Tag Archives: #intelligent #warfare

Chinese Military Laws Necessary for Winning Intelligent Warfare

中國軍事法規是贏得智慧化戰爭的必要條件

現代英語:

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12

現代國語:

认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。

●战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。

习主席指出,要认真研究军事、研究战争、研究打仗,把握现代战争规律和战争指导规律。今天,战争的智能化特征日益凸显,智能化战争已经展现出早期形态的样貌。要想掌握未来智能化战争主动权,就应积极跟踪现代战争发展,紧贴现实军事斗争准备,前瞻认识智能化战争规律,深刻把握其指导规律,着力回答“是什么”、解决 “怎么做”等问题,不断创新战争和战略指导。

回答“是什么”,前瞻认识智能化战争规律

毛泽东同志指出:“战争的规律——这是任何指导战争的人不能不研究和不能不解决的问题。”今天,在智能化战争初显端倪之际,应前瞻认识智能化战争“是什么”,否则就不能解决“怎么做”,更不可能驾驭未来战争。

智能化战争规律是战争知行体系的重建。智能化战争规律,和冷兵器战争、热兵器战争、机械化战争、信息化战争的规律一样,是战争诸要素间内在的、本质的联系,不同之处在于它有新质的要素和新的要素间的构成模式,本质上是基于智能化革命所引发的战争知行体系的重建。今天,认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。掌握这些规律,就能克服未来战争中的纷乱和不确定性,从中找出条理和确定性,这是应对智能化战争的客观要求。

智能化战争规律是战争指导规律的依据。毛泽东在《中国革命战争的战略问题》中,首先分析了中国革命战争的特点,揭示了战争规律,然后“由此产生我们的战略战术”,即战争指导规律;在《论持久战》中,他首先说明了“是什么”,再转到研究“怎么做”的问题上,体现了一种认识过程的逻辑顺序。今天,研究智能化战争仍应遵循这一顺序,既不能本末倒置,颠倒顺序;也不能增加、减少或更换环节。要在掌握智能自主这一根本规律的基础上,揭示自主感知、自主规划、自主实施、自主联动、自主评估等战争指导规律。

不懂得智能化战争规律,就不能指导战争。《孙膑兵法》指出:“知道,胜”“不知道,不胜”。道是战争规律,掌握它、行动符合它,就能取胜;反之,则败。毛泽东也强调:“不知道战争的规律,就不知道如何指导战争,就不能打胜仗。”同样,掌握智能化战争规律,是正确指导智能化战争的前提。否则,就难免要被智能化战争的表面现象所迷惑。今天,要通过分析智能化技术群对战争的基础性、长远性和颠覆性影响,研究智能化战争是个什么样子?有哪些规律?应该怎么打?这些都是智能化战争指导必须回答的重大课题。

解决“怎么做”,揭示掌握智能化战争指导规律

智能化战争指导规律是运用智能化战争规律指导实践的中介,起到“桥”和“船”的作用。应在回答“是什么”的基础上解决“怎么做”的问题,提出智能化战争的“游泳术”。

智能化战争指导规律是运用战争规律的规律。认识战争规律的目的在于应用。马克思指出:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”同样,智能化战争本身迫使指挥员不发现规律则已,一旦发现,就会结合能动性,利用规律为打赢战争服务,这就必然导致智能化战争指导规律的产生。今天,战争是政治的继续仍是智能化战争规律,由此得出智能化战争必须服从服务于政治的指导规律;兵民是胜利之本仍是智能化战争规律,由此得出最广泛地动员民众的指导规律,等等。这些智能化战争指导规律是战争规律派生出来的,是“智能化战争大海中的游泳术”。

充分发挥人在智能化战争中的能动作用。恩格斯说过:“赢得战斗胜利的是人而不是枪。”智能化战争指导规律是实践规律、使用规律。它不是对智能化战争规律的简单“移用”“照搬”,而是加上人的主观能动性,才能转化为战争指导规律。今天,掌握人工智能的军事人才,不仅是智能化武器的操控者,更是人工智能的创造者。人在智能化人机系统中仍处于主体地位,是智能化战争胜负的决定性因素。指挥员应在掌握智能化战争规律的基础上,充分发挥能动性,坚持“技术+谋略”的作战理论生成模式,才能由回答“是什么”向解决“怎么做”转变。

智能化战争指导规律是不断发展的。战争是一条“变色龙”。智能化战争本身也会经历萌芽、发展、成熟等不同阶段,这就必然带来智能化战争指导规律的发展。战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。要紧跟战争形态向智能化加速迈进的历史进程,把握智能化战争发展方向和时代脉搏,把对智能化战争指导规律的研究推向新境界,在未来战场占据战略主动和先机。

紧盯“主动权”,不断创新智能化战争和战略指导

兵无常势,水无常形。在智能化战争已然来临之际,要在遵循智能化战争规律和指导规律的基础上,紧贴现实军事斗争准备,加强对手研究、敌情研究,主动设计“在什么时间”“在什么地点”“和谁打仗”,创新战争和战略指导,牢牢掌握未来战争的战略主动权。

你打你的,我打我的。战争指导艺术的最高境界,就是你打你的、我打我的。“各打各的”要求指挥员在未来智能化战争中,无论处于怎样复杂、困难的环境,首先要立足自身实际,独立自主地使用自己的力量。特别是拥有高技术装备之敌,可能造成暂时的局部的敌之主动、我之被动的局面,这时要通过政治、经济、外交等综合手段,以总体有利态势弥补武器上的劣势,迅速扭转这一局面,恢复主动地位。如果被战略对手牵着鼻子走,就可能吃大亏。

把握时机,因时用兵。《六韬》指出:“用之在于机。”若米尼强调:“全部战争艺术就在于善于待机而动。”一方面,时不至,不可强动。要持重时机,时机未到,应有极大耐心,防止战略盲动。另一方面,时不再来,机不可失。要善于把握时机,一旦遇上有利时机,就要坚决利用,防止畏首畏尾。需要指出的是,要辩证地看待时机成熟问题。未来智能化战争瞬息万变,要求快速决策,而面对不确定性因素,又必须慎重决策。有时及早定下决心,比明天下达更完善的决心也许更有效。因此,要敢于冒一点风险,不然则会坐视成功机会的丧失。

各域有别,因地运筹。克劳塞维茨指出:“战争不像长满庄稼的田地,而像长满大树的土地。收割庄稼时不需要考虑每棵庄稼的形状,收割得好坏取决于镰刀的好坏;而用斧头砍伐大树时,就必须注意到每棵大树的形状和方向。”战略空间不同,战争就不同,战争指导也不一样。当前,战场空间不断由陆海空等传统空间向太空、网络等新型空间拓展,战争指导者应根据多域性、立体性、网络性等特点,探索新的智能化战争规律和指导规律。

瞄准对手,因敌制胜。《孙子兵法》指出:“践墨随敌,以决战事。”约米尼也说过:“不管是谁,如果不了解敌人,怎能知道自己应该如何行动呢?”着眼未来,聪明的战略家应根据轻重、缓急程度,把作战对象区分为主要作战对象和一般作战对象、现实作战对象和潜在作战对象,全面客观地了解不同作战对象的战略意图、兵力部署、作战构想等,提出能充分发挥己方战力优长的新的智能化战争指导规律,实施正确的战争行动。

总之,智能化战争规律是认识过程中的规律,解决“是什么”;指导规律是实践过程中的规律,解决“怎么做”。二者辩证统一,不可分割,构成了认识和指导智能化战争的完整链条。“战胜不复,而应形于无穷。”今天,战争和战略指导者应基于客观情况,深入探索和灵活运用智能化战争规律和战争指导规律,与时俱进创新战争和战略指导。

(作者单位:军事科学院战争研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f8888

Chinese Military Review of the Strategic Game Among Major Powers Within Context of Military Intelligence

軍事情報視野下的大國戰略博弈-中國軍事評論

現代英語:

In today’s world, the new military revolution has entered a critical qualitative change stage. Intelligent warfare with ubiquitous intelligence, interconnectedness, human-machine integration, and full-domain collaboration is accelerating. In order to consolidate its position as the world’s hegemon, the United States actively promotes the third “offset strategy” to “change the future war situation”, formulates an artificial intelligence development strategy, accelerates the actual combat testing and exercises of artificial intelligence, and regards intelligent technology as the core of a “disruptive technology group” that can change the “rules of the game”. Military powers such as Russia, Britain, and Israel are unwilling to lag behind and are also stepping up to improve their respective strategic layouts in the field of artificial intelligence. As competition among major powers intensifies, military intelligence will become the new commanding heights of the arms race.

    【Key words】military conflict, artificial intelligence strategy, AI war 【Chinese Library Classification Number】D81 【Document Identification Code】A

    In 2017, Master, known as the evolved version of “AlphaGo”, swept the top Go players on the online Go platform and won 60 consecutive games; in 2019, in the StarCraft II man-machine competition, two top human players were defeated with a score of 1:10; in 2020, in the “Alpha” air combat competition held by the Defense Advanced Research Projects Agency of the United States Department of Defense, the F-16 piloted by the US military ace pilot was completely defeated by the artificial intelligence fighter with a score of 0:5. These events show that the era of artificial intelligence that humans both look forward to and fear has quietly arrived.

    Engels said, “Once technological advances can be used for military purposes and have been used for military purposes, they will immediately and almost forcibly, and often against the will of the commander, cause reforms or even changes in the way of warfare.” At present, the militarized application of artificial intelligence has caused “the winning mechanism of war to undergo an unprecedented transformation, and the center of gravity of combat power generation is undergoing a historic shift.” A new round of scientific and technological revolution, industrial revolution and military revolution provides support for the intelligent era of “controlling energy with intelligence.”

    Military artificial intelligence demonstrates its powerful power in modern warfare

    The drive of the arms race among the major powers is triggering a chain of changes in the military field. In recent years, the world situation has been in a turbulent period, which has triggered a series of geopolitical crises. The concept of “hybrid warfare” has entered the war stage, and military artificial intelligence has entered a new stage of development. The rapid development and comprehensive integration of technologies such as artificial intelligence, big data, cloud computing, and reconnaissance and strike drones have demonstrated their powerful power in modern warfare. Whether it is the physical domain of firepower strikes, the interest domain of economic sanctions, or the cognitive domain of public opinion and psychological control, it makes people deeply feel that military artificial intelligence is becoming popular.

    Assassinating senior Iranian officials, AI becomes a “killing tool” for the US military. On January 3, 2020, then-US President Trump ordered the US military to launch an airstrike on Baghdad International Airport in Iraq without the consent of the US Congress. This airstrike directly killed Iranian senior official Soleimani. Soleimani is the top commander of the “Quds Brigade” of the Iranian Revolutionary Guard. Why was he successfully assassinated by the United States in the capital of Iraq? It is reported that the “Reaper” drone carried out this mission, which “targeted and eliminated” Soleimani by projecting “Hellfire” missiles. The operation was very secretive and could not be detected by radar. Even the US spy satellites did not know the location of the “Reaper” at the time. It should be emphasized that the assassination of Soleimani was an illegal and brutal act of the United States using terrorist means, “one of the war crimes committed by the United States by abusing force”, and its so-called “rules-based international order” is a pure whitewash, and its essence is a true manifestation of hegemony.

    In the Israeli-Palestinian conflict, Israel launched the “first AI war”. In May 2021, Israel launched “Operation Rampart” against Hamas. During the 11-day battle in the Gaza Strip, Israel relied on advanced information collection technology, analytical algorithms and AI-led decision support systems to quickly and effectively select attack targets and use the most appropriate ammunition as needed. Through hundreds of intensive and precise strikes from multiple combat platforms, it paralyzed Hamas and the Palestinian Islamic Jihad Organization’s rocket positions, rocket manufacturing plants, ammunition depots, military intelligence agencies, senior commanders’ residences and other key facilities, destroyed several autonomous GPS-guided submarines of the Hamas Maritime Commando, and killed Bassem Issa and other Hamas senior commanders and senior agents.

    It has been disclosed that the artificial intelligence system used in the war is an algorithm system developed by an elite team code-named 8200. The three systems “Alchemist”, “Gospel” and “Deep Wisdom” hatched by the team were all used in this military operation. The “Alchemist” system can analyze the enemy’s attempt to launch an attack and provide real-time warnings through the communication device carried by individual soldiers. The information fed back by the soldiers will also be collected again and evaluated for the next attack; the “Gospel” system can generate target strike suggestions and mark target information in real time. Commanders can flexibly select important targets and implement strikes based on battlefield conditions; the “Deep Wisdom” system can accurately draw a map of the tunnel network of Hamas armed organizations in the Gaza Strip through intelligence collection and big data fusion such as signal intelligence, visual intelligence, personnel intelligence, and geographic intelligence, forming a situation map that fully reflects the conflict area scenario. The use of these technologies has greatly enhanced the Israeli army’s battlefield situation awareness capabilities. A senior intelligence official of the Israel Defense Forces said that this is “the first time that AI has become a key component and combat power amplifier in fighting the enemy.” The Israeli military believes that the use of AI has brought “super cognitive ability” and even directly calls it “the first artificial intelligence war.”

    In order to seize the technological commanding heights, countries are stepping up their strategic layout of military intelligence

    Artificial intelligence is regarded as a key strategic technology in the Fourth Industrial Revolution. In order to gain the upper hand in the new round of disruptive technology competition, the world’s military and technological powers, led by the United States, have stepped up their strategic layout around military intelligence, and are working intensively and spare no effort.

    The United States attempts to rely on artificial intelligence to maintain its military hegemony. Since 2016, the U.S. Department of Defense has successively issued documents such as “Preparing for the Future of Artificial Intelligence”, “National Artificial Intelligence Research and Development Strategic Plan”, and “Department of Defense Artificial Intelligence Strategy”, which have elevated the development of artificial intelligence to the national strategic level. In order to establish its own “rules of war”, the Pentagon has successively formulated artificial intelligence technology research and development plans, key project concepts, and technical standards and specifications, and focused on building a research and development production and combat application system. In summary, the U.S. military’s layout for the future development of artificial intelligence can be roughly divided into three stages: near, medium, and long. In the first stage, before 2025, with unmanned, stealth, and remote combat platforms as the development focus, a “global surveillance and strike system” will be built, and unmanned systems will become the main means of military intervention by the U.S. military. In the second stage, before 2035, with intelligent combat platforms, information systems, and command and decision-making systems as the development focus, an intelligent combat system will be initially established, and unmanned systems will surpass manned systems and occupy a dominant position in combat. The third stage, before 2050, will focus on the development of technologies such as strong artificial intelligence, nanorobots, and brain networking, fully realize the intelligence of combat platforms, information systems, and command and control, promote the expansion of combat space to biospace, nanospace, and intelligent space, and strive to seek the intelligent combat system to enter the advanced stage.

    The various branches of the U.S. military have also launched and continuously updated their artificial intelligence development plans. The ground unmanned autonomous system has the “U.S. Ground Unmanned System Roadmap” and the “U.S. Robot Development Roadmap”, etc., and plans to achieve intelligent formations and coordinated actions of manned and unmanned by 2030, and realize the mobility of synthetic forces by 2040. The aerial unmanned autonomous system has a special drone development plan, and the long-term goal is to form a complete aerial unmanned equipment system covering high, medium and low altitudes, large, medium, small and micro, ordinary and long flight time. The maritime unmanned autonomous system is divided into two directions. One is to create a new underwater combat system, using multiple unmanned submarines to form a mobile integrated reconnaissance, detection, and strike network, and form an “advanced underwater unmanned fleet”; the other is to accelerate the development of surface unmanned ships and make breakthroughs in the “human-machine cooperation” of surface unmanned ships. In addition, the U.S. Department of Defense has also established partnerships with industry, academia and allies to ensure access to the most advanced artificial intelligence technology support.

    Russia has also put forward its own strategic plan in the field of artificial intelligence. In recent years, Russian President Vladimir Putin has attached great importance to the development of artificial intelligence. He proposed that artificial intelligence is the future for both Russia and all mankind. Whoever becomes a leader in this field will stand out and gain a huge competitive advantage. Artificial intelligence is related to the future of the country. Russian Chief of General Staff Gerasimov said that the Russian army is “developing non-nuclear strategic deterrence forces” through artificial intelligence equipment. Russian Defense Minister Sergei Shoigu said that the Russian army is stepping up the research and development and deployment of military robots, and combat robots will be put into mass production.

    As early as November 2014, Russia adopted a plan to develop combat robots by 2025, proposing that robot systems will account for 30% of the entire weapons and military technology system by 2025. In December 2015, Putin signed a presidential decree to “establish a national robotics technology development center”, providing institutional support for the development of artificial intelligence from a strategic level. In recent years, Russia has successively issued strategic plans such as “Future Russian Military Robot Application Concept”, “National Artificial Intelligence Development Strategy by 2030”, and “Russian Federation Defense Plan 2021-2025”, carried out war games in various complex combat environments, studied the impact of artificial intelligence on various levels such as strategy, campaign and tactics, and strived to build a multi-level and multi-dimensional unmanned intelligent combat system that is interconnected.

    From the perspective of medium- and long-term goals, attacking unmanned equipment is the focus of Russia’s development. In 2019, Russian President Vladimir Putin proposed at the Russian Federation Security Conference that in the next 10 years, the Russian army will vigorously develop combat robot systems that can perform tasks on the battlefield. The short-term goal is to build a multifunctional combat robot force with certain autonomous control capabilities by 2025. According to information, the force will be composed of 5 types of robots, each of which can be independently divided into combat units and can basically complete battlefield combat tasks without or with very little human intervention. At present, the Russian army has started the experimental design work of the heavy and light robot “assault” and “comrade” systems. Some experts analyzed that the combat robot force may become an independent and brand-new branch of the Russian army.

    The United States is wooing its allies to prepare for AI wars, and the AI ​​arms race is intensifying. In recent years, in order to maintain its absolute leading position in the field of artificial intelligence, the United States has stepped up its own AI militarization construction while trying to win over its allies to jointly develop a joint operation AI system in the name of serving the alliance combat system. According to the U.S. “Defense News” website, in September 2020, the U.S. Joint Artificial Intelligence Center has launched the “Defense Partnership Program”, which covers the United Kingdom, France, Israel, Japan, South Korea, Australia, Canada, Finland, Norway, Sweden and other countries. It aims to develop an AI system that is interconnected with the above-mentioned allies and lay the foundation for joint operations in intelligent warfare. It is reported that relevant defense representatives of the United States and its allies have held several meetings around this plan. The United States also claimed that this defense cooperation will “open the door” to more interested U.S. allies.

    The United States’s push will undoubtedly intensify the AI ​​arms race among the world’s major military powers. Among the United States’ many allies, Israel’s AI level is the best. Israel is the world’s largest exporter of military drones; it has the world’s first controllable autonomous unmanned vehicle, the Guardian, which has been equipped to the troops; it is the only country in the world, except the United States, equipped with unmanned surface vessels, and has many types of unmanned surface vessels such as the Protector, Stingray, and Seagull.

    Other major countries are also stepping up their layout in the field of artificial intelligence. The United Kingdom has formulated an artificial intelligence development path of “universities as the source, military-civilian integration”, and issued the “National Artificial Intelligence Strategy” and the “Robots and Artificial Intelligence” strategic plan. France has formulated the “French Artificial Intelligence Strategy” and the “French Artificial Intelligence Plan”. Since 2018, it has increased its defense budget year by year and continuously increased investment in the research and development of artificial intelligence weapons. Germany has the world’s largest artificial intelligence research center. In 2018, it issued the “Artificial Intelligence Strategy” and planned to create an “Artificial Intelligence Made in Germany” brand by 2025. Japan has successively issued the “Artificial Intelligence Strategy”, “New Robot Strategy” and “Comprehensive Science and Technology Innovation Strategy”, and established the “Innovative Intelligence Comprehensive Research Center” to focus on the development of artificial intelligence-related technologies. In January 2021, the Australian Department of Defense issued the “Fighting the Artificial Intelligence War: Operational Concepts for Future Intelligent Warfare”. This document focuses on how to apply artificial intelligence to land, sea and air combat.

    As some experts have said, “Intelligent technology is a double-edged sword. While it promotes the evolution of warfare to intelligent warfare, it also brings about a series of new war ethics issues and dilemmas in the law of war.” What changes will artificial intelligence bring to human society? This issue deserves in-depth thinking and continued attention.

    (The author is the director of the News Research Department of Guangming Daily)

    【References】

    ①Wu Mingxi: Intelligent Warfare—AI Military Vision, Beijing: National Defense Industry Press, January 2020.

    ②Guo Ming: “Basic Understanding of Intelligent Warfare”, “People’s Forum·Academic Frontier”, Issue 10, 2021.

    ③ Ding Ning and Zhang Bing: “Development of Intelligent Weapons and Equipment of Major Military Powers in the World”, “Military Digest”, Issue 1, 2019.

    ④ Ge Yan and Jia Zhenzhen: “Future Combat Concepts and Combat Styles under Military Transformation”, “Military Digest”, Issue 15, 2020.

    ⑤He Fuchu: “The Future Direction of the New World Military Revolution”, Reference News, August 23, 2017.

    ⑥Ma Junyang: “Russian-made unmanned intelligent weapons debut in Syria”, People’s Liberation Army Daily, December 30, 2019.

Geng HaijunPeople’s Forum (July 1, 2022, Issue 03)

現代國語:

當今世界,新軍事變革進入關鍵性變遷階段,智慧泛在、萬物互聯、人機共融、全局協同的智慧化戰爭正加速演進。為鞏固世界霸主地位,美國積極推行“改變未來戰局”的第三次“抵消戰略”,制定人工智能發展戰略,加速人工智能實戰檢驗和演習,將智能科技視作可改變“遊戲規則”的“顛覆性技術群”的核心。俄羅斯、英國、以色列等軍事強國不甘落後,也加緊完善各自在人工智慧領域的戰略佈局。大國競爭加劇,軍事智慧化將成為新的軍備競賽制高點。

【關鍵字】軍事衝突 人工智慧戰略 AI戰爭 【中圖分類號】D81 【文獻識別碼】A

2017年,被稱為進化版「阿爾法狗」的Master在圍棋網路平台橫掃圍棋界頂尖高手,豪取60連勝;2019年,星際爭霸Ⅱ遊戲人機對抗賽中,兩位人類頂尖選手以1:10的比數慘敗;2020年,在美國國防部高級研究計畫局舉辦的「阿爾法」空中格鬥競賽中,由美軍王牌飛行員駕駛的F-16以0:5完敗於人工智慧戰鬥機。這些事件表明,人類既期待又畏懼的人工智慧時代已經悄悄到來。

恩格斯說,「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改革甚至變革」。當下,人工智慧的軍事化應用使「戰爭的致勝機制正在發生前所未有的嬗變,戰鬥力生成的重心正發生歷史性的位移」。新一輪科技革命、產業革命和軍事革命為「以智地」的智慧化時代提供了支撐。

軍事人工智慧在現代戰爭中展現出強大威力

大國軍備競賽的驅動,正引發軍事領域鍊式變革。近年來,世界局勢處於動盪不安時期,由此引發了一系列地緣政治危機,「混合戰爭」概念登上戰爭舞台,軍事人工智慧進入發展新階段。人工智慧、大數據、雲端運算、察打一體無人機等技術的快速發展、全面融合,在現代戰爭中展現出強大威力。無論是火力打擊的物理域、經濟制裁的利益域,或是輿情心理控制的認知域,無不使人深刻感受到軍事人工智慧正在大行其道。

刺殺伊朗高官,AI成為美軍「殺人工具」。 2020年1月3日,時任美國總統川普未經美國國會同意,下令讓美軍空襲伊拉克巴格達國際機場。這次空襲,直接殺死了伊朗高官蘇萊曼尼。蘇萊曼尼是伊朗革命衛隊「聖城旅」最高指揮官,為何會被美國在伊拉克首都暗殺成功?有消息透露,實施這項任務的是「收割者」無人機,它透過投射「地獄火」飛彈,對蘇萊曼尼進行了「定點清除」。這次行動十分隱秘,雷達無法偵測到,連美軍間諜衛星都不知道這架「收割者」當時的位置。需要強調的是,刺殺蘇萊曼尼,是美國動用恐怖主義手段的非法和殘暴行徑,“是美國濫用武力犯下的戰爭罪行之一”,其所謂的“基於規則的國際秩序”是純粹的粉飾,本質是霸權主義的真實表露。

在巴以衝突中,以色列打響了「第一次AI戰爭」。 2021年5月,以色列對哈馬斯發起「城牆衛兵行動」。在加薩地帶11天的戰鬥中,以色列依靠先進的資訊收集技術、分析演算法和人工智慧主導的決策支援系統,快速有效地選擇攻擊目標並根據需要使用最合適的彈藥,透過數百次多種作戰平台的密集、精確打擊,癱瘓了哈馬斯和巴勒斯坦伊斯蘭聖戰組織的火箭陣地、火箭製造廠、彈藥倉庫、軍事情報機構、高級指揮官住所等關鍵設施,摧毀了哈馬斯海上突擊隊多艘自主GPS制導潛艇,擊殺了巴塞姆·伊薩等多名哈馬斯高級指揮官和高級特工。

有資訊揭露,此次應用於戰爭的人工智慧系統,是由一支代號8200的精英小組所開發的演算法系統。由該小組孵化的「煉金術士」「福音」「深度智慧」三個系統,全部被用於這次軍事行動。 「煉金術士」系統可對敵方發動攻擊的企圖進行分析,並透過單兵攜帶的通訊裝置即時預警,而士兵回饋的訊息也會被重新收集並對下一次攻擊作出評估;「福音」系統可產生目標打擊建議,並即時標記目標訊息,指揮人員結合戰場情況可靈活選擇重要目標並實施打擊;「深度智慧」系統透過訊號情報、視覺情報、人員情報、地理情報等情報收集和大數據融合,可精確繪製哈馬斯武裝組織在加薩地帶的地道網絡圖,形成了全面反映衝突區域情景的態勢圖。這些技術的運用,大大提升了以軍的戰場態勢感知能力。以色列國防軍一名高級情報官員表示,這是「AI第一次成為與敵人作戰的關鍵組成部分和戰力放大器」。以色列軍方認為,使用AI帶來了“超認知能力”,甚至直接稱其為“第一場人工智慧戰爭”。

各國為搶佔技術制高點,加緊軍事智慧化戰略佈局

人工智慧被視為第四次工業革命的關鍵性戰略技術,為謀求在新一輪顛覆性技術爭奪中獨佔鰲頭,以美國為首的世界軍事科技強國圍繞軍事智能化加緊戰略佈局,可謂緊鑼密鼓、不遺餘力。

美國企圖依賴人工智慧維持其軍事霸權。自2016年以來,美國防部連續推出《為人工智慧的未來做好準備》《國家人工智慧研究與發展戰略規劃》《國防部人工智慧戰略》等文件,將人工智慧發展提升至國家戰略層面。五角大廈為確立由自己主導的“戰爭規則”,相繼制定了人工智慧技術研發規劃、重點專案設想和技術標準規範等,著力建構研發生產和作戰運用體系。概括起來看,美軍對未來人工智慧發展的佈局大致可分為近、中、遠三個階段。第一階段,2025年前,以無人化、隱身化、遠程化作戰平台為發展重點,建構“全球監視打擊體系”,無人系統成為美軍軍事幹預的主要手段。第二階段,2035年前,以智慧化作戰平台、資訊系統、指揮決策系統為發展重點,初步建成智慧化作戰體系,無人系統將超過有人系統,居於作戰的主導地位。第三階段,2050年前,以強人工智慧、奈米機器人、腦聯網等技術為發展重點,全面實現作戰平台、資訊系統、指揮控制智慧化,推動作戰空間向生物空間、奈米空間、智慧空間拓展,努力尋求智慧化作戰體系進入高階階段。

美軍各軍種也相繼推出並不斷更新其人工智慧發展規劃。地面無人自主系統有《美國地面無人系統路線圖》《美國機器人發展路線圖》等,計畫在2030年實現有人與無人的智慧編隊、協同行動,2040年實現合成兵力機動。空中無人自主系統有專項的無人機發展規劃,長遠目標是形成覆蓋高、中、低空,大、中、小微型,普通與長航時完備的空中無人裝備體系。海上無人自主系統分兩個方向,一個是打造新型水下作戰體系,利用多個無人潛航器組成機動式一體化偵察、偵測、打擊網絡,組成「先進水下無人艦隊」;另一個是加速發展水面無人艦艇,在水面無人艇「人機合作」方面取得突破。此外,美國防部也與工業界、學術界和盟國建立夥伴關係,確保獲得最先進的人工智慧技術支援。

俄羅斯在人工智慧領域也提出了自己的戰略計畫。近年來,俄羅斯總統普丁高度重視人工智慧發展,他提出,無論對俄羅斯或全人類,人工智慧都是未來,誰成為這個領域的領導者,誰就會脫穎而出,進而獲得巨大的競爭優勢,人工智慧關係國家未來。俄總參謀長格拉西莫夫稱,俄軍正透過人工智慧裝備「發展非核手段戰略威懾力量」。俄國國防部長紹伊古則表示,俄軍正加緊進行軍用機器人的研發、列裝工作,戰鬥機器人將投入量產。

早在2014年11月,俄羅斯就通過了2025年前發展作戰機器人計劃,提出2025年機器人系統將佔整個武器和軍事技術系統的30%。 2015年12月,普丁簽署「成立國家機器人技術發展中心」總統令,從戰略層面為人工智慧的發展提供了體制支撐。近幾年,俄羅斯先後推出了《未來俄軍用機器人應用構想》《2030年前人工智慧國家發展戰略》《2021—2025年俄聯邦國防計畫》等戰略規劃,開展了各種複雜作戰環境下的兵棋推演,研究人工智慧對戰略、戰役和戰術等各層面的影響,努力建構多層次相互智能化、相互智能化體系的無個人化作戰。

從中長目標來看,攻擊無人裝備是俄羅斯發展的重點。 2019年,俄羅斯總統普丁在俄聯邦安全會議上提出,未來10年俄軍將大力發展能在戰場上執行任務的戰鬥機器人系統。近期目標,是2025年建造具有一定自主控制能力的多功能戰鬥機器人部隊。根據資料介紹,該部隊將由5種機器人組成,每種機器人都可以獨立劃分為作戰單元,可在無需人工或僅需很少人工幹預下,基本完成戰場作戰任務。目前,俄軍已啟動重型和輕型機器人「突擊」及「戰友」系統的試驗設計工作。有專家分析,戰鬥機器人部隊或將成為俄獨立的、具有全新意義的兵種。

美國拉攏盟友備戰AI戰爭,人工智慧軍備競賽加劇。近年來,美國為維持在人工智慧領域的絕對領先地位,在加緊推進自身人工智慧軍事化建設的同時,也以服務聯盟作戰體系為名,試圖拉攏盟友共同開發聯合操作人工智慧系統。根據美國「防務新聞」網站報道,2020年9月,美聯合人工智慧中心已啟動“防務夥伴關係計畫”,該計畫涵蓋英國、法國、以色列、日本、韓國、澳洲、加拿大、芬蘭、挪威、瑞典等國,旨在開發與上述盟國互聯互通的人工智慧系統,為智能化戰爭聯合作戰奠定基礎。有報導稱,圍繞這個計劃,美國及其盟友的相關國防代表已多次召開會議。美國還聲稱,這個國防合作將向更多感興趣的美國盟友「敞開大門」。

美國的助推,無疑將使全球主要軍事大國間的人工智慧軍備競賽愈演愈烈。在美國眾多盟友中,以色列的人工智慧水準獨領風騷。以色列是世界最大的軍用無人機出口國;擁有世界上第一種可控的自主式無人車——“守護者”,並已裝備部隊;是世界上除美國之外僅有的裝備了無人水面艇的國家,擁有“保護者”“黃貂魚”“海鷗”等多型無人水面艇。

其他大國也加緊佈局人工智慧領域。英國制定了「高校為源、軍民融合」的人工智慧發展路徑,推出了《國家人工智慧戰略》《機器人與人工智慧》戰略規劃。法國制定有《法國人工智慧戰略》《法國人工智慧計畫》,從2018年起逐年增加國防預算,不斷增加人工智慧武器研發投資力道。德國擁有世界上最大的人工智慧研究中心,2018年發布了《人工智慧戰略》,計畫2025年前打造「人工智慧德國製造」品牌。日本先後推出《人工智慧戰略》《新機器人戰略》《科技創新綜合戰略》,成立“革新智慧綜合研究中心”,集中開發人工智慧相關技術。 2021年1月,澳洲國防部發表《打好人工智慧戰爭:未來智慧化戰爭之作戰構想》。這份文件著重探討如何將人工智慧應用到陸、海、空作戰領域。

正如一些專家所言:「智慧科技是一把雙面刃,在推動戰爭形態向智慧化戰爭演變的同時,也帶來一系列全新的戰爭倫理問題和戰爭法困境。」人工智慧將為人類社會帶來哪些變革?這一問題值得深入思考並持續關注。

(作者為光明日報社新聞研究部主任)

【參考文獻】

①吳明曦:《智能化戰爭-AI軍事暢想》,北京:國防工業出版社,2020年1月。

②郭明:《關於智慧化戰爭的基本認知》,《人民論壇‧學術前線》,2021年第10期。

③丁寧、張兵:《世界主要軍事強國的智慧化武器裝備發展》,《軍事文摘》,2019年第1期。

④葛妍、賈珍珍:《軍事變遷下的未來作戰概念與作戰樣式》,《軍事文摘》,2020年第15期。

⑤賀福初:《世界新軍事革命未來走向》,《參考消息》,2017年8月23日。

⑥馬浚洋:《俄製無人智慧武器亮相敘利亞》,《解放軍報》,2019年12月30日。

中國原創軍事資源:https://paper.people.com.cn/rmlt/html/2022-07/01/content_2593935188.htm

Concept of future human-machine integrated forces

中國未來人機一體化軍事構想

現代英語:

At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.

The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.

USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.

On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.

The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.

On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.

According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.

In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment

The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.

Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).

It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.

In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.

On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.

Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.

Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.

Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.

On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.

The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.

At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.

It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force

With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.

In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”

In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.

The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.

Source: China Aviation News Author: Wei Yuejiang Editor-in-charge: Wu Xingjian 2021-03-26 08:0x

現代國語:

目前,從世界上主要國家編制體制改革發展情況看,軍隊正向精干、小型、高效、智能、“人機(機器人無人機)”一體方向發展,謀求機器人士兵、無人機與人類戰士一起並肩協同、聯合作戰。據統計,目前全球超過60個國家的軍隊已裝備了軍用機器人,種類超過150種。預計到2040年,世界軍事強國可能會有一半的成員是機器人。除美、俄、英、法、日、以色列、土耳其、伊朗等國家已相繼推出各自的機器人戰士外,其他國家也投入到這場無人化武器的研制與開發中去。

世界軍事強國將掀起組建無人作戰部隊爭鋒熱潮所謂無人作戰部隊,就是作戰機器人或者戰場殺人機器人系統的統稱。隨著各類信息化、精確化、數據化武器裝備的發展,智能化平台成為預先設計戰場的推手,作戰機器人成為戰場的主力軍,人機結合對抗成為克敵制勝的關鍵,未來戰場空間力量將凸顯陸海空三維無人化發展趨勢。

《今日美國報》曾發表的《新型機器人把戰爭帶入下一個層次:無人戰爭》一文中,這樣描述無人化戰爭:無人機編隊蜂擁而來,用精密的儀器探測、偵察與反偵察,它們鎖定目標後,從容地發射導彈;自動編程的無人潛艇,執行水下搜索、偵察、排除水雷等多種任務;地面戰場上,機器人負責彈藥、醫療補給和食物的配送……未來戰爭中,這些或許將成為現實。

在陸地,能執行特定任務的各種機器人,就是機械化、信息化、智能化高度融合的機動打擊平台。如:無人坦克,就是以自身程序控制為主的無人化履帶式裝甲平台,可讓士兵們遠程控制,以遠距離攻擊型智能化武器、信息化武器為主導,能自動裝載彈藥和自主發射,實施遠程間接精確打擊,有效降低士兵傷亡率。在海洋,各種無人潛艇、無人戰艦等,可航行數千英裡,無需船上人員操控就能執行各種海上作戰任務。在空中,實戰部署的人為控制操作的無人機系統,就是一種具有自己偵察判斷、人為控制、察打一體、自主攻擊、人機協同的無人機系統平台。

無人機武器在戰爭中的運用凸顯其作戰能力,必然牽引世界各國軍隊緊鑼密鼓組建無人作戰部隊。在伊拉克戰爭中,美國就開始對無人戰車的實戰能力進行測試。2013年3月,美國發布新版《機器人技術路線圖:從互聯網到機器人》,闡述了包括軍用機器人在內的機器人發展路線圖,決定將巨額軍備研究費投向軍用機器人研制,使美軍無人作戰裝備的比例增加至武器總數的30%,計劃未來三分之一的地面作戰行動將由軍用機器人承擔。據悉,美軍在2015年前就部署第一支未來機器人作戰旅(至少包括151個機器人戰士)。2016年,美軍在一次多國聯合軍事演習中,對“模塊化無人戰車”再次進行了試驗模擬測試。2020年,美國五角大樓發出一項標價1100萬美元的合同,以組建具有人類和機器人協同作戰能力的“聯合兵種班”,計劃2030年前完成15個未來作戰旅的全部建設工作。所有班成員,具有類似人一樣的視、聽、觸和嗅覺,能適時發出信息並對目標發起攻擊,甚至可以擔負自我維修與車輛維修及運輸、掃雷、偵察、巡邏等任務。美國每日科學網站報道稱,美陸軍研發了一種新技術,可迅速教會機器人在最低限度人為干預情況下完成新的穿越動作。報道稱,該技術可使移動機器人平台在作戰環境中自主導航,同時在特定情況下讓機器人完成人類期望其執行的作戰行動。目前,美陸軍科學家希望為機器人培育肌肉細胞和組織,進行生物雜交,而不是直接從活的有機體中提取,由此這種采取肌肉與機器人的組合,讓筆者聯想到電影《終結者:黑暗命運》中的半生化人葛蕾絲。

2018年4月21日,俄聯邦安全局(FSB)特戰隊在達吉斯坦傑爾賓特市,發動了一次針對極端組織恐怖分子的突襲行動,首次公開出動了配備機槍的武裝無人戰車打先鋒。美國在2018年俄羅斯紅場閱兵中發現了大批俄軍曾經在敘利亞南部與敘利亞反政府武裝交火的“天王星-9”機器人等作戰系統,向觀眾展示其外形特征。俄軍在2015年8月敘利亞戰場上使用戰斗機器人作戰連實施陣地攻堅戰,履帶式機器人沖鋒、打擊、吸引武裝分子開火,並引導自行火炮群將暴露火力點逐個摧毀,最後機器人作戰連僅用20分鐘就一舉攻下如今俄軍士兵難以攻下的高地,取得零傷亡斃敵77人戰績。

據英國《明星日報》網站報道稱,英國陸軍在一場名為“自主戰士2018”的活動中進行了大規模作戰機器人測試後,把無人機、無人駕駛汽車和戰斗人員統一到未來數十年穩居世界一流的軍隊中。未來的英軍自主軍用裝備,無論是坦克、機器人還是無人機,都可能會有腿而不是履帶或輪子。2021年年初,英國舉辦“未來海上航空力量加速日”活動後,繼續開發“即插即用”的海上自主平台開發系統,該系統接入皇家海軍的艦船後,可以簡化自動化和無人操作技術的獲取和使用過程。

除了俄羅斯、美國、英國研發裝備機器人外,其他有實力的國家也相續推出各自研制的機器人戰士,預計在未來20年內世界必將迎來陸海空機器人代替士兵執行高風險任務,未來戰場必將是無人化或人機結合一體化聯合作戰行動。世界軍事強國將掀起人機(無人機)一體化作戰試驗

空戰的樣式總是隨著航空科技的進步而在不斷發展變化。自1917年至今,隨著英國成功研制出世界第一架無人駕駛遙控飛機,無人裝備大家庭也不斷發展壯大,各種無人機日益活躍在現代戰爭的舞台上。

21世紀以來,隨著大量無人機被應用於戰場,作戰樣式不斷翻新。海灣戰爭中,無人機還僅僅限定於偵察監視、目標引導,可是到了阿富汗戰爭、伊拉克戰爭和反恐戰爭,無人機作戰能力日益凸顯,作戰樣式和方法呈現出新特點,讓世界各國看到無人機這把空中利劍,從此拉開人機(無人機)一體化作戰試驗序幕。

據報道,1993~2005年間,北約國家無人機總數增加了1.7倍,2006年前,這一數量達到11萬架。美國、北約其他國家、以色列、南非都非常重視無人偵察機和多用途無人機的研制和生產。

2019年,世界上大約有30多個國家已研制出了50多種類型無人機,有50多個國家裝備了無人機。主要種類:“密碼”無人機、多功能無人機、人工智能無人機、長時留空無人機、反導無人機、預警無人機、隱身無人機、微型無人機、空戰無人機、測繪無人機、航拍無人機。主要回收方式:自動著陸、降落傘回收、空中回收、攔阻回收。

2019年9月14日,沙特阿美石油公司的一處“世界最大石油加工設施”和油田遭襲擊後,也門胡塞武裝宣布“對此事負責”,並宣稱其使用了10架無人機對上述設施進行了攻擊。2020年1月3日,伊朗伊斯蘭革命衛隊下屬“聖城旅”指揮官卡西姆·蘇萊馬尼在美國對伊拉克首都巴格達國際機場凌晨發起的一場無人機突襲中被“定點清除”。2020年底,亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫(納卡地區)的戰斗中,無人機在雙方沖突中扮演重要角色顯而易見。尤其是許多軍事專家對阿塞拜疆國防部不斷發布剛從土耳其購買的TB-2“旗手”和以色列“哈羅普”自殺式無人機打擊亞方裝甲車輛、火炮、汽車甚至步兵陣地、S-300防空導彈畫面的視頻感到十分震撼。2020年12月,中東和外高加索地區所發生的局部沖突表明,無人機的作用正日益增大。基於此,有軍事家甚至預言,21世紀將是無人機發展的“黃金時期”,無人機勢必全面取代有人戰機,並成為21世紀的“戰場主角”。

目前,美國空軍計劃擴大無人機與有人機之間的有人與無人平台組隊,到2025年90%戰機將是無人機。也就是說,較大型飛機(F-35戰機或F-22戰機)能夠控制一支附近的無人機隊。如F-35戰斗機像一種飛行傳感計算機,能夠獲得大量數據,並自行聯系、分析和判斷,最後向飛行員的頭盔顯示屏上傳結論後,由飛行員對獲取的信息進行分析和處理,根據作戰計劃、戰場態勢、編隊配備的武器等制訂作戰方案後,再下達給無人機……實現有人機指揮無人機協同作戰的目的。也就是說,有人機與無人機混合編隊,把以往由地面控制改為空中控制無人機,由飛行員直接指揮無人機作戰行動。美軍設想采用模塊化設計,以便在未來戰場作戰需要時士兵從背包中取出無人機的零部件後組裝無人機,還可利用3D打印無人機。2020年8月,美國空軍在模擬空戰中AI擊敗了頂尖的F-16戰斗機飛行員,也有力證明AI飛行員能創造性地快速“思考”,將來可能超過人類飛行員技能為時不遠。美海軍新型MQ-25“黃貂魚”艦載無人加油機將於2021年試飛,2024年具備初始作戰能力,有利於航母艦載機擴大作戰半徑。

俄羅斯從2013年起,配備了大量無人機,其中僅無人偵察機到2019年年底已超過2000架,其中大多數是輕型無人機,如參與敘利亞的軍事行動的卡拉什尼科夫無人機。下一步,俄陸軍部隊每個旅或師級單位將分別編有無人機連,空降兵部隊也將裝備大量無人機。俄北方艦隊將編有無人機團,在俄軍一些現代化軍艦上也將配備了無人機。另外,從2021年起,由喀琅施塔得集團研發的“獵戶座”察打一體無人機裝備俄軍。這種重型無人機可搭載多種制導彈藥,執行作戰任務。此外,俄軍還在試驗“牽牛星”和C-70“獵人”兩款重型無人機。這些足以表明俄羅斯在無人機研發領域已經取得重大進展。

以色列是無人機領域真正的先驅,研制的無人機不僅先進,而且還出口其他國家,已經裝備部隊包括“鳥眼”系列單兵無人機、“螢火蟲”無人機、輕型“雲雀-I”無人機、輕型“英雄”無人機、中型“雲雀-II/III”無人機、“蒼鷺”無人機等型號數百架無人機。20世紀80年代中期,以色列已研發出名為“哈比”又稱“鷹身女妖”的陸基發射巡飛無人機。“哈比”是一種能夠自主進行反雷達攻擊的“自殺式無人機,重量為135千克,可攜帶32千克的高爆炸藥,航程為500千米。由於保密原因,目前尚不知以色列國防軍裝備無人機的具體數量和型號。為了對付敵方的地地導彈等威脅性目標,以色列飛機工業公司正在研制一種高空長航時隱身無人駕駛戰斗機。該機采用隱身技術與遠距空空導彈相結合,可攜帶莫阿布導彈,突入敵方戰區後方,攔截和攻擊處於助推階段的地地導彈。

2013年2月5日,駐扎在阿富汗的英國軍隊首次采用微型無人直升機執行刺探軍情的前線工作。這種無人直升機安裝了微型攝像機,可以將拍攝到的畫面即時傳送到手持式控制終端機;可以繞角落飛行,會規避障礙物,以辨別潛在危險。下一步,英國計劃實現一架有人機能夠同時指揮5架無人機。據英國《泰晤士報》網站2021年1月26日報道,英國國防部投資3000萬英鎊,將在北愛爾蘭研發首支無人機部隊。報道稱,設計和制造原型機的合同已交給美國“勢必銳”航空系統公司。該公司在貝爾法斯特設有分部,合同預計將提供100個工作崗位。英國國防部計劃到2025年開始制造首架這種新型無人機原型機。它將配備導彈、偵察和電子戰技術裝備,成為英軍首款能夠瞄准並擊落敵方戰機、並能規避地空導彈攻擊的無人機。與其搭檔的有人戰機將能夠專注於電子戰、偵察及轟炸等任務,從而以較低的成本和降低英軍機組人員面臨的高風險。

法國海軍將在土倫附近的某基地組建首個艦載無人機中隊,為法國海軍航空兵第36F艦載機中隊。該中隊將裝備S-100無人機,搭載於海軍西北風級兩棲登陸艦上。此次艦載無人機中隊的組建,反映了法國海軍希望將無人機專業知識融入到一個單一專業團隊的願望。此前,法國海軍內部討論了建立專屬無人機中隊,以及在31F、35F或36F中隊中配備無人機的方案。

在2004年6月舉行的巴黎航展上,法國達索飛機制造公司展示的NX70神經元無人作戰飛機的全尺寸模型,使人們對歐洲無人機的發展重新產生了興趣。伊朗、土耳其、阿聯酋……一些新的國家打亂了無人機地緣政治格局,正在書寫新的一頁。

可以預測,無人機必將成為世界各國武器裝備發展中的最大亮點,成為21世紀陸戰、海戰、空戰、天戰的“撒手鐧”,成為攻防作戰中一種新生作戰力量,既能使用自身攜帶的多種對地攻擊武器對敵前沿和縱深地區地面軍事目標進行打擊,也能使用空對地導彈或炸彈對敵防空武器實施壓制;既能使用反坦克導彈等武器對敵坦克或坦克群進行攻擊,也能使用集束炸彈等武器對敵地面部隊進行轟炸;既能發現目標、判斷目標價值後就可自主發射導彈,也能對敵方指揮控制系統進行欺騙干擾,等等。世界軍事強國將掀起組建“人機(機器人無人機)”一體部隊爭鋒

隨著軍民融合的深度推進,人工智能技術的突飛猛進,大數據、雲計算、物聯網的日新月異,不僅給無人化武器裝備發展帶來巨大變革,而且還將顛覆現有軍隊力量組建形態,“人機(機器人無人機)”一體化智能型軍隊必將到來。

2015年12月,俄軍在敘利亞戰場上除派出傳統作戰力量外,還首次成建制派出一個以無人作戰平台為主的機器人作戰連參加戰斗。該連采取有人無人混合編組的新型作戰模式,構建起以“仙女座-D”自動化指揮系統為核心的智能化作戰體系,采用全維偵察和飽和攻擊相結合的作戰方式對754.5高地發起進攻,順利奪佔高地。幾年前,負責遠征作戰的美國海軍官員就提到過打造千只人機結合戰艦的願景,即由人類控制的,由相互協同的無人艦組成的更大艦隊。美國海軍宣布,計劃未來5年打造一支由10艘大型無人水面艦艇組成的無人艦隊,用於獨立作戰或與水面部隊聯合作戰。根據美國海軍當前披露的構想方案,大型無人水面艦艇組成的無人艦隊將主要協助海軍完成高度危險的作戰任務,通過與“宙斯盾”作戰系統以及其他傳感器相結合,提升有人及無人系統的協同作戰能力,其部署將有助於減少大型有人戰艦的數量需求,減少作戰中的人員傷亡。國家利益網2021年1月20日消息,美國海軍作戰部長邁克爾·吉爾戴在1月11日發布《海軍作戰部長導航計劃》文件,呼籲建立包括大型戰艦、各型無人艦、潛航器和空襲裝備的人機混合艦隊,為未來幾十年的新威脅環境做好全域作戰准備。文件中寫道:“要建立滿足部隊戰略和戰役需求的,水下、水面和水上平台,有人與無人平台混合的更大艦隊。”

在“人機(機器人無人機)”一體部隊中,靠人工智能技術達到“人機”有機結合,靠雲計算、新算法、大數據擬制“人機”協同作戰計劃。人工智能就像一台發動機,大數據+雲計算就如宇宙飛船,智能機器人就是宇航員,三者有機結合定能如虎添翼、人機一體。未來軍隊就是人機結合軍隊,班排連長由人擔任逐步被機器人所取代,機器人由人為控制逐步轉變為機器人自主決策或者機器人通過人的腦細泡進行意念控制,軍營也可能出現無食堂軍營,部隊管理也可能出現由一名或幾名軍事人員率領多台甚至幾十台具有不同分工任務的智能機器人團隊,去完成以往班排連共同完成的戰訓管理任務,亦或是軍事訓練只有一名軍事指揮人員在指揮控制中心,通過視頻指揮控制訓練場所有智能機器人進行對抗訓練,或者遠程遙控機器人指揮員實時下達新的訓練指令、調整任務部署、變換訓練場。

對軍事人才智能素質的迫切需求,也會倒逼人工智能領域一級軍事學科的設置重新調整,未來軍隊院校也將開設智能機器人控制學科,建立有關人機結合實驗室和培訓基地,重點培訓既懂計算機控制程序、智能設計與管理、圖像認知、數據挖掘、知識圖譜,又能系統掌握智能科學與技術、具有創新意識的智能型職業化軍事人才。未來軍事人才必須熟練掌握智能技術、大數據應用、雲計算,尤其是能隨時利用3D或4D打印技術制作各種軍事裝備,精通智能機器人的控制程序、指揮方式、指令下達、調整任務,熟練掌握人機一體化自主作戰協同的要領,達到人的信息化科技素質與智能機器人的高效運作的最佳結合。此外,也不排除成立人機結合班排連、作戰模擬中心、假想敵部隊、作戰分隊、智能司令部、無人化旅、師等。屆時,軍事主官也可能人機各一或者機器人給人當下手或者副手。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/9991323888.html

Artificial Intelligence is Driving Profound Changes in Chinese Warfare

人工智慧正在推動中國戰爭發生深刻變化

現代英語:

In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.

Reshaping the combat force

These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.

From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.

From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.

From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.

Enhance combat system effectiveness

Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.

At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.

During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.

Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.

Improving combat command effectiveness

At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.

Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.

With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.

Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.

Improve the quality of combat coordination

As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.

Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.

China Military Network Ministry of National Defense Network

Tuesday , February 11, 2025

現代國語:

黃永剛

近年來,隨著人工智能技術的迅猛發展及其在軍事領域的廣泛運用,戰爭形態和作戰樣式不斷發生嬗變。國外一些學術文章認為,人工智能正在重塑作戰力量形態、增強作戰體系效能、提升作戰指揮實效、提高作戰協同質量,推動作戰活動發生深刻變化。

重塑作戰力量形態

這些學術文章指出,作戰力量主要由作戰人員、武器裝備及編組方式等整體構成,受人工智能技術影響,正發生著巨大變化。

從人員結構上看,隨著人工智能技術及相關裝備系統在軍事領域的廣泛應用,對具備人工智能技術研發、管理、使用和維護能力的專業人才需求大幅上升,技術人員在作戰力量中的佔比將不斷提高。一線作戰人員不再只是武器的直接操作者,而是逐漸向戰場監控者、系統指揮員和人機協同作戰中的關鍵決策者轉變,對其科技素養和信息處理能力的要求大大提高。

從裝備體系上看,無人機、無人戰車、智能導彈等智能武器裝備將大量出現,並成為裝備體系的重要組成部分。這些裝備具有高度的精確性和靈活性,自主作戰能力更強,能夠獨立完成偵察、打擊等任務,極大地改變了傳統的裝備結構和作戰模式。此外,傳統武器裝備也將通過加裝智能傳感器、通信模塊和自動控制系統等,加速進行智能化改造,以具備與人工智能系統互聯互通和協同作戰的能力。如老式坦克通過升級改造,可以實現自動駕駛、自動瞄准和智能彈藥裝填等功能,提升整體作戰效能。

從作戰單元編成上看,無人作戰系統憑借其在高風險、高強度作戰環境中的獨特優勢,將逐漸從輔助作戰力量發展為獨立的作戰單元並進行編組。西方國家一些智庫的研究報告認為,無人機集群作戰部隊、無人戰車營等將成為常見的作戰編制,它們可以完成偵察監視、情報分析、火力打擊等多種任務。為了充分發揮人工智能與人類戰士的各自優勢,人機混合編隊也將成為未來作戰力量的主要編成形式。在這種編隊中,人類戰士與智能武器裝備緊密配合,共同完成作戰任務。

增強作戰體系效能

從演進趨勢看,智能化技術跨域集成無人裝備、賦能傳統作戰平台,將成為未來體系作戰的“賦能器”。

目前,西方國家很多軍事專家認為,人工智能可以對作戰體系的各個要素進行全面分析和評估,找出體系中的薄弱環節和優化空間,為作戰體系的建設和調整提供科學依據。通過優化作戰體系的結構和功能,可以提高作戰體系的整體效能和穩定性,使其在面對多變戰場環境和強大作戰體系時更具競爭力。

在作戰過程中,人工智能可實時分析作戰雙方的作戰體系,預測對方的可能行動和薄弱點,提出針對性的體系對抗策略,並根據作戰過程中的實際情況不斷調整和優化,以實現己方作戰體系的高效運行,提升作戰體系對抗質效。

西方國家軍隊認為,基於人工智能賦能優勢,可以大大增強安全風險防御能力,通過自動預測、識別、發現、處置復雜安全風險,自主化保護人員、裝備、物資免受各類攻擊,能夠提升全領域、全方位防衛能力,確保作戰體系的安全性和穩定性。

提升作戰指揮實效

當前,人工智能已深度融入作戰指揮的各個環節,影響著作戰指揮的外在表現形式及主要活動方式。人工智能技術支撐下的人機智聯融合控制,將成為作戰行動控制的基本形態。

國外一些研究機構發現,人工智能系統可以根據實時戰場態勢和大量歷史數據,快速分析態勢,生成多種作戰方案,並及時推演評估方案、調整優化行動,為指揮員提供更科學合理的決策建議,高效指導計劃執行,讓作戰籌劃跟上快速變化的戰場節奏。尤其是在面對瞬息萬變的戰場情況時,能夠幫助指揮員更快地作出准確判斷。

隨著人工智能技術的不斷發展,一些智能作戰系統具備了一定的自主決策能力。在特定情況下,如面對突發的威脅或臨時出現的戰機,基於人工智能輔助的作戰指揮系統可以在預設的規則和權限范圍內,自主作出決策並采取行動,縮短決策鏈路,提高作戰的反應速度和靈活性。當作戰末端具備更強智能自主能力時,甚至可以實現作戰方案自生成、自評估、自調整,突破人的反應能力局限,形成更具適應性的作戰指揮。

很多實驗證明,基於海量作戰數據的積累和大數據分析技術的增強,人工智能技術可在模擬條件下對作戰籌劃全程進行精確計算,助力指揮員預先精准分析態勢、綜合研判趨勢、合理規劃走勢,進而通過作戰仿真、模擬推演等方式,虛擬開展參戰力量需求計算、戰法行動優化優選等活動,進而在籌劃過程中科學動態調整作戰方案策略,形成最佳選項,為作戰指揮提供更可靠的參考依據,提升指揮控制精確性。

提高作戰協同質量

隨著人工智能技術深度融入作戰體系,各作戰要素在戰場上的反應能力不斷提高,響應時間逐步縮短,適應水平日漸增強,作戰協同質量不斷提升。

西方國家一些軍事專家認為,未來戰場將呈現跨域、網絡化、非線性等特點,人工智能可以通過高效的算法,打破各作戰域、各作戰要素之間的界限,使不同作戰力量之間的協同更加緊密和高效。基於人工智能技術,可實現有人無人作戰力量編組之間的自主協同配合,使得有人無人作戰力量相互補充、相得益彰,顯著提升作戰效能。而且,無人作戰系統的應用越來越廣泛,人工智能技術可以對大量無人作戰平台進行集群控制和協同管理,實現它們之間的高效配合和任務分配,提高無人作戰的整體效能和安全性。

中國軍網 國防部網

2025年2月11日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-02-11&paperNumber=07&articleid=949008889

Understanding Phased Characteristics of Chinese Military Evolution of Intelligent Warfare

認識中國軍事智能化戰爭演進的階段性特徵

現代英語:

Source: China Military Network – People’s Liberation Army Daily 

Author: Xu Yatao Liu Jingyi Editor: Shang Xiaomin 

Release: 2024-08-20 06:xx:xx

Military technological innovation and the development of weapons and equipment that materialize it are the internal driving force and determining factor of the evolution of war forms. Revolutionary military technology usually promotes the transformation of war forms from quantitative change to qualitative change according to the logical chain of “military technology-weapons and equipment-operating methods-organizational forms-war forms”. At present, technological self-drive, operational traction and strategic investment respectively form an iterative and mutually reinforcing cycle with intelligent technological innovation. The superposition of the three cycles forms a continuous acceleration effect, which is accelerating the innovation of military technology and the evolution of war forms. The great development and application of intelligent technology are driving the evolution of intelligent warfare to present three-stage characteristics.

Near term: The third wave of AI is approaching its peak, shallowly empowered unmanned platforms are being used extensively as weapons, and human-led primary intelligent warfare is gradually maturing

Combat applications accelerate the third wave to its peak. A new round of artificial intelligence technology represented by deep learning and intelligent big models is developing at a high speed, and is constantly empowering unmanned platforms. It has been initially and widely used in the military in the fields of target recognition, situation analysis, information processing, and decision support, forming an intelligent technology innovation cycle based on combat applications, namely “unmanned platform application-military intelligence needs-intelligent technology innovation-unmanned intelligent application”. Thanks to the acceleration of this innovation cycle, but also subject to the unexplainable nature of statistical learning, the unreliability of emergent generation, and the high energy consumption “capping” of required resources, referring to the development process and rise and fall cycle of artificial intelligence, the third wave of artificial intelligence is expected to reach its peak within ten years.

Artificial intelligence has superficially empowered unmanned platforms. Machines process massive amounts of data, automatically identify and analyze multimodal information such as text, voice, and images, and individual intelligence has gradually matured. Expert intelligence for specific fields has achieved breakthroughs, mainly applied to weapons and equipment and tactical operations. The “OODA” loop is mainly based on the “man in the loop, man in the lead” mode. Artificial intelligence mainly participates in a certain implementation stage or a specific action of combat tasks such as reconnaissance and surveillance, situational awareness, information processing, auxiliary decision-making, and killing and striking in the form of single equipment and single elements. The focus is to enhance the combat capability of existing weapons and equipment through the embedding, upgrading and transformation of unmanned intelligent technology, and to use intelligent technology for combat mission planning to improve the quality and efficiency of command and decision-making.

Intelligent warfare in the initial stage is developing rapidly. As an important tool of manned forces, unmanned platforms play a role in expanding the role of humans in combat operations. Their large-scale use at the tactical level has formed a certain scale, and their proportion has gradually increased, and a mixed combat formation mode of man and machine has emerged. However, the intelligent warfare at this stage is a mechanized information warfare with intelligent components, and the intelligent content is relatively low. It is basically a summary and extension of past war experience. It still uses command-based combat as the main command mode. It belongs to unmanned augmented manned combat, which can realize remote control, stealth penetration reconnaissance and surveillance, unmanned front and manned close-range remote control combat, system support, remote control of air-to-ground precision strikes and other combat styles.

Mid-term: Qualitative AI emerges and rapidly iterates, deeply empowered unmanned platforms play a leading role in combat, and intelligent-led “three-in-one” integrated warfare accelerates evolution

The game between great powers is accelerating the arrival of strong artificial intelligence. Human beings mainly rely on logical reasoning and intuition to understand the world. The advantage of artificial intelligence lies in logical reasoning, but it will take at least one or two rounds of disruptive breakthroughs to produce reliable intuition. Possible technical routes include constructing electronic neural systems close to biological neural networks, that is, brain-like computing, and quantum computing that breaks through the limitations of classical computers. These are gradually moving from theoretical research to practical applications. This stage is the accumulation period of quantitative change from specialized to general artificial intelligence. Unmanned intelligence has become a key variable in the game between major powers. The enhanced strategic investment of various countries will quickly promote the innovation of unmanned intelligent technology and transmit it to combat operations. The significantly improved combat effectiveness will stimulate further strategic investment, forming an intelligent technology innovation cycle based on strategic investment, that is, “strategic investment-technical innovation-combat operation-strategic investment”. This cycle will inevitably accelerate the arrival of strong artificial intelligence.

Artificial intelligence deeply empowers the combat system. With platform autonomy, unmanned battlefield, force integration, and human-machine collaboration as the main signs, highly self-organized collaborative operations between various unmanned platforms (systems) and efficient collaborative operations between manned and unmanned systems are realized. The “OODA” loop is mainly based on the “man in the loop, man-machine collaboration” mode. The artificial intelligence technology group is embedded in a certain combat process in an independent small-scale organization, or directly undertakes the specific tasks of a certain combat module. Artificial intelligence begins to be fully integrated into all aspects of the combat system, and the war situation is accelerating its evolution towards intelligence. The autonomy of the platform is greatly enhanced, and autonomous perception, judgment, decision-making, adjustment, and action, group intelligent collaboration has gradually matured, and front-line autonomous collaboration has become the norm. The scope of application has been expanded to include firepower strikes, logistics support, combat planning, and combat management, playing an important role in combat command.

The integration of the “three transformations” is moving towards intelligence-led warfare. From the emergence of iconic innovative technologies to the formation of a new form of warfare, a transmission cycle is required, including technology transformation, equipment deployment, force building, organizational formation, and tactics research. The primary intelligent warfare that integrates the “three transformations” will continue for a historical stage, and its gradual development is reflected in the increasing scale of unmanned platform use, the deepening of artificial intelligence empowerment, and the increasing coordination between manned and unmanned. The content of intelligence continues to increase, intelligent unmanned equipment begins to dominate, manned and unmanned coordination becomes the basic way to generate combat power, and intelligent empowerment gradually goes from shallow to deep. Unmanned intelligence plays a major combat role and becomes the “center” of a war.

A large number of specialized unmanned intelligent forces have emerged. In this stage of intelligent warfare, intelligent unmanned platforms have surpassed manned platforms at the battle level and occupied a dominant position, and the human-machine collaborative combat formation mode has become the main body. Possible typical combat styles: First, the first battle assault, the unmanned intelligent system that integrates reconnaissance, interference, deception, and strikes is used on a large scale in the first round of assaults, replacing the current style of long-range precision strike weapons as the main first round of assaults. The second is concealed deployment, in peacetime, a large number of unmanned intelligent devices are secretly deployed, and in wartime, they are triggered to wake up and strike the enemy with one strike, replacing the current style of using mobile forces to quickly deploy into the combat area. The third is unmanned swarm combat, autonomous coordination replaces planned coordination, and implements swarm-type destructive operations through “swarm” saturation attack to consume high value at low cost. The fourth is real-time human-machine collaborative combat, where manned and unmanned mixed forces realize multi-domain operations and collaborative operations in complex battlefield environments.

Long-term stage: “Intelligence explosion singularity” gives birth to super artificial intelligence, super-powerful unmanned platforms replace humans in all fields, and super-intelligent unmanned war finally arrives

Technology self-drive accelerates the iteration of strong artificial intelligence. The “technological singularity” theory holds that whenever humans invent a technology, they will invent new technology based on that technology. The higher the current technological level, the faster the next generation of new technology will come. The general trend is to first go through a period of slow growth, then achieve exponential progress, and finally enter a stable period under the constraints of objective resource conditions, and breed the seeds of the next epoch-making technology. For intelligent technology, the development from strong artificial intelligence to super artificial intelligence is at a high level of exponential growth. Supported by the intelligent technology innovation cycle based on technology self-drive, once strong artificial intelligence is realized, the “intelligence explosion singularity” will soon come, that is, super artificial intelligence that surpasses human intelligence will appear, and humans will usher in a truly intelligent unmanned war.

The style and characteristics of super-intelligent unmanned warfare. In this stage, super artificial intelligence and unmanned platforms are fully integrated, and the embodied intelligence with it as the brain is highly developed. Super-powered unmanned platforms become the absolute main force on the battlefield. In the stage of super-intelligent unmanned warfare, the main combat equipment, combat organization, combat space, etc. will undergo subversive changes. Its main characteristics are super-powered unmanned platforms, almost completely unmanned, and global space combat. Unmanned platforms with super-intelligent, super-mobile, and super-firepower performance will autonomously carry out combat missions under human authorization and simulate human thinking to implement actions. Fast, compact, and dense intelligent weapons will autonomously construct a giant, complex, and adaptive combat system to create an extremely complex battlefield environment. The main combat space has expanded and even shifted from the traditional land, sea and air battlefields to the deep sea, space, cyberspace and other fields, with the latter becoming the main battlefields that determine the outcome of wars. Intelligent “bee swarms”, “wolf packs” and “shark swarms” have completely replaced manned and unmanned collaboration, realizing true “man outside the loop” autonomous decision-making.

In summary, corresponding to the peak of the third wave and the realization of strong artificial intelligence and super artificial intelligence, the evolution of intelligent warfare can be divided into three stages: near-term, mid-term and long-term. In line with the trend requirements of the three stages of the evolution of intelligent warfare, the short-term stage focuses on solving the urgent need for combat power generation. It should be based on a bottom-up concept, fight what kind of battle with what equipment, make good use of the existing and near-term unmanned intelligent equipment, integrate it into the joint combat system, and maximize its efficiency gains; the top priority is the mid-term stage, which requires close tracking and sharp insight into the development trend of intelligent technology, and forward-looking design of unmanned intelligent warfare from top to bottom. Construction should be carried out in accordance with the concept of developing what kind of equipment to fight what kind of battle, and in-depth research should be carried out to coordinate and connect with the unmanned construction in the short-term stage; the long-term stage requires sufficient patience and strategic determination to welcome the arrival of the “intelligent explosion singularity” through solid accumulation and unremitting exploration.

現代國語:

來源:中國軍網-解放軍報 作者:徐亞濤 劉靜怡 責任編輯:尚曉敏 發布:2024-08-20

徐亞濤  劉靜怡

軍事科技創新及其物化的武器裝備發展是戰爭形態演變的內在動力和決定因素。革命性的軍事技術,通常依照「軍事技術—武器裝備—作戰方式—組織形態—戰爭形態」的邏輯鏈條,推動戰爭形態由量變到質變。當前,技術自驅、作戰牽引和戰略投入分別與智慧科技創新構成迭代互促循環,三個循環疊加形成持續加速效應,正加速推動軍事科技創新和戰爭形態演變。智慧科技的大發展與運用,正推動智慧化戰爭演進呈現三個階段特色。

近景階段:人工智慧第三波趨近頂峰,淺層賦能的無人平台作為武器大量運用,有人主導的初級智慧化戰爭逐步成熟

作戰運用加速第三波達峰。以深度學習和智能大模型為代表的新一輪人工智慧技術正高速迭代發展,並不斷賦能無人平台,在目標識別、態勢研判、資訊處理、輔助決策等領域得到初步而廣泛的軍事運用,構成了基於作戰運用的智能科技創新循環,即「無人平台運用—軍事智能需求—智能科技創新—無人智能運用」。得益於這一創新循環加速,也受制於統計學習的不可解釋性、湧現生成的不可靠性以及所需資源的高能耗性“封頂”,參照人工智能發展歷程和興衰週期,第三次人工智能浪潮有望在十年內達到頂峰。

人工智慧對無人平台淺層賦能。機器處理海量數據,自動識別分析文本、語音、圖像等多模態訊息,單體智能逐步成熟,面向特定領域的專家式智能取得突破,主要應用於武器裝備和戰術行動層面。 「OODA」環以「人在環中、有人主導」模式為主,人工智慧主要以單裝單要素形式,適度參與到偵察監視、態勢感知、資訊處理、輔助決策、殺傷打擊等作戰任務的某一實施階段或某一具體行動。重點在於透過無人智慧技術嵌入升級改造,提升現有武器裝備作戰能力,以及採用智慧技術進行作戰任務規劃,提升指揮決策質效。

初級階段的智慧化戰爭快速發展。無人平台作為有人力量的重要工具,在作戰運用中扮演拓展者的角色。其大量運用在戰術層面形成一定規模,且佔比逐步加大,人機混合作戰編組模式出現。但該階段的智能化戰爭是含有智能化成分的機械化信息化戰爭,且智能化含量較低,基本是對過去戰爭經驗的總結和延伸,仍以指令式作戰為主要指控模式,屬於無人增強的有人作戰,可以實現遠程操控、隱身穿透的偵察監視,無人在前、有人在後的近距遙控作戰,體系支撐、遠程操控樣式的空地精確等。

中景階段:質變性人工智慧出現並高速迭代,深度賦能的無人平台發揮主戰作用,智慧化主導的「三化」融合戰爭加速演進

大國博弈加速強人工智慧到來。人類認識世界主要依賴邏輯推理和直覺,人工智慧優勢在於邏輯推理,但要產生可靠直覺,至少要1至2輪顛覆性突破。可能的技術路線包括構造接近生物神經網絡的電子神經系統,即類腦計算,以及突破經典計算機限制的量子計算等,都正逐步從理論研究走向實際應用。這個階段是人工智慧由專用走向通用的量變積蓄期,無人智能成為大國博弈關鍵變量,各國強化戰略投入將快速推動無人智能科技創新並傳導到作戰運用中,顯著提升的作戰效能又會刺激進一步的戰略投入,構成基於戰略投入的智能科技創新循環,即「戰略投入—技術創新—作戰運用—戰略投入」。這一循環勢必加速強人工智慧到來。

人工智慧對作戰體系深度賦能。以平台自主化、戰場無人化、力量融合化、人機協同化為主要標志,實現多種無人平台(系統)之間的高度自組織協同作戰,以及有人與無人系統之間的高效協同作戰。 「OODA」環以「人在環上、人機協同」模式為主,人工智慧技術群以獨立小規模編組嵌入某一作戰進程,或直接擔負某一作戰模塊的具體任務。人工智慧開始全面融入作戰體系各環節,戰爭形態加速向智慧化演變。平台自主性大為增強,自主感知、判斷、決策、調整、行動,群體智慧協同逐步成熟,一線自主協同成為常態。運用範圍拓展至火力打擊、後勤保障、作戰規劃、作戰管理,對戰役指揮發揮重要作用。

「三化」融合戰爭走向智慧化主導。從標志性的革新技術出現到新的戰爭形態形成,需要經歷一個傳導週期,包括技術轉化、裝備、力量建設、編制編成、戰法研究等。 「三化」融合的初級智慧化戰爭將持續一個歷史階段,其漸進發展表現為無人平台運用規模越來越大、人工智慧賦能越來越深、有人無人協同越來越緊。智慧化含量持續增多,智慧無人裝備開始佔據主導,有人無人協同成為戰鬥力生成的基本方式,智能賦能由淺層逐漸走深,無人智能發揮主戰作用,成為一場戰爭的「中心」。

專業化無人智慧部隊大量出現。這階段的智慧化戰爭,智慧無人平台在戰役層次超越有人平台,佔據主導地位,人機協同作戰編組模式成為主體。可能的典型作戰樣式:一是首戰突擊,集偵察、幹擾、誘騙、打擊於一體的無人智能係統在首輪突擊中大規模使用,取代當前遠程精確打擊武器首輪突擊為主的樣式。二是隱蔽布勢,在平時隱蔽部署大量無人智慧裝置,戰時觸發喚醒、一擊制敵,取代當前運用機動力量快速投入作戰區域為主的樣式。第三是無人集群作戰,自主協同替代計畫協同,透過「蜂群」飽和攻擊以低成本消耗高價值,實施集群式破擊作戰。四是人機即時協同作戰,有人無人混編部隊在復雜戰場環境下實現多域作戰和協同作戰。

遠景階段:「智慧爆炸奇點」催生超級人工智慧,超能無人平台全域取代有人,超級智慧無人戰爭最終到來

技術自驅加速強人工智慧迭代。 「技術奇點」理論認為,人類每當發明一項技術,就會在該技術基礎上發明新技術,當前的技術水平越高,下一代新技術就來得越快。總的趨勢是先經過一段緩慢增長,而後實現指數進步,最終在客觀資源條件限制下進入平緩期,並醞釀下一次劃時代技術的萌芽。對於智慧科技,從強人工智慧到超級人工智慧的發展,處在指數成長的高點。在基於技術自驅的智慧科技創新循環支撐下,強人工智慧一旦實現,「智慧爆炸奇點」很快就會到來,也就是出現超越人類智慧的超級人工智慧,人類就此迎來真正意義上的智慧無人戰爭。

超級智慧無人戰爭的樣式特徵。這一階段超級人工智慧與無人平台完全融為一體,以其為腦的具身智慧高度發展,超能無人平台成為戰場的絕對主力。超級智慧無人戰爭階段,主戰裝備、作戰編成、作戰空間等都將產生顛覆性變化,其主要特徵是無人平台超能、幾乎完全無人、全域空間作戰。具備超強智能、超強機動、超強火力性能的無人平台,在人類授權下自主遂行作戰任務,模擬人類思維實施行動。快速、小巧、密集的智慧化武器將自主建構形成巨型、複雜、自適應作戰體系,創造極度複雜的戰場環境。作戰主要空間由傳統的陸海空戰場拓展甚至轉移至深海、太空、網空等領域,後者成為決定戰爭勝負的主戰場。智慧「蜂群」「狼群」「鯊群」等完全取代有人無人協同,實現真正的「人在環外」自主決策。

綜上所述,對應第三波達峰、強人工智慧和超級人工智慧的實現,智慧化戰爭的演進劃分為近景、中景、遠景三個階段。順應智慧化戰爭演進三個階段的趨勢要求,近景階段重在解決戰鬥力生成急需,應當立足於自下而上的理念,有什麼裝備打什麼仗,把現有的和近期能夠落實的無人智能裝備用好用充分,融入聯合作戰體系,最大限度釋放其效能增益;重中之重在於中景階段,需要密切跟踪並敏銳深刻洞見智能科技發展趨勢,自上而下地前瞻設計無人智能戰爭,按照打什麼仗發展什麼裝備的理念搞建設,深研搞好與近景階段無人化建設的統籌銜接;遠景階段就需要足夠耐心和戰略定力,在扎實積累和不懈探索中迎接“智能爆炸奇點”的到來。

中國原創軍事資源:http://www.81.cn/yw_208727/16332240888.html

Operational Window: Chinese Military New Perspectives for Implementing Cross-Domain Collaborative Operations

作戰窗口:中國軍隊實施跨域協同作戰的新視角

現代英語:

The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.

Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations

The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.

Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.

Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.

Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.

Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation

The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.

Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.

Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.

Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.

Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations

The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.

Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.

Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.

Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.

現代國語:

劉 陽 李志華

引言

作戰窗口,是指為激發體係作戰週期效能而選擇的有利於聯合作戰力量實施跨域協同作戰的時空範圍。作戰窗口概念來自戰機,是戰機在新局勢下聯合作戰指揮理論的創新發展,在作戰指揮活動中將比戰機應用更廣泛。能否將聯合作戰力量體系對抗中戰機的選擇看作「作戰窗口」的形式,直接影響了指揮的眼界。在複雜多變的資訊化戰場環境下,作戰窗口逐漸成為聯合作戰力量實施跨域協同作戰的新基點,對奪取戰場主動,塑造有利態勢,具有重要意義。

構設作戰窗口,突顯跨域協同作戰準備的全面性

戰區聯指應緊貼作戰任務、戰鬥對手、作戰環境,牢牢掌握戰略戰役主動權,加強聯合作戰資源預設,積極優化戰場環境,為構設作戰窗口創造條件。

圍繞作戰窗口實施周密持續的聯合偵察。作戰窗口的時空範圍包括打擊敵目標的時間區間與打擊地幅。其中,打擊地幅一般以打擊目標為中心,指能調控體係作戰力量持續維持局部戰場綜合控制權、適合打擊敵節點目標的相對密閉空間。為確保在作戰窗口區順利實施作戰,其外圍可區分為警戒巡邏區、攔截阻殲區與防禦作戰區等為其提供支撐保障。聯指機關應圍繞作戰窗口優先情報告警信息的提報需求,綜合運用諸軍兵種偵察預警力量和手段,為獲取作戰窗口區及其外圍區域的情報告警信息實施周密持續有重點的聯合偵察。必要時可協調戰略偵察預警力量提供情報支援,消除作戰窗口時空的偵察預警盲區,確保情報告警信息從獲取至運用的流轉過程高效穩定。

預測作戰窗口及時調整任務部隊戰備訓練的週期計畫。諸軍兵種任務部隊保持高度戒備狀態的規模強度極大限製作戰窗口的時空範圍。週期性保持高度戒備狀態,要求諸軍兵種任務部隊依照臨戰狀態進行管理運作,是體現任務部隊戰鬥力高低的重要標誌。當前任務部隊應依照戰備、訓練、整備三種狀態進行日常管理和訓練,目的是確保相當規模的能戰兵力可隨時遂行作戰窗口任務並不斷提高實行水平,非能戰兵力應統籌資源集中精力進行系統作戰能力的生成訓練。整備期則處於戰備訓練間隙,應機動靈活組織作戰人員休息、裝備維修和必要訓練,為轉入訓練週期或戰備週期創造條件。戰區聯指透過預測作戰窗口,及時調整較大規模任務部隊戰備訓練的周期計劃,使其有節奏、規律地處於高度戒備狀態,為實施窗口作戰提供力量基礎。

聚焦作戰視窗滾動組織跨域協同作戰方案計畫的聯動作業。由於作戰窗口往往稍縱即逝,圍繞作戰窗口應急制定的諸軍兵種跨域協同作戰方案計劃的完備性可能會大打折扣。因此戰區聯指應凝聚指揮員及其指揮機關的集體智慧,依靠指揮資訊系統,透過體系化、程序化、專業化的快速指揮聯動作業,滾動組織擬制跨域協同作戰方案計劃。指揮聯動作業涉及上下級指揮機構聯動作業、偵控打保評全流程聯動作業及人機交互聯動作業等。實施指揮聯動作業應統一作戰意圖,聚焦作戰窗口,利用態勢共享的指揮作業平台,聯動展開平行作業,進行週期性的作戰規劃,隨時開展研判態勢,跟進提出作戰構想,增強推演評估的可信度,同步擬制並日臻完善跨域協同作戰的方案計劃。實施聯動作業有助於縮短跨域協同作戰方案計畫的製定時間,提高方案計畫的可行性,儘早掌握作戰窗口的先機。

應用作戰窗口,突顯跨域協同作戰體系對抗的效能性

戰區聯指應針對不同作戰目的任務,不同作戰對手屬性,不同作戰類型樣式,在精心籌劃和全面準備的基礎上,果斷決策發起作戰,迅速奪取作戰窗口的戰場主動權。

疊加作戰體系效能。諸軍兵種任務部隊在作戰窗口時空範圍內密切協同,整體聯動,聚焦作戰任務形成體係作戰效果。目前隨著軍事科技的快速發展與新銳作戰力量不斷調整優化,精確化、自動化、智慧化、無人化的武器裝備應用越來越廣泛,在特定的作戰窗口範圍內,幾乎每個軍兵種都或多或少地具備遠程多域精確打擊敵目標的手段。即使是陸戰型任務部隊,也具備較遠距離的精確遠火打擊能力與近海兵力投送能力,這就使得諸軍兵種任務部隊在作戰窗口內實施複合打擊,成為聯合作戰打擊敵目標的首選方式。多軍兵種複合打擊與單一軍兵種相比,將會產生更猛、更準、更穩、更快的複合打擊效能。諸軍兵種任務部隊的複合打擊效能在作戰窗口範圍內聚焦作戰目標,將促使跨域協同作戰效能的量值陡增,疊加效果更加顯現。

匯聚作戰保障資源。作戰保障資源是影響作戰窗口選擇應用的物質因素,涉及偵察情報保障、資訊保障與後裝保障等諸多資源。戰時對本戰區實施匯聚式支援保障是應用作戰窗口的關鍵。友鄰戰區的作戰支援將使任務部隊保持較高的戰備水平,指揮官將具有更多的作戰選擇性;戰略支援部隊提供的航天資訊支援、網路作戰支援將是聯合偵察情報、資訊作戰領域的重要支撐;而聯勤保障部隊是實施聯勤保障和戰略戰役支援保障的主要力量,戰區任務部隊作戰能力的波動性很大程度上受此制約。對此,透過明確作戰保障力量的使命任務、指揮權限、體制機制與法規制度等約束激勵手段,主動圍繞作戰窗口匯聚作戰保障資源,實施一體化綜合高效保障,大力提升跨域協同作戰的體系效能。

調控作戰波動週期。聯指機關指揮諸軍兵種任務部隊對敵目標實施打擊行動,其行動前需進行戰備等級轉換、協同演練與機動展開至待機地域等。即使任務部隊打擊準備速度再快,打擊方法再熟練,打擊流程再優化,也需要在相應的時間週期內完成。同時指揮與戰鬥人員會受到作戰疲勞的影響,造成指揮決策效率、打擊效能大幅降低,極大限製作戰持續時間的延長,使得任務部隊作戰能力的波動週期更加明顯。而打擊行動結束後,作戰人員的補充休整,武器裝備的保養修理,作戰經驗教訓的總結檢討,均需要一個調整週期。指揮員需根據諸軍兵種作戰方式與武器裝備毀傷機理的不同,及時調控任務部隊打擊能力的變化波動週期,明確任務部隊的能戰閾值,盡可能減少作戰波動幹擾,從而大幅提升跨域協同作戰能力。

維持作戰窗口,突顯跨域協同作戰戰場管控的穩定性

戰區聯指應嚴格控制窗口作戰的規模強度,加強連動管控,嚴控作戰成本,提升作戰效益,積極塑造有利戰場態勢,避免作戰被動,防止將窗口作戰擴大成全面作戰。

加強戰場聯動管控。諸軍兵種戰場管控對塑造穩定的作戰態勢,加強多域空間管制,維持作戰窗口有重要作用。加強跨域協同作戰戰場空間的管控,包括陸地、海洋、空中、太空、網路等戰場空間,以及電磁頻譜與時空基準戰場空間等。其中,戰場管控區域重點劃分為各領域的作戰窗口區、戰略支撐區、警戒隔離區、前沿預警區以及友鄰支援區等,諸軍兵種任務部隊在指揮員及指揮機關的統一指揮控制下,釐清跨域協同管控的主次關係,明確管控規則、機製與紀律,採用多種管控方法,綜合用級管控法

全面評估作戰效果。指揮機構應緊貼作戰窗口跨域協同作戰方案計畫的製定流程,緊貼協同控制指令,緊貼任務部隊協同動作,緊貼協同保障實際,在窗口作戰過程中實施快速、高效、持續的績效與效力評估。圍繞作戰目的的達成,適應全局聯動的窗口作戰特點,綜合運用多種作戰評估工具和手段,集成系統評估的算法、數據與能力於一體,優化作戰效益主導、流程管理、資訊支撐、人在迴路的評估體系,形成作戰命令、行動、效果的相互匹配,績效與效力時效力時相互結合的評估模式,從而提高作戰後效性指標的準確性和時效性指標的準確性和效能性指標。從而提高作戰時效性指標。

主動塑造戰場新態。經過平時持續對敵軍事鬥爭準備、互動懾控以及作戰窗口內有限的打擊較量後,敵我雙方在作戰力量對比、部署和行動等方面形成的狀態和形勢表現相對穩定,從而形成塑造了新形勢下的戰場態勢,其發展趨勢也顯得可預測、可期望。指揮者及其指揮機關對本戰略方向的敵情、我情與戰場環境的特點規律不斷深度掌握,對未來鬥爭形勢的基本輪廓走向就有了清晰認識,就能明確今後的作戰目標舉措,打贏自信也會逐步增強,為確定下一輪的作戰窗口創造了條件。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/06/content_222435888.htm

Promoting Chinese Military Integrated Development of The “Three Transformations” of Combat Training

推動中軍融合發展實戰化訓練“三個轉變”

現代英語:

Zhang Yingjie, Zhao Shihang, and She Hongle

中國軍網 國防部網
2023年2月22日,星期三

Adhering to the integrated development of mechanization, informationization and intelligence is an inherent requirement for national defense and military modernization, and is also an important means to accelerate the transformation and upgrading of military training. Promoting the integrated development of the “three transformations” of military training is a systematic project that requires both theoretical guidance and practical exploration; it is necessary to plan and design in line with the development of the times, and to boldly practice, dare to try and create, so as to realize the “three transformations” from sequential development to integrated progress, from point-line breakthroughs to system integration, and continuously improve the level and quality of military training.

Deepen theoretical research, guide practice and drive development by thoroughly understanding the mechanism, clarifying the principle and grasping the law. First, we must deepen the research on combat issues and thoroughly understand the future combat mechanism. In future wars, intelligent technology is an important factor in winning. We should explore the reason for winning and the way to win through the phenomenon. We can empower mechanized weapons, enhance the efficiency of informationized equipment and develop unmanned intelligent combat platforms through the power of intelligent technology, so that mechanization, informationization and intelligence coexist, the physical domain, information domain and cognitive domain are mixed, and power, will and land are seized in parallel. Second, we must deepen the research on technology-enhanced training and clarify the principle of technology empowerment and efficiency. Science and technology promote the development of military training, or indirectly affect the development of military training through technological progress to promote the reform of weapons and equipment, combat methods and organizational systems, or directly promote military training innovation through technology directly acting on training methods and management guarantees. In the process of iterative upgrading of mechanization, informationization and intelligence, the mechanized physical entity is the foundation and the “grafting” object of informationization and intelligence. The informationization and intelligence technology acts on mechanization, which is essentially the empowerment and efficiency enhancement of “virtual” control of “real”. Third, we must deepen the research on military training and grasp the law of combat effectiveness generation. The generation of combat effectiveness under mechanized conditions is to achieve a high degree of aggregation of material and energy flows through the superposition of combat platforms. Its generation mechanism is manifested in quantitative accumulation, hierarchical superposition, and linear growth. The generation of combat effectiveness under intelligent information conditions is to carry out a three-dimensional mesh integration of participating forces through the network information system and intelligent support. Its generation mechanism is manifested in information empowerment, network energy gathering, and intelligent energy enhancement. The integrated development of the “three transformations” of military training should shift from the linear step-by-step superposition of mechanized training to the criss-crossing and ascending of intelligent information training, and from simple training of people to training that emphasizes both human and machine learning.

Strengthen strategic management, set up a benchmark to guide development in clarifying the base point, planning and establishing rules and regulations. First, grasp the base point and recognize the coordinates of the times for the integrated development of the “three transformations” of military training. Since the 18th National Congress of the Communist Party of China, our army has adhered to actual combat training, joint combat training, science and technology training, and training in accordance with the law, and strengthened the training guiding ideology of reform and innovation, laying the foundation for the integrated development of the “three transformations”; the new round of national defense and military reform has established a joint training system, reconstructed the training leadership organs and special training institutions of the military services, and formulated military training laws and regulations, providing organizational and institutional guarantees for the integrated development of the “three transformations”; the exploration and practice of the mechanized and informationized compound development of military training has accumulated fresh experience for the integrated development of the “three transformations”; the construction of actual combat training, informationized training conditions and the implementation of the strategy of strengthening the army with science and technology have opened up new horizons for the integrated development of the “three transformations”. Second, top-level design, constructing a blueprint for the integrated development of the “three transformations” of military training. The top-level design of the integrated development of the “three transformations” of military training is an integrated plan of an open and complex system. It is constrained by many factors such as operational evolution and technological changes. At the same time, it is different from a single closed system design. It is difficult to achieve it in one go and make a final decision. We should grasp its characteristics of iterative updates and continuous adjustments and improvements. The integrated development of the “three transformations” of military training should formulate a plan that is compatible with the national defense and military construction development strategy, incorporate the integrated development plan of the “three transformations” of military training into the strategic plan for military construction, and focus on clarifying development goals, tasks, measures, etc. The third is to establish rules and regulations to standardize and guide the effective operation of the integrated development of the “three transformations” of military training. It is necessary to formulate the implementation measures for the integrated development of the “three transformations” of military training, unify the goals and tasks, division of responsibilities, content focus, methods and steps, and supporting measures, and ensure the implementation of regular order.

Focus on the transformation to intelligence, overcome difficulties and innovate in the optimization of content, innovation of methods and improvement of assessment. First, we must focus on “smart training” and optimize the content of military training. Research and practice machine deep learning, focusing on data screening, information input, confrontation game and iterative improvement training. Research and practice new domain and new quality combat forces, carry out new weapons and equipment training, new quality combat force formation and combat application training, new domain combat forces and traditional combat forces coordination training, and new domain and new quality forces into joint combat system training. Research and practice intelligent combat, carry out intelligent combat tactics research, command confrontation training based on intelligent network system, training to seize intellectual control and intelligent combat live-fire exercises. Second, we must focus on “intelligent training” and innovate military training methods. Develop intelligent simulation training methods, give full play to the virtual-real interaction, closed-loop feedback and parallel execution functions of intelligent simulation, upgrade existing electronic games and war game simulation systems, and support individual officers and soldiers or command organizations to carry out human-machine confrontation training based on intelligent simulation systems. On the basis of the existing real-life combat system, we should strengthen the material application of intelligent technology, and create an intelligent military exercise system that combines virtual and real, complements software and hardware, and is multi-domain linked as soon as possible to effectively support the development of real-life training. Third, we should focus on “intelligent testing” and improve precise assessment methods. Using virtual reality technology, relying on the three-dimensional virtual battlefield environment generated by computers, we can evaluate the operational skills and tactical application level of officers and soldiers immersed in it. Using augmented reality technology, human senses can directly obtain real-life experience in the augmented reality scene, which can be used to test and assess the technical training of officers and soldiers and the tactical training of squads. Using mixed reality technology, virtual digital objects are introduced into the real environment, which can support the construction of the environmental conditions of real-life test exercises and the inspection and evaluation of combat capabilities. Using the Internet of Things technology, sensors, data processing units and communication components are integrated into a sensor network to monitor the exercise situation in real time, and automatically collect, transmit, summarize and display exercise information data. Using big data technology to objectively evaluate combat capabilities and training quality, and realize automatic judgment of engagement results, statistical analysis of massive data, objective evaluation of combat capabilities and automatic evaluation of training results in data analysis and deep mining.

現代國語:

張英傑 趙士夯 佘紅樂

堅持機械化資訊智慧化融合發展,是國防和軍隊現代化的內在要求,也是加速推進軍事訓練轉型升級的重要抓手。推動軍事訓練「三化」融合發展,是一項系統工程,既需理論引領,更需實踐探索;既要順應時代發展搞好規劃設計,又要大膽實踐敢試敢創,實現「三化」由遞次發展向融合併進、由點線突破向體系集成,不斷提升軍事訓練水平和質量。

深化理論研究,在搞透機理弄清原理把握規律中引領實務牽引發展。一要深化作戰問題研究,搞透未來作戰機理。未來戰爭中,智慧科技是贏得勝利的重要因素,應透過現象探尋制勝之理、勝戰之道,可透過智慧科技之力賦能機械化武器、增效資訊化裝備和發展無人化智慧作戰平台,使得機械化、資訊化、智慧化並存,物理域、資訊域、認知域混融,奪權、奪志、奪志、奪權、奪志、奪地並行。二要深化科技強訓研究,釐清技術賦能增效原理。科技推動軍事訓練發展,或透過科技進步推動武器裝備、作戰方式、編制體制變革間接作用於軍事訓練發展,亦或科技直接作用於訓練手段和管理保障直接推動軍事訓練創新。在機械化、資訊化、智慧化迭代升級過程中,機械化的物理實體是基礎,是資訊化、智慧化的「嫁接」對象,資訊化、智慧化技術作用於機械化,實質上是以「虛」控「實」的賦能增效。三要深化軍事訓練研究,掌握戰鬥力生成規律。機械化條件下戰鬥力的生成,是透過作戰平台的疊加實現物質流和能量流的高度聚集,其生成機理表現為量變累積、層級疊加、線性增長。智慧化資訊化條件下戰力的生成,是透過網信系統和智慧支援對參戰力量進行網狀立體融合,其生成機製表現為資訊賦能、網路聚能、智慧增能。軍事訓練「三化」融合發展,應從機械化訓練的線性逐級疊加轉向智慧化資訊化訓練的縱橫交錯遞升,從單純對人的訓練轉向人與機器學習並重的訓練。

加強策略管理,在釐清基點規劃規劃建章立制中立起標桿指導發展。一是掌握基點,認清軍事訓練「三化」融合發展的時代座標。黨的十八大以來,我軍堅持實踐實踐、聯戰聯訓、科技強訓、依法治訓,強化改革創新的訓練指導思想,為「三化」融合發展奠定了基礎;新一輪國防和軍事改革,建立了聯合訓練體制,重構了軍兵種訓練領導機關和專制訓練機構,制定了軍事訓練法規制度,為「三化」融合發展提供了組織和製度保證;軍事訓練機械化資訊化複合發展的探索實踐,為「三化」融合發展累積了鮮活經驗;實戰化訓練、資訊化訓練條件建設和科技強軍戰略等的實施,為「三化」融合發展洞開了新天地。二是頂層設計,建構軍事訓練「三化」融合發展藍圖。軍事訓練「三化」融合發展的頂層設計,是開放的複雜系統的整合規劃,受作戰演化、技術變化等諸多因素的製約,同時區別於單一封閉系統設計,難以一次到位、一錘定音,應把握其迭代更新、不斷調整完善的特徵;軍事訓練「三化」融合行動應制定與國防建設和軍事發展目標三是建章立制,規範指導軍事訓練「三化」融合發展有效運作。要製定軍事訓練「三化」融合發展實施辦法,統一目標任務、職責分工、內容重點、方法步驟和配套措施,確保實施正規秩序。

聚焦向智轉型,在優化內容創新方法改進考評中攻堅克難創新發展。一要聚焦“訓智能化”,優化軍事訓練內容。研練機器深度學習,重點進行資料篩選、資訊輸入、對抗賽局和迭代提升訓練。研練新域新質作戰力量,進行新型武器裝備訓練、新質作戰力量編成與作戰運用訓練、新域作戰力量與傳統作戰力量協同訓練,以及新域新質力量融入聯合作戰體系訓練。研練智慧化作戰,進行智慧化作戰戰法研究、基於智慧網路系統指揮對抗訓練、奪取制智權訓練及智慧化作戰實兵演習等。二要聚焦“智能化訓”,創新軍事訓練方法。發展智慧模擬訓練方法,充分發揮智慧模擬虛實互動、閉環回饋與平行執行功能,升級現有電子遊戲與兵棋推演系統,支援官兵個體或指揮機構依托智慧模擬系統進行人機對抗訓練。在現有實兵交戰系統基礎上,加強智慧技術的物化應用,盡快創造虛實結合、軟硬互補、多域連結的智慧化演兵系統,有效支持實戰化訓練的發展。三要聚焦“智能化考”,改進精準評估手段。運用虛擬實境技術,依靠電腦生成的三維空間虛擬戰場環境,對沉浸其中的官兵操作技能和戰術應用水準實施考評。運用擴增實境技術,人體感官能夠直接在增強的現實場景中獲取實戰體驗,可對官兵技術訓練和分隊戰術訓練檢驗考核。運用混合實境技術,把虛擬數位物件引入現實環境,可支撐實兵檢驗性演習環境條件的架構與作戰能力檢驗評估。運用物聯網技術,將感測器、資料處理單元和通訊組件集成為一個感測器網絡,即時監控演練情況,自動擷取、傳輸、匯總和顯示演練資訊資料。運用大數據技術客觀評估作戰能力和訓練質量,在數據分析和深度挖掘中實現交戰結果自動裁決、海量數據統計分析、作戰能力客觀評估和訓練成績自動評定。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2023-02/22/content_33422088.htm

Chinese Intelligent Warfare Cannot be Successful Without Human Element

中國智慧戰爭離不開人的因素

2019年10月17日 17:00 來源:解放軍報 作者:徐莉

現代英語:

An important task in studying intelligent warfare is to accurately position humans in intelligent warfare.

  No matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomously by machines. Humans must have a strong enough kite string and hold it tightly at all times.

  ”Synchronous development of man and machine” should be regarded as a basic principle for the development of military intelligence. Intelligence should integrate both “things” and “people”.

  At present, the research on intelligent warfare is in the ascendant. Some people believe that intelligent warfare will be unmanned as the core form of expression, and unmanned equipment such as drones, unmanned submarines, and robot soldiers will become the protagonists of war. The form of war will also develop from the co-starring of “human-machine collaborative warfare” to the one-man show of “machine vs. machine war”. People seem to have become bystanders in intelligent warfare, with the meaning and trend of “intelligent warfare makes people go away”. What is the status and role of people, who have always been the main body of war, in intelligent warfare? This is the first problem that should be solved in the study of intelligent warfare.

  The Marxist view of war holds that weapons are an important factor in war, but not the decisive factor. The decisive factor is people, not weapons. Although people no longer directly control weapons in advanced intelligent warfare, the following factors still determine that people are the main body of war and the key to winning.

  First, war is the continuation of politics. The launching of war and the control of the war process must be decided by people according to political needs. The game outside the battlefield has a decisive influence on the progress of the war. For example, the results of diplomatic negotiations, the focus of international public opinion, and the support of the domestic people all depend on the decisions of politicians and military strategists, which cannot be replaced by any intelligent machines.

  Secondly, war planning and command can only be implemented by commanders at all levels. Military command is both a science and an art, but it is more of an art. Any successful battle or campaign in the world is the result of commanders breaking routines and stereotypes and using troops creatively. The history of our army’s growth and development has repeatedly proved that correct military strategic guidance and flexible strategies and tactics are the magic weapon for our army to defeat the strong with the weak and defeat the many with the few, which enables our army to move from victory to victory. It is also something that intelligent machines cannot imitate or create. For example, in the battle, the comparative analysis of enemy and our combat forces, the real-time control of the combat situation, the real-time evaluation of the overall damage effect, the combat psychological analysis of enemy commanders, and the prediction of the next combat action, etc., intelligent machines can only provide auxiliary decision-making information and suggestions. Commanders at all levels must make decisions, make combat decisions, and issue combat orders.

  Third, the level of intelligence of weapons and equipment ultimately depends on humans. Artificial intelligence originates from human intelligence. One of the major factors restricting the development of intelligence is that the scientific understanding of human intelligence is still superficial, and the understanding of the cognition, memory, thinking, decision-making and action mechanism of the human brain is still insufficient. The “Wuzhen Index: Global Artificial Intelligence Development Report 2016” pointed out that over the years, the proportion of biological research in the four sub-fields of artificial intelligence, machine learning, natural language processing, computer vision, and robotics, has been the lowest. Due to the lack of attention to the basic and decisive influence of brain science on artificial intelligence, the current artificial intelligence can only stay at the stage of superficial understanding and primary imitation of brain functions. Once there is a major breakthrough in the understanding of human intelligence, artificial intelligence will also be reborn and enter a leapfrog development stage.

  Fourth, only humans can control intelligent weapons and equipment and combat platforms. Although the final intelligent weapons can be operated without human on-site control, when to put intelligent weapons and equipment into battle, when to change the direction of attack, how to control the rhythm of the war, when to withdraw from the battle, etc., can only be decided by humans in the end. This is the basic principle that must be grasped when designing intelligent weapons and equipment, that is, one of Asimov’s three laws of robotics: robots must obey human orders. Once intelligent weapons and equipment are out of human control, it will be a disaster for the entire human race, not just the enemy. This also determines that no matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomous control functions of machines. The autonomous function of machines can only be effective within the scope limited by humans. Humans must have a strong enough kite line and hold it tightly at all times.

  Fifth, only humans can crack and control the enemy’s intelligent weapons and equipment. The development of military history has proved that any weapon and equipment has its “Achilles’ heel” and will eventually be defeated. There has never been and will never be perfect and impeccable weapons and equipment in history, and intelligent weapons and equipment are no exception. The magic weapon to defeat the enemy is humans with infinite wisdom. For example, drones seem advanced, but they can be interfered, trapped or controlled by radio waves of a specific frequency. The same is true for other intelligent weapons and equipment, and finding and studying methods, technologies, and equipment to crack, control, and destroy intelligent weapons and equipment is where human wisdom comes into play.

  Therefore, “synchronous development of man and machine” should be taken as a basic principle for the development of military intelligence. Intelligence should be applied to both “objects” and “people”. As soldiers in the era of intelligent warfare, they must master the working principles and weak links of intelligent weapons and equipment, be familiar with and master the “thinking mode” and “conventional actions” of intelligent weapons and equipment, as well as the abnormal “abnormal thinking” and abnormal “extraordinary actions” that may appear, and understand their technical and tactical indicators and performance. Especially in the stage of man-machine collaborative operations, soldiers are required not only to be able to coordinate actions with machines, but also to communicate with machines without obstacles in cognitive ability and intelligence. This not only relies on intelligent knowledge reserves, but also relies on the “brain reading” and “brain strengthening” of intelligent equipment. Scientific research shows that the normal human brain usage rate is only 3%-5%, which shows that there is still a huge room for improvement and release of human intelligence. When studying intelligent warfare, we should also study how to improve human intelligence.

  In the face of intelligent warfare, we should prepare for the future, establish intelligent troops suitable for intelligent warfare as soon as possible, study the way to defeat the enemy in intelligent warfare, and establish and improve the theory of intelligent warfare; repair, maintain and improve intelligent weapons and equipment; study the methods, techniques and equipment to decipher the control keys of enemy weapons and equipment; study effective means to attack the enemy’s intelligent weapons and equipment, rewrite their combat rules and targets, and make them turn against us in the face of battle, or use high-energy lasers and high-power microwaves to directly destroy the enemy’s communication networks and weapons and equipment, demonstrating the way to win in intelligent warfare.

  In short, in intelligent warfare, people are still the main body of war and the decisive factor in the outcome of war. An important task in studying intelligent warfare is to find the correct position of people in intelligent warfare. Otherwise, it is easy to fall into the idealistic quagmire of “seeing things but not people”, “only weapons” and “only technology”.

現代國語:

研究智能化戰爭的一項重要任務,就是找準智能化戰爭中人的定位。

不論智慧化武器裝備這個「風箏」飛多高,永遠只能是人類控制與機器自主控制功能並存,人類必須擁有足夠結實的風箏線並時刻牢牢抓住它。

應把「人機同步發展」當作軍事智慧化發展的一個基本原則,智慧化既要化「物」也要化「人」。

當前,對智慧化戰爭的研究方興未艾。一些觀點認為,智慧化戰爭將以無人化為核心表現形式,無人機、無人潛航器、機器人士兵等無人裝備將成為戰爭主角,戰爭形態也將從「人機協同作戰」的聯袂主演,最後發展到「機器對機器大戰」的獨角戲。人似乎成了智慧化戰爭的旁觀者,大有「智慧化戰爭讓人走開」的意味和態勢。曾經一直是戰爭主體的人,在智能化戰爭中的地位和角色究竟是什麼,這是研究智能化戰爭應當首先解決的問題。

馬克思主義戰爭觀認為,武器是戰爭的重要因素,但不是決定的因素,決定的因素是人而不是武器。雖然在高階階段的智慧化戰爭中,人不再直接操控武器,但以下因素仍決定了人是戰爭的主體和關鍵的致勝力量。

首先,戰爭是政治的延續,戰爭的發動、戰爭進程的掌控,必須由人視政治需求作出決定。戰場以外的博弈對戰爭進程有著決定性的影響,如外交談判的結果、國際輿論的焦點、國內民眾支持度等,均取決於政治家、軍事家的決策,是任何智能化的機器都無法替代的。

其次,戰爭規劃和指揮只能由各級指揮官來實施。軍事指揮既是科學,也是藝術,但更體現為藝術。世界上任何一場取得勝利的戰鬥、戰役,都是指揮者打破常規和定式,創造性用兵的結果。我軍成長壯大的歷史也一再證明,正確的軍事戰略指導、機動靈活的戰略戰術,是以弱克強、以少勝多,使我軍不斷從勝利走向勝利的製勝法寶,也是智能化機器所無法模仿和創造的。例如,戰中對敵我作戰力量的比較分析、作戰態勢的即時掌控、整體毀傷效果的即時評估、敵軍指揮作戰心理分析,以及對下一步作戰行動的預判等等,智慧化機器只能提供輔助決策資訊和建議案,必須由各級指揮官親自決策、下定作戰決心,並下達作戰命令。

第三,武器裝備智慧化程度高低最終取決於人類。人工智慧源自人類智能,目前製約智能化發展的一大因素,就是對人類智能的科學認識尚膚淺,對人類大腦的認知、記憶、思維、決策和行動機理等的認識還很不夠。 《烏鎮指數:全球人工智慧發展報告2016》指出,歷年來人工智慧的機器學習、自然語言處理、電腦視覺、機器人四類細分領域涉及生物學研究的比例均最低。由於不重視腦科學對人工智慧基礎和決定性的影響,直接導致當前人工智慧只能停留在對大腦功能膚淺認識和初級模仿階段,一旦對人類智慧的認識有了重大突破,人工智慧也必將脫胎換骨,進入跨越式發展階段。

第四,控制智慧化武器裝備和作戰平台的只能是人。雖然最終的智慧化武器可以沒有人類現場操控,但智慧化武器裝備何時投入戰鬥、何時轉換進攻方向、如何把控戰爭節奏、何時撤出戰鬥等等,最終只能由人來決定,這是智慧化武器裝備設計時必須掌握的基本原則,即阿西莫夫機器人三定律之一:機器人必須服從人類的命令。一旦智能化的武器裝備脫離了人的控制,那將是整個人類而不僅僅是敵人的災難,這也決定了不論智能化武器裝備這個“風箏”飛多高,永遠只能是人類控制與機器自主控制功能並存,機器自主功能只能在人類限定的範圍內有效,人類必須擁有足夠堅固的風箏線並時刻牢牢抓住它。

第五,破解、控制敵人智慧化武器裝備的只能是人。軍事歷史發展證明,任何武器裝備都有其“阿喀琉斯之踵”,最終都會被擊敗。歷史上從來沒有、未來也不會出現完美無缺、無懈可擊的武器裝備,智慧化武器裝備也不例外,而克敵制勝的法寶就是擁有無窮智慧的人類。例如,無人機看似先進,但完全可以被特定頻率的電波幹擾、誘捕或控制。其他智慧化武器裝備也是如此,而尋找並研究破解、控制、擊毀智慧化武器裝備的方法、技術、裝備,則是人類聰明才智的用武之地。

因此,應把「人機同步發展」作為軍事智能化發展的一個基本原則,智能化既要化「物」也要化「人」。作為智能化戰爭時代的軍人,必須掌握智能化武器裝備的工作原理和薄弱環節,熟悉並掌握智能化武器裝備的“思維方式”和“常規動作”,以及可能出現的非常態的“異常思維”和變態的“超常動作”,了解其技戰術指標及性能,特別是人機協同作戰階段,不僅要求軍人能夠與機器協調行動,而且在認知能力和智力上能夠和機器無障礙交流,這不僅要依靠智能化的知識儲備,也要依賴智慧化裝備的「讀腦」「強腦術」。科學研究表明,正常人大腦使用率只有3%——5%,這說明,人類智慧仍有巨大的提升和釋放空間。研究智能化戰爭,也應同步研究如何提升人類智慧。

面對智慧化戰爭,我們應當未雨綢繆,儘早建立與智能化戰爭相適應的智能化部隊,研究智能化戰爭的克敵制勝之道,建立完善智能化戰爭理論;維修、保養、改進智能化武器裝備;研究破解敵方武器裝備操控密鑰的方法、技術、裝備;研究攻擊敵軍智能化武器裝備的有效手段,改寫其作戰規則和作戰對象,使其臨陣倒戈,或是利用高能量激光、高功率微波直接擊毀敵通信網絡和武器裝備,彰顯智慧化戰爭的致勝之道。

總之,智慧化戰爭中人仍是戰爭的主體,是戰爭勝負的決定性因素。研究智能化戰爭的一項重要任務就是找準智能化戰爭中人的定位。否則,就容易陷入「見物不見人」「唯武器論」「唯技術論」的唯心主義泥沼。

中國原創軍事資源:http://www.qstheory.cn/defense/2019-10/17/c_112511776588.htm

Comprehensively Promote Modernization of Chinese Military’s Organizational Form|How Chinese Military Services Implement Building Construction for War

全面推進軍隊組織形態現代化|中國軍隊如何實施戰爭建設

現代英語:

A brief analysis of how the military implements the principle of “building for war”

■ Wang Xueping, Xu Yan, Zhu Xiaomeng

Introduction

To implement the general principle of “the Military Commission is in charge of the overall situation, the theater is responsible for war, and the military is responsible for construction”, the military forces need to accurately grasp the interactive rules of war and construction, strengthen the connection with the theater, form a work pattern with clear rights and responsibilities, positive interaction, smooth and efficient, and focus the main tasks, main responsibilities, and main energy on building and managing the troops. Always adhere to the principle of leading construction with war, building for war, managing for war, and promoting war with construction, comprehensively improve the practical level of military training, and provide high-quality combat forces for the theater.

Get the coordinates of building for war

The coordinates are the epochal orientation of building for war. Only when the orientation is clear can construction be accelerated on track. Entering the new era, the firepower intensity, maneuvering speed, striking accuracy and intelligence of weapons and equipment have greatly increased, the battlefield space has been continuously expanded, the coupling of combat actions has become closer, and the battlefield situation has changed more rapidly. Wars have gradually shown the characteristics of platform combat, system support, tactical actions, and strategic support. In particular, the use of intelligent, stealth, and unmanned combat, as well as aerospace forces, new concept weapons, and high-efficiency destructive ammunition have fundamentally changed the concept of war time and space. The war form has accelerated the evolution from mechanized informationization to informationized intelligence, and intelligent warfare has begun to emerge. The military should focus on building the combat power of informationized warfare with intelligent characteristics, rather than the combat power of mechanized warfare. When the armed forces are building for war, they must focus on information warfare with intelligent characteristics, turn their attention to intelligent military reform, fully imagine the future war form, scale, intensity, spatial region, etc., and use the concept beyond the times to lead the vision of construction forward again and again; they must deeply study the winning mechanism, scientifically judge, and build the troops needed to win the future war, so as to be targeted.

Find the target of building for war

The target is not only a beacon of construction and development, but also a scale to test combat effectiveness. Only by setting the correct target can the armed forces be targeted when building for war, and lead the innovative development of weapons and equipment, system organization and combat theory without deformation or distortion. When the armed forces are building for war, they are not fighting ordinary opponents, but strong enemies in the world military game. This requires the military to build for war, and must lock on to strong enemies, insist on focusing all their attention on defeating strong enemies, and exert their efforts in all work to defeat strong enemies. Closely aiming at world-class standards, the focus should be on firmly grasping the characteristics of future combat systems and system confrontations, exploring standardized and modular construction issues, and forming an integrated and coordinated system combat capability; centering on the requirements of all-domain combat, focusing on tackling practical issues such as rapid response, long-range delivery, and integrated support, and strengthening rapid and mobile cross-domain action capabilities. Grasp the key of balancing powerful enemies, strengthen targeted research on powerful enemies, insist on focusing on what the enemy fears, develop what can balance powerful enemies, and prepare more, strive to have a chance of winning in war, have bargaining chips, and have confidence, focus on solving bottlenecks such as the construction of new military forces, the use of high-tech equipment, and information intelligence integration, and build a world-class military in an all-round way.

Innovation and construction as the forerunner of war

Theory is the forerunner of practice, and scientific military theory is combat effectiveness. Whoever can grasp the development pulse of future wars and possess superb war design capabilities can win the initiative in war and even the final victory. The military should not build for war, but should place war research and construction in a strategic position, carry out forward-looking, targeted, and reserve-oriented innovative research, propose new concepts, seek new breakthroughs, and form innovative theories that are contemporary, leading, and unique. The military should build for war, and must focus on the current practice and future development of war, clarify the vertical evolution axis, focus on shaping the future battlefield, changing the future combat rules, and promote the reshaping of concepts and the reconstruction of systems as soon as possible; focus on cutting-edge technology fields and future intelligent war design, and make efforts to achieve major breakthroughs in new technologies and new forms of war; focus on the continuous development of new concepts such as combat thinking, action patterns, and capability requirements, and form forward-looking thinking on future combat actions. At the same time, the new theories and concepts should be systematized and concretized, and become a “roadmap” for planning and designing force system construction, weapons and equipment development, military training transformation, and combat talent training. It is necessary to form a closed loop from practice to theory and then from theory to practice, so that military theoretical research can draw rich nutrients from practice, and advanced and mature theoretical results can enter the military decision-making and practice links to achieve a benign interaction between theory and practice.

Build a hard core for war

Science and technology are the most revolutionary force. Scientific and technological innovation has always been a race with time and speed. If you don’t work hard to innovate, you will fall behind and be beaten. If you innovate slowly, you will also fall behind and be beaten. Today, scientific and technological innovation has become the core strategy for many countries and militaries to seek advantages. The armed forces must pay close attention to the leading role of science and technology in building for war, integrate the most cutting-edge and even imagined future science and technology into the overall planning of construction, guide the basic direction of construction and development, and actively explore the path of scientific and technological innovation to fight a future war with future enemies with our future army; we must implement the strategy of strengthening the military with science and technology, demand combat effectiveness from scientific and technological innovation, vigorously cultivate new scientific and technological growth points, and focus on improving the contribution rate of scientific and technological innovation to the development of the military’s combat effectiveness; we must face the world’s scientific and technological frontiers, the main battlefields of the future, and the major needs of combat, accelerate the pace of innovation, and launch one project after planning and justifying it, especially to let disruptive technologies run ahead, strive to run at an accelerated pace, and win new advantages. Obviously, talent is the key to building a hard core of “grasping construction for war”. Talent is the most difficult preparation. Whoever has more high-quality new military talents can gain or gain more opportunities to win on the future battlefield. We must accurately grasp the characteristics and laws of modern warfare and the requirements of military transformation and construction, and cultivate what talents are needed for war and give priority to what talents are most in short supply, so that the supply side of talent training can be accurately matched with the needs of the future battlefield.

Lay a solid foundation for grasping construction for war

Fight hard and train hard. The root of “war” lies in “construction”, and the foundation of “construction” lies in “training”. Military training, as a regular and central task of the troops, is not only the basic way to generate and improve combat effectiveness, but also the most direct preparation for military struggle. In the new era, the war situation is accelerating towards informationization and intelligence, the military’s missions and tasks are constantly expanding, the level of informationization and intelligence of weapons and equipment is gradually improving, and the training support conditions are gradually improving. It is urgent for the military forces to consider the interaction of multiple fields such as the war situation, combat methods, weapons and equipment, and personnel quality, and analyze the impact of many factors such as known and unknown, possible and impossible, and possible and impossible, so as to comprehensively upgrade their actual combat capabilities. To build for war, we must focus on training troops against strong enemies, practice reconnaissance, coordination, equipment, and support around the development of the real enemy situation, practice real force deployment, practice fast battlefield construction, practice real equipment data, and practice strong support; we must aim at the latest enemy situation in multiple fields such as land, sea, air, space, and cyberspace, and carry out real, difficult, rigorous, and practical full-element training in scenario re-enactment, “fight” with strong enemies, and let the troops gain real skills and strengthen their strength in real confrontation; we must pursue extreme training, constantly challenge the limits of people and equipment, so that the physiological and psychological limits of officers and soldiers, the performance limits of equipment, and the combat effectiveness limits of the combination of people and weapons can be fully unleashed. Only by using “extremely difficult and extremely difficult” training to present all shortcomings and weaknesses and overcome them can we cope with the most brutal battlefield. Some tactics and strategies trained beyond the limit are often the key move and fatal blow to defeat the enemy in actual combat.

Do a good job in coupling construction for war

The fundamental purpose of war and construction is to be able to fight and win. It is necessary to accelerate the realization of functional coupling under the new system and work together to accelerate the generation of combat power. Building an army that adapts to future combat needs is, in the final analysis, to build a force that can complete future combat tasks and has corresponding combat capabilities. Combat requirements are the concrete manifestation of such mission requirements and capabilities. Building for war should be based on the needs of fulfilling missions and tasks, and should be designed in advance according to future combat military needs. Military construction should be guided by military needs, and combat needs should be continuously refined and dynamically adjusted to promote the coupling of war and construction. By strengthening the argumentation and research of future combat requirements and doing a good job in top-level planning, we can grasp the direction and focus of military construction in general, consider the comprehensive development of military weapons and equipment and personnel quality from a strategic height and long-term development, clarify the focus, adhere to the principle of doing what we should do and not doing what we should not do, concentrate on developing strategic and key projects, give priority to emergency operations, correctly handle the primary and secondary, urgent and slow, light and heavy aspects of military construction, firmly grasp the main and key ones, and promote coordinated and complementary military construction, scientific and reasonable, standardized and orderly, and sustainable development. Scientific combat effectiveness assessment can not only scientifically and specifically understand the composition and strength of one’s own combat effectiveness, but also help to take targeted measures to promote the coupling of building for war, timely discover and correct deficiencies in construction, truly realize the scientific development of military construction, intensive and efficient, and promote the advancement of combat effectiveness construction.

Strictly grasp the test of building for war

Whether a unit is well built and whether it has the ability to win a battle, it must ultimately be tested through military practice. After a comprehensive test of military practice, it is inevitable that the problems in the construction of the unit will be exposed, thereby promoting the army to make corresponding adjustments in the content, focus, and direction of construction. Through repeated tests of military practice, new requirements and new goals are constantly put forward for the construction of the troops, thus leading the construction of the troops to a higher stage. Make good use of network simulated confrontation tests. The informatization and intelligence of network simulated confrontation make the cognition, decision-making, feedback, correction, and action of simulated confrontation more close to actual combat, and revolutionize the process of military activities, thereby producing positive effects on weapons and equipment, command and control, force organization and other fields, thereby promoting the continuous leap of the combat effectiveness of the troops, and even giving birth to new war styles and changing the mechanism of winning wars. Make good use of on-site live-fire exercises. As a pre-practice for future wars, live-fire exercises can not only effectively test the actual combat capabilities of the troops, but more importantly, they can discover some weak links in the construction of the troops, optimize and improve them in a targeted manner, and obtain the maximum combat effectiveness return. Make good use of the test of war practice. The leading role of war practice in the construction of the troops is irreplaceable. Strict war practice can truly test which aspects of the construction of the troops are suitable and which are not suitable for future wars, and then correct the deviations and mistakes in many aspects such as construction guidance, construction priorities, and construction methods, so as to prepare for winning the next war.

現代國語:

淺析軍種如何落實抓建為戰

■王雪平  許炎 朱小萌

引言

貫徹「軍委管總、戰區主戰、軍種主建」總原則,軍種部隊需要準確把握戰與建互動規律,加強同戰區對接,形成權責清晰、正向互動、順暢高效的工作格局,把主要任務、主要職責、主要精力放在建設、管理部隊上,始終堅持以戰領建、抓建為戰、抓管為戰、以建促戰,全面提高軍事訓練實戰化水平,為戰區提供優質作戰力量。

把準抓建為戰的坐標

坐標是抓建為戰的時代方位,只有方位明晰,建設才能依軌加速。進入新時代,武器裝備的火力強度、機動速度、打擊精度、智慧化程度大幅躍升,戰場空間不斷拓展,作戰行動耦合更加緊密,戰場態勢變換更加迅速,戰爭逐漸呈現出平台作戰、體系支撐,戰術行動、戰略保障等特點,特別是智能化、隱身化、無人化作戰以及空天力量、新概念武器、高效毀傷彈藥的運用,從根本上改變了戰爭時空概念,戰爭形態加速由機械化信息化向資訊化智能化演變,智能化戰爭初見端倪。軍種主建,建的應是具有智慧化特徵的資訊化戰爭的戰鬥力,而不是機械化戰爭的戰鬥力。軍種抓建為戰,必須聚焦具有智慧化特徵的資訊化戰爭,把目光投向智能化軍事變革,充分設想未來戰爭形態、規模、強度、空間地域等,用超越時代的理念,引領建設視野向前再向前;必須深研製勝機理,科學研判,打贏未來戰爭需要什麼部隊就建設什麼部隊,做到有的放矢。

找準抓建為戰的靶標

靶標既是建設發展的燈塔,也是檢驗戰鬥力的天秤。只有樹立正確靶標,軍種抓建為戰才能有的放矢,不變形、不走樣地牽引武器裝備、體制編制和作戰理論創新發展。軍種抓建為戰,戰的不是一般對手,而是世界軍事賽場上的強敵。這就要求軍種抓建為戰,必然要鎖定強敵,堅持全部心思向打敗強敵聚焦、各項工作向戰勝強敵用勁。緊緊瞄準世界一流標準,重點要牢牢把握未來作戰體係與體系對抗的特徵,探索標準化、模塊化建設問題,形成一體聯動的體係作戰能力;圍繞全局作戰要求,聚力攻關快速反應、遠程投送、融合保障等現實課題,建強快速機動跨域行動能力。抓住制衡強敵這個關鍵,加強對強敵的針對性研究,堅持敵人怕什麼就重點建什麼,發展什麼能製衡強敵就多備幾手,力求做到戰有勝算、談有籌碼、懾有底氣,著力解決軍種新型力量建設、高新裝備運用、資訊智慧整合等瓶頸問題,全面建成世界一流軍隊。

創新抓建為戰的先導

理論是實踐的先導​​,科學的軍事理論就是戰鬥力。誰能把準未來戰爭的發展脈搏、擁有高超的戰爭設計能力,誰就能贏得戰爭的主動權甚至最後的勝利。軍種抓建為戰,不能走到哪算哪,要把研戰謀建擺在戰略位置,開展前瞻性、針對性、儲備性創新研究,提出新概念、尋找新突破,形成具有時代性、引領性、獨特性的創新理論。軍種抓建為戰,必須著眼於戰爭當前實踐和未來發展,理清縱向演進軸線,把重點放在塑造未來戰場、改變未來作戰規則研究上,盡快推動觀念重塑、體系重構;放在聚焦前沿技術領域、未來智慧化戰爭設計上,下氣力在戰爭新技術、新形態方面實現重大突破;放在持續推進作戰思想、行動樣式、能力需求等新概念的開發上,形成對未來作戰行動的前瞻性性思考。同時把新理論新概念體系化、具體化,成為規劃設計力量體系建構、武器裝備發展、軍事訓練轉變、作戰人才培養的「路線圖」。要形成從實踐到理論、再從理論到實踐的閉環迴路,讓軍事理論研究從實踐中汲取豐厚養分,讓先進成熟的理論成果進入軍事決策和實踐環節,實現理論和實踐良性互動。

打造抓建為戰的硬核

科技是最具革命性的力量。科技創新歷來是與時間與速度的賽跑。不努力創新就會落後挨打,創新速度慢了也同樣會落後挨打。今天,科技創新已成為許多國家和軍隊謀求優勢的核心戰略。軍種抓建為戰,必須高度關注科技引領作用的發揮,通過把當前最前沿甚至是設想中的未來科學技術融入建設整體規劃之中,引領建設發展的基本方向,積極探索用未來的我軍與未來的敵人打一場未來戰爭的科技創新路徑;必須落實科技強軍戰略,向科技創新要戰鬥力,大力培育新的科技增長點,著力提高科技創新對軍種戰鬥力發展的貢獻率;必鬚麵向世界科技前沿、面向未來主要戰場、面向作戰重大需求,加快創新速度,規劃論證好一項就要上馬一項,特別是要讓顛覆性技術跑在前面,力爭跑出加速度,贏得新優勢。顯然,打造抓建為戰的硬核,人才是關鍵。人才是最艱難的準備,誰擁有更多高素質新型軍事人才,誰就能在未來戰場上早獲得或多獲得一些致勝先機。要準確把握現代戰爭特點規律和軍種轉型建設要求,做到打仗需要什麼人才就培養什麼人才、什麼人才最緊缺就優先鍛造什麼人才,使人才培養供給側同未來戰場需求側精準對接。

夯實抓建為戰的根基

打仗硬碰硬,訓練實打實。 「戰」的根本在於「建」,「建」的基礎在於「練」。軍事訓練作為部隊的經常性中心工作,既是產生和提高戰鬥力的基本途徑,也是最直接的軍事鬥爭準備。新時代,戰爭形態加速向資訊化智能化發展,軍隊使命任務不斷拓展,武器裝備資訊化智能化水平逐步提高,訓練保障條件逐步改善,迫切需要軍種部隊從考慮戰爭形態、作戰方法、武器裝備、人員素質等多個領域的互動,到分析已知與未知、可能與不可能、可為與不可為等諸多因素的影響,全面升級實戰能力。抓建為戰,必須聚焦強敵練兵,圍繞真實敵情的進展,練偵察、練協同、練裝備、練保障,練實力量布勢、練快戰場建設、練真裝備數據、練強保障支撐;必須瞄準陸海空及太空、網絡空間等多領域最新敵情,在情景重現中開展真、難、嚴、實的全要素訓練,與強敵“過招”,讓部隊在真刀真槍對抗中礪實功、強實力;必須追求極限訓練,不斷向人和裝備極限沖擊,使官兵的生理心理極限、裝備的性能極限、人與武器結合的戰鬥力極限全面迸發。唯有用「逼到絕境、難到極致」的訓練呈現所有短板弱項,並加以克服,才能應對最殘酷的戰場。一些超越極限訓出的戰術戰法,往往是實戰中勝敵的關鍵一招、致命一擊。

搞好抓建為戰的耦合

戰與建,根本目的都是為了能打仗、打勝仗,必須在新體制下加速實現功能耦合,為加速戰鬥力生成共同發力。建設適應未來作戰需求的軍隊,說到底是建設能完成未來作戰任務、具備相應作戰能力的部隊,作戰需求就是這種任務需求和能力的具體體現。抓建為戰應根據履行使命任務需要,針對未來作戰軍事需求超前設計,以軍事需求牽引軍隊各項建設,不斷細化和動態化調整作戰需求促進戰建耦合。透過加強未來作戰需求論證研究搞好頂層規劃,從總體上把握軍隊建設的方向和重點,從戰略高度和長遠發展考慮軍隊武器裝備、人員素質的全面發展,明確重點,堅持有所為有所不為,集中力量發展戰略性、關鍵性項目,優先保障應急作戰,正確處理軍隊建設的主與次、急與緩、輕與重,緊緊抓住主要的、關鍵的,推動軍隊建設協調配套,科學合理,規範有序,持續發展。科學的戰鬥力評估不僅能夠科學具體地認識己方戰鬥力的組成及其強弱,還有利於採取針對性措施促進抓建為戰的耦合,及時發現並糾正建設中的不足,真正實現軍隊建設的科學發展、集約高效,促進戰鬥力建設上台階。

嚴格抓建為戰的檢驗

一支部隊建設得好不好,是不是已經具備打勝仗的能力,最終還是要通過軍事實踐來檢驗。經過軍事實踐的全面檢驗,必然揭露部隊建設上存在的問題,從而推動軍隊在建設內容、重點、方向上做出相應的調整。通過這樣一次次軍事實踐的反復檢驗,不斷地給部隊建設提出新要求新目標,由此引領部隊建設向著更高的階段發展。用好網絡模擬對抗檢驗。網絡模擬對抗資訊化智慧化,使得模擬對抗的認知、決策、回饋、修正、行動等更趨於實戰,革命性地改造軍事活動流程,進而對武器裝備、指揮控制、力量編組等多個領域產生積極作用,由此促進部隊戰鬥力不斷躍升,甚至催生新的戰爭樣式、改變戰爭制勝機理。用好現地實兵演習檢驗。作為未來戰爭的預實踐,實兵演習不僅能有效檢驗部隊的實戰能力,更為重要的,是能發現部隊建設中存在的一些薄弱環節,有針對性地加以優化改進,獲得最大限度的戰鬥力回報。用好戰爭實踐檢驗。戰爭實踐對部隊建設的引領作用不可取代。嚴酷的戰爭實踐,可以真正檢驗部隊建設哪些適合、哪些不適合未來戰爭,進而修正在建設指導、建設重點、建設方法等諸多方面的偏差和失誤,為打贏下一場戰爭做好準備。

中國原創軍事資源:https://www.81.cn/ll_208543/9904888.html

Chinese Military Exploring Wasy to Win in Intelligent Warfare Amidst Change & Constancy

中國軍隊在變中求變中探索智慧戰爭制勝之道

中國軍網 國防部網 // 2019年10月22日 星期二

現代英語:

In today’s world, artificial intelligence has made significant breakthroughs and is accelerating its transfer to the military field, which has an impact on the form of war and even a subversive impact. Faced with increasingly fierce strategic competition and rights and interests among major powers, we should use a development perspective to rationally examine and correctly understand intelligence in the thinking of the “change” and “unchange” of the law of winning wars, select the strategic commanding heights and main attack directions of future military competition, and scientifically explore the way to win intelligent warfare.

Intelligent warfare will redraw the boundaries of war, but the standard for winning wars is still to achieve political benefits, so it can be a policy of victory or defeat

The territory of intelligent warfare is expanding to new areas. Engels pointed out: “Human beings fight in the same way as they produce.” The rapid penetration of intelligent technology into the field of combat will inevitably subvert the form of combat effectiveness. Driven by new theories and technologies such as big data, supercomputing, intelligent communications, and brain science, intelligent warfare will subvert people’s inherent cognition with “unexpected” new ways and “omnipotent” new appearances. The cognitive domain has become another contest space for the warring parties after land, sea, air, space, electricity, and the Internet. The territory of human military confrontation is bound to extend from natural space, technical space, social space to cognitive space, forming three major combat latitudes: physical domain, information domain, and cognitive domain. The boundaries of war extend to deep earth, deep sea, deep space, deep network, and deep brain, showing the characteristics of extreme depth, extreme distance, extreme micro, extreme intelligence, and unmanned, invisible, silent, and boundless. Intelligent warfare will generalize the confrontation and competition, and the integration of military and non-military fields will be more obvious. The combat field will be expanded to the extreme, the boundaries between peacetime and wartime will become increasingly blurred, and the boundaries between the front and the rear will no longer be clear. Intelligence will penetrate into all elements and processes of future wars, redraw the boundaries of war, and traditional battlefields and fronts will be difficult to reproduce. The “spectrum map” of war tends to be broadened.

Achieving political benefits is the unchanging winning standard of war. As a specific complex social phenomenon, although war will present different war forms and boundaries in different historical periods and form different war cognitions, the essential attribute of war as a political continuation will not change. The standard for measuring victory in war is always to maximize political interests. Intelligent warfare has overturned traditional combat styles and means. The attack range of weapons and equipment has expanded to human cognitive space, and the battlefield space has expanded from physical space to cognitive, social, network and other intangible spaces. It can more intuitively express the characteristics of “imposing will on the opponent”, and emphasizes the dominance of seizing the will of the country, the concept of the organization, the psychology and thinking of people at the strategic, campaign and tactical levels. The winning role of intelligent warfare in winning hearts and minds is more prominent, and the means of winning hearts and minds such as political transplantation, belief attack, mental control, psychological disintegration, and cultural infiltration are more diverse. The competition and counter-competition in the tangible and intangible battlefields are more intense. The political struggle around the war is more complex and changeable, and the constraints of the people’s hearts, social opinions and public psychology on the war are more significant. The military is more obedient to politics, and the political color of intelligent warfare is stronger. In the final analysis, the military is the continuation of politics, and military victory must ensure political leadership. In the history of our army, Mao Zedong has always opposed the purely military viewpoint and insisted on the high unity of military and politics. In the wars in Iraq and Afghanistan, the US military experimented with a large number of advanced weapons and won the battles. However, from the perspective of winning the war, they won the battles but lost the wars, and fell into a moral quagmire, far from achieving the goal of winning the war. Winning the battle is not the same as winning the war. To truly win the victory of intelligent warfare, we must occupy the commanding heights of justice to ultimately dominate the victory or defeat of the war.

Intelligent warfare will reconstruct combat power, but the key factor in winning the war is still people, and it is not people who are killed

The combat power of intelligent warfare has undergone a qualitative change. Combat power is an overall description of the power system composed of people, weapons and equipment, and combat methods. It represents the development trend of military technology and combat methods. It is essentially the product of the marriage of advanced military technology and new combat ideas. Intelligent warfare is a human-machine intelligent integrated combat. It is a war form that is upgraded, replaced, and reshaped from all aspects and fields such as weapon platforms, command and control systems, combat terminals, and battlefield environments. It presents the characteristics of human-machine collaboration, intelligent dominance, cloud brain combat, and full-domain confrontation. Intelligent technology empowers the most basic elements of warfare. The combat style, time, region, space and other combat elements are changing rapidly. The composition of combat forces has undergone structural changes. People are gradually withdrawing from the front line of confrontation. Intelligent equipment will go to the battlefield in large quantities and in an organized manner. The traditional “man-to-man” war will become a “machine-to-man” or “machine-to-machine” war. Traditional support forces are transformed into main combat forces. Various civilian forces such as network practitioners, scientific and technological elites, experts in psychology, religion, law, and non-state actors will participate in the war in different ways, from the backstage to the front stage. Some new combat forces have developed from decentralized and affiliated organizational forms to increasing proportions, integrating into armies, and forming independent armies, from supporting roles to protagonists, and the military force system has undergone a revolutionary reshaping.

People are still the decisive factor in winning wars. Mao Zedong pointed out in “On Protracted War”: “Weapons are an important factor in war, but not the decisive factor. The decisive factor is people, not things.” Combat power has always been the most direct and important tool for both sides of the war, and the most core condition for victory. People are always the most active factor in combat power, and also the most decisive factor in combat power. In the era of intelligence, the anthropomorphism of weapons and the weaponization of people have become an unstoppable trend. Unmanned combat systems will be deeply integrated with manned systems into an organic symbiosis. The traditional boundaries between people and weapons tend to be blurred, and the relationship between people and weapons will be rebuilt. Weapon systems have a greater degree of autonomy and initiative, which will profoundly change the way people act in war. In particular, the development of “brain control technology” will simplify the control process of weapons from the traditional “brain-nerve-hand-weapon” to “brain-weapon”, which not only means the development and upgrading of weapons and equipment, but also marks that the integration of people and weapons has reached a new level. Human-machine integration technologies such as brain-computer interfaces, exoskeleton systems, wearable devices, and human implants will comprehensively enhance the inherent abilities of people in cognition and physiology, and create “super soldiers.” Human combat thinking is more likely to be materialized in advance into intelligent weapons in the form of software and data. In war, intelligent weapons are used to implement human combat intentions and achieve predetermined combat objectives. The decisive role of humans in future wars is still the planner, organizer and implementer of wars. The greater value of intelligent technologies such as autonomous systems and brain science is to intervene in wars and play a role in assisting command and control. Behind the autonomous combat of intelligent weapons is still the contest between human combat methods, command methods and will quality. Humans are still the decisive factor in the outcome of wars. Good fighters must fully and scientifically play the active role of humans and must not fall into a passive situation controlled by weapons and equipment, so as to truly achieve the goal of killing people instead of being killed by people.

Intelligent warfare will rebuild the rules of engagement, but the basis for winning wars is still to create combat advantages. Victorious soldiers win first and then seek war

Intelligent warfare subverts traditional rules of engagement. War is an extremely complex system composed of multiple factors. The rules of engagement involve many factors such as the nature, purpose, subject, means, time and space conditions of war, as well as war forms, war actions, and war guidance. As artificial intelligence technology can dynamically perceive, reason, make decisions, evaluate and predict various actions of combat forces at all times, in all domains and in all dimensions, the combat style has evolved from “system combat” to “open source combat”, and cross-domain unconventional and asymmetric competition has become the new normal of confrontation. War has entered a stage of system autonomous confrontation and instant kill and decision in reconnaissance and attack operations. The combat style with unmanned operations as a prominent feature has rewritten the rules of engagement and reshaped the support process. Control of intelligence has replaced control of space as the focus of combat. Combat operations are carried out in the entire domain of tangible and intangible battlefields. The battlefield is holographic and transparent. The basic goal of war to destroy the enemy and preserve oneself has also changed from “based on damage” to “based on incapacitation” with the development of disruptive technologies. The killing mechanism of war has changed from chemical energy and kinetic energy to directed energy and biological energy. Traditional violent actions will evolve into hidden strikes, soft kills, and consciousness control, and silent killing has become the mainstream. The ability to “know” and “fight” evolves in an integrated direction. Through the joint actions of the physical domain, information domain and cognitive domain, the participating forces are controlled in real time and accurately. Relying on their own information advantages and decision-making advantages, they cut off and delay the opponent’s information and decision-making circuits in a decentralized battlefield, paralyze the enemy’s combat system, and achieve the effect of physically destroying the enemy and psychologically controlling the enemy.

Creating combat advantages is the unchanging basis for winning wars. Having an overwhelming advantage in deciding the time and place is the law of achieving military victory. The spatiotemporal characteristics of intelligent warfare will undergo major changes. Various combat operations can be launched in parallel in all weather, all day, and in multiple directions. The “second kill” phenomenon in war is more prominent, but the point of action of combat forces to paralyze the enemy’s system has not changed, the essence of creating combat advantages has not changed, and the winning rules of wars to seize the initiative in war, promote our strengths, and attack the enemy’s weaknesses have not changed. The battlefield of the future will become a large area of ​​”no man’s land”. To seize the initiative in war, it is necessary to take sudden, multi-dimensional integrated actions to achieve agile and flexible situational conversion between offense and defense. The offensive and defensive advantages will surpass the relative static state of the past and enter a dynamic reversal of continuous evolution. Therefore, the art of future war is to test whether the two combatants have endurance and orderliness in the continuous state of emergency, which depends on the advancement of the combat system and the war support system. Under the support of the intelligent battlefield situation, various combat personnel, equipment, facilities, and environmental elements form a giant complex adaptive confrontation system. “Cloud gathering” becomes a new combat force cohesion mechanism, and a unified energy gathering platform becomes the basis for seeking all-dimensional advantages. Intelligent advantages become decisive advantages. The idea of ​​concentrating forces in future wars will spiral upward under the promotion of intelligent technology, and cross-domain asymmetric advantages will have more strategic significance and decisive role in intelligent warfare. Designing wars in advance, planning wars in advance, shaping asymmetric advantages based on the enemy’s situation and our situation, stepping up the formation of aggregation advantages in important areas, strengthening the construction of strategic checks and balances, and comprehensively improving the country’s ability to respond to various threats and risks will become the inevitable victory of intelligent warfare.

(Author’s unit: National Defense University)

現代國語:

當今世界,人工智慧發展取得突破性重大進展,並加速向軍事領域轉移,對戰爭形態產生衝擊甚至顛覆性影響。面對日趨激烈的大國戰略競爭與權益博弈,我們應以發展的眼光,在對戰爭制勝規律「變」與「不變」的思辨中,理性審視、正確認知智能化,選準未來軍事競爭的戰略制高點與主攻方向,科學探討智慧化戰爭的勝利之道。

智慧化戰爭將重繪戰爭邊界,但戰爭制勝的標準仍是達成政治利益,故能為勝敗之政

智慧化戰爭疆域向新領域拓展。恩格斯指出:“人類以什麼樣的方式生產,就以什麼樣的方式作戰”,智能技術向作戰領域的快速滲透,必將顛覆戰鬥力的表現形式。智慧化戰爭在大數據、超級運算、智慧通訊、腦科學等新理論、新科技推動下,將以「意想不到」的新方式和「無所不能」的新面貌,顛覆人們固有的認知。認知領域成為交戰雙方繼陸、海、空、天、電、網之後的另一個較量空間,人類軍事對抗的疆域勢必從自然空間、技術空間、社會空間到認知空間,形成物理域、訊息域、認知域三大作戰緯度,戰爭邊界向深地、深海、深空、深網、深腦領域延伸,呈現出極深、極遠、極微、極智與無人、無形、無聲、無邊的特徵。智能化戰爭將泛化對抗爭奪,軍事與非軍事領域一體化特徵更加明顯,作戰領域極限拓展,平時與戰時邊界日趨模糊、前沿與後方界限不再分明,智能滲透到未來戰爭全要素全過程,重繪戰爭邊界,傳統的戰場和戰線難以再現,戰爭「頻譜圖」趨向寬泛化。

達成政治利益是戰爭不變的勝利標準。戰爭作為一種特定的複雜社會現象,儘管在不同的歷史時期會呈現出不同的戰爭形態和邊界,並形成不同的戰爭認知,但戰爭是政治繼續的本質屬性不會改變,衡量戰爭勝利的標準始終是實現政治利益最大化。智慧化戰爭顛覆了傳統的作戰樣式、作戰手段,武器裝備的打擊範圍拓展到人類的認知空間,戰場空間從物理空間拓展到認知、社會、網路等無形空間,能夠更直觀地表達「意志強加在對手身上」的特點,更強調在戰略、戰役、戰術層面奪取國家的意志、組織的觀念、人的心理與思維等主導權。智能化戰爭攻心奪志的勝利作用更為凸顯,政治移植、信仰打擊、精神控制、心理瓦解、文化滲透等攻心奪志手段也更加多元,爭奪與反爭奪在有形與無形戰場的較量更為激烈。圍繞戰爭展開的政治鬥爭更加複雜多變,民心向背、社會輿論、公眾心理對戰爭的製約力更加顯著,軍事服從政治體現得更加明顯,智能化戰爭的政治色彩更濃厚。軍事歸根到底是政治的延續,軍事上的勝利必須保證政治的領先。在我軍歷史上,毛澤東歷來反對單純軍事觀點,堅持軍事與政治的高度統一。美軍在伊拉克和阿富汗戰爭中,實驗了大量的先進武器,並取得了作戰的勝利,但從戰爭制勝的標準來看,贏得作戰卻輸掉了戰爭,陷於道義泥潭,遠未達成戰爭制勝目的。作戰制勝不等於戰爭制勝,要真正贏得智慧化戰爭的勝利,必須佔據正義制高點,才能最終主宰戰爭的勝敗。

智慧化戰爭將重建作戰力量,但戰爭制勝的關鍵因素仍是人,致人而不致於人

智慧化戰爭作戰力量發生質變。作戰力量是人、武器裝備及作戰方式構成的力量體系的整體描述,代表軍事技術和作戰方式的發展趨勢,本質上是先進軍事技術與新型作戰思想聯姻的產物。智慧化戰爭是人機智能一體的作戰,是從武器平台、指控體系、作戰終端、戰場環境等全方位、全領域進行升級、換代、重塑的戰爭形態,呈現人機協同、智能主導、雲腦作戰、全域對抗的特徵。智慧技術賦能改變最基礎的作戰要素,作戰樣式、時間、地域、空間等作戰要素瞬息萬變,作戰力量組成發生結構性變化,人逐漸退出對抗一線,智能化裝備將大量、成建制地走上戰場,傳統意義上「人對人」的戰爭將變成「機器對人」或「機器對決」的戰爭。傳統支援力量向主體作戰力量轉變,網路從業人員、科技菁英、心理、宗教、法律等專家和非國家行為體等多種民間力量,會以不同的方式參與到戰爭中來,從後台走向前台。一些新型作戰力量從分散化、配屬化的組織形態向增加比重、融合成軍、獨立成軍方向發展,從配角變為主角,軍事力量體系發生革命性重塑。

人依然是戰爭制勝的決定性因素。毛澤東在《論持久戰》中指出:「武器是戰爭的重要因素,但不是決定的因素,決定的因素是人不是物。」作戰力量始終是交戰雙方最直接、最重要的工具,也是最核心的致勝條件,人永遠是作戰力量中最活躍的因素,同時也是作戰力量中最具決定性的因素。智能化時代,武器的擬人化和人的武器化成為不可阻擋的趨勢,無人作戰系統將與有人系統深度融合為有機共生體,人與武器之間的傳統界限趨於模糊,重建人與武器的關係。武器系統具備更大程度的自主性和能動性,使人在戰爭中的活動方式發生深刻變化。特別是“腦控技術”的發展,對武器的控制流程將由傳統的“大腦-神經-手-武器”簡化為“大腦-武器”,這不僅僅意味著武器裝備的發展升級,而且標誌著人與武器的融合已達到新的層次。腦機介面、外骨骼系統、穿戴式裝置、人體植入等人機結合技術手段將全面提升認知、生理等人的內在能力,打造出「超級士兵」。人的作戰思想較以軟體和資料的形式被提前物化到智慧武器中,戰爭中由智慧武器來貫徹人的作戰意圖,達成預定作戰目的。人在未來戰爭中的決定作用,仍然是戰爭的計畫者、組織者和實施者。自主系統、腦科學等智慧科技更大的價值是介入戰爭,發揮協助指揮與控制的作用。智慧化武器自主作戰的背後仍是人的作戰方法、指揮方式與意志品質的較量,人依然是戰爭勝負的決定因素,善戰者必須要充分而科學地發揮人的能動作用,不可陷入為武器裝備所控的被動局面,真正做到致人而不致於人。

智慧化戰爭將重建交戰規則,但戰爭制勝的基礎仍是創造作戰優勢,勝兵先勝而後求戰

智慧化戰爭顛覆傳統交戰規則。戰爭是一個由多種因素構成的極為複雜的系統,交戰規則涉及戰爭性質、目的、主體、手段、時空條件,以及戰爭形態、戰爭行動、戰爭指導等諸多方面的因素。隨著人工智慧技術能夠全時、全域、全維度對作戰力量的各種行動進行動態感知、推理決策、評估預測,作戰樣式由「體係作戰」向「開源作戰」演進,跨域非常規、非對稱較量成為對壘新常態,戰爭進入系統自主對抗、察打行動秒殺立決的階段,以無人化為突出標誌的作戰樣式重新改寫交戰規則,重塑保障流程。制智權代替制空間權成為作戰重心,作戰行動在有形和無形戰場全局展開,戰場全息透明,消滅敵人、保存自己的戰爭基本目標也隨著顛覆性技術的發展表現為從「基於毀傷」轉變為「基於失能」。戰爭殺傷機理由化學能、動能轉變為定向能、生物能,傳統的暴力行動將向隱打擊、軟殺傷、控意識等方式演變,無聲殺傷成為主流。 「知」「戰」能力向一體化方向演進,透過物理域、資訊域與認知域的共同行動,即時精準地掌控參戰力量,憑藉己方的資訊優勢與決策優勢,在去中心化的戰場中切斷與遲滯對手的訊息與決策迴路,癱敵作戰體系,達成物理上摧毀敵人與心理上控制敵人之效。

創造作戰優勢是戰爭不變的勝利基礎。在決定時機和決定地點擁有壓倒優勢,是取得軍事勝利的規律。智慧化戰爭時空特性將發生重大變化,各種作戰行動可以全天候、全天時、多方向並行發起,戰爭中的「秒殺」現象更加突出,但作戰力量癱敵體系的作用點沒有變,創造作戰優勢的本質沒有改變,掌握戰爭主動權、揚我之長、擊敵之短的戰爭制勝法則沒有變。未來戰場將成為大面積“無人之境”,要奪取戰爭主動權,必須採取突然、多維融合的行動,在進攻與防禦之間實現敏捷、彈性的態勢轉換,進攻與防禦優勢將會超越過去的相對靜態,進入不斷演化的動態反轉,因此未來戰爭的藝術就是檢驗作戰雙方在持續不斷的突發狀態中是否具備耐力和有序性,取決於作戰體系和戰爭支撐體系的先進性。各類作戰人員、裝備、設施、環境要素在智慧化的戰場態勢支撐下,形成巨型複雜自適應對抗體系,「雲聚」成為新的作戰力量凝聚機理,統一的聚能平台成為謀求全維優勢的基礎,智能優勢成為決勝優勢。未來戰爭集中兵力的思想將在智慧科技的推動下螺旋式上升,跨域非對稱優勢在智慧化戰爭將更有戰略意義和決勝作用。提前設計戰爭、超前規劃戰爭,基於敵情我情塑造非對稱優勢,加緊在重要領域形成聚集優勢,加強戰略制衡力量建設,全面提升國家應對各類威脅風險的能力,成為智能化戰爭勝兵先勝而後求戰的必然。

(作者單位:國防大學)

中國原創軍事資源:https://www.81.cn/jfjbmap/content/2019-10/22/content_245810.htm