Category Archives: #中國的耗散戰

Create a New Situation for China’s National Defense and Chinese Military Modernization

開創中國國防與軍隊現代化建設新局面

現代英語:

National Defense University Research Center for Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era

The Third Plenary Session of the 20th CPC Central Committee is a very important meeting held at a critical period of comprehensively promoting the great cause of building a strong country and national rejuvenation with Chinese-style modernization. It focuses on studying and deploying the issues of further comprehensively deepening reform and promoting Chinese-style modernization, and makes strategic deployments for continuously deepening national defense and military reforms, drawing a blueprint for the new journey of relaying reforms to strengthen the military and constantly creating a new situation in national defense and military modernization. All levels of the military should earnestly study and implement the spirit of the Third Plenary Session of the 20th CPC Central Committee, unify their thoughts, wills and actions, and thoroughly implement the strategy of reforming and strengthening the military, so as to provide strong guarantees for achieving the goal of building the army for 100 years as scheduled and basically realizing national defense and military modernization.

Reform is a key move in designing and shaping the future of the military

Reform and opening up are the most prominent features and the most magnificent aura of contemporary China. The military field is the field with the most intense competition and confrontation, and it is also the field with the most innovative vitality and the most need for reform and innovation. Whether a military can possess an unremitting spirit of reform and a pioneering and enterprising spirit of innovation is an important indicator of its ability to win. Deepening the reform of national defense and the military is the only way to strengthen the military. The driving force for strengthening the military lies in reform, the way out lies in reform, and the future also lies in reform.

The strength of the People’s Army comes from reform and innovation, and the victory of the People’s Army comes from reform and innovation. The history of the growth and development of the People’s Army is a history of reform and innovation. From the establishment of a complete set of principles and systems for building the army under the absolute leadership of the Party during the Agrarian Revolution, to the implementation of the policy of streamlining the military during the War of Resistance Against Japanese Aggression; from the establishment of five major field armies during the War of Liberation, to the repeated adjustments to the system and organization after the founding of New China, to the massive reduction of millions of troops in the new era of reform and opening up and socialist modernization… The People’s Army has been fighting and reforming, building and reforming, and has become stronger and stronger. From the “Sixteen-Character Formula” of the Red Army period, to the “Protracted War” of the Anti-Japanese War, from the “Ten Military Principles” of the Liberation War, to the “piecemeal” of the War to Resist U.S. Aggression and Aid Korea, to the continuous adjustment of military strategic policies after the founding of New China… The People’s Army learned war from war, explored laws from practice, and wrote a vivid chapter of continuous innovation in the art of war leadership in the history of world military. Along the way, reform and innovation have always been an important magic weapon for our army to grow from small to large, from weak to strong, and continuously from victory to victory. Deepening the reform of national defense and the military is the requirement of the times to realize the Chinese Dream and the dream of a strong military, the only way to strengthen the military, and a key move to determine the future of the military. At present, it is a period of hard struggle to achieve the goal of building the army for 100 years. In order to defend national sovereignty, security, and development interests with stronger capabilities and more reliable means, and to provide strategic support for comprehensively promoting the great rejuvenation of the Chinese nation with Chinese-style modernization, it is necessary to continue to deepen the reform of national defense and the military.

Only reformers can make progress, and only innovators can become strong. President Xi Jinping stressed that “the new military revolution has provided us with a golden opportunity. We must seize the opportunity and work hard to not only keep up with the trend and the times, but also strive to be at the forefront of the times.” In today’s world, the new military revolution is surging, the intelligent warfare form is gradually showing its true face in the practice of war, and the new military technology and weapons and equipment system are further affecting the rules of war. All these require us to maintain a keen sense of reform and cutting-edge innovative thinking, base ourselves on the actual development of our army, focus on the needs of preparing for war, think deeply about the new force structure and winning logic necessary to win modern wars, rely on reform to continuously optimize the military system, improve the effectiveness of military governance in line with actual combat requirements, and go all out to fight a tough battle to achieve the goal of building the army for the centenary.

Comprehensively deepening reform has achieved great changes in the People’s Army in the new era

Since the 18th CPC National Congress, the CPC Central Committee with Comrade Xi Jinping as its core has, with great political courage and wisdom, pushed forward the theory and practice of reform of socialism with Chinese characteristics to a new breadth and depth. In the new era and new journey, we must insist on deepening reform to gain creativity, cohesion and combat effectiveness, and insist on the unchanged direction, unswerving path and unreduced efforts, and continuously push forward the modernization of national defense and the army with better strategies, higher efficiency and faster speed, and resolutely complete the mission and tasks of the new era entrusted by the Party and the people.

Grasp the overall changes in deepening national defense and military reforms. Since the Third Plenary Session of the 18th CPC Central Committee, the People’s Army has adhered to the guidance of Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, thoroughly implemented Xi Jinping’s Thought on Strengthening the Army, and taken the Party’s goal of strengthening the army in the new era as its guide. It has comprehensively implemented the strategy of reform and strengthening the army, and has thoroughly resolved the institutional obstacles, structural contradictions, and policy issues that have long constrained national defense and army building, promoted the reform of the leadership and command system, the reform of the scale structure and force composition, and the reform of military policies and systems, and achieved historic achievements in deepening the reform of national defense and the army. The People’s Army has achieved an overall revolutionary reshaping; the new system, structure, pattern, and appearance have made our army’s winning advantage more prominent, its innovative vitality continuously released, and its morale more uplifting. Practice has fully proved that as long as we unswervingly continue to deepen the reform of national defense and the military, we will be able to create a new situation in the modernization of national defense and the military.

Adhere to the ideological guidance of deepening the reform of national defense and the military. President Xi’s series of important strategic thoughts on deepening the reform of national defense and the military, which are directional, fundamental, and overall, have profoundly clarified the contemporary significance, essential attributes, fundamental guidance, goals and tasks, core requirements, important directions, strategic measures, and scientific methods of deepening the reform of national defense and the military. To carry out the reform of national defense and the military to the end, we must adhere to Xi Jinping’s Thought on Strengthening the Military as the general guidance and general compliance, and consistently use Xi Jinping’s Thought on Strengthening the Military to arm the minds of officers and soldiers, further unify thoughts, deepen understanding, and use it to guide reform practice, further work on resolving deep-seated contradictions and problems, promote the implementation of reform arrangements, and realize the determination and intentions of the Party Central Committee, the Central Military Commission, and President Xi at a high standard.

Advancing national defense and military modernization requires continued reform

President Xi stressed: “On the road ahead, the People’s Army must be brave in reform and good at innovation, and never become rigid or stagnant at any time or under any circumstances.” The People’s Army is a strong backing for national security. The deeper the reform goes, the more it must take responsibility, move forward steadily and courageously, and there must be no slackness or rest. It is necessary to continue to deepen the reform of national defense and the army to provide security guarantees and strategic support for comprehensively promoting the construction of a strong country and the great cause of national rejuvenation with Chinese-style modernization.

The cause of strengthening the military is inspiring, and the goal of strengthening the military inspires fighting spirit. The Third Plenary Session of the 20th CPC Central Committee made strategic arrangements for deepening the implementation of the strategy of reform and strengthening the military. This is not only a call to action for continued reform and attack, but also a drumbeat for determination to strengthen the military. We must focus our efforts on implementing the strategy of reform and strengthening the military, and continuously push forward the cause of strengthening the military in the new era. The mission is imminent, and the goal calls. The goal of strengthening the military depicts the goal map, roadmap and development map for strengthening and revitalizing the military. It is the soul and main line that runs through the deepening of national defense and military reform. The promotion of reform must not deviate from the goal of strengthening the military for a moment or a single moment. The goal of strengthening the military must always be used to measure, regulate and correct, providing a strong impetus for advancing the modernization of national defense and the military.

A strong country must have a strong military, and a strong military must reform. National defense and military modernization are important components of China’s modernization. Further deepening reform and promoting China’s modernization will inevitably put forward new and higher requirements for deepening national defense and military reform. On the one hand, with the increase in the breadth and depth of the practice of China’s modernization, the new progress of comprehensively deepening reform requires our military construction to accelerate and build high quality in improving quality and efficiency. We must uphold the core position of innovation in our military construction and promote national defense and military modernization through reform and innovation. On the other hand, with the practice of modern warfare, especially the militarization of artificial intelligence, the profound changes in the internal mechanism of war and the mode of winning, etc., all require national defense and military reform to seize the opportunity and act in response to the times, and make greater efforts to enhance our military’s joint combat capability based on the network information system and the all-domain combat capability. The Third Plenary Session of the 20th CPC Central Committee made major strategic arrangements around the continued deepening of national defense and military reforms, and proposed a number of important reform measures involving the optimization and adjustment of systems, mechanisms, and institutions, which are highly contemporary, forward-looking, and targeted. All levels of the military must earnestly study and implement the spirit of the Third Plenary Session of the 20th CPC Central Committee, focus on improving the leadership and management system and mechanism of the People’s Army, deepen the reform of the joint combat system, deepen cross-military and local reforms, and constantly create a new situation in strengthening and revitalizing the army.

We should follow the general trend of reform and gather strong forces. To thoroughly implement the strategy of reform and strengthening the military, we need unity of purpose and unity of purpose. We should persist in using the Party’s innovative theories to unite our hearts and minds and strengthen our foundations, arm our heads with Xi Jinping’s thoughts on strengthening the military, unify our thoughts and actions with the decisions of the Party Central Committee, the Central Military Commission and Chairman Xi, and take on the responsibility of thoroughly implementing the strategy of reform and strengthening the military with a high degree of historical consciousness and a strong sense of mission, further consolidate the consensus on reform, strengthen the will to reform, and enhance the confidence in reform. We should focus on summarizing and applying the successful experience of national defense and military reform, deeply grasp the characteristics and laws of reform and strengthening the military, use reform to solve the problems encountered in development, and continuously promote the modernization of national defense and the military to break through obstacles. Party members and cadres in the military, especially leading cadres, must be good promoters and doers of reform, take the lead in tackling tough problems with practical actions, work hard and fast, and make great strides forward in the journey of building a world-class military in an all-round way.

(Written by: Tang Junfeng)

現代國語:

國防大學習近平新時代中國特色社會主義思想研究中心

黨的二十屆三中全會是在以中國式現代化全面推進強國建設、民族復興偉業的關鍵時期召開的一次十分重要的會議,重點研究部署進一步全面深化改革、推進中國式現代化問題,對持續深化國防和軍隊改革作出戰略部署,為新征程接力推進改革強軍、不斷開創國防和軍隊現代化新局面繪就了藍圖。全軍各級要認真學習貫徹黨的二十屆三中全會精神,統一思想、統一意志、統一行動,深入實施改革強軍戰略,為如期實現建軍一百年奮鬥目標、基本實現國防和軍隊現代化提供有力保障。

改革是設計和塑造軍隊未來的關鍵一招

改革開放性是當代中國最顯著的特徵、最壯麗的氣象。軍事領域是競爭和對抗最激烈的領域,也是最具創新活力、最需改革創新的領域。能否具備永不停頓的改革精神和開拓進取的創新精神,是衡量一支軍隊打贏能力的重要標志。深化國防和軍隊改革是強軍興軍必由之路,強軍興軍動力在改革,出路在改革,前途也在改革。

人民軍隊的力量來自改革創新,人民軍隊的勝利來自改革創新。人民軍隊成長發展史,就是一部改革創新史。從土地革命戰爭時期創立黨對軍隊絕對領導一整套建軍原則制度,到抗日戰爭時期實行精兵簡政;從解放戰爭時期組建五大野戰軍,到新中國成立後多次調整體制編制,再到改革開放和社會主義現代化建設新時期百萬大裁軍……人民軍隊邊戰邊改,邊建邊改,愈改愈強。從紅軍時期的“十六字訣”,到抗日戰爭時期的“持久戰”,從解放戰爭時期的“十大軍事原則”,到抗美援朝戰爭時期的“零敲牛皮糖”,再到新中國成立後軍事戰略方針的不斷調整……人民軍隊從戰爭中學習戰爭,從實踐中探索規律,在世界軍事史上書寫了戰爭指導藝術不斷創新的生動篇章。一路走來,改革創新始終是我軍從小到大、由弱到強,不斷從勝利走向勝利的重要法寶。深化國防與軍隊改革,是實現中國夢、強軍夢的時代要求,是強軍興軍的必經之路,也是決定軍隊未來的關鍵一招。當前,實現建軍一百年奮鬥目標到了吃勁奮鬥的攻堅期,以更強大的能力、更可靠的手段捍衛國家主權、安全、發展利益,為以中國式現代化全面推進中華民族偉大復興提供戰略支撐,必須持續深化防衛和軍隊改革。

惟改革者進,惟創新者強。習主席強調指出:「新軍事革命為我們提供了千載難逢的機遇,我們要抓住機遇、奮發有為,不僅要趕上潮流、趕上時代,還要力爭走在時代前列。」當今世界,新軍事革命風起雲湧,智慧化戰爭形態在戰爭實踐中漸顯真容,新的軍事技術和武器裝備體系進一步影響戰爭規則,這些都要求我們必須保持敏銳的改革意識、前沿的創新思維,立足我軍發展實際,聚焦備戰打仗需求,深入思考打贏現代戰爭所必需的全新力量結構、制勝邏輯,依靠改革持續優化軍事體系,對標實戰化要求提高軍事治理效能,全力以赴打好實現建軍一百年奮鬥目標攻堅戰。

全面深化改革成就新時代人民軍隊偉大變革

黨的十八大以來,以習近平同志為核心的黨中央以巨大的政治勇氣和智慧,把中國特色社會主義改革理論和改革實踐推進到新的廣度和深度。新時代新征程,必須堅持向深化改革要創造力、凝聚力、戰鬥力,堅持方向不變、道路不偏、力度不減,以更優策略、更高效益、更快速度把國防和軍隊現代化不斷推向前進,堅決完成黨和人民賦予的新時代使命任務。

把握深化國防和軍隊改革的整體性變革。黨的十八屆三中全會以來,人民軍隊堅持以習近平新時代中國特色社會主義思想為指導,深入貫徹習近平強軍思想,以黨在新時代的強軍目標為引領,全面實施改革強軍戰略,深入破解長期制約國防和軍隊建設的體制性障礙、結構性矛盾、政策性問題,推進領導指揮體制改革、規模結構和力量編成改革、軍事政策制度改革,深化國防和軍隊改革取得歷史性成就,人民軍隊實現整體性革命性重塑;體制一新、結構一新、格局一新、面貌一新,使我軍制勝優勢更加彰顯、創新活力不斷釋放、精神面貌更為昂揚。實踐充分證明,只要堅定不移持續深化國防和軍隊改革,就一定能開創國防和軍隊現代化新局面。

堅持深化國防和軍隊改革的思想引領。習主席關於深化國防和軍隊改革的一系列方向性、根本性、全局性的重要戰略思想,深刻闡明了深化國防和軍隊改革的時代意義、本質屬性、根本引領、目標任務、核心要求、重要指向、戰略舉措和科學方法。把國防和軍隊改革進行到底,必須堅持習近平強軍思想這個總指導總遵循,一以貫之地用習近平強軍思想武裝官兵頭腦,進一步統一思想、深化認識,用以指導改革實踐,進一步向破解深層次矛盾問題發力,推動改革部署落實,高標準實現黨中央、中央軍委會和習主席的決心意圖。

推進國防和軍隊現代化需要持續深化改革

習主席強調:「前進道路上,人民軍隊必須勇於改革、善於創新,任何時候任何情況下都永不僵化、永不停滯。」人民軍隊是國家安全的堅強後盾,改革越到深處,就越要擔當作為、蹄疾步穩、奮勇前進,不能有任何停一停、歇一歇的懈怠。必須持續深化國防和軍隊改革,為以中國式現代化全面推進強國建設、民族復興偉業提供安全保障和戰略支撐。

強軍事業催人奮進,強軍目標激勵鬥志。黨的二十屆三中全會對深入實施改革強軍戰略作出戰略部署,這既是繼續改革攻堅的動員號令,也是矢志強軍的催徵戰鼓。凝心聚力實施改革強軍戰略,把新時代強軍事業不斷推向前進。使命在即,目標召喚。強軍目標描繪了強軍興軍的目標圖、路線圖和展開圖,是貫穿深化國防和軍隊改革的靈魂和主線,推進改革一時一刻、一絲一毫都不能偏離強軍目標,必須始終用強軍目標來衡量、規範和校正,為推進國防和軍隊現代化提供強大動力。

強國必強軍,強軍必改革。國防和軍隊現代化是中國式現代化的重要組成部分。進一步全面深化改革、推進中國式現代化,必然對深化國防和軍隊改革提出新的更高要求。一方面,隨著中國式現代化的實踐廣度和深度的增加,全面深化改革的新進展需要我軍建設在提質增效中跑出加速度、建出高質量。要堅持創新在我軍建設中的核心地位,以改革創新推進國防和軍隊現代化。另一方面,隨著現代戰爭實踐特別是人工智慧的軍事化運用,戰爭內在機理、制勝模式的深刻轉變等,都要求國防和軍隊改革乘勢而為、應時而動,在提升我軍基於網絡資訊體系的聯合作戰能力、全域作戰能力等方面下更大功夫。黨的二十屆三中全會圍繞持續深化國防和軍隊改革作出重大戰略部署,提出多項重要改革舉措,涉及體制、機制、制度等方面的優化調整,具有很強的時代性、前瞻性、針對性。全軍各級要認真學習貫徹黨的二十屆三中全會精神,著力完善人民軍隊領導管理體制機制、深化聯合作戰體系改革、深化跨軍地改革,不斷開創強軍興軍新局面。

順應改革大勢,匯聚強大合力。深入實施改革強軍戰略,需要上下齊心、眾志成城。要堅持用黨的創新理論凝心鑄魂、強基固本,用習近平強軍思想武裝頭腦,把思想和行動統一到黨中央、中央軍委和習主席的決策上來,以高度的歷史自覺和強烈的使命擔當深入實施改革強軍戰略,進一步凝聚改革共識、堅定改革意志、增強改革信心。要注重總結運用國防和軍隊改革成功經驗,深入把握改革強軍的特點規律,用改革解決發展中遇到的問題,不斷推動國防和軍隊現代化破障前行。軍隊黨員幹部尤其領導幹部要當好改革的促進派和實干家,以實際行動帶頭攻堅、真抓實幹、緊張快幹,在全面建成世界一流軍隊的征程上闊步前行。

(執筆:湯俊峰)

來源:中國軍網-解放軍報 作者:湯俊峰 責任編輯:張碩 發布:2024-07-29 06:00

中國原創軍事資源:http://www.81.cn/ll_208543/16327611888.html

Chinese Military Combat Deception on the Intelligent Battlefield

中國軍隊在智慧戰場上進行作戰欺騙

現代英語:

It is easy to break the “fog” of the battlefield, but it is difficult to break the “obsession” in your heart——

Since ancient times, achieving surprise through combat deception has been an important way to win on the battlefield. Entering the era of intelligence, the in-depth application of artificial intelligence technology has not only clearly dispelled the original war “fog”, but also created a large amount of new war “fog”. If we only rely on improving deception techniques and means, and simply superimposing and strengthening the traditional deception paradigm, it will become increasingly difficult to achieve the deception goal. From “smart deception” to “smart victory”, there is an urgent need for an overall transformation of the objects of deception, means of deception, methods of deception, and focus of deception, so as to form a new deception paradigm that meets the requirements of the intelligent era.

The target of deception has shifted from humans to human-machine hybrid agents

Clausewitz believed that three-quarters of the factors on which war is based are more or less surrounded by the “fog” of uncertainty. Combat deception is essentially the use of uncertainty in war. The more “fog” there is in war, the more room there is for maneuvering. Traditional combat deception is carried out around the opponent’s decision-making level, and people are the only target of deception. However, with the increasingly prominent role of intelligent intelligence analysis and auxiliary decision-making systems in command activities, the use of deception to achieve strategic, campaign, and tactical surprises faces major challenges. How to deceive human-machine hybrid intelligent entities composed of humans and intelligent systems has become an important factor that needs to be considered when planning and implementing deception in the intelligent era. The competition surrounding intelligent deception and anti-deception is becoming increasingly fierce.

There is a world of difference between deceiving people and deceiving intelligent systems. In the past, the “calculations” that deceived people may be exposed when facing the “calculations” of intelligent systems. Intelligent systems can efficiently integrate and process massive amounts of sensor data and Internet open source information, making a qualitative leap in the speed, depth, breadth and accuracy of battlefield situation perception, realizing a profound transformation from “sensing” to “knowing”, from “state” to “momentum”, and playing an important role in dispelling the “fog” of war. For example, on the battlefield, although both sides try to hide the truth and cover up their intentions in various ways, they still cannot escape the “eyes” of the intelligent system: the tracks left by carefully disguised tanks and armored vehicles, after being detected by the opponent’s satellites, drones, etc., will also reveal their specific locations under the analysis of the intelligent system.

On the contrary, it is very easy to deceive intelligent systems with methods that target them, but it may not be able to deceive people. A foreign research team found that by changing a few key pixels in a picture of a cat, the intelligent system can identify the cat as a dog, while the human eye will not make any recognition errors due to this change. Similar incidents are common. Some studies have pointed out that sticking a piece of paper with a special pattern on a person’s forehead can deceive the strongest facial recognition system, and this method is highly portable and can deceive other facial recognition algorithms with a slight change.

It can be seen that deceiving people and deceiving intelligent systems are two different “deception methods”. After the deep application of artificial intelligence in the field of intelligence analysis and auxiliary decision-making, from the formulation of strategic deception plans to the design of battlefield camouflage patterns, how to deceive both the human brain and the computer and keep the human-machine hybrid intelligent body “in the dark” will be an important issue that needs to be focused on and solved in order to win the initiative in war.

The fraudulent methods have shifted from being mainly human-based to a combination of human and machine.

The organization and implementation of traditional combat deception is mainly manual, especially large-scale strategic deception, which requires a lot of manpower, material and financial resources. For example, in World War II, the Allies formulated a series of deception plans to ensure the success of the Normandy landing: setting up a fake radio network and a simulated landing fleet, and imagining that the US 1st Army Group with 50 divisions and 1 million people was actively preparing to cross the channel and land in the direction of Calais; using the air force to bomb Calais and Normandy, but the former was bombed more than 1 times more than the latter, etc. The application of artificial intelligence in deception can fundamentally change this situation. With humans as the main guide and intelligent means as the auxiliary, it can quickly generate massive amounts of false information, confusing the real with the fake, and create a thicker war “fog” for the opponent.

The use of intelligent means can improve the quality of deception. On the one hand, intelligent decision-making aids can be used to formulate deception plans, optimize the design of deception forces, deception deployment, deception processes, etc., to achieve systematic deception with the best overall effect; on the other hand, intelligent intelligence analysis systems can be used to pre-test the deception effect, “using one’s own spear to attack one’s own shield”, find out the loopholes and contradictions in the plan, and then improve the deception plan to make it logically self-consistent and seamless.

The use of intelligent means can expand the scale of deception. The increasingly mature deep fake technology can synthesize realistic fake pictures, handwriting, audio, video, etc. in large quantities, and has broad application prospects in strategic, campaign, and tactical deception. For example, in strategic campaign deception, corresponding technical means can be used to confuse opponents by forging fake radio stations and fake commanders, and even to fake an active command post in a certain battle direction; in tactical deception, battlefield camouflage can be used to attach special patterns to high-value equipment to make the opponent’s intelligent system recognize it incorrectly.

The use of intelligent means can reduce the cost of deception. With the support of technologies such as virtual reality and deep fakes, unexpected deception effects can often be achieved with the help of synthetic optics, acoustics and other means, and they are low-cost and low-investment, which is more cost-effective than traditional strategic deception methods. For example, setting up false targets such as bait unmanned combat platforms, using electronic feints and electronic camouflage to send false signals can effectively restrain the opponent’s power, produce high returns at low cost, and thus gain the upper hand.

The use of intelligent means can optimize the accuracy of deception. Traditional combat deception is usually stereotyped, with prominent characteristics of broadcast, extensive, and generalized. For this reason, in the era of intelligence, we should focus on collecting data on opponent decision makers in peacetime and use big data for precise analysis to “know the enemy” more deeply and specifically. On this basis, deep fake technology can be used in wartime to customize the content of deception, realizing precise deception from targeting groups to targeting individuals.

The method of deception has shifted from mainly deceiving to mainly confusing and seducing.

“Playing cards” and “playing chess” are two game modes with completely different battlefield transparency. In the “playing cards” mode, both sides only know the cards that the opponent has played, but do not know the cards in the opponent’s hand, let alone what cards the opponent will play next; while in the “playing chess” mode, the deployment of both sides’ forces on the chessboard is completely transparent, but the opponent’s intentions and the next move are unknown. It is not difficult to see that from cold weapon wars, hot weapon wars, mechanized wars, informationized wars, and then to intelligent wars, the form of war confrontation is increasingly changing from the “playing cards” mode to the “playing chess” mode.

In a war of “playing cards”, blind deception is very useful. Through strict disguise and strict confidentiality, the opponent’s channels of information can be blocked as much as possible, making it impossible for the opponent to detect one’s own intentions and actions, thereby achieving surprise. In the past, when the means of obtaining information were limited and information on the battlefield situation was scarce, there were many examples of wars that used “hiding the truth” and “showing falsehood” to achieve surprise. However, at present, with the help of advanced reconnaissance technology, full-dimensional and full-spectrum reconnaissance has been realized, and the battlefield is becoming more and more transparent. Complete concealment without any revealing features is difficult to achieve. Once the concealment state is switched to the action state, the probability of being discovered by the opponent will be greatly increased. Blind deception can only become an auxiliary deception method.

In the war of “chess”, the following two deception methods are usually used: one is confusing deception, that is, using intelligent means to send a large amount of true and false mixed and difficult to identify information, increasing the ambiguity of information and the difficulty of analysis, making it difficult for the opponent to judge or misjudge. The second is inducement deception, that is, by sending high-definition misleading information, the opponent is led into a preset trap. The combination of these two methods and the cooperation of blinding deception together constitute a hybrid deception that is difficult for the opponent to guard against.

The focus of deception shifts from human perception to human cognition

As the main subject of war, people are important variables that influence the war situation, which implies uncertainty and uncontrollability. From the perspective of psychology, cognitive neurology and other aspects, the “black box” of the mind still cannot be revealed. Deception by deception targets people’s eyes and ears, taking advantage of human sensory weaknesses, while deception by deception and temptation directly targets people’s minds, taking advantage of human weaknesses.

From past cases, even with the most advanced intelligence surveillance and reconnaissance technology and the most intelligent analysis methods, it is impossible to make up for and overcome human weaknesses. In many cases, it is not that the intelligence department failed to recognize the opponent’s deception, but that the decision-makers are unwilling to believe the facts. On the eve of the Soviet-German War in World War II, although more and more evidence showed that Germany was planning to invade the Soviet Union, the Soviet decision-makers believed that the war would not come for the time being. Therefore, when the war broke out, the Soviet army was not well prepared for the response, and the initial defensive actions were very passive.

War practice shows that in the era of intelligence, even if the opponent has obvious military technology advantages and can achieve one-way transparency on the battlefield through advanced intelligence surveillance and reconnaissance technology, the enemy can still take advantage of the cognitive weaknesses of the opponent’s decision-making layer to implement counter-intuitive deception and cover up the true intentions and actions. This also shows that the focus and center of deception in the era of intelligence should not be entirely on how to deliberately cover up the traces of military actions, but should focus more on targeting the opponent’s decision-making layer and inducing it to make decisions and actions that the enemy wants to see.

Yuan Yi Zhao Di

(Author’s unit: Institute of War Studies, Academy of Military Science)

現代國語:

破戰場“迷霧”易,破心中“執念”難——

袁 藝 趙 頔

自古以來,透過作戰欺騙達成突然性,是戰場制勝的重要途徑。進入智慧化時代,人工智慧技術的深度應用,在清晰撥開原有戰爭「迷霧」的同時,又製造出大量新的戰爭「迷霧」。如果只依賴改進欺騙技術和手段,在傳統欺騙範式上做簡單的疊加強化,就想達成欺騙目標的難度越來越大。由“智騙”到“智勝”,迫切需要欺騙對象、欺騙手段、欺騙方式、欺騙重心等各個方面的整體轉變,形成適應智能化時代要求的新型欺騙範式。

欺騙對象由人轉向人機混合智能體

克勞塞維茨認為,戰爭所依據的四分之三的因素或多或少被不確定性的「迷霧」包圍著。作戰欺騙本質上就是對戰爭中不確定性的利用,戰爭「迷霧」越多,施計用謀的空間就越大。傳統作戰欺騙都是圍繞著對方決策層而展開的,人是欺騙的唯一對象。但隨著智慧情報分析與輔助決策系統在指揮活動中的地位作用日益凸顯,以欺騙達成戰略、戰役、戰術突然性面臨重大挑戰。如何欺騙人與智慧系統共同組成的人機混合智能體,成為智能化時代籌劃實施欺騙需要考慮的重要因素,圍繞智能欺騙與反欺騙的較量日趨激烈。

欺騙人與欺騙智慧系統有著天壤之別,以往欺騙人的「算計」在面對智慧系統的「計算」時可能會被識破。智慧型系統可高效融合處理海量的傳感器數據和互聯網開源信息,使得戰場態勢感知的速度、深度、廣度和精度產生質的飛躍,實現由“感”到“知”、由“態”到“勢”的深刻轉變,在撥開戰爭「迷霧」方面發揮重要作用。例如,戰場上盡管交戰雙方都試圖用各種方法隱藏真相、掩蓋企圖,但仍逃不出智能係統的「慧眼」:精心偽裝的坦克、裝甲車等留下的車轍痕跡,被對方衛星、無人機等偵照後,在智慧型系統的分析下也會暴露出具體位置。

相反,針對智慧型系統的欺騙方式欺騙智慧系統非常容易,但可能又欺騙不了人。國外研究團隊發現,只要改變一隻貓的圖片中的少數幾個關鍵像素,就可以使智慧系統將貓識別為狗,而人眼則完全不會因這種變化而出現識別錯誤。類似的事件屢見不鮮,有研究指出,在人類前額上貼一張有特殊圖案的紙片,就能夠騙過最強的人臉識別系統,且這一方法具有很強的可移植性,稍加改變就可以欺騙其他的人臉識別演算法。

由此可見,欺騙人與欺騙智慧系統是兩種不同的「騙法」。人工智慧深度應用於情報分析與輔助決策領域後,大到戰略欺騙方案的製定,小到戰場迷彩圖案的設計,如何既騙過人腦又騙過電腦,把人機混合智能體「蒙在鼓裡”,將會是贏得戰爭主動權需要重點關注並加以解決的重要課題。

欺騙手段由人工為主轉向人機結合

傳統作戰欺騙的組織實施以人工為主,尤其是大規模的戰略欺騙,需要投入大量的人力物力財力。例如,二戰時盟軍為確保諾曼底登陸成功,制定了一系列疑兵計畫:建立假的無線電網和模擬登陸艦隊,虛構有50個師100萬人的美第1集團軍群,正在積極準備橫渡海峽向加萊方向登陸;使用空軍對加萊和諾曼底進行轟炸,但前者遭到的轟炸比後者多1倍以上等等。人工智慧運用於欺騙可從根本上改變這一局面,以人為主導輔以智能手段,可快速生成海量虛假信息,以假亂真,給對手製造更加濃厚的戰爭“迷霧”。

運用智慧手段可提升欺騙品質。一方面,可運用智慧輔助決策手段訂定欺騙計畫,優化設計欺騙力量、欺騙部署、欺騙流程等,實現全局效果最佳的體系化欺騙;另一方面,可運用智慧情報分析系統預先檢驗欺騙效果, “以己之矛攻己之盾”,找出計劃中的漏洞和矛盾點,進而完善欺騙計劃,使其邏輯自洽、嚴絲合縫。

運用智慧手段可擴大欺騙規模。日益成熟的深度偽造技術,可大量合成逼真的虛假圖片、筆跡、音頻、視頻等,在戰略、戰役、戰術欺騙中有著廣泛的應用前景。例如,在戰略戰役欺騙方面,可透過相應技術手段,偽造假電台、假指揮員等迷惑對手,甚至能夠在某一戰役方向偽造一個活躍的指揮所;在戰術欺騙方面,可通過戰場偽裝,給高價值裝備貼上特製圖案,使對手的智慧系統識別出錯。

運用智慧手段可降低欺騙成本。在虛擬現實、深度偽造等技術的支持下,借助合成光學、聲學等手段往往也能達到意想不到的欺騙效果,並且兼具低成本、小投入的特點,相比傳統戰略欺騙方式具有高效費比優勢。如設置誘餌無人作戰平台等假目標,運用電子佯動、電子偽裝等施放假信號,都能夠有效牽制對手力量,以低成本產出高回報,從而贏得制勝先機。

運用智慧手段可優化欺騙精度。傳統作戰欺騙通常千篇一律,廣播式、粗放式、概略化特點比較突出。為此,智能化時代,平時就應注重廣泛收集對手決策者數據,並運用大數據進行精確分析,以更加深刻更加具體地「知彼」。在此基礎上,戰時就可運用深度偽造技術個性化客製化欺騙內容,實現由針對群體到瞄準個體的精準欺騙。

欺騙方式由以蒙蔽為主轉向以迷惑、誘導為主

「打牌」和「下棋」是戰場透明度截然不同的兩種賽局模式。 「打牌」模式中,雙方都只知道對手已出的牌,但不知道對手手中的牌,更不知道下一步對手會出什麼牌;而「下棋」模式中,棋盤上雙方兵力部署完全透明,但不知道對手企圖和下一步棋怎麼走。不難看出,從冷兵器戰爭、熱兵器戰爭、機械化戰爭到資訊化戰爭,再到智慧化戰爭,戰爭對抗形式日益由「打牌」模式轉變為「下棋」模式。

在「打牌」模式的戰爭中,蒙蔽式欺騙非常管用,可通過嚴密偽裝和嚴格保密,盡可能地封鎖對手的獲情渠道,使其無法察覺己方企圖和行動,進而達成突然性。在過去資訊獲取手段有限、戰場態勢資訊匱乏的年代,主用「隱真」輔以「示假」達成突然性的戰例很多。但當前,憑借先進偵察技術,已經實現了全維全譜偵察,戰場透明化程度越來越高,無任何暴露特徵的完全隱蔽已難以實現,而一旦由隱蔽狀態轉入行動狀態,更會大大增加被對手發現的機率,蒙蔽式欺騙只能成為輔助欺騙手段。

在「下棋」模式的戰爭中,通常採用以下兩種欺騙方式:一是迷惑式欺騙,即藉助智能手段,發出大量真假混雜、難以辨認的信息,增大信息模糊度和分析難度,使對手難以判斷或判斷失誤。二是誘導式欺騙,即透過發出高清晰誤導訊息,將對手引入預設陷阱。兩種方式結合再加上蒙蔽式欺騙的配合,共同構成了對手難以防範的混合式欺騙。

欺騙重心由人的感知轉向人的認知

作為戰爭的主體,人是左右戰局的重要變量,蘊含著不確定性和不可控性。從心理學、認知神經學等層面來看,心智的「黑箱」仍然無法揭開。蒙蔽式欺騙針對的是人的耳目,利用的是人類感官弱點,而迷惑式和誘導式欺騙直指人的心智,利用的是人性弱點。

從以往案例來看,即使擁有最先進的情報監視偵察技術和最聰明化的分析手段,也無法彌補和克服人性弱點。很多情況下,不是情報部門沒有辨識出對手的欺騙,而是決策層不願意相信事實。在第二次世界大戰蘇德戰爭前夕,盡管當時越來越多的證據表明,德國正計劃入侵蘇聯,但蘇聯決策層認為戰爭暫時不會來臨,所以當戰爭爆發時,沒有做好應對準備的蘇軍,前期的防禦行動非常被動。

戰爭實踐表明,進入智能化時代,即使對手擁有明顯的軍事技術優勢,能夠通過先進的情報監視偵察技術達成戰場單向透明,但己方仍可利用對手決策層的認知弱點,實施反直覺欺騙,掩蓋真實意圖和行動。這也表明,智能化時代欺騙的發力點和重心,不應全部放在如何刻意掩蓋軍事行動痕跡上,而應更加註重針對對手決策層,誘導其作出己方希望看到的決策行動。

(作者單位:軍事科學院戰爭研究院)

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-08-13&paperNumber=07&articleid=937433

China’s Military Era of Intelligence Calls for Training to Transform into “Smart Warfare”

中國軍事智能化時代呼喚訓練向「智慧戰爭」轉型

現代英語:

Zeng Haiqing

introduction

At present, a new round of scientific and technological revolution and military revolution is developing rapidly. Disruptive technologies represented by artificial intelligence are accelerating the evolution of war to intelligent warfare. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. As a pre-practice of war, military training should take a new step towards intelligence in a timely manner, realize the transformation to “intelligence”, train soldiers with “intelligence”, continuously improve the scientific and technological level and “intelligence content” of military training, and help accelerate the generation of intelligent combat capabilities.

Keeping up with the changes in the war situation, upgrading the concept of intelligent training

With the acceleration of the intelligent era, high-tech has been widely used in the military field, which is causing major changes in the concept, elements and methods of winning wars. The size of the army and the number of equipment are no longer the key to winning a war. It is imperative to upgrade the war thinking and training concepts. We should follow the development trend of intelligence with a more proactive attitude and a more open vision, and advocate new thinking in intelligent military training.

Grasp the internal mechanism of intelligent victory. The winning mechanism is the manifestation of the internal laws of war. Driven by the intelligent revolution, driven by strategic competition, and guided by war practice, the advantages of information-generated intelligence and intelligence-enabled capabilities are becoming increasingly apparent, reflected in actuarial science, jointness, systems, and other aspects. To a certain extent, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, an army whose training thinking remains at the mechanized level will never be able to keep up with the pace of intelligent warfare no matter how it is trained. We should have a “brain storm” with the courage of self-revolution, upgrade the concept of intelligent warfare, strengthen the theoretical research of intelligent training, deal with the problems of mechanized, informationized, and intelligent warfare with the thinking of training troops with “intelligence”, organically connect training and fighting, design wars with advanced technology, and rehearse wars with intelligent means, so as to clear up the fog of intelligent warfare.

Establish the goal of “strengthening the strong”. At present, the military of developed countries is implementing a training transformation with an emphasis on intelligence, trying to further widen the gap in combat power with the military of other countries. Once the military gap is widened, it will be difficult to make up. If you can’t keep up, you may be completely controlled by others. Only by keeping a close eye on the opponent can you surpass the opponent. We must highlight the goal of “strengthening the strong” in military training, and improve the level of military intelligence and asymmetric combat capabilities in training.

Strengthen the goal positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat power form has leaped from mechanical energy type and information energy type to intelligent type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and cutting-edge competition in high-tech and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological content, it will only be able to linger at a low level and it will be difficult to open the door to intelligent warfare. To this end, we should firmly establish the concept of winning through science and technology, firmly grasp scientific and technological innovation, the “life gate” and “key point” to winning future wars, greatly improve the scientific and technological content of military training, and increase the practical application of new technologies and new means such as artificial intelligence, cloud computing, and big data, so as to unveil the mystery of intelligent warfare and control the initiative in future wars.

Keep up with the changes in technological development and strengthen intelligent training conditions

Intelligent training conditions are the basic support for organizing and implementing intelligent military training, and are directly related to the quality and effectiveness of intelligent training. To build an intelligent training environment, we need to keep a close eye on the development of intelligent concepts, intelligent technology, and intelligent warfare, and continue to work hard in building a training environment, innovating training methods, and cultivating new talents.

Construct a realistic battlefield environment. Intelligent warfare has a wider space, a wider range of fields, and more diverse methods. The battlefield environment construction under the conditions of simple mechanization and informatization can no longer support the needs of intelligent training. We should highlight the elite confrontation, rapid confrontation, and joint confrontation under the support of intelligent conditions, fully tap the potential of existing training methods and training venues, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and the Internet. For example, use digital maps, virtual reality and other technologies to simulate and display intuitive three-dimensional terrain, weather and complex combat situations, and construct vivid and realistic intelligent actual combat scenes.

Develop advanced training methods. Advanced training methods are helpful to improve training effectiveness. Intelligent military training should grasp the key factor of intelligent “data-centricity” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration, creating a “data pool” covering strategy, campaign, and tactics, and connecting command organizations to end-users; developing data intelligent analysis tools, integrating and mining combat data with the help of advanced technologies such as cloud computing and artificial intelligence; developing intelligent training systems, increasing the construction of simulation training methods such as simulation, war game confrontation, network confrontation, and intelligent decision-making, and overall promoting the transformation and upgrading of military training methods to “technology +” and “intelligence +”.

Cultivate new military talents. No matter how the war situation evolves, people are always the real controllers and final decision-makers of war. The quality of military personnel’s intelligence level determines the quality and effect of intelligent training to a certain extent. To win the information-based local war with intelligent characteristics, we should accurately match future military needs, strengthen the intelligent training of traditional combat force talents, make good use of “technology +”, “maker +”, “think tank +” power resources, promote the integrated development of “commanders”, “combatants” and “scientists” and “technicians”, and forge a new type of professional and intelligent military talent group to achieve intelligent interaction between people and equipment, deep integration between people and systems, and extensive adaptation between people and the environment.

Strengthen support for intelligent equipment. At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream, supporting intelligent military training while constantly testing and improving them in training practice. To this end, we should make full use of the overall coordination mechanism of war construction, vigorously promote the “+ intelligence” of existing equipment and the “intelligent +” construction of a new generation of equipment, insist on researching, building, using and improving, and improve the intelligence level of weapons and equipment through breakthroughs in training practice. We should work on both ends to achieve a multiplier effect, shorten the timeline of weapons and equipment from “weak intelligence” to “strong intelligence” and then to “super intelligence”, and better support intelligent military training.

Keeping up with the changes in war practices, innovating intelligent training models

The combat style determines the training mode. After years of development, military intelligence has moved from theoretical exploration to battlefield practice. In recent local wars, intelligent warfare has begun to show its edge and has shown the potential to change the “rules of the game” of war. As the combat style changes, the training mode must also change and change proactively. We must keep a close eye on the characteristics of intelligent warfare, innovate intelligent military training models, and fully rehearse the next war in military training.

Highlight high-end warfare research and training. We should focus on cracking the essence of high-end warfare by strengthening the enemy, continue to deepen research on strengthening the enemy, and use the development of new combat concepts and training theories as a starting point to understand the development laws and winning mechanisms of high-end warfare. We should predict future wars and design combat styles from a high-end perspective, and pool wisdom and innovation to research unique, clever, and high-level strategies to defeat the enemy. We must emphasize key actions such as joint missile defense, target strategic campaign and tactical training to force strong organizations to defeat the strong with the weak, target practical training for asymmetric checks and balances to win decisive battles in high-end organizations, target extended training in new domains such as the far sea and far domain for all-domain confrontation organizations, seize high positions in future wars through innovative training, and develop combat capabilities that are “one step ahead in intelligence” and “one step ahead in skills” against powerful enemies.

Emphasize the training of new-type forces. The transformation of war from winning by force and equipment to winning by wisdom has made new-type combat forces a new growth pole of combat power. According to information, the US military plans to achieve intelligentization of 60% of ground combat platforms by 2030, and the Russian military expects that the proportion of intelligent weapons and equipment will exceed 30% by 2025. As the army has more and more new equipment with intelligent attributes, it should move away from the actual combat training path with new-type combat forces as the dominant element, highlight the formation and combat use of new-type combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and winning mechanism, increase new types of training such as unmanned combat, promote the integration of new-type forces into the combat system, and make new-type combat power resources move and come alive.

Emphasize intelligent command training. No matter how the war situation evolves, command capability is always the key to winning the war. As the intelligence level of war continues to increase, planning and command based solely on experience and personal wisdom can no longer adapt to the ever-changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, combat planning, and command and control. We should focus on commanders and command organizations, which are the key to the system’s operations, seek breakthroughs in the scientific nature, accuracy, and timeliness of command planning, and rely on new technologies such as “big data” and “AI algorithms” and new methods such as “engineering” and “one network” to promote the upgrading of command planning from “human intelligence” training to “human intelligence + intelligence” training. We should judge the enemy’s situation, formulate plans, and determine actions through actuarial and detailed calculations, so as to achieve the goal of defeating the slow with the fast and getting the upper hand over the enemy.

(Author’s unit: Central Theater Command)

現代國語:

■曾海清

引言

當前,新一輪科技革命和軍事革命快速發展,以人工智慧為代表的顛覆性技術,正加速推動戰爭形態向智慧化戰爭演變,打贏智能化戰爭逐漸成為強國軍事競爭的焦點。軍訓作為戰爭的預實踐,應該及時邁開智能化新步伐,實現向“智”轉型、以“智”練兵,不斷提高軍事訓練科技度和“含智量”,助力智能化作戰能力加快生成。

緊跟戰爭形態之變,升級智慧化訓練概念

隨著智慧化時代的加速到來,高新技術在軍事領域廣泛應用,正引發戰爭制勝理念、制勝要素、制勝方式發生重大變化。軍隊規模、裝備數量已不再是決定戰爭勝負的關鍵,升級戰爭思想和訓練理念勢在必行。我們當以更主動的姿態、更加開放的視野,緊跟智慧化發展趨勢,倡導智慧化軍事訓練新思維。

把握智能製勝的內在機理。制勝機理是戰爭內在規律的表現。在智慧革命驅動下、戰略競爭推動下、戰爭實踐牽引下,資訊生智、以智賦能的優勢愈發顯現,體現在精算、聯合、體係等各個面向。在某種程度上,可以說「智」有多高,戰與訓的品質水準就能夠達到多高。所以,一支訓練思維停留在機械化層面的軍隊,如何訓練都不可能跟上智慧化戰爭的腳步。應該以自我革命的勇氣來一場“頭腦風暴”,升級智能化作戰理念,加強智能化訓練理論研究,以以“智”練兵思維處理機械化、信息化、智能化作戰問題,把訓練和打仗有機銜接起來,用先進技術設計戰爭,用智慧手段演練戰爭,從而廓清智能化戰爭的迷霧。

立起向強制強的標靶指向。目前,發達國家軍隊正實施以智慧化為重點的訓練轉型,試圖進一步拉大與其他國家軍隊的戰力代差。軍事上的代差一旦拉開將很難追回,一步跟不上就可能徹底受制於人,只有盯緊對手才可能超越對手。要把向強制強在軍訓中突出出來,在練兵中提高軍事智慧化水準和非對稱作戰能力。

強化科技賦能的目標定位。科技是核心戰鬥力。在科技驅動下,戰鬥力形態已經從機械能型、資訊能型向智能型躍升,傳統攻城略地式大兵團作戰正逐步退出歷史舞台,高科技、新興領域的尖端較量日趨激烈。軍事訓練若不提高科技含量,將只能在低層次徘徊,很難叩開智能化戰爭的大門。為此,應該樹牢科技制勝理念,緊緊抓住科技創新這一制勝未來戰爭的“命門”和“要穴”,大幅提高軍事訓練科技含量,加大人工智能、雲計算、大數據等新科技新手段的實踐運用,從而揭開智慧化戰爭的神秘面紗,掌控未來戰爭主動權。

緊跟科技發展之變,建強智能化訓練條件

智慧化訓練條件是組織實施智慧化軍事訓練的基礎支撐,直接關乎智慧化訓練質效。建構智慧化的訓練條件環境,需要我們緊盯智慧理念、智慧科技和智慧化作戰的發展,在構設訓練環境、創新訓練手段、培育新型人才等方面持續用力。

構設逼真戰場環境。智慧化作戰,空間更加廣闊、領域更廣泛、方式更加多元,單純機械化資訊化條件下的戰場環境構設已無法支撐智慧化訓練需求。應突顯智慧化條件支撐下的精兵對抗、快速對抗、聯動對抗,充分挖潛現有訓練手段及訓練場地功能,加強大數據分析、智慧穿戴設備、機器「深度學習」等技術應用,把陸、海、空、天、電、網等各個領域有效融合起來,例如利用數字地圖、虛擬現實等技術模擬顯示形象直觀的三維地貌、天候氣象和復雜交戰態勢,構建生動、逼真的智能化實戰場景。

發展先進訓練手段。先進的訓練手段,有助於提升訓練成效。智慧化軍事訓練應掌握智慧化「以數據為中心」這個關鍵因素,把最新科技成果轉化為訓練條件。應著重加強數據連結融合,打造覆蓋戰略、戰役、戰術,貫通指揮機構到末端單兵的「數據池」;開發數據智慧分析工具,借助雲計算、人工智慧等先進技術,整合挖掘作戰數據;開發智慧演訓系統,加大模擬模擬、兵棋對抗、網絡對抗、智慧裁決等模擬訓練手段建設,整體推動軍事訓練手段向「科技+」「智慧+」轉型升級。

培養新型軍事人才。無論戰爭形態如何演變,人始終是戰爭的真正控制者和最終決策者。軍事人員智能化程度的優劣,某種程度上決定了智慧化訓練的品質效果。要打贏具有智慧化特徵的資訊化局部戰爭,應該精準對接未來軍事需求,加強傳統作戰力量人才智能化培育,用好“科技+”“創客+”“智庫+”力量資源,推動“指揮員」「戰鬥員」與「科學家」「技術家」融合發展,鍛造專業化、智慧化的新型軍事人才群體,實現人與裝備智慧互動、人與體系深度融合、人與環境廣泛適應。

強化智能裝備支撐。目前,世界主要軍事強國都高度重視智慧裝備發展,無人「蜂群」、無人潛航器等新裝備層出不窮,一邊支撐智慧化軍事訓練,一邊又在訓練實踐中不斷檢驗完善。為此,應充分以好戰建備統籌機制,大力推進現有裝備「+智慧」與新一代裝備「智慧+」建設,堅持邊研邊建邊用邊改,以訓練實踐突破提升武器裝備智慧化水平,兩端發力實現倍增效應,縮短武器裝備從“弱智”到“強智”再到“超智”的時間軸,更好地支撐智能化軍事訓練。

緊跟戰爭實踐之變,創新智能化訓練模式

作戰樣式決定訓練模式。軍事智能化經過多年發展,已經從理論探索走向戰場實踐。近年來的局部戰爭中,智慧化作戰已經初露鋒芒,並顯現出改變戰爭「遊戲規則」的潛力。作戰樣式變了,訓練模式也要跟著變、主動變。要緊盯智慧化戰爭特點,創新智慧化軍事訓練模式,在軍事訓練中充分預演下一場戰爭。

突顯高端戰爭研練。要立足強敵打高端戰爭這個基點,突顯破解高端戰爭本質,持續深化強敵研究,以開發新型作戰概念和訓練理論為抓手,搞清高端戰爭發展規律和製勝機理。從高端的視角預判未來戰爭、設計作戰樣式,集智創新研究克敵制勝的奇招、妙招、高招。要突顯聯合反導等關鍵行動,瞄準向強制強組織以劣勝優的戰略戰役戰術訓練,瞄準決勝高端組織非對稱制衡實戰訓練,瞄準全局對抗組織遠海遠域等新域延伸訓練,在創新訓練中搶佔未來戰爭高位,形成對強敵「智高一籌」「技高一籌」的作戰能力。

突顯新質力量研練。戰爭從力勝、器勝到智勝的轉變,使得新型作戰力量成為戰鬥力新的成長極。據資料介紹,美軍計畫在2030年實現60%地面作戰平台智能化,俄軍預計2025年智慧化武器裝備佔比將超過30%。隨著軍隊具有智慧屬性的新裝備越來越多,應走開以新質作戰力量為主導要素的實戰化練兵路子,突顯新質作戰力量編成、作戰運用,開展與新域作戰概念、制勝機理相適應的訓法戰法,加大無人作戰等新樣式訓練,推動新質力量融入作戰體系,讓新質戰鬥力資源動起來、活起來。

突出智能指揮研練。無論戰爭形態如何演變,指揮能力始終是能打勝仗的關鍵能力。隨著戰爭智能化程度不斷提高,僅憑經驗和個人智慧進行籌劃和指揮已不能適應瞬息萬變的戰場局勢,人工智慧決策訓練已成為提升作戰任務規劃、作戰籌劃、指揮控制效率的必然趨勢。應該扭住指揮員和指揮機構這個體係作戰關鍵,在指揮籌劃科學性、精確性、時效性上求突破,依托「大數據」「AI演算法」新技術和「工程化」「一張網」新手段,推動指揮謀劃由「人智」訓練向「人智+機智」訓練升級,在精算深算細算中判敵情、立方案、定行動,達到以快吃慢、先敵一手。

(作者單位:中部戰區)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4916122888.html

Aspects of Chinese intelligent warfare: Artificial intelligence will change the winning mechanism of future Chinese wars

中國智慧化戰爭看點:人工智慧將改變未來中國戰爭制勝機制

現代英語:

Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. It has developed rapidly in recent years and is widely used in the military field. It continues to generate new asymmetric advantages and profoundly changes the basic shape, combat methods and winning mechanisms of future wars. We should have a deep understanding of the revolutionary technological power of artificial intelligence, accurately identify changes, respond scientifically, and proactively seek changes, and strive to explore ways to win future wars, and win the initiative in the accelerating intelligent wars.

information mechanism

If you know your enemy and yourself, you can fight a hundred battles without danger. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situation, intelligent analysis of massive data, and intelligent processing of multiple information, and can form a “transparent” advantage on the battlefield.

Autonomous implementation of battlefield awareness. By embedding intelligent modules into wartime reconnaissance systems, various types of reconnaissance node units can achieve random networking, on-the-fly collaboration, and organic integration. They can independently capture battlefield information in all directions and dimensions, and build a relatively “transparent” digital battlefield environment and combat situation. It then clears the “fog” of war and presents combat scenes in a panoramic manner.

Accurate identification of massive data. Relying on intelligent technologies such as precise sensing technology and analysis and recognition technology, it can accurately interpret, analyze, compare and integrate diversified voice, text, pictures, videos and other data to obtain a faster, more complete, more accurate and deeper battlefield situation. The result is far faster and more accurate than human brain processing.

Respond efficiently to key information. Based on intelligent technology groups such as combat cloud, big data, and the Internet of Things, it can quickly excavate large quantities of non-standardized and heterogeneous intelligence data, independently discover symptoms, identify intentions, study trends, find patterns, and respond accurately in real time. Commander’s need for critical information.

Synchronize and share the integration situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air and space power grids, and play an important hub role in sharing information and unified cognition, building a system based on “one picture” and “one picture”. The “open network” and “one chain” situation enables all combat units to synchronously share the required information from different spaces, distances, and frequencies in all areas, all frequencies, and all the time, realizing wisdom sharing.

Decision-making mechanism

If the husband has not fought yet and the temple is considered the winner, he must be considered the winner. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can conduct dynamic battlefield simulations, quickly make feasible decisions, significantly shorten the operational planning and decision-making cycle, and form a decision-making advantage.

Intelligent analysis and judgment of strategic situations. The decision-making assistance system integrated with artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analysis capabilities, maximize the elimination of falsehoods and preserve truths, correlation verification, and link thinking, and automatically conduct analysis of the enemy’s situation, our situation, and our situation. Big data analysis such as battlefield environment can form comparative data on relevant troops, weapons, etc., which can effectively assist combat command and help commanders quickly make combat decisions.

Intelligent selection of combat plans. Relying on the intelligent combat simulation system, based on the pre-entered combat missions and target information, multiple sets of intuitive plans and plans are automatically generated, comprehensively evaluate their advantages, disadvantages and potential risks, and select the plan that is most conducive to realizing the commander’s intention. for the commander to make the final decision. After receiving combat missions and target requirements from superiors, each combat unit further screens and screens battlefield target information based on the tasks and requirements at this level, and independently formulates the optimal solutions and plans at this level to maximize combat effectiveness.

Intelligent prediction of decision-making effectiveness. The intelligent auxiliary decision-making system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system more advanced “brain-like” capabilities. It can think more rationally about unexpected situations on the battlefield and quickly draw relative conclusions. Objective results of the engagement.

power control mechanism

Powerful people control power because of profit. Seizing power is a key factor in gaining a winning edge in war. Artificial intelligence can “transplant” part of human intelligence into weapons, making the integration of humans and weapon systems closer and closer. In-depth human-machine integration has changed the traditional elements of power control and given new power control connotations, which can help to obtain new technologies. control advantage.

Territorial power expanded to high frontiers. In the future, highly intelligent unmanned systems will operate in extreme environments such as extreme heights, extreme distances, extreme depths, extremely low temperatures, extreme darkness, and extreme brightness, even under harsh conditions such as high temperature, extreme cold, high pressure, hypoxia, poison, and radiation. , a variety of combat missions can still be carried out, and the battle for control of the combat field and combat space extends to high frontiers, far frontiers, and deep frontiers.

Expand the right to control information to multiple means. The traditional way of seizing and controlling information power is to control the acquisition, processing, and distribution of information by attacking the enemy’s reconnaissance and early warning system and destroying its command and control system. However, information operations led by artificial intelligence use information itself as “ammunition”. ”, the means to seize the right to control information are more diverse.

Network control rights are expanded to distributed areas. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services. It can realize modular grouping and automatic reorganization of combat forces. Traditionally, it can achieve network outage and destruction by attacking key nodes. The purpose of the chain will be difficult to achieve, and the “decentralized” battlefield must be dealt with in an intelligent distributed attack mode.

Brain power expands to new dimensions. The gradual militarization of brain-inspired technology and simulation technology has formed a new field of games and confrontations. The focus has shifted from focusing on confrontation in the physical and information domains to more emphasis on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can confuse fakes with real ones. “Core attack warfare” can quietly change the enemy’s command and control system algorithm, and “brain control warfare” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, will, etc., it can achieve control at the minimum cost. The purpose of war and victory.

Mechanism of action

The passion of soldiers is the key to speed, taking advantage of others’ disadvantages. Taking actions that the enemy does not expect is the key to winning a war. Artificial intelligence can improve the intelligence of weapons and equipment, command and control systems, and operational decision-making, making maneuver response capabilities faster and joint strike capabilities more accurate, creating a super operational advantage.

The speed of action is “instantaneous”. The intelligent combat system can see, hear, learn, and think, effectively shortening the “OODA” cycle. Once an “opportunity is found,” it will use intelligently controlled hypersonic weapons, kinetic energy weapons, and lasers. Weapons, etc., can quickly “kill” targets from a long distance.

The action style is “unmanned”. “Unmanned + intelligence” is the future development direction of weapons and equipment. Low-cost unmanned autonomous equipment such as unmanned vehicles, drones, and unmanned underwater vehicles, with the support of the cluster autonomous decision-making system, can plan the task division of each unit according to the combat objectives, and accurately dock and autonomously combine the unmanned aerial vehicles. , covert penetration, and carry out cluster saturation attacks on the enemy.

The space for action “blurs”. In future wars, using interference means to carry out soft attacks on the enemy’s intelligent combat systems and smart weapons, and using smart weapons to delay or affect the decision-making and psychology of enemy personnel will become the key to victory. Most of these actions were completed unknowingly or silently, presenting a “blurred” state in which neither the enemy nor ourselves were visible, the boundaries between the front and the rear were unclear, and the visible and invisible were difficult to distinguish.

The operational layout is “invisible”. Intelligent command systems and weapons and equipment have bionic and stealth properties. As long as they are deployed in possible combat areas in advance during peacetime preparations or training exercises, they are lurking in advance, dormant and ready for battle. Once needed in wartime, they can be activated in a timely manner to launch a sudden attack on the enemy, which will help to quickly grasp the initiative in the war.

System mechanism

Five things and seven strategies to know the outcome. Future wars will be systematic confrontations in all fields, systems, elements, and processes. A stable and efficient combat system is the basic support for winning the war. As the application of artificial intelligence in the military field continues to expand, the combat system is becoming more and more intelligent, and a fully integrated combat system will produce powerful system advantages.

There are more means of “detection”. The intelligent combat cluster relies on the network information system to connect with various large-scale sensors, electronic warfare systems and other human-machine interaction platforms. It uses each combat unit’s own detection and sensing equipment to obtain battlefield data, leverages the self-organizing characteristics of the intelligent group, and strengthens joint operations. The real-time reconnaissance and surveillance support of the system and back-end intelligence analysis can realize full-area reconnaissance and search, joint early warning, and collaborative verification, forming a multi-dimensional integrated, full-area coverage large-area joint reconnaissance intelligence system.

The field of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of the senses, and the physical limits of existence, and replace humans into traditional restricted areas of life such as the deep sea, space, polar regions, and areas with strong radiation, and stay there for a long time. Implement “unconventional operations” to further expand the combat space and have the ability to continue to deter opponents in a wider area.

“Hit” is faster. With the support of the intelligent network information system, the intelligence chain, command chain, and kill chain are seamlessly connected. Information transmission speed, decision-making speed, and action speed are simultaneously accelerated. Intelligent combat units can be flexibly organized, autonomously coordinated, and struck quickly. All these make time utilization extremely efficient and battlefield reaction speed extremely fast.

The accuracy of “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavioral systems, the intelligent combat assessment system can independently collect, aggregate and classify multi-means action effect assessment information, accurately perceive battlefield actions based on big data and panoramic views, and dynamically identify Combat process and correct deficiencies, predict complex battlefield changes, comprehensively plan and respond flexibly.

“Guarantee” is more efficient. The widespread application of intelligent comprehensive support systems, represented by equipment maintenance expert systems and intelligent sensing equipment, can efficiently respond to support needs in various domains, intelligently plan support resources, ensure that the “cloud” aggregates various battlefield resources, and effectively enhances the networked battlefield Comprehensive support capabilities.

(Author’s unit: Henan Provincial Military Region)

現代國語:

人工智慧技術是提升新興領域策略能力的重要支持。近年來發展迅速,在軍事領域廣泛應用。它不斷生成新的不對稱優勢,深刻改變未來戰爭的基本形態、作戰方式和勝利機制。我們應該深刻認識人工智慧革命性技術力量,準確辨識變化、科學應對、主動求變,努力探索打贏未來戰爭的辦法,在加速推進的智慧化戰爭中奪取主動權。

資訊機制

知己知彼,百戰不殆。迅速有效地掌握全方位資訊是贏得戰爭的首要前提。人工智慧可以實現戰場態勢的智慧感知、大量數據的智慧分析、多種資訊的智慧處理,可以在戰場上形成「透明」優勢。

自主實施戰場感知。透過在戰時偵察系統中嵌入智慧模組,使各類偵察節點單元實現隨機組網、動態協同、有機融合。它們能夠自主獲取全方位、多維度的戰場訊息,建構相對「透明」的數位化戰場環境和作戰態勢。它撥開戰爭的“迷霧”,全景式地呈現戰鬥場景。

海量資料精準識別。依托精準感知技術、分析辨識技術等智慧技術,對多樣化的語音、文字、圖片、視訊等數據進行精準解讀、分析、比較與整合,獲得更快、更全、更準、更深層的戰場態勢。其結果比人腦處理的速度更快、更準確。

有效響應關鍵訊息。基於作戰雲、大數據、物聯網等智慧技術群,快速挖掘大量非標準化、異質情報數據,自主發現症狀、辨識意圖、研究趨勢、尋找模式、精準應對即時。指揮官需要關鍵資訊。

同步分享整合情況。智慧控制系統能夠優化整合陸、海、空、天電網等分佈在不同空間、不同頻域的各種偵察監視系統,發揮資訊共享、統一認知的重要樞紐作用,建構基於智慧感知的體系。一張圖」與「一張圖」。 「開網」「一條鏈」的局面,使各作戰單元能夠全地域、全頻率、全時間,同步分享不同空間、不同距離、不同頻率的所需信息,實現智慧共享。

決策機制

如果丈夫還沒有戰鬥,而寺廟被認為是勝利者,那麼他必須被視為勝利者。科學準確的決策是贏得戰爭的前提。人工智慧可以進行動態戰場模擬,快速做出可行決策,大幅縮短作戰規劃和決策週期,形成決策優勢。

智能分析判斷戰略情勢。融入人工智慧技術的決策輔助系統具有資訊收集、查詢管理、資料處理、關聯分析等功能。能有效突破人的分析能力限制,最大限度實現去偽存真、關聯驗證、連結思考,自動進行敵情、我情、我勢分析。戰場環境等大數據分析可以形成相關兵力、武器裝備等比較數據,可以有效輔助作戰指揮,幫助指揮官快速做出作戰決策。

智慧選擇作戰計畫。依托智能作戰模擬系統,根據預先輸入的作戰任務和目標訊息,自動產生多套直觀的作戰方案和計劃,綜合評估其優勢、劣勢及潛在風險,選取最有利於實現了指揮官的意圖。由指揮官作出最終決定。各作戰單元接到上級作戰任務和目標要求後,依據本級任務和要求,對戰場目標資訊進行進一步甄別篩選,自主制定本級最優解決方案和預案,最大限度提高戰鬥力。

智慧預測決策的有效性。智慧輔助決策系統依賴大數據、高效能運算、神經網路演算法等智慧技術,賦予指揮控制系統更先進的「類大腦」能力。能夠更理性地思考戰場上的突發狀況,並迅速得出相關結論。參與的客觀成果。

權力控制機制

有權勢的人因為利益而控制權力。奪取政權是戰爭中取得勝利的關鍵因素。人工智慧可以將人類部分智慧「移植」到武器中,使得人與武器系統的結合越來越緊密。人機深度融合改變了傳統的動力控制要素,賦予了動力控制新的內涵,有助於獲得新的技術。控制優勢。

領土權力擴展到高地邊境。未來高度智慧的無人系統將在極高、極遠、極深、極低溫、極暗、極亮等極端環境下,甚至在高溫、極寒、高壓、缺氧、中毒和輻射。 ,多種作戰任務仍可實施,戰場和作戰空間控制權的爭奪向高邊、遠邊、深邊延伸。

將資訊控制權拓展到多種手段。奪取和控制資訊權的傳統方式是透過攻擊敵方偵察預警系統、摧毀敵方指揮控制系統來控制資訊的取得、處理和發布。然而,人工智慧主導的資訊作戰,是以資訊本身作為「彈藥」的。 ”,奪取資訊控制權的手段更加多樣化。

網路控制權擴展至分散式區域。基於智慧技術建構的網路資訊體系,提供無所不在的網路“雲”,聚合各類終端的戰場資源並提供服務。可實現作戰力量模組化編組和自動重組。傳統上它透過攻擊關鍵節點來實現網路中斷和破壞。鏈上的目的將很難實現,必須以智慧分散式的攻擊方式來應對「去中心化」的戰場。

腦力拓展至新的維度。類腦技術、模擬技術逐漸軍事化,形成了新的博弈與對抗領域。從注重身體和資訊領域的對抗,轉向更加重視影響和控制對手的心理。虛擬實境、視聽合成等技術可以使真假混淆。 「核心攻擊戰」可以悄悄改變敵人的指揮控制系統演算法,「腦控戰」則可以直接控制敵人的決策。透過控制和影響敵人的心理、思維、意誌等,以最小的代價來實現控制。戰爭的目的和勝利。

作用機制

士兵的熱情是速度的關鍵,利用別人的劣勢。採取敵方意想不到的行動是贏得戰爭的關鍵。人工智慧可以提升武器裝備、指揮控制系統、作戰決策的智慧化,讓機動反應能力更快速、聯合打擊能力更精準,打造超級作戰優勢。

作用速度是「瞬時的」。智慧作戰系統能夠看、聽、學、想,有效縮短「OODA」週期。一旦“發現機會”,它就會使用智慧控制的高超音速武器、動能武器和雷射。武器等,可以從遠距離快速「殺死」目標。

行動方式為「無人化」。 「無人化+智能化」是未來武器裝備的發展方向。無人駕駛汽車、無人機、無人潛航器等低成本無人自主裝備,在集群自主決策系統支援下,可依作戰目標規劃各單元任務分工,精準對接、自主組合無人駕駛飛行器。 、隱蔽滲透,對敵方實施集群飽和攻擊。

行動空間「模糊」。未來戰爭中,利用乾擾手段對敵方智慧作戰系統和智慧武器實施軟攻擊,利用智慧武器延緩或影響敵方人員的決策和心理,將成為勝利的關鍵。這些動作大多是在不知不覺中或默默無聞地完成的,呈現出一種「模糊」的狀態,雙方都沒有意識到。無論是敵人還是自己,都是看不見的,前方與後方的界線不清,看得見與看不見的難以區分。

作戰佈局「隱形」。智慧指揮系統和武器裝備具有仿生、隱身性能。只要在平時準備或訓練演習中,提前部署到可能的作戰區域,就是提前潛伏,蟄伏,隨時準備戰鬥。一旦戰爭需要,可以及時投入使用,對敵人發動突襲,有利於迅速掌握戰爭主動權。

系統機制

五件事和七種策略可知結果。未來戰爭將是各領域、各體系、各要素、各過程的系統對抗。穩定、有效率的作戰體係是打贏戰爭的基礎支撐。隨著人工智慧在軍事領域應用範圍不斷拓展,作戰體系智慧化程度越來越高,全面整合的作戰體系將產生強大的體系優勢。

「檢測」的手段還有很多。智慧作戰集群依托網路資訊體系,連結各類大型感測器、電子戰系統及其他的人機互動平台。它利用各作戰單元本身的探測感測設備取得戰場數據,發揮智慧群體自組織特點,加強聯合作戰。透過系統性的即時偵察監視保障和後端情報分析,可實現全域偵察搜尋、聯合預警、協同核查,形成多維度一體化、全域覆蓋的大區域聯合偵察情報系統。

「控制」的領域更加廣泛。利用智慧無人作戰平台,可以突破人類思維的邏輯極限、感官的生理極限、生存的物理極限,取代人類進入深海、太空、極地等傳統生命禁區。實施“非常規作戰”,進一步拓展作戰空間,具備在更廣闊區域持續威懾對手的能力。

「打」得更快。在智慧化網路資訊系統支援下,情報鏈、指揮鏈、殺傷鏈無縫銜接。訊息傳遞速度、決策速度、行動速度同步加快。智慧作戰部隊能夠靈活組織、自主協同、快速出擊。這些使得時間利用率極高,戰場反應速度極快。

「評價」的準確性更加準確。智慧作戰評估系統利用體驗式互動學習、類腦行為系統等智慧技術,自主採集、聚合、分類多手段行動效果評估信息,基於大數據和全景視圖精準感知戰場行動,動態識別戰場態勢,實現戰場態勢感知與決策支撐。

「保」更有效率。以裝備維修專家系統、智慧感知裝備為代表的智慧化綜合保障系統的廣泛應用,能有效率地回應各領域保障需求,智慧規劃保障資源,確保「雲端」聚合各類戰場資源,有效提升保障水準。化戰場綜合保障能力。

(作者單位:河南省軍區)

中國原創軍事資源:

Comprehensive Review of Chinese Military Intelligent Warfare: Intelligent Combat Command

中國軍事智慧戰爭全面回顧:智慧作戰指揮

現代英語:

Liu Kui, Qin Fangfei

Tips

● Modern artificial intelligence is essentially like a “brain in a vat”. If it is allowed to carry out combat command, it will always face the problem of subjectivity loss, that is, “self” loss. This makes artificial intelligence have natural and fundamental defects. It must be based on human subjectivity and improve the effectiveness and level of combat command through human-machine hybrid.

● In intelligent combat command, the commander is mainly responsible for planning what to do and how to do it, while the intelligent model is responsible for planning how to do it specifically.

“Brain in a vat” is a famous scientific hypothesis. It means that if a person’s brain is taken out and placed in a nutrient solution, the nerve endings are connected to a computer, and the computer simulates various sensory signals. At this time, can the “brain in a vat” realize that “I am a brain in a vat”? The answer is no, because as a closed system, when a person lacks real interactive experience with the outside world, he cannot jump out of himself, observe himself from outside himself, and form self-awareness. Modern artificial intelligence is essentially like a “brain in a vat”. If it is allowed to implement combat command, it will always face the problem of subject loss, that is, “self” loss. This makes artificial intelligence have natural and fundamental defects, and it must be based on human subjectivity and improve the effectiveness and level of combat command through human-machine hybrid.

Based on “free choice”, build a “man-planned” command model

On the battlefield, the commander can choose which target to attack, and can choose to attack from the front, from the flank, from the back, or from the air; he can isolate but not attack, surround but not attack, talk but not attack… This is human autonomy, and he can freely choose what to do and how to do it. But machines can’t do that. The combat plans they give can only be the plans implied in the intelligent model. As far as the specific plan given each time is concerned, it is also the most likely plan in the sense of probability statistics. This makes the plans generated by artificial intelligence tend to be “templated”, which is equivalent to a “replica machine”. It gives similar answers to the same questions and similar combat plans for the same combat scenarios.

Compared with artificial intelligence, different commanders design completely different combat plans for the same combat scenario; the same commander designs different combat plans when facing similar combat scenarios at different times. “Attack when the enemy is unprepared and take them by surprise”, the most effective plan may seem to be the most dangerous and impossible plan. For commanders, facing combat scenarios, there are infinite possibilities in an instant, while for artificial intelligence, there is only the best-looking certainty in an instant, lacking creativity and strategy, and it is easy for the opponent to predict it. Therefore, in intelligent combat command, based on human autonomy, the commander is responsible for planning and calculation, innovating tactics and tactics, and designing basic strategies, and the machine is responsible for converting basic strategies into executable and operational combat plans, forming a “man-planned” command mode. More importantly, autonomy is the unique mark of human existence as human being. This power of free decision-making cannot and is not allowed to be transferred to machines, making people become vassals of machines.

Based on “self-criticism”, build a command model of “people against machine”

Human growth and progress are usually based on the real self, focus on the ideal self, and criticize the historical self in a negation-negation style. Artificial intelligence has no “self” and has lost its self-critical ability. This makes it only able to solve problems within the original cognitive framework. The combat ideas, combat principles, and tactics of the model are given when the training is completed. If you want to update and improve your knowledge and ideas, you must continuously train the model from the outside. Mapped to a specific combat scenario, the intelligent model can only provide the commander with a pre-given problem solution. It is impossible to dynamically adjust and update it continuously during a battle.

People with a self-critical spirit can jump out of the command decision-making thinking process and review, evaluate, and criticize the command decision. In the continuous self-criticism, the combat plan is constantly adjusted, and even the original plan is overturned to form a new plan. In the command organization group, other commanders may also express different opinions on the combat plan. The commander adjusts and improves the original plan on the basis of fully absorbing these opinions, and realizes the dynamic evolution of the combat plan. Therefore, combat command is essentially a dynamic process of continuous forward exploration, not a static process given in advance by the combat plan. When the machine generates a combat plan, the commander cannot accept it blindly without thinking, but should act as an “opponent” or “fault finder”, reflect on and criticize the combat plan, and raise objections. Based on the human’s objections, the machine assists the commander to continuously adjust and optimize the combat plan, forming a command mode of “human opposing and machine correcting”.

Based on “self-awareness and initiative”, we build a command model of “people lead and machines follow”

Comrade Mao Zedong once said that what we call “conscious initiative” is the characteristic that distinguishes humans from objects. Any complex practical activity to transform the world starts with a rough and abstract idea. To transform abstract concepts into concrete actions, it is necessary to overcome various risks and challenges, give full play to conscious initiative, and take the initiative to set goals, make suggestions, and think of ways. Artificial intelligence without conscious initiative, when people ask it questions, it only gives the answers implied in the model, without caring whether the answer can be used, targeted, or practical. In other words, when an abstract and empty question is raised, it gives an abstract and empty answer. This is also why the current popular large model unified operation mode is “people ask questions and machines answer”, rather than “machines ask questions”.

Relying on conscious initiative, even the most abstract and empty problems can be transformed step by step into specific action plans and specific action practices. Therefore, in intelligent combat command, the commander is mainly responsible for planning what to do and what ideas to follow, while the intelligent model is responsible for planning how to do it specifically. If the combat mission is too abstract and general, the commander should first break down the problem into details, and then the intelligent model should solve the detailed problem. Under the guidance of the commander, the problem is gradually solved in stages and fields, and the combat goal is finally achieved, forming a command mode of “people lead and machines follow”. It’s like writing a paper. First you make an outline and then you start writing. People are responsible for making the outline, and the specific writing is done by the machine. If the first-level outline is not specific enough, people can break it down into a second-level or even a third-level outline.

Based on “self-responsibility”, build a command model of “human decision-making and machine calculation”

Modern advanced ship-borne air defense and anti-missile systems usually have four operational modes: manual, semi-automatic, standard automatic, and special automatic. Once the special automatic mode is activated, the system will no longer require human authorization to launch missiles. However, this mode is rarely activated in actual combat or training. The reason is that humans, as the responsible subject, must be responsible for all their actions, while the behavior of machines is the absence of the responsible subject. When it comes to holding people accountable for major mistakes, machines cannot be held accountable. Therefore, life-and-death matters must not be decided by a machine without autonomous responsibility. Moreover, modern artificial intelligence is a “black box”. The intelligent behavior it exhibits is inexplicable, and the reasons for right and wrong are unknown, making it impossible for people to easily hand over important decision-making power to machines.

Because AI lacks “autonomous responsibility”, all problems in its eyes are “domesticated problems”, that is, the consequences of such problems have nothing to do with the respondent, and the success or failure of the problem solving is irrelevant to the respondent. Corresponding to this are “wild problems”, that is, the consequences of such problems are closely related to the respondent, and the respondent must be involved. Therefore, in the eyes of AI without self, there are no “wild problems”, all are “domesticated problems”, and it stays out of any problem. Therefore, in intelligent combat command, machines cannot replace commanders in making judgments and decisions. It can provide commanders with key knowledge, identify battlefield targets, organize battlefield intelligence, analyze battlefield conditions, predict battlefield situations, and even form combat plans, formulate combat plans, and draft combat orders. However, the plans, plans, and orders it gives can only be used as drafts and references. As for whether to adopt them and to what extent, it is up to the commander to decide. In short, both parties make decisions together, with artificial intelligence responsible for prediction and humans responsible for judgment, forming a command mode of “human decision-making and machine calculation”.

現代國語:

從「缸中之腦」看智慧化作戰指揮

■劉 奎 秦芳菲

要點提示

●現代人工智慧,本質上就如同“缸中之腦”,如果讓它實施作戰指揮,始終會面臨主體缺失即“自我”缺失的問題。這使得人工智慧存在天然的、根本的缺陷,必須基於人的主體性,透過人機混合來提升作戰指揮效能和水平

●智能化作戰指揮中,指揮員主要負責規劃做什麼、依什麼思路做,智能模型則負責規劃具體怎麼做

「缸中之腦」是一項著名科學假設。意思是,假如人的大腦被取出放在營養液中,神經末梢接上計算機,由計算機模擬出各種感知信號。這時候,「缸中之腦」能不能意識到「我是缸中之腦」?答案是不能,因為人作為一個封閉的系統,當與外界缺乏真實的互動體驗時,人是無法跳出自身、從自身之外觀察自身並形成自我意識的。而現代人工智慧,本質上就如同“缸中之腦”,如果讓它實施作戰指揮,始終會面臨主體缺失即“自我”缺失的問題。這使得人工智慧存在天然的、根本的缺陷,必須基於人的主體性,透過人機混合來提升作戰指揮效能和水準。

基於“自由選擇”,建構“人謀機劃”的指揮模式

戰場上,指揮員可以選擇打哪一個目標,可以選擇從正面打、從翼側打、從背後打、從空中打;可以隔而不打、圍而不打、談而不打……這就是人的自主性,可以自由選擇做什麼、怎麼做。但機器不行,它給出的作戰方案,只能是智慧模型中蘊含的方案。就每次給出的特定方案而言,也是機率統計意義上可能性最大的方案。這使得人工智慧生成的方案呈現“模板化”傾向,相當於一個“復刻機”,同樣的問題,它給出的是相似的回答,同樣的作戰場景,它給出的就是相似的作戰方案。

與人工智慧相比,同樣的作戰場景,不同的指揮員設計的作戰方案完全不同;同一指揮員在不同的時間面對相似的作戰場景,設計的作戰方案也不相同。 “攻其無備,出其不意”,最有效的方案很可能看上去是最危險、最不可能的方案。對於指揮員,面對作戰場景,一瞬間有無限可能,而對於人工智慧,一瞬間卻只有看上去最好的確定,缺乏創意、缺少謀略,很容易為對方所預料。所以,在智慧化作戰指揮中,要基於人的自主性,由指揮員負責籌謀算計、創新戰法打法、設計基本策略,由機器負責將基本策略轉化為可執行可操作的作戰方案,形成「人謀機劃」的指揮模式。更重要的是,自主性是人作為人而存在的獨特標志,這種自由作決定的權力不可能也不允許讓渡給機器,使人淪為機器的附庸。

基於“自我批判”,建構“人反機正”的指揮模式

人類的成長進步,通常是立足現實自我,著眼理想自我,對歷史自我進行否定之否定式的批判。人工智慧沒有“自我”,同時也喪失了自我批判能力。這使得它只能停留在原有認知框架內解決問題,模型擁有的作戰思想、作戰原則、戰法打法,是在訓練完成時所給予的。如果想獲得知識和想法的更新提升,就必須從外部對模型進行持續訓練。映射到特定作戰場景,智慧模型給指揮員提供的只能是事先給定的問題解決方案,要想在一次作戰中不斷地動態調整更新是做不到的。

具有自我批判精神的人類,可以跳脫指揮決策思考過程,對指揮決策進行審視、評價、批判。在持續地自我批判中不斷對作戰方案進行調整,甚至推翻原有方案,形成新的方案。在指揮機構群體中,其他指揮人員也可能對作戰方案提出不同意見,指揮員在充分吸納這些意見的基礎上,調整改進原有方案,實現作戰方案的動態進化。所以,作戰指揮本質上是一個不斷向前探索的動態過程,不是作戰方案事先給定的靜態過程。當機器生成作戰方案時,指揮員不能不加思考地盲目接受,而應充當“反對者”“找茬人”,對作戰方案展開反思批判,提出反對意見,機器根據人的反對意見,輔助指揮員不斷調整、優化作戰方案,形成「人反機正」的指揮模式。

基於“自覺能動”,建立“人引機隨”的指揮模式

毛澤東同志說過,我們名之曰“自覺的能動性”,是人之所以區別於物的特點。任何一項改造世界的複雜實踐活動,都是從粗糙的、抽象的想法開始的,要將抽象觀念轉化為具體行動,需要克服各種風險和挑戰,充分發揮自覺能動性,主動定目標、出主意、想辦法。沒有自覺能動性的人工智慧,人們向它提出問題,它給出的只是模型中蘊含的答案,而不會管這個答案能不能用、有沒有針對性、可不可以實際操作,即提出抽象、空洞的問題,它給出的就是抽象、空洞的回答。這也是為什麼時下流行的大模型統一的運行模式是“人問機答”,而不是“機器提出問題”。

依賴自覺能動性,再抽象、空洞的問題都能由人一步一步轉化為具體的行動方案、具體的行動實踐。因此,在智慧化作戰指揮中,指揮員主要負責規劃做什麼、依什麼思路做,智慧模型則負責規劃具體怎麼做。若作戰任務太過抽象籠統,應先由指揮員對問題進行分解細化,再由智慧模型對細化後的問題進行解算。在指揮引導下,分階段、分領域逐步解決問題,最終達成作戰目標,形成「人引機隨」的指揮模式。這就像寫一篇論文,先列出提綱,再進行寫作,列提綱由人負責,具體寫作由機器完成,如果感覺一級綱目不夠具體,可由人細化為二級乃至三級綱目。

基於“自主負責”,建立“人斷機算”的指揮模式

現代先進的艦載防空反導系統,通常有手動、半自動、標準自動、特殊自動四種作戰模式,一旦啟用特殊自動模式,系統發射導彈將不再需要人的授權幹預。但該模式無論在實戰還是在訓練中都很少啟用。究其原因,人作為責任主體要對自己的所有行為負責,而機器行為背後卻是責任主體的缺失,當要為重大失誤追責時,機器是無法負責的。所以,生死攸關的大事決不能讓一個沒有自主責任的機器決定。況且,現代人工智慧是一個“黑箱”,它所展現的智能行為具有不可解釋性,對與錯的原因無從知曉,讓人無法輕易將重大決定權完全交給機器。

由於人工智慧缺乏“自主責任”,會使它眼中的問題全是“馴化問題”,也就是該類問題產生的後果與回答者沒有關系,問題解決的成功也罷、失敗也罷,對回答者來說無所謂。與之相應的是“野生問題”,也就是該類問題產生的後果與回答者息息相關,回答者必須置身其中。所以,在缺失自我的人工智慧眼中沒有“野生問題”,都是“馴化問題”,它對任何問題都置身事外。因此,在智慧化作戰指揮中,機器不能取代指揮員做出判斷和決策。它可以為指揮員提供關鍵知識、識別戰場目標、整編戰場情報、分析戰場情況、預測戰場態勢,甚至可以形成作戰方案、制定作戰計劃、擬製作戰命令,但它給出的方案計劃命令,只能作為草稿和參考,至於採不採用、在多大程度上採用,還得指揮員說了算。簡單來說,就是雙方共同做出決策,人工智慧負責預測,人負責判斷,形成「人斷機算」的指揮模式。

中國原創軍事資源:http://www.81.cn/yw_208727/16361814.html

Chinese Weaponization of Digitalization, Networking, Intelligence, Grasping the Focus New Chinese Generation of Information Technology

數位化、網路化、智慧化的中國武器化,抓住中國新一代資訊科技的焦點

現代英語:

Digitalization, networking, and intelligence are the prominent features of the new round of scientific and technological revolution, and are also the core of the new generation of information technology. Digitalization lays the foundation for social informatization, and its development trend is the comprehensive dataization of society. Dataization emphasizes the collection, aggregation, analysis and application of data. Networking provides a physical carrier for information dissemination, and its development trend is the widespread adoption of information-physical systems (CPS). Information-physical systems will not only give birth to new industries, but will even reshape the existing industrial layout. Intelligence reflects the level and level of information application, and its development trend is the new generation of artificial intelligence. At present, the upsurge of the new generation of artificial intelligence has arrived.

  In his important speech at the 2018 General Assembly of Academicians of the Chinese Academy of Sciences and the Chinese Academy of Engineering, Comrade Xi Jinping pointed out: “The world is entering a period of economic development dominated by the information industry. We must seize the opportunity of the integrated development of digitalization, networking, and intelligence, and use informatization and intelligence as leverage to cultivate new momentum.” This important statement is an accurate grasp of the dominant role and development trend of information technology in today’s world, and an important deployment for using information technology to promote national innovation and development.

  Human society, the physical world, and information space constitute the three elements of today’s world. The connection and interaction between these three worlds determine the characteristics and degree of social informatization. The basic way to perceive human society and the physical world is digitization, the basic way to connect human society and the physical world (through information space) is networking, and the way information space acts on the physical world and human society is intelligence. Digitalization, networking, and intelligence are the prominent features of the new round of scientific and technological revolution, and are also the focus of the new generation of information technology. Digitalization lays the foundation for social informatization, and its development trend is the comprehensive dataization of society; networking provides a physical carrier for information dissemination, and its development trend is the widespread adoption of information-physical systems (CPS); intelligence reflects the level and level of information application, and its development trend is the new generation of artificial intelligence.

  Digitalization: From computerization to dataization

  Digitalization refers to the technical approach of storing, transmitting, processing, handling and applying information carriers (text, pictures, images, signals, etc.) in digital coding form (usually binary). Digitalization itself refers to the way of representing and processing information, but in essence it emphasizes the computerization and automation of information application. In addition to digitalization, dataization (data is an information carrier in coded form, and all data is digital) emphasizes the collection, aggregation, analysis and application of data, and strengthens the production factors and productivity functions of data. Digitalization is developing from computerization to dataization, which is one of the most important trends in the current social informatization.

  The core connotation of dataization is the deep understanding and deep use of big data generated by the integration of information technology revolution and economic and social activities. Big data is a fragmentary record of social economy, real world, management decision-making, etc., containing fragmented information. With the breakthrough of analytical technology and computing technology, it is possible to interpret this fragmented information, which makes big data a new high-tech, a new scientific research paradigm, and a new way of decision-making. Big data has profoundly changed the way people think and live and work, bringing unprecedented opportunities to management innovation, industrial development, scientific discovery and other fields.

  The value generation of big data has its inherent laws (obeying the big data principle). Only by deeply understanding and mastering these laws can we improve the awareness and ability to consciously and scientifically use big data (big data thinking). The value of big data is mainly realized through big data technology. Big data technology is an extension and development of statistical methods, computer technology, and artificial intelligence technology. It is a developing technology. The current hot directions include: blockchain technology, interoperability technology, storage and management technology of integrated storage and computing, big data operating system, big data programming language and execution environment, big data foundation and core algorithm, big data machine learning technology, big data intelligent technology, visualization and human-computer interaction analysis technology, authenticity judgment and security technology, etc. The development of big data technology depends on the solution of some major basic problems, including: the statistical basis and computational theoretical basis of big data, the hardware and software basis and computational methods of big data computing, and the authenticity judgment of big data inference.

  Implementing the national big data strategy is an important way to promote the digital revolution. Since my country proposed the implementation of the national big data strategy in 2015, the pattern of rapid development of big data in my country has been initially formed, but there are also some problems that need to be solved: data openness and sharing are lagging, and the dividends of data resources have not been fully released; the profit model of enterprises is unstable, and the integrity of the industrial chain is insufficient; core technologies have not yet made major breakthroughs, and the technical level of related applications is not high; there are still loopholes in security management and privacy protection, and the construction of relevant systems is still not perfect; etc. At present, effective measures should be taken to solve the bottleneck problems that restrict the development of big data in my country.

  Networking: From the Internet to Cyber-Physical Systems

  As an information-based public infrastructure, the Internet has become the main way for people to obtain, exchange and consume information. However, the Internet only focuses on the interconnection between people and the resulting interconnection between services.

  The Internet of Things is a natural extension and expansion of the Internet. It connects various objects to the Internet through information technology, helping people obtain relevant information about the objects they need. The Internet of Things uses information collection equipment such as radio frequency identification, sensors, infrared sensors, video surveillance, global positioning systems, laser scanners, etc., and connects objects to the Internet through wireless sensor networks and wireless communication networks, so as to achieve real-time information exchange and communication between objects and between people and objects, so as to achieve the purpose of intelligent identification, positioning, tracking, monitoring and management. The Internet realizes the interconnection between people and services, while the Internet of Things realizes the cross-connection between people, objects and services. The core technologies of the Internet of Things include: sensor technology, wireless transmission technology, massive data analysis and processing technology, upper-level business solutions, security technology, etc. The development of the Internet of Things will go through a relatively long period, but it may take the lead in achieving breakthroughs in applications in specific fields. Internet of Vehicles, Industrial Internet, unmanned systems, smart homes, etc. are all areas where the Internet of Things is currently showing its prowess.

  The Internet of Things mainly solves the problem of people’s perception of the physical world, while to solve the problem of manipulating physical objects, it is necessary to further develop the cyber-physical system (CPS). The cyber-physical system is a multi-dimensional complex system that integrates computing, networking and physical environment. It realizes real-time perception, dynamic control and information services of large engineering systems through the organic integration and deep collaboration of 3C (Computer, Communication, Control) technologies. Through the human-computer interaction interface, the cyber-physical system realizes the interaction between the computing process and the physical process, and uses the networked space to control a physical entity in a remote, reliable, real-time, secure and collaborative manner. In essence, the cyber-physical system is a network with control attributes.

  Unlike public infrastructure that provides information interaction and application, the focus of the development of cyber-physical systems is on the research and development of networked physical equipment systems that deeply integrate perception, computing, communication and control capabilities. From an industrial perspective, cyber-physical systems cover a range of applications from smart home networks to industrial control systems and even intelligent transportation systems, which are national and even world-class applications. More importantly, this coverage is not just about simply connecting existing devices together, but will give rise to a large number of devices with computing, communication, control, collaboration and autonomous capabilities. The next generation of industry will be built on cyber-physical systems. With the development and popularization of cyber-physical system technology, physical devices that use computers and networks to achieve functional expansion will be ubiquitous, and will promote the upgrading of industrial products and technologies, greatly improving the competitiveness of major industrial fields such as automobiles, aerospace, national defense, industrial automation, health and medical equipment, and major infrastructure. Cyber-physical systems will not only give birth to new industries, but will even reshape the existing industrial layout.

  Intelligence: From Expert Systems to Meta-Learning

  Intelligence reflects the quality attributes of information products. When we say that an information product is intelligent, we usually mean that the product can accomplish things that only intelligent people can accomplish, or has reached a level that only humans can achieve. Intelligence generally includes perception, memory and thinking, learning and adaptive, behavioral decision-making, etc. Therefore, intelligence can also be generally defined as: enabling an object to have sensitive and accurate perception functions, correct thinking and judgment functions, adaptive learning functions, and effective execution functions.

  Intelligence is the eternal pursuit of the development of information technology, and the main way to achieve this pursuit is to develop artificial intelligence technology. In the more than 60 years since the birth of artificial intelligence technology, although it has experienced three ups and two downs, it has still made great achievements. From 1959 to 1976, it was a stage based on artificial representation of knowledge and symbol processing, which produced expert systems with important application value in some fields; from 1976 to 2007, it was a stage based on statistical learning and knowledge self-representation, which produced various neural network systems; in recent years, research based on environmental adaptation, self-game, self-evolution, and self-learning is forming a new stage of artificial intelligence development – meta-learning or methodological learning stage, which constitutes a new generation of artificial intelligence. The new generation of artificial intelligence mainly includes big data intelligence, group intelligence, cross-media intelligence, human-machine hybrid enhanced intelligence, and brain-like intelligence.

  Deep learning is an outstanding representative of the new generation of artificial intelligence technology. Due to its performance that surpasses that of humans in many fields such as face recognition, machine translation, and chess competitions, deep learning has almost become synonymous with artificial intelligence today. However, deep learning has major challenges in terms of topological design, effect prediction, and mechanism explanation. There is no solid mathematical theory to support the solution of these three major problems. Solving these problems is the main focus of future research on deep learning. In addition, deep learning is a typical big data intelligence, and its applicability is based on the existence of a large number of training samples. Small sample learning will be the development trend of deep learning.

  Meta-learning is expected to become the next breakthrough in the development of artificial intelligence. Recently developed meta-learning methods such as learning to learn, learning to teach, learning to optimize, learning to search, and learning to reason, as well as the outstanding performance of “AlphaGo Zero” in Go, have demonstrated the attractive prospects of such new technologies. However, meta-learning research is only just beginning, and its development still faces a series of challenges.

  The new generation of artificial intelligence is already here, and the foreseeable development trend is based on big data, centered on model and algorithm innovation, and supported by powerful computing power. The breakthrough of the new generation of artificial intelligence technology depends on the comprehensive development of other types of information technology, as well as the substantial progress and development of brain science and cognitive science. (Xu Zongben, academician of the Chinese Academy of Sciences and professor of Xi’an Jiaotong University)

現代國語:

數位化、網路化、智慧化是新一輪科技革命的突出特徵,也是新一代資訊科技的核心。數位化為社會資訊化奠定基礎,其發展趨勢是社會的全面數據化。資料化強調對資料的收集、聚合、分析與應用。網路化為資訊傳播提供實體載體,其發展趨勢是資訊物理系統(CPS)的廣泛採用。資訊物理系統不僅會催生出新的工業,甚至會重塑現有產業佈局。智慧化體現資訊應用的層次與水平,其發展趨勢為新一代人工智慧。目前,新一代人工智慧的熱潮已經來臨。

習近平同志在2018年兩院院士大會上的重要演講指出:「世界正進入以資訊產業為主導的經濟發展時期。我們要把握數位化、網路化、智慧化融合發展的契機,以資訊化、智慧化為槓桿培育新動能。

人類社會、物理世界、資訊空間構成了當今世界的三元。這三元世界之間的關聯與交互,決定了社會資訊化的特徵與程度。感知人類社會和物理世界的基本方式是數位化,連結人類社會與物理世界(透過資訊空間)的基本方式是網路化,資訊空間作用於物理世界與人類社會的方式是智慧化。數位化、網路化、智慧化是新一輪科技革命的突出特徵,也是新一代資訊科技的聚焦點。數位化為社會資訊化奠定基礎,其發展趨勢是社會的全面資料化;網路化為資訊傳播提供物理載體,其發展趨勢是資訊物理系統(CPS)的廣泛採用;智慧化體現資訊應用的層次與水平,其發展趨勢是新一代人工智慧。

數位化:從電腦化到資料化

數位化是指將資訊載體(文字、圖片、影像、訊號等)以數位編碼形式(通常是二進位)進行儲存、傳輸、加工、處理和應用的技術途徑。數位化本身指的是資訊表示方式與處理方式,但本質上強調的是資訊應用的電腦化和自動化。資料化(資料是以編碼形式存在的資訊載體,所有資料都是數位化的)除包括數位化外,更強調對資料的收集、聚合、分析與應用,強化資料的生產要素與生產力功能。數位化正從電腦化朝向資料化發展,這是當前社會資訊化最重要的趨勢之一。

資料化的核心內涵是對資訊科技革命與經濟社會活動交融生成的大數據的深刻認識與深層利用。大數據是社會經濟、現實世界、管理決策等的片段記錄,蘊含著片段化資訊。隨著分析技術與運算技術的突破,解讀這些片段化資訊成為可能,這使得大數據成為一項新的高新技術、一類新的科學研究範式、一種新的決策方式。大數據深刻改變了人類的思考方式和生產生活方式,為管理創新、產業發展、科學發現等多個領域帶來前所未有的機會。

大數據的價值生成有其內在規律(服從大數據原理)。只有深刻認識並掌握這些規律,才能提高自覺運用、科學運用大數據的意識與能力(大數據思維)。大數據的價值主要透過大數據技術來實現。大數據技術是統計學方法、電腦技術、人工智慧技術的延伸與發展,是正在發展中的技術,目前的熱點方向包括:區塊鏈技術、互通技術、存算一體化儲存與管理技術、大數據作業系統、大數據程式語言與執行環境、大數據基礎與核心演算法、大數據機器學習技術、大數據智慧技術、視覺化與人機互動分析技術、真偽判定與安全技術等。大數據技術的發展依賴一些重大基礎問題的解決,這些重大基礎問題包括:大數據的統計基礎與計算理論基礎、大數據計算的軟硬體基礎與計算方法、大數據推斷的真偽性判定等。

實施國家大數據戰略是推動資料化革命的重要途徑。自2015年我國提出實施國家大數據戰略以來,我國大數據快速發展的格局已初步形成,但也存在一些亟待解決的問題:數據開放共享滯後,數據資源紅利仍未得到充分釋放;企業贏利模式不穩定,產業鏈完整性不足;核心技術尚未取得重大突破,相關應用的技術水準不高;安全管理與隱私保護還存在漏洞,相關制度建設仍不夠完善;等等。目前,應採取有效措施解決制約我國大數據發展的瓶頸問題。

網路化:從網際網路到資訊物理系統

作為資訊化的公共基礎設施,網路已成為人們獲取資訊、交換資訊、消費資訊的主要方式。但是,網路關注的只是人與人之間的互聯互通以及由此帶來的服務與服務的互聯。

物聯網是互聯網的自然延伸和拓展,它透過資訊科技將各種物體與網路相連,幫助人們獲取所需物體的相關資訊。物聯網透過使用射頻識別、感測器、紅外線感應器、視訊監控、全球定位系統、雷射掃描器等資訊擷取設備,透過無線感測網路、無線通訊網路把物體與網路連接起來,實現物與物、人與物之間的即時資訊交換和通信,以達到智慧化識別、定位、追蹤、監控和管理的目的。互聯網實現了人與人、服務與服務之間的互聯, 而物聯網實現了人、物、服務之間的交叉互聯。物聯網的核心技術包括:感測器技術、無線傳輸技術、大量資料分析處理技術、上層業務解決方案、安全技術等。物聯網的發展將經歷相對漫長的時期,但可能會在特定領域的應用中率先取得突破,車聯網、工業互聯網、無人系統、智慧家庭等都是當前物聯網大顯身手的領域。

物聯網主要解決人對物理世界的感知問題,而要解決對物理對象的操控問題則必須進一步發展資訊物理系統(CPS)。資訊物理系統是一個綜合運算、網路和物理環境的多維複雜系統,它透過3C(Computer、Communication、Control)技術的有機融合與深度協作,實現對大型工程系統的即時感知、動態控制和資訊服務。透過人機交互接口,資訊物理系統實現計算進程與實體進程的交互,利用網路化空間以遠端、可靠、即時、安全、協作的方式操控一個實體實體。從本質上來說,資訊物理系統是一個具有控制屬性的網路。

不同於提供資訊互動與應用的公用基礎設施,資訊物理系統發展的聚焦點在於研發深度融合感知、運算、通訊與控制能力的網路化實體設備系統。從產業角度來看,資訊物理系統的涵蓋範圍小到智慧家庭網路、大到工業控制系統乃至智慧交通系統等國家級甚至世界級的應用。更重要的是,這種涵蓋並不僅僅是將現有的設備簡單地連在一起,而是會催生出眾多具有計算、通訊、控制、協同和自治性能的設備,下一代工業將建立在在資訊物理系統之上。隨著資訊物理系統技術的發展和普及,使用電腦和網路實現功能擴展的實體設備將無所不在,並推動工業產品和技術的升級換代,大大提高汽車、航空航太、國防、工業自動化、健康醫療設備、重大基礎設施等主要工業領域的競爭力。資訊物理系統不僅會催生出新的工業,甚至會重塑現有產業佈局。

智能化:從專家系統到元學習

智能化反映資訊產品的品質屬性。我們說一個資訊產品是智慧的,通常是指這個產品能完成有智慧的人才能完成的事情,或是已經達到人類才能達到的程度。智能一般包括知覺能力、記憶與思考能力、學習與適應力、行為決策能力等。所以,智能化通常也可定義為:使對象具備靈敏準確的感知功能、正確的思考與判斷功能、自適應的學習功能、行之有效的執行功能等。

智能化是資訊科技發展的永恆追求,實現這項追求的主要途徑是發展人工智慧技術。人工智慧技術誕生60多年來,雖歷經三起兩落,但還是取得了巨大成就。 1959—1976年是基於人工表示知識和符號處理的階段,產生了在一些領域具有重要應用價值的專家系統;1976—2007年是基於統計學習和知識自表示的階段,產生了各種各樣的神經網路系統;近幾年開始的基於環境自適應、自博弈、自進化、自學習的研究,正在形成一個人工智慧發展的新階段——元學習或方法論學習階段,這構成新一代人工智慧。新一代人工智慧主要包括大數據智慧、群體智慧、跨媒體智慧、人機混合增強智慧和類腦智慧等。

深度學習是新一代人工智慧技術的卓越代表。由於在人臉辨識、機器翻譯、棋類競賽等眾多領域超越人類的表現,深度學習在今天幾乎已成為人工智慧的代名詞。然而,深度學習拓樸設計難、效果預期難、機理解釋難是重大挑戰,還沒有一套堅實的數學理論來支持解決這三大難題。解決這些難題是深度學習未來研究的主要關注點。此外,深度學習是典型的大數據智能,它的可應用性是以存在大量訓練樣本為基礎的。小樣本學習將是深度學習的發展趨勢。

元學習有望成為人工智慧發展的下一個突破口。學會學習、學會教學、學會優化、學會搜尋、學會推理等新近發展的元學習方法以及「AlphaGo Zero」在圍棋方面的出色表現,展現了這類新技術的誘人前景。然而,元學習研究僅是開始,其發展還面臨一系列挑戰。

新一代人工智慧的熱潮已經來臨,可以預見的發展趨勢是以大數據為基礎、以模型與演算法創新為核心、以強大的運算能力為支撐。新一代人工智慧技術的突破依賴其他各類資訊技術的綜合發展,也依賴腦科學與認知科學的實質進步與發展。 (中國科學院院士、西安交通大學教授 徐宗本)

中國原創軍事資源:https://www.cac.gov.cn/2019-03/01/c_1124178478.htm

China’s Position Paper : Regulating Military Applications of Artificial Intelligence

中國的立場文件:規範人工智慧的軍事應用

現代英語:

The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.

AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.

Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.

Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.

We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.

To this end, we call for:

– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.

– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.

– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values ​​of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.

– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.

– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.

– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.

——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.

– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.

現代國語:

人工智慧技術的快速發展及其廣泛應用,正深刻改變人類生產和生活方式,為世界帶來巨大機會的同時,也帶來難以預測的安全挑戰。特別值得關注的是,人工智慧技術的軍事應用,在戰略安全、治理規則、道德倫理等方面可能產生深遠影響和潛在風險。

人工智慧安全治理是人類面臨的共同課題。隨著人工智慧技術在各領域的廣泛應用,各方普遍對人工智慧軍事應用甚至武器化風險感到擔憂。

在世界和平與發展面臨多元挑戰的背景下,各國應秉持共同、綜合、合作、永續的全球安全觀,透過對話與合作,就如何規範人工智慧軍事應用尋求共識,建構有效的治理機制,避免人工智慧軍事應用為人類帶來重大損害甚至災難。

加強對人工智慧軍事應用的規範,預防和管控可能引發的風險,有利於增進國家間互信、維護全球戰略穩定、防止軍備競賽、緩解人道主義關切,有助於打造包容性和建設性的安全夥伴關係,在人工智慧領域實踐建構人類命運共同體理念。

我們歡迎各國政府、國際組織、技術企業、科研院校、民間機構和公民個人等各主體秉持共商共建共享的理念,協力共同促進人工智慧安全治理。

為此,我們呼籲:

——戰略安全上,各國尤其是大國應本著慎重負責的態度在軍事領域研發和使用人工智慧技術,不謀求絕對軍事優勢,防止加劇戰略誤判、破壞戰略互信、引發衝突升級、損害全球戰略平衡與穩定。

——在軍事政策上,各國在發展先進武器裝備、提高正當國防能力的同時,應銘記人工智慧的軍事應用不應成為發動戰爭和追求霸權的工具,反對利用人工智慧技術優勢危害他國主權和領土安全的行為。

——法律倫理上,各國研發、部署和使用相關武器系統應遵循人類共同價值觀,堅持以人為本,秉持「智能向善」的原則,遵守國家或地區倫理道德準則。各國應確保新武器及其作戰手段符合國際人道法和其他適用的國際法,努力減少附帶傷亡、降低人員財產損失,避免相關武器系統的誤用惡用,以及由此引發的濫殺。

——在技術安全上,各國應不斷提昇人工智慧技術的安全性、可靠性和可控性,增強對人工智慧技術的安全評估和管控能力,確保相關武器系統永遠處於人類控制之下,保障人類可隨時中止其運作。人工智慧資料的安全必須得到保證,應限制人工智慧資料的軍事化使用。

——研發作業上,各國應加強對人工智慧研發活動的自我約束,在綜合考慮作戰環境和武器特性的基礎上,在武器全生命週期實施必要的人機互動。各國應時常堅持人類是最終責任主體,建立人工智慧問責機制,對操作人員進行必要的訓練。

——風險管控上,各國應加強對人工智慧軍事應用的監管,特別是實施分級、分類管理,避免使用可能產生嚴重負面後果的不成熟技術。各國應加強對人工智慧潛在風險的研判,包括採取必要措施,降低人工智慧軍事應用的擴散風險。

——規則制定上,各國應堅持多邊主義、開放包容的原則。為追蹤科技發展趨勢,防範潛在安全風險,各國應進行政策對話,加強與國際組織、科技企業、技術社群、民間機構等各主體交流,增進理解與協作,致力於共同規範人工智慧軍事應用並建立普遍參與的國際機制,推動形成具有廣泛共識的人工智慧治理框架和標準規範。

——國際合作上,已開發國家應協助發展中國家提升治理水平,考慮到人工智慧技術的軍民兩用性質,在加強監管和治理的同時,避免採取以意識形態劃線、泛化國家安全概念的做法,消除人為製造的科技壁壘,確保各國充分享有技術發展與和平利用的權利。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjb_673085/zzjg_673183/jks_674633/zclc_674645/rgzn/202206/t20220614_10702838.shtml

Talent Base, Research Content & Innovative Methods Enhanc Modernization of China’s Military Theory Under Empowerment of Science and Technology

人才基礎、研究內容與創新方法提昇科技賦能下的中國軍事理論現代化

現代英語:

Empowering military theory modernization with technology

■Chen Jihao and Liu Yangyue

At present, with the accelerated evolution of a new round of military revolution and the rapid development of disruptive military science and technology, the modernization of military theory has increasingly become a modernization that closely combines military theory with military science and technology and promotes the continuous innovation of military theory with the empowerment of science and technology. To accelerate the modernization of military theory, it is necessary to correctly recognize the development relationship between military science and technology and military theory, and explore the talent base, research content and innovation methods of the modernization of military theory under the empowerment of science and technology.

Cultivating innovative military theoretical talents led by science and technology

Talents are the main body of military theory innovation, and building a high-level, complex team of theoretical innovation talents is the key to realizing the modernization of military theory. Modern military theory research presents a situation of mutual intersection and deep integration of natural sciences and social sciences. It is necessary to cultivate a large number of military innovation talents with integrated science and technology, create a collaborative and open theoretical innovation organization model, and provide intellectual support for promoting the modernization of military theory.

First, military theory researchers must have a “scientific and technological mind” to enhance their understanding, application and discernment of science and technology. Military theory researchers must keep abreast of the latest developments in science and technology, use multidisciplinary cross-border thinking to understand the full meaning of science and technology, and tap the huge military potential of cutting-edge science and technology; they must focus on introducing scientific research methods into military theory research, borrow methods such as big data analysis to study military theory, combine qualitative research with quantitative research, and overcome the limitations of the original military theory research that is experience-oriented and lacks precision; at the same time, they must be good at identifying those “pseudo-sciences” that claim to be at the forefront of science and technology, and see through the technological “fog” released by competitors. Second, military science and technology researchers must have theoretical thinking. Military science and technology researchers should overcome the narrow-minded thinking of “technological determinism”, realize that natural sciences and social sciences are intertwined rather than diametrically opposed, and actively use scientific theories to guide military research. At the same time, they should focus on learning and studying advanced military theories, strengthen their understanding of the war situation and winning mechanism, and deepen their understanding of the application value and development trend of military technology. Thirdly, establish and improve the exchange and cooperation mechanism between theoretical talents and scientific and technological talents. Based on comprehensive research topics, experts from various fields can be widely drawn to form interdisciplinary joint research groups, give full play to their respective strengths, and ignite theoretical innovation sparks in constant cross-collisions. Different types of research units can also select personnel for cross-appointments, so as to encourage theoretical and scientific talents to learn from each other and grow together, open up disciplinary and innovation chains, and enhance the overall effectiveness of theoretical innovation.

Focus on science and technology-led military theory research content

Although there are some universal principles in military theory, the specific content will continue to change with the evolution of the times and practice. In today’s world, a new round of scientific and technological revolution and industrial revolution is advancing by leaps and bounds. The emergence of a series of high-tech technologies and their extensive application in the military field have triggered profound changes in the mechanisms, elements and methods of winning wars, providing new research objects for military theory research.

First, we need to study powerful enemies. The confrontational nature of war determines that military theory research must keep a close eye on the changes of powerful enemies and compete for the commanding heights of military theory. At present, the world’s major powers are stepping up the development of new operational concepts and tactics in response to cutting-edge technologies. Military theory research must adhere to the principle of “you fight yours, I fight mine”, and use the method of “dissecting sparrows” to clarify the opponent’s operational concepts, methods and capabilities. At the same time, we must keep a close eye on changes in science and technology, strengthen the development of new operational concepts, and achieve a transition from follow-up research to synchronization and then to catching up, so as to form an asymmetric balance of power in military theory. Secondly, we must study intelligent warfare. In today’s world, the development of disruptive cutting-edge technologies has promoted the evolution of war forms towards intelligence, and the temporal and spatial characteristics and offensive and defensive modes of war have undergone profound changes. Military theory research should focus on intelligent warfare, accurately grasp the laws and characteristics of intelligent warfare, actively predict the impact of science and technology on future wars, and realize the transformation from passive adaptation to active design of war. Thirdly, we should study new quality combat power. The development of science and technology has given rise to new quality combat power, changed the combination of people and weapons, and directly contributed to the birth of new quality combat power. For example, in the future battlefield, human-machine integrated joint combat actions will become an important combat mode, and it will be possible for a small number of soldiers to lead a large number of “bee swarms”, “fish swarms” and ” ant swarms” to conduct intelligent cluster combat. Military theory research should focus on new types of combat capabilities, seize opportunities in emerging fields, take the initiative, and proactively explore the generation paths and release patterns of new types of combat capabilities. Advanced theories should be used to guide and drive the construction of new types of combat forces in new domains, providing theoretical support for accelerating the incubation and generation of new types of combat capabilities.

Create a military theory research paradigm supported by science and technology

The intelligent science paradigm is called the “fifth paradigm” of scientific research. It is a cross-domain scientific research paradigm supported by artificial intelligence technology, integrating human values ​​​​and knowledge, and characterized by human-machine integration. Entering the era of intelligence, big data and artificial intelligence are developing rapidly, requiring the “intelligent factor” to be organically integrated into the practice of military theoretical research in an all-round way, opening up the “fifth paradigm” of military theoretical research.

First, explore data-centric research methods. Artificial intelligence technology can comprehensively collect battlefield intelligence data on a large scale, efficiently screen and integrate multi-source data, and realize nonlinear coupling and complex correlation of cross-domain and cross-scenario data. We must give full play to the powerful functions of artificial intelligence technology in multi-dimensional data collection and multi-dimensional data processing, open up the data links between military theories, technologies, equipment and other elements, and realize data-centric cross-domain synergy and efficiency among various research elements, and connect the “underlying channel” of the integration of theory and technology. Secondly, innovate the research model of human-machine collaboration. With the continuous improvement of the intelligence level of machines, the research model of ” human-host-machine-slave” has gradually changed to “human-machine integration.” The global knowledge and associative prediction capabilities of artificial intelligence are helping researchers break through the limitations of traditional thinking, eliminate traditional field divisions, and open up a ” brainstorm” in military theory research. We need to explore innovative models for deep integration of humans and machines, establish a dynamic feedback mechanism for positive-sum games, combine researchers’ nonlinear abstract thinking with the powerful computing power of machines, and achieve knowledge integration and communication, dynamic simulation and deduction, forward-looking analysis and decision-making, providing the greatest wisdom increment for military theory research. Secondly, create a “pre-practice” platform for military theory. Practice is the “touchstone” for testing the results of military theory. Only by constantly moving from practice to theory and then to practice can we achieve a spiral rise in military theory. On the one hand, we can use advanced scientific and technological means such as virtual reality technology and artificial intelligence technology to build a virtual experimental platform, simulate and simulate combat scenarios and combat power generation processes through deduction, analysis, evaluation and other means, and test the practicality and operability of conceptual design in a realistic experimental environment, so as to continuously improve and develop military theory; we can also use generative artificial intelligence to generate “semi-factual” combat scenarios, directly display the combat process and results in a visual way, inspire the thinking of military theorists, and shorten the new theory generation cycle. On the other hand, comprehensive live-fire training activities are used to conduct comprehensive combat experiments under the preset future battlefield environment and combat conditions, which complement virtual experiments and provide more reliable pre-practice quantitative data to verify and develop military theories in an environment closer to actual combat.

現代國語:

以科技賦能軍事理論現代化

■陳紀豪 劉楊鉞

當前,隨著新一輪軍事革命的加速演進和顛覆性軍事科技的高速發展,軍事理論現代化日益成為軍事理論與軍事科技緊密結合、以科技賦能推動軍事理論不斷創新的現代化。加速軍事理論現代化,需要正確認識軍事科技與軍事理論的發展關系,探索科技賦能下軍事理論現代化的人才基礎、研究內容與創新方法。

培養科技引領的軍事理論創新人才

人才是軍事理論創新的主體,建立一支高層次複合型的理論創新人才隊伍是實現軍事理論現代化的關鍵。現代軍事理論研究呈現自然科學與社會科學相互交叉、深度融合的局面,需要培養大量理技融合型軍事創新人才,打造協同開放的理論創新組織模式,為推動軍事理論現代化提供智力支持。

首先,軍事理論研究人員要有“科技頭腦”,增強對科技的理解力、運用力和鑑別力。軍事理論研究人員要及時掌握最新的科技發展動態,利用多學科交叉的跨界思維理解科技中蘊含的全部意義,發掘前沿科技的巨大軍事潛力;要注重將科學研究的方法引入軍事理論研究,借鑑大數據分析等方法來研究軍事理論,將定性研究和定量研究結合起來,克服原有軍事理論研究經驗主導和精確性不足的局限;與此同時,還要善於識破那些打著科技前沿名號的“偽科學”,看清競爭對手釋放的科技“迷霧”。其次,軍事科技研究人員要有理論思維。軍事科技研究人員要克服「技術決定論」的狹隘思維,認識到自然科學和社會科學是相互交織而非截然對立的,主動用科學的理論去指導軍事科研,同時注重對先進軍事理論的學習和研究,加強對戰爭形態和製勝機理的認識,深化對軍事技術應用價值和發展趨勢的理解。再次,建立健全理論人才與科技人才的交流合作機制。可綜合性研究課題為牽引,廣泛抽調各領域專家組成跨學科聯合課題研究組,發揮各自特長,在不斷地交叉碰撞之中點燃理論創新火花。不同類型的研究單位還可以互相選派人員進行交叉任職,促使理論人才和科技人才相互借鑑、共同成長,打通學科鏈、創新鏈,提升理論創新整體效能。

聚焦科技主導的軍事理論研究內容

軍事理論中雖然有著一些古今通用的原理,但具體內容會隨著時代和實踐的演進而不斷變化。當今世界,新一輪科技革命和產業革命突飛猛進,一系列高新技術的出現和在軍事領域的廣泛運用,引發戰爭制勝機理、制勝要素和製勝方式的深刻變化,為軍事理論研究提供了新的研究對象。

首先,要研究強敵對手。戰爭的對抗性決定了軍事理論研究必須緊盯強敵之變,爭奪軍事理論制高點。當前,世界主要大國正在針對前沿科技加緊開發新的作戰概念與戰術戰法,軍事理論研究要堅持“你打你的,我打我的”,以“解剖麻雀”的方式把對手的作戰概念、作戰方式和作戰能力搞清楚。同時要緊盯科技之變,加強開發新的作戰概念,實現從跟進研究到同步再到趕超,在軍事理論上形成非對稱制衡優勢。其次,要研究智能化戰爭。當今世界,顛覆性前沿科技的發展助推戰爭形態朝向智慧化演進,戰爭的時空特性和攻防模式已經發生深刻改變。軍事理論研究要聚焦智慧化戰爭,精確掌握智慧化戰爭規律與特點,積極預測科技對未來戰爭的影響,實現從被動適應戰爭轉變為主動設計戰爭。再次,要研究新質戰鬥力。科技的發展催生了新質作戰力量,改變了人和武器的結合方式,直接促成了新質戰鬥力的誕生。例如,未來戰場人機一體的聯合作戰行動將成為重要作戰樣態,極少數士兵帶領數量龐大的「蜂群」「魚群」「蟻群」進行智慧集群作戰成為可能。軍事理論研究要聚焦新質戰鬥力,在新興領域中抓住機遇,下好先手棋、打好主動仗,前瞻探索新質戰鬥力的生成路徑和釋放規律,以先進理論牽引拉動新域新質作戰力量建設,為加速新質戰鬥力的孵化與生成提供理論支撐。

打造科技支撐的軍事理論研究範式

智慧科學範式被稱為科學研究的“第五範式”,是一種以人工智慧技術為支撐,以融入人的價值和知識為手段,以人機共融為特徵的跨領域科學研究規範。進入智能化時代,大數據和人工智慧發展迅速,要求把「智能因子」全方位有機融入軍事理論研究實踐之中,開啟軍事理論研究的「第五範式」。

首先,探索以數據為中心的研究方法。人工智慧技術能夠大幅蒐集戰場情報數據,高效篩选和整合多源數據,實現跨域和跨場景數據非線性耦合和復雜關聯。要充分發揮人工智慧技術多元資料蒐集與多維資料處理的強大功能,打通軍事理論、技術、裝備等各要素之間的資料鏈路,實現各研究要素間以資料為中心的跨域協同增效,貫通理技融合的「底層通道」。其次,創新人機協同的研究模式。隨著機器智慧化程度的不斷提高,「人體主機從」的研究模式逐漸轉變為「人機融合」。人工智慧的全局知識和關聯預測能力正在幫助研究者突破傳統思維局限,消弭傳統領域分割,開啟軍事理論研究的「頭腦風暴」。要探索人機深度融合的創新模式,建立正和博弈的動態回饋機制,將研究者的非線性抽象思維與機器的強大算力優勢結合起來,實現知識整合與貫通、動態模擬與推演、前瞻分析及決策,為軍事理論研究提供最大智慧增量。再次,打造軍事理論「預實踐」平台。實踐是檢驗軍事理論成果的“試金石”,只有不斷地從實踐到理論再到實踐,才能實現軍事理論螺旋式上升。一方面,利用虛擬現實技術、人工智慧技術等先進科技手段建立虛擬實驗平台,透過推演、分析、評估等手段對作戰場景和戰鬥力生成過程進行模擬和模擬,在逼真的實驗環境中檢驗概念設計的實用性和可操作性,從而不斷完善和發展軍事理論;還可以利用生成式人工智慧生成「半事實」的作戰場景,以可視化的方式來直接展現戰鬥過程和結果,啟發軍事理論人員思維,縮短新理論生成週期。另一方面,綜合運用實兵演訓活動,在預設的未來戰場環境和作戰條件之下,進行綜合性作戰實驗,與虛擬實驗相互補充,提供更為可靠的預實踐量化數據,在更為接近實戰化的環境之中驗證與發展軍事理論。

中國原創軍事資源:http://www.81.cn/ll_208543/16361834.html

Xi Jinping’s Thought on Strengthening the Chinese Army丨On Building an Innovative People’s Army: Only Innovators Win

習近平強軍思想丨論建立創新人民軍隊:創新者勝

現代英語:

Only innovators win – on building an innovative people’s army

  1. Why is innovation the core competitiveness of an army?

The 19th CPC National Congress clearly proposed the epoch-making proposition of “building an innovative people’s army”, which is the first time in the history of the Party. From proposing to accelerate the construction of an innovative country to proposing to build an innovative people’s army, our Party has emphasized that innovation should be placed at the core of the overall national development and the overall military construction and development, highlighting the extreme importance and practical urgency of innovation for a strong country and a strong army. Innovation is the soul of a country’s development and progress, and it is also the soul of an army’s development and progress. To grasp innovation is to grasp development, and to plan for innovation is to plan for the future. President Xi Jinping stressed that innovation capability is the core competitiveness of an army, and that we must thoroughly implement the innovation-driven development strategy and increase the contribution of innovation to the growth of combat effectiveness.

The military field is the field with the most innovative vitality and the most need for innovative spirit. Marxism believes that war develops earlier than peace, and the military is in a leading position in many aspects of human activities. Advanced technologies are often first applied to the military field. At the same time, the military field is the field with the most intense competition and confrontation. There is always a life-and-death contest between the enemy and us, between attack and defense, spear and shield, and a war drama of wits and courage. If you are one step ahead of others in innovation, you can control others instead of being controlled by them. As Engels said, “Every great commander in the history of war who has created a new era by adopting new methods of warfare has either invented new material means himself, or has been the first to discover the correct method of applying new material means invented before him.” At the end of the 16th century, the British Navy applied new battleships and innovative naval tactics to defeat the Spanish “Invincible Fleet” in one fell swoop, ushering in an era of maritime hegemony; in the late 19th century and early 20th century, Germany applied the latest achievements of the Second Industrial Revolution to military construction and built the most densely populated railway network in Europe, greatly improving the military’s combat readiness and mobility. History has shown that only innovators can advance, become strong and win. Those who are conservative and complacent will miss precious opportunities and fall into strategic passivity.

Innovation capability is an accelerator for generating and improving combat effectiveness. The core of combat effectiveness is people. If people have strong innovation capability, they can “empower” various elements of combat effectiveness, thereby achieving the upgrade of combat effectiveness and forming the “optimal solution” to defeat the enemy. In the final analysis, the competition in war is the competition of innovation capability of both combatants, and the gap in combat capability is essentially the gap in innovation capability. In 1806, the Prussian army was defeated by the French army led by Napoleon in the Battle of Jena. Clausewitz, who participated in the battle, pointed out in summarizing the reasons for the Prussian army’s defeat that middle and senior officers rarely realized that the characteristics of war had undergone fundamental changes. “The Battle of Jena is not only an example of outdated style, but also an example of extreme lack of imagination caused by sticking to the old ways.” The lack of imagination reflects the shortcomings of innovation. If the innovation ability is improved, it will accelerate the formation of new driving forces for the development of combat effectiveness, maximize the vitality of various elements of combat effectiveness, and promote the geometric growth of combat effectiveness.

Our army has come to where it is today through innovation, and we will also rely on innovation to win the future. In the process of combining Marxist military theory, the practice of China’s revolutionary war and the construction of the people’s army, and the traditional Chinese military tactics, our party has relied on continuous innovation to gradually form a complete set of principles and systems for building and governing the army, created the strategy and tactics of the people’s war, and formed the unique advantages of our army. It can be said that innovation has been deeply integrated into the red blood of the people’s army and has become the most distinctive spiritual endowment of our army. In today’s era, a new round of scientific and technological revolution, industrial revolution, and military revolution are accelerating, providing us with a rare opportunity to catch up with the latecomers, and also putting forward higher requirements for our comprehensive implementation of the innovation-driven development strategy. In the past, the development of our military construction was mainly driven by investment factors, which was necessary under certain historical conditions. However, today, it is difficult to continue to rely on large-scale investment increases, which has limited effects and diminishing marginal utility. To keep up with the pace of world military development, break through the bottleneck constraints of military construction, and comprehensively create new development advantages, what is most needed is innovation, and the fundamental way out lies in innovation. We must start the new engine of innovation-driven development at full speed, make great efforts to grasp theoretical innovation, scientific and technological innovation, scientific management, talent gathering, and practical innovation, and establish a set of new military theories, organizational structures, equipment systems, strategies and tactics, and management models that are adapted to the requirements of informationized warfare and mission fulfillment, promote changes in the quality, efficiency, and driving force of our military construction and develop, truly accelerate, build high quality, and speed up the effective supply of advanced combat capabilities.

  1. Why should we vigorously promote the innovation of Marxist military theory?

In May 1938, the nationwide war of resistance had been going on for 10 months. Facing the massive attack of the Japanese army, the “national destruction theory” and “quick victory theory” were once very popular. Can China achieve the final victory? How can it achieve victory? How will the course of the war develop? These questions troubled people’s minds. At the critical juncture of the survival of the Chinese nation, Comrade Mao Zedong published the famous “On Protracted War”, which was like a ray of light, giving great encouragement and confidence to the anti-Japanese soldiers and civilians who were fighting hard. All problems of the hostility between the two armies depend on war to be solved. A strong army must be guided by scientific theory. President Xi pointed out that we should vigorously promote the innovation of Marxist military theory, accelerate the formation of a military theory system that is contemporary, leading and unique, and provide scientific theoretical support for the practice of strengthening the military.

Scientific military theory is combat effectiveness. Military theory is a rational understanding and knowledge system about war, the army and national defense. Scientific military theory reveals the laws of war, the laws of war guidance and the laws of army building, guides the construction and use of military forces, has a profound impact on the elements of combat effectiveness, and leads the development of military practice. After the end of World War I, British military theorist Fuller proposed the theory of mechanized warfare, but it was not taken seriously. In the early days of World War II, the German army swept across Europe because of the tank cluster and the “blitzkrieg” theory. Although the weapons and equipment of the British and French armies at that time were almost the same as those of the German army, due to the obsolete and rigid combat theories, the British and French coalition forces soon fell into passivity and could only retreat from Dunkirk, and France quickly fell. Looking back at the history of military development, theoretical innovation has played a significant leading role in practical innovation. Mahan’s “sea power” theory, Douhet’s “air supremacy” theory, Tukhachevsky’s “deep and deep operations” theory, Graham’s “high frontier” theory, etc., have all led the military trend, promoted military reforms, and changed the face of war. “Thoughts precede actions, just as lightning precedes thunder.” Advanced military theory is an ideological weapon that correctly guides war. Whoever is one step ahead in military theory innovation is more likely to seize the initiative to win.

The key to the continuous growth and development of the People’s Army is that it always adheres to the guidance of advanced military theory. One of the important reasons why our army can fight and win battles is that it wins in theory and strategy, learns war from war, and explores laws from practice. During the Jinggangshan struggle period, our party developed the strategy and tactics of guerrilla warfare based on the characteristics of the enemy’s strength and our weakness, and preserved and developed itself. During the War of Resistance Against Japanese Aggression , our party implemented the strategic policy of “basically guerrilla warfare, but not relaxing mobile warfare under favorable conditions”, dealt a heavy blow to the Japanese invaders, and strengthened and developed itself. During the Liberation War, our party did not care about the gains and losses of a city or a place, and exchanged space for time, and concentrated superior forces to fight a war of destruction, defeated the Kuomintang army, and ushered in the birth of New China. After Chiang Kai-shek retreated to Taiwan, he reflected on the military competition between the Kuomintang and the Communist Party for decades, saying that the reason why the Communist army was able to win the war was because it emphasized the distinction between the extraordinary and the orthodox, the virtual and the real, and the application of changes, and constantly promoted innovation. In long-term practice, our party has combined the basic principles of Marxism with the practice of China’s revolutionary war and the construction of the people’s army, created Marxist military theoretical achievements with Chinese characteristics, and formed Mao Zedong’s Military Thought , Deng Xiaoping’s Thought on Military Construction in the New Era, Jiang Zemin’s Thought on National Defense and Army Construction, Hu Jintao’s Thought on National Defense and Army Construction, and Xi Jinping’s Thought on Strengthening the Army, providing a scientific guide for winning the victory of China’s revolutionary war and promoting the modernization of national defense and the army.

Knowledge Links

Ten Military Principles

In December 1947, Comrade Mao Zedong put forward ten major military principles in his report “The Current Situation and Our Tasks”, the main contents of which are summarized as follows: (1) First attack the dispersed and isolated enemy, then attack the concentrated and powerful enemy. (2) First capture small cities, medium-sized cities and vast rural areas, then capture large cities. (3) The main goal is to destroy the enemy’s living forces, not to preserve or seize cities and places. ( 4) In every battle, concentrate an absolutely superior force to encircle the enemy on all sides, strive to completely destroy it and not let any escape. (5) Do not fight a battle without preparation or without confidence every battle, we should strive to be prepared and strive to be sure of victory based on the comparison of the enemy’s conditions and ours. (6) Carry forward the style of fighting bravely, fearing no sacrifice, fearing no fatigue, and engaging in continuous fighting. (7) Strive to destroy the enemy in the process of movement. At the same time, focus on positional attack tactics and seize the enemy’s strongholds and cities. (8) In the matter of siege, all enemy strongholds and cities with weak defenses must be seized resolutely. enemy strongholds and cities with moderate defenses and conditions that allow them to be seized must be seized immediately. All enemy strongholds and cities with strong defenses must be seized only when conditions are ripe. (9) Capture all the enemy’s weapons and most of the enemy’s personnel to replenish our own forces. (10) Make good use of the interval between two campaigns to rest and retrain the troops.

New military practice calls for new military theory. Theory comes from practice, and practice is the driving force for the development of theory. Military theory can only maintain strong vitality if it keeps up with the times and responds to practice. In recent years, emerging fields and battlefield space have been continuously expanded, high-tech has penetrated into the military field in many ways, the war form and combat methods have accelerated evolution, and new war and combat theories have emerged in an endless stream. The US military has proposed “network-centric warfare”, “global rapid strike”, and “all-domain warfare”, the Russian military has proposed “non-nuclear containment strategy” and “strategic air and space campaign”, and the Japanese Self-Defense Forces have proposed the “cross-domain defense” theory, etc., all of which are aimed at winning new military advantages through theoretical innovation. The rapid development of the new military revolution in the world and the in-depth advancement of our military strengthening and military rejuvenation practices have put forward urgent requirements for innovation in military theory and provided broad space. Our military construction and development are facing a large number of new situations and new problems, which urgently need to be answered theoretically. Whether it is innovation in military strategy, innovation in military science and technology, or innovation in other aspects of military, they are inseparable from theoretical guidance. It is imperative and urgent to accelerate the modernization of military theory. We must have a broader vision and a longer-term perspective, firmly grasp the issues of war and combat, promote innovation in military theory, and constantly open up new horizons for the development of contemporary Chinese Marxist military theory.

41. Why is science and technology the core combat capability?

In February 2018, a brand-new organization in the Chinese military, the Military Scientific Research Steering Committee of the Central Military Commission, was formally established. Together with the previously established Science and Technology Committee of the Central Military Commission, a new top-level structure for military scientific research work was established. The Academy of Military Sciences has been reorganized and reorganized. With the Academy of Military Sciences as the leader, the military and military scientific research institutions as the backbone, and the scientific research forces of colleges and troops as the auxiliary, our military’s new scientific research system is accelerating to take shape. This series of major measures marks a new step taken by our army on the road to strengthening the military through science and technology, and shows that our party’s understanding of the strategic position of science and technology in national defense and military construction has risen to a new height. President Xi profoundly pointed out that science and technology are the core combat effectiveness, and to promote the modernization of national defense and the military, we must activate the powerful engine of scientific and technological innovation.

Science and technology are the most active and revolutionary factors in military development. Marxism believes that science is a “powerful lever of history” and a “revolutionary force in the highest sense.” Scientific and technological progress not only profoundly changes human production and lifestyle, but also profoundly affects the direction of world military development, and fundamentally promotes the military development process in all aspects. Engels pointed out: “As soon as technological advances can be used for military purposes and have been used for military purposes, they immediately, almost forcibly, and often against the will of the commander, cause changes or even revolutions in the way of combat.” Looking at the world In the history of military development, the main technologies supporting military struggles include bronze smelting and iron casting in the cold weapon age, gunpowder and firearm manufacturing in the hot weapon age, internal combustion engines and electricity in the mechanization age, and computers and communications in the information age. The widespread application of science and technology in the military field will inevitably lead to profound changes in the shape of war and methods of combat. Every major scientific and technological innovation in history has initiated a new military revolution, and every military revolution has pushed military development into a new era.

Science and technology are an important basis for generating and improving combat effectiveness. The basic components of combat effectiveness are people, weapons and equipment, and the combination of people and weapons and equipment. Science and technology are not independent elements of combat effectiveness, but they are always integrated into and condensed into various elements of combat effectiveness in various ways and forms, greatly promoting the generation and improvement of combat effectiveness. From a human perspective, in the development chain of “physical fitness-skill-intelligence” of military personnel, scientific and technological quality increasingly constitutes the most important factor in their overall quality. Without high scientific and technological literacy and military skills, even weapons and equipment cannot be operated. No, let alone being able to fight and win wars. From the perspective of weapons and equipment, it is the physical manifestation of science and technology in the military field. Science and technology have become a “multiplier” for the combat effectiveness of weapons and equipment. From the perspective of the integration of people and weapons and equipment, science and technology have spawned new military theories and prompted the continuous adjustment and reform of the military system. They are the “catalyst” to achieve the optimal combination of people and weapons and equipment. Generally speaking, the development and progress of science and technology is the main force that promotes the demise of the elements of the old combat effectiveness system and the construction of new combat effectiveness system elements, greatly shortening the cycle of generating and improving combat effectiveness, and promoting the leap of new quality combat effectiveness.

Science and technology have an increasing impact on the outcome of modern wars. At present, science and technology are developing faster and faster, and global scientific and technological innovation is unprecedentedly active. Major powers regard seizing scientific and technological advantages as a strategic measure to seek military advantage. The military game between great powers is largely reflected in technological subversion and counter-subversion, raids and counter-raids, offsets and counter-offsets. Once some technologies achieve breakthroughs, their impact will be disruptive, and may even fundamentally change the shape and methods of warfare, and fundamentally change the traditional offensive and defensive pattern of war. We are in a period of historical convergence where the world’s scientific and technological revolution and military revolution are developing rapidly, and the cause of strengthening and rejuvenating the military is in-depth advancement. Technology has never had such a profound impact on the overall national security and military strategy as it does today, and has never had such a profound impact on the construction and development of our military as it does today. We must promote high-level scientific and technological self-reliance and self-reliance, give full play to the strategic supporting role of science and technology in our military construction, put national defense scientific and technological innovation in a more prominent position, adhere to the strategic basis of independent innovation, enhance scientific and technological awareness, innovation, and application capabilities, and strive to Seize the initiative in military development and the right to win future wars.

▶A big country like ours and an army like ours must take the initiative through independent innovation.

▶Real core and key technologies cannot be bought with money. Importing weapons and equipment is unreliable, and importing imitations will not go far.

▶Independent innovation must be fought for, and this battle must be won.

42. How to understand the promotion of a military management revolution centered on effectiveness?

In June 2020, with the approval of the Central Military Commission, the entire military held a strategic management training. This was the first high-level, large-scale training event organized by our military with strategic management as the theme. More than a month later, during the 22nd collective study session of the Political Bureau of the 19th CPC Central Committee, President Xi clearly pointed out that it is necessary to update management concepts, improve strategic literacy, improve systems and mechanisms, smooth strategic management links, and substantively advance military management revolution. Since the 18th National Congress of the Communist Party of China, the Party Central Committee and the Central Military Commission have placed the strengthening of military management in a strategic position, actively built a new military management system, and started a new process of revolution in our military management in the new era.

Whether the army can fight and win wars, management often plays a key role. No matter how good the theoretical guidance of an army is, no matter how good the weapons and equipment are, and no matter how many combatants there are, if the management is in a mess and all the elements cannot integrate and play a role, it will not be able to win the war, and it may even be impossible to win the war. Scientific and efficient management is of great significance for reducing military construction costs, improving military system operation efficiency, and enhancing combat effectiveness. During the Gulf War, the U.S. Department of Defense shipped about 40,000 containers to the frontline armies. Due to imprecise management and inaccurate support, many material categories and recipient information were unknown. More than 20,000 of them had to be reopened and counted until the end of the war. There are still more than 8,000 containers that have not been opened. Modern war practice has fully proved that as the military organizational structure becomes increasingly complex, professional division of labor becomes more refined, and military operations become more systematic, this requires us to pay more attention to the role of management in military operations and construction and improve the professionalization of military management. , refined and scientific level.

The purpose of the military management revolution is to improve the operational efficiency of military systems and the efficiency of the use of national defense resources. Military management is the overall and basic work of national defense and military construction. Its essence is to organically integrate all military units and elements to fundamentally improve the effectiveness of combat effectiveness. Extensive management is a prominent problem that has long restricted the development of our military’s construction. In particular, our military’s construction is at a critical stage of accelerating shifting gears and improving quality and efficiency. In addition, the construction management model has undergone great changes after the reform, and the promotion of efficiency-oriented The core military management revolution and improving the precision-oriented management system are the inevitable choices for strengthening the scientific management of the military. With efficiency as the core, all management practices are inherently required to adhere to quality first, efficiency first, and strive to increase the effective supply of combat effectiveness. To be precision-oriented means to achieve precise planning, precise planning, precise deployment, precise implementation, and precise inspection, and to apply the principle of precision throughout the entire process of all aspects of management. In advancing the reform of military policies and systems, our army has implemented fundamental changes in traditional management methods and proposed reform measures in strategic management, military expenditure management, organizational management, equipment management, material management, and troop education management. The purpose is to form a precise An efficient, comprehensively standardized, and rigidly constrained military management policy system will improve the operational efficiency of the military system, the effectiveness of the use of national defense resources, and the effectiveness of the construction and application of military forces.

Military management must tightly grasp the pivot of strategic management. As the highest-level management of national defense and military construction, strategic management is a macro-management activity that manages the overall situation, long-term management, and major events. It plans and designs the investment of military resources from the top level. Whether strategic management is scientific or not directly affects the quality and efficiency of national defense and military construction. Back then, we achieved “two bombs and one satellite” under very difficult circumstances. We spent much less money than foreign countries, but the efficiency was very high. The important reason was that we gave full play to our country’s institutional advantages and used systems engineering methods to organize In order to carry out this work, a unique strategic management mechanism was explored. Today’s acceleration of national defense and military modernization requires further strengthening of strategic management. A new strategic management system has been established, but the relevant systems and mechanisms are not yet complete. We must adhere to goal orientation, problem orientation, and result orientation, and further open up the strategic management link of “demand-planning-budget-execution-evaluation”. Among them, demand is the driving force, clarifying the direction and requirements of combat capabilities; planning is the leading role, determining construction goals and tasks and resource allocation; budget is the key, and is the “funding version” of the planning plan; execution is the focus, which is the implementation of construction projects and the allocation of resources. The application of input; evaluation is the support and the measurement of construction quality and efficiency. By improving the strategic management link, demand-driven planning and planning-led resource allocation will become rigid constraints on our military’s construction, forming a smooth and efficient strategic management closed loop to promote the high-quality development of our military’s construction.

現代國語:

唯創新者勝-關於建設創新型人民軍隊

39.為什麼說創新是軍隊的核心競爭力?

黨的十九大明確提出「建設創新人民軍隊」的劃時代命題,這在黨的歷史上還是第一次。從提出加速建設創新國家到提出建設創新型人民軍隊,我們黨強調要把創新置於國家發展全局和軍隊建設發展全局的核心位置,凸顯了創新的極端重要性和現實意義。刻不容緩。創新是一個國家發展進步的靈魂,也是一支軍隊發展進步的靈魂。抓創新就是抓發展,謀創新就是謀未來。習近平主席強調,創新能力是軍隊的核心競爭力,必須深入實施創新驅動發展策略,提高創新對戰鬥力成長的貢獻。

軍事領域是最具創新活力、最需要創新精神的領域。馬克思主義認為,戰爭早於和平發展,軍隊在人類活動的許多方面處於主導地位。先進技術往往首先應用於軍事領域。同時,軍事領域又是競爭和對抗最激烈的領域。敵我之間、攻與守、矛與盾之間,始終存在著一場你死我活的較量,一場鬥智的戰爭大戲。如果你在創新上領先別人一步,你就能控制別人而不是被別人控制。正如恩格斯所說:「戰爭史上每一位採用新戰爭方法開創新時代的偉大統帥,要么是他自己發明了新的物質手段,要么是第一個發現了運用前人發明的新物質手段的正確方法。 16世紀末,英國海軍運用新型戰艦和創新海軍戰術,一舉擊敗西班牙“無敵艦隊”,開啟了海上霸權時代; 19世紀末20世紀初,德國將第二次工業革命的最新成果運用到軍事建設中,建造了歐洲人口最密集的鐵路網,大大提高了軍隊的戰備性和機動性。歷史證明,只有創新者才能前進,只有創新者才能強大,只有創新者才能獲勝。保守、自滿的人就會錯失寶貴的機遇,陷入戰略被動。

創新能力是產生和提高戰鬥力的加速器。戰鬥力的核心是人。人如果擁有強大的創新能力,就可以對戰鬥力的各個要素進行“賦能”,從而實現戰鬥力的升級,形成克敵制勝的“最優方案”。戰爭的競爭歸根到底是參戰雙方創新能力的競爭,作戰能力的差距本質上就是創新能力的差距。 1806年,普魯士軍隊在耶拿戰役中被拿破崙率領的法軍擊敗。參與戰鬥的克勞塞維茨在總結普魯士軍隊失敗的原因時指出,中高級軍官很少意識到戰爭的特徵已經發生了根本性的變化。 「耶拿戰役不僅是風格落伍的一個例子,也是因循守舊而導致想像力極度缺乏的一個例子。”想像力的缺乏體現了創新的短板。創新能力提高,將加速形成戰鬥力發展新動能,最大限度激發戰鬥力各要素活力,推動戰鬥力幾何級增長。

我軍靠創新走到了今天,我們也將靠創新贏得未來。在馬克思主義軍事理論同中國革命戰爭和人民軍隊建設實踐與中國傳統軍事戰術相結合的過程中,我們黨依靠不斷創新,逐步形成了一整套建設和建設軍隊的完整原則和體系。了人民戰爭的戰略戰術,形成了我軍的獨特優勢。可以說,創新已經深深融入人民軍隊的紅色血液,成為我軍最鮮明的精神稟賦。當今時代,新一輪科技革命、產業革命、軍事革命正在加速推進,為我們提供了後來者追趕的難得機遇,一個地方,一個地方,以空間換時間,集中優勢兵力打一場毀滅性戰爭,打敗了國民黨軍隊,迎來了新中國的誕生。蔣介石退守台灣後,反思國共幾十年的軍事競爭,說共軍之所以能打贏戰爭,是因為強調了非凡與普通的區別。我們黨在長期實踐中,把馬克思主義基本原理同我國革命戰爭和人民軍隊建設實踐結合起來,創造了中國特色馬克思主義軍事理論成果,形成了毛澤東軍事思想、鄧小平軍事思想。國防與軍隊建設思想、胡錦濤國防與軍隊建設思想、習近平強軍思想,為贏得我國革命戰爭勝利、促進國防與軍隊現代化。

知識連結

十大軍事原則

1947年12月,毛澤東同志在《當前形勢和我們的任務》報告中提出了十大軍事原則,其主要內容概括如下:(一)先打擊分散、孤立的敵人,再打擊集中的敵人。的敵人。 (2)先攻占小城市、中等城市和廣大農村,然後攻占大城市。 (3)主要目標是消滅敵人的生力軍,而不是保全或奪取城市和地方。 (四)每次戰鬥,集中絕對優勢兵力,對敵人進行四麵包圍,力爭徹底殲滅,不放過敵人。 (五)不打無準備的仗,每戰都沒有信心,要努力做好準備,根據敵我情況的比較,力爭必勝。 (六)發揚勇猛、不怕犧牲、不怕疲倦、持續戰鬥的作風。 (7)力爭在運動過程中消滅敵人。同時,注重陣地攻擊戰術,奪取敵方據點和城市。 (八)在攻城方面,凡是敵方據點和防禦薄弱的城市,必須堅決奪取。凡是防禦力中等、條件允許奪取的敵人據點和城市,必須立即奪取。凡是敵人的據點和防禦堅固的城市,只有在條件成熟時才可以攻克。 (九)繳獲敵軍全部武器及大部分人員,以補充己方兵力。 (十)充分利用兩次戰役之間的間隙,對部隊進行休息和再訓練。

新的軍事實踐呼喚新的軍事理論。理論來自於實踐,實踐是理論發展的動力。軍事理論只有與時俱進、回應實踐,才能維持旺盛的生命力。近年來,新興領域和戰場空間不斷拓展,高新技術多方式滲透到軍事領域,戰爭形態和作戰方式加速演變,新的戰爭和作戰理論層出不窮。美軍提出“網路中心戰”、“全球快速打擊”、“全局戰”,俄軍提出“非核遏制戰略”、“戰略空天戰役”,日本提出“戰略空天作戰”。防禦」理論等,都是為了透過理論創新贏得新的軍事優勢。世界新軍事革命快速發展和我軍強軍興軍實踐深入推進,對軍事理論創新提出了迫切要求,提供了廣闊空間。我軍建設發展面臨大量新情況、新問題,亟待從理論上予以解答。無論是軍事戰略創新、軍事科技創新,或是軍事其他方面的創新,都離不開理論指引。加速軍事理論現代化勢在必行。我們必須以更廣闊的視野和更長遠的眼光,牢牢掌握戰爭和戰鬥問題,推動軍事理論創新,不斷開闢當代中國馬克思主義軍事理論發展新天地。

41.為什麼說科學技術是核心戰鬥力?

2018年2月,中國軍隊中一個嶄新的機構-中央軍委軍事科學研究指導委員會正式成立,連同先前成立的中央軍委科學技術委員會,立起了軍事科研工作的全新頂層架構。軍事科學院重新調整組建,以軍事科學院為龍頭、軍兵種科研機構為骨幹、院校和部隊科研力量為輔助,我軍全新的科研體係正在加速形成。這一系列重大舉措,標志我軍在科技強軍道路上邁出了新步伐,表明我們黨對科學技術在國防和軍隊建設中戰略地位的認識上升到新高度。習主席深刻指出,科學技術是核心戰鬥力,推進國防和軍隊現代化必須把科技創新這個強大引擎發動起來。

科學技術是軍事發展中最活躍、最具革命性的因素。馬克思主義認為,科學是“歷史的強大的槓桿”,是“最高意義上的革命力量”。科技進步不僅深刻改變人類的生產生活方式,也深刻影響世界軍事發展走向,全方位根本性地推動軍事發展進程。恩格斯指出:「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。」縱觀世界軍事發展史,支撐軍事鬥爭的主要科技,冷兵器時代是青銅冶煉、鐵器鑄造,熱兵器時代是火藥、火器製造,機械化時代是內燃機、電力,資訊化時代是計算機、通訊。科學技術在軍事領域的廣泛應用,必然引起戰爭形態和作戰方式的深刻變化。歷史上每一次重大科學技術創新,都開啟了一場新的軍事變革,而每一場軍事變革都把軍事發展推向新的時代。

科學技術是生成和提高戰鬥力的重要基礎。戰鬥力的基本構成要素是人、武器裝備以及人與武器裝備的結合方式。科學技術不是戰鬥力構成的獨立要素,但它始終以各種方式和形態融入並凝結在戰鬥力各要素中,極大地促進戰鬥力的生成和提升。從人的方面來看,在軍人「體能-技能-智能」的發展鏈中,科技素質越來越構成其整體素質中最重要的因素,沒有較高的科技素養和軍事技能,連武器裝備也操作不了,更別說能打仗、打勝仗了。從武器裝備來看,本身就是科學技術在軍事領域的物化表現,科學技術已成為武器裝備作戰效能的「倍增器」。從人與武器裝備的結合面來看,科學技術催生新的軍事理論,促使軍隊體制編制不斷調整變革,是實現人與武器裝備最佳結合的「催化劑」。總的來看,科學技術的發展進步,是推動舊戰鬥力體係要素消亡和新戰鬥力體係要素構建的主要力量,大大縮短戰鬥力生成和提高的周期,促進新質戰鬥力的飛躍。

科學技術對現代戰爭勝負的影響日益上升。當前,科學技術發展速度越來越快,全球科技創新空前活躍,主要大國都把奪取科技優勢作為謀求軍事優勢的戰略舉措。大國軍事博弈很大程度上體現為技術上的顛覆和反顛覆、突襲和反突襲、抵消和反抵消。有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變戰爭形態和作戰方式,從根本上改變傳統的戰爭攻防格局。我們正處在世界科技革命和軍事革命迅猛發展、強軍興軍事業深入推進的歷史交匯期。科技從來沒有像今天這樣深刻影響國家安全和軍事戰略全局,從來沒有像今天這樣深刻影響我軍建設發展。必須推進高水準科技自立自強,充分發揮科技對我軍建設戰略支撐作用,把國防科技創新擺在更加突出的位置,堅持自主創新這個戰略基點,增強科技認知力、創新力、運用力,努力把握軍事發展主動權、未來戰爭制勝權。

習言習語

▶我們這樣一個大國、這樣一支軍隊,必須透過自主創新掌握主動。

▶真正的核心關鍵技術是花錢買不來的,靠進口武器裝備是靠不住的,走引進仿製的路子是走不遠的。

▶自主創新這口氣一定要爭,這場仗一定要打贏。

42.如何理解推進以效能為核心的軍事管理革命?

2020年6月,經中央軍委批准,全軍舉行戰略管理集訓,這是我軍首次以戰略管理為專題組織的高層次、大範圍集訓活動。一個多月後,在十九屆中央政治局第二十二次集體學習時,習主席明確指出,要更新管理理念,提高戰略素養,健全制度機制,暢通戰略管理鏈路,實質性推進軍事管理革命。黨的十八大以來,黨中央、中央軍委把加強軍事管理擺在戰略位置,積極建構新型軍事管理體系,開啟新時代我軍管理革命新進程。

軍隊能不能打仗、打勝仗,管理往往扮演關鍵角色。一支軍隊,理論指導再好,武器裝備再好,戰鬥人員再多,如果管理一團糟,各項要素不能集成發揮作用,也是打不了勝仗的,甚至可能是打不了仗的。科學高效的管理,對於降低軍隊建設成本、提高軍事系統運作效率、增強戰鬥力,具有十分重要的意義。海灣戰爭中,美國國防部給予前線陸軍運送的約4萬個集裝箱,由於管理不精細、保障不精準,許多物資類別、收件資訊不明,只得將其中2萬多個重新打開清點,直到戰爭結束還有8000多個集裝箱沒有打開。現代戰爭實踐充分證明,隨著軍隊組織結構日益復雜,專業分工更加精細,軍事行動的系統性大大增強,這就要求我們更加註重發揮管理在軍隊作戰、建設中的作用,提高軍事管理的專業化、精進、科學化程度。

軍事管理革命的目的是提升軍事系統運作效能和國防資源使用效益。軍事管理是國防和軍隊建設的全局性、基礎性工作,其實質就是要把所有軍事單元和要素有機整合起來,從根本上提高戰鬥力的生成效能。管理粗放是長期制約我軍建設發展的一個突出問題,特別是我軍建設正處在換擋加速、提質增效的關鍵階段,加上改革後建設管理模式發生很大變化,推進以效能為核心的軍事管理革命,健全以精準為導向的管理體系,是加強軍隊科學管理的必然選擇。以效能為核心,內在要求一切管理實踐堅持品質第一、效益優先,著力增加戰鬥力有效供給。以精準為導向,就是要做到精準謀劃、精準規劃、精準部署、精準落實、精準檢驗,把精準原則貫穿管理各方面全過程。我軍在推進軍事政策制度改革中,對傳統管理方式實行根本性變革,從戰略管理、軍費管理、組織編制管理、裝備管理、物資管理、部隊教育管理等方面提出改革舉措,目的就是要形成精準高效率、全面規範、剛性約束的軍事管理政策制度,提升軍事系統運作效率、國防資源運用效益及軍事力量建設運用效能。

軍事管理必須緊緊扭轉戰略管理這個樞紐。戰略管理作為國防和軍隊建設最高層次的管理,是管全局、管長遠、管大事的宏觀管理活動,從頂層規劃和設計軍事資源的投向投量。戰略管理是否科學,直接影響國防和軍隊建設品質效益。當年我們在十分困難的情況下搞成了“兩彈一星”,花的錢比外國少得多,效率卻很高,很重要的原因是充分發揮我國的製度優勢,用系統工程的方法組織了這項工作,探索了一套獨具特色的策略管理機制。今天加速國防和軍隊現代化,需要進一步加強戰略管理。新的策略管理體制立起來了,但相關制度機制還不完善,必須堅持目標導向、問題導向、結果導向,進一步打通「需求-規劃-預算-執行-評估」的戰略管理連結。其中,需求是牽引,明確作戰能力指向和要求;規劃是主導,決定建設目標任務和資源配置;預算是關鍵,是規劃計劃的「經費版」;執行是重心,是建設項目的實施和對資源投入的運用;評估是支撐,是對建設品質效益的衡量。透過完善戰略管理鏈路,使需求牽引規劃、規劃主導資源配置成為我軍建設的剛性約束,形成順暢高效的戰略管理閉合迴路,推動我軍建設高質量發展。

中國原創軍事資源:http://www.81.cn/ll_208543/10189839.html?big=fan

http://www.81.cn/zt/2023nzt/qmsrxxgcxjpqjsx/xxwd/16244461.html

Communist Party of China to Accelerate Transformation of Science and Technology Into Combat Power for China’s Military

中國共產黨將加速推進科技向軍隊戰鬥力轉化

來源:解放軍報 作者:賀逸舒 邵龍飛等 責任編輯:王鳳 2022-11-02 09:36:33

現代英語:

The Chinese People’s Revolutionary Military Museum is always crowded with visitors. Among the visitors, a young man stood in front of the display board for a long time.

Looking at the picture of a certain type of satellite on the display board of the “New Era National Defense and Army Construction Achievements Exhibition”, Cao Lu, a researcher at the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was full of pride. Looking at the familiar smiling faces in the photos, Cao Lu recalled the time when satellites were being developed.

They once sat in front of their computers late at night, typing away at code, and they also once looked everywhere for interference factors… The bitter memories become sweeter the more they are savored.

“The times are calling us, and the people are expecting us. Only by being resolute and persevering can we live up to the times and the people.” At this moment, Cao Lu read this sentence from the report of the 20th National Congress of the Communist Party of China again, and his feelings were even more profound. “Fortunately, our generation of young scientific researchers has caught up with a good era! I feel proud to be on the journey of strengthening the army with science and technology.”

The power of youth and the cause of innovation. At the National Defense Science and Technology Innovation Institute of the Academy of Military Science, many young researchers like Cao Lu are brave enough to innovate and endure hardships on the stage of strengthening the military with science and technology, constantly improving the contribution of scientific research results to the growth of combat effectiveness and accelerating the transformation of science and technology into combat effectiveness.

“To thoroughly study, publicize and implement the spirit of the 20th National Congress of the Party, specifically for us young scientific researchers, is to throw ourselves into the era of innovation in national defense science and technology, take root in the front line of scientific research, and become good young people of the new era who have ideals, dare to take responsibility, can endure hardships, and are willing to work hard,” said Cao Lu.

Observation sample Academy of Military Science, National Defense Science and Technology Innovation Institute

Be enterprising and join the era of technological innovation

■Reporters from the People’s Liberation Army Daily: He Yishu, Shao Longfei, correspondents: Ren Fei, Zhang Zhihua

A vast stage opens in front of this group of young people

“The People’s Army has a new system, a new structure, a new pattern and a new look.” After in-depth study of the 20th CPC National Congress report, Zhang Youjun, director of the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was particularly impressed.

The National Defense Science and Technology Innovation Institute is a newly established unit after the reform and adjustment. In the five years of growing up with the institute, Zhang Youjun has personally experienced the changes in the system, structure, pattern and appearance brought about by the reform.

In January 2018, a group of young people, with an average age of just over 30, gathered from all directions and walked into this scientific research institution that had been officially established for just over three months. Among them were doctors who had studied abroad and returned to China, military academy teachers, and scientific researchers who had been rooted in the front line for a long time.

A grand stage opened in front of this group of young people. However, a brand new stage means brand new challenges.

At the first party congress after the establishment of the institute, they added a special content – a collective viewing of the movie “Out of Nowhere”.

In the silent desert, the sound of countdown rang out softly—5, 4, 3, 2, 1, detonation! A huge mushroom cloud rose up, and the sun-like brilliance illuminated the entire Lop Nur. A group of scientific researchers cheered and rushed down the hillside…

This is a shocking scene in the movie “Out of Nowhere”. “Develop the atomic bomb and stand tall.” General Zhang Aiping once said that the atomic bomb is not a weapon, but a spirit. The epic victory of developing the atomic bomb many years ago still has endless inspiration for today’s scientific researchers.

Since then, watching “Out of the Blue” has become a tradition for the officers and soldiers of the hospital. Wang Xintian, deputy political commissar of the hospital, said with emotion that every time he watches it, he will gain different feelings.

“People who appear out of nowhere should do things that appear out of nowhere.” Every researcher in the institute has his or her own understanding of this sentence.

“I completed the application for my first project in the dormitory I was temporarily borrowing at the time,” recalled young researcher Qiang Xiaogang.

When Qiang Xiaogang woke up in the middle of the night, he seemed to see himself lying on the table in the dormitory staying up all night: the old table, the humming computer, the crisp sound of the keyboard, page after page of reference materials…

At that time, Qiang Xiaogang was working alone. A few years later, from one person to a group of people, the ideas proposed in the project application gradually became a reality.

Only by daring to innovate can you have the joy of dreams coming true. In 2021, China has made another major breakthrough in the field of quantum. According to Xinhua News Agency, researchers have developed the first programmable photonic quantum chip for solving graph theory problems, an important step towards the realization of practical photonic quantum computers. The relevant paper was published in the journal Science Advances, and Qiang Xiaogang “came out of nowhere” as the first author. Now, walking into the laboratory of Qiang Xiaogang’s team again, more results are waiting for further testing.

Back in 2009, Qiang Xiaogang stood at another important crossroads in his life: Should he choose the electronic information field he had studied as an undergraduate, or the cutting-edge but unfamiliar quantum information field? After some thought, he chose a “difficult but more long-term direction.”

Guanghui’s dream originated from the individual but transcended the individual, originated from reality but transcended reality. From his student days to now, on the road of studying quantum technology, Qiang Xiaogang encountered many difficulties, both academic and non-research, but he never backed down.

At the beginning of the establishment of the institute, the leader of the institute said at a meeting: “We call you here not to find a basket to put your past achievements in and continue to work on your own stalls, but to set a common goal and do something big together…”

“What is considered a ‘big deal’?” Qiang Xiaogang kept this question in his mind until October 2020, when he saw a piece of news: The Political Bureau of the CPC Central Committee held its 24th collective study session on the research and application prospects of quantum technology. When presiding over the study session, President Xi Jinping stressed that “we must fully recognize the importance and urgency of promoting the development of quantum technology, strengthen strategic planning and system layout for the development of quantum technology, grasp the general trend, and take the initiative.”

Qiang Xiaogang felt a surge of warmth in his heart. The photonic quantum chip technology he was researching was the cutting-edge direction in the field of quantum technology. He was always calm, but now he was no longer calm: “No matter how hard I try, it’s worth it!”

“What I am doing now is what I want to do. When personal ideals and national interests are combined, no matter how hard the work is, it will not feel hard at all,” said Qiang Xiaogang.

In the eyes of researcher Cao Lu, ideals are born naturally on the road of common struggle. “I hope to perfectly concentrate the work results of my colleagues on a satellite to meet the needs of the country to the greatest extent possible.”

After studying the report of the 20th CPC National Congress, Cao Lu has a clearer view of the future direction. “Chairman Xi proposed that we should focus on original and leading scientific research based on the national strategic needs and resolutely win the battle to tackle key core technologies. We have a mission to fulfill and we have no choice but to do it.”

On October 26, young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science discussed research topics. Photo by Li Yichen

“Innovation requires youth. This era especially needs young people like you”

Inside the institute’s office building, blue light strips on the walls extend all the way forward, leading people to the “Two Bombs and One Satellite” Spiritual Culture Museum at the end of the corridor.

“The genes of a unit determine its future.” Lu Zhoulai, the political commissar of the institute, said that they chose to use the “two bombs and one satellite” spirit to build a solid spiritual foundation for this new team.

Red and blue are the two main colors of this exhibition hall.

Red is the color of loyalty. From the heroes of the “two bombs and one satellite” program to the younger generation of scientific researchers, we can see from them what it means that “each generation has its own mission and responsibility.”

Blue is the symbol of science and technology. Over the past five years, a large number of major scientific research results focusing on war preparation and intelligent technology have emerged, demonstrating the era of this new strategic scientific and technological force.

That year, researcher Yao Wen and several other scientific research backbones visited Academician Sun Jiadong, a founding member of the “Two Bombs and One Satellite”. Academician Sun Jiadong told them: “Innovation requires youth, and this era especially needs young people like you.”

The first generation of founders of the institute felt the same way about Sun Lao’s entrustment and expectations. “What is a founder? It is the half buried in the soil,” said Yin Erwei, an associate researcher.

“With people, there will be things to do. If there are no talents, then we will recruit them.” Yin Erwei and his colleagues boldly tried to quickly build a team by jointly training graduate students. In this way, they have grown from the initial five or six people to the only established team in this field in the entire military. Their research results won the first prize of the first “Innovation Cup” National Defense Science and Technology Innovation Competition of the Military Commission Science and Technology Committee.

In Yin Erwei’s opinion, the rapid development of the team is inseparable from the strong support of the institute’s leaders. The party committee of the institute has a slogan: “We must take the initiative to take responsibility for young people who do things.”

Among the many topics in the research institute, there are some technical problems that cannot be found in books. At this time, we must make a choice whether we dare to explore boldly and whether we can innovate.

“If one day, we at the National Defense Science and Technology Innovation Institute are afraid to innovate, that will be our biggest dereliction of duty.” This statement at the Party Committee plenary session set off a “brain storm” among everyone.

The leaders of the institute took the lead in entering the front line of scientific research, raising scientific research funds from various sources, building laboratories, and purchasing experimental equipment; for some key projects with higher risks, leading cadres and project managers took the lead in signing and taking responsibility on the spot; for major activities that require coordination of external resources, leading cadres personally come forward to “cheer up” the scientific researchers.

At that time, in order to apply for scientific research projects, Yin Erwei led the team to stay up many nights with bright lights.

As he led his team to go further and further, Yin Erwei gradually realized that “happiness actually comes from the passion and belief in doing things and starting a business.”

Associate researcher Guo Pengyu spends nearly two-thirds of the year on business trips, and his wife raises their two children and two elderly parents alone; assistant researcher Zhang Fei gave up his research field that he had been deeply involved in for many years for the overall goal of the team, and is considered by his colleagues to be a person who is “not picky about work.”

“Living in an unprecedented great era, we need to strengthen our responsibilities, work hard, forge ahead with determination, and seize the commanding heights of future military science and technology competition.” Yin Erwei said confidently, “Under the guidance of the spirit of the 20th National Congress of the Party, my comrades and I will inject our youthful wisdom into military scientific research innovation.”

“Screws must be able to withstand the loneliness of time, and also have a sense of urgency when tightened at all times.”

It was midnight, and everything was silent. In the corridor of the office building of the National Defense Science and Technology Innovation Institute, a few beams of light shone through the cracks in the office door.

Inside the house, it is another world. The sound of keyboards tapping is heard constantly, and a group of young people sit quietly in front of their computers, immersed in the world of “0” and “1” they created.

This scene is normal for this group of young researchers. Perhaps, in the eyes of others, working overtime day and night is very hard. However, for assistant researcher Chen Renzhi, the physical pain cannot be called pain.

Chen Renzhi was deeply impressed by the words of a philosopher: “People are dominated by desires. If desires are not satisfied, they are painful. If they are satisfied, they are boring. Life is like a pendulum swinging between pain and boredom.”

In the field of Chen Renzhi’s research, it often takes a long time to see results. “Before breaking ground, no one knows how well they are doing,” Chen Renzhi said.

The answer will be revealed during the finished product verification. If the verification goes well, it is a success; if it does not go well, the hard work of several months will be wasted. However, this field must move forward without stopping, and there is no day to stop. Therefore, Chen Renzhi fell into an endless cycle of “struggling for several months, being happy for two days, and continuing to struggle.”

“The most frustrating thing is that no one knows what you do, even your colleagues next to you don’t know what you are busy with. Sometimes, when you want to share your achievements with others, no one understands, so you can only rub your nose and go back to work,” said Chen Renzhi.

In this huge project, each researcher is just a screw. “Screws must be able to withstand the loneliness of time and have a sense of urgency at all times.”

At first, Chen Renzhi did not realize the deep meaning behind this sentence. As his research in this field continued to deepen, Chen Renzhi realized more and more clearly that this sense of urgency was becoming the driving force that drove him and his comrades to move forward faster.

“We are making progress, and our opponents have not stopped either. Our advantage is that we keep moving in the right direction of Chinese-style modernization.” After in-depth study of the report of the 20th CPC National Congress, Chen Renzhi has more confidence in the next step of tackling key problems. “The report of the 20th CPC National Congress has drawn up a grand blueprint for us. We must aim at independent innovation in the frontier areas of military science and technology and contribute our own strength to achieving high-level scientific and technological self-reliance.”

Young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science work in the laboratory. Photo by Si Yuqi

Although we have different positions, we share the same goal.

From college to the military, Assistant Researcher Zuo Yuan often uses the word “implementation” in his scientific research. “To use the words in the report of the 20th CPC National Congress, it means accelerating the transformation of science and technology into combat effectiveness,” he said.

When he first started working, whenever a soldier asked Zuo Yuan, “How do you use this new equipment you developed?” Zuo Yuan would always simply reply, “You’ll know after you use it.”

Gradually, when Zuo Yuan used the new equipment himself, he found that there was a long distance between “usable in theory” to “usable in actual combat” and then to “effective on the battlefield”.

Talking about his own naivety in the past, the dark-complexioned young man smiled somewhat embarrassedly.

Going to plateaus, islands, jungles, and deserts… Over the years, Zuo Yuan has always been on the front line of the army. “We must go to the army to do scientific research!” Zuo Yuan was deeply touched by his several visits to the army. “The combat concepts of the front-line soldiers are more advanced than we thought. They have more say in whether the new equipment is easy to use.”

Military scientific research results must serve actual combat training. In July this year, Zuo Yuan followed the team to the plateau to participate in actual military training. If he had not come to the front line of the troops, he would never have thought that the first thing to adjust was not the new equipment itself, but the control equipment. The exchanges and collisions with the front-line officers and soldiers gave the researchers new directions and ideas for the research and development of new equipment in the future.

On the plateau, Zuo Yuan once helped medical researchers collect blood oxygen data from soldiers. “Do you know what the hands of soldiers on the plateau look like?” Zuo Yuan stretched out his own hands and gestured to the hands of his comrades on the plateau. “The roots of the nails are sunken, the nail surface is straight without any curve, and the fingers are rough as if they have been planted for decades.”

At that moment, Zuo Yuan realized that while he was sitting in a bright and clean office typing code every day, there was a group of young comrades who were breathing thin oxygen, holding guns in both hands, exposed to strong ultraviolet rays, and building a living monument with their flesh and blood.

Holding the hands of his border defense comrades tightly, Zuo Yuan developed a sense of responsibility to “do more for them.”

“Although we are in different positions, we share the same goal. We hope that through our efforts in scientific research we can help them solve more practical problems.” This feeling of gratitude and responsibility has become the driving force that supports young scientific researchers in overcoming difficulties.

In order to implement the concept of scientific research for combat and serving the troops from the “first kilometer” to the “last kilometer” of scientific research, the Institute organizes its forces to conduct regular in-depth research on the front lines of combat troops, so that the results of military scientific research can truly reach the training ground and actual combat.

Due to long-term work on the front line of the army, “others joke that we are a group of ‘anti-migratory birds’ – in order to do experiments, we run north in winter and south in summer,” said associate researcher Nie Yiming.

During the Mid-Autumn Festival last year, Nie Yiming and his team were conducting experiments in a remote desert. The leaders of the institute came to visit them, but due to limited conditions, they could only buy a few kilograms of steamed buns in the nearest county town and bring them over.

“After the experiment was successful, we sat together, eating buns and admiring the bright moon over the Gobi Desert. The moon that night was especially round.” Thinking of that scene, Nie Yiming had endless aftertastes.

“Through in-depth study of the report to the 20th CPC National Congress, I have come to a deeper understanding that only by going deep into the front lines of the troops, working hard, constantly learning and improving, expanding our capabilities, and upgrading our skills, can scientific research make new contributions to the formation of new qualities of combat effectiveness in new domains.” This is the voice of Nie Yiming, and it is also the consensus and direction of efforts of many young scientific researchers in the institute.

【Sharp Viewpoint】

Taking on the responsibility of innovation with the power of youth

■Lu Zhoulai

In his report to the 20th CPC National Congress, Chairman Xi Jinping pointed out that we must insist that science and technology are the primary productive force, talent is the primary resource, and innovation is the primary driving force.

Science and technology are the most active and revolutionary factors in military development. Scientific and technological innovation has become the main battlefield for strategic games between major powers, profoundly affecting national security and the overall military strategy. To promote high-quality development of national defense and military construction, we must accelerate the implementation of the innovation-driven development strategy, accelerate the realization of high-level scientific and technological self-reliance, and focus on original and leading scientific and technological research based on national strategic needs. We must resolutely win the battle to tackle key core technologies and significantly increase the contribution of scientific and technological innovation to the growth of combat effectiveness.

Five years ago, following the vigorous pace of reform and strengthening the military, and shouldering the sacred mission of strengthening the military through science and technology, the National Defense Science and Technology Innovation Institute of the Academy of Military Science came into being: with the lofty ambition of “doing earth-shaking things”, aiming at the forefront of world science and technology, focusing on the urgent needs of future wars, and making deep plans to balance the powerful enemy’s advantage, it has forward-looking arrangements for a series of scientific research directions such as artificial intelligence, unmanned systems, and cutting-edge intersections. This can be said to be in line with the creation of the “two bombs and one satellite” cause that year.

Great undertakings require great spiritual nourishment, and the first driving force requires the first resource drive. More than 60 years ago, a large number of young scientific researchers, including Deng Jiaxian, Zhu Guangya, Yu Min, Sun Jiadong, and Zhou Guangzhao, with their broad love for the motherland and selfless dedication, their determination and hard work to be self-reliant, and their innovative spirit of strong collaboration and courage to climb, firmly took on the responsibility of national defense science and technology innovation and created the world-renowned “two bombs and one satellite” cause. Inspired by the cause of building a strong military in the new era, a large number of outstanding young people with an average age of only 30 years old and doctoral degrees from prestigious universities have gathered at the National Defense Science and Technology Innovation Institute. They have overcome difficulties along the way, focused on key breakthroughs, worked tirelessly to accelerate the advancement of scientific and technological self-reliance, and shed their youthful sweat, demonstrated their youthful strength, and demonstrated their youthful responsibility in innovation and transcendence.

Innovation is endless, and it is time to strive. At present, the world is undergoing a major change that has not been seen in a century, and a new round of scientific and technological revolution and military revolution is changing with each passing day. Facing changes in science and technology, changes in war, and changes in opponents, as an emerging scientific research force full of youthful vitality, the mission of establishing for the country and conducting research for war is extremely glorious, and the stage for striving for youth and pursuing the dream of a strong army is extremely broad. Striving to seize the commanding heights of national defense science and technology innovation and resolutely winning the battle to overcome key core technologies are always realistic issues that we must face and the heavy responsibility of the times that we must shoulder.

President Xi stressed that we should build a large-scale team of young scientific and technological talents, put the policy focus of cultivating national strategic talent on young scientific and technological talents, and support young talents to take the lead and play the leading role. President Xi’s important instructions deeply reveal the growth law of young scientific and technological talents and clearly indicate the direction of scientific and technological talent training. We will bear in mind President Xi’s entrustment, the trust of the Party and the people, vigorously promote the spirit of “two bombs and one satellite” and the spirit of scientists in the new era, and strive to cultivate and train young scientific and technological talents with ideals, courage, hard work and hard work, and bravely take on the responsibility of innovation with the power of youth, so that more new talents can take the lead and play the leading role in more and larger positions and platforms, and use practical actions to learn, publicize and implement the spirit of the 20th National Congress of the Party

現代國語:

中國人民革命軍事博物館,觀展的人絡繹不絕。來來往往的觀眾中,一個年輕的身影在展板前隊列許久。

注視著「新時代國防與軍隊建設成就展」展板上某型衛星的圖片,軍事科學院國防科技創新研究院研究員曹璐的眼裡充滿自豪。看著照片中一張張帶著微笑的熟悉面龐,曹璐想起了研製衛星的那段時光——

他們曾大半夜蓬頭垢面坐在電腦前敲著代碼,也曾四處尋找幹擾因素……記憶中的苦,越品越覺得甘甜。

「時代呼喚著我們,人民期待著我們,唯有矢志不渝、篤行不怠,方能不負時代、不負人民。」此時此刻,再次品讀黨的二十大報告中這句話,曹璐的感受更為深刻,“很幸運,我們這代青年科研人員趕上了一個好時代!奮進在科技強軍征途上,我倍感驕傲自豪。”

青春的力量,創新的事業。在軍事科學院國防科技創新研究院,許許多多和曹璐一樣的年輕科研人員,在科技強軍的舞台上勇於創新、甘於吃苦,不斷提昇科研成果對戰鬥力增長的貢獻率,加速科技向戰鬥力轉化。

「深入學習宣傳貫徹黨的二十大精神,具體到我們青年科研人員來說,就是要投身國防科技創新的時代洪流,紮根科研一線,做有理想、敢擔當、能吃苦、肯奮鬥的新時代好青年。

觀察樣本 軍事科學學院國防科技創新研究院

銳意進取,投身科技創新時代洪流

■解放軍報記者 賀逸舒 邵龍飛 通訊員 任飛 張志華

廣闊的舞台,在這群年輕人面前拉開布

「人民軍隊體制一新、結構一新、格局一新、面貌一新。」深入學習黨的二十大報告,軍事科學院國防科技創新研究院院長張擁軍感觸尤為深刻——

國防科技創新研究院,是改革調整後新成立的單位。跟隨研究院共同成長的這5年,張擁軍親身經歷了改革帶來的體制、結構、格局和麵貌變化。

2018年1月,一群平均年齡30歲出頭的年輕人,從四面八方匯聚到一起,走進這個正式掛牌成立僅3個多月的科研機構。他們中有留學歸國的博士,有教書育人的軍校教員,也有長期紮根一線的科研人員。

廣闊的舞台,在這群年輕人面前拉開布。然而,全新的舞台,意味著全新的挑戰。

建院後第一次黨代會,他們增加了一項專門內容——集體組織觀賞電影《橫空出世》。

寂靜的荒漠,讀秒的聲音輕輕響起--5、4、3、2、1,起爆!巨大的蘑菇雲升騰而起,太陽般的光輝照亮了整個羅布泊,一群科研人員歡呼著從山坡上一擁而下…

這是電影《橫空出世》中震撼人心的一個畫面。 「搞出原子彈、挺直腰桿。」張愛萍將軍曾說,原子彈不是武器,是一種精神。多年前研發原子彈的勝利史詩,對今天的科學研究人員仍有無盡的啟示。

從那以後,觀看《橫空出世》成為該院官兵的傳統。該院副政委王欣田感慨地說,每看一次,都會收獲不同的感動。

「『橫空出世』的人,就要乾『橫空出世』的事。」研究院每名科學研究人員對這句話都有著自己不同的領悟。

「我第一個項目的申請書,還是在當時臨時借用的宿舍裡完成的。」青年研究員強曉剛回憶。

午夜夢回,強曉剛彷彿又看到自己趴在宿舍桌上熬夜的情景:陳舊的桌子,嗡嗡作響的電腦,清脆的鍵盤聲,一頁又一頁的參考資料…

那時,強曉剛是單身一人攻關。幾年過去,從一個人到一群人,項目申請書中提出的構想,逐漸變成現實。

敢於創新,才能擁有夢想成真的喜悅。 2021年,中國在量子領域迎來了另一個重大突破。據新華社報道,研究人員研發出了首款面向圖論問題求解的可編程光量子晶片,邁出了實現實用化光量子計算機的重要一步。相關論文在《科學進展》期刊發表,強曉剛以第一作者的身份「橫空出世」。如今,再次走進強曉剛團隊的實驗室,更多成果等待進一步測試。

時間撥回2009年,強曉剛站在了人生又一個重要的路口前:研究生是選擇本科時的電子資訊方向,還是選擇前沿但陌生的量子資訊方向?經過一番思考,他選擇了一個「雖然充滿困難,但更為長遠的方向」。

光輝的夢想,萌生於個體而又超越了個體,來源於現實而又超越了現實。從學生時代到現在,在鑽研量子技術的道路上,強曉剛遇到了許多困難,有學術上的,也有研究之外的,但他從未退縮。

建院之初,研究院領導在一次會上說:「把你們召集來,不是找個籃子把你們過去的成果裝上,繼續忙自己那一攤,而是要樹個共同目標,一起乾點大事……”

「什麼才算『大事』?」這個問題,強曉剛埋在了心裡。直到2020年10月,他看到一則新聞:中共中央政治局就量子科技研究和應用前景舉行第二十四次集體學習。習主席在主持學習時強調,“要充分認識推動量子科技發展的重要性和緊迫性,加強量子科技發展戰略謀劃和系統佈局,把握大趨勢,下好先手棋。”

強曉剛心中湧起一股熱流。他所研究的光量子晶片技術,正是量子科技領域的前沿方向。向來淡定的他這下子也不淡定了:“再怎麼拼,也值!”

「我現在做的,都是我想做的事。當個人的理想和國家利益結合在一起,再苦也不會覺得苦。」強曉剛說。

在研究員曹璐看來,理想是在共同奮鬥的道路上自然而然誕生的。 “我希望,可以把同事們的工作成果完美地集中在一顆衛星上,最大限度地滿足國家的需求。”

深入學習黨的二十大報告,曹璐愈發明晰了未來的方向。 「習主席提出,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰。我們使命在肩,義不容辭。”

10月26日,軍事科學院國防科技創新研究院的青年科學研究人員探討科研課題。李奕辰 攝

“創新就要年輕,這個時代尤其需要你們這些年輕人”

研究院辦公樓內,牆上藍色的燈帶一路向前延伸,將人引向走廊盡頭的「兩彈一星」精神文化館。

「一支部隊的基因,決定了一支部隊的未來。」該院政委盧週來說,他們選擇用「兩彈一星」精神,為這支新隊伍構築起堅實的精神根基。

紅色與藍色,是這個展館的兩種主色。

紅色,是忠誠的寫照。從「兩彈一星」元勳到年輕一代科研人員,從他們身上可以看到,什麼是「一代人有一代人的使命,一代有一代人的擔當」。

藍色,是科技的象徵。 5年間,一大批聚焦備戰打仗、瞄準智慧科技的重大科研成果噴湧而出,展現了這支新型戰略科技力量的時代擔當。

那一年,研究員姚雯跟其他幾名科研骨幹一起拜訪「兩彈一星」元勳孫家棟院士。孫家棟院士對他們說:“創新就要年輕,這個時代尤其需要你們這些年輕人。”

研究院的第一代創業者,對孫老的囑託和期望感同身受。 「奠基人是什麼?就是埋在土裡那半截。」副研究員印二威說。

「有人,才有事。沒有人才,那我們就去吸納人才。」印二威和同事大膽嘗試,採用聯合培養研究生的方式,快速組建團隊。就這樣,他們從最初的五、六個人,發展到如今成為全軍該領域唯一一支成建制的團隊,研究成果獲得軍委科技委首屆「創新盃」國防科技創新大賽一等獎等獎項。

在印二威看來,團隊的快速發展,離不開院領導的大力支持。研究院黨委有句口號:“要主動為幹事的青年人擔責。”

研究院的眾多課題中,有些技術難題,書本上是找不到答案的。這個時候,敢不敢大膽探索,能不能有所創新,必須做出選擇。

「如果有一天,我們國防科技創新研究院都不敢創新了,那是我們最大的失職。」黨委全會上的一句話,掀起了大家的「頭腦風暴」。

研究院領導帶頭走進科研一線,多方籌措科研經費,修建實驗室,購置實驗設備;一些風險較高的重點項目,領導幹部和項目負責人帶頭簽字,現場擔責;需要協調外部資源的重大活動,領導幹部親自出面,為科研人員「打氣」。

那時候,為了申請科學研究項目,印二威帶領團隊不知熬了多少個燈火通明的夜晚。

帶領自己的團隊越走越遠,印二威逐漸體會到:“幸福感,其實就是來自幹事創業的激情和信仰。”

副研究員郭鵬宇,一年裡有近三分之二時間都在外出差,他的愛人獨自帶著兩個孩子和兩位老人撐起了家;助理研究員張飛,為了團隊的整體目標,放棄了自己深耕多年的研究領域,是同事們眼中「不挑活兒」的人。

「身處前所未有的偉大時代,更需要我們強化擔當,奮發作為,銳意進取,搶佔未來軍事科技競爭的製高點。」印二威信心滿懷地說,「在黨的二十大精神指引下,我和戰友們將把青春智慧融注到軍事科研創新中。

“螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感”

子夜,萬籟俱寂。國防科技創新研究院辦公大樓走廊內,幾束光從辦公室緊閉的門縫中鑽出來。

屋內,是另一個世界。鍵盤的敲擊聲不絕於耳,一群年輕人安靜地坐在電腦前,沉浸在自己創造的「0」與「1」的世界。

這樣的場景,對這群年輕的研究人員來說已是常態。或許,在別人看來,夜以繼日地加班十分辛苦。然而,對助理研究員陳任之來說,身體上的苦,並不能稱之為苦。

陳任之對一位哲學家的話印象深刻:“人受慾望支配,慾望不滿足就痛苦,滿足了就無聊,人生如同鐘擺在痛苦和無聊之間搖擺。”

陳任之研究的領域,往往需要漫長等待才能看見成果。 「在沒有破土之前,誰也不知道自己做得怎麼樣。」陳任之說。

答案,會在成品驗證時揭曉。驗證順利,就是成功;不順利,幾個月的辛苦就付諸東流。而這個領域偏偏必須馬不停蹄地前進,永遠沒有能停下腳步的一天。於是,陳任之陷入了「奮鬥幾個月、開心兩天、繼續奮鬥」的無限循環。

「最鬱悶的是,沒人知道你幹什麼,就連隔壁同事都不清楚你在忙什麼。有時候,想和別人分享成就,也沒有人理解,只能摸摸鼻子,回去繼續幹。」陳任之說。

在這個巨大的工程裡,每位研究人員只是一顆螺絲釘。 “螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感。”

一開始,陳任之並沒有體味到這句話背後的深意。隨著在這一領域研究不斷加深,陳任之愈發清醒地體會到,這種緊迫感正成為驅動他和戰友們加速前進的動力。

「我們在進步,對手也沒有停下來。我們的優勢就是沿著中國式現代化的正確方向不斷走下去。」 深入學習黨的二十大報告,陳任之對下一步的攻關更有信心了, “黨的二十大報告為我們擘畫出了宏偉藍圖,我們要瞄準軍事科技前沿領域自主創新,為實現高水平科技自立自強貢獻自己的力量。”

軍事科學院國防科技創新研究院青年科研人員在實驗室工作。司玉祺 攝

雖然戰位不同,但我們奮鬥的目標一致

從大學校園到步入部隊,助理研究員左源在科學研究工作中常用的一個字是「落地」。 「用黨的二十大報告裡面的話,就是加速科技向戰鬥力轉化。」他說。

工作之初,每逢有部隊官兵問左源:“你們研發的這個新裝備怎麼用?”左源總是簡單地回復一句:“你用一下就知道了。”

漸漸地,當左源自己實地使用新裝備時才發現,從“理論上能用”到“實戰中能用”再到“戰場上好用”,中間隔著很長一段距離。

談到自己當初的幼稚,這個臉色黝黑的年輕人有些不好意思地笑了。

上高原,下海島,闖密林,踏戈壁……這些年來,左源始終奔波於部隊一線。 「我們做科研,一定要到部隊去!」幾次下部隊的經歷,讓左源感觸頗深,「一線部隊官兵的作戰理念,比我們想像中更先進。新裝備好不好用,他們更有話語權。

軍事科研成果必須服務演訓實戰。今年7月,左源跟隨團隊前往高原參加實兵演練。如果不是來到部隊一線,他根本想不到,首先要調整的並非新裝備本身,而是操控設備。與一線官兵的交流碰撞,讓科學研究人員對未來新式裝備的研發有了新的方向與想法。

在高原上,左源曾幫醫學研究人員收集過官兵們的血氧數據。 「你知道高原官兵的手,是什麼樣子的嗎?」說著,左源伸出自己的雙手,比畫著高原上戰友們手的樣子,「指甲根部下陷,甲面平直沒有絲毫弧度,手指粗糙得像種了幾十年地。

那一刻,左源意識到,當他日常坐在窗明幾淨的辦公室敲著代碼時,有這樣一群年輕的戰友,呼吸著微薄的氧氣,雙手持槍暴露在強烈的紫外線中,用血肉之軀築就活的界碑。

緊緊握住邊防戰友們的手,左源產生了一種「想多為他們做些什麼」的責任。

「雖然戰位不同,但我們奮鬥的目標一致。希望透過我們在科研上的努力為他們解決更多實際問題。」這份感動與責任,化為支撐青年科研人員不斷攻堅克難的動力。

為了把科研為戰、服務部隊的理念從科研“最初一公裡”貫注到“最後一公裡”,研究院組織力量常態化深入作戰部隊一線調研,讓軍事科研成果真正走向演訓場、走向實戰。

由於長期奔波在部隊一線,「別人開玩笑說,我們是一群『反候鳥』——為了做實驗,冬天往北跑,夏天往南跑。」副研究員聶一鳴說。

去年中秋節,聶一鳴和團隊正在偏僻的沙漠裡做實驗。研究院領導來慰問,條件有限,只能在最近的縣城買了幾斤包子帶過去。

「實驗成功後,我們圍坐一起,吃著包子,賞著戈壁灘上的明月。那晚的月亮,特別圓。」想起那一幕,聶一鳴回味無窮。

「深入學習黨的二十大報告,我更深切體會到,只有深入部隊一線,埋頭苦幹,不斷學習提高、能力擴容、本領升級,才能使科研工作在新域新質戰鬥力生成上有新的作為。

【銳視點】

以青春之力勇擔創新之責

■盧週來

習主席在黨的二十大報告中深刻指出,必須堅持科技是第一生產力、人才是第一資源、創新是第一動力。

科學技術是軍事發展中最活躍、最具革命性的因素。科技創新成為大國戰略博弈的主戰場,深刻影響國家安全和軍事戰略全局。推動國防和軍隊建設高質量發展,必須加快實施創新驅動發展戰略,加快實現高水平科技自立自強,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰,大幅提昇科技創新對戰鬥力成長的貢獻率。

5年前,伴隨改革強軍鏗鏘步伐,肩負科技強軍神聖使命,軍事科學院國防科技創新研究院應運而生:胸懷「幹驚天動地事」的遠大志向,瞄準世界科技前沿,聚焦未來戰爭急需,深謀制衡強敵勝勢,前瞻佈局人工智慧、無人系統、前緣交叉等一系列科研方向,與當年開創「兩彈一星」事業可謂一脈相承。

偉大事業需要偉大精神滋養,第一動力需要第一資源驅動。 60多年前,鄧農先、朱光亞、於敏、孫家棟、周光召等一大批年輕科研工作者,以熱愛祖國、無私奉獻的博大情懷,以自力更生、艱苦奮鬥的決心乾勁,以大力協同、勇於登攀的創新銳氣,堅定扛起國防科技創新的責任擔當,開創了舉世矚目的「兩彈一星」事業。在新時代強軍事業感召下,一大批平均年齡僅有30多歲、具有名校博士學歷的優秀青年集聚國防科技創新研究院,一路攻堅克難,聚力攻關突破,為加快推進科技自立自強不懈奮鬥,在創新超越中揮灑青春汗水、展現青春力量、彰顯青春擔當。

創新永無止境,奮鬥正當其時。當前,世界百年未有之大變局正在加速演變,新一輪科技革命和軍事革命日新月異。面對科技之變、戰爭之變、對手之變,作為一支充滿青春活力的新興科研力量,為國而立、因戰而研的使命無比榮光,奮鬥青春、逐夢強軍的舞台無比廣闊。奮力搶佔國防科技創新制高點,堅決打贏關鍵核心技術攻堅戰,始終是我們必須直面的現實課題、必須扛起的時代重任。

習主席強調,要造就規模宏大的青年科技人才隊伍,把培養國家戰略人才力量的政策重點放在青年科技人才上,支持青年人才挑大樑、當主角。習主席的重要指示,深刻揭示了青年科技人才成長規律,鮮明標示了科技人才培養方向。我們將牢記習主席囑托,牢記黨和人民重托,大力弘揚「兩彈一星」精神、新時代科學家精神,致力培養鍛造有理想、敢擔當、能吃苦、肯奮鬥的青年科技人才,以青春之力勇擔創新之責,讓更多新銳英才在更多更大的崗位平台挑大樑、當主角,用實際行動學習宣傳貫徹黨的二十大精神。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/4924882.html