Category Archives: Command information Systems

Chinese Military Grasping Pulse of Information and Intelligent Warfare Development

中國軍方掌握資訊戰和智慧戰發展的脈搏

現代英語:

Currently, the deep penetration and integrated application of cutting-edge technologies such as artificial intelligence in the military field are profoundly reshaping the form of warfare and driving the evolution of informationized and intelligent warfare to a higher and more complex level. This process brings new challenges, such as the full-dimensional expansion of the operational space, but also contains the enduring underlying logic of the essential laws of warfare. We must deeply analyze the evolutionary mechanism of informationized and intelligent warfare, understand and clarify the specific manifestations of the new challenges and underlying logic, and continuously explore the practical paths and winning principles for strategizing future warfare.

Recognizing the new challenges that information technology and intelligent technology bring to warfare

Technological iteration and upgrading have driven profound changes in combat styles, which in turn bring new challenges. Currently, with the accelerated development of information and intelligent technologies, the form of warfare is showing significant changes such as cross-domain integration, system confrontation, and intelligent dominance, thereby giving rise to new challenges such as mixed-domain nature, intelligence, and all-personnel involvement.

The Challenges of Multi-Domain Operations. In future warfare, the physical boundaries of traditional operational domains will be broken, with information and social domains deeply nested, forming a new type of battlefield characterized by multi-domain coordination. This multi-dimensional battlefield environment presents two challenges to current combat systems. First, system compatibility is difficult. In a multi-domain operational environment, combat operations “span” multiple physical and virtual spaces, while traditional combat systems are often built based on specific operational domains, making seamless compatibility of their technical standards and information interfaces difficult. Second, command and control are highly complex. In informationized and intelligent warfare, combat operations unfold simultaneously or alternately across multiple dimensions, with various demands exhibiting non-linear, explosive, and multi-domain characteristics. Traditional, hierarchical, tree-like command structures are ill-suited to handle this complex multi-domain coordination situation.

The Challenges of Intelligence. The deep integration of technologies such as artificial intelligence into the war decision-making and action chain presents new challenges to traditional decision-making models and action logic. On the one hand, defining the boundaries and dominance of human-machine collaboration is challenging. Intelligent systems demonstrate superior capabilities in information processing, decision support, and even autonomous action, but over-reliance on algorithms can lead to a “decision black box”; excessive restrictions on machine intelligence may result in the loss of the speed and efficiency advantages of intelligent algorithms. Therefore, how to construct a human-machine symbiotic, human-led, and intelligence-assisted decision-making model has become an unavoidable “test” in winning informationized and intelligent warfare. On the other hand, the complexity and vulnerability of algorithmic warfare are becoming increasingly prominent. The higher the level of intelligence in warfare, the stronger the dependence on core algorithms. Adversaries may launch attacks through data pollution, model deception, and network intrusion, inducing intelligent systems to misjudge and fail. This kind of “bottom-up” attack based on algorithmic vulnerabilities is far more covert and destructive than traditional methods, placing higher demands on the construction and maintenance of defense systems.

A challenge affecting all personnel. Informationized and intelligent warfare blurs the lines between wartime and peacetime, front lines and rear areas. Combat operations are no longer confined to professional soldiers and traditional battlefields; non-military sectors such as economics, finance, and technology, along with related personnel, may all be integrated into modern combat systems to varying degrees, bringing entirely new challenges. Specifically, non-military sectors may become new focal points of offense and defense. In an information society, critical infrastructure such as energy networks, transportation hubs, and information platforms are highly interconnected and interdependent, with broad social coverage and significant influence, making them prime targets for attack or disruption in hybrid warfare, thus significantly increasing the difficulty of protection. The national defense mobilization system faces transformation pressure. The traditional “peacetime-wartime conversion” model is ill-suited to the demands of high-intensity, fast-paced, and high-consumption informationized and intelligent warfare. There is an urgent need to build a modern mobilization mechanism that is “integrated in peacetime and wartime, military-civilian integrated, precise, and efficient,” ensuring the rapid response and efficient transformation of core resources such as technological potential, industrial capabilities, and professional talent.

Clarifying the underlying logic of information-based and intelligent warfare

Although the development of information and intelligent technologies has profoundly reshaped the mode of force application, the inherent attributes of war have not been fundamentally shaken. Ensuring that strategy follows policy, adhering to the principle that people are the decisive factor, and recognizing that the “fog of war” will persist for a long time are still key measures for us to understand, plan, and respond to future wars.

Strategic subordination with political strategy is paramount. Currently, the proliferation of new technologies and attack methods easily fosters “technocentrism”—when algorithms and computing power are seen as the key to victory, and when technological superiority in equipment is considered an absolute advantage, military operations risk deviating from the political and strategic trajectory. This necessitates that we always integrate military operations within the overall national political framework, ensuring that technological advantages serve strategic objectives. Under informationized and intelligent conditions, strategic subordination with political strategy transcends the purely military level, requiring precise alignment with core national political goals such as diplomatic maneuvering and domestic development and stability. Therefore, it is essential to clearly define the boundaries, intensity, and scope of information and intelligent means of application, avoid significant political and strategic risks arising from the misuse of technology, and strive for a dynamic unity between political objectives and military means.

The decisive factor remains human. While intelligent technology can indeed endow weapons with superior autonomous perception and decision-making capabilities, the ultimate control and winning formula in war always firmly rests in human hands. Marxist warfare theory reveals that regardless of how warfare evolves, humans are always the main actors and the ultimate decisive force. Weapons, as tools, ultimately rely on human creativity in their effective use. Therefore, facing the wave of informationized and intelligent warfare, we must achieve deep integration and synchronous development of human-machine intelligence, building upon a foundation of human dominance. Specifically, intelligentization must not only “transform” things—improving equipment performance—but also “transform” people—enhancing human cognitive abilities, decision-making levels, and human-machine collaborative efficiency, ensuring that no matter how high the “kites” of intelligent equipment fly, humanity always firmly grasps the “control chain” that guides their development.

Recognizing the persistent nature of the “fog of war,” while information technology has significantly improved battlefield transparency, technological means can only reduce the density of the “fog,” not completely dispel it. The fundamental reason is that war is a dynamic game; the deception generated by the continuous strategic feints and other maneuvers employed by opposing sides transcends the scope of mere technological deconstruction, possessing an inherent unpredictability. Therefore, we must acknowledge the perpetual nature of the “fog of war” and employ appropriate measures to achieve the goal of “reducing our own fog and increasing the enemy’s confusion.” Regarding the former, we must strengthen our own reconnaissance advantages by integrating multi-source intelligence, including satellite reconnaissance, drone surveillance, and ground sensors, to achieve a real-time dynamic map of the battlefield situation. Regarding the latter, we must deepen the enemy’s decision-making dilemma by using techniques such as false signals and electronic camouflage to mislead their intelligence gathering, forcing them to expend resources in a state of confusion between truth and falsehood, directly weakening their situational awareness.

Exploring the winning factors of information-based and intelligent warfare

To plan for future wars, we must recognize the new challenges they bring, follow the underlying logic they contain, further explore the winning principles of informationized and intelligent warfare, and work hard to strengthen military theory, make good strategic plans, and innovate tactics and methods.

Strengthening theoretical development is crucial. Scientific military theory is combat power, and maintaining the advancement of military theory is essential for winning informationized and intelligent warfare. On the one hand, we must deepen the integration and innovation of military theory. We must systematically integrate modern scientific theories such as cybernetics, game theory, and information theory, focusing on new combat styles such as human-machine collaborative operations and cross-domain joint operations, to construct an advanced military theoretical system that is forward-looking, adaptable, and operable. On the other hand, we must adhere to practical testing and iterative updates. We must insist on linking theory with practice, keenly observing problems, systematically summarizing experiences, and accurately extracting patterns from the front lines of military struggle preparation and training, forming a virtuous cycle of “practice—understanding—re-practice—re-understanding,” ensuring that theory remains vibrant and effectively guides future warfare.

Strategic planning is crucial. Future-oriented strategic planning is essentially a proactive shaping process driven by technology, driven by demand, and guaranteed by dynamic adaptation. It requires a broad technological vision and flexible strategic thinking, striving to achieve a leap from “responding to war” to “designing war.” First, we must anticipate technological changes. We must maintain a high degree of sensitivity to disruptive technologies that may reshape the rules of war and deeply understand the profound impact of the cross-integration of various technologies. Second, we must focus on key areas. Emerging “high frontiers” such as cyberspace, outer space, the deep sea, and the polar regions should be the focus of strategic planning, concentrating on shaping the rules of operation and seizing advantages to ensure dominance in the invisible battlefield and emerging spaces. Third, we must dynamically adjust and adapt. The future battlefield is constantly changing and full of uncertainty. Strategic planning cannot be a static, definitive text, but rather a resilient, dynamic framework. We must assess the applicability, maturity, and potential risks of various solutions in conjunction with reality to ensure that the direction of military development is always precisely aligned with the needs of future warfare.

Promoting Tactical Innovation. Specific tactics serve as a bridge connecting technological innovation and combat operations. Faced with the profound changes brought about by informationized and intelligent warfare, it is imperative to vigorously promote tactical innovation and explore “intelligent strategies” adapted to the future battlefield. On the one hand, it is necessary to deeply explore the combat potential of emerging technologies. We should actively explore new winning paths such as “algorithms as combat power,” “data as firepower,” “networks as the battlefield,” and “intelligence as advantage,” transforming technological advantages into battlefield victories. On the other hand, it is necessary to innovatively design future combat processes. Various combat forces can be dispersed and deployed across multiple intelligent and networked nodes, constructing a more flattened, agile, and adaptive “observation-judgment-decision-action” cycle. Simultaneously, we must strengthen multi-domain linkage, breaking down inherent barriers between different services and combat domains, striving to achieve cross-domain collaboration, system-wide synergy, autonomous adaptation, and dynamic reorganization, promoting the overall emergence of combat effectiveness.

現代國語:

目前,人工智慧等尖端技術在軍事領域的深度滲透與融合應用,正深刻重塑戰爭形態,推動資訊化、智慧化戰爭朝向更高、更複雜的層面演進。這個過程帶來了作戰空間全方位擴展等新挑戰,同時也蘊含著戰爭基本法則的持久邏輯。我們必須深入分析資訊化、智慧化戰爭的演進機制,理解並釐清新挑戰的具體表現及其內在邏輯,不斷探索未來戰爭戰略的實踐路徑與勝利原則。

認識資訊科技和智慧科技為戰爭帶來的新挑戰

技術的迭代升級推動了作戰方式的深刻變革,進而帶來了新的挑戰。目前,隨著資訊科技與智慧科技的加速發展,戰爭形態呈現出跨域融合、系統對抗、智慧主導等顯著變化,由此產生了混合域作戰、智慧化作戰、全員參與等新挑戰。

多域作戰的挑戰。在未來的戰爭中,傳統作戰領域的物理邊界將被打破,資訊領域和社會領域將深度交織,形成以多域協同為特徵的新型戰場。這種多維戰場環境對現有作戰系統提出了兩大挑戰。首先,系統相容性面臨挑戰。在多域作戰環境中,作戰行動「跨越」多個實體和虛擬空間,而傳統作戰系統通常基於特定的作戰領域構建,難以實現技術標準和資訊介面的無縫相容。其次,指揮控制高度複雜。在資訊化和智慧化戰爭中,作戰行動在多個維度上同時或交替展開,各種需求呈現出非線性、爆發性和多域性的特徵。傳統的層級式、樹狀指揮結構難以應付這種複雜的多域協同局面。

情報的挑戰。人工智慧等技術深度融入戰爭決策和行動鏈,對傳統的決策模型和行動邏輯提出了新的挑戰。一方面,界定人機協作的邊界和主導地位極具挑戰性。智慧型系統在資訊處理、決策支援乃至自主行動方面展現出卓越的能力,但過度依賴演算法可能導致「決策黑箱」;對機器智慧的過度限制則可能喪失智慧演算法的速度和效率優勢。因此,如何建構人機共生、人主導、智慧輔助的決策模型,已成為贏得資訊化和智慧化戰爭的必經「考驗」。另一方面,演算法戰的複雜性和脆弱性日益凸顯。戰爭智能化程度越高,對核心演算法的依賴性就越強。敵方可能透過資料污染、模型欺騙和網路入侵等手段發動攻擊,誘使智慧型系統誤判和失效。這種基於演算法漏洞的「自下而上」攻擊比傳統手段更加隱蔽和破壞性,對防禦系統的建構和維護提出了更高的要求。

這是一項影響全體人員的挑戰。資訊化與智慧化戰爭模糊了戰時與和平時期、前線與後方的界線。作戰行動不再侷限於職業軍人和傳統戰場;經濟、金融、科技等非軍事領域及其相關人員都可能在不同程度上融入現代作戰體系,帶來全新的挑戰。具體而言,非軍事領域可能成為攻防的新焦點。在資訊社會中,能源網路、交通樞紐、資訊平台等關鍵基礎設施高度互聯互通、相互依存,覆蓋範圍廣、影響力大,使其成為混合戰爭中攻擊或破壞的主要目標,大大增加了防禦難度。國防動員體系面臨轉型壓力。傳統的「和平時期向戰爭時期轉換」模式已無法滿足高強度、快節奏、高消耗的資訊化和智慧化戰爭的需求。迫切需要…建構「和平時期與戰爭時期一體化、軍民融合、精準高效」的現代化動員機制,確保技術潛力、產業能力、專業人才等核心資源的快速反應與高效轉換。

釐清資訊化與智慧化戰爭的內在邏輯

儘管資訊和智慧科技的發展深刻地重塑了兵力運用方式,但戰爭的固有屬性並未發生根本性改變。確保戰略服從政策,堅持以人為本的原則,並認識到「戰爭迷霧」將長期存在,仍然是我們理解、規劃和應對未來戰爭的關鍵。

戰略服從政治戰略至關重要。目前,新技術和新攻擊手段的湧現容易滋生「技術中心主義」——當演算法和運算能力被視為取勝的關鍵,裝備的技術優勢被視為絕對優勢時,軍事行動就有可能偏離政治戰略軌道。這就要求我們始終將軍事行動納入國家整體政治框架,確保技術優勢服務於戰略目標。在資訊化和智慧化條件下,戰略對政治戰略的服從超越了純粹的軍事層面,需要與外交斡旋、國內發展穩定等核心國家政治目標精準契合。因此,必須明確界定資訊和智慧手段應用的邊界、強度和範圍,避免因技術濫用而引發重大政治和戰略風險,並努力實現政治目標與軍事手段的動態統一。

決定性因素仍然是人。雖然智慧科技確實可以賦予武器卓越的自主感知和決策能力,但戰爭的最終控制權和勝利之道始終牢牢掌握在人手中。馬克思主義戰爭理論表明,無論戰爭如何演變,人類始終是主要行動者和最終的決定性力量。武器作為工具,其有效使用最終依賴於人的創造力。因此,面對資訊化、智慧化戰爭的浪潮,我們必須在人類主導的基礎上,實現人機智慧的深度融合與同步發展。具體而言,智慧化不僅要「改造」物——提升裝備性能——更要「改造」人——增強人類的認知能力、決策水平和人機協同效率,確保無論智慧裝備的「風箏」飛得多高,人類始終牢牢掌控著引導其發展的「控制鏈」。

認識到「戰爭迷霧」的持久性,儘管資訊技術顯著提升了戰場透明度,但技術手段只能降低「迷霧」的密度,而無法徹底驅散它。根本原因在於戰爭是一場動態賽局;交戰雙方不斷進行的戰略佯攻和其他戰術動作所產生的欺騙性,遠非簡單的技術解構所能及,具有固有的不可預測性。因此,我們必須正視「戰爭迷霧」的永恆性,並採取適當措施,實現「減少自身迷霧,增加敵方混亂」的目標。就前者而言,我們必須整合衛星偵察、無人機監視、地面感測器等多源情報,強化自身偵察優勢,以實現戰場態勢的即時動態測繪。就後者而言,我們必須運用假訊號、電子偽裝等手段,誤導敵方情報蒐集,使其在真假難辨的狀態下耗費資源,從而直接削弱其態勢感知能力,加深敵方決策困境。

探索資訊化、智慧化戰爭的勝利要素

為因應未來戰爭,我們必須體認到戰爭帶來的新挑戰,掌握其內在邏輯,進一步探索資訊化、智慧化戰爭的勝利原則,努力加強軍事理論建設,制定完善的戰略規劃,並創新戰術方法。

加強理論發展至關重要。科學的軍事理論就是戰鬥力,維持軍事理論的進步是贏得資訊化、智慧化戰爭的關鍵。一方面,我們必須深化軍事理論的整合與創新,有系統地將現代科學融入軍事理論。

運用控制論、博弈論、資訊理論等理論,著重研究人機協同作戰、跨域聯合作戰等新型作戰方式,建構前瞻性、適應性和可操作性的先進軍事理論體系。另一方面,必須堅持實戰檢驗、迭代更新。必須堅持理論與實踐結合,敏銳觀察問題,系統總結經驗,準確提煉軍事鬥爭前線備戰訓練中的規律,形成「實踐—理解—再實踐—再理解」的良性循環,確保理論保持活力,有效指導未來戰爭。

策略規劃至關重要。面向未來的策略規劃本質上是一個由技術驅動、需求驅動、動態調適保障的主動塑造過程。它需要廣闊的技術視野和靈活的戰略思維,力求實現從「應對戰爭」到「設計戰爭」的飛躍。首先,我們必須預見技術變革。我們必須對可能重塑戰爭規則的顛覆性技術保持高度敏感,並深刻理解各種技術交叉融合的深遠影響。其次,我們必須聚焦重點領域。網路空間、外太空、深海、極地等新興「高前沿」應成為戰略規劃的重點,著力塑造作戰規則,奪取優勢,確保在無形戰場和新興空間佔據主導地位。第三,我們必須動態調整與適應。未來的戰場瞬息萬變,充滿不確定性。策略規劃不能是一成不變的固定文本,而應是一個具有韌性的動態架構。我們必須結合實際情況,評估各種解決方案的適用性、成熟度和潛在風險,確保軍事發展方向始終與未來戰爭的需求精準契合。

推進戰術創新。具體戰術是連結技術創新與作戰行動的橋樑。面對資訊化、智慧化戰爭帶來的深刻變革,必須大力推動戰術創新,探索適應未來戰場的「智慧戰略」。一方面,要深入挖掘新興技術的作戰潛力,積極探索「演算法即戰力」、「數據即火力」、「網路即戰場」、「情報即優勢」等新的致勝路徑,將技術優勢轉化為戰場勝利。另一方面,要創新地設計未來作戰流程,使各類作戰力量分散部署於多個智慧化、網路化的節點,建構更扁平、更敏捷、適應性更強的「觀察-判斷-決策-行動」循環。同時,要加強多域連結,打破不同軍種、不同作戰域之間的固有壁壘,力爭實現跨域協同、系統協同、自主適應、動態重組,進而提升整體作戰效能。

(編:任嘉慧、彭靜)

李书吾 丁 盛

2026年01月27日0x:xx | 来源:解放军报

中國原創軍事資源:https://military.people.com.cn/n1/2026/08127/c10811-4808868538648.html

Military Big Data: Driving Future Chinese Military Transformation

軍事大數據:驅動中國未來軍事轉型

現代英語:

Military Big Data: Driving Future Military Transformation

—Answering questions from reporters during the Third Military Big Data Forum

In recent years, the Chinese military has continuously promoted the application of big data technology in the military field. Big data has been gradually integrated into joint operations, construction management, and military scientific research, bringing new momentum to military innovation practices.

Based on the new situation and new requirements, and with a view to accelerating the construction and development of military big data, and to build an academic exchange platform for mutual communication, sharing and win-win cooperation between the military and civilian sectors, the 3rd Military Big Data Forum, hosted by the Academy of Military Sciences and themed “Frontiers and Prospects of Military Big Data Development”, was held in Beijing on September 16.

During the forum, a reporter from the PLA Daily interviewed Geng Guotong, Director of the Military Science Information Research Center of the Academy of Military Sciences, along with Deputy Directors Bai Xiaoying, Luo Wei, Li Xiaosong, and Li Congying, on topics related to military big data.

Military big data applications face complex challenges

Reporter: Globally, big data is developing rapidly, with key technologies accelerating breakthroughs and applications, deeply integrating with industrial development, and giving rise to a series of new technologies, applications, business models, and patterns. What are the main challenges facing the application of military big data?

Geng Guotong: Big data provides a new model, method, and means for understanding complex systems. The high complexity of the environment, the strong adversarial nature of competition, the high real-time response, the incompleteness of information, and the uncertainty of boundaries inherent in military activities determine the complexity of military big data applications. The combination of big data, high computing power, and large-scale models has achieved great success in civilian applications such as machine translation, human-computer dialogue, and autonomous driving. However, artificial intelligence driven by big data still struggles to achieve satisfactory application results when facing uncertain environments, especially complex military adversarial environments.

In the future era of intelligent warfare, the widespread use of unmanned systems and autonomous weapons will not only change traditional combat modes but also introduce new complexities. Therefore, unlike in the civilian sector, complexity will dominate the future military big data application environment. How to observe, intervene in, and measure the complex mega-systems of warfare using big data technologies is the main challenge facing military big data applications.

Bai Xiaoying: We can also examine the challenges currently faced by military big data applications from the perspective of causal science. Viktor Mayer-Schönberger, in his book *Big Data*, argues that “the biggest shift in the big data era is abandoning the pursuit of causality and instead focusing on correlation.” Currently, widely used deep learning and reinforcement learning methods are essentially data-driven algorithms that seek patterns and correlations through observation, thus having inherent limitations in revealing the essential laws governing things.

In future military operations, true and false data will be intricately intertwined, and data fog and deception will be prevalent. Focusing solely on correlations without considering causality risks getting lost in the fog and focusing on trivial details while neglecting the essentials. Therefore, how to organically integrate big data technology with causal inference to see through data relationships and understand the true nature of data is a major challenge facing the application of military big data.

The world’s major military powers are sparing no effort in promoting the development of military big data.

Reporter: Currently, big data development has become a crucial “blood-generating and intelligence-enhancing” project for major military powers worldwide to build military superiority, and a new pathway and driving force for combat capability growth. So, what new practices are major military powers adopting in promoting military big data development?

Li Xiaosong: Faced with the challenges of the era of artificial intelligence, the world’s leading military powers, represented by the United States, believe that artificial intelligence and big data are “two sides of the same coin.” They have continuously strengthened the integrated development of artificial intelligence and big data through measures such as issuing special plans, establishing research and development institutions, and strengthening the overall coordination of resources, in order to seize the initiative in the development of future intelligent warfare. They have successively issued documents such as the “Ministry of Defence Digital Modernization Strategy” and the Ministry of Defence’s “Data Strategy.” The United Kingdom recently also released its first “Ministry of Defence Digital Strategy,” comprehensively promoting a data-centric strategic transformation.

In order to implement strategic requirements, the United States has further proposed to achieve goals such as data visibility, accessibility, interconnectivity, trustworthiness, and interoperability. By formulating standards and specifications, increasing R&D investment, and adopting advanced commercial technologies, the United States has systematically addressed the bottlenecks that have long constrained data sharing efficiency, operational effectiveness, interoperability, and data analysis capabilities. The benefits of military big data construction are gradually becoming apparent.

In June of this year, the U.S. Department of Defense launched the “Artificial Intelligence and Data Acceleration Initiative,” adding specialized teams such as “Operational Data Teams” and “Artificial Intelligence Expert Teams” to 11 joint combatant commands, striving to gain faster judgment, decision-making, and action capabilities than adversaries in the ever-changing battlefield environment.

Li Congying: In addition to strengthening strategic guidance, major military powers have launched a series of projects to accelerate the transformation of big data technology research and development results into combat capabilities. For example, the U.S. Department of Defense implemented the “Big Data to Decision” project, focusing on the research and development of big data management and utilization technologies to build an autonomous system capable of independent operation and decision-making, thereby automating operations and decisions; the U.S. Special Operations Command launched Project Avatar, which uses automatic keyword searches on various public data sources such as the Internet and databases to enable combat personnel to obtain relevant battlefield data and build real-time battlefield environment images as much as possible; the U.S. Air Force developed the F-35 fighter jet integrated seamless support system, which integrates massive amounts of data such as historical status monitoring, fault diagnosis, and maintenance mission planning, and receives flight data in real time to achieve intelligent fault diagnosis, efficient maintenance mission planning, and precise allocation of maintenance resources. Russia’s combat command information system has made breakthroughs in intelligent analysis technology of battlefield situation big data and has been deployed and applied.

Big data drives the transformation of future warfare styles

Reporter: Artificial intelligence technology is rapidly penetrating the military field, profoundly changing the mechanisms of victory, force structures, and combat methods in future warfare. How should we understand and grasp the key role of big data in future intelligent warfare?

Geng Guotong: Data-driven artificial intelligence will inevitably become a new engine for future military transformation. “No data, no victory” has become the essential law and prominent feature of intelligent warfare.

First, data empowers intelligent equipment. This will drive the deep integration of hardware and algorithms through data flow, and the profound combination of machine intelligence and human wisdom, breaking through the limitations of traditional equipment systems in terms of time, space, mobility, and cost, thus unleashing the combat effectiveness of weapon systems. The US “Third Offset Strategy,” focusing on intelligent armies, autonomous equipment, and unmanned systems, plans to fully realize the intelligentization or even unmanned operation of combat platforms, information systems, and command and control by 2050, creating a new generation of equipment and achieving true “robot warfare.” In the latest round of the Israeli-Palestinian conflict, Israel, leveraging its advantage in artificial intelligence technology, has integrated and aggregated multi-source intelligence information and battlefield data to assist in combat operations, gradually revealing the beginnings of intelligent warfare.

Secondly, data empowers the formation of new forms of warfare. With data analysis and processing at its core, it will change the way forces are organized, the relative strengths and weaknesses of adversaries, and give rise to a series of new combat styles, forming an intelligent form of warfare centered on data.

Secondly, data empowers and transforms combat command. With the advancement and application of cognitive artificial intelligence, data-driven intelligent staff will extract high-value information from the “data deluge” in the shortest time and in the most effective way. In particular, it will be able to autonomously perceive, judge, decide, and respond to corresponding threats, forming a rapid decision-making advantage against the enemy in the command and control chain, achieving “strategic planning within data and decisive victory above data,” and realizing a true “decision-centered war.”

Luo Wei: In the current context of the integrated development of mechanization, informatization, and intelligentization, embedding big data technology into the kill chain and modularizing and integrating combat force formations can fully unleash combat capabilities. At the same time, we should also be clearly aware that the key factor determining the outcome of war remains people. Big data and artificial intelligence technologies cannot completely replace people, nor can they change the decisive role of people in war.

Big data powerfully supports the revolution in military management

Reporter: Currently, a military management revolution centered on efficiency is being actively promoted. So how can big data be used to transform the military’s construction and management model?

Li Xiaosong: As national defense and military modernization enter a new era, data is becoming an important basis for construction management and scientific decision-making. To explore new models of integration and coordinated development between big data and military construction management, and to support the advancement of a military management revolution centered on efficiency and guided by precision, we must grasp the following three aspects:

First, we must adhere to demand-driven principles. The booming fields of big data are all closely coupled with business scenarios. Only by clarifying the needs can we understand what data to build, what models to develop, and what products to create; otherwise, we’ll be “grasping at everything at once.”

Second, we must focus on embedding data into processes. Military management activities are complex and diverse. Only by integrating data thinking into the entire chain of planning, execution, supervision, and evaluation, and into business systems such as strategic planning, equipment management, logistics support, and personnel management, can we achieve business process reengineering and precise resource allocation.

Third, we must strengthen integration and sharing. Departmental barriers and fragmentation have always been significant factors affecting the realization of data value. We must comprehensively strengthen the development of laws and standards, actively promote the online deployment of business operations and data, effectively solve the challenges of sharing and utilization, and lay the foundation for a data-driven new model of military construction and management.

Bai Xiaoying: The development of technologies such as knowledge graphs, natural language processing, data mining, data computing, and data governance has also provided technical support for building a data-driven military construction and management model. For example, the U.S. Department of Defense, in collaboration with MIT, developed a “semantic data lake” technology for defense acquisition operations. Based on cleaning and processing massive amounts of fragmented business text data, they established a defense acquisition knowledge system through comparative analysis, correlation retrieval, and comprehensive judgment. This automatically discovers and mines the interdependencies between defense acquisition and operational capability requirements, quickly identifies capability deficiencies, optimizes acquisition investment projects, and provides effective reference for defense acquisition management and decision-making.

Big data drives a paradigm shift in military scientific research innovation.

Reporter: Marked by AlphaFold’s accurate prediction of protein structure, big data-driven artificial intelligence technologies, represented by deep learning, are revolutionizing modern scientific research models. Could you share your understanding of building a data-intensive paradigm for military scientific research innovation?

Luo Wei: Turing Award winner Jim Gray proposed that human scientific research activities have gone through the “experimental science paradigm” at the beginning of the development of science and technology, the “theoretical science paradigm” characterized by models and induction, the “computational science paradigm” characterized by simulation, and are now developing into the “data-intensive science paradigm” characterized by big data analysis.

In the era of big data, scientific research is grappling with a data divide and is essentially drowning in data. Take the biomedical field as an example: over one million papers are published annually, yet scientists read only about 250 on average each year. Simultaneously, as the total amount of human knowledge continues to expand, scientists’ hypotheses are based on only a small fraction of that knowledge, and human creativity increasingly depends on the randomness of prior experience. In this context, automating scientific research using big data and artificial intelligence technologies has become the catalyst for a paradigm shift in scientific research.

For data-intensive military scientific research and innovation paradigms, on the one hand, based on massive amounts of data and models, simulations of military activities are conducted to explore data relationships and value, and to build a “bottom-level channel” for the integration of theory and technology. Data serves as a bridge to achieve mutual attraction and deep integration between military theory and military technology. On the other hand, through research such as automated reasoning of scientific knowledge, exploration of scientific mechanisms, and the construction of a human-machine symbiotic research ecosystem, data is used to enhance efficiency and stimulate vitality, thereby realizing the digitalization and intelligentization of military scientific research activities. This deeply taps into the innovative potential of military researchers and enhances the military’s scientific research productivity.

Li Congying: To build a data-intensive military scientific research innovation paradigm, we should focus on two aspects: First, we should accumulate a solid data foundation by strengthening the multi-source collection, classification, integration, verification, and validation of various data resources related to military scientific research, and integrating widely distributed data with different ownership into a logically unified data resource pool. Second, we should strengthen algorithm innovation by grasping the evolutionary laws and development trends of military scientific research paradigms, developing targeted intelligent algorithms and models, and integrating our understanding of the essence of war, the rules of combat, and the mechanisms of victory to efficiently support data-driven military scientific research applications.

The innovative development of military big data requires collaboration from all parties.

Reporter: Big data technology has strong versatility. So, how can we effectively utilize all technological resources to solve the challenges of military big data research and application?

Geng Guotong: For the development and construction of military big data, it is necessary to strengthen communication, collaboration, and integration, emphasize cooperation among all parties, and enhance the supply of high-quality big data technologies. Specifically, three key aspects need to be addressed:

First, we must strengthen top-level guidance. Major military powers worldwide have elevated data from a technological level to a “high-value-added strategic asset” and a “high-profit product” in the military field, promoting the large-scale use of military and civilian data by drawing on commercial practices to gain comprehensive military advantages. In light of this, we should strengthen top-level guidance, clarify supporting conditions such as data integration and sharing, on-demand secure use, and compensation for benefits, to achieve efficient use of national big data infrastructure, technological products, and high-end talent.

Second, innovate application mechanisms. Given the characteristics of big data technology products—short update cycles, rapid iteration, and flexible integration and deployment—some of the world’s leading military powers emphasize fully utilizing commercial big data technology frameworks to build agile information system architectures that apply data faster than their competitors. To this end, a rapid procurement channel for military big data technologies and products can be established, exploring models such as direct procurement, trial-before-you-buy, service purchase, and joint research and development to promote the rapid application and efficient transformation of big data technology research results.

Third, strengthen collaborative efforts. Given the versatility of big data technology, we can explore the establishment of new research and development institutions to focus on fundamental and forward-looking technologies, product development, and industrial incubation related to big data, thereby seizing the high ground for innovation in big data research and application.

Bai Xiaoying: Talent is the primary resource for data construction. Building a professional talent team that is proficient in data knowledge and familiar with national defense and military operations is the key to the development of military big data construction.

In recent years, some of the world’s leading military powers have adopted methods such as introducing civilian talent, training existing personnel, and strengthening qualification certification to focus on cultivating talent in military data theory research and technology development. The U.S. Defense Acquisition University has partnered with Stanford University, Johns Hopkins University, Google, and others to jointly cultivate military big data talent with expertise in both data science and technology.

現代國語:

軍事大數據:驅動未來軍事變革

——第三屆軍事大數據論壇期間有關專家答記者問

■雷 帥 解放軍報特約記者 王 晗 記者 邵龍飛

近年來,我軍持續推動大數據技術在軍事領域的應用,大數據逐步融入聯合作戰、建設管理和軍事科研之中,為軍事創新實踐帶來了新動能。

立足新形勢新要求,著眼加快軍事大數據建設發展,搭建軍地互通共享、互促共贏的學術交流平台,由軍事科學院主辦、主題為“軍事大數據發展前沿與展望”的第三屆軍事大數據論壇,於9月16日在京舉行。

論壇期間,解放軍報記者就軍事大數據相關話題,采訪了軍事科學院軍事科學信息研究中心主任耿國桐研究員、副主任白曉穎研究員、羅威研究員、李曉松高級工程師和李聰穎副研究員。

軍事大數據應用面臨復雜性挑戰

記者:在世界范圍內,大數據發展日新月異,關鍵技術加速突破應用,與產業發展深度融合,催生了一系列新技術、新應用、新業態和新模式。請問軍事大數據應用主要面臨哪些挑戰?

耿國桐:大數據提供了一種認識復雜系統的新模式、新方法和新手段。軍事活動所具有的環境高復雜性、博弈強對抗性、響應高實時性、信息不完整性、邊界不確定性等特點,決定了軍事大數據應用的復雜性。大數據、大算力、大模型三者結合,在機器翻譯、人機對話、自動駕駛等民用領域應用取得了巨大成功。但是,大數據驅動下的人工智能在面臨不確定性環境、特別是軍事復雜對抗環境時,仍難以達到令人滿意的應用效果。

未來智能化戰爭時代,無人系統、自主武器等廣泛運用,不僅會改變傳統作戰模式,也將引入新的復雜性。因此,與民用領域不同,復雜性將主導未來軍事大數據應用環境。如何通過大數據技術手段觀察、干預、度量戰爭復雜巨系統,是軍事大數據應用所面臨的主要挑戰。

白曉穎:我們也可從因果科學的角度來看待當前軍事大數據應用所面臨的挑戰。維克托·邁爾·舍恩伯格在《大數據時代》一書中提出:“大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。”目前,廣泛應用的深度學習和強化學習方法,本質上還是數據驅動的算法,通過觀察尋找規律、尋求相關關系,在揭示事物本質規律方面存在固有局限性。

未來軍事活動中,真假數據錯綜交織,數據迷霧、偽裝欺騙現象普遍存在。如果只重相關不重因果,很有可能陷入迷霧之中,去舍本逐末。因此,如何將大數據技術與因果推斷有機融合起來,透視數據關系、認清數據本質,是軍事大數據應用面臨的一大挑戰。

世界各軍事強國不遺余力推進軍事大數據建設

記者:當前,大數據建設已成為世界各軍事強國構築軍事優勢的“造血增智”工程,成為戰斗力增長的新途徑新動能。那麼,各軍事強國在推進軍事大數據建設方面有哪些新做法?

李曉松:面對人工智能時代的挑戰,以美國為代表的世界軍事強國認為,人工智能和大數據是“一枚硬幣的兩面”。其通過出台專項規劃、建立研發機構、加強力量統籌等舉措,持續強化人工智能與大數據的融合發展,搶佔未來智能化戰爭的發展先機,先後出台了《國防部數字現代化戰略》、國防部《數據戰略》等。英國近期也發布了首部《國防部數字戰略》,全方位推進以數據為中心的戰略轉型。

著眼落實戰略要求,美國進一步提出要實現數據可見、可訪問、可互聯、可信、互操作等目標,並通過制定標准規范、加大研發投入、引用商業先進技術等方式,體系化破解長期制約數據共享效率、服務作戰效能、互操作水平、數據分析能力等方面的瓶頸問題,軍事大數據建設效益逐步凸顯。

今年6月,美國防部啟動了“人工智能與數據加速計劃”,為11個聯合作戰司令部增派“作戰數據小組”和“人工智能專家小組”等專業團隊,力求在瞬息萬變的戰場環境中,獲得比對手更快的判斷力、決策力和行動力。

李聰穎:除強化戰略引領外,各軍事強國紛紛布局開展系列項目,加速大數據技術研發成果向作戰能力轉化。比如,美國防部實施“大數據到決策”項目,重點研發大數據管理和利用技術,構建能獨立完成操控並做出決策的自治式系統,以實現操作和決策的自動化;美軍特種作戰司令部啟動“阿凡達”工程,通過在各種互聯網和數據庫等公開數據源上自動運行關鍵詞搜索的方式,使得作戰人員獲取相關戰場數據,盡可能構建實時的戰場環境圖像;美空軍研發的F-35戰機綜合無縫保障系統,整合歷史狀態監控、故障診斷、維修任務規劃等海量數據,實時接收飛行數據,以實現智能故障診斷、維修任務高效規劃與維修資源精准調配。俄羅斯研發的戰斗指揮信息系統,突破戰場態勢大數據智能分析技術,已配發應用。

大數據驅動未來作戰樣式變革

記者:人工智能技術正加速向軍事領域滲透,深刻改變著未來戰爭的制勝機理、力量結構和作戰方式。請問應該怎樣認識把握大數據在未來智能化戰爭中的關鍵作用?

耿國桐:數據賦能人工智能,必將成為未來軍事變革的新引擎。“無數據不勝”已成為智能化戰爭的本質規律和顯著特征。

首先,數據賦能智能化裝備。將通過數據流驅動硬件與算法深度融合、機器智能與人類智慧深度結合,突破傳統裝備系統在時間、空間、機動、成本上的限制,釋放武器裝備體系作戰效能。美軍“第三次抵消戰略”,以智能化軍隊、自主化裝備和無人化系統為重點,計劃在2050年全面實現作戰平台、信息系統、指揮控制等智能化甚至無人化,形成新的裝備“代差”,實現真正的“機器人戰爭”。在新一輪巴以沖突中,以色列利用其人工智能技術優勢,融合匯聚多源情報信息與戰場數據,輔助實施作戰行動,漸露智能化戰爭端倪。

其次,數據賦能形成新的戰爭形態。以數據分析與處理為核心,將改變部隊力量編成方式、對抗的強弱關系以及催生系列新型作戰樣式,形成以數據為中心的智能化戰爭形態。

再次,數據賦能變革作戰指揮。隨著認知人工智能的進步和應用,以數據為核心的智能參謀將在最短時間內,以最有效方式從“數據洪流”中提取高價值信息。特別是自行感知、判斷、決策、應對相應威脅,在指揮控制鏈條中形成對敵快速決策優勢,達成“運籌於數據之中、決勝於數據之上”,實現真正的“決策中心戰”。

羅威:在當前機械化信息化智能化融合發展的形勢下,將大數據技術嵌入殺傷鏈,對作戰力量編成進行模塊化、一體化改造,可充分釋放作戰能力。同時,也應該清醒認識到,決定戰爭勝負的關鍵因素仍然是人,大數據和人工智能技術不可能完全取代人,不能改變人在戰爭中的決定性地位。

大數據有力支撐軍事管理革命

記者:當前,正在積極推進以效能為核心的軍事管理革命。那麼如何運用大數據來變革軍隊建設管理模式?

李曉松:隨著國防和軍隊現代化建設進入新時代,數據正成為建設管理和科學決策的重要依據。探索大數據與軍隊建設管理融合滲透、協同發展的新模式,借助大數據精算、深算、細算發展路徑,支撐推開以效能為核心、以精准為導向的軍事管理革命,要把握以下三個方面:

一是堅持需求牽引。大數據蓬勃發展的領域,都與業務場景緊密耦合。只有把需求弄清楚,才能明白要建設什麼數據、開發什麼模型、形成什麼產品,否則就是“眉毛胡子一把抓”。

二是注重嵌入流程。軍事管理活動復雜多樣,只有把數據思維貫穿於規劃、執行、監督、評估等全鏈條,融入戰略規劃、裝備管理、後勤保障、人員管理等業務體系,才能實現業務流程再造和資源精准配置。

三是強化融合共享。部門壁壘和條塊分割一直是影響數據價值效用發揮的重要因素。要通過全面加強法規標准建設,積極推動業務上網、數據上線,有效破解共享利用難題,為數據驅動的軍隊建設管理新模式奠定基礎。

白曉穎:知識圖譜、自然語言處理、數據挖掘、數據計算、數據治理等技術的發展,也為構建數據驅動的軍隊建設管理模式提供了技術支撐。比如,美國防部與麻省理工學院合作,開發面向國防采辦業務的“語義數據湖”技術。他們在清洗處理海量碎片化業務文本數據基礎上,通過對比分析、關聯檢索和綜合研判,建立國防采辦知識體系,自動發現和挖掘國防采辦與作戰能力需求之間的相互依賴關系,快速查找能力缺陷,優化采辦投資項目,為國防采辦管理與決策提供有效的參考借鑑。

大數據推動軍事科研創新范式變革

記者:以AlphaFold准確預測蛋白質結構為標志,以深度學習為代表的大數據驅動人工智能技術正在顛覆著現代科學研究模式。那麼,對於構建數據密集型的軍事科研創新范式,請談一下您的理解。

羅威:計算機圖靈獎獲得者吉姆·格雷提出,人類科研活動歷經科學技術發展之初的“實驗科學范式”、以模型和歸納為特征的“理論科學范式”、以模擬仿真為特征的“計算科學范式”,正發展到以大數據分析為特征的“數據密集型科學范式”。

可以說,大數據時代,科學研究正陷入數據鴻溝與淹溺之中。以生物醫學領域為例,每年發表論文超過100萬篇,科學家每年平均閱讀量卻只有250篇左右。與此同時,隨著人類的知識總量不斷擴大,科學家作出的假設只是基於知識總量的很小一部分,且人類創造力愈發取決於先前經驗的隨機性。在這種情況下,運用大數據和人工智能技術實現科學研究的自動化,成為當前科學研究范式變革的引爆點。

對於數據密集型軍事科研創新范式而言,一方面基於海量數據與模型,開展軍事活動的仿真模擬,挖掘數據關系和價值,搭建理技融合的“底層通道”,以數據為橋梁,來實現軍事理論和軍事科技的互牽互引、深度融合。另一方面,通過科技知識自動推理、科學機理探究、人機共生的科研生態構建等研究,以數據聚能增效,以數據激發活力,來實現軍事科研活動數字化、智能化,從而深度挖掘軍事科研工作者創新潛能,解放軍事科研生產力。

李聰穎:對於構建數據密集型的軍事科研創新范式,還應注重把握兩個方面問題:厚積數據基礎,加強軍事科研相關各類數據資源的多源采集、分類融合、校核驗證,將廣域分布、權屬不同的數據融合成邏輯一體的數據資源池;強化算法創新,把握軍事科研范式演進規律及發展趨勢,針對性研發智能算法和模型,融入對戰爭本質的認知、對作戰規則的理解和對制勝機理的把握,高效支撐數據驅動的軍事科研應用。

軍事大數據創新發展需要各方協作

記者:大數據技術具有很強的通用性。那麼,如何有效利用一切科技力量,破解軍事大數據研發與應用難題?

耿國桐:對於軍事大數據建設發展而言,需要加強交流、協作和融合,注重各方協作,強化高質量大數據技術供給。具體而言,需要重點把握三個方面:

一是加強頂層推進。世界各軍事強國已將數據從技術層面上升為“軍事領域高附加值的戰略資產”“高利潤產品”來認識,通過借鑑商業做法推動軍地數據的規模化使用,獲取全方位軍事優勢。鑑於此,可加強頂層指導,明晰數據融合共享、按需安全使用、利益補償等配套條件,實現國家大數據基礎設施、技術產品和高端人才等的高效使用。

二是創新應用機制。針對大數據技術產品更新換代周期短、迭代速度快、集成部署靈活等特點,世界一些軍事強國注重充分利用商業大數據技術框架,構建快於競爭對手數據應用的敏捷信息體系架構。為此,可構建軍事大數據技術與產品的快速采購通道,探索運用直接采購、先試後買、購買服務、聯合研發等模式,推動大數據技術研發成果的快速應用和高效轉化。

三是強化力量協同。針對大數據技術通用性強的特點,可探索成立新型研發機構,聚焦軍事應用場景開展大數據基礎性、前瞻性技術攻關、產品研發和產業孵化,搶佔大數據研發與應用的創新高地。

白曉穎:人才是數據建設的第一資源,打造一支既精通數據知識,又熟悉國防和軍隊業務的專業人才隊伍,是軍事大數據建設發展的關鍵。

近年來,世界一些軍事強國采取引進民用人才、培養現有人員、加強資格認證等方式,重點培養軍事數據理論研究與技術研發人才。美國防采辦大學與斯坦福大學、約翰斯霍普金斯大學、谷歌等合作,聯合培養“數業俱精”的軍事大數據人才。

中國原創軍事資源:http://www.81.cn/yw_20887827/180089287287.html

Analyzing the Forms of Chinese Military Intelligent Combat

分析中國軍事情報作戰的形式

現代英語:

Operational form refers to the manifestation and state of combat under certain conditions, and is usually adapted to a certain form of warfare and combat method. With the development and widespread use of intelligent weapon systems, future intelligent warfare will inevitably present a completely different form from mechanized and informationized warfare.

  Cloud-based combat system

  The combat system is the fundamental basis for the aggregation and release of combat energy. An informationized combat system is based on a network information system, while an intelligent combat system is supported by a combat cloud. The combat cloud can organically reorganize dispersed combat resources into a flexible and dynamic combat resource pool. It features virtualization, connectivity, distribution, easy scalability, and on-demand services, enabling each combat unit to acquire resources on demand. It is a crucial support for achieving cross-domain collaboration and represents a new organizational form for intelligent combat systems.

  The cloud-supported combat system utilizes cloud technology to connect information, physical systems, and the ubiquitous Internet of Things. By configuring combat resource clouds at different levels and scales, it highly shares multi-dimensional combat data across land, sea, air, and space, achieving battlefield resource integration across combat domains such as land, sea, air, space, electronic, and cyber domains. This allows various combat elements to converge into the cloud, completing the network interaction of battlefield data.

  The cloud-connected combat system enables joint operations to integrate battlefield intelligence information widely distributed across various domains—space, air, ground, sea, and underwater—with the support of big data and cloud computing technologies. This allows for seamless, real-time, and on-demand distribution of information across these domains, achieving cross-domain information fusion and efficient sharing. It also enables command structures at all levels to leverage intelligent command and control systems for multi-dimensional intelligence analysis, battlefield situation assessment, operational optimization, decision-making, operational planning, and troop movement control. Furthermore, it allows combat forces to rapidly and flexibly adjust, optimize configurations, and recombine online based on real-time operational needs, forming adaptive task forces and implementing distributed, focused operations, supported by highly integrated cross-domain information technology. At the same time, through the cross-domain fusion capability of battlefield information in the combat cloud, it is also possible to form an integrated combat force with intelligent combat forces, traditional combat forces, manned combat forces and unmanned combat forces, and intangible space combat forces and tangible space combat forces. In the cloud, different combat units and combat elements in land, sea, air, space, electronic, and cyberspace can be highly integrated, coordinated, and have their strengths maximized. This enables cross-domain and cross-generational collaborative operations, transforming the overall combat effectiveness from the past gradual release and linear superposition of combat effects to non-linear, emergent, adaptive effects fusion and precise energy release.

  Decentralized and concentrated battlefield deployment

  Concentrating superior forces is an age-old principle of warfare. With the continuous improvement of network information systems and the widespread use of intelligent weapon systems, various combat forces, combat units, and combat elements can dynamically integrate into and rely on joint operations systems, disperse forces, quickly switch tasks, and dynamically aggregate effectiveness to cope with complex and ever-changing battlefield situations. This has become a force organization form that distinguishes intelligent warfare from information warfare.

  The battlefield deployment of dispersed and concentrated forces refers to the joint operations system supported by cloud computing, in which various participating forces rely on the high degree of information sharing and rapid flow. Through node-based deployment, networked mobility, and virtual centralization, it can combine various combat elements, weapon platforms, and combat support systems that are dispersed in a multi-dimensional and vast battlefield space in real time, dynamically and flexibly, so as to achieve the distributed deployment of combat forces, the on-demand reorganization of combat modules, and the cross-domain integration of combat effectiveness.

  The dispersed and concentrated battlefield deployment enables commanders at all levels to deeply perceive and accurately predict the battlefield situation through big data analysis, battlefield situation collection, and multi-source intelligence verification by intelligent command information systems. This allows for rapid and efficient situation assessment and early warning. Furthermore, the wide-area deployment and flexible configuration of various combat forces and units enable timely responses based on predetermined operational plans or ad-hoc collaborative needs. This allows for flexible and autonomous cross-domain coordination, rapid convergence and dispersal, and dynamic concentration of combat effectiveness. At critical times and in critical spaces, focusing on key nodes of the enemy’s operational system and high-value targets crucial to the overall strategic situation, it rapidly forms a system-wide operational advantage. Through a highly resilient and networked kill chain, it precisely releases combat effectiveness, generating an overall advantage spillover effect, thus forming an overwhelming advantage of multiple domains over one domain and the overall situation over the local situation. Especially during the release of combat effectiveness, each combat group, driven by “intelligence + data”, and based on pre-planned combat plans, can autonomously replan combat missions online around combat objectives, and automatically allocate targets online according to the actual combat functions and strengths of each combat unit within the group. This allows each unit to make the most of its strengths and advantages, and flexibly mobilize the free aggregation and dispersal of “materials + energy” in combat operations. Ultimately, this enables rapid matching and integration in terms of targets, situation, missions, capabilities, and timing, thereby forming a focused energy flow that releases systemic energy against the enemy.

  Human-machine integrated command and control

  The history of operational command development shows that decision-making and control methods in operational command activities always adapt to the development of the times. With the maturity of artificial intelligence technology and the continuous development of the self-generation, self-organization, and self-evolution of military intelligent systems, various weapon systems will evolve from information-based “low intelligence” to brain-like “high intelligence.” The combat style will evolve from information-based system combat to human-machine collaborative combat supported by the system. The autonomy of the war actors will become stronger, and the intelligence level of command and control systems will become higher. Fully leveraging the comparative advantages of “human and machine” and implementing decision-making and control through the “human-machine integration” model is a brand-new command form for future intelligent warfare.

  Human-machine integrated command and control, supported by a reasonable division of functions between humans and machines and efficient decision-making through human-machine interaction, fully leverages the complementary advantages of human brain and machine intelligence to achieve the integration of command art and technology. In the process of intelligent combat decision-making and action, it enables rapid, accurate, scientific, and efficient activities such as situation analysis and judgment, combat concept design, combat decision determination, combat plan formulation, and order issuance. It also adopts a “human-in-the-loop” monitoring mode that combines autonomous action by intelligent combat platforms with timely correction by operators to organize and implement combat operations.

  Human-machine integrated command and control, during planning and decision-making, can construct a combat cloud under the commander’s guidance through ubiquitous battlefield networks, intelligent auxiliary decision-making systems, and distributed intelligent combat platforms. Based on a model- and algorithm-driven intelligent “cloud brain,” it performs intelligent auxiliary decision-making, command and control, and evaluation simulations, combining “human strategy” with “machine strategy.” This leverages the respective strengths of both human and machine, achieving a deep integration of command strategy and intelligent support technologies, significantly improving the speed and accuracy of command decisions. During operational control, staff personnel can, based on operational intentions and missions, utilize intelligent battlefield perception systems, mission planning systems, and command and control systems, following a “synchronous perception—” approach. The basic principle of “rapid response and flexible handling” is based on a unified spatiotemporal benchmark and relies on a multi-dimensional networked reconnaissance and surveillance system to perceive changes in the battlefield situation in real time. It comprehensively uses auxiliary analysis tools to compare and analyze the differences between the current situation and the expected objectives and their impact, and makes timely adjustments to actions and adjusts troop movements on the spot to maintain combat advantage at all times. During the execution of operations, the command and control of intelligent combat platforms by operators of various weapon systems at all levels will be timely and precise to intervene according to the development and changes in the battlefield situation. While giving full play to the high speed, high precision and high autonomous combat capabilities of intelligent combat platforms, it ensures that they always operate under human control and always follow the overall combat intent.

  Autonomous and coordinated combat operations

  Implementing autonomous operations is crucial for commanders at all levels to seize opportunities, adapt to changing circumstances, and act rapidly on the ever-changing battlefield, gaining an advantage and preventing the enemy from making a move. This is a vital operational principle and requirement. Previously, due to constraints such as intelligence gathering, command and control methods, and battlefield coordination capabilities, truly autonomous and coordinated operations were difficult to achieve. However, with the continuous development and widespread application of information technology, collaborative control technology, and especially artificial intelligence in the military field, autonomous and coordinated operations will become the most prevalent form of collaboration in future intelligent warfare.

  Autonomous and coordinated combat operations refer to the rapid acquisition, processing, and sharing of battlefield situation information by various combat forces in a cloud environment supported by multi-dimensional coverage, seamless network links, on-demand extraction of information resources, and flexible and rapid organizational support. This is achieved by utilizing “edge response” intelligence processing systems and big data-based battlefield situation intelligent analysis systems. With little or no reliance on the control of higher command organizations, these forces can accurately and comprehensively grasp intelligence information related to their operations and actively and proactively organize combat and coordinated actions based on changes in the enemy situation and unified operational intentions.

  Autonomous and coordinated combat operations, while enhancing the autonomy of organizational operations at the local level, are further characterized by various intelligent weapon systems possessing the ability to understand combat intentions and highly adaptive and coordinated. They can automatically complete the “OODA” cycle with minimal or no human intervention, forming a complete closed-loop “adaptive” circuit. This enables them to efficiently execute complex and challenging combat missions. In rapidly changing battlefield environments, they can accurately and continuously conduct autonomous reconnaissance and detection of enemy situations, autonomously process battlefield situational information, autonomously identify friend or foe, autonomously track targets, and autonomously and flexibly select mission payloads, and autonomously launch attacks within the permissions granted by operators. Furthermore, during combat, intelligent weapon systems located in different spaces can, as the battlefield situation evolves and combat needs arise, form a combat power generation chain of “situational sharing—synchronous collaboration—optimal energy release” around a unified combat objective. Following the principle of “whoever is suitable, whoever leads; whoever has the advantage, whoever strikes,” they autonomously coordinate, precisely releasing dispersed firepower, information power, mobility, and protective power to the most appropriate targets at the most appropriate time and in the most appropriate manner, autonomously organizing combat operations. In addition, highly intelligent weapon systems can not only adapt to high-risk and complex combat environments and overcome human limitations in physiology and psychology, but also enter the extreme space of all domains and multiple dimensions to carry out missions. Moreover, they can conduct continuous combat with perception accuracy, computing speed and endurance far exceeding that of humans, autonomously carry out simultaneous cluster attacks and multi-wave continuous attacks, form a continuous high-intensity suppression posture against the enemy, and quickly achieve combat objectives.

[ Editor: Ding Yubing ]

現代國語:

作戰形式是指在特定條件下作戰的展現方式和狀態,通常與某種戰爭形式和作戰方法相適應。隨著智慧武器系統的發展和廣泛應用,未來的智慧戰爭必將呈現出與機械化戰爭和資訊化戰爭截然不同的形式。

雲端作戰系統

作戰系統是作戰能量聚合與釋放的根本基礎。資訊化作戰系統基於網路資訊系統,而智慧作戰系統則由作戰雲支撐。作戰雲能夠將分散的作戰資源自然地重組為靈活動態的作戰資源池。它具有虛擬化、互聯互通、分散式、易於擴展和按需服務等特點,使每個作戰單位都能按需獲取資源。它是實現跨域協同作戰的關鍵支撐,代表了智慧作戰系統的一種新型組織形式。

雲端作戰系統利用雲端技術連接資訊、實體系統和無所不在的物聯網。透過配置不同層級、規模的作戰資源雲,該系統能夠跨陸、海、空、天等多個作戰領域實現多維作戰資料的高效共享,從而實現陸、海、空、天、電子、網路等作戰領域的戰場資源整合。這使得各種作戰要素能夠匯聚到雲端,完成戰場資料的網路互動。

雲端連接作戰系統借助大數據和雲端運算技術,使聯合作戰能夠整合廣泛分佈於天、空、地、海、水下等多個領域的戰場情報資訊。這實現了跨領域資訊的無縫、即時和按需分發,從而實現跨域資訊融合和高效共享。此外,該系統還使各級指揮機構能夠利用智慧指揮控制系統進行多維情報分析、戰場態勢評估、作戰優化、決策、作戰計畫制定和部隊調動控制。此外,它還允許作戰部隊根據即時作戰需求,在線上快速且靈活地調整、優化配置和重組,形成適應性特遣部隊,並實施分散式、聚焦式作戰,這一切都得益於高度整合的跨域資訊技術的支援。同時,透過作戰雲中戰場資訊的跨域融合能力,還可以將智慧作戰部隊、傳統作戰部隊、有人作戰部隊和無人作戰部隊、無形空間作戰部隊和有形空間作戰部隊整合為一體化作戰力量。在雲端,陸、海、空、天、電子、網路空間等不同作戰單位和作戰要素可以高度整合、協調,並最大限度地發揮各自的優勢。這使得跨域、跨世代協同作戰成為可能,將整體作戰效能從以往作戰效果的逐步釋放和線性疊加轉變為非線性、湧現式、適應性的效果融合和精準的能量釋放。

分散與集中的戰場部署

集中優勢兵力是古老的戰爭原則。隨著網路資訊系統的不斷完善和智慧武器系統的廣泛應用,各類作戰力量、作戰單位和作戰要素能夠動態地融入聯合作戰系統並依託其運作,實現兵力分散、任務快速切換、動態聚合作戰效能,從而應對複雜多變的戰場形勢。這已成為區分智慧戰和資訊戰的兵力組織形式。

戰場分散與集中兵力部署是指基於雲端運算的聯合作戰系統,其中各參戰力量依托高度的資訊共享和快速流動,透過節點式部署、網路化移動和虛擬集中等方式,能夠即時、動態、靈活地整合分散在多維廣大戰場空間中的各類部署、作戰作戰、武器平台和作戰系統,從而實現分散在多維廣大戰場空間中的各類部署、作戰作戰、武器平台和作戰系統,從而實現作戰力量的分佈以及跨域作戰空間中的各類部署、作戰級作戰、武器效能的以及跨域作戰元素,從而實現作戰力量的跨域作戰、作戰效能的跨域作戰元素。

分散與集中的戰場部署使得各級指揮官能夠透過智慧指揮資訊系統進行大數據分析、戰場態勢擷取與多源情報驗證,從而深入感知並準確預測戰場態勢。這使得快速和高效率的態勢評估與預警。此外,各類作戰部隊和單位的大範圍部署和靈活配置,使其能夠根據預定的作戰計畫或臨時協同需求做出及時反應。這實現了靈活自主的跨域協同、快速的匯聚與分散,以及動態集中作戰效能。在關鍵時刻和關鍵區域,透過聚焦敵方作戰系統的關鍵節點和對整體戰略態勢至關重要的高價值目標,迅速形成系統級的作戰優勢。透過高韌性、網路化的殺傷鏈,精準釋放作戰效能,產生整體優勢的溢出效應,從而形成多域對單域的壓倒性優勢,以及整體態勢對局部態勢的壓倒性優勢。尤其是在釋放作戰效能的過程中,各作戰群在「情報+數據」的驅動下,基於預先制定的作戰計劃,能夠圍繞作戰目標自主地在線重新規劃作戰任務,並根據群內各作戰單位的實際作戰功能和實力,自動在線分配目標。這使得每個單位都能充分發揮自身優勢,靈活調動作戰行動中「物質+能量」的自由聚合與分散。最終,這能夠實現目標、態勢、任務、能力和時間等方面的快速匹配與整合,從而形成集中的能量流,釋放系統性能量對抗敵人。

人機一體化指揮控制

作戰指揮發展史表明,作戰指揮活動中的決策和控制方法始終與時俱進。隨著人工智慧技術的成熟以及軍事智慧系統自生成、自組織、自演化的不斷發展,各種武器系統將從基於資訊的「低智慧」向類腦的「高智慧」演進。作戰方式也將從資訊為基礎的系統作戰向系統支援的人機協同作戰演進。作戰主體的自主性將增強,指揮控制系統的智慧水準也將提高。充分發揮「人機」的比較優勢,透過「人機融合」模式進行決策與控制,是未來智慧戰爭的全新指揮形式。

人機融合指揮控制,以人機功能合理劃分與人機互動高效決策為基礎,充分發揮人腦與機器智慧的互補優勢,實現指揮藝術與科技的融合。在智慧作戰決策和行動過程中,能夠快速、準確、科學、有效率地進行態勢分析判斷、作戰概念設計、作戰決策確定、作戰計畫制定和命令下達等活動。同時,它採用「人機協同」監控模式,將智慧作戰平台的自主行動與操作人員的及時糾正相結合,組織和實施作戰行動。

人機融合指揮控制在計畫和決策階段,能夠透過無所不在的戰場網路、智慧輔助決策系統和分散式智慧作戰平台,在指揮官的指導下建構作戰雲。基於模型和演算法驅動的智慧“雲大腦”,該系統能夠進行智慧輔助決策、指揮控制和評估模擬,將“人機戰略”相結合,充分發揮人機各自的優勢,實現指揮戰略與智能支援技術的深度融合,顯著提升指揮決策的速度和準確性。在作戰控制過程中,參謀人員可以根據作戰意圖和任務,運用智慧戰場感知系統、任務規劃系統和指揮控制系統,遵循「同步感知」的原則。該系統以統一的時空基準為基礎,依托多維網路偵察監視系統,即時感知戰場態勢變化,並綜合運用輔助分析工具,對比分析當前態勢與預期目標之間的差異及其影響,及時調整行動,並根據實際情況調整部隊調動,始終保持作戰優勢。在作戰執行過程中,指揮人員能夠根據作戰意圖和任務,即時運用智慧輔助決策、指揮控制和評估模擬等手段,對戰場態勢變化進行即時感知和評估模擬。各級不同武器系統操作人員對智慧作戰平台的控制,將能夠根據戰場情勢的發展變化及時、精準地進行幹預。在充分發揮智慧作戰平台高速、高精度、高自主作戰能力的同時,確保其始終在人為控制下運行,並始終遵循整體作戰意圖。

自主協同作戰

對於各級指揮官而言,實施自主作戰至關重要,它能夠幫助他們抓住機會、適應不斷變化的環境、在瞬息萬變的戰場上迅速行動,取得優勢並阻止敵方行動。這是一項至關重要的作戰原則和要求。過去,由於情報收集、指揮控制方式以及戰場協同能力等方面的限制,真正實現自主協同作戰較為困難。然而,隨著資訊科技、協同控制技術,特別是人工智慧在軍事領域的不斷發展和廣泛應用,自主協同作戰將成為未來智慧戰爭中最普遍的協同作戰形式。

自主協同作戰是指在多維覆蓋、無縫網路鏈路、按需提取資訊資源以及靈活快速的組織支援等雲環境下,各作戰部隊快速獲取、處理和共享戰場態勢資訊。這主要透過利用「邊緣響應」情報處理系統和基於大數據技術的戰場態勢智慧分析系統來實現。這些部隊在幾乎無需依賴上級指揮機構的控制的情況下,能夠準確、全面地掌握與其作戰相關的情報信息,並根據敵情變化和統一作戰意圖,主動組織作戰和協同行動。

自主協同作戰在增強局部組織作戰自主性的同時,也具有多種智慧武器系統能夠理解作戰意圖並高度適應和協調的特徵。這些系統能夠在極少或無需人為幹預的情況下自動完成“OODA循環”,形成完整的閉環“自適應”迴路。這使得它們能夠有效率地執行複雜且具挑戰性的作戰任務。在瞬息萬變的戰場環境中,智慧武器系統能夠準確、持續地自主偵察敵情,自主處理戰場態勢訊息,自主辨識敵我,自主追蹤目標,自主靈活地選擇任務負荷,並在操作人員授權範圍內自主發動攻擊。此外,在戰鬥中,分佈於不同空間的智慧武器系統能夠隨著戰場態勢的演變和作戰需求的出現,圍繞著統一的作戰目標,形成「態勢共享—同步協同—最優能量釋放」的作戰能力生成鏈。遵循「適者先攻,優勢者出擊」的原則,它們自主協調,在最恰當的時間以最恰當的方式,將分散的火力、資訊能力、機動性和防護能力精準地釋放到最恰當的目標,自主組織作戰行動。此外,高度智慧化的武器系統不僅能夠適應高風險、複雜的作戰環境,克服人類生理和心理的限制,還能進入多域、多維度的極端空間執行任務。此外,它們能夠以遠超人類的感知精度、運算速度和續航能力進行持續作戰,自主執行同步集群攻擊和多波次連續攻擊,形成對敵持續高強度壓制態勢,並迅速達成作戰目標。

[ 編:丁玉冰 ]

中國原創軍事資源:https://mil.gmw.cn/2022-02/284/content_38585848178687.htm

Looking at Intelligent Warfare: Focusing on Counter-AI Operations in Chinese Military Operations During Intelligent Warfare

檢視情報戰:聚焦中國軍事行動中的反空戰策略

現代英語:

Original Title: A Look at Intelligent Warfare: Focusing on Counter-AI Operations in Intelligent Warfare

    introduction

    The widespread application of science and technology in the military field has brought about profound changes in the form of warfare and combat methods. Military competition among major powers is increasingly manifested as technological subversion and counter-subversion, surprise attacks and counter-surprise attacks, and offsetting and counter-offsetting. To win future intelligent warfare, it is necessary not only to continuously promote the deep transformation and application of artificial intelligence technology in the military field, but also to strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-AI warfare theories and tactics, and proactively plan research on anti-AI technologies and the development of weapons and equipment to achieve victory through “breaking AI” and strive to seize the initiative in future warfare.

    Fully recognize the inevitability of anti-artificial intelligence warfare

    In his essay “On Contradiction,” Comrade Mao Zedong pointed out that “the law of contradiction in things, that is, the law of unity of opposites, is the most fundamental law of dialectical materialism.” Throughout the history of military technology development and its operational application, there has always been a dialectical relationship between offense and defense. The phenomenon of mutual competition and alternating suppression between the “spear” of technology and the “shield” of corresponding countermeasures is commonplace.

    In the era of cold weapons, people not only invented eighteen kinds of weapons such as knives, spears, swords, and halberds, but also corresponding helmets, armor, and shields. In the era of firearms, the use of gunpowder greatly increased attack range and lethality, but it also spurred tactical and technical innovations, exemplified by defensive fortifications such as trenches and bastions. In the mechanized era, tanks shone brightly in World War II, and the development of tank armor and anti-tank weapons continues to this day. In the information age, “electronic attack” and “electronic protection,” centered on information dominance, have sparked a new wave of interest, giving rise to electronic warfare units. Furthermore, numerous opposing concepts in the military field, such as “missiles” versus “anti-missile,” and “unmanned combat” versus “counter-unmanned combat,” abound.

    It should be recognized that “anti-AI warfare,” as the opposite concept of “intelligent warfare,” will inevitably emerge gradually with the widespread and in-depth application of intelligent technologies in the military field. Forward-looking research into the concepts, principles, and tactical implementation paths of anti-AI warfare is not only a necessity for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable step to seize the high ground in future military competition and implement asymmetric warfare.

    Scientific Analysis of Counter-AI Combat Methods and Paths

    Currently, artificial intelligence (AI) technology is undergoing a leapfrog development, moving from weak to strong and from specialized to general-purpose applications. From its underlying support perspective, data, algorithms, and computing power remain its three key elements. Data is the fundamental raw material for training and optimizing models, algorithms determine the strategies and mechanisms for data processing and problem-solving, and computing power provides the hardware support for complex calculations. Seeking ways to “break through” AI by addressing these three elements—data, algorithms, and computing power—is an important methodological approach for implementing counter-AI warfare.

    Counter-data warfare. Data is the raw material for artificial intelligence to learn and reason, and its quality and diversity significantly impact the accuracy and generalization ability of models. Numerous examples in daily life demonstrate how minute changes in data can cause AI models to fail. For instance, facial recognition models on mobile phones may fail to accurately identify individuals due to factors such as wearing glasses, changing hairstyles, or changes in ambient light; autonomous driving models may also misjudge road conditions due to factors like road conditions, road signs, and weather. The basic principle of counter-data warfare is to mislead the training and judgment processes of military intelligent models by creating “contaminated” data or altering its distribution characteristics. This “inferiority” in the data leads to “errors” in the model, thereby reducing its effectiveness. Since AI models can comprehensively analyze and cross-verify multi-source data, counter-data warfare should focus more on multi-dimensional features, packaging false data information to enhance its “authenticity.” In recent years, foreign militaries have conducted relevant experimental verifications in this area. For example, by using special materials for coating and infrared emitter camouflage, the optical and infrared characteristics of real weapon platforms, and even the vibration effects of engines, can be simulated to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage can be implemented to improve the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

    Anti-algorithm warfare. The essence of an algorithm is a strategy mechanism for solving problems described in computer language. Because the scope of application of such strategy mechanisms is limited, they may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “divine move” in the 2016 human-machine Go match. Many professional Go players, after reviewing the game, stated that the “divine move” was actually invalid, yet it worked against AlphaGo. AlphaGo developer Silva explained this by saying that Lee Sedol exploited a previously unknown vulnerability in the computer; other analyses suggest that this move might have contradicted AlphaGo’s Go logic or been outside its strategic learning range, making it unable to respond. The basic principle of anti-algorithm warfare is to target the vulnerabilities in the algorithm’s strategy mechanism and weaknesses in its model architecture through logical attacks or deception to reduce the algorithm’s effectiveness. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading and deceiving” the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithms to plan reconnaissance paths. In this case, irregular or abnormal actions can be created to reduce or disable the reward mechanism in the reinforcement learning algorithm model, thereby reducing its reconnaissance search efficiency.

    Counter-computing power warfare. The strength of computing power represents the speed at which data processing can be converted into information and decision-making advantages. Unlike counter-data warfare and counter-algorithm warfare, which primarily rely on soft confrontation, counter-computing power warfare employs a combination of hard and soft tactics. Hard destruction mainly refers to attacks on enemy computing centers and computing network infrastructure, crippling their AI models by cutting off their computing power. Soft confrontation focuses on increasing the enemy’s computing costs, primarily by creating a “fog of war” and data noise. For example, during operations, large quantities of meaningless data of various types, such as images, audio, video, and electromagnetic data, can be generated to constrain and deplete the enemy’s computing resources, reducing their effective utilization rate. Furthermore, attacks can also be launched against weak points in the defenses of the computing power support environment and infrastructure. Computing centers consume enormous amounts of electricity; attacking and destroying their power support systems can also achieve the effect of counter-computing power warfare.

    Forward-looking planning for the development of anti-artificial intelligence combat capabilities

    In all warfare, one engages with conventional tactics and wins with unconventional ones. Faced with intelligent warfare, while continuously advancing and improving intelligent combat capabilities, it is also necessary to strengthen preparedness for counter-AI warfare, proactively planning for theoretical innovation, supporting technology development, and equipment platform construction related to counter-AI warfare, ensuring the establishment of an intelligent combat system that integrates offense and defense, and combines defense and counter-attack.

    Strengthen theoretical innovation in counter-AI warfare. Scientific military theory is combat effectiveness. Whether it’s military strategic innovation, military technological innovation, or other aspects of military innovation, all are inseparable from theoretical guidance. We must adhere to liberating our minds, broadening our horizons, and strengthening dialectical thinking. We must use theoretical innovation in counter-AI warfare as a supplement and breakthrough to construct an intelligent warfare theoretical system that supports and serves the fight for victory. We must adhere to the principle of “you fight your way, I fight my way,” strengthening asymmetric thinking. Through in-depth research on the concepts, strategies, and tactics of counter-AI warfare, we must provide scientific theoretical support for seizing battlefield intelligence dominance and effectively leverage the leading role of military theory. We must adhere to the integration of theory and technology, enhancing our scientific and technological awareness, innovation, and application capabilities. We must establish a closed loop between counter-AI warfare theory and technology, allowing them to complement and support each other, achieving deep integration and positive interaction between theory and technology.

    Emphasis should be placed on accumulating military technologies for countering artificial intelligence. Science and technology are crucial foundations for generating and enhancing combat effectiveness. Breakthroughs in some technologies can have disruptive effects, potentially even fundamentally altering the traditional landscape of warfare. Currently, major world powers view artificial intelligence as a disruptive technology and have elevated the development of military intelligence to a national strategy. Simultaneously, some countries are actively conducting research on technologies related to countering artificial intelligence warfare, exploring methods to counter AI and aiming to reduce the effectiveness of adversaries’ military intelligent systems. Therefore, it is essential to both explore and follow up, strengthening research and tracking of cutting-edge technologies, actively discovering, promoting, and fostering the development of technologies with counter-disruptive capabilities, such as intelligent countermeasures, to seize the technological advantage at the outset of counter-AI warfare and prevent enemy technological surprise attacks; and to carefully select technologies, maintaining sufficient scientific rationality and accurate judgment to dispel the technological “fog” and avoid falling into the adversary’s technological traps.

Developing anti-AI warfare weapons and equipment. Designing weapons and equipment is designing future warfare; we develop weapons and equipment based on the types of warfare we will fight in the future. Anti-AI warfare is an important component of intelligent warfare, and anti-AI weapons and equipment will play a crucial role on the future battlefield. When developing anti-AI warfare weapons and equipment, we must first closely align with battlefield needs. We must closely integrate with the adversary, mission, and environment to strengthen anti-AI warfare research, accurately describe anti-AI warfare scenarios, and ensure that the requirements for anti-AI warfare weapons and equipment are scientifically sound, accurate, and reasonable. Secondly, we must adopt a cost-conscious approach. Recent local wars have shown that cost control is a crucial factor influencing the outcome of future wars. Anti-AI warfare focuses on interfering with and deceiving the enemy’s military intelligent systems. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulated decoy targets to deceive the enemy’s intelligent reconnaissance systems, the “de-intelligence” effect can be extended and amplified, aiming to deplete their high-value precision-guided missiles and other high-value strike weapons. Finally, we must emphasize simultaneous development, use, and upgrading. Intelligent technologies are developing rapidly and iterating quickly. It is crucial to closely monitor the application of cutting-edge military intelligent technologies by adversaries, accurately understand their intelligent model algorithm architecture, and continuously promote the upgrading of the latest counter-artificial intelligence technologies in weapon platforms to ensure their high efficiency in battlefield application. (Kang Ruizhi, Li Shengjie)

現代國語:

原文標題:智慧化戰爭面面觀-關注智慧化戰爭中的反人工智慧作戰

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力掌握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關係,技術之矛與反制止制、反制止制相較制、相較制抗擊現象之間的技術之緣關係。

冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之對應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「稜堡」等防禦工事為代表的技戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反坦克武器」相關技術戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「飛彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧科技在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,資料是訓練與最佳化模型的基礎原料,演算法決定了資料處理與問題解決的策略機制,算力則為複雜運算提供硬體支撐。從資料、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反資料作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉辨識模型,可能會因人戴上眼鏡、改變髮型或環境明暗變化等原因,而無法準確辨識身分;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路狀況的誤判。實施反數據作戰,其基本原理是透過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外線特徵甚至是引擎震動效果,用來欺騙智慧情報處理模型;在網路空間,實施流量資料偽裝,以提升網路攻擊靜默運作能力,降低網路攻擊偵測模型的效果。

反演算法作戰。演算法的本質,是用電腦語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一」。不少職業圍棋選手複盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。有別於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網路設施等實施的打擊,透過斷其算力的方式使其人工智慧模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭「迷霧」和資料雜訊為主。例如,作戰時大量產生影像、音訊、視訊、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達成反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建設

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推動提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展與裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開拓視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,透過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合與良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。目前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要建立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。透過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力求消耗其精確導引飛彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效性。 (康睿智 李聖傑)

中國原創軍事資源:https://mil.news.sina.com.cn/zonghe/2025-05-20/doc-inexeiih2818486808984.shtml

Where is the Transformation of Chinese Military Intelligent War Preparedness Heading?

中國軍事情報戰備轉型將走向何方?

現代英語:

Where should the intelligent transformation for combat readiness go?

Currently, the form of warfare is rapidly evolving towards intelligence, and the era of intelligent warfare is imminent. To adapt to the development of military intelligent technology, the changing mechanisms of war, and the high-quality development of the armed forces, it is imperative to accelerate the advancement of intelligent combat readiness. Modern combat readiness must, while advancing the transformation from mechanization and semi-mechanization to informatization, further proactively address the challenges of military intelligence, adhere to intelligence as the guiding principle, and accelerate the integrated development of mechanization, informatization, and intelligence. In short, vigorously promoting intelligent combat readiness is a practical necessity for driving the high-quality development of national defense and the armed forces; only by successfully transforming to intelligent combat readiness can we promote the leapfrog development of the military’s combat capabilities.

Construct an intelligent warfare theoretical system. Focusing on solving key and difficult issues in intelligent warfare theory, such as war prediction, war forms, war design, operational concepts, operational styles, operational systems, troop formation, and troop training, we will deepen research on the application of intelligent warfare, explore the winning mechanisms, characteristics, laws, tactics, action methods, and comprehensive support of intelligent warfare, enrich the theories of intelligent warfare, intelligent operations, and the construction of intelligent combat forces, and gradually construct an intelligent warfare theoretical system.

Establish an intelligent command and control paradigm. Strengthen the development of technologies such as adversarial and game-theoretic operational planning, digital twin parallel simulation, and efficient organization and precise scheduling of complex operational resources. Enhance capabilities such as automatic planning of operational plans under large-scale, high-intensity conditions and autonomous decomposition of cross-domain and cross-level tasks. Achieve deep integration of military knowledge and machine intelligence, reliable and explainable auxiliary decision-making, and self-learning and self-evolving adversarial strategies. Integrate technological achievements such as sensing, networking, cloud computing, and quantum computing to enhance intelligent auxiliary capabilities in situation generation, operational command, and staff operations. Accelerate the development of intelligent staff business systems and intelligently upgrade and transform operational command information systems. Achieve intelligent information Q&A, intelligent plan generation, and decision support suggestions for typical campaign/tactical command, greatly reducing the workload of staff personnel and significantly improving the timeliness of command operations.

Develop intelligent weapon and equipment systems. Strengthen the intelligent upgrading and transformation of traditional weapons, promote the practical application of intelligent technologies in backbone equipment, and deploy low-cost, expendable unmanned combat platforms on a large scale. Develop intelligent individual soldier integrated systems, air-to-ground unmanned swarm collaborative attack systems, and underground space swarm warfare systems, etc., research and develop intelligent flexible wearable technologies and mobile intelligent terminal technologies, develop intelligent wearable equipment, brain-computer interface helmets, and human implant devices, etc., and accelerate the application of intelligent new weapon platforms, using the pioneering development of key equipment to drive overall breakthroughs.

Increase the proportion of intelligent combat forces. Focusing on optimizing structure and function, implement intelligent design for the existing organizational structure of the armed forces, and gradually increase the proportion of intelligent combat forces. Formulate talent development plans, cultivate the intelligent literacy of combat personnel, and explore a talent cultivation path that integrates military and civilian sectors, services, and enterprises. Build a new generation of combat forces that are intelligently led, cross-domain collaborative, all-domain mobile, and precise and multi-functional; focus on research on intelligent air defense and anti-missile systems, passive detection and intelligent identification of aerial targets, and build intelligent air combat forces such as anti-aircraft unmanned combat aircraft and “swarm” aircraft; emphasize research on intelligent missiles and develop long-range missile deterrence and strike capabilities; deepen research on the architecture design of intelligent attack and defense systems in cyberspace and the intelligent generation of attack strategies, upgrade the new generation of cyberspace reconnaissance, attack, and defense forces, and comprehensively enhance intelligent combat capabilities.

Optimize intelligent autonomous collaboration methods. Focusing on the human-machine “interaction-understanding-co-progress” framework, break through human-machine hybrid perception enhancement and human-machine adaptive multi-task collaboration to improve human-machine hybrid perception capabilities, cognitive abilities, and overall combat effectiveness in complex battlefield environments, achieving complementarity and intelligent enhancement between human wisdom and machine intelligence. Accelerate the development of applied research in areas such as intelligent swarm distributed elastic architecture, self-organizing anti-jamming communication and interaction, distributed autonomous collaboration in complex confrontation scenarios, and swarm intelligent command and control adapted to complex environments and tasks. Enhance the autonomous elastic planning and swarm intelligence confrontation learning capabilities of unmanned swarms in complex scenarios, promoting an overall leap in the combat effectiveness of multi-domain/cross-domain heterogeneous swarms.

Innovate an intelligent, all-dimensional support model. Facing the overall requirements of comprehensive support for future battlefields, including all-time intelligent perception, precise control of supplies and ammunition, and accurate delivery of combat supplies, enhance the intelligent combat logistics equipment support capabilities. Develop capabilities such as comprehensive multi-dimensional support demand mining across all domains, online networked dynamic monitoring of equipment status, autonomous early warning of support risks, and on-demand allocation of support resources. Promote research and verification of intelligent network information systems, intelligent military logistics systems, intelligent support for battlefield facilities and environment information, smart individual soldier support, intelligent rapid medical treatment for future battlefields, and intelligent energy support and transportation delivery, achieving the organic integration of combat, technology, and logistics support elements with combat command and troop movements.

現代國語:

智慧戰備轉型應走向何方?

當前,戰爭形式正迅速朝向智慧化演進,智慧戰時代迫在眉睫。為適應軍事智慧技術的發展、戰爭機制的轉變以及軍隊高品質發展,加速推動智慧戰備勢在必行。現代戰備在推動從機械化、半機械化轉型為資訊化的同時,必須更積極主動地應對軍事情報挑戰,堅持以情報為指導原則,加速機械化、資訊化、情報化整合發展。總之,大力推動智慧戰備是推動國防和軍隊高品質發展的現實需求;只有成功實現智慧戰備轉型,才能推動軍隊作戰能力的跨越式發展。

建構智能戰理論體系。我們將著力解決智慧戰理論中的關鍵難點問題,例如戰爭預測、戰爭形態、戰爭設計、作戰理念、作戰風格、作戰體系、部隊編組和部隊訓練等,深化智能戰應用研究,探索智能戰的製勝機制、特徵、規律、戰術、行動方法和綜合保障,豐富智能戰、智能作戰和智能作戰力量建設的理論,逐步構建的理論體系。

建立智慧指揮控制範式。加強對抗性與博弈論作戰規劃、數位孿生並行模擬、複雜作戰資源高效組織和精確調度等技術的研發。提升大規模、高強度條件下作戰計畫的自動規劃、跨域、跨層級任務的自主分解等能力。實現軍事知識與機器智慧的深度融合,實現可靠、可解釋的輔助決策,以及對抗策略的自學習、自我演化。整合感知、網路、雲端運算、量子運算等技術成果,提升態勢生成、作戰指揮、參謀運作等方面的智慧輔助能力。加速智慧參謀業務系統建設,實現作戰指揮資訊系統的智慧升級改造。實現典型戰役/戰術指揮的智慧資訊問答、智慧計畫生成、決策支援建議,大幅減輕參謀人員工作負擔,顯著提升指揮運作的時效性。

發展智慧武器裝備系統。加強傳統武器的智慧升級改造,推動智慧技術在骨幹裝備的實際應用,大規模部署低成本、消耗型無人作戰平台。研發智慧單兵一體化系統、空地無人群聚協同攻擊系統、地下空間集群作戰系統等,研發智慧柔性穿戴技術與行動智慧終端技術,開發智慧穿戴設備、腦機介面頭盔、人體植入式設備等,加速智慧新型武器平台的應用,以關鍵裝備的先導研發為驅動力,實現整體突破。

提高智慧作戰力量比例。著力優化結構與功能,對現有軍隊組織結構進行智慧化設計,逐步提升智慧作戰力量比例。制定人才培育計劃,提升作戰人員的智慧素養,探索軍民融合、服務業與企業融合的人才培育路徑。建構智慧主導、跨域協同、全域機動、精準多功能的新一代作戰力量;重點研發智慧防空反導系統、空中目標被動偵測與智慧辨識技術,建構以防空無人作戰飛機、「群聚」飛機等為代表的智慧空戰力量;重視智慧飛彈研發,發展遠程飛彈威懾與打擊能力;深化網路空間太空防空防電系統設計與智慧飛彈威懾策略的新一代攻擊能力。全面提升網路空間偵察、攻擊和防禦力量的智慧作戰能力。

優化智慧自主協同作戰方式。圍繞人機「互動-理解-協同-進步」框架,突破人機混合感知增強和人機自適應多任務協同作戰,提升複雜戰場環境下人機混合感知能力、認知能力和整體作戰效能,實現人機智慧互補與智能增強。加速智慧集群分散式彈性架構、自組織抗干擾通訊與互動、複雜對抗場景下的分散式自主協同作戰、適應複雜環境和任務的集群智慧指揮控制等領域的應用研究。增強複雜場景下無人群集的自主彈性規劃與群集智慧對抗學習能力,推動多域/跨域異質群集作戰效能的全面飛躍。

創新智能化全維度支援模式。面對未來戰場全面保障的整體需求,包括全時智慧感知、物資彈藥精準管控、作戰物資準確投放等,提升智慧作戰後勤裝備保障能力。發展跨域多維綜合保障需求挖掘、裝備狀態線上網路動態監控、保障風險自主預警、保障資源按需調配等能力。推動智慧網路資訊系統、智慧軍事後勤系統、戰場設施及環境資訊智慧保障、智慧單兵保障、未來戰場智慧快速醫療救治、智慧能源保障及運輸配送等研究驗證,實現作戰、技術、後勤支援要素與作戰指揮、部隊調動有機融合。

陶利民,秦昊

來源:中國軍網-解放軍報 作者:陶立民 秦浩 責任編輯:王粲

中國原創軍事資源:http://www.81.cn/ll_20888543/186482825186.html

Inclusive Plan for Building Chinese Artificial Intelligence Capabilities

建構中國人工智慧能力的包容性規劃

現代英語:

To bridge the digital and intelligent divide, and particularly to ensure the Global South benefits equitably from the development of artificial intelligence, China believes it is essential to uphold the UN’s coordinating role in international development cooperation, adhere to genuine multilateralism, and, based on the principles of sovereign equality, development orientation, people-centeredness, inclusiveness, and collaborative cooperation, effectively implement the UN General Assembly resolution on strengthening international cooperation in artificial intelligence capacity building ( A/RES/78/311 ) through North-South cooperation, South-South cooperation, and trilateral cooperation, thereby promoting the implementation of the UN 2030 Agenda for Sustainable Development. To this end, China has proposed the “Inclusive Plan for Artificial Intelligence Capacity Building” and calls on all parties to increase investment in artificial intelligence capacity building.

I. Vision and Goals

(a) Promoting the connectivity of artificial intelligence and digital infrastructure    

Improve the global interoperability of artificial intelligence and digital infrastructure, actively assist countries, especially the Global South, in developing artificial intelligence technologies and services, and help the Global South truly access artificial intelligence and keep up with the pace of its development.

(II) Promoting the application of “AI+” to empower various industries

Explore and promote the all-round, full-chain, and multi-scenario empowerment of the real economy by artificial intelligence, promote the application of artificial intelligence in industrial manufacturing, traditional agriculture, green transformation and development, climate change response, biodiversity protection and other fields, and promote the construction of a rich, diverse, healthy and benevolent artificial intelligence development ecosystem in accordance with local conditions.

(III) Strengthening AI literacy and talent cultivation

Actively promote the widespread application of artificial intelligence in education, carry out talent training and exchange in artificial intelligence, increase the sharing of general professional knowledge and best practices, cultivate public awareness of artificial intelligence, protect and strengthen the digital and intelligent rights of women and children, and share knowledge, achievements and experiences in artificial intelligence.

(iv) Enhance the security and diversity of artificial intelligence data

Cooperation will promote the lawful, orderly, and free cross-border flow of data, explore the establishment of a global mechanism platform for data sharing, and safeguard personal privacy and data security. It will also promote the equality and diversity of AI data corpora, eliminate racism, discrimination, and other forms of algorithmic bias, and promote, protect, and preserve the diversity of civilizations.

(v) Ensure that artificial intelligence is safe, reliable and controllable

Upholding the principles of fairness and non-discrimination, we support the establishment of a globally interoperable framework, standards, and governance system for AI security risk assessment that takes into account the interests of developing countries within the framework of the United Nations. We will jointly assess the risks of AI research and application, actively promote and improve technologies and policies to address AI security risks, and ensure that the design, research and development, use, and application of AI promote human well-being.

II. China’s Actions

(i) China is willing to carry out North-South cooperation, South-South cooperation and trilateral cooperation in the field of artificial intelligence with all countries, jointly implement the outcomes of the UN Future Summit, actively cooperate with all countries, especially developing countries, in the construction of artificial intelligence infrastructure, and jointly build joint laboratories.

(ii) China is willing to carry out cooperation in the research and development and empowerment of artificial intelligence models, especially to promote the application of artificial intelligence in poverty reduction, medical care, agriculture, education and industrial manufacturing, deepen international cooperation in the artificial intelligence production and supply chain, and unleash the dividends of artificial intelligence as a new type of productive force.

(III) China is willing to work with all countries, especially developing countries, to explore the potential of artificial intelligence to empower green development, climate change response, and biodiversity conservation, and contribute to global climate governance and sustainable development.

(iv) China is willing to build an international cooperation platform for artificial intelligence capacity building. China’s artificial intelligence industry and industry alliances are willing to carry out various forms of exchange activities with all countries, especially developing countries, to share best practices, and to build an open source community for artificial intelligence in a responsible manner, so as to promote the construction of a multi-level and multi-industry cooperation ecosystem.

(v) The Chinese government will organize short- and medium-term education and training programs for artificial intelligence capacity building in developing countries, share artificial intelligence education resources, and carry out joint programs and exchanges in artificial intelligence to help developing countries cultivate high-level artificial intelligence science and technology and application talents.

(vi) The Chinese government is willing to strengthen cooperation with developing countries in human resources assistance. Building on the first artificial intelligence capacity building workshop held this year, it will hold ten more training and seminar programs in the field of artificial intelligence, focusing on developing countries, by the end of 2025.

(vii) China is willing to work with all countries, especially developing countries, to cultivate public awareness of artificial intelligence, and promote the popularization and professional knowledge of artificial intelligence in a multi-dimensional, multi-level and multi-platform manner through a combination of online and offline methods, and strive to improve the artificial intelligence literacy and skills of our people, especially to protect and improve the digital rights of women and children.

(viii) China is willing to work with all countries, especially developing countries, to jointly develop artificial intelligence corpora, take positive measures to eliminate racial, algorithmic, and cultural discrimination, and commit to maintaining and promoting linguistic and cultural diversity.

(ix) China is willing to work with all countries, especially developing countries, to promote and improve data infrastructure and jointly promote the fair and inclusive use of global data.

(x) China is willing to work with all countries, especially developing countries, to strengthen the alignment of artificial intelligence strategies and policy exchanges, actively share policies and technical practices in artificial intelligence testing, evaluation, certification and regulation, and work together to address the ethical and security risks of artificial intelligence.

現代國語:

為彌合數位落差和智慧鴻溝,尤其要確保全球南方國家公平地受益於人工智慧發展,中國認為必須維護聯合國在國際發展合作中的協調作用,堅持真正的多邊主義,並本著主權平等、發展導向、以人為本、包容性和協作性原則,透過南北合作、南南合作和三方合作,切實落實聯合國大會關於加強人工智慧能力建構國際合作的決議(A/RES/78/311),從而推動落實聯合國2030年永續發展議程。為此,中國提出了“人工智慧能力建設包容性方案”,並呼籲各方加大對人工智慧能力建設的投入。

一、願景與目標

(a) 促進人工智慧與數位基礎設施的互聯互通

提升人工智慧與數位基礎設施的全球互通性,積極協助各國,特別是全球南方國家,發展人工智慧技術和服務,幫助全球南方國家真正獲得人工智慧,並跟上其發展步伐。

(II) 推動「AI+」賦能各產業

探索並推動人工智慧對實體經濟的全方位、全鏈、多場景賦能,推動人工智慧在工業製造、傳統農業、綠色轉型發展、氣候變遷因應、生物多樣性保護等領域的應用,並根據當地實際情況,推動建構豐富多元、健康向善的人工智慧發展生態系統。

(三)加強人工智慧素養與人才培養

積極推動人工智慧在教育領域的廣泛應用,進行人工智慧人才培訓和交流,加強一般專業知識和最佳實踐的分享,提升大眾對人工智慧的認識,保護和加強婦女兒童的數位和智慧權利,分享人工智慧領域的知識、成果和經驗。

(四)增強人工智慧資料的安全性與多樣性

合作將促進資料合法、有序、自由的跨境流動,探索建立全球資料共享機制平台,保障個人隱私和資料安全。同時,也將促進人工智慧資料語料庫的平等性和多樣性,消除種族主義、歧視和其他形式的演算法偏見,促進、保護和維護文明多樣性。

(五)確保人工智慧安全、可靠、可控

秉持公平、非歧視原則,我們支持在聯合國框架內建立兼顧發展中國家利益的全球互通人工智慧安全風險評估架構、標準和治理體系。我們將共同評估人工智慧研發和應用風險,積極推動和改善應對人工智慧安全風險的技術和政策,確保人工智慧的設計、研發、使用和應用促進人類福祉。

二、中國的行動

(一)中國願與各國在人工智慧領域進行南北合作、南南合作與三方合作,共同落實聯合國未來高峰會成果,積極與各國,特別是發展中國家合作建置人工智慧基礎設施,共同建置聯合實驗室。

(二)中國願在人工智慧模型研發和賦能方面開展合作,尤其是在推動人工智慧在減貧、醫療、農業、教育和工業製造等領域的應用方面,深化人工智慧生產和供應鏈領域的國際合作,釋放人工智慧作為新型生產力的紅利。

(三)中國願與各國,特別是發展中國家,共同探索人工智慧在賦能綠色發展、應對氣候變遷和保護生物多樣性方面的潛力,為全球氣候治理和永續發展做出貢獻。

(四)中國願建構人工智慧能力建構國際合作平台。中國人工智慧產業和產業聯盟願進行各種形式的合作。

與各國,特別是發展中國家進行交流活動,分享最佳實踐,負責任地建構人工智慧開源社區,以促進多層次、多產業的合作生態系統建設。

(五)中國政府將在發展中國家組織進行短期和中期人工智慧能力建構教育培訓項目,共享人工智慧教育資源,進行人工智慧聯合項目和交流,幫助發展中國家培養高水準人工智慧科技及應用人才。

(六)中國政府願加強與發展中國家在人力資源援助的合作。在今年舉辦的首屆人工智慧能力建構研討會的基礎上,到2025年底,中國將再舉辦十期人工智慧領域的培訓和研討會,重點是發展中國家。

(七)中國願同各國,特別是發展中國家,共同努力,透過線上線下相結合的方式,多維度、多層次、多平台地普及人工智慧知識,提高國民人工智慧素養和技能,尤其要保護和改善婦女兒童的數位權利。

(八)中國願同各國,特別是發展中國家,共同建構人工智慧語料庫,積極消除種族歧視、演算法歧視和文化歧視,致力於維護和促進語言文化多樣性。

(九)中國願同各國,特別是發展中國家,共同促進資料基礎建設,共同推動全球資料的公平、包容性利用。

(十)中國願與各國,特別是發展中國家,加強人工智慧戰略和政策交流的協調一致,積極分享人工智慧測試、評估、認證和監管方面的政策和技術實踐,共同應對人工智慧的倫理和安全風險。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjbzhd/2028409/t2028409827_114984638.shtml

Chinese Military Plans Focus on Improving Battlefield Management During Future Operations

中國軍方計畫聚焦於提升未來作戰中的戰場管理能力

現代英語:

Battlefield management refers to the management of participating troops and other relevant personnel, weapons and equipment, command structures, and key targets to maintain battlefield order. Joint operations under informationized and intelligent conditions are rapidly expanding the operational space and the battlefield area to an unprecedented extent. Coupled with the deep integration of various services and forces, battlefield management faces more complex new situations, new requirements, and new challenges. Looking towards future warfare, battlefield management should closely follow the evolving characteristics of warfare, firmly establish the concept of integrated warfare management, build smooth and efficient mechanisms, promote innovation in management methods, and effectively improve management levels.

Establish a strong concept of integrated combat management. Future warfare is based on integrated joint operations using network information systems. Battlefield management, as a crucial element in ensuring victory, has undergone significant changes compared to traditional battlefield management. Only by re-examining the role of battlefield management in future joint operations, closely focusing on the requirements of victory, always keeping in mind the needs of future warfare, further broadening the management perspective and expanding the management scope, and establishing a concept of integrated combat management can we maximize and consolidate combat effectiveness. First, we must establish a systematic management concept, employing a comprehensive and systematic way of thinking to examine and properly handle all kinds of battlefield-related matters, and implement all-time, all-element management of all elements. Secondly, it is essential to establish a holistic management philosophy, clearly define the primary objectives of battlefield management and their scope, and ensure comprehensive control over all resources, including human, financial, and material resources, as well as the scientific management of spatiotemporal information resources. Thirdly, it is crucial to establish a centralized management philosophy, combining the actual situation of the troops with future combat development trends, to develop detailed emergency plans for all possible unforeseen circumstances on the battlefield, and to establish strict management discipline based on the assigned tasks and personnel, ensuring coordinated and consistent troop actions.

Establish a smooth and efficient mechanism. Future joint operations will involve not only the joint operations of various services and arms, but also the overall joint operations of forces in other fields. The personnel composition will be complex, the forces will be intertwined and overlapping, and the high degree of dispersion of weapons, equipment, and key targets will further increase the difficulty of management. In joint operations, problems such as complex management relationships, loose management structures, and disrupted management chains are prone to arise. Establishing a smooth and efficient management mechanism can improve the quality and efficiency of battlefield management and effectively solve related problems. Therefore, based on the joint operations system, a top-down command structure and a smooth information exchange mechanism should be established to build a timely and efficient operational management system. This encompasses close collaboration between commanders at all levels and the command system, as well as real-time interconnection and coordination among various combat platforms and weapon systems. Throughout the process, a streamlined yet responsive and continuous management mechanism is established to meet the evolving needs of the battlefield environment.

Promote innovation in management methods. The large-scale application of cutting-edge technologies in the military has transformed combat forms and patterns, requiring corresponding innovation in battlefield management to adapt to the new challenges brought about by new situations and problems. Efforts should be focused on shifting from traditional, extensive, experience-based management to intensive, precise management, continuously simplifying management processes, further compressing management chains, and improving management efficiency. Instructions from superiors must be received, understood, and implemented quickly; emergencies must be grasped, judged, and handled quickly; and management problems must be identified, resolved, and reflected upon quickly to avoid unnecessary losses caused by complex management. The traditional, singular management model must be changed, focusing on all types of personnel and elements in management, managing flexibly according to time and place, continuously enhancing pertinence and effectiveness, and promoting overall management efficiency.

現代國語:

戰場管理是指對參戰部隊及其他相關人員、武器裝備、指揮體系及重點目標進行管理,以維持戰場秩序。資訊化、智慧化條件下的聯合作戰正以前所未有的規模迅速拓展作戰空間和戰場範圍。加之各軍種、各力量的深度融合,戰場管理面臨更複雜的新形勢、新要求和新挑戰。展望未來戰爭,戰場管理應緊跟戰爭演變特徵,堅定確立一體化作戰管理理念,建構流暢高效的機制,推動管理方式創新,有效提升管理水準。

確立一體化作戰管理理念。未來戰爭是建立在網路資訊系統基礎上的一體化聯合作戰。戰場管理作為確保勝利的關鍵要素,與傳統戰場管理相比發生了顯著變化。只有重新檢視戰場管理在未來聯合作戰中的作用,緊扣勝利要求,始終牢記未來戰爭的需求,進一步拓寬管理視野、擴大管理範圍,確立一體化作戰管理理念,才能最大限度地提升和鞏固作戰效能。首先,必須建立系統化的管理理念,運用全面系統的思維方式,對戰場各類事務進行全面、系統的審視和妥善處理,實行全時、全要素的統籌管理。其次,必須建立整體性的管理理念,明確戰場管理的主要目標和範圍,確保對人力、財力、物力等所有資源進行全面管控,並對時空資訊資源進行科學管理。第三,必須建立集中統一的管理理念,結合部隊實際情況和未來作戰發展趨勢,針對戰場上可能出現的各種突發情況制定詳細的應急預案,並根據任務和人員配置建立嚴格的管理紀律,確保部隊行動協調一致。

建立順暢高效的機制。未來的聯合作戰不僅涉及各軍種的聯合作戰,也涉及其他領域部隊的全面聯合作戰。人員構成複雜,兵力交織重疊,武器裝備和重點目標高度分散,進一步增加了管理難度。在聯合作戰中,管理關係複雜、管理結構鬆散、管理鏈斷裂等問題容易出現。建立順暢有效率的管理機制,能提升戰場管理的品質與效率,有效解決相關問題。因此,應基於聯合作戰體系,建立由上而下的指揮結構和順暢的資訊交流機制,建構及時且有效率的作戰管理體系。這包括各級指揮官與指揮系統的緊密協作,以及各作戰平台和武器系統之間的即時互聯互通和協同配合。在此過程中,建立精簡且有效率、反應迅速且持續的管理機制,以滿足不斷變化的戰場環境需求。

推進管理方法創新。尖端技術在軍事領域的大規模應用改變了作戰形式和格局,對戰場管理提出了相應的創新要求,以適應新形勢和新問題帶來的挑戰。應著重從傳統的、粗放的、經驗式的管理轉向精簡的、精準的管理,不斷簡化管理流程,進一步縮短管理鏈,提高管理效率。上級指示必須迅速接收、理解和執行;突發事件必須迅速掌握、判斷和處理;管理問題必須迅速發現、解決和反思,避免因管理過於複雜而造成不必要的損失。必須改變傳統的、單一的管理模式,關注各類人員和各類要素的管理,根據時間和地點靈活管理,不斷提高管理的針對性和有效性,從而提升整體管理效率。

中國軍網與國防部網 2024年5月14日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-05-14&paperNumber=078&articleid=9838089893

A Brief Analysis on the Development of Chinese Military Intelligent Command Information Systems

淺析解放軍軍事智慧指揮資訊系統發展

現代英語:

The prelude to the era of intelligent warfare has begun. Command information systems with intelligent characteristics will become the “central nervous system” of future intelligent combat command and control, and the supporting means of intelligent combat command and control. Accelerating the construction of intelligent command information systems is an inherent requirement for the development of military intelligence. Only by clarifying the key points of the development of intelligent command information systems, grasping the key points of intelligent command information system research and development, and exploring the key points of intelligent command information system development, can we better promote the construction and development of intelligent command information systems and win the initiative in future intelligent combat.

Clarify the key points of developing intelligent command information system

Intelligent command information system is the inevitable choice for the development of war form to information-based intelligent war, the inevitable result of the development of scientific and technological revolution, and the demand of the times for the development of military intelligence. Clarifying the development significance of intelligent command information system will help to identify the direction of intelligent command information system construction and establish the long-term goal of system development.

Promote the intelligent evolution of war forms. In future intelligent warfare, the battlefield situation changes rapidly and the battlefield environment is complex and harsh. In order to take the initiative on the battlefield, “intelligence control” becomes the new commanding height, and the intelligent command information system is undoubtedly an important support means for future combat command and action. Its intelligent development can promote the evolution of war forms to intelligence, and is an important support for intelligent warfare to gain the initiative and seek victory.

Support intelligent innovation of combat concepts. Future intelligent combat requires a combat command concept that is compatible with it, and the intelligent command information system is an important support for the practical application of the combat command concept, and is the soil for the innovation and development of the intelligent combat command concept. New intelligent combat command concepts such as human-machine hybrid command formation, data-driven command activities, open development command mode, and intelligent force-focused command process are inseparable from the support of intelligent command information systems. Intelligent command information systems will serve as the extension of the human brain, break through the physiological limits of the human body, and realize the organic integration of combat command art and intelligent technology.

Promote the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about major changes in the mechanism of combat victory. Intelligence has surpassed firepower and information power and has become the primary factor in determining the outcome of a war. The construction and development of intelligent command information systems will promote the transformation of combat methods to intelligence, making the combat methods change from “combat network + precision-guided weapons” in the information age to “intelligent Internet of Things + manned/unmanned combat platforms” in the intelligent age, and the basic combat style will evolve from “network-centric warfare” to “cognitive-centric warfare” accordingly.

Grasp the key points of intelligent command information system research and development

The command information system is a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent combat winning mechanisms, the intelligent upgrade of the command information system is imminent. We should highlight the key points of functional research and development to create a new intelligent command information system.

“Super brain” assists decision-making. In future intelligent warfare, the amount of battlefield information data is huge and complex and changeable. Commanders are easily trapped in the “sea of ​​information” during the command process, resulting in information confusion and affecting command decisions. With the emergence of intelligent decision-making assistance technology and “cloud brain” and “digital staff”, a new decision-making model based on “human brain + artificial intelligence” collaboration is quietly taking shape. The intelligent command information system will break through the limits of human intelligence. As an extension of the human brain, it will assist commanders in their work and enable war decisions to develop from simple human brain decisions to “human brain + artificial intelligence” super brain command decisions.

“Full-dimensional” situational awareness. In future intelligent warfare, there will be a trend of multi-dimensional space, multiple forces, various styles, and accelerated rhythm. Comprehensive and flexible grasp of battlefield situation will become the basis for commanders’ decision-making, and the multi-domain integration and intelligent dynamic presentation of full-dimensional battlefield situation will become an inevitable requirement for the construction and development of command information systems. The command information system’s perception, understanding, integration and prediction of battlefield situations such as target identification, threat level estimation, combat action prediction and future battle situation prediction are expanding from land, sea, air, space, electromagnetic, network and other spaces to cognitive domains and social domains, realizing “full-dimensional” situational awareness.

“Intelligent” network communication. In the future, intelligent warfare will use a large number of intelligent command and control platforms and intelligent weapon platforms, and the intelligent information and communication system must be used to connect the command and control platforms and weapon platforms. Like the nerves and blood vessels of the human body, the intelligent information and communication system plays a linking and lubricating role in intelligent warfare. Therefore, it is necessary to establish an intelligent information network with full-dimensional coverage and uninterrupted connection to support the connection and control of intelligent equipment, form intelligent optimization of network structure, intelligent reorganization of network anti-destruction, and intelligent anti-interference capabilities, so as to ensure intelligent collaborative warfare between platforms and give full play to the best overall combat effectiveness.

“Unmanned” autonomous collaboration. In recent local conflicts around the world, drones have been used in large numbers and played an important role in determining the direction of the war, which has attracted widespread attention from all parties. Unmanned weapons and equipment are the material basis of intelligent warfare, and have formed subversive combat styles based on this, such as invasive lone wolf warfare, manned/unmanned collaborative system attack warfare, unmanned system formation independent warfare, and drone swarm cluster warfare. Although unmanned warfare is dominated by humans, machines are given a certain degree of autonomous action authority in the background, thereby realizing unmanned combat operations on the front line. However, the unmanned battlefield is changing rapidly, and the destruction of human-machine collaboration will become the norm. The command and control system of the unmanned intelligent equipment platform must be more intelligent and be able to conduct autonomous collaborative operations according to the combat objectives.

“Active” information defense. Intelligent warfare will inevitably face all-dimensional and diverse information attacks from powerful enemies. The level of information security protection capabilities directly affects the outcome of the battle for “intelligence control” on the battlefield and is a key link in the construction of intelligent command information systems. Therefore, we should take the initiative to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of high-tech information security, strengthen the anti-interference and anti-intervention capabilities of various wireless transmission methods, build strong intelligent tracing and countermeasure capabilities, and effectively curb information attacks.

Exploring the key to the development of intelligent command information system

The development of intelligent command information system is not only a technological innovation, but also requires further emancipation of mind and updating of concepts. To promote the development of intelligent command information system, we must change the traditional idea of ​​adding hardware, building a large “network”, collecting and storing various types of data, break through the inherent hierarchical settings, create an open and service-oriented system, aim at the needs of intelligent combat command and action, and explore and study the key points of the development of intelligent command information system.

Innovative concept. Adhere to the guidance of innovative thinking concepts, learn from the development ideas of intelligent command information systems of military powers, combine actual needs, and explore a development path with its own characteristics. We must break the traditional “chimney” approach, adhere to the top-level design and overall planning of command information systems, unify interfaces, protocols and standards, and form an open and sustainable system architecture layout; adhere to the system development ideas of combining research, construction and use, formulate development strategies for different stages in the short, medium and long term, and standardize the development direction of system construction; adhere to the iterative upgrade and optimization and improvement strategies, and continuously improve the intelligence level of various subsystems such as command and control, intelligence reconnaissance, communications, information confrontation and comprehensive support, to ensure the sustainable and healthy development of intelligent command information systems.

Focus on the key. Focusing on the construction of key capabilities of intelligent command information systems is an important support for intelligent warfare to gather intelligence and win with intelligence, and is the key to intelligent warfare to gain the “right to win”. Algorithms, computing power, and data are not only the internal driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command information systems. The development of intelligent command information systems must adhere to algorithm innovation research to improve the system’s cognitive advantages, speed advantages, and decision-making advantages; accelerate the research and development of next-generation computers represented by quantum computers to provide stronger computing power support for intelligent command information systems; deeply explore the deeper and wider dimensional information value in massive combat data resources to seek the first opportunity to win.

Gather wisdom to tackle key problems. The construction and development of intelligent command information systems is one of the main projects of military intelligence. It is a multi-field, multi-disciplinary, multi-department, and multi-unit integrated and coordinated project. The construction and development of intelligent command information systems must adhere to the spirit of collective wisdom, collective wisdom, and pioneering innovation, aiming at strategic forward-looking fields such as sensors, quantum information, network communications, integrated circuits, key software, big data, artificial intelligence, and blockchain, and insist on the promotion of high-tech and the pull of intelligent combat needs. Carry out in-depth research and exchanges in multiple fields, multiple levels, and multiple forms, continuously break through innovation, iterate and upgrade, and make the intelligent command information system more complete and more intelligent.

Collaborative development. To further promote the construction and development of intelligent command information systems, we must fully absorb local advanced technological achievements and integrate into the era of innovation and development of artificial intelligence in the world. At present, the world’s artificial intelligence technology is booming, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application and broad prospects for the transformation and application of technological achievements. It is an important way to achieve the construction and development of intelligent command information systems. It is necessary to study and formulate general technical standards, remove barriers, break the ice, facilitate military-civilian cooperation, and realize the sharing and linkage of technological achievements. It is necessary to cultivate and shape new military talents through collaboration, so that they can constantly adapt to the needs of various positions under intelligent conditions and give full play to the effectiveness of intelligent command information systems.

現代國語:

中國軍網 國防部網
2022年8月9日 星期二

李建平 紀鳳珠 李 琳

智慧化戰爭時代序幕已經拉開,具有智慧化特徵的指揮資訊系統將成為未來智慧化作戰指揮的“中樞神經”,是智慧化作戰指揮控制的支撐手段。加速智慧化指揮資訊系統建置是軍事智慧化發展的內在需求,只有明晰智能化指揮資訊系統發展要義,抓住智慧化指揮資訊系統研發要點,探索智慧化指揮資訊系統發展要津,才能更好地推動智慧化指揮資訊系統建設發展進程,贏得未來智能化作戰制勝先發。

明晰智能化指揮資訊系統發展要義

智慧化指揮資訊系統是戰爭形態朝向資訊化智能化戰爭發展的必然選擇,是科技革命發展的必然結果,也是軍事智能化發展的時代訴求。明晰智能化指揮資訊系統發展要義,有助於把脈智能化指揮資訊系統建構方向,確立系統發展長遠目標。

助推戰爭形態智能化演進。未來智能化作戰,戰場情勢瞬息萬變、戰場環境複雜嚴酷,要想在戰場上取得主動,「制智權」成為新的製高點,而智能化指揮資訊系統無疑是未來作戰指揮和行動的重要支撐手段,其智能化發展可助推戰爭形態向智能化演變,是智能化作戰指揮和行動的重要支撐手段,其智能化發展可助推戰爭形態向智能化演變,是智能化作戰指揮機、求勝利機、求勝利的重要依托。

支撐作戰理念智慧化創新。未來智慧化作戰,需要與之相適應的作戰指揮理念,而智慧化指揮資訊系統是作戰指揮理念實踐運用的重要依托,是智慧化作戰指揮理念創新、發展的土壤。如人機混合指揮編組、數據驅動指揮活動、開放發展指揮模式、智能聚力指揮過程等智能化作戰指揮新理念,都離不開智能化指揮信息系統的支撐,智能化指揮信息系統將作為人腦的外延,突破人體生理極限,實現作戰指揮藝術和智能技術的有機融合。

促進作戰方式智能化轉變。人工智慧技術在軍事領域的廣泛應用,使得作戰制勝機理發生重大變化,智慧超越火力、資訊力,成為決定戰爭勝負的首要因素。智慧化指揮資訊系統建置發展將促進作戰方式向智慧化轉變,使得作戰方法從資訊時代的「作戰網路+精確導引武器」向智慧時代的「智慧物聯網+有人/無人作戰平台」轉變、基本作戰樣式相應地從「網路中心戰」向「認知中心戰」演進。

抓住智慧化指揮資訊系統研發重點

指揮資訊系統是資訊化戰爭時代的產物,隨著軍事智慧化的快速發展、智慧化作戰制勝機理的研究和實踐運用,指揮資訊系統智慧化升級建設迫在眉睫。應突顯功能研發重點,打造全新智慧化指揮資訊系統。

「超腦化」輔助決策。未來智慧化作戰,戰場資訊資料量龐大且複雜多變,指揮官在指揮過程中易陷入「資訊海洋」而導致資訊迷茫,影響指揮決策。隨著智慧輔助決策技術和「雲端大腦」「數位參謀」的出現,以「人腦+人工智慧」協作為基本方式的新決策模式正悄悄形成。智慧化指揮資訊系統將突破人類智力極限,作為人腦的外延,輔助指揮員工作,使戰爭決策由單純的人腦決策發展為「人腦+人工智慧」的超腦化指揮決策。

「全維化」態勢感知。未來智慧化作戰,空間多維、力量多元、樣式多樣、節奏加快趨勢突出,全面靈動掌握戰場態勢成為指揮官決策的基礎,多域一體、智慧動態地呈現全維戰場態勢成為指揮資訊系統建設發展必然要求。指揮資訊系統對目標辨識、威脅等級估計、作戰行動預判和未來戰況走向預估等戰場態勢的感知、理解、融合和預測,正在從陸、海、空、天、電磁、網絡等空間擴展至認知域、社會域,實現「全維化」態勢感知。

「智聯化」網路通聯。未來智慧化作戰將使用大量智慧化指揮控制平台和智慧化武器平台,而連接指揮控制平台和武器平台的必然是智慧化的資訊通訊系統。如同人體的神經和血管,智慧化的資訊通訊系統在智慧化作戰中扮演連結和潤滑。因此,要建立全維度覆蓋、不間斷的智慧化資訊網絡,支撐智慧化裝備的連結與控制,形成網路結構智慧最佳化、網路抗毀智慧重組以及智慧抗干擾能力,以確保平台間的智能化協同作戰,發揮最佳的整體作戰效能。

「無人化」自主協同。在近期世界局部衝突中,無人機大量運用並起到決定戰爭走向的重要作用,引起了各方的廣泛關注。無人化武器裝備是智慧化作戰的物質基礎,並依此形成了顛覆式作戰樣式,如侵入式獨狼作戰、有人/無人協同體系破擊作戰、無人系統編隊獨立作戰、無人機蜂群集群作戰等。無人作戰雖是由人主導,並在後台賦予機器一定程度的自主行動權限,從而實現機器在一線無人作戰行動。然而無人作戰戰場瞬息萬變,人機協同被破壞將會成為常態,無人智慧化裝備平台指控系統必須更加智慧,要能根據作戰目的進行自主協同作戰。

“主動化”訊息防禦。智慧化作戰必將面臨強敵全維多樣的資訊攻擊,資安防護能力的高低,直接影響戰場「制智權」鬥爭的勝負,是智慧化指揮資訊系統建設的關鍵環節。因此,應主動作為,積極制定及完善網路防護策略,豐富入侵偵測能力及認證辨識手段,加強資訊安全高新技術運用,強化各類無線傳輸方式的抗干擾、抗介入能力,建強智能化溯源反制能力,有效遏止資訊攻擊。

探索智慧化指揮資訊系統發展要津

智慧化指揮資訊系統發展不單單是技術的革新,更需要進一步解放思想、更新理念。推動智慧化指揮資訊系統發展,要改變傳統添硬體、建大「網」、收集儲存各類資料的思路,突破固有層級設定,打造開放式、服務型系統,瞄準智慧化作戰指揮與行動需要,探索研究智慧化指揮資訊系統發展要津。

創新理念。堅持以創新的思維理念為指引,借鏡軍事強國智慧化指揮資訊系統發展思路,結合實際需求,探索具有自身特色的發展道路。要打破傳統「樹煙囪」做法,堅持指揮資訊系統頂層設計和整體規劃,統一介面、協定和標準,形成開放式、永續發展的系統架構佈局;堅持開發用相結合的系統研發,制定近期、中期、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化情報系統持續提升與資訊控制、長期不同階段發展策略,規範系統建設發展方向;堅持迭代升級、優化情報系統持續提升與資訊控制、情報系統分權。

聚力關鍵。聚力智能化指揮資訊系統關鍵能力建設,是智慧化作戰以智聚優、以智制勝的重要依托,是智慧化作戰取得「制勝權」的關鍵。演算法、算力、數據既是人工智慧發展的內在動力和支撐,也是智慧化指揮資訊系統的核心能力需求和優勢。智慧化指揮資訊系統發展要堅持演算法創新研究,提高系統認知優勢、速度優勢與決策優勢;加速量子電腦等為代表的下一代電腦研發,為智慧化指揮資訊系統提供更強的算力支援;深度挖掘海量作戰資料資源中更深層、更廣維度資訊價值,謀取勝先機。

集智攻關。智慧化指揮資訊系統建設發展是軍事智慧化的主要工程之一,是一個多領域、多學科交叉,多部門、多單位參與的大融合大連動的攻堅工程。智慧化指揮資訊系統建置發展要堅持群策群力、集智攻關、開拓創新的精神,瞄準感測器、量子資訊、網路通訊、積體電路、關鍵軟體、大數據、人工智慧、區塊鏈等策略性前瞻領域,堅持高新技術推動、智慧化作戰需求拉動,進行多領域、多層次、多層次研究交流,不斷完善創新、智慧化作戰需求拉動,展開多領域、多層次、多變式研究研究,不斷完善創新、化電系統更能使智能化更強大、更變動系統、更不斷研究電系統,不斷完善創新。

協作發展。深入推動智慧化指揮資訊系統建置發展,必須充分吸收地方先進技術成果,融入世界人工智慧創新發展的時代洪流。目前,世界人工智慧技術蓬勃發展,積蓄了強大發展動能和技術優勢,人工智慧技術應用通用性強,技術成果轉化應用前景廣闊,是智慧化指揮資訊系統建設發展的重要實現途徑。要研究制定通用技術標準,拆壁壘、破堅冰、暢通軍地合作,實現技術成果共享連動。要透過協作培養塑造新型軍事人才,使其不斷適應智慧化條件下各類崗位需求,充分發揮智慧化指揮資訊系統效能。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-08/09/content_321593888.htm

Chinese Military Review of the Strategic Game Among Major Powers Within Context of Military Intelligence

軍事情報視野下的大國戰略博弈-中國軍事評論

現代英語:

In today’s world, the new military revolution has entered a critical qualitative change stage. Intelligent warfare with ubiquitous intelligence, interconnectedness, human-machine integration, and full-domain collaboration is accelerating. In order to consolidate its position as the world’s hegemon, the United States actively promotes the third “offset strategy” to “change the future war situation”, formulates an artificial intelligence development strategy, accelerates the actual combat testing and exercises of artificial intelligence, and regards intelligent technology as the core of a “disruptive technology group” that can change the “rules of the game”. Military powers such as Russia, Britain, and Israel are unwilling to lag behind and are also stepping up to improve their respective strategic layouts in the field of artificial intelligence. As competition among major powers intensifies, military intelligence will become the new commanding heights of the arms race.

    【Key words】military conflict, artificial intelligence strategy, AI war 【Chinese Library Classification Number】D81 【Document Identification Code】A

    In 2017, Master, known as the evolved version of “AlphaGo”, swept the top Go players on the online Go platform and won 60 consecutive games; in 2019, in the StarCraft II man-machine competition, two top human players were defeated with a score of 1:10; in 2020, in the “Alpha” air combat competition held by the Defense Advanced Research Projects Agency of the United States Department of Defense, the F-16 piloted by the US military ace pilot was completely defeated by the artificial intelligence fighter with a score of 0:5. These events show that the era of artificial intelligence that humans both look forward to and fear has quietly arrived.

    Engels said, “Once technological advances can be used for military purposes and have been used for military purposes, they will immediately and almost forcibly, and often against the will of the commander, cause reforms or even changes in the way of warfare.” At present, the militarized application of artificial intelligence has caused “the winning mechanism of war to undergo an unprecedented transformation, and the center of gravity of combat power generation is undergoing a historic shift.” A new round of scientific and technological revolution, industrial revolution and military revolution provides support for the intelligent era of “controlling energy with intelligence.”

    Military artificial intelligence demonstrates its powerful power in modern warfare

    The drive of the arms race among the major powers is triggering a chain of changes in the military field. In recent years, the world situation has been in a turbulent period, which has triggered a series of geopolitical crises. The concept of “hybrid warfare” has entered the war stage, and military artificial intelligence has entered a new stage of development. The rapid development and comprehensive integration of technologies such as artificial intelligence, big data, cloud computing, and reconnaissance and strike drones have demonstrated their powerful power in modern warfare. Whether it is the physical domain of firepower strikes, the interest domain of economic sanctions, or the cognitive domain of public opinion and psychological control, it makes people deeply feel that military artificial intelligence is becoming popular.

    Assassinating senior Iranian officials, AI becomes a “killing tool” for the US military. On January 3, 2020, then-US President Trump ordered the US military to launch an airstrike on Baghdad International Airport in Iraq without the consent of the US Congress. This airstrike directly killed Iranian senior official Soleimani. Soleimani is the top commander of the “Quds Brigade” of the Iranian Revolutionary Guard. Why was he successfully assassinated by the United States in the capital of Iraq? It is reported that the “Reaper” drone carried out this mission, which “targeted and eliminated” Soleimani by projecting “Hellfire” missiles. The operation was very secretive and could not be detected by radar. Even the US spy satellites did not know the location of the “Reaper” at the time. It should be emphasized that the assassination of Soleimani was an illegal and brutal act of the United States using terrorist means, “one of the war crimes committed by the United States by abusing force”, and its so-called “rules-based international order” is a pure whitewash, and its essence is a true manifestation of hegemony.

    In the Israeli-Palestinian conflict, Israel launched the “first AI war”. In May 2021, Israel launched “Operation Rampart” against Hamas. During the 11-day battle in the Gaza Strip, Israel relied on advanced information collection technology, analytical algorithms and AI-led decision support systems to quickly and effectively select attack targets and use the most appropriate ammunition as needed. Through hundreds of intensive and precise strikes from multiple combat platforms, it paralyzed Hamas and the Palestinian Islamic Jihad Organization’s rocket positions, rocket manufacturing plants, ammunition depots, military intelligence agencies, senior commanders’ residences and other key facilities, destroyed several autonomous GPS-guided submarines of the Hamas Maritime Commando, and killed Bassem Issa and other Hamas senior commanders and senior agents.

    It has been disclosed that the artificial intelligence system used in the war is an algorithm system developed by an elite team code-named 8200. The three systems “Alchemist”, “Gospel” and “Deep Wisdom” hatched by the team were all used in this military operation. The “Alchemist” system can analyze the enemy’s attempt to launch an attack and provide real-time warnings through the communication device carried by individual soldiers. The information fed back by the soldiers will also be collected again and evaluated for the next attack; the “Gospel” system can generate target strike suggestions and mark target information in real time. Commanders can flexibly select important targets and implement strikes based on battlefield conditions; the “Deep Wisdom” system can accurately draw a map of the tunnel network of Hamas armed organizations in the Gaza Strip through intelligence collection and big data fusion such as signal intelligence, visual intelligence, personnel intelligence, and geographic intelligence, forming a situation map that fully reflects the conflict area scenario. The use of these technologies has greatly enhanced the Israeli army’s battlefield situation awareness capabilities. A senior intelligence official of the Israel Defense Forces said that this is “the first time that AI has become a key component and combat power amplifier in fighting the enemy.” The Israeli military believes that the use of AI has brought “super cognitive ability” and even directly calls it “the first artificial intelligence war.”

    In order to seize the technological commanding heights, countries are stepping up their strategic layout of military intelligence

    Artificial intelligence is regarded as a key strategic technology in the Fourth Industrial Revolution. In order to gain the upper hand in the new round of disruptive technology competition, the world’s military and technological powers, led by the United States, have stepped up their strategic layout around military intelligence, and are working intensively and spare no effort.

    The United States attempts to rely on artificial intelligence to maintain its military hegemony. Since 2016, the U.S. Department of Defense has successively issued documents such as “Preparing for the Future of Artificial Intelligence”, “National Artificial Intelligence Research and Development Strategic Plan”, and “Department of Defense Artificial Intelligence Strategy”, which have elevated the development of artificial intelligence to the national strategic level. In order to establish its own “rules of war”, the Pentagon has successively formulated artificial intelligence technology research and development plans, key project concepts, and technical standards and specifications, and focused on building a research and development production and combat application system. In summary, the U.S. military’s layout for the future development of artificial intelligence can be roughly divided into three stages: near, medium, and long. In the first stage, before 2025, with unmanned, stealth, and remote combat platforms as the development focus, a “global surveillance and strike system” will be built, and unmanned systems will become the main means of military intervention by the U.S. military. In the second stage, before 2035, with intelligent combat platforms, information systems, and command and decision-making systems as the development focus, an intelligent combat system will be initially established, and unmanned systems will surpass manned systems and occupy a dominant position in combat. The third stage, before 2050, will focus on the development of technologies such as strong artificial intelligence, nanorobots, and brain networking, fully realize the intelligence of combat platforms, information systems, and command and control, promote the expansion of combat space to biospace, nanospace, and intelligent space, and strive to seek the intelligent combat system to enter the advanced stage.

    The various branches of the U.S. military have also launched and continuously updated their artificial intelligence development plans. The ground unmanned autonomous system has the “U.S. Ground Unmanned System Roadmap” and the “U.S. Robot Development Roadmap”, etc., and plans to achieve intelligent formations and coordinated actions of manned and unmanned by 2030, and realize the mobility of synthetic forces by 2040. The aerial unmanned autonomous system has a special drone development plan, and the long-term goal is to form a complete aerial unmanned equipment system covering high, medium and low altitudes, large, medium, small and micro, ordinary and long flight time. The maritime unmanned autonomous system is divided into two directions. One is to create a new underwater combat system, using multiple unmanned submarines to form a mobile integrated reconnaissance, detection, and strike network, and form an “advanced underwater unmanned fleet”; the other is to accelerate the development of surface unmanned ships and make breakthroughs in the “human-machine cooperation” of surface unmanned ships. In addition, the U.S. Department of Defense has also established partnerships with industry, academia and allies to ensure access to the most advanced artificial intelligence technology support.

    Russia has also put forward its own strategic plan in the field of artificial intelligence. In recent years, Russian President Vladimir Putin has attached great importance to the development of artificial intelligence. He proposed that artificial intelligence is the future for both Russia and all mankind. Whoever becomes a leader in this field will stand out and gain a huge competitive advantage. Artificial intelligence is related to the future of the country. Russian Chief of General Staff Gerasimov said that the Russian army is “developing non-nuclear strategic deterrence forces” through artificial intelligence equipment. Russian Defense Minister Sergei Shoigu said that the Russian army is stepping up the research and development and deployment of military robots, and combat robots will be put into mass production.

    As early as November 2014, Russia adopted a plan to develop combat robots by 2025, proposing that robot systems will account for 30% of the entire weapons and military technology system by 2025. In December 2015, Putin signed a presidential decree to “establish a national robotics technology development center”, providing institutional support for the development of artificial intelligence from a strategic level. In recent years, Russia has successively issued strategic plans such as “Future Russian Military Robot Application Concept”, “National Artificial Intelligence Development Strategy by 2030”, and “Russian Federation Defense Plan 2021-2025”, carried out war games in various complex combat environments, studied the impact of artificial intelligence on various levels such as strategy, campaign and tactics, and strived to build a multi-level and multi-dimensional unmanned intelligent combat system that is interconnected.

    From the perspective of medium- and long-term goals, attacking unmanned equipment is the focus of Russia’s development. In 2019, Russian President Vladimir Putin proposed at the Russian Federation Security Conference that in the next 10 years, the Russian army will vigorously develop combat robot systems that can perform tasks on the battlefield. The short-term goal is to build a multifunctional combat robot force with certain autonomous control capabilities by 2025. According to information, the force will be composed of 5 types of robots, each of which can be independently divided into combat units and can basically complete battlefield combat tasks without or with very little human intervention. At present, the Russian army has started the experimental design work of the heavy and light robot “assault” and “comrade” systems. Some experts analyzed that the combat robot force may become an independent and brand-new branch of the Russian army.

    The United States is wooing its allies to prepare for AI wars, and the AI ​​arms race is intensifying. In recent years, in order to maintain its absolute leading position in the field of artificial intelligence, the United States has stepped up its own AI militarization construction while trying to win over its allies to jointly develop a joint operation AI system in the name of serving the alliance combat system. According to the U.S. “Defense News” website, in September 2020, the U.S. Joint Artificial Intelligence Center has launched the “Defense Partnership Program”, which covers the United Kingdom, France, Israel, Japan, South Korea, Australia, Canada, Finland, Norway, Sweden and other countries. It aims to develop an AI system that is interconnected with the above-mentioned allies and lay the foundation for joint operations in intelligent warfare. It is reported that relevant defense representatives of the United States and its allies have held several meetings around this plan. The United States also claimed that this defense cooperation will “open the door” to more interested U.S. allies.

    The United States’s push will undoubtedly intensify the AI ​​arms race among the world’s major military powers. Among the United States’ many allies, Israel’s AI level is the best. Israel is the world’s largest exporter of military drones; it has the world’s first controllable autonomous unmanned vehicle, the Guardian, which has been equipped to the troops; it is the only country in the world, except the United States, equipped with unmanned surface vessels, and has many types of unmanned surface vessels such as the Protector, Stingray, and Seagull.

    Other major countries are also stepping up their layout in the field of artificial intelligence. The United Kingdom has formulated an artificial intelligence development path of “universities as the source, military-civilian integration”, and issued the “National Artificial Intelligence Strategy” and the “Robots and Artificial Intelligence” strategic plan. France has formulated the “French Artificial Intelligence Strategy” and the “French Artificial Intelligence Plan”. Since 2018, it has increased its defense budget year by year and continuously increased investment in the research and development of artificial intelligence weapons. Germany has the world’s largest artificial intelligence research center. In 2018, it issued the “Artificial Intelligence Strategy” and planned to create an “Artificial Intelligence Made in Germany” brand by 2025. Japan has successively issued the “Artificial Intelligence Strategy”, “New Robot Strategy” and “Comprehensive Science and Technology Innovation Strategy”, and established the “Innovative Intelligence Comprehensive Research Center” to focus on the development of artificial intelligence-related technologies. In January 2021, the Australian Department of Defense issued the “Fighting the Artificial Intelligence War: Operational Concepts for Future Intelligent Warfare”. This document focuses on how to apply artificial intelligence to land, sea and air combat.

    As some experts have said, “Intelligent technology is a double-edged sword. While it promotes the evolution of warfare to intelligent warfare, it also brings about a series of new war ethics issues and dilemmas in the law of war.” What changes will artificial intelligence bring to human society? This issue deserves in-depth thinking and continued attention.

    (The author is the director of the News Research Department of Guangming Daily)

    【References】

    ①Wu Mingxi: Intelligent Warfare—AI Military Vision, Beijing: National Defense Industry Press, January 2020.

    ②Guo Ming: “Basic Understanding of Intelligent Warfare”, “People’s Forum·Academic Frontier”, Issue 10, 2021.

    ③ Ding Ning and Zhang Bing: “Development of Intelligent Weapons and Equipment of Major Military Powers in the World”, “Military Digest”, Issue 1, 2019.

    ④ Ge Yan and Jia Zhenzhen: “Future Combat Concepts and Combat Styles under Military Transformation”, “Military Digest”, Issue 15, 2020.

    ⑤He Fuchu: “The Future Direction of the New World Military Revolution”, Reference News, August 23, 2017.

    ⑥Ma Junyang: “Russian-made unmanned intelligent weapons debut in Syria”, People’s Liberation Army Daily, December 30, 2019.

Geng HaijunPeople’s Forum (July 1, 2022, Issue 03)

現代國語:

當今世界,新軍事變革進入關鍵性變遷階段,智慧泛在、萬物互聯、人機共融、全局協同的智慧化戰爭正加速演進。為鞏固世界霸主地位,美國積極推行“改變未來戰局”的第三次“抵消戰略”,制定人工智能發展戰略,加速人工智能實戰檢驗和演習,將智能科技視作可改變“遊戲規則”的“顛覆性技術群”的核心。俄羅斯、英國、以色列等軍事強國不甘落後,也加緊完善各自在人工智慧領域的戰略佈局。大國競爭加劇,軍事智慧化將成為新的軍備競賽制高點。

【關鍵字】軍事衝突 人工智慧戰略 AI戰爭 【中圖分類號】D81 【文獻識別碼】A

2017年,被稱為進化版「阿爾法狗」的Master在圍棋網路平台橫掃圍棋界頂尖高手,豪取60連勝;2019年,星際爭霸Ⅱ遊戲人機對抗賽中,兩位人類頂尖選手以1:10的比數慘敗;2020年,在美國國防部高級研究計畫局舉辦的「阿爾法」空中格鬥競賽中,由美軍王牌飛行員駕駛的F-16以0:5完敗於人工智慧戰鬥機。這些事件表明,人類既期待又畏懼的人工智慧時代已經悄悄到來。

恩格斯說,「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改革甚至變革」。當下,人工智慧的軍事化應用使「戰爭的致勝機制正在發生前所未有的嬗變,戰鬥力生成的重心正發生歷史性的位移」。新一輪科技革命、產業革命和軍事革命為「以智地」的智慧化時代提供了支撐。

軍事人工智慧在現代戰爭中展現出強大威力

大國軍備競賽的驅動,正引發軍事領域鍊式變革。近年來,世界局勢處於動盪不安時期,由此引發了一系列地緣政治危機,「混合戰爭」概念登上戰爭舞台,軍事人工智慧進入發展新階段。人工智慧、大數據、雲端運算、察打一體無人機等技術的快速發展、全面融合,在現代戰爭中展現出強大威力。無論是火力打擊的物理域、經濟制裁的利益域,或是輿情心理控制的認知域,無不使人深刻感受到軍事人工智慧正在大行其道。

刺殺伊朗高官,AI成為美軍「殺人工具」。 2020年1月3日,時任美國總統川普未經美國國會同意,下令讓美軍空襲伊拉克巴格達國際機場。這次空襲,直接殺死了伊朗高官蘇萊曼尼。蘇萊曼尼是伊朗革命衛隊「聖城旅」最高指揮官,為何會被美國在伊拉克首都暗殺成功?有消息透露,實施這項任務的是「收割者」無人機,它透過投射「地獄火」飛彈,對蘇萊曼尼進行了「定點清除」。這次行動十分隱秘,雷達無法偵測到,連美軍間諜衛星都不知道這架「收割者」當時的位置。需要強調的是,刺殺蘇萊曼尼,是美國動用恐怖主義手段的非法和殘暴行徑,“是美國濫用武力犯下的戰爭罪行之一”,其所謂的“基於規則的國際秩序”是純粹的粉飾,本質是霸權主義的真實表露。

在巴以衝突中,以色列打響了「第一次AI戰爭」。 2021年5月,以色列對哈馬斯發起「城牆衛兵行動」。在加薩地帶11天的戰鬥中,以色列依靠先進的資訊收集技術、分析演算法和人工智慧主導的決策支援系統,快速有效地選擇攻擊目標並根據需要使用最合適的彈藥,透過數百次多種作戰平台的密集、精確打擊,癱瘓了哈馬斯和巴勒斯坦伊斯蘭聖戰組織的火箭陣地、火箭製造廠、彈藥倉庫、軍事情報機構、高級指揮官住所等關鍵設施,摧毀了哈馬斯海上突擊隊多艘自主GPS制導潛艇,擊殺了巴塞姆·伊薩等多名哈馬斯高級指揮官和高級特工。

有資訊揭露,此次應用於戰爭的人工智慧系統,是由一支代號8200的精英小組所開發的演算法系統。由該小組孵化的「煉金術士」「福音」「深度智慧」三個系統,全部被用於這次軍事行動。 「煉金術士」系統可對敵方發動攻擊的企圖進行分析,並透過單兵攜帶的通訊裝置即時預警,而士兵回饋的訊息也會被重新收集並對下一次攻擊作出評估;「福音」系統可產生目標打擊建議,並即時標記目標訊息,指揮人員結合戰場情況可靈活選擇重要目標並實施打擊;「深度智慧」系統透過訊號情報、視覺情報、人員情報、地理情報等情報收集和大數據融合,可精確繪製哈馬斯武裝組織在加薩地帶的地道網絡圖,形成了全面反映衝突區域情景的態勢圖。這些技術的運用,大大提升了以軍的戰場態勢感知能力。以色列國防軍一名高級情報官員表示,這是「AI第一次成為與敵人作戰的關鍵組成部分和戰力放大器」。以色列軍方認為,使用AI帶來了“超認知能力”,甚至直接稱其為“第一場人工智慧戰爭”。

各國為搶佔技術制高點,加緊軍事智慧化戰略佈局

人工智慧被視為第四次工業革命的關鍵性戰略技術,為謀求在新一輪顛覆性技術爭奪中獨佔鰲頭,以美國為首的世界軍事科技強國圍繞軍事智能化加緊戰略佈局,可謂緊鑼密鼓、不遺餘力。

美國企圖依賴人工智慧維持其軍事霸權。自2016年以來,美國防部連續推出《為人工智慧的未來做好準備》《國家人工智慧研究與發展戰略規劃》《國防部人工智慧戰略》等文件,將人工智慧發展提升至國家戰略層面。五角大廈為確立由自己主導的“戰爭規則”,相繼制定了人工智慧技術研發規劃、重點專案設想和技術標準規範等,著力建構研發生產和作戰運用體系。概括起來看,美軍對未來人工智慧發展的佈局大致可分為近、中、遠三個階段。第一階段,2025年前,以無人化、隱身化、遠程化作戰平台為發展重點,建構“全球監視打擊體系”,無人系統成為美軍軍事幹預的主要手段。第二階段,2035年前,以智慧化作戰平台、資訊系統、指揮決策系統為發展重點,初步建成智慧化作戰體系,無人系統將超過有人系統,居於作戰的主導地位。第三階段,2050年前,以強人工智慧、奈米機器人、腦聯網等技術為發展重點,全面實現作戰平台、資訊系統、指揮控制智慧化,推動作戰空間向生物空間、奈米空間、智慧空間拓展,努力尋求智慧化作戰體系進入高階階段。

美軍各軍種也相繼推出並不斷更新其人工智慧發展規劃。地面無人自主系統有《美國地面無人系統路線圖》《美國機器人發展路線圖》等,計畫在2030年實現有人與無人的智慧編隊、協同行動,2040年實現合成兵力機動。空中無人自主系統有專項的無人機發展規劃,長遠目標是形成覆蓋高、中、低空,大、中、小微型,普通與長航時完備的空中無人裝備體系。海上無人自主系統分兩個方向,一個是打造新型水下作戰體系,利用多個無人潛航器組成機動式一體化偵察、偵測、打擊網絡,組成「先進水下無人艦隊」;另一個是加速發展水面無人艦艇,在水面無人艇「人機合作」方面取得突破。此外,美國防部也與工業界、學術界和盟國建立夥伴關係,確保獲得最先進的人工智慧技術支援。

俄羅斯在人工智慧領域也提出了自己的戰略計畫。近年來,俄羅斯總統普丁高度重視人工智慧發展,他提出,無論對俄羅斯或全人類,人工智慧都是未來,誰成為這個領域的領導者,誰就會脫穎而出,進而獲得巨大的競爭優勢,人工智慧關係國家未來。俄總參謀長格拉西莫夫稱,俄軍正透過人工智慧裝備「發展非核手段戰略威懾力量」。俄國國防部長紹伊古則表示,俄軍正加緊進行軍用機器人的研發、列裝工作,戰鬥機器人將投入量產。

早在2014年11月,俄羅斯就通過了2025年前發展作戰機器人計劃,提出2025年機器人系統將佔整個武器和軍事技術系統的30%。 2015年12月,普丁簽署「成立國家機器人技術發展中心」總統令,從戰略層面為人工智慧的發展提供了體制支撐。近幾年,俄羅斯先後推出了《未來俄軍用機器人應用構想》《2030年前人工智慧國家發展戰略》《2021—2025年俄聯邦國防計畫》等戰略規劃,開展了各種複雜作戰環境下的兵棋推演,研究人工智慧對戰略、戰役和戰術等各層面的影響,努力建構多層次相互智能化、相互智能化體系的無個人化作戰。

從中長目標來看,攻擊無人裝備是俄羅斯發展的重點。 2019年,俄羅斯總統普丁在俄聯邦安全會議上提出,未來10年俄軍將大力發展能在戰場上執行任務的戰鬥機器人系統。近期目標,是2025年建造具有一定自主控制能力的多功能戰鬥機器人部隊。根據資料介紹,該部隊將由5種機器人組成,每種機器人都可以獨立劃分為作戰單元,可在無需人工或僅需很少人工幹預下,基本完成戰場作戰任務。目前,俄軍已啟動重型和輕型機器人「突擊」及「戰友」系統的試驗設計工作。有專家分析,戰鬥機器人部隊或將成為俄獨立的、具有全新意義的兵種。

美國拉攏盟友備戰AI戰爭,人工智慧軍備競賽加劇。近年來,美國為維持在人工智慧領域的絕對領先地位,在加緊推進自身人工智慧軍事化建設的同時,也以服務聯盟作戰體系為名,試圖拉攏盟友共同開發聯合操作人工智慧系統。根據美國「防務新聞」網站報道,2020年9月,美聯合人工智慧中心已啟動“防務夥伴關係計畫”,該計畫涵蓋英國、法國、以色列、日本、韓國、澳洲、加拿大、芬蘭、挪威、瑞典等國,旨在開發與上述盟國互聯互通的人工智慧系統,為智能化戰爭聯合作戰奠定基礎。有報導稱,圍繞這個計劃,美國及其盟友的相關國防代表已多次召開會議。美國還聲稱,這個國防合作將向更多感興趣的美國盟友「敞開大門」。

美國的助推,無疑將使全球主要軍事大國間的人工智慧軍備競賽愈演愈烈。在美國眾多盟友中,以色列的人工智慧水準獨領風騷。以色列是世界最大的軍用無人機出口國;擁有世界上第一種可控的自主式無人車——“守護者”,並已裝備部隊;是世界上除美國之外僅有的裝備了無人水面艇的國家,擁有“保護者”“黃貂魚”“海鷗”等多型無人水面艇。

其他大國也加緊佈局人工智慧領域。英國制定了「高校為源、軍民融合」的人工智慧發展路徑,推出了《國家人工智慧戰略》《機器人與人工智慧》戰略規劃。法國制定有《法國人工智慧戰略》《法國人工智慧計畫》,從2018年起逐年增加國防預算,不斷增加人工智慧武器研發投資力道。德國擁有世界上最大的人工智慧研究中心,2018年發布了《人工智慧戰略》,計畫2025年前打造「人工智慧德國製造」品牌。日本先後推出《人工智慧戰略》《新機器人戰略》《科技創新綜合戰略》,成立“革新智慧綜合研究中心”,集中開發人工智慧相關技術。 2021年1月,澳洲國防部發表《打好人工智慧戰爭:未來智慧化戰爭之作戰構想》。這份文件著重探討如何將人工智慧應用到陸、海、空作戰領域。

正如一些專家所言:「智慧科技是一把雙面刃,在推動戰爭形態向智慧化戰爭演變的同時,也帶來一系列全新的戰爭倫理問題和戰爭法困境。」人工智慧將為人類社會帶來哪些變革?這一問題值得深入思考並持續關注。

(作者為光明日報社新聞研究部主任)

【參考文獻】

①吳明曦:《智能化戰爭-AI軍事暢想》,北京:國防工業出版社,2020年1月。

②郭明:《關於智慧化戰爭的基本認知》,《人民論壇‧學術前線》,2021年第10期。

③丁寧、張兵:《世界主要軍事強國的智慧化武器裝備發展》,《軍事文摘》,2019年第1期。

④葛妍、賈珍珍:《軍事變遷下的未來作戰概念與作戰樣式》,《軍事文摘》,2020年第15期。

⑤賀福初:《世界新軍事革命未來走向》,《參考消息》,2017年8月23日。

⑥馬浚洋:《俄製無人智慧武器亮相敘利亞》,《解放軍報》,2019年12月30日。

中國原創軍事資源:https://paper.people.com.cn/rmlt/html/2022-07/01/content_2593935188.htm

Chinese Military Combat Management System: Core of Modern Combat Command & Control

中國軍事作戰管理系統:現代作戰指揮控制的核心

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan

2022-04-22 06:42

Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.

Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.

Combat Management System: The Core of Modern Combat System

Schematic diagram of the combat management system

Past and present life

Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.

The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.

After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”

At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.

The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.

For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.

Features

The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).

The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.

For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.

Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.

The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.

Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.

With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”

The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.

Future Development

Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.

The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.

The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.

For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.

The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.

The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.

(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)

現代國語:

作戰管理,是打贏現代化戰爭的基礎,是現代化作戰體系的核心,也是作戰過程中對人員、裝備、資訊、資源和時空等要素進行的規劃、組織、協調與控制活動。

作戰管理系統,指用來支撐作戰管理活動的指揮資訊系統,包括情報採集、資訊傳輸、目標識別、威脅判斷、分配武器、任務規劃等。其隨戰爭演化、技術進步而逐步發展。

作戰管理系統:現代化作戰體系核心

■楊蓮珍

作戰管理系統示意圖

前世今生

對作戰行動實施適時精確的指揮控制和作出及時果斷的作戰決策,是不同戰爭時期指揮員始終追求的目標與夢想。在科學管理產生前,戰爭中並無作戰管理這一概念,自然談不上作戰管理系統。但樸素的作戰管理活動和系統一直與戰爭相伴、融合發展。

作戰管理的核心是保證指揮員與部隊能順暢地交換資訊和指示。在古代作戰指揮號令系統中,金、鼓、旗號稱為“三官”,“言不相聞,故為之金鼓;視不相見,故為之旌旗”,目視耳聽是原始的指揮控製手段。

電報、電話、無線電發明後,作戰命令和戰鬥訊息的遠距離快速傳輸成為現實,作戰管理範圍由平面走向立體,「運籌帷幄、決勝千裡」的戰爭決策不再是神話。當然,傳統的戰場管理手段並非完全失去作用,例如在抗美援朝戰場上,我軍因通信條件受限,連以下分隊仍在通過軍號傳遞作戰命令,與作戰相關的號聲就有20餘種。 “四面邊聲連角起”,朝鮮戰場上的軍號曾讓美軍聞風喪膽。李奇微在回憶錄裡寫道:“只要它一響,中共軍隊就如著了魔法一般,全部不要命地撲向聯軍。這時,聯軍總被打得如潮水般潰退。”

20世紀初,科學管理的概念逐漸升溫,軍隊迅速將其應用於作戰。 「作戰管理」一詞,最早出現在美國空軍,其編成內的作戰管理員,基於雷達探測情況向戰機進行遠程目標指示和話音引導。作戰核心組織則稱為BM/C3系統,即作戰管理(Battle Management)和指揮、控制、通訊(Command,Control,Communication)。 1946年,第一台電子計算機「埃尼阿克」研製成功,軍隊開始使用計算機存儲和處理有關作戰的各種數據。 1958年,美軍建成世界上第一個半自動化作戰管理系統-「賽其」防空指揮控制系統,使用電腦首次實現了資訊擷取、處理、傳輸和指揮決策過程部分作業的自動化。同年,蘇軍建成「天空1號」半自動化防空指揮控制系統。作戰管理系統開始登上戰爭舞台,人機協作決策逐漸成為指揮主要的作戰決策形式。越戰中的「滾雷」戰役,美軍指揮5,000多架飛機出動129萬架次,投彈775萬噸,如果單靠人工指揮是不可能實現的。

作戰管理系統經歷了以武器為中心、以平台為中心、以網絡為中心和以體係為中心的建設階段,逐步能夠接收、處理來自多域的傳感器和其他來源信息,實時感知並生成作戰態勢圖,自動對兵力及裝備實施指揮控制,智能輔助指揮員決策,涉及陸、海、空等軍兵種。

如以色列陸軍的「統治者」作戰管理系統,單兵數字化裝置連接通道狀態資訊設備,用於為執行戰術作戰、火力支援等部隊提供即時態勢感知和指揮控制資訊。美國海軍的「宙斯盾」作戰系統,採用多任務訊號處理器整合防空與反導能力,實現艦載相控陣雷達、指揮決策、武器控制等一體化整合。北約空軍的ACCSLOC1系統,基於網路分散部署,整合40種型號的雷達和3000多個物理接口,承擔任務規劃、作戰指揮和戰鬥監督等空中行動。從發動第一次海灣戰爭到利比亞戰爭,美軍從傳感器獲取資訊到開火,時間由24小時縮短至2.5分鐘。

功能特徵

作戰管理系統是一個迅速發展並不斷完善的分散式操作系統,主要通過收集、處理傳感器數據,暢通各類信息傳輸和融合,進行態勢識別和預測,生成作戰方案,完成行動評估與選擇,下發作戰指令給武器平台和射手。其本質是實現高效率的作戰「觀察-判斷-決策-行動」循環(OODA環)。

作戰管理系統廣泛使用態勢評估與預測、作戰時空分析、線上即時規劃、作戰資源管控和作戰管理引擎技術等,採用基於資訊技術的「雲+網+端」的技術架構。

如美軍率先運用資訊技術,建構了集指揮、控制、計算機、通訊、情報、監視和偵察於一體的C4ISR系統,為作戰管理系統打下了基礎。阿富汗戰爭中,C4ISR系統首次實現作戰資訊近實時傳輸到作戰平台。隨著傳感器、網絡和人工智慧的不斷成熟,智能態勢理解和預測、智慧資訊推送、智慧任務規劃、智慧協同控制、智慧快速重構和智慧平行指控等技術,正在對作戰管理系統產生越來越重大的影響。

作戰管理系統通常支援態勢感知、任務規劃、交戰管理、通訊、建模及模擬與分析、試驗訓練等功能。如導彈防禦作戰管理系統,主要包括指揮控制、交戰管理及通訊等功能構成。指揮控制功能,實現對戰前的作戰規劃及對戰場態勢的感知;交戰管理功能,實現輔助作戰決策和分配反導武器並完成打擊任務;通信功能,實現系統各反導單元情報、數據的傳輸和共享。

作戰管理系統是一個開放的複雜系統。結構決定功能,不同的系統結構,決定不同系統的功能拓展:艦艇自防禦作戰管理系統通過自動化武器控制條令、協同交戰管理系統和戰術數據鍊等,使艦艇具備了強大的自防禦能力;電磁作戰管理系統通過融合並顯示戰場電磁頻譜數據,提高電磁戰兵器規劃能力、共享電磁力和單兵作戰力量;

作戰管理系統普遍具有一體化、自動化、最優化、即時化等特徵。現代戰爭作戰模式複雜、戰場規模擴大,對力量管控、資源整合和任務調度要求的提高,必須實現系統一體化整合。法國陸軍的「蝎子」系統,就將坦克、裝甲車、步兵戰車、無人地面車輛、無人機與攻擊直升機完整整合到同一個作戰群,並連結任務群中的所有平台和作戰單元。

現代戰爭作戰要素增加、戰場感知空間擴大,對人依賴較高的指揮自動化系統已無法完全適應,必須實現系統自動化運作。巴基斯坦作戰管理火砲控制系統所有操作功能全部自動化,「為準備、協調、傳遞、執行和修改火力支援計畫與射擊方案提供了自動化解決方案」。

現代戰爭作戰節奏加快、戰場數據海量,需要快速掌握狀況、有效率定下決心,必須實現系統最優化決策。各軍事強國正將人工智慧、雲端運算、物聯網與大數據技術結合起來,以利在多域作戰中更快決策。

未來發展

傳統作戰管理系統,更強調基於事先制定的交戰序列、作戰規則。但未來戰爭更突出體係與體系之間的對抗,不可能預先窮盡各種情況,需要掌握的戰場資訊也更趨複雜、海量。為此,各國軍隊開始摒棄傳統上為各作戰域單獨開發作戰管理系統的方法,以網絡為中心、以人工智能為支撐,力圖幫助指揮員更迅速作出作戰決策,實現各作戰域的傳感器與任意射手的實時連接。

作戰管理系統將推動作戰概念落地。美國空軍開發的“先進作戰管理系統”,規劃將各軍種及其武器平台實時連接在一個軍事物聯網中,其核心是將各類情報偵察平台、指揮控制平台、打擊平台和作戰管理平台與各種跨域能力無縫鏈接,把情報和目標指示數據轉化為及時、可用的信息,縮短“發現-定位-跟踪-瞄準-打擊-評估”速度,以執行對手的速度執行。俄羅斯軍隊提出“軍隊統一資訊空間”理論,組織開發陸海空網絡一體化聯合作戰“自動控制系統”,通過建立網絡中心指揮模式,試圖將全軍指揮、通信、偵察、火力、保障等進行融合,實現真正意義上的跨域作戰,提升戰場態勢感知能力與作戰指揮效率。

作戰管理系統將依賴人工智慧技術。人工智慧的應用不僅引起武器系統能力的倍增,也將從根本上改變OODA環的實現。未來的作戰管理系統,人工智慧技術將成為核心支撐和驅動引擎,關鍵因素是演算法的品質。系統將內置可升級的人工智慧,人們將處於監督或協同狀態的位置,最大限度地減少人工輸入,對作戰環境中的威脅目標進行自發識別分類、自主評估權衡和自動分配武器,從而提供自適應的作戰優勢和決策可選性。

如2021年7月美海軍發布的“智能自主系統戰略”,旨在通過高度分佈式的指揮和控制架構,加速智能平台的開發和部署,綜合無人系統、人工智能和自動駕駛等技術,實現由智能自主系統促成的未來作戰決策。俄軍在研的人工智慧項目超過150個,其重點之一是將人工智慧引入指揮控制系統,為不同武器平台適配智慧軟件,實現物理域與認知域的統一,以智慧賦能的方式實現戰鬥力倍增。

作戰管理系統將實現跨域能力突破。軍隊作戰管理能力正向陸、海、空、天、電、網和認知域、社會域等全域協同轉變。適應全局環境,作戰管理系統需要具備以下功能:有彈性和冗餘的通信系統,靈活安全的數據運行;人工智能和機器學習直接從傳感器中提取、處理數據,並進行去中心化集成、共享;根據保密級別分段訪問,滿足感知、理解和行動需要。在此基礎上,還需具備向部隊提供偵察監視、戰術通訊、數據處理、網路指控等能力。

未來的作戰管理系統,將聚焦安全處理、連通性、數據管理、應用、傳感器整合和效果整合等能力,優化全作戰域的數據共享、協同作戰和指揮控制,支援從戰術級到戰略級的決策優勢。其目的只有一個:賦予指揮員超越對手的能力。

(作者係武警指揮學院訓練管理系副主任、教授)

中國原創軍事資源:http://www.81.cn/yw_208727/10149663888.html