从人类社会的相互残杀、物质世界的极大破坏,逐步过渡到无人系统和机器人之间的战争,发展到仅限于作战能力和综合实力的威慑与制衡、虚拟世界中AI之间的对抗、高仿真的战争游戏……人类战争的消耗,只限于一定规模的无人系统、模拟对抗与仿真实验,甚至仅仅是打一场战争游戏的能源。人类由战争的谋划者、设计者、参与者、主导者和受害者,转变为理性的思想者、组织者、控制者、旁观者和裁决者。人类的身体不再受到创伤,精神不再受到惊吓,财富不再遭到破坏,家园不再遭到摧毁。虽然美好的理想和愿望,与残酷的现实可能始终存在差距,但衷心希望这一天能够到来,尽早到来。这是智能化战争发展的最高阶段,作者的最大愿望,人类的美好远景!

(感谢同事周旭芒研究员为论文撰写提供支持和帮助,他在智能化发展和建设方面有独到的思想和见解)

注释

[1][美]罗伯特·O.沃克等:《20YY:机器人时代的战争》,邹辉等译,北京:国防工业出版社,2016年,第148页。

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. The AI system based on models and algorithms will be the core combat capability, running through all aspects and links and playing a multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

中國原創軍事資源:https://www.rmlt.com.cn/2021/0818/622318889.shtml