Category Archives: #informatization

Functional Orientation of the Modern Combat System with Chinese Characteristics

中國特色現代作戰體系的功能定位

2018年08月14日 xx:xx 来源:解放军报

現代英語:

Functional Orientation of the Modern Combat System with Chinese Characteristics

  Key Points

  ● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.

  ● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.

  The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.

  Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.

  The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.

  A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.

  Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.

  Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.

  The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.

  Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.

  The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.

  Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.

  Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.

  The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.

  Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.

  (Author’s affiliation: Institute of War Studies, Academy of Military Sciences)

Zhang Qianyi

現代國語:

中國特色現代作戰體系的功能取向

要點提示

●機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。

●傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告提出,站在新的歷史起點上,面對強國強軍的時代要求,“構建中國特色現代作戰體系”。這是適應戰爭形態加速演變的時代要求,深入貫徹習近平強軍思想、全面推進國防和軍隊現代化、瞄準建設世界一流軍隊的戰略抉擇。其中,對中國特色現代作戰體系功能取向的把握,極大影響著體系構建的目標、方向和質量。

抓住時代機遇,以機械化信息化智能化融合發展為歷史方位

作戰體係是戰爭的物質基礎,與戰爭形態緊密關聯。當今世界,新一輪科技革命和產業革命正在孕育興起,一些重大科學問題的原創性顛覆性突破正在開闢新前沿新方向,促使人類社會向智能化快速轉型,戰爭形態向智能化加速演變。當前,我軍正處於機械化信息化複合發展階段,機械化尚未完成、信息化深入推進,又面臨智能化軍事革命帶來的機遇和挑戰。新時代為我們實現創新超越、快速發展提供了難得歷史機遇,也為我軍作戰體系建設實現跨代超越、彎道超車提供了難得歷史機遇。

新時代新起點,需要確立新的坐標系。機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。應準確把握戰爭形態演變的歷史進程,準確把握機械化信息化複合發展的歷史階段,準確把握智能化戰爭帶來的歷史機遇,堅持把軍事智能化建設擺在優先發展位置,以智能化引領帶動機械化信息化,在智能化建設全局中統籌機械化信息化,在智能化進程中完成機械化信息化發展的任務;注重搞好軍事智能化發展的頂層設計,研究制定軍事智能化發展戰略綱要和路線圖,明確智能化發展的關鍵領域、核心技術、重點項目和步驟措施等,加快軍事智能化作戰體系建設進程;盡快在深度學習、跨界融合、人機協同、自主操控、神經網絡等關鍵技術上取得重大進展,提高先進科技力物化為先進武器裝備的能力,為構建現代作戰體系提供物質條件。

突出體係對抗,以打造聯合作戰和全域作戰能力為核心指標

信息化局部戰爭,一體化聯合作戰成為基本形式,網絡支撐、信息主導、體係對抗成為主要特徵,戰鬥力生成模式向基於網絡信息體系轉變。當前及今後一個時期,我國地緣戰略環境仍然複雜,傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,同時隨著國家利益的拓展,海外利益安全問題日益凸顯,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告指出,“提高基於網絡信息體系的聯合作戰能力、全域作戰能力”,這是對新時代我軍作戰能力的新概括,也是中國特色現代作戰體系建設的核心指標。應積極探索現代戰爭特點規律和製勝機理,前瞻設計未來作戰行動模式、力量運用方式、指揮協同程式等,為構建中國特色現代作戰體系提供先進理論支撐;按照軍委管總、戰區主戰、軍種主建的新格局,適應聯合作戰指揮新體制、軍隊規模結構和力量編成改革,突出網絡信息體系這個核心支撐,打造能夠生成強大聯合作戰能力的作戰體系,充分發揮諸軍兵種作戰力量整體威力;著眼妥善應對各戰略方向、傳統和非傳統安全威脅,確保我軍可靠遂行各種作戰任務,打造能夠生成強大全域作戰能力的作戰體系,實現陸海空天電網多維戰場、多域戰場的整體聯動。

著眼現實威脅,以形成對敵非對稱作戰優勢為戰略指向

當今世界,國際形勢正處在新的轉折點上,大國戰略博弈呈現新態勢,圍繞國際和地區秩序主導權的鬥爭空前激烈。霸權主義和強權政治陰魂不散,一些國家加緊對華防範和遏制。我國地緣戰略環境日趨複雜,存在多重不穩定因素,面對多方向安全壓力,我海上安全環境日趨複雜等,這些都使得國家安全面臨的危險和挑戰增多。

有效應對現實軍事安全威脅,是我軍事鬥爭準備的重要戰略任務,也是中國特色現代作戰體系建設的戰略指向。應注重技術跟進,大力研發先進裝備,力避與潛在對手拉開新的技術代差,為作戰體系建設提供堅實物質支撐,同時注重發揮我軍歷來堅持的靈活機動、自主作戰原則,揚長避短,擊敵弱項、軟肋,不單純在高科技領域“與龍王比寶”,著眼懾敵止戰,加快發展非對稱制衡手段,加強常規戰略手段、新概念新機理和新型領域戰略威懾手段建設,支撐形成具有新質威懾與實戰能力的新型作戰體系;不懼直面過招,立足最複雜最困難情況,構建能夠提供多種手段、多種力量、多種方式應對多樣化戰爭威脅的作戰體系,確保一旦有事,充分發揮作戰體係綜合效能,確保戰而勝之、以戰止戰。

推進軍民融合,以國家戰略體系支撐打贏新時代人民戰爭為根本要求

戰爭偉力之最深厚根源存在於民眾之中。人民戰爭思想是我軍克敵制勝的法寶。現代戰爭是敵對雙方綜合實力的整體對抗,涉及政治、經濟、軍事、科技、文化等各條戰線,各種武裝力量緊密結合、各種鬥爭形式相互配合,民用技術和民間力量在戰爭中的地位作用日益提升,更加要求把國防體系融入國家經濟社會體系,努力打贏新時代人民戰爭。

發揮軍民融合時代偉力,以國家戰略體系支撐打贏新時代人民戰爭,是中國特色現代作戰體系建設的根本要求。要深入實施軍民融合發展國家戰略,推動我軍作戰體系建設深度融入國家戰略體系,利用國家資源和整體力量實現戰鬥力的持續躍升,最大限度發揮人民戰爭的整體威力;注重加強在新興戰略領域的軍民融合發展,積極搶占未來軍事競爭的製高點,不斷創造人民戰爭的新優勢;把軍事創新體系納入國家創新體系之中,加強需求對接、協同創新,增強自主創新、原始創新、集成創新能力,主動發現、培育和運用戰略性顛覆性前沿性技術,為構建現代作戰體系提供先進技術支撐;抓好民用資源深度挖掘,強化可服務於國防和軍隊建設的各種資源整合力度,防止重複浪費、自成體系、封閉運行,最大限度發揮民用資源對現代作戰體系構建的孵化效應。

(作者單位:軍事科學院戰爭研究院)

張謙一

中國原創軍事資源:https://www.chinanews.com.cn/mil/2018/08-14/8599617888.shtml

Chinese Military Intelligence Drives Accelerated Development of Cyberspace Warfare

中國軍事情報推動網絡空間戰爭加速發展

現代英語:

The report to the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint operational capabilities and all-domain operational capabilities based on network information systems.” Today’s *PLA Daily* published an article stating that military intelligence is a new trend and direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, while using intelligence to drive mechanization and informatization to a higher level and a higher standard. Cyberspace, as a new operational domain, is a new field with high technological content and the greatest innovative vitality. Under the impetus of military intelligence, it is ushering in a period of rapid development opportunities.Illustration: Lei Yu

Military intelligence is driving the accelerated development of cyberspace operations.

■ Respected soldiers Zhou Dewang Huang Anwei

Three key technologies support the intelligentization of cyberspace weapons.

Intelligence is a kind of wisdom and capability; it is the perception, cognition, and application of laws by all systems with life cycles. Intelligentization is the solidification of this wisdom and capability into a state. Cyberspace weapons are weapons used to carry out combat missions in cyberspace. Their form is primarily software and code, essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, there’s intelligent vulnerability discovery. Vulnerabilities are the foundation of cyber weapon design. The ransomware that spread globally this May exploited a vulnerability in the Microsoft operating system, causing a huge shock in the cybersecurity community. Vulnerabilities are expensive, with a single zero-day vulnerability costing tens to hundreds of thousands of dollars. Previously, vulnerability discovery relied mainly on experienced hackers using software tools to inspect and analyze code. However, at the International Cybersecurity Technology Competition finals held during this year’s China Internet Security Conference, participants demonstrated how intelligent robots could discover vulnerabilities on-site, then use these vulnerabilities to write network code, creating cyber weapons to breach target systems and capture the flag. This change signifies that vulnerability discovery has entered the era of intelligent technology.

Second, intelligent signal analysis and cryptography. Signals are the carriers of network data transmission, and cryptography is the last line of defense for network data security. Signal analysis and cryptography are core technologies for cyberspace warfare. Breaking through signals and cryptography is the fundamental path to entering cyberspace and a primary target of cyber weapons attacks. Intelligent signal analysis solves problems such as signal protocol analysis, modulation identification, and individual identification through technologies such as big data, cloud computing, and deep learning. Cryptography is the “crown jewel” of computational science. Intelligent cryptography, through the accumulation of cryptographic data samples, continuously learns and searches for patterns to find the key to decryption, thereby opening the last door of the network data “safe” and solving the critical links of network intrusion and access.

Thirdly, there is the design of intelligent weapon platforms. In 2009, the U.S. military proposed the “Cyber ​​Aircraft” project, providing platforms similar to armored vehicles, ships, and aircraft for cyberspace operations. These platforms can automatically conduct reconnaissance, load cyber weapons, autonomously coordinate, and autonomously attack in cyberspace. When threatened, they can self-destruct and erase traces, exhibiting a certain degree of intelligence. In the future, the weapons loaded onto “Cyber ​​Aircraft” will not be pre-written code by software engineers, but rather intelligent cyber weapons will be designed in real-time based on discovered vulnerabilities, enabling “order-based” development and significantly improving the targeting of cyberspace operations.

The trend of intelligentization in network-controlled weapons is becoming increasingly prominent.

Weapons controlled by cyberspace, or cyber-controlled weapons, are weapons that connect to a network, receive commands from cyberspace, execute cross-domain missions, and achieve combat effects in physical space. Most future combat weapon platforms will be networked, making military information networks essentially the Internet of Things (IoT). These networks connect to satellites, radars, drones, and other network entities, enabling control from perception and detection to tracking, positioning, and strike. The intelligence of cyber-controlled weapons is rapidly developing across land, sea, air, space, and cyber domains.

In 2015, Syria used a Russian robotic force to defeat militants. The operation employed six tracked robots, four wheeled robots, an automated artillery corps, several drones, and a command system. Commanders used the command system to direct drones to locate militants, and the robots then charged, supported by artillery and drone fire, inflicting heavy casualties. This small-scale battle marked the beginning of robotic “team” operations.

Network-controlled intelligent weapons for naval and air battlefields are under extensive research and development and verification. In 2014, the U.S. Navy used 13 unmanned surface vessels to demonstrate and verify the interception of enemy ships by unmanned surface vessel swarms, mainly by exchanging sensor data, and achieved good results. When tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became its prominent feature of intelligence.

The development of swarms of small, micro-sized drones for aerial combat is also rapid. In recent years, the U.S. Department of Defense has conducted multiple tests of the Partridge micro-drone, capable of deploying dozens or even hundreds at a time. By enhancing its coordination capabilities during reconnaissance missions, progress has been made in drone formation, command, control, and intelligent management.

Space-based cyber-control weapons are becoming increasingly “intelligent.” The space-based cyber-control domain primarily comprises two categories of weapons: reconnaissance and strike weapons. Satellites of various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various microsatellite constellations, satellites are exhibiting new characteristics: small size, rapid launch, large numbers, and greater intelligence. Microsatellite constellations offer greater flexibility and reliability in performing reconnaissance and communication missions, and currently, the world’s leading satellite powers are actively developing microsatellite constellation plans with broader coverage.

Various hypersonic strike weapons are cruising in the air, like a sword of Damocles hanging over people’s heads. The U.S. Air Force Research Laboratory stated that the “hypersonic strike weapon” will begin flight testing around 2018, and other countries are also actively developing similar weapons. The most prominent features of these weapons are their high speed, long range, and high level of intelligence.

Intelligent command information systems are changing traditional combat command methods.

Cyber ​​weapons and weapons controlled by cyberspace constitute the “fist” of intelligent warfare, while the command information systems that direct the use of these weapons are the “brain” of intelligent warfare. Cyberspace operational command information systems must keep pace with the process of intelligentization. Currently, almost all global command information systems face the challenge of “intelligent lag.” Future warfare requires rapid and autonomous decision-making, which places higher demands on intelligent support systems.

In 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) launched the “Deep Green Program,” a research and development program for command and control systems, aiming to enable computer-aided commanders to make rapid decisions and gain a decisive advantage. This is a campaign-level command information system, developed to be embedded into the U.S. Army’s brigade-level C4ISR wartime command information system, enabling intelligent command by commanders. Even today, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace warfare, network targets are represented by a single IP address accessing the network. Their sheer number makes efficient manual operation difficult, necessitating the support of intelligent command and information systems. Currently, intelligent command and information systems need to achieve functions such as intelligent intelligence analysis, intelligent sensing, intelligent navigation and positioning, intelligent decision support, intelligent collaboration, intelligent assessment, and intelligent unmanned combat. In particular, they must enable swarm operational control of unmanned network control systems. All of these requirements urgently demand intelligent command and information systems, necessitating accelerated research and development and application of relevant key technologies.

In conclusion, intelligent cyber weapons and network control weapons, coordinated through intelligent information systems, will form enormous combat capabilities, essentially enabling them to carry out all actions in current combat scenarios. Future warfare, from command force organization to target selection, action methods, and tactical applications, will all unfold within an intelligent context. The “gamification” of warfare will become more pronounced, and operational command methods will undergo significant changes.

In future battlefields, combat will require not only courage but also intelligence.

■ Yang Jian, Zhao Lu

Currently, artificial intelligence is entering a new stage of development and is rapidly penetrating various fields. Influenced by this process, military competition among nations surrounding intelligent technologies has begun. Our army has always been a brave and tenacious people’s army, determined to fight and win. On the future battlefield, we should continue to carry forward our glorious traditions while more broadly mastering and utilizing the latest technological achievements to develop more intelligent weapons and equipment, thereby gaining a decisive advantage on the future battlefield.

Intelligentization is a trend in human societal development, and intelligent warfare is rapidly approaching. The development of military intelligence has a solid foundation thanks to successful innovations that transcend existing computational models, the gradual popularization of nanotechnology, and breakthroughs in research on the mechanisms of the human brain. Consequently, intelligent weaponry is increasingly prominent, surpassing and even replacing human capabilities in areas such as intelligence analysis and combat response. Furthermore, intelligent weaponry offers significant advantages in terms of manpower requirements, comprehensive support, and operating costs, and is increasingly becoming the dominant force in warfare.

The development and application of intelligent weaponry have proven to expand the scope of military operations and significantly enhance the combat effectiveness of troops. In the battlefields of Afghanistan and Iraq, drones have undertaken most of the reconnaissance, intelligence, and surveillance support missions, and have been responsible for approximately one-third of the air strike missions. In the past two years, Russia has also repeatedly used highly intelligent unmanned reconnaissance aircraft and combat robots in the Syrian theater. Intelligent weaponry is increasingly demonstrating its significant value, surpassing that of traditional weapons.

In future wars, the contest of intelligent combat systems will be the key to victory in high-level competition and ultimate showdowns. As the development of technology-supported military means becomes increasingly uneven, whoever first acquires the capability to conduct intelligent warfare will be better positioned to seize the initiative on the battlefield. Those with a technological advantage will minimize the costs of war, while the weaker will inevitably suffer enormous losses and pay a heavy price. We must not only accelerate innovation in core technologies and the development of weaponry, but also research and explore organizational structures, command methods, and operational models adapted to the development of intelligent military operations. Furthermore, we must cultivate a talent pool capable of promoting intelligent military development and forging intelligent combat capabilities, fully leveraging the overall effectiveness of our military’s combat system, and winning wars in a more “intelligent” manner against our adversaries.

現代國語:

党的十九大报告指出,要“加快军事智能化发展,提高基于网络信息体系的联合作战能力、全域作战能力”。今天的《解放军报》刊发文章指出,军事智能化是机械化、信息化之后军事领域发展的新趋势和新方向,我们要在现有机械化和信息化基础上发展智能化,同时用智能化牵引机械化和信息化向更高水平、更高层次发展。网络空间作为新型作战领域,是科技含量高、最具创新活力的新领域,在军事智能化的牵引下,正在迎来快速发展的机遇期。制图:雷 煜

军事智能化牵引网络空间作战加速发展

■敬兵 周德旺 皇安伟

三大技术支撑网络空间武器智能化

智能是一种智慧和能力,是一切有生命周期的系统对规律的感应、认知与运用,智能化就是把这种智慧和能力固化下来,成为一种状态。网络空间武器是网络空间遂行作战任务的武器,其形态以软件和代码为主,本质上是一段数据。网络空间武器的智能化主要体现在以下三个方面:

一是智能化漏洞挖掘。漏洞是网络武器设计的基础,今年5月在全球范围内传播的勒索病毒软件,就是利用了微软操作系统漏洞,给网络安全界带来了巨大震动。漏洞价格昂贵,一个零日漏洞价值几万到几十万美元不等。以往漏洞的发现,主要依靠有经验的黑客,利用软件工具对代码进行检查和分析。在今年中国互联网安全大会期间举办的国际网络安全技术对抗联赛总决赛中,参赛人员演示由智能机器人现场进行漏洞挖掘,然后通过漏洞编写网络代码,形成网络武器,攻破目标系统,夺取旗帜。这一变化,意味着漏洞挖掘进入了智能化时代。

二是智能化信号分析和密码破译。信号是网络数据传输的载体,密码是网络数据安全最后的屏障,信号分析和密码破译是网络空间作战的核心技术,突破信号和密码是进入网络空间的基本路径,是网络武器攻击的首要目标。智能化信号分析将信号的协议分析、调制识别、个体识别等问题,通过大数据、云计算、深度学习等技术进行解决。密码破译是计算科学“皇冠上的明珠”,智能化密码破译通过对密码数据样本的积累,不断学习、寻找规律,能找到破译的钥匙,从而打开网络数据“保险柜”的最后一道门,解决网络入侵和接入的关键环节。

三是智能化武器平台设计。美军在2009年提出“网络飞行器”项目,为网络空间作战提供像战车、舰艇、飞机这样的平台,可以实现在网络空间里自动侦察、加载网络武器、自主协同、自主攻击,受到威胁时自我销毁、清除痕迹,具备了一定的智能化特征。未来“网络飞行器”加载的武器,不是软件人员编好的代码,而是根据侦察结果直接对发现的漏洞,现场实时进行智能化网络武器设计,实现“订购式”开发,从而极大地提高网络空间作战的针对性。

网控武器的智能化趋势愈加凸显

受网络空间控制的武器简称网控武器,是通过网络连接,接受网络空间指令,执行跨域任务,在物理空间达成作战效果的武器。未来的各种作战武器平台,大多是联网的武器平台,这样军事信息网本质上就是物联网,上联卫星、雷达、无人机等网络实体,从感知到发现、跟踪、定位、打击都可通过网络空间控制,网控武器的智能化已在陆海空天电等战场蓬勃发展。

2015年,叙利亚利用俄罗斯机器人军团击溃武装分子,行动采用了包括6个履带式机器人、4个轮式机器人、1个自动化火炮群、数架无人机和1套指挥系统。指挥员通过指挥系统调度无人机侦察发现武装分子,机器人向武装分子发起冲锋,同时伴随火炮和无人机攻击力量支援,对武装分子进行了致命打击。这仅仅是一场小规模的战斗,却开启了机器人“组团”作战的先河。

海空战场网控智能武器正在大量研发验证。2014年,美国海军使用13艘无人水面艇,演示验证无人艇集群拦截敌方舰艇,主要通过交换传感器数据,取得了不错的效果。2016年再次试验时,新增了协同任务分配、战术配合等功能,“蜂群意识”成为其智能化的显著特点。

用于空中作战的小微型无人机蜂群也在快速发展。近年来,美国国防部多次试验“山鹑”微型无人机,可一次投放数十架乃至上百架,通过提升其执行侦察任务时的协同能力,在无人机编队、指挥、控制、智能化管理等方面都取得了进展。

空天网控武器越来越“聪明”。空天领域主要包含侦察和打击两类网控武器,各种功能的卫星主要执行侦察任务,是典型的侦察传感器。随着各种小微卫星群的出现,使卫星表现出新的特征:体积小、发射快、数量多、更加智能。小微卫星群在执行侦察和通信任务时,有了更大的灵活度和可靠性,目前世界卫星强国都在积极制定覆盖范围更广的小微卫星群计划。

各种高超音速打击武器在空天巡航,仿佛悬在人们头顶的利剑。美国空军研究室称“高速打击武器”将在2018年前后启动飞行试验,其它各国也正在积极研发类似武器。这类武器最大的特点是速度快、航程远、智能化程度高。

智能化指挥信息系统改变传统作战指挥方式

网络空间武器和受网络空间控制的武器,是智能化战争的“拳头”,而指挥这些武器运用的指挥信息系统是智能化战争的“大脑”,网络空间作战指挥信息系统要同步跟上智能化的进程。当前,几乎全球的指挥信息系统都面临着“智能滞后”的难题,未来战争需要快速决策、自主决策,这对智能辅助系统提出了更高要求。

2007年,美国国防部高级研究计划局启动关于指挥控制系统的研发计划——“深绿计划”,以期能实现计算机辅助指挥员快速决策赢得制胜先机。这是一个战役战术级的指挥信息系统,其研发目的是将该系统嵌入美国陆军旅级C4ISR战时指挥信息系统中去,实现指挥员的智能化指挥。直到今天,美军也没有放松对智能化指挥信息系统的开发。

在网络空间作战中,网络目标表现为一个接入网络的IP地址,数量众多导致人工难以高效操作,作战更需要智能化指挥信息系统的辅助支撑。当前,智能化指挥信息系统需要实现智能情报分析、智能感知、智能导航定位、智能辅助决策、智能协同、智能评估、智能化无人作战等功能,尤其是实现对无人网控系统的集群作战操控,这都对智能化指挥信息系统提出了迫切需求,需要加快相应关键技术的研发和运用。

综上所述,智能化的网络武器和网控武器,通过智能化的信息系统调度,将形成巨大的作战能力,基本能遂行现行作战样式中的所有行动。未来战争,从指挥力量编组、到目标选择、行动方式、战法运用等,都将在智能化的背景下展开,战争“游戏化”的特点将更显著,作战指挥方式也将发生重大变化。

未来战场 斗勇更需斗“智”

■杨建 赵璐

当前,人工智能发展进入崭新阶段,并开始向各个领域加速渗透。受这一进程的影响,各国围绕智能化的军事竞争已拉开帷幕。我军历来是一支英勇顽强、敢打必胜的人民军队,未来战场上应继续发扬光荣传统,同时要更加广泛地掌握和利用最新的科技成果,研制出更多智能化的武器装备,在未来战场上掌握制胜先机。

智能化是人类社会发展的趋势,智能化战争正在加速到来。正是由于超越原有体系结构计算模型的成功创新、纳米制造技术的逐步普及,以及对人脑机理研究的突破性进展,军事智能化发展才拥有了坚实的基础。因此,智能化武器装备的表现日益突出,并在情报分析、战斗反应等方面开始超越并替代人类。此外,在人力需求、综合保障、运行成本等方面,智能化武器装备也具有明显的优势,正在日益成为战争的主导力量。

事实证明,智能化武器装备的发展应用,拓展了军事行动的能力范围,大幅提升了部队的作战效能。在阿富汗和伊拉克战场上,无人机已承担了大部分侦察、情报、监视等作战保障任务,并担负了约三分之一的空中打击任务。近两年,俄罗斯在叙利亚战场上也多次使用具有较高智能化程度的无人侦察机、战斗机器人等装备。智能化武器装备正在愈来愈多地展现出超越传统武器的重要价值。

未来战争中,作战体系智能化的较量将是高手过招、巅峰对决的制胜关键。随着以科技为支撑的军事手段发展的不平衡性越来越大,谁先具备实施智能化作战的能力,谁就更能掌握战场的主动权,拥有技术代差优势的强者会尽可能将战争成本降到最低,而弱者必然遭受巨大损失,付出惨重代价。我们不仅要加紧核心技术创新、武器装备研制,还要研究探索适应军事智能化发展的组织结构、指挥方式和运用模式,更要培养一支能够担起推进军事智能化发展、锻造智能化作战能力的人才队伍,充分发挥我军作战体系的整体效能,在与对手的较量中,以更加“智慧”的方式赢得战争。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841898885.htm

Chinese Military Era of Intelligent Warfare Rapidly Approaching

中國軍事智能化戰爭時代迅速來臨

現代英語:

Since the beginning of the new century, the rapid development of intelligent technologies, with artificial intelligence (AI) at its core, has accelerated the process of a new round of military revolution, and competition in the military field is rapidly moving towards an era of intellectual dominance. Combat elements represented by “AI, cloud, network, cluster, and terminal,” combined in diverse ways, constitute a new battlefield ecosystem, completely altering the mechanisms of victory in warfare. AI systems based on models and algorithms will be the core combat capability, permeating all aspects and stages, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made to decision by AI. Traditional human-centric tactics are being replaced by AI models and algorithms, making intellectual dominance the core control in future warfare. The stronger the intelligent combat capability, the greater the hope of subduing the enemy without fighting.

[Author Biography] Wu Mingxi is the Chief Scientist and Researcher of China Ordnance Industry Group, Deputy Secretary-General of the Science and Technology Committee of China Ordnance Industry Group, and Deputy Director of the Science and Technology Committee of China Ordnance Science Research Institute. His research focuses on national defense science and technology and weaponry development strategies and planning, policies and theories, management and reform research. His major works include “Intelligent Warfare – AI Military Vision,” etc.

Competition in the Age of Intellectual Property

The history of human civilization is a history of understanding and transforming nature, and also a history of understanding and liberating oneself. Through the development of science and technology and the creation and application of tools, humanity has continuously enhanced its capabilities, reduced its burdens, freed itself from constraints, and liberated itself. The control of war has also constantly changed, enriched, and evolved with technological progress, the expansion of human activity space, and the development of the times. Since the 19th century, humanity has successively experienced the control and struggle for land power, sea power, air power, space power, and information power. With the rapid development of intelligent technologies such as artificial intelligence (AI), big data, cloud computing, bio-interdisciplinary technologies, unmanned systems, and parallel simulation, and their deep integration with traditional technologies, humanity’s ability to understand and transform nature has been transformed in terms of epistemology, methodology, and operational mechanisms. This is accelerating the major technological revolutions in machine intelligence, bionic intelligence, swarm intelligence, human-machine integrated intelligence, and intelligent perception, intelligent decision-making, intelligent action, intelligent support, as well as intelligent design, research and development, testing, and manufacturing, thus accelerating the evolution of warfare towards the control and struggle for intellectual power.

The rapid development of intelligent technology has garnered significant attention from major countries worldwide, becoming a powerful driving force for the leapfrog development of military capabilities. The United States and Russia have placed intelligent technology at the core of maintaining their strategic status as global military powers, and significant changes have occurred in their development concepts, models, organizational methods, and innovative applications. They have also carried out substantive applications and practices of military intelligence (see Figure 1).

Wu Mingxi 1

In August 2017, the U.S. Department of Defense stated that future AI warfare was inevitable and that the U.S. needed to “take immediate action” to accelerate the development of AI warfare technologies. The U.S. military’s “Third Offset Strategy” posits that a military revolution, characterized by intelligent armies, autonomous equipment, and unmanned warfare, is underway; therefore, they have identified intelligent technologies such as autonomous systems, big data analytics, and automation as key development directions. In June 2018, the U.S. Department of Defense announced the establishment of the Joint Artificial Intelligence Center, which, guided by the national AI development strategy, coordinates the planning and construction of the U.S. military’s intelligent military system. In February 2019, then-President Trump signed the “American Artificial Intelligence Initiative” executive order, emphasizing that maintaining U.S. leadership in AI is crucial for safeguarding U.S. economic and national security, and requiring the federal government to invest all resources in promoting innovation in the U.S. AI field. In March 2021, the U.S. National Security Council on Artificial Intelligence released a research report stating that, “For the first time since World War II, the technological advantage that has been the backbone of U.S. economic and military power is under threat. If current trends do not change, China possesses the power, talent, and ambition to surpass the United States as the global leader in artificial intelligence within the next decade.” The report argues that the United States must use artificial intelligence swiftly and responsibly to prepare for these threats in order to safeguard national security and enhance defense capabilities. The report concludes that artificial intelligence will transform the world, and the United States must take a leading role.

Russia also attaches great importance to the technological development and military application of artificial intelligence. The Russian military generally believes that artificial intelligence will trigger the third revolution in the military field, following gunpowder and nuclear weapons. In September 2017, Russian President Vladimir Putin publicly stated that artificial intelligence is the future of Russia, and whoever becomes the leader in this field will dominate the world. In October 2019, Putin approved the “Russian National Strategy for the Development of Artificial Intelligence until 2030,” aiming to accelerate the development and application of artificial intelligence in Russia and seek a world-leading position in the field.

In July 2017, the State Council of China issued the “New Generation Artificial Intelligence Development Plan,” which put forward the guiding ideology, strategic goals, key tasks and safeguard measures for the development of new generation artificial intelligence towards 2030, and deployed efforts to build a first-mover advantage in the development of artificial intelligence and accelerate the construction of an innovative country and a world-class science and technology power.

Other major countries and military powers around the world have also launched their own artificial intelligence development plans, indicating that the global struggle for “intellectual power” has fully unfolded. Land power, sea power, air power, space power, information power, and intellectual power are all results of technological progress and products of their time, each with its own advantages and disadvantages, and some theories are constantly expanding with the changing times. From the development trend of control over warfare since modern times, it can be seen that information power and intellectual power involve the overall situation, carrying greater weight and influence. In the future, with the accelerated pace of intelligent development, intellectual power will become a rapidly growing new type of battlefield control with greater strategic influence on the overall combat situation.

The essence of military intelligence lies in leveraging intelligent technologies to establish diverse identification, decision-making, and control models for the war system. These models constitute artificial intelligence (AI), the core of the new era’s intellectual power struggle. The war system encompasses: equipment systems such as individual units, clusters, manned/unmanned collaborative operations, and multi-domain and cross-domain warfare; combat forces such as individual soldiers, squads, detachments, combined arms units, and theater command; operational links such as networked perception, mission planning and command, force coordination, and comprehensive support; specialized systems such as network attack and defense, electronic warfare, public opinion control, and infrastructure management; and military industrial capabilities such as intelligent design, research and development, production, mobilization, and support. AI, in the form of chips, algorithms, and software, is embedded in every system, level, and link of the war system, forming a systematic brain. Although AI is only a part of the war system, its increasingly powerful “brain-like” functions and capabilities “surpassing human limits” will inevitably dominate the overall situation of future warfare.

Battlefield Ecosystem Reconstruction

Traditional warfare involves relatively independent and separate combat elements, resulting in a relatively simple battlefield ecosystem, primarily consisting of personnel, equipment, and tactics. In the intelligent era, warfare is characterized by significant integration, correlation, and interaction among various combat elements. This will lead to substantial changes in the battlefield ecosystem, forming a combat system, cluster system, and human-machine system comprised of an AI brain, distributed cloud, communication networks, collaborative groups, and various virtual and physical terminals—collectively known as the “AI, Cloud, Network, Cluster, Terminal” intelligent ecosystem (see Figure 2). Among these, AI plays a dominant role.

Wu Mingxi 2

AI Brain System. The AI ​​brain system of the intelligent battlefield is a networked and distributed system that is inseparable from and interdependent with combat platforms and missions. It can be classified in several ways. Based on function and computing power, it mainly includes cerebellum, swarm brain, midbrain, hybrid brain, and cerebrum; based on combat missions and stages, it mainly includes sensor AI, combat mission planning and decision-making AI, precision strike and controllable destruction AI, network attack and defense AI, electronic warfare AI, intelligent defense AI, and integrated support AI; based on form, it mainly includes embedded AI, cloud AI, and parallel system AI.

The cerebellum mainly refers to the embedded AI in sensor platforms, combat platforms, and support platforms, which mainly performs tasks such as battlefield environment detection, target recognition, rapid maneuver, precision strike, controlled destruction, equipment support, maintenance support, and logistical support.

“Swarm brain” mainly refers to the AI ​​that enables intelligent control of unmanned swarm platforms on the ground, in the air, at sea, in the water, and in space. It mainly performs tasks such as collaborative perception of the battlefield environment, swarm maneuver, swarm attack, and swarm defense. The key components include algorithms for homogeneous swarm systems and algorithms for heterogeneous systems such as manned-unmanned collaboration.

The midbrain mainly refers to the AI ​​system of the command center, data center, and edge computing of the front-line units on the battlefield. It mainly performs dynamic planning, autonomous decision-making, and auxiliary decision-making for tactical unit combat missions under online and offline conditions.

Hybrid brain mainly refers to a hybrid decision-making system in which commanders and machine AI collaborate in combat operations of organized units. Before the battle, it mainly performs human-based combat mission planning; during the battle, it mainly performs adaptive dynamic mission planning and adjustment based on machine AI; and after the battle, it mainly performs hybrid decision-making tasks oriented towards counter-terrorism and defense.

The “brain” primarily refers to the model, algorithm, and tactical libraries of the theater command center and data center, playing a key supporting role in campaign and strategic decision-making. Due to the abundant data, various battlefield AI systems can be trained and modeled here, and then loaded into different mission systems once mature.

In future battlefields, there will be other AIs of different functions, types, and sizes, such as sensor AI, which mainly includes image recognition, electromagnetic spectrum recognition, sound recognition, speech recognition, and human activity behavior recognition. With the rapid development and widespread application of intelligence, AIs of all sizes will exist throughout society, serving the public and society in peacetime, and potentially serving the military in wartime.

Distributed cloud. Military cloud differs from civilian cloud. Generally speaking, a military cloud platform is a distributed resource management system that uses communication networks to search, collect, aggregate, analyze, calculate, store, and distribute operational information and data. By constructing a distributed system and a multi-point fault-tolerant backup mechanism, a military cloud platform possesses powerful intelligence sharing capabilities, data processing capabilities, resilience, and self-healing capabilities. It can provide fixed and mobile, public and private cloud services, achieving “one-point collection, everyone sharing,” greatly reducing information flow links, making command processes flatter and faster, and avoiding redundant and decentralized construction at all levels.

From the perspective of future intelligent warfare needs, military cloud needs to construct at least a four-tiered system: tactical front-end cloud, troop cloud, theater cloud, and strategic cloud. Based on operational elements, it can also be divided into specialized cloud systems such as intelligence cloud, situational awareness cloud, firepower cloud, information warfare cloud, support cloud, and nebula.

1. Front-end cloud primarily refers to computing services provided by units, squads, and platforms, including information perception, target identification, battlefield environment analysis, autonomous and assisted decision-making, and operational process and effect evaluation. The role of front-end cloud is mainly reflected in two aspects. First, it facilitates the sharing and collaboration of computing and storage resources among platforms, and the interactive integration of intelligent combat information. For example, if a platform or terminal is attacked, relevant perception information, damage status, and historical data will be automatically backed up, replaced, and updated through a networked cloud platform, and the relevant information will be uploaded to the higher command post. Second, it provides online information services and intelligent software upgrades for offline terminals.

2. Military cloud primarily refers to the cloud systems built at the battalion and brigade level for operations. Its focus is on providing computing services such as intelligent perception, intelligent decision-making, autonomous action, and intelligent support in response to different threats and environments. The goal of military cloud construction is to establish a networked, automatically backed-up, distributed cloud system connected to multiple links with higher-level units. This system should meet the computing needs of different forces, including reconnaissance and perception, mobile assault, command and control, firepower strikes, and logistical support, as well as the computing needs of various combat missions such as tactical joint operations, manned/unmanned collaboration, and swarm offense and defense.

3. Theater Cloud primarily provides battlefield weather, geographical, electromagnetic, human, and social environmental factors and information data for the entire operational area. It offers comprehensive information on troop deployments, weaponry, movement changes, and combat losses for both sides, as well as relevant information from higher command, friendly forces, and civilian support. Theater Cloud should possess networked, customized, and intelligent information service capabilities. It should interconnect with various operational units through military communication networks (space-based, airborne, ground-based, maritime, and underwater) and civilian communication networks (under secure measures) to ensure efficient, timely, and accurate information services.

4. Strategic cloud is mainly established by a country’s defense system and military command organs. It is primarily based on military information and covers comprehensive information and data related to defense technology, defense industry, mobilization support, economic and social support capabilities, as well as politics, diplomacy, and public opinion. It provides core information, assessments, analyses, and suggestions such as war preparation, operational planning, operational schemes, operational progress, battlefield situation, and battle situation analysis; and provides supporting data such as strategic intelligence, the military strength of adversaries, and war mobilization potential.

The various clouds mentioned above are interconnected, exhibiting both hierarchical and horizontal relationships of collaboration, mutual support, and mutual service. The core tasks of the military cloud platform are twofold: first, to provide data and computing support for building an AI-powered intelligent warfare system; and second, to provide operational information, computing, and data support for various combat personnel and weapon platforms. Furthermore, considering the needs of terminals and group operations, it is necessary to pre-process some cloud computing results, models, and algorithms into intelligent chips and embed them into weapon platforms and group terminals, enabling online upgrades or offline updates.

Communication networks. Military communication and network information constitute a complex super-network system. Since military forces primarily operate in land, sea, air, space, field maneuver, and urban environments, their communication networks encompass strategic and tactical communications, wired and wireless communications, secure communications, and civilian communications. Among these, wireless, mobile, and free-space communication networks are the most crucial components of the military network system, and related integrated electronic information systems are gradually established based on these communication networks.

Military communications in the mechanized era primarily followed the platform, terminal, and user, satisfying specific needs but resulting in numerous silos and extremely poor interconnectivity. In the information age, this situation is beginning to change. Currently, military communication networks are adopting new technological systems and development models, characterized by two main features: first, “network-data separation,” where information transmission does not depend on any specific network transmission method—”network access is all that matters”—any information can be delivered as long as the network link is unobstructed; second, internet-based architecture, utilizing IP addresses, routers, and servers to achieve “all roads lead to Beijing,” i.e., military networking or grid-based systems. Of course, military communication networks differ from civilian networks. Strategic and specialized communication needs exist at all times, such as nuclear button communications for nuclear weapons and command and control of strategic weapons, information transmission for satellite reconnaissance, remote sensing, and strategic early warning, and even specialized communications in individual soldier rooms and special operations conditions. These may still adopt a mission-driven communication model. Even so, standardization and internet connectivity are undoubtedly the future trends in military communication network development. Otherwise, not only will the number of battlefield communication frequency bands, radios, and information exchange methods increase, leading to self-interference, mutual interference, and electromagnetic compatibility difficulties, but radio spectrum management will also become increasingly complex. More importantly, it will be difficult for platform users to achieve automatic communication based on IP addresses and routing structures, unlike email on the internet where a single command can be sent to multiple users. Future combat platforms will certainly be both communication user terminals and also function as routers and servers.

Military communication network systems mainly include space-based communication networks, military mobile communication networks, data links, new communication networks, and civilian communication networks.

1. Space-Based Information Networks. The United States leads in the construction and utilization of space-based information networks. This is because more than half of the thousands of orbiting platforms and payloads in space are American-owned. Following the Gulf War, and especially during the Iraq War, the US military accelerated the application and advancement of space-based information networks through wartime experience. After the Iraq War, through the utilization of space-based information and the establishment of IP-based interconnection, nearly 140 vertical “chimneys” from the Gulf War period were completely interconnected horizontally, significantly shortening the “Out-of-Target-Action” (OODA) loop time. The time from space-based sensors to the shooter has been reduced from tens of hours during the Gulf War to approximately 20 seconds currently using artificial intelligence for identification.

With the rapid development of small satellite technology, low-cost, multi-functional small satellites are becoming increasingly common. As competition intensifies in commercial launches, costs are dropping dramatically, and a single launch can carry several, a dozen, or even dozens of small satellites. If miniaturized electronic reconnaissance, visible light and infrared imaging, and even quantum dot micro-spectroscopy instruments are integrated onto these satellites, achieving integrated reconnaissance, communication, navigation, meteorological, and mapping functions, the future world and battlefield will become much more transparent.

2. Military Mobile Communication Networks. Military mobile communication networks have three main uses. First, command and control between various branches of the armed forces and combat units in joint operations; this type of communication requires a high level of confidentiality, reliability, and security. Second, communication between platforms and clusters, requiring anti-jamming capabilities and high reliability. Third, command and control of weapon systems, mostly handled through data links.

Traditional military mobile communication networks are mostly “centralized, vertically focused, and tree-like structures.” With the acceleration of informatization, the trend towards “decentralized, self-organizing networks, and internet-based” is becoming increasingly apparent. As cognitive radio technology matures and is widely adopted (see Figure 3), future network communication systems will be able to automatically identify electromagnetic interference and communication obstacles on the battlefield, quickly locate available spectrum resources, and conduct real-time communication through frequency hopping and other methods. Simultaneously, software and cognitive radio technology can be compatible with different communication frequency bands and waveforms, facilitating seamless transitions from older to newer systems.

Wu Mingxi 3

3. Data Links. A data link is a specialized communication technology that uses time division, frequency division, and code division to transmit pre-agreed, periodic, or irregular, regular or irregular critical information between various combat platforms. Unless fully understood or deciphered by the enemy, it is very difficult to interfere with. Data links are mainly divided into two categories: dedicated and general-purpose. Joint operations, formation coordination, and swarm operations primarily utilize general-purpose data links. Satellite data links, UAV data links, missile-borne data links, and weapon fire control data links are currently mostly dedicated. In the future, generalization will be a trend, and specialization will decrease. Furthermore, from the perspective of the relationship between platforms and communication, the information transmission and reception of platform sensors and internal information processing generally follow the mission system, exhibiting strong specialization characteristics, while communication and data transmission between platforms are becoming increasingly general-purpose.

4. New Communication Technologies. Traditional military communication primarily relies on microwave communication. Due to its large divergence angle and numerous application platforms, corresponding electronic jamming and microwave attack methods have developed rapidly, making it easy to carry out long-range interference and damage. Therefore, new communication technologies such as millimeter waves, terahertz waves, laser communication, and free-space optical communication have become important choices that are both anti-jamming and easy to implement high-speed, high-capacity, and high-bandwidth communication. Although high-frequency electromagnetic waves have good anti-jamming performance due to their smaller divergence angle, achieving precise point-to-point aiming and omnidirectional communication still presents certain challenges, especially under conditions of high-speed maneuvering and rapid trajectory changes of combat platforms. How to achieve alignment and omnidirectional communication is still under technological exploration.

5. Civilian Communication Resources. The effective utilization of civilian communication resources is a strategic issue that must be considered and cannot be avoided in the era of intelligentization. In the future, leveraging civilian communication networks, especially 5G/6G mobile communications, for open-source information mining and data correlation analysis to provide battlefield environment, target, and situational information will be crucial for both combat and non-combat military operations. In non-combat military operations, especially overseas peacekeeping, rescue, counter-terrorism, and disaster relief, the military’s dedicated communication networks can only be used within limited areas and regions, raising the question of how to communicate and connect with the outside world. There are two main ways to utilize civilian communication resources: one is to utilize civilian satellite communication resources, especially small satellite communication resources; the other is to utilize civilian mobile communication and internet resources.

The core issue in the interactive utilization of military and civilian communication resources is addressing security and confidentiality. One approach is to employ firewalls and encryption, directly utilizing civilian satellite communications and global mobile communication infrastructure for command and communication; however, the risks of hacking and cyberattacks remain. Another approach is to utilize emerging technologies such as virtualization, intranets, semi-physical isolation, one-way transmission, mimicry defense, and blockchain to address these challenges.

Collaborative swarms. By simulating the behavior of bee colonies, ant colonies, flocks of birds, and schools of fish in nature, this research studies the autonomous collaborative mechanisms of swarm systems such as drones and smart munitions to accomplish combat missions such as attacking or defending against enemy targets. This can achieve strike effects that are difficult to achieve with traditional combat methods and approaches. Collaborative swarms are an inevitable trend in intelligent development and a major direction and key area of ​​intelligent construction. No matter how advanced the combat performance or how powerful the functions of a single combat platform, it cannot form a collective or scalable advantage. Simply accumulating quantity and expanding scale, without autonomous, collaborative, and orderly intelligent elements, is just a disorganized mess.

Collaborative swarms mainly comprise three aspects: first, manned/unmanned collaborative swarms formed by the intelligent transformation of existing platforms, primarily constructed from large and medium-sized combat platforms; second, low-cost, homogeneous, single-function, and diverse combat swarms, primarily constructed from small unmanned combat platforms and munitions; and third, biomimetic swarms integrating human and machine intelligence, possessing both biological and machine intelligence, primarily constructed from highly autonomous humanoid, reptile-like, avian-like, and marine-like organisms. Utilizing collaborative swarm systems for cluster warfare, especially swarm warfare, offers numerous advantages and characteristics.

1. Scale Advantage. A large unmanned system can disperse combat forces, increasing the number of targets the enemy can attack and forcing them to expend more weapons and ammunition. The survivability of a swarm, due to its sheer number, is highly resilient and resilient; the survivability of a single platform becomes less important, while the overall advantage becomes more pronounced. The sheer scale prevents drastic fluctuations in combat effectiveness, because unlike high-value manned combat platforms and complex weapon systems such as the B-2 strategic bomber and advanced F-22 and F-35 fighter jets, the loss of a low-cost unmanned platform, once attacked or destroyed, results in a sharp decline in combat effectiveness. Swarm operations can launch simultaneous attacks, overwhelming enemy defenses. Most defensive systems have limited capabilities, able to handle only a limited number of threats at a time. Even with dense artillery defenses, a single salvo can only hit a limited number of targets, leaving some to escape. Therefore, swarm systems possess extremely strong penetration capabilities.

2. Cost Advantage. Swarm warfare, especially bee warfare, primarily utilizes small and medium-sized UAVs, unmanned platforms, and munitions. These have simple product lines, are produced in large quantities, and have consistent quality and performance requirements, facilitating low-cost mass production. While the pace of upgrades and replacements for modern weapons and combat platforms has accelerated significantly, the cost increases have also been staggering. Since World War II, weapons development and procurement prices have shown that equipment costs and prices have risen much faster than performance improvements. Main battle tanks during the Gulf War cost 40 times more than those during World War II, while combat aircraft and aircraft carriers cost as much as 500 times more. From the Gulf War to 2020, the prices of various main battle weapons and equipment increased several times, tens of times, or even hundreds of times. In comparison, small and medium-sized UAVs, unmanned platforms, and munitions with simple product lines have a clear cost advantage.

3. Autonomous Advantage. Under a unified spatiotemporal reference platform, through networked active and passive communication and intelligent perception of battlefield targets, individual platforms in the group can accurately perceive the distance, speed, and positional relationships between each other. They can also quickly identify the nature, size, priority, and distance of target threats, as well as their own distance from neighboring platforms. With pre-defined operational rules, one or more platforms can conduct simultaneous or wave-based attacks according to the priority of target threats, or they can attack in groups simultaneously or in multiple waves (see Figure 4). Furthermore, the priority order for subsequent platforms to replace a damaged platform can be clearly defined, ultimately achieving autonomous decision-making and action according to pre-agreed operational rules. This intelligent combat operation, depending on the level of human involvement and the difficulty of controlling key nodes, can be either completely autonomous, or semi-autonomous, with human intervention.

Wu Mingxi 4

4. Decision-making advantage. The future battlefield environment is becoming increasingly complex, with combatants vying for dominance in intense strategic maneuvering and confrontation. Therefore, relying on humans to make decisions in a high-intensity confrontation environment is neither timely nor reliable. Thus, only by entrusting automated environmental adaptation, automatic target and threat identification, autonomous decision-making, and coordinated action to collaborative groups can adversaries be rapidly attacked or effective defenses implemented, thereby gaining battlefield advantage and initiative.

The coordination group brings new challenges to command and control. How to implement command and control of the cluster is a new strategic issue. Control can be implemented in a hierarchical and task-based manner, which can be roughly divided into centralized control mode, hierarchical control mode, consistent coordination mode, and spontaneous coordination mode. [1] Various forms can be adopted to achieve human control and participation. Generally speaking, the smaller the tactical unit, the more autonomous action and unmanned intervention should be adopted; at the level of organized unit operations, since the control of multiple combat groups is involved, centralized planning and hierarchical control are required, and human participation should be limited; at the higher strategic and operational levels, the cluster is only used as a platform weapon and combat style, which requires unified planning and layout, and the degree of human participation will be higher. From the perspective of mission nature, the operation and use of strategic weapons, such as nuclear counterattacks, requires human operation and is not suitable for autonomous handling by weapon systems. When conducting offensive and defensive operations against important or high-value targets, such as decapitation strikes, full human participation and control are necessary, while simultaneously leveraging the autonomous functions of the weapon systems. For offensive operations against tactical targets, if the mission requires lethal strikes and destruction, limited human participation is permissible, or, after human confirmation, the coordinated group can execute the operation automatically. When performing non-strike missions such as reconnaissance, surveillance, target identification, and clearance, or short-duration missions such as air defense and missile defense where human involvement is difficult, the coordinated group should primarily execute these tasks automatically, without human involvement. Furthermore, countermeasures for swarm operations must be carefully studied. Key research should focus on countermeasures against electronic deception, electromagnetic interference, cyberattacks, and high-power microwave weapons, electromagnetic pulse bombs, and artillery-missile systems, as their effects are relatively significant. Simultaneously, research should be conducted on countermeasures such as laser weapons and swarm-to-swarm tactics, gradually establishing a “firewall” that humans can effectively control against coordinated groups.

Virtual and physical terminals. Virtual and physical terminals mainly refer to various terminals linked to the cloud and network, including sensors with pre-embedded intelligent modules, command and control platforms, weapon platforms, support platforms, related equipment and facilities, and combat personnel. Future equipment and platforms will be cyber-physical systems (CPS) and human-computer interaction systems with diverse front-end functions, cloud-based back-end support, virtual-physical interaction, and online-offline integration. Simple environmental perception, path planning, platform maneuverability, and weapon operation will primarily rely on front-end intelligence such as bionic intelligence and machine intelligence. Complex battlefield target identification, combat mission planning, networked collaborative strikes, combat situation analysis, and advanced human-computer interaction will require information, data, and algorithm support from back-end cloud platforms and cloud-based AI. The front-end intelligence and back-end cloud intelligence of each equipment platform should be combined for unified planning and design, forming a comprehensive advantage of integrated front-end and back-end intelligence. Simultaneously, virtual soldiers, virtual staff officers, virtual commanders, and their intelligent and efficient interaction with humans are also key areas and challenges for future research and development.

Qualitative change in the form of warfare

Since modern times, human society has mainly experienced large-scale mechanized warfare and smaller-scale informationized local wars. The two world wars that occurred in the first half of the 20th century were typical examples of mechanized warfare. The Gulf War, the Kosovo War, the Afghanistan War, the Iraq War, and the Syrian War since the 1990s fully demonstrate the form and characteristics of informationized warfare. In the new century and new stage, with the rapid development and widespread application of intelligent technologies, the era of intelligent warfare, characterized by data and computing, models and algorithms, is about to arrive (see Figure 5).

Wu Mingxi 5

Mechanization is a product of the industrial age, focusing on mechanical power and electrical technology. Its weaponry primarily manifests as tanks, armored vehicles, artillery, aircraft, and ships, corresponding to mechanized warfare. Mechanized warfare is mainly based on classical physics, represented by Newton’s laws, and large-scale socialized production. It is characterized by large-scale, linear, and contact warfare. Tactically, it typically involves on-site reconnaissance, terrain surveys, understanding the opponent’s forward and rear deployments, making decisions based on one’s own capabilities, implementing offensive or defensive maneuvers, and assigning tasks, coordinating operations, and ensuring logistical support. It exhibits clear characteristics such as hierarchical command and control and sequential temporal and spatial operations.

Information technology, a product of the information age, focuses on information technologies such as computers and network communications. Its equipment primarily manifests as radar, radios, satellites, missiles, computers, military software, command and control systems, cyber and electronic warfare systems, and integrated electronic information systems, corresponding to the form of information warfare. Information warfare is mainly based on the three laws of computers and networks (Moore’s Law, Gilder’s Law, and Metcalfe’s Law), emphasizing integrated, precise, and three-dimensional operations. It establishes a seamless and rapid information link from sensor to shooter, seizing information dominance and achieving preemptive detection and strike. Tactically, it requires detailed identification and cataloging of the battlefield and targets, highlighting the role of networked perception and command and control systems, and placing new demands on the interconnectivity and other information functions of platforms. Due to the development of global information systems and diversified network communications, information warfare blurs the lines between front and rear lines, emphasizing horizontal integration of reconnaissance, control, strike, assessment, and support, as well as the integration and flattening of strategy, campaign, and tactics.

Intelligentization is a product of the knowledge economy era. Technologically, it focuses on intelligent technologies such as artificial intelligence, big data, cloud computing, cognitive communication, the Internet of Things, biological cross-disciplinary, hybrid enhancement, swarm intelligence, autonomous navigation and collaboration. In terms of equipment, it mainly manifests as unmanned platforms, intelligent munitions, swarm systems, intelligent sensing and database systems, adaptive mission planning and decision-making systems, combat simulation and parallel training systems, military cloud platforms and service systems, public opinion early warning and guidance systems, and intelligent wearable systems, which correspond to the form of intelligent warfare.

Intelligent warfare, primarily based on biomimetic, brain-like principles, and AI-driven battlefield ecosystems, is a new combat form characterized by “energy mobility and information interconnection,” supported by “network communication and distributed cloud,” centered on “data computing and model algorithms,” and focused on “cognitive confrontation.” It features multi-domain integration, cross-domain offense and defense, unmanned operation, cluster confrontation, and integrated interaction between virtual and physical spaces.

Intelligent warfare aims to meet the needs of nuclear and conventional deterrence, joint operations, all-domain operations, and non-war military operations. It focuses on multi-domain integrated operations encompassing cognitive, informational, physical, social, and biological domains, exhibiting characteristics such as distributed deployment, networked links, flattened structures, modular combinations, adaptive reconfiguration, parallel interaction, focused energy release, and nonlinear effects. Its winning mechanisms overturn traditions, its organizational forms undergo qualitative changes, its operational efficiency is unprecedentedly improved, and its combat power generation mechanisms are transformed. These substantial changes are mainly reflected in the following ten aspects.

The Winning Mechanism Dominated by AI. Under intelligent conditions, new combat elements represented by “AI, cloud, network, cluster, and terminal” will reshape the battlefield ecosystem, completely changing the winning mechanism of war. Among them, AI systems based on models and algorithms are the core combat capability, permeating all aspects and links, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made by AI. The traditional human-based combat methods are being replaced by AI models and algorithms. Algorithmic warfare will play a decisive role in war, and the combat system and process will ultimately be dominated by AI. The right to intelligence will become the core control in future warfare.

Different eras and different forms of warfare result in different battlefield ecosystems, with entirely different compositions of combat elements and winning mechanisms. Mechanized warfare is platform-centric warfare, with “movement” as its core and firepower and mobility as its dominant forces, pursuing energy delivery and release through equipment. Combat elements mainly include: personnel + mechanized equipment + tactics. The winning mechanism is based on human-led decision-making in the operational use of mechanized equipment, achieving victory with superior numbers, overwhelming smaller forces, and controlling slower forces, with comprehensive, efficient, and sustainable mobilization capabilities playing decisive or important roles. Informationized warfare is network-centric warfare, with “connectivity” as its core and information power as its dominant force, pursuing energy aggregation and release through networks. Combat elements and their interrelationships mainly consist of “personnel + informationized equipment + tactics” based on network information. Information permeates personnel, equipment, and tactics, establishing seamless information connections “from sensor to shooter,” achieving system-wide and networked combat capabilities, using systems against localized forces, networks against discrete forces, and speed against slow forces, becoming a crucial mechanism for achieving victory in war. Information plays a multiplier role in equipment and combat systems, but the platform remains human-centric. Information assists in decision-making, but most decisions are still made by humans. Intelligent warfare is cognitive-centric warfare, with “computation” at its core and intelligence as the dominant force. Intelligence will carry more weight than firepower, mobility, and information power, pursuing the use of intelligence to control and dominate capabilities, using the virtual to overcome the real, and achieving victory through superiority. The side with more AI and whose AI is smarter will have greater initiative on the battlefield. The main combat elements and their interrelationships are: AI × (cloud + network + swarm + human + equipment + tactics), which can be simplified to an interconnected and integrated battlefield ecosystem composed of “AI, cloud, network, swarm, and terminal” elements. In the future, AI’s role in warfare will become increasingly significant and powerful, ultimately playing a decisive and dominant role.

Emphasizing the leading role of AI does not deny the role of humans in warfare. On the one hand, human intelligence has been pre-emptively utilized and endowed into AI; on the other hand, at the pre-war, post-war, and strategic levels, for a considerable period of time and in the foreseeable future, AI cannot replace humans.

Modern warfare is becoming increasingly complex, with combat operations moving at ever faster paces. The ability to quickly identify and process massive amounts of information, respond rapidly to battlefield situations, and formulate decisive strategies is far beyond human capability and exceeds the limits of current technology (see Tables 1 and 2). As AI becomes more widely applied and plays a more significant role in warfare, operational processes will be reshaped, and the military kill chain will be accelerated and made more efficient. Rapid perception, decision-making, action, and support will become crucial factors for victory in future intelligent warfare.

Wu Mingxi - Table 1
Wu Mingxi - Table 2

In the future, intelligent recognition and pattern recognition of images, videos, electromagnetic spectrum, and voice will enable rapid and accurate target identification from complex battlefield information gathered by air, land, and sea sensor networks. Utilizing big data technology, through multi-source, multi-dimensional directional search and intelligent correlation analysis, not only can various targets be accurately located, but also human behavior, social activities, military operations, and public opinion trends can be precisely modeled, gradually improving the accuracy of early warning and prediction. Based on precise battlefield information, each theater and battlefield can adaptively implement mission planning, autonomous decision-making, and operational process control through extensive parallel modeling and simulation training in virtual space. AI on various combat platforms and cluster systems can autonomously and collaboratively execute tasks around operational objectives according to mission planning, and proactively adjust to changes that may occur at any time. By establishing a distributed, networked, intelligent, and multi-modal support system and pre-positioned deployment, rapid and precise logistics distribution, material supply, and intelligent maintenance can be implemented. In summary, through the widespread application of intelligent technologies and the proactive and evolving capabilities of various AI systems, the entire operational process—including planning, prediction, perception, decision-making, implementation, control, and support—can be re-engineered to achieve a “simple, fast, efficient, and controllable” operational workflow. This will gradually free humanity from the burdens of arduous combat tasks. Operational workflow re-engineering will accelerate the pace, compress time, and shorten processes on the future battlefield.

The winning mechanism dominated by AI is mainly manifested in combat capabilities, methods, strategies, and measures. It fully integrates human intelligence, approaches human intelligence, surpasses human limits, leverages the advantages of machines, and embodies advancement, disruption, and innovation. This advancement and innovation is not a simple extension or increase in quantity in previous wars, but a qualitative change and leap, a higher-level characteristic. This higher-level characteristic is reflected in intelligent warfare possessing “brain-like” functions and many “capabilities that surpass human limits” that traditional warfare lacks. As AI continues to optimize and iterate, it will one day surpass ordinary soldiers, staff officers, commanders, and even elite and expert groups, becoming a “super brain” and a “super brain group.” This is the core and key of intelligent warfare, a technological revolution in the fields of epistemology and methodology, and a high-level combat capability that humanity can currently foresee, achieve, and evolve.

The role of cyberspace is rising. With the progress of the times and the development of technology, the operational space has gradually expanded from physical space to virtual space. The role and importance of virtual space in the operational system are gradually rising and becoming increasingly important, and it is increasingly deeply integrated with physical space and other fields. Virtual space is an information space based on network electromagnetics constructed by humans. It can reflect human society and the material world from multiple perspectives, and can be utilized by transcending many limitations of the objective world. It is constructed by the information domain, connected by the physical domain, reflected by the social domain, and utilized by the cognitive domain. In a narrow sense, virtual space mainly refers to the civilian Internet; in a broad sense, virtual space mainly refers to cyberspace, including various Internet of Things, military networks, and dedicated networks. Cyberspace is characterized by being easy to attack but difficult to defend, using software to fight hard, integrating peacetime and wartime, and blurring the lines between military and civilian sectors. It has become an important battlefield for conducting military operations, strategic deterrence, and cognitive confrontation.

The importance of cyberspace is mainly reflected in three aspects: First, through network information systems, it connects dispersed combat forces and elements into a whole, forming a systematic and networked combat capability, which becomes the foundation of information warfare; second, it becomes the main battlefield and basic support for cognitive confrontation such as cyberspace, intelligence, public opinion, psychology, and consciousness; and third, it establishes virtual battlefields, conducts combat experiments, realizes virtual-real interaction, and forms the core and key to parallel operations and the ability to use the virtual to defeat the real.

In the future, with the accelerated upgrading of global interconnection and the Internet of Things, and with the establishment, improvement and widespread application of systems such as space-based networked reconnaissance, communication, navigation, mobile internet, Wi-Fi, high-precision global spatiotemporal reference platforms, digital maps, and industry big data, human society and global military activities will become increasingly “transparent,” increasingly networked, perceived, analyzed, correlated, and controlled (see Figure 6). This will have a profound, all-round, and ubiquitous impact on military construction and operations. The combat system in the intelligent era will gradually expand from closed to open, and from military-led to a “source-open and ubiquitous” direction that integrates military and civilian sectors.

Wu Mingxi 6

In the era of intelligentization, information and data from the physical, informational, cognitive, social, and biological fields will gradually flow freely. Combat elements will achieve deep interconnection and the Internet of Things. Various combat systems will evolve from basic “capability combinations” to advanced “information fusion, data linking, and integrated behavioral interaction,” possessing powerful all-domain perception, multi-domain fusion, and cross-domain combat capabilities, and the ability to effectively control important targets, sensitive groups, and critical infrastructure anytime, anywhere. A report from the U.S. Army Joint Arms Center argues that the world is entering an era of “ubiquitous global surveillance.” Even if the world cannot track all activities, the proliferation of technology will undoubtedly cause the potential sources of information to grow exponentially.

Currently, network-based software attacks have acquired the capability to cause physical damage, and cyberattacks by militarily advanced countries possess operational capabilities such as intrusion, deception, interference, and sabotage. Cyberspace has become another important battlefield for military operations and strategic deterrence. The United States has already used cyberattacks in actual combat. Ben Ali of Tunisia, Gaddafi of Libya, and Saddam Hussein of Iraq were all influenced by US cyberattacks and WikiLeaks, causing shifts in public opinion, psychological breakdowns, and social unrest, leading to the rapid collapse of their regimes and having a disruptive impact on traditional warfare. Through the Snowden revelations, a list of 49 cyber reconnaissance projects across 11 categories used by the United States was gradually exposed. Incidents such as the Stuxnet virus’s sabotage of Iranian nuclear facilities, the Gauss virus’s mass intrusion into Middle Eastern countries, and the Cuban Twitter account’s control of public opinion demonstrate that the United States possesses powerful monitoring capabilities, as well as soft and hard attack and psychological warfare capabilities over the internet, closed networks, and mobile wireless networks.

The war began with virtual space experiments. The US military began exploring combat simulation, operational experiments, and simulation training in the 1980s. Later, the US military pioneered the use of virtual reality, wargaming, and digital twin technologies in virtual battlefields and combat experiments. Analysis shows that the US military conducted combat simulations in military operations such as the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War, striving to find the optimal operational and action plans. It has been reported that before Russia intervened militarily in Syria, it conducted pre-war exercises in its war labs. Based on the experimental simulations, it formulated the “Center-2015” strategic exercise plan, practicing “mobility and accessibility in unfamiliar areas” for combat in Syria. After the exercise, Russian Chief of the General Staff Gerasimov emphasized that the primary means would be political, economic, and psychological warfare, supplemented by long-range precision air strikes and special operations, ultimately achieving political and strategic objectives. Practice shows that the process of Russia’s intervention in Syria was largely consistent with these experiments and exercises.

In the future, with the application and development of virtual simulation, mixed reality, big data, and intelligent software, a parallel military artificial system can be established, allowing physical forces in the physical space to map and iterate with virtual forces in the virtual space. This will enable rapid, high-intensity adversarial training and supercomputing that are difficult to achieve in the physical space. It can also engage in combat and games against highly realistic “blue force systems,” continuously accumulating data, building models and algorithms, and ultimately using the optimal solutions to guide the construction and combat of physical forces, achieving the goal of virtual-real interaction, using the virtual to control the real, and winning with the virtual. On January 25, 2019, DeepMind, Google’s AI team, and Blizzard Entertainment, the developer of StarCraft, announced the results of the December 2018 match between AlphaSTAR and professional players TLO and MANA. In the best-of-five series, AlphaSTAR won both matches 5-0. AlphaSTAR completed the training workload that would take human players 200 years in just two weeks, demonstrating the enormous advantages and bright prospects of simulated adversarial training in virtual space.

The combat style is dominated by unmanned operations. In the era of intelligentization, unmanned warfare will become the basic form, and the integration and development of artificial intelligence and related technologies will gradually push this form to an advanced stage. Unmanned systems represent the full pre-positioning of human intelligence in the combat system and are a concentrated manifestation of the integrated development of intelligence, informatization, and mechanization. Unmanned equipment first appeared in the field of drones. In 1917, Britain built the world’s first drone, but it was not used in actual combat. With the development of technology, drones were gradually used in target drones, reconnaissance, and reconnaissance-strike integrated operations. Since the beginning of the 21st century, unmanned technologies and equipment have achieved tremendous leaps and major breakthroughs in exploration and application due to their advantages such as mission-centric design, no need to consider crew requirements, and high cost-effectiveness. They have shown a rapid and comprehensive development trend, and their application scope has expanded rapidly, covering various fields such as air, surface, underwater, ground, and space.

In recent years, technologies such as artificial intelligence, bionic intelligence, human-machine integrated intelligence, and swarm intelligence have developed rapidly. With the help of satellite communication and navigation, and autonomous navigation, unmanned combat platforms can effectively achieve remote control, formation flight, and swarm collaboration. Currently, unmanned combat aerial vehicles, underwater unmanned platforms, and space-based unmanned autonomous robots have emerged one after another. Bipedal, quadrupedal, multi-legged, and cloud-based intelligent robots are developing rapidly and have entered the fast lane of engineering and practical application, with military applications not far off.

Overall, unmanned warfare in the era of intelligentization will enter three stages of development. The first stage is the initial stage, characterized by manned dominance and unmanned support, where “unmanned warfare under manned leadership” means that combat behavior is completely controlled and dominated by humans before, during, and after the operation. The second stage is the intermediate stage, characterized by manned support and unmanned dominance, where “unmanned warfare under limited control” means that human control is limited, auxiliary, but crucial throughout the entire combat process, and in most cases, the autonomous action capabilities of the platform can be relied upon. The third stage is the advanced stage, characterized by manned rules and unmanned action, where “unmanned warfare with manned design and minimal control” means that humans conduct overall design in advance, clarifying autonomous behavior and rules of the game under various combat environments, and the execution phase is mainly entrusted to unmanned platforms and unmanned forces for autonomous execution.

Autonomous behavior or autonomy is the essence of unmanned warfare and a common and prominent feature of intelligent warfare, manifested in many aspects.

First, the autonomy of combat platforms, mainly including the autonomous capabilities and intelligence level of unmanned aerial vehicles, ground unmanned platforms, precision-guided weapons, underwater and space robots.

Second, the detection system is autonomous, which mainly includes automatic search, tracking, association, aiming, and intelligent recognition of information such as images, voice, video, and electronic signals.

Thirdly, there is autonomous decision-making, the core of which is AI-based autonomous decision-making within the combat system. This mainly includes automatic analysis of the battlefield situation, automatic planning of combat missions, automated command and control, and intelligent human-machine interaction.

Fourthly, autonomous coordination in combat operations, which initially includes autonomous coordination between manned and unmanned systems, and later includes autonomous unmanned swarms, such as various combat formations, bee swarms, ant swarms, fish swarms, and other combat behaviors.

Fifth, autonomous network attack and defense behaviors, including automatic identification, automatic tracing, automatic protection, and autonomous counterattack against various viruses and network attacks.

Sixth, cognitive electronic warfare, which automatically identifies the power, frequency band, and direction of electronic interference, automatically hops frequencies and autonomously forms networks, and engages in active and automatic electronic interference against adversaries.

Seventh, other autonomous behaviors, including intelligent diagnosis, automatic repair, and self-protection.

In the future, with the continuous upgrading of the integration and development of artificial intelligence and related technologies, unmanned operations will rapidly develop towards autonomy, biomimicry, swarming, and distributed collaboration, gradually pushing unmanned warfare to an advanced stage and significantly reducing direct confrontation between human forces on the battlefield. Although manned platforms will continue to exist in the future, biomimetic robots, humanoid robots, swarm weapons, robot armies, and unmanned system warfare will become the norm in the intelligent era. Since unmanned systems can replace human beings in many combat domains and can accomplish tasks autonomously, unmanned combat systems will always be there to protect humans before they suffer physical attacks or injuries. Therefore, unmanned combat systems in the intelligent era are humanity’s main protective barrier, its shield and shield.

All-domain operations and cross-domain offense and defense. In the era of intelligent warfare, all-domain operations and cross-domain offense and defense are also a fundamental style of combat, manifested in many combat scenarios and aspects. From land, sea, air, and space to multiple domains including physical, information, cognitive, social, and biological domains, as well as the integration and interaction of virtual and physical elements, from peacetime strategic deterrence to wartime high-confrontation, high-dynamic, and high-response operations, the time and space span is enormous. It involves not only physical space operations and cyberspace cyber offense and defense, information warfare, public opinion guidance, and psychological warfare, but also tasks such as global security governance, regional security cooperation, counter-terrorism, and rescue, and the control of critical infrastructure such as networks, communications, power, transportation, finance, and logistics.

Since 2010, supported by advancements in information and intelligent technologies, the U.S. military has proposed concepts such as operational cloud, distributed lethality, multi-domain warfare, algorithmic warfare, mosaic warfare, and joint all-domain operations. The aim is to maintain battlefield and military superiority by using system-wide systems against localized ones, multi-functional systems against simpler ones, multi-domain systems against single-domain ones, integrated systems against discrete ones, and intelligent systems against non-intelligent ones. The U.S. military proposed the concept of multi-domain warfare in 2016 and joint all-domain operations in 2020, aiming to develop cross-service and cross-domain joint operational capabilities, ensuring that each service’s operations are supported by all three services, and possessing all-domain capabilities against multi-domain and single-domain ones.

In the future, with breakthroughs in key technologies for the cross-disciplinary integration of artificial intelligence and multidisciplinary collaboration, multi-domain integration and cross-domain offense and defense based on AI and human-machine hybrid intelligence will become a distinctive feature of intelligent warfare. This will be achieved across functional domains such as physics, information, cognition, society, and biology, as well as geographical domains such as land, sea, air, and space.

In the intelligent era, multi-domain and cross-domain operations will expand from mission planning, physical collaboration, and loose coordination to heterogeneous integration, data linking, tactical interoperability, and cross-domain offensive and defensive integration.

First, multi-domain integration. Based on different battlefields and adversaries in a multi-domain environment, different combat styles, combat procedures and missions are planned in accordance with the requirements of joint operations, and unified as much as possible. This achieves the overall planning and integration of information, firepower, defense, support and command and control, and the integration of combat capabilities at the strategic, operational and tactical levels, forming the capability of one-domain operations and multi-domain joint rapid support.

Second, cross-domain offense and defense. Supported by a unified network information system, and through a unified battlefield situation and data information exchange based on unified standards, the information links for cross-domain joint operations reconnaissance, control, strike, and assessment are completely opened up, enabling seamless integration of operational elements and capabilities at the tactical and fire control levels, as well as collaborative actions between services, cross-domain command and interoperability.

Third, the entire process is interconnected. Multi-domain integration and cross-domain offense and defense are treated as a whole, with coordinated design and interconnectedness throughout. Before the war, intelligence gathering and analysis are conducted, along with public opinion warfare, psychological warfare, propaganda warfare, and necessary cyber and electronic warfare attacks. During the war, special operations and cross-domain actions are used to carry out decapitation strikes, key point raids, and precise and controllable strikes (see Figure 7). After the war, defense against cyberattacks on information systems, elimination of negative public opinion’s impact on the public, and prevention of enemy damage to infrastructure are addressed through post-war governance, public opinion control, and the restoration of social order across multiple areas.

Wu Mingxi 7

Fourth, AI support. Through combat experiments, simulation training, and necessary test verification and real-world testing, we continuously accumulate data, optimize models, and establish AI combat models and algorithms for different combat styles and adversaries, forming an intelligent brain system to better support joint operations, multi-domain operations, and cross-domain offense and defense.

Human-AI hybrid decision-making. The continuous improvement, optimization, upgrading, and perfection of the AI ​​brain system in intelligent battlefields will enable it to surpass humans in many aspects. The human-dominated command, control, and decision-making model of human warfare for thousands of years will be completely transformed. Humans commanding AI, AI commanding humans, and AI commanding AI are all possible scenarios in warfare.

Distributed, networked, flattened, and parallel structures are key characteristics of intelligent combat systems. The centralized, human-centric single-decision-making model is gradually being replaced by decentralized or weakly centralized models based on AI, such as unmanned systems, autonomous swarms, and manned-unmanned collaboration. Hybrid compatibility among these models is becoming a development trend. The lower the operational level and the simpler the mission, the more prominent the role of unmanned and decentralized systems; the higher the level and the more complex the mission, the more important human decision-making and centralized systems become. Pre-war decision-making is primarily human, supplemented by AI; during war, AI is primarily AI, supplemented by human; post-war, both are used, with hybrid decision-making becoming the dominant approach (see Table 3).

Wu Mingxi - Table 3

In the future battlefield, combat situations will be highly complex, rapidly changing, and exceptionally intense. The convergence of various information sources will generate massive amounts of data, which cannot be processed quickly and accurately by the human brain alone. Only by achieving a collaborative operation mode of “human brain + AI,” based on technologies such as combat cloud, databases, network communication, and the Internet of Things, can “commanders” cope with the ever-changing battlefield and complete command and control tasks. With the increasing autonomy of unmanned systems and the enhancement of swarm and system-wide AI functions, autonomous decision-making is gradually emerging. Once command and control achieve different levels of intelligence, the Out-of-Loop (OODA) loop time will be significantly reduced, and efficiency will be significantly improved. In particular, pattern recognition for network sensor image processing, “optimization” algorithms for combat decision-making, and particle swarm optimization and bee swarm optimization algorithms for autonomous swarms will endow command and control systems with more advanced and comprehensive decision-making capabilities, gradually realizing a combat cycle where “humans are outside the loop.”

Nonlinear amplification and rapid convergence. Future intelligent warfare will no longer be a gradual release of energy and a linear superposition of combat effects, but rather a rapid amplification of multiple effects such as nonlinearity, emergence, self-growth, and self-focusing, and a rapid convergence of results.

Emergence primarily refers to the process by which each individual within a complex system, following local rules and continuously interacting, generates a qualitative change in the overall system through self-organization. In the future, while battlefield information will be complex and ever-changing, intelligent recognition of images, voice, and video, along with processing by military cloud systems, will enable “one-point collection, multi-user sharing.” Through big data technology, it will be rapidly linked with relevant information and integrated with various weapon fire control systems to implement distributed strikes, swarm strikes, and cyber psychological warfare. This will allow for “detection and destruction,” “aggressive attacks at the first sign of trouble,” and “numerical superiority generating psychological panic”—these phenomena constitute the emergence effect.

The emergent effects of intelligent warfare are mainly reflected in three aspects: first, the acceleration of the kill chain caused by the speed of AI decision-making chain; second, the combat effect caused by the numerical advantage of manned and unmanned collaborative systems, especially swarm systems; and third, the rapid swarm emergence behavior based on network interconnection.

As military intelligence develops to a certain stage, the combined effects of advanced AI, quantum computing, IPv6, and hypersonic technologies will result in combat systems exhibiting nonlinear, asymmetric, self-growing, rapid-response, and uncontrollable amplification and operational effects. This is particularly evident in unmanned, swarm, cyber warfare, and cognitive confrontation. The emergence of intelligence from collective ignorance, increased efficiency through sheer numbers, nonlinear amplification, and other emergent effects will become increasingly prominent. AI-driven cognitive, informational, and energy confrontations will intertwine and rapidly converge around a target, with time becoming increasingly compressed and the speed of confrontation accelerating. This will manifest as a dramatic amplification of multiple effects and a rapid convergence of outcomes. Energy shockwaves, rapid-fire combat, AI terminators, public opinion reversals, social unrest, psychological breakdowns, and the chain reaction of the Internet of Things will become prominent characteristics of intelligent warfare.

In unmanned swarm attacks, assuming roughly the same platform performance, the Lanchester equation applies: combat effectiveness is proportional to the square of the number of units; quantity advantage translates to quality advantage. Network attack and defense, and psychological and public opinion effects, follow Metcalfe’s Law, being proportional to the square of the number of interconnected users, with nonlinear and emergent effects becoming more pronounced. The quantity and intelligence of battlefield AI determine the overall level of intelligence in the combat system, impacting battlefield intelligence control and influencing the outcome of war. In the era of intelligent warfare, how to manage the interrelationships between energy, information, cognition, quantity, quality, virtuality, and physicality, and how to skillfully design, control, utilize, and evaluate nonlinear effects, are major new challenges and requirements for future warfare.

In the future, whether it is a reversal of public opinion, psychological panic, swarm attacks, mass operations, or autonomous combat by humans outside the ring, their emergence effects and strike effects will become relatively common phenomena and easy-to-implement actions, forming a capability that is compatible with deterrence and actual combat. It is also a form of warfare that human society must strictly manage and control.

An organically symbiotic relationship between humans and equipment. In the era of intelligence, the relationship between humans and weapons will undergo fundamental changes, becoming increasingly distant physically but increasingly closer in thought. The form of equipment and its development and management models will be completely transformed. Human thought and wisdom will be deeply integrated with weaponry through AI, fully integrated in the early stages of equipment development, optimized and iterated during the use and training phase, and further upgraded and improved after combat verification, in a continuous cycle of progress.

First, with the rapid development of technologies such as network communication, mobile internet, cloud computing, big data, machine learning, and bionics, and their widespread application in the military field, the structure and form of traditional weapons and equipment will be completely changed, exhibiting diverse functions such as front-end and back-end division of labor and cooperation, efficient interaction, and adaptive adjustment. They will be complex entities integrating mechanics, information, networks, data, and cognition.

Secondly, while humans and weapons are gradually becoming physically detached, they are also becoming increasingly integrated into an organic symbiotic entity in terms of mindset. The gradual maturation of drones and robots is shifting their focus from assisting humans in combat to replacing them, with humans taking a more backseat. The integration of humans and weapons will take on entirely new forms. Human thought and wisdom will participate in the entire lifecycle of design, research and development, production, training, use, and support. Unmanned combat systems will perfectly combine human creativity and intellect with the precision, speed, reliability, and fatigue resistance of machines.

Third, profound changes are taking place in equipment development and management models. Mechanized equipment becomes increasingly outdated with use, while information technology software becomes increasingly new, and intelligent algorithms become increasingly sophisticated with use. Traditional mechanized equipment is delivered to the troops using a “pre-research—development—finalization” model, resulting in a decline in combat performance over time and vehicle hours. Information technology equipment is a product of the combined development of mechanization and informatization; the platform remains the same, but the information system is constantly iterated and updated with the development of computer CPUs and storage devices, exhibiting a step-by-step development characteristic of “information-led, software-driven hardware, rapid replacement, and spiral ascent.” Intelligent equipment, based on mechanization and informatization, continuously optimizes and improves training models and algorithms with the accumulation of data and experience, showing an upward curve of becoming stronger and better with use over time and frequency. Therefore, the development, construction, use, training, and support models for intelligent equipment will undergo fundamental changes.

Evolving through learning and confrontation. Evolution will undoubtedly be a defining characteristic of future intelligent warfare and combat systems, and a commanding height in future strategic competition. Combat systems in the intelligent era will gradually acquire adaptive, self-learning, self-confrontational, self-repairing, and self-evolving capabilities, becoming an evolvable ecosystem and game-theoretic system.

The most distinctive and unique feature of intelligent combat systems lies in the combination of human-like and human-like intelligence with the advantages of machines, achieving “superhuman” combat capabilities. The core of this capability is that numerous models and algorithms improve and refine with use, possessing an evolutionary function. If future combat systems resemble the human body, with the brain as the command and control center, the nervous system as the network, and the limbs as weapons and equipment controlled by the brain, like a living organism, possessing self-adaptive, self-learning, self-defense, self-repair, and self-evolutionary capabilities, then we believe it possesses the ability and function of evolution. Because intelligent combat systems are not entirely the same as living organisms, while a single intelligent system is similar to a living organism, a multi-system combat system is more like an “ecosystem + adversarial game system,” more complex than a single living organism, and more adversarial, social, collective, and emergent.

Preliminary analysis suggests that with the development and application of technologies such as combat simulation, virtual reality, digital twins, parallel training, intelligent software, brain-inspired chips, brain-like systems, bionic systems, natural energy harvesting, and novel machine learning, future combat systems can gradually evolve from single-function, partial-system evolution to multi-functional, multi-element, multi-domain, and multi-system evolution. Each system will be able to rapidly formulate response strategies and take action based on changes in the battlefield environment, different threats, different adversaries, and its own strengths and capabilities, drawing upon accumulated experience, extensive simulated adversarial training, and models and algorithms built through reinforcement learning. These strategies will then be continuously revised, optimized, and self-improved through practical warfare. Single-mission systems will possess characteristics and functions similar to living organisms, while multi-mission systems, like species in a forest, will have a cyclical function and evolutionary mechanism of mutual restraint and survival of the fittest, possessing the ability to engage in game-theoretic confrontation and competition under complex environmental conditions, forming an evolvable ecological and game-theoretic system.

The evolution of combat systems mainly manifests in four aspects: First, the evolution of AI. With the accumulation of data and experience, it will inevitably be continuously optimized, upgraded, and improved. This is relatively easy to understand. Second, the evolution of combat platforms and cluster systems, mainly moving from manned control to semi-autonomous and autonomous control. Because it involves not only the evolution of platform and cluster control AI, but also the optimization and improvement of related mechanical and information systems, it is relatively more complex. Third, the evolution of mission systems, such as detection systems, strike systems, defense systems, and support systems. Because it involves multiple platforms and multiple missions, the factors and elements involved in the evolution are much more complex, and some may evolve quickly, while others may evolve slowly. Fourth, the evolution of the combat system itself. Because it involves all elements, multiple missions, cross-domain operations, and confrontations at various levels, its evolutionary process is extremely complex. Whether a combat system can evolve cannot rely entirely on its own growth; it requires the proactive design of certain environments and conditions, and must follow the principles of biomimicry, survival of the fittest, mutual restraint, and full-system lifecycle management to possess the function and capability for continuous evolution.

Intelligent design and manufacturing. In the era of intelligentization, the defense industry will shift from a relatively closed, physical-based, and time-consuming research and manufacturing model to an open-source, intelligent design and manufacturing model that can rapidly meet military needs.

The defense industry is a strategic industry of the nation, a powerful pillar of national security and defense construction. In peacetime, it primarily provides the military with advanced, high-quality, and reasonably priced weaponry and equipment. In wartime, it is a crucial force for operational support and a core pillar for ensuring victory. The defense industry is a high-tech intensive sector. The research and development and manufacturing of modern weaponry and equipment are technology-intensive, knowledge-intensive, systemically complex, and highly integrated. The development of weapons and equipment such as large aircraft carriers, fighter jets, ballistic missiles, satellite systems, and main battle tanks typically takes ten, twenty, or even more years before finalization and delivery to the armed forces, involving large investments, long cycles, and high costs. From the post-World War II period to the end of the last century, the defense industrial system and capability structure were products of the mechanized era and warfare. Its research, testing, manufacturing, and support were primarily geared towards the needs of the military branches and industry systems, mainly including weaponry, shipbuilding, aviation, aerospace, nuclear, and electronics industries, as well as civilian supporting and basic industries. After the Cold War, the US defense industry underwent strategic adjustments and mergers and reorganizations, generally forming a defense industrial structure and layout adapted to the requirements of informationized warfare. The top six defense contractors in the United States can provide specialized combat platforms and systems for relevant branches of the armed forces, as well as overall solutions for joint operations, making them cross-service and cross-domain system integrators. Since the beginning of the 21st century, with the changing demands of system-of-systems and information-based warfare and the development of digital, networked, and intelligent manufacturing technologies, the traditional development model and research and production capabilities of weapons and equipment have begun to gradually change, urgently requiring reshaping and adjustment in accordance with the requirements of informationized warfare, especially intelligent warfare.

In the future, the defense science and technology industry will, in accordance with the requirements of joint operations, all-domain operations, and the integrated development of mechanization, informatization, and intelligence, shift from the traditional focus on service branches and platform construction to cross-service and cross-domain system integration. It will also shift from relatively closed, self-contained, independent, fragmented, physical-based, and long-cycle research, design, and manufacturing to open-source, democratic crowdsourcing, virtual design and integration verification, adaptive manufacturing, and rapid fulfillment of military needs (see Figure 8). This will gradually form a new innovation system and intelligent manufacturing system that combines hardware and software, virtual and real interaction, intelligent human-machine-object-environment interaction, effective vertical industrial chain connection, horizontal distributed collaboration, and military-civilian integration. Joint design and demonstration by multiple military and civilian parties, joint research and development by supply and demand sides for construction and use, iterative optimization based on parallel military systems in both virtual and real environments, and improvement through combat training and real-world verification—a model of simultaneous research, testing, use, and construction—is the basic mode for the development and construction of intelligent combat systems and the generation of combat power.

Wu Mingxi 8

Wu Mingxi 8

The risk of spiraling out of control. Since intelligent warfare systems theoretically possess the ability to self-evolve and reach “superhuman” levels, if humans do not pre-design control programs, control nodes, and a “stop button,” the result could very well be destruction and disaster. A critical concern is that numerous hackers and malicious warmongers may exploit intelligent technology to design uncontrollable warfare programs and combat methods, allowing numerous machine brains (AIs) and swarms of robots to fight adaptively and self-evolving according to pre-set combat rules, becoming invincible and relentlessly advancing, ultimately leading to an uncontrollable situation and irreparable damage. This is a major challenge facing humanity in the process of intelligent warfare and a crucial issue requiring research and resolution. This problem needs to be recognized and prioritized from the perspective of a shared future for all humanity and the sustainable development of human civilization. It requires designing rules of war, formulating international conventions, and regulating these systems technically, procedurally, ethically, and legally, implementing mandatory constraints, checks, and management.

The above ten transformations and leaps constitute the main content of the new form of intelligent warfare. Of course, the development and maturity of intelligent warfare is not a castle in the air or a tree without roots, but is built upon mechanization and informatization. Without mechanization and informatization, there is no intelligence. Mechanization, informatization, and intelligence form an organic whole, interconnected and mutually reinforcing, iteratively optimizing and leapfrog developing. Currently, mechanization is the foundation, informatization is the guiding principle, and intelligence is the direction. Looking to the future, mechanization will remain the foundation, informatization will provide support, and intelligence will be the guiding principle.

A Bright Future

In the time tunnel of the new century, we see the train of intelligent warfare speeding along. Will humanity’s greed and technological might lead us into a more brutal darkness, or will it propel us towards a more civilized and enlightened future? This is a major philosophical question that humanity needs to ponder. Intelligentization is the future, but it is not everything. Intelligentization can handle diverse military tasks, but it is not omnipotent. Faced with sharp contradictions between civilizations, religions, nations, and social classes, and with extreme events such as thugs wielding knives, suicide bombings, and mass riots, the role of intelligentization remains limited. Without resolving global political imbalances, unequal rights, unfair trade, and social contradictions, war and conflict will be inevitable. Ultimately, the world is determined by strength, and technological, economic, and military strength are extremely important. While military strength cannot determine politics, it can influence it; it cannot determine the economy, but it can bring security for economic development. The stronger the intelligent warfare capabilities, the stronger its deterrent and war-preventing function, and the greater the hope for peace. Like nuclear deterrence, it plays a crucial role in preventing large-scale wars to avoid terrible consequences and uncontrolled disasters.

The level of intelligence in warfare, in a sense, reflects the progress of civilization in warfare. The history of human warfare, initially a struggle between groups for food and habitation, has evolved into land occupation, resource plunder, expansion of political power, and domination of the spiritual world—all fraught with bloodshed, violence, and repression. As the ultimate solution to irreconcilable contradictions in human society, war’s ideal goal is civilization: subjugation without fighting, minimal resource input, minimal casualties, and minimal damage to society… However, past wars have often failed to achieve this due to political struggles, ethnic conflicts, competition for economic interests, and the brutality of technological destructive methods, frequently resulting in the utter destruction of nations, cities, and homes. Past wars have failed to achieve these ideals, but future intelligent warfare, due to technological breakthroughs, increased transparency, and deeper mutual sharing of economic benefits, especially as the confrontation of human forces gradually gives way to confrontation between robots and AI, will see decreasing casualties, material consumption, and collateral damage. This presents a significant possibility of achieving civilization, offering humanity hope. We envision future warfare gradually transitioning from the mutual slaughter of human societies and the immense destruction of the material world to wars between unmanned systems and robots. This will evolve into deterrence and checks and balances limited to combat capabilities and overall strength, AI confrontations in the virtual world, and highly realistic war games… The energy expenditure of human warfare will be limited to a certain scale of unmanned systems, simulated confrontations and experiments, or even merely the energy needed to wage a war game. Humanity will transform from the planners, designers, participants, leaders, and victims of war into rational thinkers, organizers, controllers, observers, and adjudicators. Human bodies will no longer suffer trauma, minds will no longer be frightened, wealth will no longer be destroyed, and homes will no longer be devastated. Although this beautiful ideal and aspiration may always fall short of harsh reality, we sincerely hope that this day will arrive, and arrive as soon as possible. This is the highest stage of intelligent warfare development, the author’s greatest wish, and humanity’s beautiful vision!

(Thanks to my colleague, Researcher Zhou Xumang, for his support and assistance in writing this paper. He has unique thoughts and insights into the development and construction of intelligent systems.)

Notes

[1] Robert O. Walker et al., 20YY: War in the Age of Robots, translated by Zou Hui et al., Beijing: National Defense Industry Press, 2016, p. 148.

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

現代國語:

2021-08-18 18:53 来源: 《人民论坛·学术前沿》5月下 作者: 吴明曦

【摘要】新世纪以来,以人工智能(AI)为核心的智能科技快速发展,加快了新一轮军事革命的进程,军事领域的竞争正加速走向智权时代。以“AI、云、网、群、端”为代表的作战要素与多样化组合,构成了新的战场生态系统,战争的制胜机理完全改变。基于模型和算法的AI系统将是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,制智权成为未来战争的核心制权。智能化作战能力越强大,不战而屈人之兵就越有希望。

【关键词】人工智能 无人化 战场生态 战争形态

【中图分类号】TP18 【文献标识码】A

【DOI】10.16619/j.cnki.rmltxsqy.2021.10.005

【作者简介】吴明曦,中国兵器首席科学家、研究员,中国兵器工业集团科技委副秘书长,中国兵器科学研究院科技委副主任。研究方向为国防科技和武器装备发展战略与规划、政策与理论、管理与改革研究。主要著作有《智能化战争——AI军事畅想》等。

智权时代竞争

人类文明的历史,是认识自然、改造自然的历史,也是认识自我、解放自我的历史。人类通过发展科学技术、开发和运用工具,不断增强能力、减轻负担、摆脱束缚、解放自己。战争的控制权也随着科技的进步、人类活动空间的拓展、时代的发展而不断变化、不断丰富和不断演进。19世纪以来,人类先后经历了陆权、海权、空权、天权、信息权的控制与争夺。随着人工智能(AI)、大数据、云计算、生物交叉、无人系统、平行仿真等智能科技的迅速发展及其与传统技术的深度融合,从认识论、方法论和运行机理上,改变了人类认识和改造自然的能力,正在加快推动机器智能、仿生智能、群体智能、人机融合智能和智能感知、智能决策、智能行动、智能保障以及智能设计、研发、试验、制造等群体性重大技术变革,加速战争形态向智权的控制与争夺演变。

智能科技迅速发展,受到世界主要国家的高度重视,成为支撑军事能力跨越发展的强大动力。美俄已将智能科技置于维持其全球军事大国战略地位的核心,其发展理念、发展模式、组织方式、创新应用等已发生重大转变,并开展了军事智能化的实质性应用与实践(见图1)。

吴明曦1

2017年8月,美国国防部表示,未来人工智能战争不可避免,美国需要“立即采取行动”加速人工智能战争科技的开发工作。美军提出的“第三次抵消战略”认为,以智能化军队、自主化装备和无人化战争为标志的军事变革风暴正在到来;为此,他们已将自主系统、大数据分析、自动化等为代表的智能科技列为主要发展方向。2018年6月,美国国防部宣布成立联合人工智能中心,该中心在国家人工智能发展战略的牵引下,统筹规划美军智能化军事体系建设。2019年2月,时任美国总统特朗普签署《美国人工智能倡议》行政令,强调美国在人工智能领域保持持续领导地位对于维护美国的经济和国家安全至关重要,要求联邦政府投入所有资源来推动美国人工智能领域创新。2021年3月,美国人工智能国家安全委员会发布研究报告,指出:“自第二次世界大战以来,作为美国经济和军事力量支柱的技术优势首次受到威胁。如果当前的趋势不改变,中国就拥有未来十年内超越美国成为人工智能全球领导者的力量、人才和雄心。”报告认为,美国为维护国家安全和提升国防能力,必须迅速而负责任地使用人工智能,为抵御这些威胁作好准备。报告得出结论,人工智能将改变世界,美国必须发挥带头作用。

俄罗斯也高度重视人工智能的技术发展及其军事运用。俄军方普遍认为,人工智能将引发继火药、核武器之后军事领域的第三次革命。俄罗斯总统普京2017年9月公开提出,人工智能是俄罗斯的未来,谁能成为该领域的领导者,谁就将主宰世界。2019年10月,普京批准《2030年前俄罗斯国家人工智能发展战略》,旨在加快推进俄罗斯人工智能发展与应用,谋求在人工智能领域的世界领先地位。

中国国务院2017年7月印发《新一代人工智能发展规划》,提出了面向2030年新一代人工智能发展的指导思想、战略目标、重点任务和保障措施,部署构筑人工智能发展的先发优势,加快建设创新型国家和世界科技强国。

世界其他主要国家和军事大国,也纷纷推出各自的人工智能发展规划,表明全球范围内围绕“智权”的争夺已经全面展开。陆权、海权、空权、天权、信息权、智权等,都是科技进步的结果、时代的产物,都有各自的优势,也有各自的不足,并且有些理论随着时代的变化,又在不断拓展。从近代以来战争的控制权发展趋势可以看出,信息权与智权是涉及全局的,其权重更重,影响力更大。未来,随着智能化发展步伐的加快,智权将成为一种快速增长的、对作战全局有更大战略影响力的新型战场控制权。

军事智能的本质是利用智能科技为战争体系建立多样化识别、决策和控制模型。这些模型就是人工智能(AI),是新时代智权争夺的核心。其中,战争体系包括:单装、集群、有人无人协同、多域与跨域作战等装备系统;单兵、班组、分队、合成作战单元、战区联指等作战力量;网络化感知、任务规划与指控、力量协同、综合保障等作战环节;网络攻防、电子对抗、舆情控制、基础设施管控等专业系统;智能化设计、研发、生产、动员、保障等军工能力。AI以芯片、算法和软件等形式,嵌入战争体系的各个系统、各个层次、各个环节,是一个体系化的大脑。AI虽然是战争体系的一个局部,但由于其“类脑”功能和“超越人类极限”的能力越来越强,必将主宰未来战争全局。

战场生态重构

传统战争作战要素相对独立、相对分离,战场生态系统比较简单,主要包括人、装备和战法等。智能时代的战争,各作战要素之间融合、关联、交互特征明显,战场生态系统将发生实质性变化,形成由AI脑体系、分布式云、通信网络、协同群、各类虚实端等构成的作战体系、集群系统和人机系统,简称“AI、云、网、群、端”智能化生态系统(见图2)。其中,AI居于主导地位。

吴明曦2

AI脑体系。智能化战场的AI脑体系,是一个网络化、分布式的体系,是与作战平台和作战任务相生相伴、如影随形的,其分类方法有多种。按功能和计算能力分,主要包括小脑、群脑、中脑、混合脑和大脑等;按作战任务和环节分,主要包括传感器AI、作战任务规划和决策AI、精确打击和可控毁伤AI、网络攻防AI、电子对抗AI、智能防御AI和综合保障AI等;按形态分,主要包括嵌入式AI、云端AI和平行系统AI等。

小脑,主要指传感器平台、作战平台和保障平台的嵌入式AI,主要执行战场环境探测、目标识别、快速机动、精确打击、可控毁伤、装备保障、维修保障和后勤保障等任务。

群脑,主要指地面、空中、海上、水中和太空无人化集群平台智能控制的AI,主要执行战场环境协同感知、集群机动、集群打击和集群防御等任务,重点包括同构集群系统的算法和有人无人协同等异构系统的算法。

中脑,主要指战场前沿一线分队指挥中心、数据中心、指挥所边缘计算的AI系统,主要执行在线和离线条件下战术分队作战任务动态规划、自主决策与辅助决策。

混合脑,主要指成建制部队作战中,指挥员与机器AI协同指挥和混合决策系统,战前主要执行以人为主的作战任务规划,战中主要执行以机器AI为主的自适应动态任务规划和调整,战后主要执行面向反恐和防卫的混合决策等任务。

大脑,主要指战区指挥中心、数据中心的模型库、算法库、战法库,重点为战役和战略决策起辅助支撑作用。由于数据充足,战场各类AI脑系统,都可以在此进行训练和建模,待成熟时再加载到各个任务系统中。

未来战场,还将有其他不同功能、不同种类、大大小小的AI,如传感器AI,主要包括图像识别、电磁频谱识别、声音识别、语音识别、人类活动行为识别等。随着智能化的快速发展和广泛应用,全社会都会存在大大小小的AI,平时为民众和社会服务,战时完全有可能为军事服务。

分布式云。军事云与民用云有所不同。一般来讲,军事云平台是利用通信网络搜索、采集、汇总、分析、计算、存储、分发作战信息和数据的分布式资源管理系统。军事云平台通过构建分布式系统、多点容错备份机制,具备强大的情报共享能力、数据处理能力、抗打击和自修复能力,可提供固定与机动、公有与私有的云服务,实现“一点采集,大家共享”,大大减少信息流转环节,使指挥流程扁平、快速,避免各级重复分散建设。

从未来智能化战争需求看,军事云至少需要构建战术前端云、部队云、战区云和战略云四级体系。按作战要素也可分为情报云、态势云、火力云、信息作战云、保障云、星云等专业化云系统。

1.前端云,主要是指分队、班组、平台之间的信息感知、目标识别、战场环境分析和行动自主决策与辅助决策,以及作战过程和效果评估等计算服务。前端云的作用主要体现在两个方面。一是平台之间计算、存储资源的相互共享和协同、智能作战信息的互动融合。例如,一旦某一平台或终端被攻击,相关的感知信息、毁伤状况和历史情况,就会通过网络化的云平台自动备份、自动替换、自动更新,并把相关信息上传到上级指挥所。二是离线终端的在线信息服务和智能软件升级。

2.部队云,主要指营、旅一级作战所构建的云系统,重点是针对不同的威胁和环境,开展智能感知、智能决策、自主行动和智能保障等计算服务。部队云建设的目标是要建立网络化、自动备份,并与上级多个链路相连的分布式云系统,满足侦察感知、机动突击、指挥控制、火力打击、后装保障等不同力量的计算需要,满足战术联合行动、有人/无人协同、集群攻防等不同作战任务的计算需要。

3.战区云,重点是提供整个作战区域的战场气象、地理、电磁、人文、社会等环境因素和信息数据,提供作战双方的兵力部署、武器装备配备、运动变化、战损情况等综合情况,提供上级、友军和民用支援力量等相关信息。战区云应具备网络化、定制化、智能化等信息服务功能,并通过天基、空中、地面、海上和水下等军用通信网络,以及采取保密措施下的民用通信网络,与各个作战部队互联互通,确保提供高效、及时、准确的信息服务。

4.战略云,主要是由一个国家国防系统和军队指挥机关建立起来的以军事信息为主,涵盖相关国防科技、国防工业、动员保障、经济和社会支撑能力,以及政治、外交、舆论等综合性的信息数据,提供战争准备、作战规划、作战方案、作战进程、战场态势、战况分析等核心信息及评估分析和建议;提供战略情报、作战对手军事实力和战争动员潜力等支撑数据。

上述各个云之间,既有大小关系、上下关系,也有横向协作、相互支撑、相互服务的关系。军事云平台的核心任务有两个:一是为构建智能化作战的AI脑体系提供数据和计算支撑;二是为各类作战人员和武器平台,提供作战信息、计算和数据保障。此外,从终端和群体作战需求来看,还需要把云计算的一些结果、模型、算法,事先做成智能芯片,嵌入武器平台和群终端,之后,可以在线升级,也可以离线更新。

通信网络。军用通信与网络信息,是一个复杂的超级网络系统。由于军事力量主要是在陆、海、空、天和野战机动、城镇等环境下作战,其通信网络包括战略通信与战术通信、有线通信与无线通信、保密通信和民用通信等。其中,无线、移动、自由空间通信网络是军用网络体系最重要的组成部分,相关的综合电子信息系统也是依托通信网络逐步建立起来的。

机械化时代的军用通信,主要是跟着平台、终端和用户走,专用性得到了满足,但烟囱太多、互联互通能力极差。信息化时代,这种状况开始改变。目前,军用通信网络正在采取新的技术体制和发展模式,主要有两个特征:一是“网数分离”,信息的传输不依赖于某种特定的网络传输方式,“网通即达”,只要网络链路畅通,所需任何信息即可送达;二是互联网化,基于IP地址和路由器、服务器实现“条条大路通北京”,即军用网络化或者栅格化。当然,军事通信网络与民用不同,任何时候都存在战略性、专用性通信需求,如核武器的核按钮通信和战略武器的指挥控制,卫星侦察、遥感和战略预警的信息传输,甚至单兵室内和特种作战等条件下的专用通信,可能仍然采取通信跟着任务走的模式。但即便如此,通用化、互联网化一定是未来军用通信网络发展的趋势,否则不仅造成战场通信频段、电台和信息交流方式越来越多,造成自扰、互扰和电磁兼容困难,无线电频谱管理也越来越复杂,更为重要的是,平台用户之间很难基于IP地址和路由结构等功能来实施自动联通,如同互联网上的电子邮件那样,一键命令可以传给多个用户。未来的作战平台,一定会既是通信的用户终端,也兼有路由器和服务器等功能。

军用通信网络体系主要包括天基通信网、军用移动通信网、数据链、新型通信网、民用通信网等。

1.天基信息网。在天基信息网络建设和天基信息利用方面,美国居于领先地位。因为太空中上千个在轨平台和载荷中,一半多是美国人的。美军在海湾战争后尤其是伊拉克战争期间,通过战争实践加快了天基信息网络的应用和推进步伐。伊拉克战争之后,通过天基信息的利用和基于IP方式互联互通的建立,彻底将海湾战争时期近140个纵向烟囱实现横向互联,大大缩短了“侦察—判断—决策—攻击”(OODA)回路的时间,从天基传感器到射手的时间由海湾战争时的几十个小时缩短到目前采用人工智能识别后仅20秒左右。

随着小卫星技术的飞速发展,低成本、多功能的小卫星越来越多。商用发射随着竞争越来越多,成本也开始急剧下降,并且一次发射可以携带几颗、十几颗甚至几十颗小卫星。如果再将小型化以后的电子侦察、可见光和红外成像,甚至是量子点微型光谱仪都集成在上面,实现侦察、通信、导航和气象、测绘等功能一体化,未来世界和战场将变得更加透明。

2.军用移动通信网。军用移动通信网络主要有三个方面的用途。一是联合作战各军兵种和作战部队之间的指挥控制,这类通信的保密等级较高,可靠性、安全性要求也高。二是平台、集群之间的通信联络,要求具备抗干扰和较高的可靠性。三是武器系统的指控和火控,大多通过数据链解决。

传统的军用移动通信网络,大多是“有中心、纵向为主、树状结构”。随着信息化进程的加快,“无中心、自组网、互联网化”的趋势愈加明显。随着认知无线电技术的逐步成熟和推广(见图3),未来的网络通信系统,能够自动识别战场中的电磁干扰和通信障碍,快速寻找可用频谱资源,通过跳频跳转等方式进行实时通信联络。同时,软件与认知无线电技术还能兼容不同通信频段与波形,便于在旧体制向新体制的过渡中兼容使用。

吴明曦3

3.数据链。数据链是一种特殊的通信技术,通过时分、频分、码分等形式,在各作战平台之间实现事先约定的、定期或不定期、有规则或无规则关键信息的传输,只要不被敌方完全掌握或破译,是很难被干扰的。数据链主要分为专用和通用两大类。联合作战、编队协同和集群作战等,主要采用通用数据链。卫星数据链、无人机数据链、弹载数据链、武器火控数据链等,目前多数还是专用的。未来,通用化是一种趋势,专用化将越来越少。此外,从平台和通信的关系来看,平台传感器的信息收发和内部信息处理一般跟着任务系统走,专用化特点较强,平台之间的通信联络和数据传输则越来越通用化。

4.新型通信。传统军用通信以微波通信为主,由于发散角较大,应用平台较多,相应的电子干扰和微波攻击手段发展也较快,容易实施较远距离的干扰与破坏。因此,毫米波、太赫兹、激光通信、自由空间光通信等新型通信手段,就成为既抗干扰,又容易实施高速、大容量、高带宽通信的重要选择。由于高频电磁波发散角较小,虽然抗干扰性能好,但要实现点对点的精确瞄准和全向通信,仍然有一定难度,尤其是在作战平台高速机动和快速变轨条件下,如何实现对准和全向通信,技术上仍在探索之中。

5.民用通信资源。民用通信资源的有效利用,是智能化时代需要重点考虑和无法回避的战略问题。未来通过民用通信网络尤其是5G/6G移动通信,进行开源信息挖掘和数据关联分析,提供战场环境、目标和态势信息,无论是对作战还是非战争军事行动来说都非常重要。在非战争军事行动任务中,尤其是海外维和、救援、反恐、救灾等行动中,军队的专用通信网络,只能在有限范围和地域中使用,而如何与外界交流和联系就成为一个问题。利用民用通信资源,主要有两种途径:一是利用民用卫星特别是小卫星通信资源;二是利用民用移动通信及互联网资源。

军用与民用通信资源的互动利用,核心是要解决安全与保密问题。一种方式是采取防火墙和加密形式,直接利用民用卫星通信和全球移动通信设施来指挥通信和联络,但黑客与网络攻击的风险依然存在。另一种方式是,采用近年发展起来的虚拟化、内联网、半物理隔离、单向传输、拟态防御、区块链等新技术予以解决。

协同群。通过模拟自然界蜂群、蚁群、鸟群及鱼群等行为,研究无人机、智能弹药等集群系统的自主协同机制,完成对敌目标进攻或防御等作战任务,可以起到传统作战手段和方式难以达到的打击效果。协同群是智能化发展的一个必然趋势,也是智能化建设的主要方向和重点领域。单一作战平台,无论战技性能多高、功能多强,也无法形成群体、数量规模上的优势。简单数量的堆积和规模的扩展,如果没有自主、协同、有序的智能元素,也是一盘散沙。

协同群主要包括三个方面:一是依托现有平台智能化改造形成的有人/无人协同群,其中以大、中型作战平台为主构建;二是低成本、同质化、功能单一、种类不同的作战蜂群,其中以小型无人作战平台和弹药为主构建;三是人机融合、兼具生物和机器智能的仿生集群,其中以具有高度自主能力的仿人、仿爬行动物、仿飞禽动物、仿海洋生物为主构建。利用协同群系统实施集群作战特别是蜂群作战,具有多方面的优势与特点。

1.规模优势。庞大的无人系统可以分散作战力量,增加敌方攻击的目标数,迫使敌人消耗更多的武器和弹药。集群的生存能力,因数量足够多而具有较大的弹性和较强的恢复能力,单个平台的生存能力变得无关紧要,而整体的优势更为明显。数量规模使战斗力的衰减不会大起大落,因为消耗一个低成本的无人平台,不像高价值的有人作战平台与复杂武器系统,如B2战略轰炸机,F22、F35先进作战飞机,一旦受到攻击或被击毁,战斗力将急剧下降。集群作战可以同时发起攻击,使敌人的防线不堪重负,因为大部分防御系统能力有限,一次只能处理一定数量的威胁,即便是密集火炮防御,一次齐射也只能击中有限目标,总有漏网之鱼,所以集群系统突防能力极强。

2.成本优势。集群作战特别是蜂群作战大多以中小无人机、无人平台和弹药为主,型谱简单、数量规模较大,质量性能要求相同,便于低成本大规模生产。现代武器装备和作战平台,虽然升级换代的速度明显加快,但成本上涨也极其惊人。二战以后,武器装备研发和采购价格表明,装备成本和价格上涨比性能提升快得多。海湾战争时期的主战坦克是二战时期的40倍,作战飞机和航母则高达500倍。海湾战争之后到2020年,各类主战武器装备价格又分别上涨了几倍、十几倍、甚至几十倍。与此相比,型谱简单的中小无人机、无人平台和弹药具有明显的成本优势。

3.自主优势。在统一的时空基准平台下,通过网络化的主动、被动通信联络和对战场环境目标的智能感知,群体中的单个平台可以准确感知到相互之间的距离、速度和位置关系,也可以快速识别目标威胁的性质、大小、轻重缓急,以及自身与友邻平台距离的远近。在事先制定好作战规则的前提下,可以让一个或数个平台,按照目标威胁的优先级,进行同时攻击和分波次攻击,也可以分组同时攻击、多次攻击(见图4),还可以明确某个平台一旦受损后,后续平台的优先替补顺序,最终达到按照事先约定好的作战规则,自主决策、自主行动。这种智能化作战行动,根据人的参与程度和关键节点控制难度,既可以完全交给群体自主行动,也可以实施有人干预下的半自主行动。

吴明曦4

4.决策优势。未来的战场环境日趋复杂,作战双方是在激烈的博弈和对抗中较量。因此,快速变化的环境和威胁,依靠人在高强度对抗环境下参与决策,时间上来不及,决策质量也不可靠。因此,只有交由协同群进行自动环境适应,自动目标和威胁识别,自主决策和协同行动,才能快速地攻击对手或实施有效防卫,取得战场优势和主动权。

协同群给指挥控制带来了新挑战。怎么对集群实施指挥控制是一个新的战略课题。可以分层级、分任务实施控制,大致包括集中控制模式、分级控制模式、一致协同模式、自发协同模式。[1]可以采取多种形式,实现人为的控制和参与。一般来讲,越是在战术层面的小分队行动,越是要采取自主行动和无人干预;在成建制的部队作战层面,由于涉及对多个作战群的控制,需要采取集中规划、分级控制,人要有限参与;在更高级的战略和战役层次,集群只是作为一种平台武器和作战样式来使用,需要统一规划和布局,人为参与的程度就会更高。从任务性质来看,执行战略武器的操作使用,如核反击,就需要由人操作,不适合交给武器系统自主处理;执行重要目标、高价值目标的攻防时,如斩首行动,也需要人全程参与和控制,同时发挥武器系统的自主功能;对于战术目标的进攻,如果需要实施致命打击和毁伤任务的作战行动,可以让人有限参与,或者经人确认后,让协同群去自动执行;执行侦察、监视和目标识别、排查等非打击任务,或执行防空反导等时间短、人难以参与的任务时,主要交由协同群自动执行,而人不需要参与,也无法参与。此外,集群作战也要重视研究其反制措施。重点研究电子欺骗、电磁干扰、网络攻击和高功率微波武器、电磁脉冲炸弹、弹炮系统等反制措施,其相关作用和效果比较明显。同时,还要研究激光武器、蜂群对蜂群等反制措施,逐步建立人类能有效控制的、对付协同群的“防火墙”。

虚实端。虚实端主要指各类与“云、网”链接的终端,包括预先置入智能模块的各类传感器、指控平台、武器平台、保障平台、相关设备设施和作战人员。未来各种装备、平台,都是前台功能多样、后台云端支撑、虚实互动、在线离线结合的赛博实物系统CPS和人机交互系统。在简单环境感知、路径规划、平台机动、武器操作等方面,主要依靠前端智能如仿生智能、机器智能来实现。复杂的战场目标识别、作战任务规划、组网协同打击、作战态势分析、高级人机交互等,需要依靠后端云平台和云上AI提供信息数据与算法支撑。每个装备平台的前端智能与后端云上智能应结合,进行统筹规划与设计,形成前后端一体化智能的综合优势。同时,虚拟士兵、虚拟参谋、虚拟指挥员及其与人类的智能交互、高效互动等,也是未来研究发展的重点与难点。

战争形态质变

近代以来,人类社会主要经历了大规模的机械化战争和较小规模的信息化局部战争。20世纪前半叶发生的两次世界大战,是典型的机械化战争。20世纪90年代以来的海湾战争、科索沃战争、阿富汗战争、伊拉克战争和叙利亚战争,充分体现了信息化战争的形态与特点。新世纪新阶段,随着智能科技的快速发展与广泛应用,以数据和计算、模型和算法为主要特征的智能化战争时代即将到来(见图5)。

吴明曦5

机械化是工业时代的产物,技术上以机械动力和电气技术为重点,武器装备形态主要表现为坦克、装甲车辆、大炮、飞机、舰船等,对应的是机械化战争形态。机械化战争,主要基于以牛顿定律为代表的经典物理学和社会化大生产,以大规模集群、线式、接触作战为主,在战术上通常要进行现地侦察、勘查地形、了解对手前沿与纵深部署情况,结合己方能力下定决心,实施进攻或防御,进行任务分工、作战协同和保障,呈现出明显的指控层次化、时空串行化等特点。

信息化是信息时代的产物,技术上以计算机、网络通信等信息技术为重点,装备形态主要表现为雷达、电台、卫星、导弹、计算机、军用软件、指挥控制系统、网电攻防系统、综合电子信息系统等,对应的是信息化战争形态。信息化战争,主要基于计算机与网络三大定律(摩尔定律、吉尔德定律和梅特卡夫定律),以一体化联合、精确、立体作战为主,建立“从传感器到射手的无缝快速信息链接”,夺取制信息权,实现先敌发现与打击。在战术上则要对战场和目标进行详细识别和编目,突出网络化感知和指挥控制系统的作用,对平台的互联互通等信息功能提出了新的要求。由于全球信息系统和多样化网络通信的发展,信息化战争淡化了前后方的界限,强调“侦控打评保”横向一体化和战略、战役、战术的一体化与扁平化。

智能化是知识经济时代的产物,技术上以人工智能、大数据、云计算、认知通信、物联网、生物交叉、混合增强、群体智能、自主导航与协同等智能科技为重点,装备形态主要表现为无人平台、智能弹药、集群系统、智能感知与数据库系统、自适应任务规划与决策系统、作战仿真与平行训练系统、军事云平台与服务系统、舆情预警与引导系统、智能可穿戴系统等,对应的是智能化战争形态。

智能化战争,主要基于仿生、类脑原理和AI的战场生态系统,是以“能量机动和信息互联”为基础、以“网络通信和分布式云”为支撑、以“数据计算和模型算法”为核心、以“认知对抗”为中心,多域融合、跨域攻防,无人为主、集群对抗,虚拟与物理空间一体化交互的全新作战形态。

智能化战争以满足核常威慑、联合作战、全域作战和非战争军事行动等需求为目标,以认知、信息、物理、社会、生物等多域融合作战为重点,呈现出分布式部署、网络化链接、扁平化结构、模块化组合、自适应重构、平行化交互、聚焦式释能、非线性效应等特征,制胜机理颠覆传统,组织形态发生质变,作战效率空前提高,战斗力生成机制发生转变。其实质性的变化主要体现在以下十个方面。

AI主导的制胜机理。在智能化条件下,以“AI、云、网、群、端”为代表的全新作战要素将重构战场生态系统,战争的制胜机理将完全改变。其中,基于模型和算法的AI系统是核心作战能力,贯穿各个方面、各个环节,起到倍增、超越和能动的作用,平台有AI控制,集群有AI引导,体系有AI决策,传统以人为主的战法运用被AI的模型和算法所替代,算法战将在战争中起到决定性作用,作战体系和进程最终将以AI为主导,制智权成为未来战争的核心制权。

不同时代、不同战争形态,战场生态系统是不一样的,作战要素构成、制胜机理完全不同。机械化战争是平台中心战,核心是“动”,主导力量是火力和机动力,追求以物载能、以物释能。作战要素主要包括:人+机械化装备+战法。制胜机理是基于机械化装备作战运用的以人为主导的决策,以多胜少、以大吃小、以快制慢,全面、高效、可持续的动员能力,分别起到决定性或重要的作用。信息化战争是网络中心战,核心是“联”,主导力量是信息力,追求以网聚能、以网释能。作战要素及相互关系主要是:基于网络信息的“人+信息化装备+战法”。信息贯穿于人、装备和战法,建立“从传感器到射手”的无缝信息连接,实现体系化网络化作战能力,以体系对局部、以网络对离散、以快制慢,成为取得战争胜利的重要机理。其中,信息对装备和作战体系起到了倍增的作用,但平台仍然以有人为主,信息围绕人发挥辅助决策的作用,但多数决策还是以人为主。智能化战争是认知中心战,核心是“算”,主导力量是智力,智力所占权重将超过火力、机动力和信息力,追求的将是以智驭能、以智制能,以虚制实、以优胜劣,作战双方谁的AI多,谁的AI更聪明,战场主动权就越大。作战要素及相互关系主要是:AI×(云+网+群+人+装备+战法),可以简化为“AI、云、网、群、端”要素构成的相互关联与融合的战场生态系统。未来,AI在战争中的作用将越来越大、越来越强,最终将发挥决定和主导作用。

强调AI的主导作用,并不否认人在战争中的作用。一方面,人的聪明才智已经前置并赋予了AI;另一方面,在战前、后台和战略层面,在相当长一段时间和可预见的未来,AI是无法取代人类的。

现代战争战场环境越来越复杂、作战对抗速度越来越快,如何快速识别处理海量信息、快速响应战场态势、快速制定决策方案,已远非人力所能,也超出了现有技术手段的极限(见表1、表2)。随着AI在战争体系中的应用越来越广、作用越来越大,作战流程将重新塑造,军事杀伤链将提速增效,感知快、决策快、行动快、保障快,成为未来智能化战争制胜的重要砝码。

吴明曦-表1
吴明曦-表2

未来,通过图像、视频、电磁频谱、语音等智能识别与模式识别,对天空地海传感器网络复杂战场信息能够快速精确实施目标识别。利用大数据技术,通过多源多维定向搜索与智能关联分析,不仅能够对各种打击目标进行准确定位,还能够对人类行为、社会活动、军事行动和舆情态势精准建模,逐步提高预警预测准确率。各战区和战场基于精准战场信息,通过事先虚拟空间的大量平行建模和模拟训练,能够自适应地实施任务规划、自主决策与作战进程控制。各作战平台、集群系统的AI,根据任务规划能够围绕作战目标自主、协同执行任务,并针对随时出现的变化进行能动调整。通过事先建立分布式、网络化、智能化、多模式的保障体系与预置布局,能够快速实施精准物流配送、物资供应和智能维修等。总之,通过智能科技的广泛应用和各种AI系统的能动作用、进化功能,在谋划、预测、感知、决策、实施、控制、保障等作战全过程,实现“简单、快捷、高效、可控”的作战流程再造,能够让人类从繁重的作战事务中逐步解脱出来。作战流程再造将促使未来战场节奏加快、时间压缩、过程变短。

AI主导的制胜机理,主要表现在作战能力、手段、策略和措施方面,全面融合了人的智力,接近了人的智能,超越了人的极限,发挥了机器的优势,体现了先进性、颠覆性和创新性。这种先进与创新,不是以往战争简单的延长线和增长量,而是一种质的变化和跃升,是一种高阶特征。这种高阶特征体现为智能化战争具有传统战争形态所不具备的“类脑”功能和很多方面“超越人类极限的能力”。随着AI的不断优化迭代,它总有一天将超过普通士兵、参谋、指挥员甚至精英和专家群体,成为“超级脑”和“超级脑群”。这是智能化战争的核心和关键,是认识论和方法论领域的技术革命,是人类目前可预见、可实现、可进化的高级作战能力。

虚拟空间作用上升。随着时代的进步和科技的发展,作战空间逐步从物理空间拓展到虚拟空间。虚拟空间在作战体系中的地位作用逐步上升且越来越重要,越来越同物理空间和其他领域实现深度融合与一体化。虚拟空间是由人类构建的基于网络电磁的信息空间,它可以多视角反映人类社会和物质世界,同时可以超越客观世界的诸多限制来利用它。构建它的是信息域,连接它的是物理域,反映出的是社会域,利用它的是认知域。狭义上的虚拟空间主要指民用互联网,广义上的虚拟空间主要指赛博空间(Cyberspace),包括各种物联网、军用网和专用网构成的虚拟空间。赛博空间具有易攻难防、以软搏硬、平战一体、军民难分等特征,已成为实施军事行动、战略威慑和认知对抗的重要战场。

虚拟空间的重要性主要体现在三个方面:一是通过网络信息系统,把分散的作战力量、作战要素连接为一个整体,形成体系化网络化作战能力,成为信息化战争的基础;二是成为网电、情报、舆情、心理、意识等认知对抗的主战场和基本依托;三是建立虚拟战场,开展作战实验,实现虚实互动,形成平行作战和以虚制实能力的核心与关键。

未来,随着全球互联、物联的加速升级,随着天基网络化侦察、通信、导航、移动互联、Wi-Fi和高精度全球时空基准平台、数字地图、行业大数据等系统的建立完善与广泛应用,人类社会和全球军事活动将越来越“透明”,越来越被联网、被感知、被分析、被关联、被控制(见图6),对军队建设和作战呈现全方位、泛在化的深刻影响,智能化时代的作战体系将逐步由封闭向开放、由以军为主向军民融合的“开源泛在”方向拓展。

吴明曦6

智能化时代,物理、信息、认知、社会、生物等领域的信息数据将逐渐实现自由流动,作战要素将实现深度互联与物联,各类作战体系将从初级的“能力组合”向高级的“信息融合、数据交链、一体化行为交互”方向发展,具备强大的全域感知、多域融合、跨域作战能力,具备随时随地对重要目标、敏感人群和关键基础设施实施有效控制的能力。美国陆军联合兵种中心的一份报告认为,这个世界正在进入“全球监控无处不在”的时代。即使这个世界无法跟踪所有的活动,技术的扩散也无疑会使潜在的信息来源以指数方式增长。

目前,基于网络的软件攻击已具备物理毁伤能力,军事发达国家的网络攻击已具备入侵、欺骗、干扰、破坏等作战能力,赛博空间已经成为实施军事行动和战略威慑的又一重要战场。美国的网络攻击已经用于实战。突尼斯的本·阿里、利比亚的卡扎菲、伊拉克的萨达姆都曾经被美国的网络攻防和维基解密影响,造成舆情转向、心理失控、社会动荡,导致政权的迅速垮台,对传统战争形态产生了颠覆性影响。通过斯诺登事件,美国使用的11类49项“赛博空间”侦察项目目录清单陆续被曝光,“震网”病毒破坏伊朗核设施、“高斯”病毒群体性入侵中东有关国家、“古巴推特网”控制大众舆情等事件,表明美国已具备对互联网、封闭网络、移动无线网络的强大监控能力、软硬攻击和心理战能力。

战争从虚拟空间实验开始。美军从20世纪80年代就开始了作战仿真、作战实验和模拟训练的探索。后来,美军又率先将虚拟现实、兵棋推演、数字孪生等技术用于虚拟战场和作战实验。据分析,海湾战争、科索沃战争、阿富汗战争、伊拉克战争等军事行动,美军都开展了作战模拟推演,力图找出的最优作战和行动方案。据报道,俄罗斯出兵叙利亚之前,就在战争实验室进行了作战预演,依据实验推演情况,制定了“中央-2015”战略演习计划,针对叙利亚作战演练了“在陌生区域的机动和可到达性”。演习结束后,俄军格拉西莫夫总参谋长强调,以政治、经济及舆论心理战等手段为主,辅之以远程精确的空中打击、特种作战等措施,最终达成政治和战略目的。实践表明,俄出兵叙利亚的进程,与实验、演习基本一致。

未来,随着虚拟仿真、混合现实、大数据、智能软件的应用和发展,通过建立一个平行军事人工系统,使物理空间的实体部队与虚拟空间的虚拟部队相互映射、相互迭代,可以在虚拟空间里解决物理空间难以实现的快速、高强度对抗训练和超量计算,可以与高仿真的“蓝军系统”进行对抗和博弈,不断积累数据,建立模型和算法,从而把最优解决方案用于指导实体部队建设和作战,达到虚实互动、以虚制实、以虚制胜的目的。2019年1月25日,谷歌旗下人工智能团队DeepMind与《星际争霸》开发公司暴雪,公布了2018年12月AlphaSTAR与职业选手TLO、MANA的比赛结果,最终在五局三胜赛制中,AlphaSTAR均以5:0取胜。AlphaSTAR只用了两周时间就完成了人类选手需要200年时间的训练量,展示了在虚拟空间进行仿真对抗训练的巨大优势与光明前景。

无人化为主的作战样式。智能化时代,无人化作战将成为基本形态,人工智能与相关技术的融合发展将逐步把这种形态推向高级阶段。无人系统是人类智慧在作战体系中的充分前置,是智能化、信息化、机械化融合发展的集中体现。无人装备最早出现在无人机领域,1917年,英国造出了世界上第一架无人机,但未用于实战。随着技术发展,无人机逐步用于靶机、侦察、察打一体等领域。进入21世纪以来,无人技术与装备由于具有以任务为中心设计、不必考虑乘员需求、作战效费比高等优势,其探索应用已经实现了巨大跨越,取得了重大突破,显现出快速全方位发展的态势,应用范围迅速拓展,涵盖了空中、水面、水下、地面、空间等各个领域。

近年来,人工智能、仿生智能、人机融合智能、群体智能等技术飞速发展,借助卫星通信与导航、自主导航,无人作战平台能够很好地实现远程控制、编队飞行、集群协同。目前,无人作战飞行器、水下无人平台和太空无人自主操作机器人相继问世,双足、四足、多足和云端智能机器人等正在加速发展,已经步入工程化和实用化快车道,军事应用为期不远。

总体上看,智能化时代的无人化作战,将进入三个发展阶段。第一阶段是有人为主、无人为辅的初级阶段,其主要特点是“有人主导下的无人作战”,也就是事前、事中、事后都是由人完全控制和主导的作战行为。第二阶段是有人为辅、无人为主的中级阶段,其主要特点是“有限控制下的无人作战”,即在作战全过程中人的控制是有限度、辅助性但又是关键性的,多数情况可以依靠平台自主行动能力。第三阶段是规则有人、行动无人的高级阶段,其主要特点是“有人设计、极少控制的无人作战”,人类事先进行总体设计,明确各种作战环境条件下的自主行为与游戏规则,在行动实施阶段主要交由无人平台和无人部队自主执行。

自主行为或者自主性,是无人化作战的本质,是智能化战争既普遍又显著的特征,体现在很多方面。

一是作战平台的自主,主要包括无人机、地面无人平台、精确制导武器、水下和太空机器人等自主能力和智能化水平。

二是探测系统的自主,主要包括自动搜索、跟踪、关联、瞄准和图像、语音、视频、电子信号等信息的智能识别。

三是决策的自主,核心是作战体系中基于AI的自主决策,主要包括战场态势的自动分析、作战任务的自动规划、自动化的指挥控制、人机智能交互等。

四是作战行动的自主协同,前期包括有人无人系统的自主协同,后期包括无人化的自主集群,如各类作战编队集群、蜂群、蚁群、鱼群等作战行为。

五是网络攻防的自主行为,包括各种病毒和网络攻击行为的自动识别、自动溯源、自动防护、自主反击等。

六是认知电子战,自动识别电子干扰的功率、频段、方向等,自动跳频跳转和自主组网,以及面向对手的主动、自动电子干扰等。

七是其他自主行为,包括智能诊断、自动修复、自我保障等。

未来,随着人工智能和相关技术融合发展的不断升级,无人化将向自主、仿生、集群、分布式协同等方向快速发展,逐步把无人化作战推向高级阶段,促使战场上有生力量的直接对抗显著减少。虽然未来有人平台会一直存在,但仿生机器人、类人机器人、蜂群武器、机器人部队、无人化体系作战,在智能化时代将成为常态。由于在众多作战领域都可以用无人系统来替代,都可以通过自主行为去完成,人类在遭到肉体打击和损伤之前,一定有无人化作战体系在前面保驾护航。因此,智能化时代的无人化作战体系,是人类的主要保护屏障,是人类的护身符和挡箭牌。

全域作战与跨域攻防。智能化时代全域作战与跨域攻防,也是一种基本作战样式,体现在很多作战场景、很多方面。从陆、海、空、天到物理、信息、认知、社会、生物多领域,以及虚拟和实体的融合互动,从平时的战略威慑到战时的高对抗、高动态、高响应,时间和空间跨度非常大。既面临物理空间作战和虚拟空间网络攻防、信息对抗、舆情引导、心理战等认知对抗,还面临全球安全治理、区域安全合作、反恐、救援等任务,面临网络、通信、电力、交通、金融、物流等关键基础设施的管控。

2010年以来,以信息化智能化技术成果为支撑,美军提出了作战云、分布式杀伤、多域战、算法战、马赛克战、联合全域作战等概念,目的是以体系对局部、以多能对简能、以多域对单域、以融合对离散、以智能对非智能,维持战场优势和军事优势。美军2016年提出多域战、2020年提出联合全域作战概念,目的是发展跨军种跨领域的联合作战能力,实现单一军种作战背后都有三军的支持,具备全域对多域、对单域的能力优势。

未来,随着人工智能与多学科交叉融合、跨介质攻防关键技术群的突破,在物理、信息、认知、社会、生物等功能域之间,在陆、海、空、天等地理域之间,基于AI与人机混合智能的多域融合与跨域攻防,将成为智能化战争一个鲜明的特征。

智能时代的多域与跨域作战,将从任务规划、物理联合、松散协同为主,向异构融合、数据交链、战术互控、跨域攻防一体化拓展。

一是多域融合。根据多域环境下不同的战场与对手,按照联合行动的要求把不同的作战样式、作战流程和任务规划出来,尽量统一起来,实现信息、火力、防御、保障和指控的统筹与融合,实现战略、战役和战术各层次作战能力的融合,形成一域作战、多域联合快速支援的能力。

二是跨域攻防。在统一的网络信息体系支撑下,通过统一的战场态势,基于统一标准的数据信息交互,彻底打通跨域联合作战侦控打评信息链路,实现在战术和火控层面军种之间协同行动、跨域指挥与互操作、作战要素与能力的无缝衔接。

三是全程关联。把多域融合和跨域攻防作为一个整体,统筹设计、全程关联。战前,开展情报收集与分析,实施舆论战、心理战、宣传战和必要的网电攻击。战中,通过特种作战和跨域行动,实施斩首、要点破袭和精确可控打击(见图7)。战后,防御信息系统网络攻击、消除负面舆论对民众影响、防止基础设施被敌破坏,从多个领域实施战后治理、舆情控制和社会秩序恢复。

吴明曦7

四是AI支持。通过作战实验、模拟训练和必要的试验验证、实战检验,不断积累数据、优化模型,建立不同作战样式与对手的AI作战模型和算法,形成一个智能化的脑体系,更好地支撑联合作战、多域作战和跨域攻防。

人与AI混合决策。智能化战场AI脑体系的不断健全、优化、升级和完善,使其将在许多方面超越人类。几千年来,人类战争以人为主的指挥控制和决策模式将彻底改变,人指挥AI、AI指挥人、AI指挥AI等,都有可能在战争中出现。

分布式、网络化、扁平化、平行化是智能化作战体系的重要特征,有中心、以人为主的单一决策模式,逐步被基于AI的无人化、自主集群、有人无人协同等无中心、弱中心模式所改变,相互之间的混合兼容成为发展趋势。作战层级越低、任务越简单,无人化、无中心的作用越突出;层级越高、任务越复杂,人的决策、有中心的作用越重要。战前以人决策为主、以AI决策为辅,战中以AI决策为主、以人决策为辅,战后两者都有、以混合决策为主(见表3)。

吴明曦-表3

未来战场,作战对抗态势高度复杂、瞬息万变、异常激烈,多种信息交汇形成海量数据,仅凭人脑难以快速、准确处理,只有实现“人脑+AI”的协作运行方式,基于作战云、数据库、网络通信、物联网等技术群,“指挥员”才能应对瞬息万变的战场,完成指挥控制任务。随着无人系统自主能力的增加,集群和体系AI功能的增强,自主决策逐步显现。一旦指挥控制实现不同程度的智能化,侦察—判断—决策—攻击(OODA)回路时间将大大压缩,效率将明显提升。尤其是用于网络传感器图像处理的模式识别、用于作战决策的“寻优”算法、用于自主集群的粒子群算法和蜂群算法等,将赋予指挥控制系统更加高级、完善的决策能力,逐步实现“人在回路外”的作战循环。

非线性放大与快速收敛。未来的智能化作战,不再是能量的逐步释放和作战效果的线性叠加,而是非线性、涌现性、自生长、自聚焦等多种效应的急剧放大和结果的快速收敛。

涌现主要指复杂系统内每个个体都遵从局部规则,不断进行交互后,以自组织方式产生出整体质变效应的过程。未来,战场信息虽然复杂多变,但通过图像、语音、视频等智能识别和军事云系统处理后,具备“一点采集、大家共享”能力,通过大数据技术与相关信息快速关联,并与各类武器火控系统快速交链后,实施分布式打击、集群打击和网络心理战等,能够实现“发现即摧毁”“一有情况群起而攻之”和“数量优势滋生心理恐慌效应”,这些现象就是涌现效应。

智能化作战的涌现效应主要体现在三个方面:一是基于AI决策链的快速而引发的杀伤链的加速;二是有人无人协同特别蜂群系统数量优势所引发的作战效应;三是基于网络互联互通所产生的快速群体涌现行为。

军事智能化发展到一定阶段后,在高级AI、量子计算、IPV6、高超声速等技术共同作用下,作战体系将具备非线性、非对称、自生长、快速对抗、难以控制的放大效应和行动效果,特别在无人、集群、网络舆情、认知对抗等方面尤为明显,群愚生智、以量增效、非线性放大、涌现效应越来越突出,AI主导下的认知、信息、能量对抗相互交织并围绕着目标迅速聚焦,时间越来越被压缩,对抗速度越来越快,即呈现多种效应的急剧放大和结果的快速收敛。能量冲击波、对抗极速战、AI终结者、舆情反转、社会动荡、心理失控、物联网连锁效应等,将成为智能化战争的显著特征。

无人化集群攻击,作战双方在平台性能大致相同的条件下,遵循兰切斯特方程,作战效能与数量的平方成正比,数量优势就是质量优势。网络攻防和心理舆情效应,遵循梅特卡夫定律,与信息互联用户数的平方成正比,非线性、涌现效应更加明显。战场AI数量的多少和智商的高低,更决定着作战体系智能化的整体水平,关系到战场智权的控制,影响战争胜负和结局。智能化时代,如何处理好能量、信息、认知、数量、质量、虚拟、实体之间的相互关系,如何巧妙地设计、把控、运用和评估非线性效应,是未来战争面临的重大新挑战和新要求。

未来,无论是舆情反转、心理恐慌,还是蜂群攻击、集群行动,以及人在环外自主作战,其涌现效应和打击效果,将成为相对普遍的现象和容易实施的行动,形成威慑与实战兼容的能力,也是人类社会必须严加管理和控制的战争行为。

有机共生的人装关系。在智能化时代,人与武器的关系将发生根本性改变,在物理上越来越远、在思维上越来越近。装备形态和发展管理模式将完全改变,人的思想和智慧通过AI与武器装备深度交链,在装备发展阶段充分前置、在使用训练阶段优化迭代、在作战验证之后进一步升级完善,如此循环往复、不断递进。

第一,随着网络通信、移动互联、云计算、大数据、机器学习和仿生等技术的快速发展及其在军事领域的广泛应用,传统武器装备的结构和形态将彻底改变,呈现出前后台分工协作、高效互动、自适应调整等多样化功能,是集机械、信息、网络、数据、认知于一体的复合体。

第二,人与武器逐渐物理脱离,但在思维上逐步深度融合为有机共生体。无人机、机器人的逐步成熟,从辅助人作战转向代替人作战,人更加退居到后台。人与武器的结合方式,将以崭新形态出现。人的思想和智慧将全寿命周期地参与设计、研发、生产、训练、使用和保障过程,无人作战系统将把人的创造性、思想性和机器的精准性、快速性、可靠性、耐疲劳性完美结合起来。

第三,装备建设与管理模式发生深刻变化。机械化装备越用越旧、信息化软件越来越新、智能化算法越用越精。传统的机械化装备采用“预研—研制—定型”的模式交付部队,战技性能随时间和摩托小时呈下降趋势;信息化装备是机械化、信息化复合发展的产物,平台不变,但信息系统随计算机CPU和存储设备的发展不断迭代更新,呈现“信息主导、以软牵硬,快速更替、螺旋上升”的阶梯式发展特点;智能化装备以机械化、信息化为基础,随着数据和经验的积累,不断地优化提升训练模型和算法,呈现随时间和使用频率越用越强、越用越好的上升曲线。因此,智能化装备发展建设及使用训练保障模式,将发生根本性改变。

在学习对抗中进化。进化,一定是未来智能化战争和作战体系的一个鲜明特点,也是未来战略竞争的一个制高点。智能化时代的作战体系将逐步具备自适应、自学习、自对抗、自修复、自演进能力,成为一个可进化的类生态和博弈系统。

智能化作战体系与系统,最大的特点和与众不同之处,就在于其“类人、仿人”的智能与机器优势的结合,实现“超人类”的作战能力。这种能力的核心是众多模型和算法越用越好、越用越精,具备进化的功能。如果未来作战体系像人体一样,大脑是指挥控制中枢,神经系统是网络,四肢是受大脑控制的武器装备,就像一个生命体一样,具备自适应、自学习、自对抗、自修复、自演进能力,我们认为它就具备进化的能力和功能。由于智能化作战体系与生命体不完全一样,单一的智能化系统与生命体类似,但多系统的作战体系,更像一个“生态系统+对抗博弈系统”,比单一的生命体更复杂,更具有对抗性、社会性、群体性和涌现性。

经初步分析判断,随着作战仿真、虚拟现实、数字孪生、平行训练、智能软件、仿脑芯片、类脑系统、仿生系统、自然能源采集和新型机器学习等技术的发展应用,未来的作战体系可以逐步从单一功能、部分系统的进化向多功能、多要素、多领域、多系统的进化发展。各系统能够根据战场环境变化、面临的威胁不同、面临的对手不同、自身具备的实力和能力,按照以往积累的经验知识、大量仿真对抗性训练和增强学习所建立的模型算法,快速形成应对策略并采取行动,进而在战争实践中不断修正、优化和自我完善、自我进化。单一任务系统将具备类似生命体的特征和机能,多任务系统就像森林中的物种群那样具备相生相克、优胜劣汰的循环功能和进化机制,具备复杂环境条件下的博弈对抗和竞争能力,形成可进化的类生态和博弈系统。

作战体系的进化途径,主要体现在四个方面:一是AI的进化,随着数据和经验的积累,一定会不断优化、升级和提升。这一点比较容易理解。二是作战平台和集群系统的进化,主要从有人控制为主向半自主、自主控制迈进。由于不仅涉及平台和集群控制AI的进化,还涉及相关机械与信息系统的优化和完善,所以要相对复杂一点。三是任务系统的进化。如探测系统、打击系统、防御系统、保障系统的进化等,由于涉及多平台、多任务,所以进化涉及的因素和要素就复杂得多,有的可能进化快,有的可能进化慢。四是作战体系的进化,由于涉及全要素、多任务、跨领域,涉及各个层次的对抗,其进化过程就非常复杂。作战体系能否进化,不能完全依靠自生自长,而需要主动设计一些环境和条件,需要遵循仿生原则、适者生存原则、相生相克原则和全系统全寿命管理原则,才能具备持续进化的功能和能力。

智能设计与制造。智能化时代的国防工业,将从相对封闭、实物为主、周期较长的研究制造模式向开源开放、智能设计与制造、快速满足军事需求转变。

国防工业是国家战略性产业,是国家安全和国防建设的强大支柱,平时主要为军队提供性能先进、质量优良、价格合理的武器装备,战时是实施作战保障的重要力量,是确保打赢的核心支撑。国防工业是一个高科技密集的行业,现代武器装备研发和制造,技术密集、知识密集、系统复杂、综合性强,大型航母、战斗机、弹道导弹、卫星系统、主战坦克等武器装备的研发,一般都要经过十年、二十年甚至更长时间,才能定型交付部队,投入大、周期长、成本高。二战以后到上世纪末,国防工业体系和能力结构是机械化时代与战争的产物,其科研、试验、生产制造、保障等,重点面向军兵种需求和行业系统组织科研与生产,主要包括兵器、船舶、航空、航天、核和电子等行业,以及民口配套和基础支撑产业等。冷战后,美国国防工业经过战略调整和兼并重组,总体上形成了与信息化战争体系对抗要求相适应的国防工业结构和布局。美国排名前六位的军工巨头,既可以为相关军兵种提供专业领域的作战平台与系统,也可以为联合作战提供整体解决方案,是跨军兵种跨领域的系统集成商。进入21世纪以来,随着体系化、信息化作战需求的变化和数字化、网络化、智能化制造技术的发展,传统武器装备发展模式和科研生产能力开始逐步改变,迫切需要按照信息化战争特别是智能化战争的要求进行重塑和调整。

未来,国防科技工业将按照联合作战、全域作战、机械化信息化智能化融合发展要求,从传统以军兵种、平台建设为主向跨军兵种、跨领域系统集成转变,从相对封闭、自成体系、各自独立、条块分割、实物为主、周期较长的研究设计制造向开源开放、民主化众筹、虚拟化设计与集成验证、自适应制造、快速满足军事需求转变(见图8),逐步形成软硬结合、虚实互动、人机物环智能交互、纵向产业链有效衔接、横向分布式协同、军民一体化融合的新型创新体系和智能制造体系。军地多方联合论证设计,建设和使用供需双方共同研发,基于平行军事系统的虚实迭代优化,通过作战训练和实战验证来完善提升,边研边试边用边建,是智能化作战体系发展建设和战斗力生成的基本模式。

吴明曦8

吴明曦8

失控的风险。由于智能化作战体系在理论上具备自我进化并达到“超人类”的能力,如果人类不事先设计好控制程序、控制节点,不事先设计好“终止按钮”,结果很可能会带来毁灭和灾难。需要高度关注的是,众多黑客和“居心不良”的战争狂人,会利用智能化技术来设计难以控制的战争程序和作战方式,让众多机器脑AI和成群结队的机器人,按照事先设定的作战规则,自适应和自演进地进行战斗,所向披靡,勇往直前,最终酿成难以控制的局面,造成难以恢复的残局。这是人类在智能化战争进程中面临的重大挑战,也是需要研究解决的重大课题。需要从全人类命运共同体和人类文明可持续发展的高度,认识和重视这个问题,设计战争规则,制定国际公约,从技术上、程序上、道德上和法律上进行规范,实施强制性的约束、检查和管理。

以上十个方面的突变和跨越,是智能化战争新形态的主要内容。当然,智能化战争的发展与成熟,并不是空中楼阁、无本之木,而是建立在机械化和信息化之上。没有机械化和信息化,就没有智能化。机械化、信息化、智能化“三化”是一个有机整体,相互联系、相互促进,迭代优化、跨越发展。从目前看,机械化是基础,信息化是主导,智能化是方向。从未来看,机械化是基础,信息化是支撑,智能化是主导。

未来美好远景

在新世纪的时空隧道里,我们看到智能化战争的列车正快速行驶,是任由人类的贪婪和科技的强大走向更加残酷的黑暗,还是迈向更加文明和光明的彼岸,这是人类需要思索的重大哲学命题。智能化是未来,但不是全部。智能化能胜任多样化军事任务,但不是全能。面对文明之间、宗教之间、国家之间、阶层之间的尖锐矛盾,面对手持菜刀的暴徒、自杀式爆炸、群体性骚乱等极端事件,智能化作用仍然有限。全球政治不平衡、权利不平等、贸易不公平、社会矛盾不解决,战争和冲突将不可避免。世界最终靠实力说了算,而其中科技实力、经济实力和军事实力极其重要。军事实力虽然决定不了政治,但可以影响政治,决定不了经济,但可以为经济发展带来安全。智能化作战能力越强大,其威慑强敌、遏制战争的功能越强,和平就越有希望。就像核威慑那样,为避免可怕的后果和失控的灾难,在防止大规模战争方面发挥着重要的作用。

战争的智能化程度,在某种意义上体现了战争文明的进程。人类战争的历史,最初由族群之间食物和居住区域的争夺,到土地占领、资源掠夺、政治实力扩张、精神世界统治,无不充满血腥、暴力和镇压。战争作为人类社会不可调和矛盾的最终解决手段,其所追求的理想目标是文明化:不战而屈人之兵、资源投入最少、人员伤亡最小、对社会的破坏最轻……但以往的战争实践,往往因政治斗争、民族矛盾、经济利益争夺、科技毁伤手段的残酷等原因而事与愿违,常常把国家、城市和家园毁坏殆尽。以往的战争未能实现上述理想,而未来智能化战争由于技术上的突破、透明度的增加、经济利益互利共享的加深,特别是有生力量的对抗逐步让位于机器人之间的对抗、AI之间的博弈,人员伤亡、物质消耗、附带损伤会越来越小,在很大程度上存在实现文明化的可能性,给人类带来了希望。我们期待,未来战争,从人类社会的相互残杀、物质世界的极大破坏,逐步过渡到无人系统和机器人之间的战争,发展到仅限于作战能力和综合实力的威慑与制衡、虚拟世界中AI之间的对抗、高仿真的战争游戏……人类战争的消耗,只限于一定规模的无人系统、模拟对抗与仿真实验,甚至仅仅是打一场战争游戏的能源。人类由战争的谋划者、设计者、参与者、主导者和受害者,转变为理性的思想者、组织者、控制者、旁观者和裁决者。人类的身体不再受到创伤,精神不再受到惊吓,财富不再遭到破坏,家园不再遭到摧毁。虽然美好的理想和愿望,与残酷的现实可能始终存在差距,但衷心希望这一天能够到来,尽早到来。这是智能化战争发展的最高阶段,作者的最大愿望,人类的美好远景!

(感谢同事周旭芒研究员为论文撰写提供支持和帮助,他在智能化发展和建设方面有独到的思想和见解)

注释

[1][美]罗伯特·O.沃克等:《20YY:机器人时代的战争》,邹辉等译,北京:国防工业出版社,2016年,第148页。

The Era of Intelligent War Is Coming Rapidly

Wu Mingxi

Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. The AI system based on models and algorithms will be the core combat capability, running through all aspects and links and playing a multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.

中國原創軍事資源:https://www.rmlt.com.cn/2021/0818/622318889.shtml

Chinese Military Development Trends & Governance Strategies of Weaponizing Artificial Intelligence

中國軍事發展趨勢與人工智能武器化治理策略

現代英語:

The weaponization of artificial intelligence (AI) is an inevitable trend in the new round of military revolution. Recent local wars have further spurred relevant countries to advance their AI weaponization strategies in order to seize the high ground in future warfare. The potential risks of AI weaponization cannot be ignored. It may intensify the arms race and disrupt the strategic balance; empower operational processes and increase conflict risks; increase accountability and collateral damage; and lower the proliferation threshold, leading to misuse and abuse. To address this, it is necessary to strengthen international strategic communication to ensure consensus and cooperation among countries on the military applications of AI; promote dialogue and coordination in the development of laws and regulations to form a unified and standardized legal framework; strengthen ethical constraints on AI to ensure that technological development conforms to ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.

    [Keywords] Artificial intelligence, military applications, security risks, security governance [Chinese Library Classification Number] F113 [Document Code] A

    The weaponization of artificial intelligence (AI) refers to the application of AI-related technologies, platforms, and services to the military field, making them a crucial driving force for military operations and thereby enhancing their efficiency, precision, and autonomy. With the widespread application of AI technology in the military, major powers and military leaders have increased their strategic and resource investment, accelerating research and application. The frequent regional conflicts in recent years have further stimulated the battlefield application of AI, profoundly shaping the nature of warfare and the future direction of military transformation.

    It cannot be ignored that artificial intelligence, as a rapidly developing technology, inherently carries potential risks due to its immature technology, inaccurate scenario matching, and incomplete supporting conditions. Furthermore, human misuse, abuse, or even malicious use can easily bring various risks and challenges to the military and even international security fields. To earnestly implement the global security initiatives proposed by General Secretary Xi Jinping, we must directly confront the global trend of weaponizing artificial intelligence, deeply analyze the potential security risks arising from the weaponization of AI, and consider scientifically feasible governance approaches and measures.

    Current trend of weaponization of artificial intelligence

    In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of warfare, changing future combat systems, and influencing the future direction of military transformation. Major military powers have regarded artificial intelligence as a disruptive key technology that will change the rules of future warfare, and have invested heavily in the research and development and application of AI weapons.

    The weaponization of artificial intelligence is an inevitable trend in military transformation.

    With the rapid development of science and technology, the necessity and urgency of military transformation are becoming increasingly prominent. Artificial intelligence, by simulating human thought processes, extends human mental and physical capabilities, enabling rapid information processing, analysis, and decision-making. It can also develop increasingly complex unmanned weapon system platforms, thereby providing unprecedented intelligent support for military operations.

    First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, making it difficult to effectively cope with the demands of large-scale, high-speed, and highly complex intelligence processing. The introduction of artificial intelligence (AI) technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of AI technology can build intelligent monitoring systems, providing high-precision, real-time intelligence perception services. In the field of intelligence reconnaissance, AI technology has the ability to process multiple “information streams” in real time, thereby greatly improving analysis efficiency. ① By using technologies such as deep learning, it is also possible to “see through the phenomena to the essence,” uncovering the deep-seated connections and causal relationships within various fragmented intelligence information, rapidly transforming massive amounts of fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.

    Secondly, it provides data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situational awareness. Its advantage lies in its ability to perform key tasks such as data mining, data fusion, and predictive analysis. In informationized and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is enormous, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become important tools to assist commanders in managing intelligence data, assessing the enemy situation, proposing operational plans, and formulating plans and orders. For example, the US military’s ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system, developed by Raytheon Technologies Corporation, encompasses intelligence gathering, surveillance, target identification, and tracking functions. It can aggregate data from diverse information sources such as satellites, ships, aircraft, and ground stations, and perform in-depth analysis and processing. This not only significantly improves the speed at which commanders acquire information but also provides data support through intelligent analysis systems, making decision-making faster, more efficient, and more accurate.

    Third, it provides crucial support for unmanned combat systems. Unmanned combat systems are a new type of weapon system capable of independently completing military missions without direct human control. They primarily consist of intelligent unmanned combat platforms, intelligent munitions, and intelligent combat command and control systems, possessing significant autonomy and intelligence. As a technological equipment leading the transformation of future warfare, unmanned combat systems have become a crucial bargaining chip in inter-state military competition. This system achieves adaptability to different battlefield environments and operational spaces by utilizing key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise target strikes. The design philosophy of this system is “unmanned platform, manned system,” essentially an intelligent extension of manned combat systems. For example, the MQM-57 Falconer unmanned aerial vehicle developed by the U.S. Defense Advanced Research Projects Agency (DARPA) employs advanced artificial intelligence technology and possesses highly autonomous target recognition and tracking capabilities.

    Fourth, it provides technical support for military logistics and equipment support. In the context of information warfare, the pace of war has accelerated, mobility has increased, and combat consumption has significantly risen. The traditional “overstocking” support model is no longer adequate to meet the rapidly changing needs of the modern battlefield. Therefore, higher demands are placed on combat troops to provide timely, location-appropriate, demand-based, and precise rapid and precise logistical support. Artificial intelligence, as a technology with spillover and cross-integration characteristics, is merging with cutting-edge technologies such as the Internet of Things, big data, and cloud computing. This has enabled AI knowledge, technology, and industry clusters to fully penetrate the military logistics field, significantly enhancing logistical equipment support capabilities.

    Major countries are actively developing military applications of artificial intelligence.

    To enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan are accelerating their strategic deployments for the military applications of AI. First, they are updating and adjusting their top-level strategic plans in the field of AI to provide clear guidance for future development. Second, in response to the needs of future warfare, they are accelerating the deep integration of AI technology with the military field, promoting the intelligent, autonomous, and unmanned development of equipment systems. Furthermore, they are actively innovating operational concepts to drive innovation in combat forces, thereby enhancing combat effectiveness and competitive advantage.

    First, strategic planning is being developed. Driven by a strategic obsession with pursuing military, political, and economic hegemony through technological dominance, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense released the “Data, Analytics, and Artificial Intelligence Adoption Strategy,” aiming to expand the advanced capabilities of the entire Department of Defense system to gain a lasting military decision-making advantage. The Russian military issued what is known as “Version 3.0,” the “Russian Armaments Development Program for 2024-2033,” designed to guide weapons development over the next decade. The program emphasizes continued advancement in nuclear and conventional weapons development, with a focus on research into artificial intelligence and robotics, hypersonic weapons, and other strike weapons based on new physical principles.

    Second, the development of advanced equipment systems. Since 2005, the U.S. military has released a “Roadmap for Unmanned Systems” every few years to envision and design unmanned system platforms in various fields, including air, ground, and surface/underwater, connecting the development chain of unmanned weapons and equipment from research and development to production, testing, training, combat, and support. Currently, more than 70 countries worldwide are capable of developing unmanned system platforms, and various types of drones, unmanned vehicles, unmanned boats (vessels), and unmanned underwater vehicles are emerging rapidly. On July 15, 2024, former Chairman of the Joint Chiefs of Staff Mark Milley stated in an interview with *Defense News* that by 2039, one-third of the U.S. military force will be composed of robots. The Russian military’s Platform-M combat robot, the “Lancet” suicide drone, and the S-70 “Hunter” heavy drone have already been deployed in combat.

    Third, innovate future operational concepts. Operational concepts are forward-looking studies of future warfare styles and methods, often guiding new force organization and leapfrog development of weaponry. In recent years, the US military has proposed operational concepts such as “distributed lethality,” “multi-domain warfare,” and “mosaic warfare,” attempting to guide the direction of military transformation. Taking “mosaic warfare” as an example, this concept treats various sensors, communication networks, command and control systems, and weapon platforms as “mosaic fragments.” These “fragment” units, empowered by artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems, forming an on-demand integrated, highly flexible, and mobile lethality network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan,” which aims to expand multi-domain operations to an all-domain operations concept, connecting sensors from various services to a unified “Internet of Things” and using artificial intelligence algorithms to help improve operational command decisions. ③

    War and conflict have spurred the weaponization of artificial intelligence.

    In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukraine crisis, and the Kazakh-Israeli conflict have continued, further stimulating the development of the weaponization of artificial intelligence.

    In the Libyan conflict, both sides employed various types of drones for reconnaissance and combat missions. A report by the UN Group of Experts on Libya noted that the Turkish-made Kargu-2 drone conducted a “pursuit and long-range engagement” operation in Libya in 2020, autonomously attacking retreating enemy soldiers. This event marked the first use of a lethal autonomous weapon system in actual combat. As American scholar Zachary Callenburn stated, if anyone were to die in such an autonomous attack, it would likely be the first known instance of an AI-powered autonomous weapon being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan successfully penetrated Armenian air defenses using a formation of Turkish-made TB2 “Standard” drones and Israeli-made Harop drones, gaining air superiority and the initiative. The significant success of Azerbaijani drone warfare largely stemmed from the Armenian army’s underestimation of the enemy’s capabilities and insufficient understanding of the importance and threat posed by drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They have flexibly utilized advanced equipment such as reconnaissance and strike drones and loitering munitions, which has not only improved combat efficiency but also greatly enhanced the surprise and lethality of the battles. ⑤

    During the 2022 Ukraine crisis, both Russia and Ukraine extensively used military-grade and commercial drones for reconnaissance, surveillance, artillery targeting, and strike missions. The Ukrainian army, through the use of the TB2 “Standard” drone and the US-supplied “Switchblade” series of suicide drones, conducted precision strikes and achieved high kill rates, becoming a notorious “battlefield killer.” In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock onto bombing targets in Gaza, marking as many as 37,000 Palestinians in Gaza as suspected “militants” and identifying them as targets for direct assassination. This Israeli military action drew widespread international attention and condemnation.

    Security risks arising from the weaponization of artificial intelligence

    From automated command systems to intelligent unmanned combat platforms, and then to intelligent decision-making systems in cyber defense, the application of artificial intelligence (AI) technology in the military field is becoming increasingly widespread and has become an indispensable part of modern warfare. However, with the trend of weaponizing AI, its misuse, abuse, and even malicious use will also bring significant risks and challenges to international security.

    It intensifies the arms race and disrupts the strategic balance.

    In the information and intelligent era, the disruptive potential of artificial intelligence is irresistible to major military powers, who are all focusing on the development and application of AI military capabilities, fearing that falling behind in this field will result in missing strategic opportunities. Deepening the military application of artificial intelligence can achieve “asymmetric advantages” in a lower cost and with higher efficiency.

    First, countries are vying for “first-mover advantage.” When a country achieves a technological lead in the development of intelligent weapon systems, it signifies that the country possesses more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and contingency response. This advantage includes higher autonomy, intelligence, and adaptability, thereby increasing the country’s military strength and strategic competitive advantage. At the same time, the military advantage of a first-mover can become a security threat to competitors, leading to a competitive race among countries to advance the military application of advanced technologies. ⑦ In August 2023, U.S. Deputy Secretary of Defense Kathleen Hicks announced the “Replicator initiative,” which aims to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧

    Secondly, the lack of transparency in the development of AI-based military equipment by various countries may exacerbate the arms race. This is mainly due to two reasons: First, AI technology is an “enabling technology” that can be used to design a variety of applications. This means that verifying the specific military applications of AI is extremely difficult, unlike nuclear weapons, where monitoring uranium, centrifuges, and weapon and delivery systems can help determine whether a country is developing or deploying nuclear weapons. The differences between semi-autonomous and fully autonomous weapon systems are primarily due to differences in computer software algorithms, making it difficult to verify treaty compliance through physical means. Second, to maintain their strategic advantage, countries often keep details of the military applications of advanced technologies secret, preventing adversaries from discerning their strategic intentions. In the current international environment, this lack of transparency not only intensifies the arms race but also sows the seeds for future escalation of conflict.

    Third, the uncertainty of national strategic intentions also exacerbates the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence, and the escalation of war largely depends on other countries’ perception of its capabilities, rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often feature risk competition, testing courage more than force. The relationship between major adversaries is determined by which side is ultimately willing to invest more power, or to make it appear as if it is about to invest more power.⁹ An actor’s perception of the capabilities of others, whether true or false, significantly influences the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors, uncertain of the other’s intentions, will become suspicious of the competitor’s military capabilities and the intentions behind their military development, often taking reciprocal measures, namely, developing their own military to meet their own security needs. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.

    Empowering operational processes increases the risk of conflict.

    Empowered by big data and artificial intelligence technologies, traditional combat processes will undergo intelligent restructuring, shifting from “situational awareness—command and decision-making—offensive and defensive coordination—comprehensive support” to “intelligent situational awareness across the entire domain—human-machine integrated hybrid decision-making—manned/unmanned autonomous coordination—proactive and on-demand precise support.” However, while this intelligent restructuring of combat processes improves operational efficiency and accuracy, it also increases the risk of conflict and miscalculation.

    First, wars that break out at “machine speed” will increase the risk of hasty action. Artificial intelligence weapon systems demonstrate formidable capabilities in precision and reaction speed, making future wars likely to erupt at “machine speed.”⑩ However, excessively rapid warfare will also increase the risk of conflict. In areas that emphasize autonomy and reaction speed, such as missile defense, autonomous weapon systems, and cyberspace, faster reaction times will bring significant strategic advantages. At the same time, they will drastically reduce the time window for the defending side to react to military actions, placing commanders and decision-makers under immense “time pressure,” exacerbating the risk of “hasty action,” and increasing the possibility of unexpected escalation of the crisis.

    Second, relying on system autonomy may increase the probability of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on dynamic changes in mission parameters, efficiently achieving human-preset goals. Increased autonomy not only significantly reduces reliance on human labor and improves overall operational efficiency, but is also regarded by defense planners as a key element in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, because human commanders cannot react quickly enough, they may gradually delegate control to autonomous systems, increasing the probability of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly identified a friendly Tornado fighter jet as an anti-radiation missile. Under pressure with only a few seconds to react, the commanders chose to launch the missile, resulting in the deaths of two pilots.⑫

    Third, it weakens the effectiveness of crisis termination mechanisms. During the Cold War, the US and the Soviet Union spearheaded a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear war. In these measures, humans played a crucial “monitoring” role, able to initiate termination measures within sufficient time to avert large-scale humanitarian catastrophes should a risk of spiraling out of control. However, with the increasing computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become more rapid, precise, and destructive, potentially weakening human intervention mechanisms for crisis termination.

    Accountability for war is difficult, and collateral damage is increased.

    Artificial intelligence weapon systems make it more difficult to define responsibility in war. In traditional warfare, weapon systems are controlled by humans, and if errors or crises occur, the human operator or the developer of the operating system bears the corresponding responsibility. Artificial intelligence technology itself weakens human agency and control, making the attribution of responsibility for technical actions unclear.

    First, there’s the “black box” problem of artificial intelligence. While AI has significant advantages in processing and analyzing data, its internal operating principles and causal logic are often difficult for humans to understand and explain. This makes it challenging for programmers to correct erroneous algorithms, a problem often referred to as the “black box” of algorithmic models. If an AI-powered weapon system poses a security threat, the “algorithm black box” could become a convenient excuse for those responsible to shirk accountability. Those seeking accountability would face generalized blame-shifting and deflection, ultimately pointing the finger at the AI ​​weapon system. In practice, the inability to understand and explain the decision-making process of AI can lead to a series of problems, such as decision-making errors, trust crises, and information misuse.

    Secondly, there is the issue of delineating human-machine responsibility in military operations. When an AI system malfunctions or makes a decision-making error, should it be treated as an independent entity and held responsible? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this responsibility delineation lies not only in the technical aspects but also in the ethical and legal ones. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human-preset programs and algorithms, therefore their responsibility cannot be completely independent of humans. On the other hand, in certain situations, AI systems may exceed the pre-set limits of humans and make independent decisions; how to define their responsibility in such cases also becomes a difficult problem in the field of arms control.

    Thirdly, there is the issue of the allocation of decision-making power between humans and AI weapon systems. Depending on the level of machine autonomy, AI systems can execute tasks in three decision-making and control modes: semi-autonomous, supervised autonomy, and fully autonomous. In semi-autonomous systems, human decision-making power rests with the user; in supervised autonomy, humans supervise and intervene when necessary; in fully autonomous operations, humans do not participate in the process. As the military application of AI deepens, the role of humans in combat systems is gradually shifting from the traditional “human-in-the-loop” model to “human-on-the-loop,” evolving from direct controllers within the system to external supervisors. However, this shift also raises new questions. How to ensure that AI weapon systems adhere to human ethics and values ​​while operating independently is a major challenge currently facing the field of AI weapon development.

    Lowering the threshold for dissemination leads to misuse and abuse.

    Traditional strategic competition typically involves large-scale weapons system development and procurement, requiring substantial financial and technological support. With the maturation and diffusion of artificial intelligence (AI) technology, its accessibility and low cost make it possible for even small and medium-sized countries to develop advanced intelligent weapons systems. Currently, strategic competition in the field of military AI is primarily concentrated among major military powers such as the US and Russia. However, in the long run, the proliferation of AI technology will broaden the scope of strategic competition, posing a disruptive threat to the existing strategic balance. Once smaller countries possessing AI technology achieve relatively strong competitiveness, their willingness to confront threats from major powers may increase.

    First, artificial intelligence (AI) facilitates the development of lightweight and agile combat methods, encouraging smaller states and non-state actors to engage in small-scale, opportunistic military adventures to achieve their strategic objectives at a lower cost and with more diverse means. Second, the rapid development of AI has led to the increasing prominence of new forms of warfare such as cyber warfare and electronic warfare. In a highly competitive battlefield environment, malicious third-party actors can manipulate information to influence military planning and strategic deterrence, leading to escalation. The 2022 Ukraine crisis saw numerous instances of online disinformation used to confuse the public. Third, the widespread application of AI technology has also reduced strategic transparency. Traditional military strategies often rely on extensive intelligence gathering, analysis, and prediction; however, with the assistance of AI, operational planning and decision-making processes become more complex and unpredictable. This lack of transparency can lead to misunderstandings and misjudgments, thereby increasing the risk of conflict escalation.

    Governance Path of Artificial Intelligence Weaponization Security Risks

    To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military applications of artificial intelligence, promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework, strengthen ethical constraints on artificial intelligence to ensure that technological development conforms to ethical standards, and actively participate in global security governance cooperation to jointly safeguard the peace and stability of the international community.

    We attach great importance to strategic communication at the international level.

    Artificial intelligence governance is a global issue that requires concerted efforts from all countries to resolve. On the international stage, the interests of nations are intertwined yet conflicting; therefore, addressing global issues through effective communication channels is crucial for maintaining world peace and development.

    On the one hand, it is essential to accurately grasp the challenges of international governance of artificial intelligence. This involves understanding the consensus among nations on the weaponization of AI, while also closely monitoring policy differences among countries regarding the security governance of AI weaponized applications. Through consultation and cooperation, relevant initiatives should be aligned with the UN agenda to effectively prevent the misuse of AI for military purposes and promote its peaceful application.

    On the other hand, it is crucial to encourage governments to reach relevant agreements and build strategic mutual trust through official or semi-official dialogues. Compared to the “Track 1 dialogue” at the government level, “Track 1.5 dialogue” refers to dialogues involving both government officials and civilians, while “Track 2 dialogue” is a non-official dialogue conducted by academics, retired officials, and others. These two forms of dialogue offer greater flexibility and serve as important supplements and auxiliary means to official intergovernmental dialogues. Through diverse dialogue methods, officials and civilians can broadly discuss possible paths to arms control, share experiences and expertise, and avoid escalating the arms race and worsening tensions. These dialogue mechanisms will provide countries with a continuous platform for communication and cooperation, helping to enhance mutual understanding, strengthen strategic mutual trust, and jointly address the challenges posed by the militarization of artificial intelligence.

    Scientifically formulate laws and ethical guidelines for artificial intelligence.

    Artificial intelligence (AI) technology itself is neither right nor wrong, good nor evil. However, there are certainly distinctions of good and evil intentions in the design, research and development, manufacturing, use, operation, and maintenance of AI. The weaponization of AI has sparked widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on complex battlefields? Furthermore, if AI weapon systems cause unintended harm, how should liability be determined? Is entrusting life-or-death decision-making power to machines in accordance with ethical standards? These concerns highlight the necessity of strengthening ethical constraints on AI.

    On the one hand, it is essential to prioritize ethics and integrate the concept of “intelligent for good” from the very source of technology. In the design of AI military systems, values ​​such as human-centeredness and intelligent for good should be embedded within the system. The aim is to prevent potential indiscriminate killing and harm caused by AI at the source, control its excessive destructive power, and prevent accidental damage, thereby limiting the extent of damage caused by AI weapon systems to the smallest possible range. Currently, nearly a hundred institutions and government departments both domestically and internationally have published various AI ethics principles documents, and the academic and industrial communities have reached a consensus on basic AI ethical principles. In 2022, China’s “Position Paper on Strengthening Ethical Governance of Artificial Intelligence,” submitted to the United Nations, provided an important reference for the development of global AI ethics regulation. The document explicitly emphasizes that AI ethics regulation should be promoted through measures such as institutional construction, risk management, and collaborative governance.

    On the other hand, it is necessary to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of artificial intelligence entities. Strict technical review standards should be established to ensure the safety and reliability of AI systems. Comprehensive testing should be conducted before AI systems are deployed to ensure they do not negatively impact human life and social order. The legal responsibilities of developers, users, maintainers, and other parties throughout the entire lifecycle of AI systems should be clearly defined, and corresponding accountability mechanisms should be established.

    We will pragmatically participate in international cooperation on artificial intelligence security governance.

    The strategic risks posed by the military applications of artificial intelligence further highlight the importance of pragmatic international security cooperation. It is recommended to focus on three key areas:

    First, we should promote the formulation of guidelines for the application of artificial intelligence in the military field. Developing codes of conduct for the military application of artificial intelligence is an important responsibility of all countries in regulating its military use, and a necessary measure to promote international consensus and comply with international regulations. In 2021, the Chinese government submitted its “Position Paper on Regulating the Military Application of Artificial Intelligence” to the UN Convention on Certain Conventional Weapons Conference, and in 2023, it released the “Global Artificial Intelligence Governance Initiative,” both of which provide constructive references for improving the codes of conduct for regulating the military application of artificial intelligence.

    Second, it is essential to establish a suitable regulatory framework. The dual-use nature of artificial intelligence (AI) involves numerous stakeholders, making the role of non-state actors such as NGOs, technical communities, and technology companies increasingly prominent in the global governance of AI, thus becoming a crucial force in building a regulatory framework for the military application of AI. Technical regulatory measures that countries can adopt include: clarifying the scope of AI technology use, responsible parties, and penalties for violations; strengthening technological research and development to improve the security and controllability of the technology; and establishing regulatory mechanisms to monitor the entire process of technology research and development and application, promptly identifying and resolving problems.

    Third, we will jointly develop technologies and solutions for AI security. We encourage the inclusion of bilateral or multilateral negotiations between governments and militaries in the dialogue options for military AI applications, and promote extensive exchanges on military AI security technologies, operating procedures, and practical experience. We will also promote the sharing and reference of relevant risk management technical standards and usage norms, and continuously inject new stabilizing factors into the international security and mutual trust mechanism in the context of the militarization of AI.

    (The author is the director and researcher of the National Defense Science and Technology Strategy Research Think Tank at the National University of Defense Technology, and a doctoral supervisor; Liu Hujun, a master’s student at the School of Foreign Languages ​​of the National University of Defense Technology, also contributed to this article.)

現代國語:

朱啟超
《人民論壇》(2025年02月05日 第 02版)

【摘要】人工智能武器化是新一輪軍事變革的必然趨勢,近年來的局部戰爭衝突進一步刺激相關國家推進人工智能武器化戰略部署,搶占未來戰爭制高點。人工智能武器化的潛在風險不容忽視,將可能加劇軍備競賽,打破戰略平衡;賦能作戰流程,加大衝突風險;提升問責難度,增加附帶傷亡;降低擴散門檻,導致誤用濫用。對此,應加強國際間戰略溝通,確保各國在人工智能軍事應用上的共識與協作;推進法律法規建設的對話與協調,以形成統一規範的法律框架;加強人工智能倫理約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

【關鍵詞】人工智能 軍事應用 安全風險 安全治理 【中圖分類號】F113 【文獻標識碼】A

人工智能武器化,是將人工智能相關技術、平台與服務應用到軍事領域,使其成為賦能軍事行動的重要驅動力量,進而提升軍事行動的效率、精準度和自主性。隨著人工智能技術在軍事領域的廣泛應用,各主要大國和軍事強國紛紛加大戰略與資源投入,加快研發應用步伐。近年來頻發的地區戰爭衝突也進一步刺激了人工智能的戰場運用,並深刻形塑戰爭形態以及軍事變革的未來走向。

不容忽視的是,人工智能作為一類快速發展中的技術,其本身由於內在技術的不成熟、場景匹配的不准確、支持條件的不完備,可能存在潛在風險,而由於人為的誤用、濫用甚至惡意使用,也容易給軍事領域乃至國際安全領域帶來多種風險挑戰。認真貫徹落實習近平總書記提出的全球安全倡議,必須直面世界範圍內人工智能武器化的發展趨勢,深入分析人工智能武器化應用可能帶來的安全風險,並思考科學可行的治理思路與舉措。

當前人工智能武器化的發展趨勢

近年來,人工智能在軍事領域的應用,正在從根本上重塑未來戰爭形態、改變未來作戰體系,影響軍事變革的未來走向。主要軍事大國已將人工智能視為改變未來戰爭規則的顛覆性關鍵技術,紛紛挹注大量資源,推進人工智能武器的研發與應用。

人工智能武器化是軍事變革的必然趨勢。

隨著科學技術的飛速發展,軍事變革的必要性與緊迫性愈發凸顯。人工智能通過模擬人類的思維過程,延展人類的腦力與體力,可實現信息快速處理、分析和決策,可研發日益複雜的無人化武器系統平台,從而為軍事行動提供前所未有的智能化支持。

一是為軍事情報偵察與分析提供智能支持。傳統的情報偵察方式受到人力和時間等多重因素制約,難以有效應對大規模、高速度和高複雜度的情報處理需求。人工智能技術的引入,為情報偵察領域帶來革新和突破。在軍事基礎設施中,應用人工智能技術,可構建智能監測系統,提供高精度實時的情報感知服務。在情報偵察領域,人工智能技術具備對多個“信息流”進行實時處理的能力,從而極大地提高分析效率。 ①通過使用深度學習等技術工具,還可以“透過現像看本質”,挖掘出各類碎片化情報信息中的深層脈絡與因果聯繫,將海量碎片化數據快速轉變為可以利用的情報,從而提升情報分析的質效。

二是為作戰指揮與決策提供數據支持。人工智能在戰場態勢感知方面為作戰指揮和軍事決策提供有力支持。 ②其優勢在於能夠進行數據挖掘、數據融合以及預測分析等關鍵任務。在信息化智能化戰爭中,戰場環境瞬息萬變,情報信息量龐大,要求決策響應迅速且準確。因此,先進的計算機系統就成為協助指揮人員管理情報數據、進行敵情判斷、提出作戰方案建議以及擬制計劃與命令的重要工具。以美軍為例,美國雷神技術公司(Raytheon Technologies Corporation)研製的ISTAR(情報、監視、目標識別和跟踪)系統,涵蓋了情報採集、監視、目標識別及跟踪功能,可匯聚來自衛星、艦船、飛機及地面站等多元信息源的數據,並對其進行深度分析與處理。這不僅顯著提高了指揮官獲取信息的速度,而且可藉助智能分析系統提供數據支持,使決策更加快速、高效和精準。

三是為無人作戰系統提供重要支撐。無人作戰系統是一種無需人類直接操縱,便可獨立完成軍事任務的新型武器裝備系統,主要包括智能化無人作戰平台、智能化彈藥和智能化作戰指揮控制系統等組成部分,具備顯著的自主性和智能化特徵。無人作戰系統,作為引領未來戰爭形態變革的技術裝備,已成為國家間軍事競爭的重要籌碼。該系統通過運用自主導航、目標識別、路徑規劃等關鍵技術,實現了不同戰場環境及作戰空間的適應能力。借助深度學習、強化學習等先進算法,無人作戰系統能夠獨立完成導航任務,並實現精準打擊目標。這種系統的設計理念是“平台無人,系統有人”,其本質是對有人作戰系統的智能化延伸。例如,美國國防部高級研究計劃局(DARPA)研發的“MQM-57獵鷹者”無人機,就採用了先進的人工智能技術,具備高度自主的目標識別和追踪功能。

四是為軍事後勤與裝備保障提供技術支持。在信息化戰爭的背景下,戰爭進程加快、機動性提升、作戰消耗顯著增加。傳統的“超量預儲”保障模式已無法適應現代戰場快速變化的需求,因此,對作戰部隊進行適時、適地、適需、適量的快速精確後裝保障提出了更高的要求。人工智能作為一種具有溢出帶動和交叉融合特性的技術,與物聯網、大數據、雲計算等前沿技術相互融合,使得人工智能知識群、技術群和產業群全面滲透到軍事後裝領域,顯著提升了後勤裝備保障能力。

主要國家紛紛佈局人工智能軍事應用。

為增強在人工智能領域的全球競爭力,美國、俄羅斯、日本等主要大國加緊對人工智能軍事應用的戰略佈局。首先,通過更新和調整人工智能領域的頂層戰略規劃,為未來的發展提供明確指導;其次,針對未來戰爭需求,加快人工智能技術與軍事領域的深度融合,推動裝備系統的智能化、自主化和無人化發展;此外,積極創新作戰概念,以驅動作戰力量創新,進而提升作戰效能和競爭優勢。

一是製定戰略規劃。基於技術霸權追求軍事霸權、政治霸權、經濟霸權的戰略偏執,美國正加快自身軍事智能化進程。 2023年11月,美國國防部發布《數據、分析與人工智能採用戰略》,旨在擴展整個國防部體系的先進能力,以獲得持久的軍事決策優勢。俄軍頒布被稱為“3.0版本”的《2024年至2033年俄羅斯武器裝備發展綱要》,旨在為未來10年武器裝備發展提供指導,綱要強調繼續推進核武器和常規武器建設,並重點研究人工智能和機器人技術、高超音速武器和其他基於新物理原理的打擊兵器。

二是研發先進裝備系統。美軍自2005年開始每隔幾年都會發布一版“無人系統路線圖”,以展望並設計空中、地面、水面/水下等各領域無人系統平台,貫通研發—生產—測試—訓練—作戰—保障等無人化武器裝備發展鏈路。目前,世界上已有70多個國家可以研發無人化系統平台,各種類型的無人機、無人車、無人船(艇)、無人潛航器如雨後春筍般不斷出現。 2024年7月15日,美軍參聯會前主席馬克·米利接受《美國防務新聞》採訪時稱,到2039年,三分之一的美軍部隊將由機器人組成。俄軍研發的平台-M作戰機器人、“柳葉刀”自殺式無人機和S70“獵人”重型無人機等,已投入實戰檢驗。

三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來先後提出“分佈式殺傷”“多域戰”“馬賽克戰”等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種傳感器、通信網絡、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智能技術賦能支持下,通過網絡信息系統可動態鏈接、自主規劃、協同組合,從而形成一個按需集成、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計劃》,該計劃旨在將多域作戰向全域作戰概念拓展,將各軍種傳感器連接到一個統一“物聯網”中,利用人工智能算法幫助改善作戰指揮決策。 ③

戰爭衝突刺激人工智能武器化進程。

近年來,利比亞衝突、納卡衝突、烏克蘭危機、哈以沖突等局部衝突不斷,進一步刺激了人工智能武器化的發展進程。

在利比亞衝突中,交戰雙方採用多種型號無人機執行偵察和作戰任務。據聯合國利比亞問題專家小組發布的報告指出,土耳其製造的“卡古-2”(Kargu-2)無人機2020年在利比亞執行了“追捕並遠程交戰”行動,可自主攻擊撤退中的敵方士兵。這一事件標誌著致命性自主武器系統在實戰中的首次運用。如美國學者扎卡里·卡倫伯恩所述,若有人在此類自主攻擊中不幸喪生,這極有可能是歷史上首個已知的人工智能自主武器被用於殺戮的例子。在2020年納卡衝突中,阿塞拜疆運用土耳其生產的“旗手”TB2無人機編隊和以色列生產的“哈洛普”無人機成功突破了亞美尼亞防空系統,掌握了戰場製空權和主動權。 ④ 阿塞拜疆軍隊無人機作戰的顯著成效,在很大程度上源於亞美尼亞軍隊的“輕敵”心態,對無人機在現代戰爭中的重要性和威脅性認識不足。其次,從進攻策略的角度來看,阿塞拜疆軍隊在無人機戰法上進行了大膽的創新。他們靈活運用察打一體無人機和巡飛彈等先進裝備,不僅提升了作戰效率,也大大增強了戰鬥的突然性和致命性。 ⑤

在2022年爆發的烏克蘭危機中,俄羅斯和烏克蘭都廣泛使用軍用級和商用無人機執行偵察監視、火砲瞄準和打擊任務。烏克蘭軍隊通過使用“旗手”TB2無人機以及美國援助的“彈簧刀”系列自殺式無人機,實施精確打擊和高效殺傷,成為令世界矚目的“戰場殺手”。在哈以沖突中,以色列軍方被指控使用名為“薰衣草”(Lavender)的人工智能係統來識別並鎖定加沙境內的轟炸目標,曾將多達3.7萬名加沙巴勒斯坦人標記為“武裝分子”嫌疑對象,並將其認定為可直接“暗殺”的目標,以軍行動引發了國際社會廣泛關注和譴責。 ⑥

人工智能武器化帶來的​​安全風險

從自動化指揮系統到智能無人作戰平台,再到網絡防禦中的智能決策系統,人工智能技術在軍事領域的應用正變得愈發普遍,已成為現代戰爭不可或缺的一部分。然而,人工智能武器化的趨勢下,其誤用、濫用甚至惡意使用,也將給國際安全帶來不可忽視的風險挑戰。

加劇軍備競賽,打破戰略平衡。

在信息化智能化時代,人工智能所具有的顛覆性潛力讓軍事大國都難以抗拒,紛紛聚焦人工智能軍事能力的開發和運用,唯恐在這一領域落後而喪失戰略機遇。深化人工智能軍事應用,則能夠以更低成本、更高效率的方式獲得“非對稱優勢”。

一是各國紛紛搶抓“先行者優勢”。當一個國家在智能武器系統開發領域取得技術領先地位時,意味著該國具備更高級的人工智能和相關應用能力,使其在武器系統開發、控制和應急響應等方面具有先發優勢。這種優勢包括更高的自主性、智能化程度和自適應能力,從而增加了該國的軍事實力和戰略競爭優勢。與此同時,先行者的軍事優勢可能會成為競爭對手的安全威脅,導致各國在先進技術的軍事應用上呈現出你爭我趕的態勢。 ⑦ 2023年8月,美國國防部副部長凱瑟琳·希克斯宣布了“複製者計劃”(Replicator initiative),該倡議力求在不到兩年的時間內在印太地區部署數千個“自主武器系統”。 ⑧

二是各國人工智能軍備建設的不透明性可能加劇軍備競賽。這主要有兩個方面的原因:一是人工智能技術是一種可用於設計多種應用的“使能技術”,這意味著人工智能軍事應用具體情況核查難度較高,難以像核武器可以通過對鈾、離心機以及武器和運載系統的監測來判斷一個國家是否在進行核武器的開發或部署。半自主、完全自主武器系統之間的差別主要是由於計算機軟件算法不同導致的,很難通過物理核查手段來對各國的條約執行情況進行核查。二是各國為了保持己方的戰略優勢,往往對先進技術的軍事應用相關細節採取保密措施,從而使對手無法探知其戰略意圖。在當前國際環境中,這種不透明性不僅僅加劇了軍備競賽,更為未來衝突升級埋下了伏筆。

三是各國戰略意圖的不確定性也會加劇軍備競賽。人工智能對於戰略穩定、核威懾和戰爭升級的影響,很大程度上取決於他國對於其能力的感知,而非其實質能力。正如美國學者托馬斯·謝林指出,國際關係常常具有風險競爭的特徵,更多的是對勇氣而不是武力的考驗,主要對手之間的關係是由哪一方最終願意投入更大的力量,或者使之看起來即將投入更大的力量來決定的。 ⑨ 一個行為體對於他者能力的感知,無論真假,都會在很大程度上影響軍備競賽進程。如果一個國家大力發展智能武器系統,競爭對手在不確定對方意圖的情況下,會對競爭對手的軍備能力及發展軍備的意圖產生猜忌,往往採取對等措施,即通過發展軍備來滿足自身安全需求。正是這種意圖的模糊性刺激了技術積累,加劇武器部署的不穩定性,最終導致惡性循環。

賦能作戰流程,加大衝突風險。

在大數據和人工智能技術賦能下,傳統作戰流程將實現智能化再造,即由“態勢感知—指揮決策—攻防協同—綜合保障”向“全域態勢智能認知—人機一體混合決策—有人/無人自主協同—主動按需精准保障”轉變。然而,作戰流程的智能化再造雖然提高了作戰的效率和精確性,但也提升了衝突和誤判的風險。

一是以“機器速度”爆發的戰爭將增加倉促行動的風險。人工智能武器系統在精確度和反應速度上表現出強大的能力,使得未來戰爭將以“機器速度”爆發。 ⑩ 但戰爭速度過快也將升高衝突風險。在導彈防禦、自主武器系統和網絡空間等重視自主性以及反應速度的領域,更快的反應速度將帶來巨大的戰略優勢,同時也極大地壓縮了防禦方對軍事行動作出反應的時間窗口,導致作戰指揮員和決策者置身於巨大的“時間壓力”之下,加劇了“倉促行動”的風險,並增加了危機意外升級的可能性。

二是依賴系統自主性可能增加壓力下的誤判機率。美國國防部認為,“高度自主化的人工智能係統,能夠根據任務參數的動態變化,自主選擇並執行相應操作,高效實現人類預設的目標。自主性的增加不僅大幅減少了對人力的依賴,提高了整體操作效率,更被國防規劃者視為保持戰術領先、確保戰場優勢的關鍵要素。”⑪然而,由於人類指揮官無法作出足夠快的反應,可能逐漸將控制權下放給自主系統,增加誤判機率。 2003年3月,美國“愛國者”導彈系統曾錯誤地將友軍的“龍捲風”戰鬥機標記為反輻射導彈,指揮人員在只有幾秒鐘反應時間的壓力狀態下,選擇發射導彈,造成了兩名飛行員的死亡。 ⑫

三是削弱了危機終止機制的有效性。冷戰時期,美蘇主導構建了一系列限制性措施來遏制危機的升級,避免其演化為大規模的核戰爭。在這些措施中,人類扮演著至關重要的“監督者”角色,在可能出現風險失控時,能夠在充足的時間內啟動終止措施,避免大規模人道主義災難發生。但是,隨著人工智能係統運算能力的提升及其與機器學習的深度融合,作戰響應變得更為迅捷、精確和具有破壞性,人類對於危機的終止干預機制將可能被削弱。

戰爭問責困難,增加附帶傷亡。

人工智能武器系統使得戰爭責任更難界定。在傳統作戰模式下,由人類控制武器系統,一旦造成失誤或危機,人類操作員或者操作系統的研發者將承擔相應的責任。人工智能技術本身弱化了人類的能動性和控制能力,致使技術性行為的責任歸屬變得模糊不清。

一是人工智能“黑箱”問題。儘管人工智能在處理和分析數據方面有著顯著優勢,但是其內部運行規律和因果邏輯卻常常難以被人類理解和解釋,這使得程序員難以對錯誤算法進行糾偏除誤,這一問題常常被稱為算法模型的“黑箱”。一旦人工智能武器系統產生安全危害,“算法黑箱”可能成為相關責任方推卸責任的合理化藉口,追責者只能面臨泛化的卸責與推諉,並將責任矛頭指向人工智能武器系統。在實踐中,如果無法理解並解釋人工智能的決策過程,可能會引發一系列的問題,如決策失誤、信任危機、信息濫用等。

二是軍事行動中人機責任劃分問題。當人工智能係統出現故障或者決策失誤時,是否應將其視為一種獨立的實體來承擔責任?或者,是否應該將其視為一種工具,由人類操作者承擔全部或部分責任?這種責任劃分的複雜性不僅在於技術層面,更在於倫理和法律層面。一方面,人工智能係統雖然能夠自主決策,但其決策過程仍然受到人類預設的程序和算法限制,因此其責任不能完全獨立於人類。另一方面,人工智能係統在某些情況下可能會超越人類的預設範圍,作出獨立的決策,此時其責任又該如何界定,也成為軍控領域的難題。

三是人與人工智能武器系統的決策權分配問題。按照機器自主權限的不同,人工智能係統能夠以半自主、有監督式自主以及完全自主三種決策與控制方式執行任務。在半自主系統中,行動的決策權由人類掌控;在有監督式自主行動中,人類實施監督並在必要時干預;在完全自主行動中,人類不參與行動過程。隨著人工智能軍事應用程度的逐漸加深,人在作戰系統中的角色正經歷由傳統的“人在迴路內”模式逐步向“人在迴路上”轉變,人類從系統內部的直接操控者演化為系統外部的監督者。然而,這一轉變也引發了新的問題。如何確保人工智能武器系統在獨立運作時仍能遵循人類倫理和價值觀,這是當前人工智能武器研發領域面臨的重大挑戰。

降低擴散門檻,導致誤用濫用。

傳統的戰略競爭通常涉及大規模的武器系統研發和採購,需要大量資金和技術支持。人工智能技術成熟擴散後,具有易獲取且價格低廉等優勢,即便是中小國家也可能具備開發先進智能武器系統的能力。當前,軍用人工智能領域的戰略競爭主要集中在美俄等軍事大國之間。但長遠來看,人工智能技術的擴散將擴大戰略競爭的範圍,對現有的戰略平衡構成破壞性威脅。一旦掌握人工智能技術的較小規模國家擁有相對較強的競爭力,這些國家在面臨大國威脅時發起對抗的意願可能就會增強。

一是人工智能有助於發展一些輕便靈巧的作戰手段,從而鼓勵一些中小國家或者非國家行為體利用其開展小型的、機會主義的軍事冒險,以更低廉的成本和更豐富的途徑來達到其戰略目地。二是人工智能的快速發展使得網絡戰、電子戰等新型戰爭形態日益凸顯。在競爭激烈的戰場環境中,惡意的第三方行為體可以通過操縱信息來影響軍事規劃和戰略威懾,導致局勢升級。在2022年爆發的烏克蘭危機中,就有眾多網絡虛假信息傳播混淆視聽。三是人工智能技術的廣泛應用還降低了戰略透明度。傳統的軍事戰略往往依賴於大量的情報收集、分析和預測,而在人工智能技術的輔助下,作戰計劃和決策過程變得更加複雜和難以預測。這種不透明性可能導致誤解和誤判,從而增加了衝突升級的風險。

人工智能武器化安全風險的治理路徑

為確保人工智能安全發展,避免其武器化帶來的​​潛在危害,應加強國際間的治理戰略溝通,尋求各國在人工智能軍事應用方面的共識與協作;推進法律法規對話協調,以形成統一規範的法律框架;加強人工智能倫理的約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

高度重視國際層面戰略溝通。

人工智能治理是一個全球性問題,需要各國通力合作,共同解決。在國際舞台上,各國利益交融與利益衝突並存,因此,通過有效的溝通渠道來處理全球性問題成為維護世界和平與發展的關鍵。

一方面,要準確把握人工智能國際治理挑戰。既要把握各國對人工智能武器化發展的共識,也要密切關注各國在人工智能武器化應用安全治理方面的政策差異,通過協商合作,使相關倡議與聯合國議程相協調,從而有效防止人工智能在軍事上的濫用,推動人工智能用於和平目的。

另一方面,推動各國政府通過官方或半官方對話,達成相關協議,建立戰略互信。相較於政府層面的“1軌對話”,“1.5軌對話”指的是政府官員與民間人士共同參與的對話,而“2軌對話”則是由學者、退休官員等進行的民間非官方形式的對話。這兩種對話形式具有更高的靈活性,是政府間官方對話的重要補充和輔助手段。通過多樣化的對話交流方式,官方和民間人士可以廣泛磋商軍備控制的可能實現路徑,分享經驗和專業知識,以避免軍備競賽的升級和緊張局勢的惡化。這些對話機制將為各國提供持續的溝通與合作平台,有助於增進相互理解、加強戰略互信,共同應對人工智能軍事化應用帶來的挑戰。

科學制定人工智能法律和倫理規約。

人工智能技術本身並無對錯善惡之分,但對於人工智能的設計、研發、製造、使用、運行以及維護確有善惡意圖之別。人工智能武器化引發了廣泛的倫理關注。國際法框架下,自主武器系統是否能夠在復雜戰場上精準區分戰鬥人員與平民?此外,若人工智能武器系統導致非預期的傷害,其責任歸屬如何界定?將關乎生死的決策權交付於機器,這一做法是否符合道德倫理標準?這些擔憂凸顯了加強人工智能倫理約束的必要性。

一方面,要堅持倫理先行,從技術源頭上融入“智能向善”的理念。在人工智能軍事系統的設計過程中,將以人為本、智能向善等價值觀內嵌於系統中。其目的是從源頭上杜絕人工智能可能引發的濫殺濫傷行為,控制其過度殺傷力,防範意外毀傷的發生,從而將人工智能武器系統所帶來的毀傷程度限制在盡可能小的範圍內。目前,國內外已有近百家機構或政府部門發佈各類人工智能倫理原則文件,學術界和產業界亦就人工智能基本倫理原則達成共識。 2022年,中國向聯合國遞交的《關於加強人工智能倫理治理的立場文件》為全球人工智能倫理監管的發展提供了重要參考。文件明確強調,應通過制度建設、風險管控、協同共治等多方面的措施來推進人工智能倫理監管。

另一方面,要完善相關法律法規,明確人工智能主體的權責邊界。制定嚴格的技術審核標準,確保人工智能係統的安全性和可靠性。在人工智能係統上線前進行全面的測試,確保其不會對人類生活和社會秩序造成負面影響。明確開發者、使用者、維護者等各方在人工智能係統全生命週期中的法律責任,以及建立相應的追責機制。

務實參與人工智能安全治理國際合作。

人工智能軍事應用所帶來的戰略風險,更加凸顯出國際安全務實合作的重要性。建議重點從三個方面著手:

一是推動制定人工智能在軍事領域的運用準則。制定人工智能軍事應用的行為準則,是各國規範人工智能軍事應用的重要責任,也是推動國際共識和遵守國際法規的必要舉措。中國政府2021年向聯合國《特定常規武器公約》大會提交了《中國關於規範人工智能軍事應用的立場文件》,2023年發布《全球人工智能治理倡議》,這些都為完善規範人工智能軍事應用的行為準則提供了建設性參考。

二是建立適用的監管框架。人工智能軍民兩用性使其涉及眾多利益攸關方,一些非國家行為體如非政府組織、技術社群、科技企業在人工智能全球治理進程中的作用將更加突出,成為人工智能軍事應用監管框架建設的重要力量。各國可採取的技術監管措施包括:明確人工智能技術的使用範圍、責任主體和違規處罰措施;加強技術研發,提高技術的安全性和可控性;建立監管機制,對技術的研發和應用進行全程監管,及時發現和解決問題。

三是共同研發人工智能安全防範技術和解決方案。鼓勵將政府間和軍隊間的雙邊或多邊談判納入軍用人工智能應用的對話選項,就軍用人工智能安全防範技術、操作規程及實踐經驗廣泛交流,推動相關風險管理技術標準和使用規範的分享借鑒,為人工智能軍事化背景下的國際安全互信機制不斷注入新的穩定因素。

(作者為國防科技大學國防科技戰略研究智庫主任、研究員,博導;國防科技大學外國語學院碩士研究生劉胡君對本文亦有貢獻)

【註釋】

①Katz B. Analytic edge: Leveraging emerging technologies to

transform intelligence analysis [R]. Washington D.C.: Center for

Strategic and International Studies, 2020.

②Paul McLeary. Pentagon’s Big AI Program, Maven, Already

Hunts Data in Middle East, Africa[N]. Breaking Defense, May 1, 2018.

③唐新華:《美國綜合威懾戰略中的技術互操作性》,《太平洋學報》, 2022年第12期,第15-25頁。

aijan’s Drones Owned the Battlefield in

Nagorno-Karabakh—and Showed Future of Warfare[N]. The

Washington Post, November 11, 2020.

⑤朱啟超、陳曦、龍坤:《無人機作戰與納卡衝突》,《中國國際戰略評論》,2020年第2期,第167-183頁。

⑥The Verge Report: Israel used AI to identify bombing targets in

Gaza [EB/OL].[2024-04-05].

artificial-intelligence-gaza-ai#:~:text.

⑦羅易煊、李彬:《軍用人工智能競爭中的先行者優勢》,《國際政治科學》, 2022第3期,第1-33頁。

⑧U.S. Department of Defense. Deputy Secretary of Defense

Kathleen Hicks Keynote Address: The Urgency to Innovate (As

Delivered) [EB/OL]. [2023-08-28]. https://www.defense.gov/News/Speeches/Speech/Article/3507156/deputy-

secretary-of-defense-kathleen-hicks-keynote-address-the-urgency-

to-innov/.

⑨[美]托馬斯·謝林著,毛瑞鵬譯:《軍備及其影響》,上海:上海人民出版社,2017年,第81頁。

⑩Rautenbach P. Keeping Humans in the Loop is Not Enough to

Make AI Safe for Nuclear Weapons[EB/OL],

enough-to-make-ai-safe-for-nuclear-weapons/,2023-02-16/2024-01-

09.

⑪Mayer M. The new killer drones: understanding the strategic

implications of next-generation unmanned combat aerial vehicles[J],

International Affairs, 2015,91(04):771.

⑫[美]保羅·沙瑞爾著,朱啟超、王姝、龍坤譯:《無人軍隊:自主武器與未來戰爭》,北京:世界知識出版社,2019年,第153-156頁。

中國原創軍事資源:https://paper.people.com.cn/rmlt/pc/content/202502/05/content_30058889349.html

Chinese Military’s Exploration Regarding Evolution of Intelligent Warfare Practices

中國軍隊對智慧化戰爭實踐演進的探索

現代英語:

Recent global regional wars and military conflicts demonstrate that modern warfare practice is gradually evolving toward an information-based, intelligent form. Facing a new wave of military revolution, to fully explore the evolutionary laws of intelligent warfare practice, we need to further clarify the fundamental underpinnings of this evolution, fully assess the technological advantages of warfare practice, and identify the key challenges driving the current evolution of warfare practice.

  The evolution of intelligent warfare practice requires the support of social practice foundation

  As an important part of social activities, military activities have a very close relationship with social activities. Similarly, as a specific form of military activities, war practice cannot be examined in isolation from the larger system of social practice.

  The level of development of productive forces determines the height of practical evolution. Warfare is part of human social practice and always aligns with the level of social production. How humans conduct material production often determines how they organize war; the way humans conduct warfare reflects their mode of production. Engels argued that victory through violence is based on the production of weapons, which in turn is based on the entire production system. Therefore, with the development of productive forces, the means of warfare are also constantly evolving. Just as it was impossible to find a weapon from the information age in the cold weapon age, it is difficult to use typical cold weaponry on the battlefields of the information age. Even daggers produced in the information age differ from those of the cold weapon age. From the alloy composition to the forging and molding technology, they embody the technological advancements of the information age and are weapons of the information age.

  Changes in the production relations system influence the outcomes of practical evolution. As a special form of social practice, the development and changes in war practice closely revolve around the direction and speed of social practice evolution. In other words, behind every transformation in war practice, a similar social transformation is also taking place simultaneously, and success requires the completion of a systemic transformation of production relations as a whole. Marx insightfully pointed out that in all social forms, a certain type of production determines the status and influence of all other types of production, and thus its relations also determine the status and influence of all other relations. This is a pervasive light that obscures all other colors and alters their characteristics. Concepts of war practice that are too far ahead of their time often struggle to succeed due to a lack of hardware and software support that aligns with the development of contemporary social practice. For example, the concept of joint operations was unlikely to emerge in the era of cold weapons. Even if military theorists had anticipated this concept a priori, they would have been unable to apply it in practice. Modern joint operations, however, are in fact a microcosm of large-scale socialized joint production in military practice. Therefore, the design of war should return to social practice itself, seeking inspiration and reflection from it. Ignoring the overall level of development in production relations and prematurely designing war scenarios for the intelligent era can lead to scenarios and objectives that become sci-fi, game-like, and fictional.

  The winning effect of intelligent warfare practice requires further testing in war

  The goal of the evolution of warfare practice is always to enhance operational superiority and achieve victory. However, this does not mean that the evolutionary process will naturally lead to this goal. Sometimes, in the early stages of a change in warfare practice, the effectiveness of victory is not obvious, and the effectiveness of various combat methods must be continuously evaluated during the development process.

  A first-mover advantage does not guarantee victory on the battlefield. While it’s undeniable that whoever first masters the latest winning strategies will be able to seize the initiative on the battlefield through technical and tactical advantages, this first-mover advantage does not necessarily lead to ultimate victory. While a first-mover advantage does have a significant impact on winning wars, the history of warfare demonstrates that technical and tactical advantages can be offset by mistakes or disadvantages in other areas. In World War II, the German army, which was the first to master the winning strategies of mechanized warfare, gained an advantage in the initial battles on the Western Front in Europe and the Eastern Front between the Soviet Union and Germany. However, this initial advantage was quickly eroded by strategic errors and overall disadvantages.

  First-mover advantage rarely creates an absolutely overwhelming advantage. In the era of globalization, human social practices are closely interconnected, and technological innovations from one country or region quickly spread abroad. Therefore, technological and tactical advantages in the intelligent era are often short-term and localized, making it difficult for a single country or region to establish a long-term, global, monopolistic lead. Currently, the rapid development of network communications technology is bringing humans closer than ever before. Similarly, in the practice of intelligent warfare, various advanced reconnaissance methods will continue to penetrate the secrecy of both sides. Sometimes, after the emergence of a new weapon, countervailing weapons or methods will quickly be invented.

  The advantages of intelligence don’t necessarily create optimal combat situations. Currently, the intelligence content of war practice has yet to become a decisive factor in determining victory or defeat. Currently, the practice of intelligent warfare is still in its infancy. The mechanisms of victory in war require in-depth research, many equipment require further development and verification, and various experimental pre-war practices require further testing and improvement. In comparison, the practice of informationized warfare is relatively mature, with various types of weapons and equipment, as well as supporting operational and tactical means, becoming more stable. This leaves much room for the application of informationized warfare methods. Therefore, as war practice evolves, we must continuously innovate the means of intelligent warfare practice while fully tapping the operational potential of informationized warfare practice.

  The development and transformation of intelligent warfare practice requires the integrated promotion of people and technology

  There are many factors that drive the evolution of intelligent practice. On the premise of clarifying development support and evaluating the effectiveness of combat methods, it is necessary to comprehensively analyze various contradictions, grasp the key points, distinguish the main points, and highlight the leading role of people.

  Technological change is the most dynamic factor. Science and technology are core combat capabilities. As the most revolutionary factor in the development of war practice, every major scientific and technological innovation has a profound impact on the nature of warfare. Engels once pointed out that once technological advances can be applied to military purposes and have already been applied to military purposes, they immediately and almost forcibly, and often against the will of the commander, lead to changes or even revolutions in combat methods. However, equating the intelligent military revolution with the high-tech revolution, leading to an overemphasis on intelligent technology and an excessive pursuit of the development of various intelligent weapons, undoubtedly fails to correctly grasp the essence of the evolution of intelligent warfare practice. While technology plays an important role, it is not the only decisive factor; culture, politics, and individuals themselves also play a role. In his book A History of World Wars, British historian Jeremy Black repeatedly reminds readers not to fall into the trap of technological determinism and simply attribute all major changes in military history to technological innovation.

  Institutional innovation is a challenge. To fully leverage the combat effectiveness of equipment in the evolution of intelligent warfare, all operational elements must be integrated into a unified system, integrating ideology, combat methods, organizational structures, education and training, and military technology. Renowned military theorist Dupuy argued in his book The Evolution of Weapons and Warfare that no matter how much a weapon’s lethality improves, its compatibility with military tactics and organizational structure is far more important than its invention and adoption. Only when the advantages of equipment are integrated into scientific organizational structures can optimal combat effectiveness be achieved. Historically, Britain was the first country to possess aircraft carriers and tanks, but it was not the country that successfully led the mechanized warfare revolution. While the most easily achieved transformation in warfare practice is the upgrading of weaponry and equipment, comprehensive innovation in warfare practice requires holistic innovation at the institutional level to achieve a comprehensive effect. A military that only upgrades equipment without institutional reform will struggle to develop sustained and effective combat effectiveness and cannot truly lead a revolution in warfare practice.

  The integration of people and weapons is crucial. People are the primary actors in the practice of warfare. In the era of intelligent warfare, the decisive role of people in warfare remains unchanged and remains the driving force behind its evolution. From the perspective of the two major categories of people and weapons, military technology falls more heavily on the “weapons” side, while other elements of warfare, such as military strategy, organizational structure, strategic tactics, and combat methods, fall more heavily on the “people” side. The more advanced high-tech equipment becomes, the more it requires human expertise to master and utilize it. In the era of intelligent warfare, greater emphasis must be placed on the importance of wisdom and strategy, relying more heavily on individuals equipped with the concepts and thinking of the intelligent era to direct and design operations. Therefore, promoting the evolution of warfare requires focusing on people as the decisive factor, fully integrating “people” and “weapons,” vigorously developing joint education within the context of intelligent warfare, and focusing on cultivating scientific and technical personnel and command personnel who meet the requirements of intelligent warfare.

現代國語:

近年來的世界局部戰爭和軍事衝突表明,現代戰爭實踐正逐步朝向資訊化智慧化形態演變。面對新一波軍事革命浪潮,為充分探究智慧化戰爭實踐演進規律,需要進一步釐清戰爭實踐演進的基礎支撐,充分評估戰爭實踐的技術優勢,找準推動當前戰爭實踐演進的重難。

智能化戰爭實踐的演進需要社會實踐基礎作為支撐

作為社會活動的重要組成部分,軍事活動與社會活動有著十分密切的關係。同樣,作為軍事活動的一種具體形式,戰爭實踐也不能離開社會實踐的大系統去孤立地考察。

生產力發展水準決定實踐演進的高度。戰爭實踐是人類社會實踐的一部分,始終與社會生產水準相適應。人類怎樣進行物質生產活動,往往就怎樣組織戰爭,人類從事戰爭的方式,反映了它們的生產方式。恩格斯提出,暴力的勝利是以武器生產為基礎的,而武器的生產又是以整個生產為基礎的。因此,伴隨生產力的發展,戰爭實踐手段也不斷發展。正如在冷兵器時代無法尋覓到一件資訊化時代武器一樣,在資訊化時代的戰場上也難以運用典型的冷兵器時代的武器。即使是資訊化時代生產的匕首,也已然不同於冷兵器時代的匕首,從合金成分比例到鍛造造成型技術,它本身蘊含了資訊化時代的工藝水平,屬於資訊化時代的武器。

生產關係系統變化影響實踐演進的結果。作為一種特殊形式的社會實踐,戰爭實踐發展變化緊緊圍繞著社會實踐演進方向和速度。也就是說,一場戰爭實踐變革背後,也同步進行著相似的社會變革實踐,需要伴隨整個生產關係的系統變革完成才能成功。馬克思精闢地指出,在一切社會形式中都有一種一定的生產決定其他一切生產的地位和影響,因而它的關係也決定其他一切關係的地位和影響,這是一種普照的光,它掩蓋了一切其他色彩,改變著它們的特點。過於超越時代的戰爭實踐設想,往往會因缺乏符合同時代社會實踐發展所匹配的軟硬體支撐而難以成功。例如聯合作戰概念很難在冷兵器時代出現,即使有軍事理論家先驗地預想到這種理念,也無法在實踐中運用。而現代聯合作戰實踐其實正是社會化聯合大生產在軍事上的縮影。因此,設計戰爭應回歸社會實踐本身,從中尋找靈感與鏡像。若忽略生產關係的整體發展水平,超前設計智慧化時代戰爭場景,將可能使場景目標變得科幻化、遊戲化和虛構化。

智能化戰爭實踐的勝利效果需要戰爭的進一步檢驗

戰爭實踐演進的目標總是瞄準提高作戰優勢和勝利效果展開,然而這並不意味著演進過程會自然指向這一目標。有時候在戰爭實踐變革初期,其致勝效果並不明顯,需要在發展的過程中持續評估各種作戰手段的效果。

先發優勢不等於戰場上的必勝之勢。毫無疑問,誰先掌握了最新戰爭制勝機理,誰就能夠憑藉技戰術優勢掌握戰場主動權,但這種先發優勢並不會必然導致戰爭最終勝利。先發優勢的確對贏得戰爭有巨大影響,但戰爭實踐發展史表明,技戰術先發優勢會被其他方面的失誤或劣勢抵消。在第二次世界大戰中,率先掌握了機械化戰爭制勝機理的德軍,儘管在西線歐洲戰場以及東線蘇德戰場的最初較量中獲得了優勢,然而這種初始優勢很快因其戰略上的失誤以及總體實力上的劣勢而被消耗殆盡。

先發優勢難以構成絕對的壓倒性態勢。在全球化時代,人類社會實踐緊密相連,一個國家或地區的技術創新很快就會被外溢傳播,所以智慧化時代的技戰術優勢往往是短期局域性的,一個國家或一個地區很難形成長期全局性的壟斷式領先。目前,網路通訊技術迅速發展,讓人類空前地彼此接近。同樣,在智慧化戰爭實踐中,各類先進偵察手段將不斷洞穿作戰雙方的保密堡壘,有時一種新型武器出現以後,其製衡性武器或手段很快會被發明創造出來。

智能化優勢未必造成最佳作戰局勢。從目前來看,戰爭實踐的智慧化含量尚未成為影響戰爭勝負的決定因素。目前,智慧化戰爭實踐尚處於不成熟的萌芽期,戰爭制勝機理有待深入研究,許多裝備有待進一步開發驗證,各類試驗性的戰爭預實踐有待進一步檢驗和完善。相較而言,資訊化戰爭實踐已相對成熟,各類武器裝備以及配套的戰役戰術手段已趨於穩定,資訊化作戰方式仍有很大應用空間。因此在戰爭實踐演進中,要在不斷創新智慧化戰爭實踐手段的同時,充分發展資訊化戰爭實踐的作戰潛能。

智能化戰爭實踐的發展變革需要人與技術綜合推動

推動智慧化實踐演進的因素很多,需要在釐清發展支撐、評估作戰方式成效的前提下,綜合分析各類矛盾,抓住關鍵、區分要點,突顯人的主導作用。

技術變革是最活躍因素。科技是核心戰鬥力。作為戰爭實踐發展中最具革命性的因素,每一次重大科技創新都會對戰爭形態產生深遠影響。恩格斯曾指出,一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。但是,將智能化軍事革命等同於高新技術革命,以至於過於注重對智能化技術的強調,過於追求各類智能化武器的研發,無疑是沒能正確掌握智能化戰爭實踐的演進本質。科技雖然發揮重要作用,但並非起決定性的唯一因素,文化、政治以及人本身都在發揮作用。英國歷史學家傑瑞米·布萊克在《世界戰爭史》一書中不斷提醒讀者,不要掉進技術決定論的陷阱,不能簡單地把軍事史上所有重大變革都歸因於科技革新。

制度化創新是難點。為充分發揮好智慧化戰爭演進中的裝備作戰效能,需要將所有作戰要素凝聚為一個體系,將思想理論、作戰方式、編制體制、教育訓練等與軍事技術融為一體。著名軍事理論家杜普伊在《武器與戰爭的演變》一書中提出,無論兵器的殺傷力有多大提高,新兵器跟軍事戰術和編制的兼容統一,要比新兵器的發明和採用重要得多。裝備的優勢只有融入科學的組織形態,才能創造出最佳戰鬥力。從歷史實踐來看,英國是第一個擁有航空母艦和坦克的國家,但並不是成功引領機械化戰爭革命的國家。戰爭實踐變革中,最容易實現的是武器裝備的更新換代,但戰爭實踐全面創新需要在製度層面進行整體創新,形成整體效應。只有裝備更新而無制度變革的軍隊,是難以形成持久有效戰鬥力的,也無法真正引領戰爭實踐革命。

人與武器結合是關鍵。人是戰爭實踐的主體。在智慧化戰爭時代,人對戰爭實踐的決定性作用絲毫沒有改變,仍是推動戰爭實踐演進的主導。從人與武器這兩大範疇看,軍事技術比較屬於「武器」這一方面,而戰爭實踐中的其他要素,如軍事謀略、編制體制、組織結構、戰略戰術、作戰方式等則更屬於「人」這一方面。高新技術裝備越先進,越需要有人去掌握運用,智能化戰爭時代需要更多關注智慧和謀略的重要性,需要更多依靠具備智能化時代觀念和思維的人去指揮和設計。因此,推動戰爭實踐演進要聚焦人這一決定性要素,把「人」和「武器」充分結合起來,大力發展智能化戰爭背景下的聯合教育,聚力培養符合智能化戰爭要求的科技人才、指揮人才。 (沈文科 宋騰淵 岳明峰)

中國原創軍事資源:http://www.xinhuanet.com/milpro/20250313/e495926c8f4d41f8bf0350a4c5b93f8e/c888.html

Chinese Military Exclusive Requirements for Strategies & Tactics of People’s War in The New Era

新時代中國軍隊對人民戰爭戰略戰術的獨特要求

現代英語:

Looking back on its glorious combat history, the People’s Army has consistently adhered to the absolute leadership of the Party, proposing and implementing a comprehensive set of strategies and tactics for people’s war. These strategies and tactics are a crucial weapon for the People’s Army to defeat the strong with the weak and to conquer the enemy. Over the past 98 years, with the changing times and evolving forms of warfare, the specific content and manifestations of the strategies and tactics for people’s war have continuously evolved. To confront the challenges of information-based and intelligent warfare, we must firmly grasp the essential requirements and value orientations of the strategies and tactics for people’s war amidst the rapidly evolving global trends and practices, unifying the inherently unchanging laws of conduct with the external realities of change, and continuously innovating and developing the strategies and tactics for people’s war in the new era.

President Xi Jinping emphasized that no matter how the situation develops, the magic weapon of people’s war must never be lost. However, we must grasp the new characteristics and new requirements of people’s war in the new era, innovate its content, methods and approaches, and unleash its overall power. Currently, facing profound challenges brought about by changes in science and technology, warfare, and our adversaries, we must not only inherit and carry forward the fine traditions of people’s war, but also be sensitive to changes, actively respond to them, and proactively seek change. We must accurately grasp the inherent requirements of the strategies and tactics of people’s war in the new era, consciously update our thinking and concepts, and innovate strategic guidance, so that this magic weapon of defeating the enemy can be demonstrated on future battlefields.

Adhere to relying on the people and deeply rooted

In the long practice of revolutionary war, the people are the most profound force for victory. The people are the primary force behind the strategies and tactics of people’s war, a magic weapon for victory. People’s war has its roots deeply rooted in the people, and its confidence comes from the people. Regardless of how the times change or how the war evolves, relying closely on the people and fully mobilizing them will always be the fundamental condition and the only way to carry out people’s war. Developing the strategies and tactics of people’s war in the new era requires adhering to the mass perspective of history and the fundamental requirement that soldiers and civilians are the foundation of victory. We must integrate the traditional strategic advantages of people’s war with the mass line, broaden the sources of vitality for the strategies and tactics of people’s war, draw strategic wisdom and tactical methods from the people, and develop an intellectual advantage for people’s war in the new era. We must solidly carry out national defense education throughout the nation, continuously foster a strong sense of patriotism, inspire patriotism, strengthen awareness of potential dangers, and enhance national defense awareness. We must guide the masses to actively care about and support national defense, thereby infusing powerful spiritual strength into people’s war in the new era. We must focus on promoting high-quality population development, comprehensively improve the cultural, scientific, and innovative qualities of the entire population, accelerate the development of a modern human resource base of high quality, sufficient in volume, optimized in structure, and rationally distributed, and promote the shift of the dominant force in people’s war from quantitative to qualitative. Further improve the national defense mobilization system and mechanism, promote the establishment of a rapid response system that is connected with the national emergency response mechanism and integrated with the joint combat system, fully tap and gather the unlimited war potential contained in the people, and give full play to the resource aggregation and value-added effect.

Focus on overall planning and full-area offense and defense

In the long-term practice of revolutionary warfare, the strategies and tactics of people’s war require the comprehensive mobilization of diverse forces and resources in the political, economic, cultural, diplomatic, and military sectors, and the integrated use of various forms of struggle and methods of operation. This holistic approach compensates for local deficiencies and disadvantages, ultimately defeating powerful adversaries. Modern warfare is not only a fierce confrontation in the military sphere, but also a comprehensive struggle in the political, economic, and diplomatic spheres, exhibiting the distinct characteristics of hybrid warfare. To develop the strategies and tactics of people’s war in the new era, we must establish a broad systemic mindset, relying on the national strategic system and supported by the joint operations system, explore the implementation methods of people’s war strategies and tactics, and win the total war of people’s war in the new era. We should fully leverage the advantages of the new national system, relying on the integrated national strategic system and capabilities, efficiently aggregate superior resources across the board, fully activate the country’s national defense potential, and weave various forces and resources into a network. We should integrate and plan the subsystems of people’s war, including leadership, organization, personnel, command, technology, equipment, and support, to maximize the effectiveness of holistic linkage and systemic operation, and achieve the maximum benefits of all-round effort and multiplied energy. We must strengthen comprehensive coordination across the physical, information, and social domains, focusing on seeking breakthroughs in new domains and new qualities, and making achievements in new dimensions such as unmanned warfare, human-machine collaborative warfare, network and electronic warfare, space and deep-sea warfare, and intelligent and autonomous warfare. Military and non-military means must be coordinated, integrating various forms of struggle, including political, economic, diplomatic, public opinion, and military. Comprehensive measures must be implemented to effectively wage diplomatic offensive and defensive battles, financial and trade battles, psychological defense battles, and public opinion and legal battles. We must leverage the combined effectiveness of political offensives and armed strikes to effectively fight the political and military battles.

Strengthen active defense and take the initiative

Through the long practice of revolutionary warfare, the People’s Army has developed a comprehensive strategic philosophy of active defense, emphasizing, for example, the unity of strategic defense and offensive action in campaigns and battles, the principles of defense, self-defense, and preemptive strike, and the principle of “if no one offends me, I will not offend; if someone offends me, I will certainly offend.” Active defense is fundamentally defensive, its essence lies in activeness, and its inherent characteristic is proactiveness. Currently, profound changes have taken place in the international, national, and Party, military, and political landscapes. The strategies and tactics of people’s war in the new era generally adhere to the fundamental principle of defense and are not aimed at hegemony, aggression, or oppression of other countries. Consequently, they will win the support and endorsement of the vast majority of the Chinese people, as well as the understanding and assistance of peace-loving and justice-loving countries and peoples around the world. Developing the strategies and tactics of people’s war in the new era must adapt to the times and circumstances. We must adhere to a defensive national defense policy, implement the military strategic guidelines of the new era, excel at observing and analyzing issues from a political perspective, and be adept at considering and applying strategies from regional and global perspectives to consolidate the political foundation for victory in people’s war. We must persist in neither provoking trouble nor fearing it, strengthen the regular and diversified use of military force, firmly and flexibly carry out military struggle, and while adhering to the strategic preemptive strike, we must not give up campaign and combat offensives under favorable conditions and when necessary. We must advance steadily, make progress within stability, and be proactive within stability, effectively shape the security situation, contain crises and conflicts, and firmly grasp the initiative in the struggle.

Highlight new quality dominance and technological empowerment

In the long practice of revolutionary warfare, while emphasizing that victory in war is primarily determined by people, not objects, the People’s Army has also placed great emphasis on the research and development of advanced military technology, particularly weaponry. Comrade Mao Zedong once emphasized that without modern equipment, it would be impossible to defeat the armies of imperialism. The technological content of modern warfare has undergone a qualitative leap, with advanced technologies and new weaponry such as artificial intelligence, big data, quantum computing, unmanned aerial vehicles, and brain control being widely applied in the military. While the people remain the decisive force in determining victory in war, the manifestation of this power has undergone significant changes. Science and technology are core combat power, and People’s War will place greater emphasis on the application of scientific and technological means and rely even more heavily on the wisdom and creativity of the people. Developing the strategies and tactics of People’s War in the new era should prioritize winning information-based and intelligent warfare. We should deeply study the essential characteristics, winning mechanisms, and strategies and tactics of high-end warfare, accelerate the shift from “winning by numbers” to “winning by talent,” and from “winning by manpower” to “winning by intelligence,” effectively enhance our ability to win through scientific and technological empowerment and digital intelligence, and truly unleash the crucial role of science and technology and talent in People’s War in the new era. We will accelerate the development of high-tech industries, vigorously strengthen the construction of new forces in new domains such as ocean, space, cyberspace, artificial intelligence, and quantum technology, increase military-civilian collaboration in high-tech fields, accelerate the transformation and application of new productive forces into new combat capabilities, and promote the expansion of war potential reserves into emerging fields and the focus on new forces. We will integrate and coordinate military and civilian scientific and technological advantages, shifting the focus from traditional support and guarantee elements such as human and material resources to new support and guarantee elements such as information, technology, and intelligence. We will build information, resource, and technology pools with profound foundations and rich reserves, actively cultivate capable, strong, and professional professional support units, and continuously expand the breadth and depth of people’s participation in the war and scientific and technological support.

Emphasis on flexibility, maneuverability, innovation and checks and balances

In the long-term practice of revolutionary warfare, the strategies and tactics of People’s War are highly flexible and maneuverable. Their most essential requirement is to prioritize self-reliance, attacking the enemy without being attacked by them. Based on the actual situation of both sides, we fight the battles based on our weapons, against the enemy, and at the right time and place. We identify the enemy’s weaknesses and vulnerabilities, leverage our strengths and advantages, and defeat the enemy with our own strengths, always seizing the initiative on the battlefield. Flexible and maneuverable strategies and tactics are the magic weapon for defeating an enemy with superior equipment with inferior equipment. “You fight yours, I fight mine” is a summary and generalization of the long-term experience of China’s revolutionary war and the soul and essence of the strategies and tactics of People’s War. Developing the strategies and tactics of People’s War in the new era must grasp the methodological requirements of asymmetric checks and balances, leverage innovative operational concepts, adhere to the mechanisms of victory in modern warfare, and continuously develop practical and effective tactics to defeat the enemy. We must proceed from the actual circumstances of both sides, gaining a deep understanding of operational missions, adversaries, and the evolving operational environment. We must thoroughly grasp the concepts, elements, and methods of victory, objectively analyze and study the strengths and weaknesses, advantages and disadvantages of both sides, know the enemy and ourselves, adapt to the situation, and flexibly utilize various combat forces and methods, striving to achieve maximum results at the lowest cost. We must adhere to the principle of “attacking the enemy without being attacked by them,” capitalize on strengths and avoid weaknesses, avoid the real and attack the weak, attack where the enemy is least prepared, and attack where they must be defended. We must proactively create opportunities, flexibly maneuver the enemy, and fight wherever we are most advantageous and wherever we are most skilled. We must adhere to the principle of “using what we can to defeat what we cannot,” advancing the research and application of military theory, operational guidance, tactics, and training methods in a timely manner, innovating core operational concepts, and developing new types of combat methods. We must fight against the enemy’s tactics, targeting their weaknesses, and leveraging our military’s strengths, thus creating new winning advantages in people’s war through asymmetric checks and balances.

Emphasis on accumulating small things into big things and focusing on unity of purpose

Throughout the long practice of revolutionary warfare, our army has been at an overall disadvantage for considerable periods. Therefore, the strategies and tactics of people’s war emphasize leveraging strength against weakness locally, persisting in accumulating small victories into larger ones, and concentrating forces to wage annihilation campaigns. This has become a key strategy for the people’s army to defeat powerful foes. Compared to previous eras, modern warfare often unfolds across multiple dimensions and domains, providing greater scope for implementing this strategy of “accumulating small victories into larger ones.” Developing the strategies and tactics of people’s war in the new era requires strengthening the concept of “dispersed in appearance, yet focused in spirit; dispersed in form, yet united in strength.” This involves dynamically consolidating and uniting the numerous combat forces distributed across the multidimensional battlefield. Through the fusion of capabilities and immediate optimization, we can launch rapid localized focused-energy attacks, wide-area guerrilla harassment, and deliver annihilating and destructive strikes against key enemy locations. This not only creates a hammering effect, but also continuously wears down the enemy, gradually depriving them of the initiative on the battlefield. This highly integrated distributed warfare emphasizes the wide-area dispersion of troop deployment and the discrete distribution of capabilities. Based on the needs of achieving operational intent, objectives, and missions, it prioritizes the best operational elements, units, and forces. Through the integration of operational capabilities and the accumulation of operational impacts, it aggregates optimal operational effects, unleashes maximum operational potential, maximizes operational effectiveness, and achieves optimal operational results. This distributed warfare has evolved from “geographical dispersion” to “dynamic coupling across all domains and dimensions”: no longer limited to the physical dispersion of personnel and equipment, it extends to multi-dimensional battlefields such as cyber, electromagnetic, and cognitive. Relying on data links, artificial intelligence, and distributed command systems to achieve cross-domain collaboration, it significantly enhances battlefield survivability and multiplies strike effectiveness.

現代國語:

編者按

回望輝煌戰鬥歷程,人民軍隊始終堅持在黨的絕對領導下,提出並實施了一整套人民戰爭戰略戰術,這是人民軍隊以弱勝強、克敵制勝的重要法寶。 98年來,隨著時代變遷和戰爭形態演變,人民戰爭戰略戰術的具體內容和表現形式不斷發展變化。直面資訊化智慧化戰爭挑戰,我們要在快速變化發展的世界大勢和實踐樣態中,牢牢把握人民戰爭戰略戰術的本質要求和價值取向,把內在不變的規律性特徵與外在變化的現實性特徵統一起來,不斷創新發展新時代人民戰爭戰略戰術。

習主席強調指出,無論形勢如何發展,人民戰爭這個法寶永遠不能丟,但要把握新的時代條件下人民戰爭的新特點新要求,創新內容和方式方法,充分發揮人民戰爭的整體威力。當前,面對科技之變、戰爭之變、對手之變帶來的深刻挑戰,我們既要繼承發揚人民戰爭優良傳統,也要敏銳識變、積極應變、主動求變,準確把握新時代人民戰爭戰略戰術內在要求,自覺更新思維理念,創新戰略指導,讓克敵制勝的法寶顯威未來戰場。

堅持依靠人民、深根基

在長期革命戰爭實踐中,人民群眾是戰爭勝利最深厚的偉力。人民戰爭戰略戰術,人民是構成這一制勝法寶的主體,人民戰爭的根基深植於人民、底氣來自於人民,無論時代如何發展、戰爭如何演進,緊緊依靠人民、充分動員群眾,永遠是開展人民戰爭的基礎條件和不二法門。新時代條件下發展人民戰爭戰略戰術,必須堅持群眾史觀和兵民是勝利之本的根本要求,把人民戰爭的傳統謀略優勢和群眾路線結合起來,拓展人民戰爭戰略戰術的源頭活水,從人民群眾中汲取戰略智慧和策略方法,形成新時代人民戰爭的智力優勢。札實開展全民防衛教育,不斷厚植家國情懷,激發愛國動力,強化憂患意識,增強國防觀念,引導廣大群眾主動關心國防事業、支持國防建設,為新時代人民戰爭注入強大精神力量。聚力推進人口高品質發展,全面提升全民文化素質、科技素質和創新能力,加速塑造素質優良、總量充裕、結構優化、分佈合理的現代化人力資源,推動人民戰爭主體由數量優勢向質量優勢轉變。進一步完善國防動員體制機制,推動建立與國家應急響應機制相銜接、與聯合作戰體系相融合的快速響應制度,把內含於人民群眾中的無限戰爭潛力充分挖掘出來、聚攏起來,充分發揮資源集聚增值效應。

注重整體運籌、全域攻防

在長期革命戰爭實踐中,人民戰爭戰略戰術要求整體動員政治、經濟、文化、外交、軍事等多方面的力量資源,綜合運用多種鬥爭形式和作戰方式,以整體合力彌補局部的不足和劣勢,從而戰勝強大對手。現代戰爭既是軍事領域的激烈對抗,也是政治、經濟、外交等領域的全面角力,整體呈現混合戰爭的鮮明特徵。新時代條件下發展人民戰爭戰略戰術,必須確立大體系思維模式,以國家戰略體係為依托,以聯合作戰體係為支撐,探索人民戰爭戰略戰術的實現形式,打贏新時代人民戰爭總體戰。應充分發揮新型舉國體制優勢,依託一體化國家戰略體系與能力,高效能聚合全域優勢資源,全方位激活國家國防潛力,將各種力量資源擰線成繩、結繩成網,把人民戰爭的領導要素、組織要素、人員要素、指揮要素、技術要素、裝備要素、保障要素等分系統結合起來,統合、統合方式要加強物理域、資訊域、社會域等領域全面統籌,重點在新域新質上尋求突破,在無人作戰、人機協同作戰、網電作戰、太空深海作戰、智慧自主作戰等新維度有所作為。軍事與非軍事手段相互配合,把政治、經濟、外交、輿論和軍事鬥爭等多種形式結合起來,綜合施策著力打好外交攻防戰、金融貿易戰、心理防護戰、輿論法理戰等,發揮政治攻勢和武裝打擊的綜合效能,統籌打好政治軍事仗。

強化積極防禦、主動進取

在長期革命戰爭實踐中,人民軍隊形成了一整套積極防禦戰略思想,如堅持戰略上防禦與戰役戰斗上進攻的統一,堅持防禦、自衛、後發製人的原則,堅持“人不犯我,我不犯人;人若犯我,我必犯人”,等等。積極防禦,根本在防禦、要義在積極,主動進取是其內在特質。當前,世情國情黨情軍情發生深刻變化,新時代人民戰爭的戰略戰術在總體上堅持防禦性的根本原則,不以霸道霸權和侵略欺壓他國為目的,因此也會贏得國內最廣大人民群眾擁護和支持以及世界上愛好和平與正義的國家和人民的理解和幫助。新時代條件下發展人民戰爭戰略戰術,須應時而變、應勢而動。堅持奉行防禦性國防政策,貫徹落實新時代軍事戰略方針,善於從政治高度出發觀察和分析問題,善於從地區和全球視角來思考和運用策略,夯實人民戰爭制勝的政治基礎。堅持不惹事也不怕事,加強軍事力量常態化多樣化運用,堅定靈活開展軍事鬥爭,在堅持戰略上後發製人的同時,不放棄有利條件下和必要時的戰役戰鬥進攻,穩紮穩打、穩中有進、穩中有為,有效塑造安全態勢,遏止危機沖突,牢牢把握爭鬥主動權。

突顯新質主導、科技賦能

在長期革命戰爭實踐中,人民軍隊在強調決定戰爭勝負的主要因素是人而不是物的同時,同樣高度重視對先進軍事技術特別是武器裝備的研發。毛澤東同志就曾強調,沒有現代的裝備,要戰勝帝國主義的軍隊是不可能的。現代戰爭的科技含量發生了質的飛躍,人工智慧、大數據、量子計算、無人自主、腦控等高新技術與新型武器裝備廣泛應用於軍事領域。雖然人民群眾依然是戰爭勝負的決定性力量,但是這種力量的表現形式發生了重要變化。科技是核心戰鬥力,人民戰爭將更重視科技手段的運用,更依賴人民群眾的智慧和創造力。新時代條件下發展人民戰爭戰略戰術,應把打贏資訊化智能化戰爭作為戰爭準備的著眼點,深研高端戰爭的本質特徵、制勝機理、戰略戰法,加速推動從「人多製勝」向「人才制勝」、從「人力製勝」向「智力製勝」轉變,切實提高新科技賦能、數智者發揮勝利能力、數智性的科技人才、新人民主義中的關鍵人民發揮作用。加速推進高新產業發展,大力加強海洋、太空、網路空間、人工智慧、量子科技等新域新質力量建設,加大高新技術領域軍地協作力度,加速新質生產力向新質戰鬥力轉化運用,推動戰爭潛力儲備向新興領域拓展、向新質力量聚焦。聚合協同軍地科技優勢,由聚焦人力物力等傳統支撐保障要素向聚焦資訊、技術、智慧等新質支撐保障要素轉變,建設底蘊深厚、儲備豐富的資訊池、資源池、技術池,積極打造精幹強能、專業性強的專業支前分隊,不斷拓展人民參戰與科技支前的廣度與深度。

講究靈活機動、創新制衡

在長期革命戰爭實踐中,人民戰爭戰略戰術是高度靈活機動的戰略戰術,最本質的要求是堅持以我為主,致人而不致於人,根據敵我雙方的實際情況,有什麼武器打什麼仗,對什麼敵人打什麼仗,在什麼時間地點打什麼時間地點的仗,找準敵之弱點和軟肋,發揚我之長主動和優勢,能永遠不能掌握戰場。靈活機動的戰略戰術是以劣勢裝備戰勝優勢裝備之敵的致勝法寶。 “你打你的、我打我的”,是中國革命戰爭長期經驗的總結和概括,是人民戰爭戰略戰術的靈魂和精髓。新時代條件下發展人民戰爭戰略戰術,必須掌握非對稱制衡的方法論要求,以作戰概念創新為抓手,遵循現代戰爭制勝機理,不斷推出實用管用的克敵制勝招法。堅持一切從敵我雙方的實際情況出發,深刻洞悉作戰任務、作戰對手、作戰環境變化,深刻把握制勝觀念、制勝要素、制勝方式發展,客觀分析研究敵我雙方的強弱、優劣,知彼知己、因勢而變,靈活運用各種作戰力量和作戰方法,努力以最小代價取得最大戰果。堅持“致人而不致於人”,揚長避短、避實就虛,出其不趨、攻其必救,主動創造戰機,靈活調動敵人,怎麼有利就怎麼打,怎麼擅長就怎麼打。堅持“以能擊不能”,與時俱進推進軍事理論、作戰指導、戰法訓法研究運用,創新核心作戰概念,發展新質作戰手段,不按敵人套路打、盯著敵人軟肋打、發揮我軍優長打,在非對稱制衡中創造人民戰爭新的製勝優勢。

重視積小為大、神聚力合

在長期革命戰爭實踐中,我軍在相當長的時間內都是處於全局上的劣勢地位,所以人民戰爭戰略戰術重視局部上以強對弱,堅持積小勝為大勝,集中力量打殲滅戰,這成為人民軍隊戰勝強敵的關鍵一招。相較於以往,現代戰爭作戰往往在多維多域中展開,為實施「積小勝為大勝」提供了更加廣闊空間。新時代條件下發展人民戰爭戰略戰術,要強化「貌散而神聚,形散而力合」的理念,將分佈在多維戰場的諸多作戰力量動態集中聯合起來,通過效能融合、即時聚優,實施局部快速聚能攻擊、廣域遊擊襲擾,對敵分佈的要點實施殲這種神聚力合的分散式作戰更強調兵力部署廣域分散、能力狀態離散分佈,根據實現作戰企圖、達成作戰目的、遂行作戰任務需要,優選最佳作戰要素、單元、力量,通過作戰能力融合、行動作用累積,聚合最優作戰效應,激發最大作戰潛能,實現作戰效益最大化,達成最佳作戰效果。這種分散式作戰已經從「地理空間的分散」上升為「全局全維的動態耦合」:不再局限於人員裝備在物理空間的分散,而是拓展到網絡、電磁、認知等多維戰場;依託數據鏈、人工智能和分佈式指揮系統實現跨域協同,既極大提升了戰場生存力,又倍增了打擊效能。

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-08-01&paperNumber=07&articleid=960384888

Space and the Internet China’s Battlegrounds for Military Strategists: Discussion of Mysterious Strategic Support Force Capabilities of the Chinese People’s Liberation Army

太空與互聯網 中國軍事戰略家的戰場:探討中國人民解放軍神秘的戰略支援部隊能力

現代英語:

With the continuous advancement of space technology and the rapid spread of the Internet world, space and the Internet have almost become a battleground for military strategists. America Establish a space force Japan A Space Operations Team was established, the Russian Air Force was renamed the Aerospace Forces, and the French Air Force followed suit and incorporated into the mission establishment of space operations. And China Then established Strategic Support Force , and after the Rocket Force, it became the fifth largest service branch of the Chinese People’s Liberation Army.

Simply put, the Strategic Support Force has jurisdiction over new areas such as space, electromagnetism, and the Internet that are not part of the traditional land, sea, and air battlefields. In addition to focusing on the development of space combat capabilities, it also brings together electronic combat units, cyber offensive and defensive units and intelligence reconnaissance systems scattered across various services in the past to establish a unified command system and integrate these different fields. Its most important purpose is to use this new non-traditional combat method to support front-line troops and gain future battlefield advantages.

Since China is an opaque country and the People’s Liberation Army has always been mysterious, the outside world’s understanding of strategic support forces is still very limited. However, judging from the publicly available information, the Strategic Support Force has several main components, including the “Space Systems Department”, “Cyber Systems Department”, “Political Work Department” and related administrative units, which are responsible for “space development”, “electronic confrontation”, “cyber offensive and defensive”, “cognitive operations”, and “intelligence reconnaissance” respectively.

The PLA’s Strategic Support Force: Space Development Contending with the United States

The “Aerospace Systems Department” responsible for “space development” has jurisdiction over the past satellite research, production, launch, and ground control centers, and is currently the backbone of China’s development of space combat capabilities. It is mainly divided into three major directions, covering space image reconnaissance, anti-satellite operations, and the construction and maintenance of navigation and communication satellite systems. It also uses a large number of “military-civilian integration” strategies, uses civilian use as cover, and introduces, steals or imitates space technology from European and American countries. For military purposes. For example, general civilian communication satellites are also of great help to the People’s Liberation Army’s drone development or combat communications.

The best examples are Beidou satellite This space navigation system independently developed by China has now developed into the third generation, and its signal service scope covers the world. Although the Beidou satellite has high commercial value, it is widely used in automobile navigation, maritime shipping, land surveying, etc. But more importantly, in the military field, it can significantly increase the PLA’s missile accuracy, assist troops and military unmanned vehicles in positioning and navigation, and become the basis for information-based joint operations together with communication satellites. Leaving the strategic support force responsible for maintaining and operating these satellite systems will undoubtedly further coordinate with the People’s Liberation Army’s combat tasks and development direction, and can also ensure the safety of these satellites.

In addition, China has frequently launched various resource detection and scientific research satellites in recent years, many of which are suspected to be related to military purposes. Like Ocean Satellite Series , ostensibly used for ocean research, but because this series of satellites has the ability to monitor, identify and track maritime targets, it is also a powerful weapon for the People’s Liberation Army to carry out anti-access operations at sea in the future, and will have a great impact on China’s control of disputed waters such as the South China Sea and the East China Sea. Great help. Another series High-score satellite It has reconnaissance capabilities. Although it is euphemistically used for resource protection and improving land planning efficiency, it is actually an out-and-out spy satellite. More than 20 have been launched into space.

China’s strategic support forces not only operate and protect their own satellites, but are also actively studying how to attack other countries’ satellites. For example, China’s long-term development of kinetic energy series anti-satellite weapons has successfully shot down abandoned Chinese satellites. In recent years, China has continuously tested new anti-ballistic missile systems and is also considered to have the ability to attack space satellites. The recently launched Shijian-21 satellite was also found in space orbit, directly grabbing a retired Beidou navigation satellite with a robotic arm, towing it to a higher orbit and discarding it, which attracted the attention of foreign media. Beautiful National Army General Fang has long stated in his testimony before Congress that China has the ability to use these technologies to destroy American satellites during wartime and compete with the United States on the space battlefield.

PLA’s Strategic Support Force: Capturing the Advantage of the Cyber Area

The “Network Systems Department” responsible for “electronic operations” and “cyber offensive and defensive” was restructured from the electronic listening and electronic warfare units of the past, and integrated the network forces established in recent years to specialize in electromagnetic space and virtual space. offensive and defensive. In terms of electronic warfare, it is divided into two parts: passive electronic signal interception and analysis, and active interference destruction. The two are actually two sides of the same coin. For example, the J-16D and J-15D electric fighters of the Chinese Air Force are equipped with electronic warfare systems that rely on electronic reconnaissance aircraft and electronic signal intelligence collected by spy ships on weekdays. Because this information will be analyzed by the “Network Systems Department” to develop countermeasures and interference methods, it has become a key basis for electronic warfare systems to launch attacks.

Cyber warfare is the latest and hottest field, and China is also developing very vigorously in this regard. On more than one occasion, the United States has directly accused hackers related to the People’s Liberation Army of hacking into sensitive units to steal data. In this information age, it has long been common to use the far-reaching characteristics of the Internet to carry out theft, destruction and psychological warfare. The theft of data online is not limited to military secrets, but is more about business technology and even personal privacy. It is not news that China systematically steals foreign information on a large scale to assist domestic technological development. It is a common method to use stealing the privacy of overseas dissidents or officials to achieve the purpose of threatening and inducing.

In addition to stealing information in peacetime, in wartime, you can directly attack the enemy’s infrastructure through the Internet. Such as electricity, communications, water supply and transportation networks, etc., to create chaos, slow down the enemy’s response speed and counterattack ability, and even supplement it with psychological warfare to disintegrate the enemy’s will to resist. Take the recent conflict between Armenia and Azerbaijan as an example. After the war broke out, the two countries continued to publish videos of destroying each other’s fighter planes or armored vehicles on the Internet, supplemented by news that it was difficult to distinguish between true and false, in order to boost each other’s morale. This new model of “cognitive warfare” has received more and more attention as the Internet spreads pervasively.

The use of psychological warfare to achieve military or political goals has been a common tactic since ancient times, and China is particularly good at using united front methods. It can even be said to be one of the keys to the People’s Liberation Army’s victory in the civil war between the Kuomintang and the Communist Party. In recent years, the tactic of integrating public opinion warfare, psychological warfare, and legal warfare has been developed, referred to as the “Three Wars”, and is also written into the political and labor regulations of the People’s Liberation Army. Its highest command unit is the “Political Work Department” of the Central Military Commission. The “Political Work Department” of the Strategic Support Force accepts orders from superiors to monitor the troops internally and ensure the loyalty of personnel. To the outside world, it uses its own satellite communication channels and electronic warfare. Interference and destruction technology, online public opinion guidance skills, etc. to support the “Three Wars”. Various infiltrations were carried out at the same time to carry out “intelligence reconnaissance” work.

Increase alertness to new combat modes

This new war, which combines information gathering, destruction and theft, public opinion infiltration, and cognitive warfare, is something we have never seen before. From state-of-the-art space and electronics to the oldest gossip, everything is used to help frontline combat forces gain an advantage. At the same time, the Strategic Support Force also has jurisdiction over the “Strategic Support Force Aerospace Engineering University” and the “Strategic Support Force Information Engineering University”, merging many colleges and universities in the past to cultivate talents for the “Aerospace Systems Department” and “Network Systems Department”. And use these academic units to develop the latest tactics and tactics. The threat to Taiwan cannot be underestimated.

Such as a few that have been exposed Strategic Support Force Base 311 Fuzhou City, located in Fujian Province, is responsible for conducting the People’s Liberation Army’s “Three Wars”. It is only separated from Taiwan by one water, and the targets it targets are self-evident. In addition to preventing regular military attacks, Taiwan must also be more vigilant against this new form of aggression. In recent years, the National Army has also actively developed this invisible combat power and established the “Information and Telecommunications Army”, which is responsible for operations in the fields of network, communications, electronic warfare and other fields, and is positioned as the fourth service. However, due to national strength, it has not been able to invest significantly in the space field. In addition, Taiwan is a democratic country, and the military is unable to use the Internet to develop public opinion warfare and psychological warfare, which puts Taiwan at a great disadvantage in this competition.

China’s strategic support forces support front-line combat forces from various fields. This concept is worth learning from Taiwan, because although the government’s slogan of “National Defense for All” is often shouted at sky-high prices, ministries other than the Ministry of National Defense often lack the concept of enemy situation and fail to think about whether it will have an impact on national security when formulating policies.

Hybrid warfare in the new era is a battlefield everywhere and is no longer something that the Ministry of National Defense can deal with or deal with alone. Taiwanese society faces a huge threat from the enemy, but its failure to establish a universal national defense concept is really frustrating, let alone integrate resources and provide strategic support to the national army.

現代國語:

隨著太空技術的不斷進步、網路世界的快速普及,太空與網路幾乎已成為兵家必爭之地。美國設立太空軍,日本設立宇宙作戰隊,俄羅斯空軍更名為航空太空軍,法國空軍也隨之跟進,納入太空作戰的任務編制。而中國則成立戰略支援部隊,並在火箭軍之後,成為中國人民解放軍的第五大軍種。

簡單來說,戰略支援部隊管轄太空、電磁、網路等不屬於傳統陸、海、空戰場的全新領域。除了重點發展的太空戰力,還匯集過去散布於各軍種的電子作戰部隊、網路攻防單位與情報偵察系統,以建立統一的指揮體系,整合這些不同領域。其最重要的目的,是利用這種新型態的非傳統作戰方式,來支援第一線部隊,取得未來戰場上的優勢。

由於中國是個不透明的國家,解放軍也一向神秘,因此外界對於戰略支援部隊的瞭解仍非常有限。但從可以公開取得的資料來看,戰略支援部隊擁有幾個主要組成部分,包括「航天系統部」、「網路系統部」、「政治工作部」與相關行政單位,分別負責「太空發展」、「電子對抗」、「網路攻防」、「認知作戰」、「情報偵察」五大方面。

解放軍的戰略支援部隊:與美國抗衡的太空發展

負責「太空發展」的「航天系統部」,下轄過去的衛星研究、生產、發射、地面控制中心,是目前中國發展太空戰力的骨幹。主要分為三大方向,涵蓋太空影像偵察、反衛星作戰、導航與通信衛星系統的建置與維護,並大量運用「軍民融合」策略,以民用為掩護,引進、竊取或仿製歐美等國的太空技術,用於軍事用途。例如一般的民用通訊衛星,對於解放軍的無人機發展或作戰通訊也有極大的助益。

最好的例子是北斗衛星,這套中國自行研發的太空導航系統,目前已經發展到第三代,訊號服務範圍涵蓋全球。雖然北斗衛星擁有很高的商業價值,在汽車導航、海上航運、土地測量等方面用途廣泛。但更重要的是在軍用領域,能大幅增加解放軍的飛彈精確度,協助部隊與軍用無人載具進行定位與導航,並與通訊衛星一起成為資訊化聯合作戰的基礎。交由戰略支援部隊來負責維護與操作這些衛星系統,無疑能進一步配合解放軍的作戰任務與發展方向,也可確保這些衛星的安全。

此外,中國近年來頻繁發射各種資源探測與科學研究衛星,許多都被懷疑與軍事用途有關。如海洋衛星系列,表面上用於海洋研究,但由於這一系列衛星具備監視、識別與追蹤海上目標的能力,也是解放軍未來在海上執行反介入作戰的利器,對中國控制南海、東海等爭議海域,有極大的助益。另一系列的高分衛星,具備偵照能力,雖然美其名是用於資源保護,提升國土規劃效率,但其實是不折不扣的間諜衛星,已發射二十餘枚進入太空之中。

中國的戰略支援部隊不止操作與保護自己的衛星,也正在積極研究如何攻擊別國的衛星。如中國長期發展的動能系列反衛星武器,已成功擊落過廢棄的中國衛星,而中國近年來不斷測試新型的反彈道飛彈系統,也被認為有攻擊太空衛星的能力。最近剛發射的實踐21號衛星,還被發現在太空軌道中,直接以機械手臂抓取一顆退役的北斗導航衛星,拖往更高的軌道上丟棄,引起國外媒體的關注。美國軍方將領在國會作證時早已表示,中國有能力運用這些技術,於戰時破壞美國的衛星,在太空戰場上與美國分庭抗禮。

解放軍的戰略支援部隊:奪得網路區域的優勢

負責「電子作戰」與「網路攻防」的「網路系統部」,是由過去的電子監聽與電戰單位改制而來,並整合近年來設立的網路部隊,專精電磁空間與虛擬空間的攻防。在電子作戰方面,分為被動的電子訊號截收與分析,與主動的干擾破壞兩大部分,兩者其實是一體兩面。如中國空軍的殲-16D、殲-15D電戰機,配備的電戰系統,就仰賴電子偵察機與間諜船平日所蒐集的電子訊號情報。因為這些資料會交由「網路系統部」進行分析,以研發出反制與干擾的辦法,成為電戰系統發動攻擊時的關鍵依據。

網路戰則是最新、最熱門的領域,中國在這方面也有非常蓬勃的發展。美國已經不只一次,直接指控與解放軍有關的駭客,入侵敏感單位竊取資料。在這個資訊時代,利用網路無遠弗屆的特性,來進行竊取、破壞與心理戰,早已屢見不鮮。網路竊取資料並不侷限於軍事機密,更多的是商業技術,甚至是個人的隱私。中國有計畫地大規模竊取國外資訊,以協助國內的科技發展,並不是什麼新聞。利用竊取海外異議分子或官員的隱私,來達成威脅利誘的目的,更是常見的手法。

除了在承平時期竊取資訊外,在戰時則可直接透過網路,攻擊敵方的各項基礎設施。如電力、通訊、供水與交通網等,以製造混亂,拖慢敵方的應變速度與反擊能力,甚至輔以心理戰,瓦解敵方的抵抗意志。以近期亞美尼亞與亞塞拜然的衝突為例,兩國在戰事爆發後,不斷把擊毀對方戰機或裝甲車的影片公布在網路上,輔以真假難辨的消息,以打擊對方的士氣。這種「認知作戰」的新模式,已隨著網路傳播的無孔不入,越來越受到重視。

利用心理戰來達成軍事或政治目的,是自古以來很常見的戰術,而中國又特別擅長運用統戰手段,甚至可以說是國共內戰中,解放軍致勝的關鍵之一。在近年來更發展出整合輿論戰、心理戰、法律戰的戰術,簡稱為「三戰」,還寫入解放軍的政工條例中。其最高指揮單位是中央軍委會的「政治工作部」,戰略支援部隊的「政治工作部」接受上級命令,對內監控部隊,確保人員的忠誠,對外則利用本身所掌握的衛星通訊傳播管道、電戰干擾破壞技術、網路輿論引導技巧等,來支援「三戰」。同時進行各種滲透,執行「情報偵察」工作。

提高對全新作戰模式的警覺

這種結合資訊情蒐、破壞竊取、輿論滲透、認知作戰的全新戰爭,是我們過去所未曾見過的。從最先進的太空與電子技術,到最古老的流言蜚語,無所不用其極地協助第一線作戰部隊取得優勢。同時,戰略支援部隊還下轄「戰略支援部隊航天工程大學」與「戰略支援部隊信息工程大學」,合併過去多所院校,專為「航天系統部」與「網路系統部」培養人材。並利用這些學術單位,發展最新的戰術戰法,對台灣的威脅不容小覷。

如少數已曝光的戰略支援部隊311基地,位於福建省的福州市,負責進行解放軍的「三戰」,與台灣只有一水之隔,所針對的目標已不言可喻。台灣除了要防範正規的軍事攻擊,對於這種新形態的侵略,更要提高警覺。國軍近年來也積極發展這種看不見的戰力,成立「資通電軍」,負責網路、通訊、電戰等領域的作戰,並定位為第四軍種。但受限於國力,未能大幅投資太空領域,再加上台灣是個民主國家,軍方無法利用網路來發展輿論戰、心理戰,都讓台灣在這場競爭中處於極不利的處境。

中國的戰略支援部隊,從各個領域來支援第一線的作戰部隊,這樣的概念值得台灣學習,因為政府「全民國防」的口號雖然常喊得震天價響,但國防部以外的部會,卻往往缺少敵情觀念,在擬定政策時未能思考是否會對國家安全造成衝擊。

新時代的混合式戰爭,無處不是戰場,早已經不是國防部可以獨自應付或處理的。台灣社會面臨巨大的敵情威脅,卻未能建立普遍的國防觀念,實在令人扼腕,更遑論整合資源,給予國軍戰略支援了。

中國原創軍事資源:https://opinion.udn.com/opinion/story/120873/6088490

Understand Chinese Military Single-Domain & Multi-Domain Joint Operations

了解中國軍事單域和多域聯合作戰

現代英語:

Joint operations are the basic form of combat in modern warfare. They emphasize the strength of more than two services and arms and other participating forces, and jointly implement operations in multi-domain space under unified command. “Single domain” and “multidomain” interdependence and interaction in joint operations are a pair of important military categories. Grasping the relationship between single domain and multi-domain is the core content and key to solving the “internal interface” problem in the construction and application of joint combat forces. The relationship between the two should be viewed dialectically and correctly handled, and the winning mechanism of joint operations should be continuously enriched to promote joint operations. Really achieve cross-domain integration, energy gathering and efficiency improvement.

“Single domain” is the constituent element and development basis of “multi-domain”

Joint operations emphasize the formation of advantageous multi-domains based on advantageous single domains, and place higher demands on the coupling relationship between each single domain that makes up the multi-domain. The development of a single domain can provide a solid foundation for the development of multiple domains and create prerequisites for achieving cross-domain integration.

In terms of historical process, single domain to multi-domain is the process of domain expansion. Throughout human history, the wars of each era have applied the techniques of their own era, imprinted the imprint of their own era, and developed with the time and space of the war. War in the agricultural era, with cold weapons as the main military equipment, battlefield fighting is mainly limited to land and offshore waters. It is a lower-level “full contact” war, and the combat domain is relatively single, making early operations “loose” Joint characteristics.

Entering the industrial era, with the invention and use of steam engines and internal combustion engines, air combat weapons represented by combat aircraft appeared on the battlefield. The combat space broke through the limitations of land and sea areas, forming a three-dimensional battlefield between land, sea and air. The war turned “semi-contact”, making joint operations take on “cooperative” joint characteristics. Entering the information age, the combat space breaks through the three-dimensional geographical space and forms a multi-domain integration of land, sea, air, space, electricity, network, and cognitive fields, making joint operations present multi-domain “integrated” characteristics. With the development of single domain to multi-domain, single-domain control rights such as land control, sea control, air control, heaven control, and information control have continued to appear, and the subsequent importance of single-domain control has continued to increase, promoting the connotation of multi-domain control. Expanding and changing, the competition for comprehensive control has become the first priority in the confrontation between ourselves and the enemy.

In terms of development form, single domain to multi-domain is a process of clustering into a network. Restricted by technical conditions and other constraints, combat activities before the information age, whether in terms of battlefield time, battlefield space, or the deployment and use of combat forces, have clear sections between single domains and clear levels of action at all levels, showing a strong Sequential and progressive, showing a single-domain chain development form.

Entering the information age, under the full “adhesion” of the network system, the multi-domain force formation develops from “combination” to “convergence”, forming an elastic structure with spatial dispersion and deployment, time coordination, and multi-dimensional energy release. According to the battlefield situation and changes in the situation, combat activities use the network information system as a “link” to connect the “links” of the combat single domain into a “network” shape, forming the focus of similar strong points and complementary advantages, and realizing each single domain “shape and spirit gathering” and “gathering fingers into fists”, The transition from single-domain chain to multi-domain network was achieved.

In terms of performance index, single domain to multi-domain is a process of energy aggregation and efficiency. Both opposing sides in the war tried to exert their overall combat power in order to achieve combat victory. However, due to the clear boundaries and loose connections of each single domain in the past, improving the overall combat power can only be achieved through the linearity “superposition” of each combat domain. With the development of information technology and intelligent technology, especially the widespread application of information systems in the military, the network information system realizes the command and control of each single domain force and can seamlessly link each combat domain. Each combat force maximizes The advantages of spatial multidimensionality and power diversity have been realized, and the strength and strength of each single domain and each level have been realized The high degree of integration, multi-dimensional cohesion, overall linkage and integrated energy release in terms of means and actions has achieved the effect of complementary advantages, synergy and cohesion, which is conducive to achieving a comprehensive advantage or local overwhelming advantage over the enemy.

“Multi-domain” is the direction-dominant and powerful dominance of “single-domain”

The essence of the winning mechanism of joint operations lies in cross-domain integration to achieve excellence and efficiency, which requires that single domain and multi-domain must be functionally “unified in the same direction”. “Multi-domain” stipulates the status and role of each single domain in combat. Each single domain must start from the overall functional needs of joint operations, focus on providing the ultimate contribution rate to the combat system, and achieve synchronous cross-domain maneuvering, cross-domain coordination, and cross-domain strike, to achieve system advantages in overall confrontation. Currently, the multi-domain dominates and dominates the single-domain in the direction of forming a resultant force with the system mainly from the following aspects.

Transition of multidomain operational requirements to hybrid war threats. At present, conventional threats are expanding and unconventional threats are becoming new and present threats, with the boundaries between regular and irregular battlefields tending to be blurred, between combatants and non-combatants and between physical and virtual dimensions. Joint operations are still the basic form of operations, but specific combat styles show a trend towards combining multiple styles. Various threats from traditional or non-traditional, formal or informal, high-intensity or low-intensity exist on land, sea, air, space, electricity, network, cognition and other multi-domains. These threats add a new dimension to the concept of war. Therefore, it is necessary not only to do a good job in the fight against a single threat, but also to develop the ability to integrate into multi-domain operations to deal with hybrid warfare.

The focus of multi-domain operations shifts to the network information system. Several informatization local wars that have broken out in recent years have shown that no war, no alliance, no alliance, no victory, the network information system that condenses various single-domain combat elements has become the focus of operations, and the combat command information system that gathers the combat power of the network information system has become the main basis for military operations “nerve center” and has become the key point for opponents to attack. The degree of integration of command and information systems is getting higher and higher, and the command systems of each single domain must converge and move closer to the overall command system, so as to achieve system integration of various services and combat units and deep coupling of various combat elements. In line with this, the information domain, the cognitive domain, and the electromagnetic domain, as emerging fields of warfare, have increased in their core status and importance, and have increasingly become the core operational domains for opposing sides to compete for control, becoming capable of causing enemy “blind, incapacitated, and mentally retarded” key operational domains. Therefore, each single domain must strengthen its ability to organically integrate into the network information system within the framework of a unified standard system and achieve interconnection and interoperability between each single domain, so as to ensure that it provides basic support in multi-domain precision warfare and thus wins overall advantages.

Transformation of multi-domain combat forces into joint combat units. Integrated joint operations have the characteristics of platform operations, system support and tactical operations, and strategic support. Strategic-level planning, campaign-level command, and tactical-level operations will become the norm in future wars. Large-scale corps operations may become increasingly rare and will be replaced by joint battles more often on multi-domain battlefields. The joint combat unit will bring together various single-domain combat forces and cover various combat elements. The level of the joint is reflected in the tactical level, presenting an independent combat capability that includes early warning and reconnaissance, information support, combat command, multi-domain attack and defense, combat support and other elements. Joint tactical unit form. Each “single-domain combat force” has a closer coupling relationship, and its own characteristics and advantages will become more prominent.

Accelerate the expansion of “single-domain advantages” to “multi-domain advantages”

For the dialectical unity of a single domain and a multi-domain, we must not only see the unity of a multi-domain, but also respect the independence of a single domain; we must neither completely oppose the two, nor erase the connection between them. In view of the actual situation of combat opponents, combat environment, own strength, etc., and taking into account various political, economic, technological, cultural and other factors, we should accelerate the expansion of “single-domain advantage” to “multi-domain advantage”, so as to form an information advantage, decision-making advantage and operational advantage against the enemy.

First, we must consolidate and expand the advantages of single domain.“ Metcalfe’s law ” tells us that increasing a network entity is capable of producing nonlinear exponential convergence of the combat power of the system. Multi-domain operations are deeply integrated system operations. As the basic element of multi-domain existence, the strength of each single domain’s construction will definitely affect the effectiveness of multi-domain integration. The essence of forming a multi-domain advantage is to deeply aggregate the advantages of each single domain. It is necessary to continuously strengthen the construction of single domain capabilities to form a single domain advantage and limit the opponent’s strength advantage to the limit. In fact, consolidating and expanding the advantages of single domains is not only to enhance single domain performance, but also to serve the purpose of multi-domain convergence. Single-domain construction requires strengthening top-level design, formulating standards and specifications, and striving to overcome conflicts caused by different combat construction concepts formed by the unique combat styles and combat culture of different services. At the same time, it is necessary to coordinate all military construction resources and focus on the development of multi-domain combat weapon platforms to meet the overall needs of joint operations, rather than just the needs of each single domain itself.

Second, we must promote the achievement of cross-domain synergy. Cross-domain synergy emphasizes breaking the boundaries between services and arms and integrating combat forces across services, arms and institutions. Based on the network information system, the combat forces in each domain are distributed in a wide area, and the multiple domains are linked as a whole to complement each other’s advantages and increase efficiency, and quickly gather energy step by step, promoting the expansion of single-domain advantages into multi-domain integration advantages and system advantages, and forming a concentrated energy strike against important enemy targets. In “joint operations”, combat forces in various fields must not only have the ability to independently perform a variety of combat missions, but also need to use their own cross-domain perception, target recognition and strike capabilities to support or even directly participate in other combat domain operations.

3. “Flexible mobile combat application is required!”. The winning mechanism of joint operations lies in the rapid and continuous integration of multi-domain combat forces to form multiple advantages and immediate advantages in specific time windows, forcing the enemy into passivity, disadvantage and dilemma. For the use of single-domain and multi-domain forces, such as the use of fingers and fists, whether it is “pointing points with hands” or “clenching fingers into fists”, or even the mutual transformation and use in combat, we must adhere to seeking truth from facts and comprehensively consider the efficiency of combat effects. Scientifically make decisions based on factors such as efficiency and contribution to the victory of war, and effectively use troops according to circumstances, location, and situation. If the single-domain combat force can solve the problem well, it is no longer necessary to use multi-domain combat forces, thereby improving operational effectiveness.

現代國語:

聯合作戰是現代戰爭的基本作戰形式,強調兩個以上軍兵種力量及其他參戰力量,在統一指揮下於多域空間共同實施作戰。聯合作戰中的「單域」與「多域」相互依存、相互作用,是一對重要的軍事範疇。掌握單域與多域的關係,是解決聯合作戰力量建設與運用之「內接口」問題的核心內容與關鍵所在,應辯證看待並正確處理二者關係,不斷豐富聯合作戰制勝機理,推動聯合作戰真正實現跨域融合、聚能增效。

「單域」是「多域」的構成要素與發展基礎

聯合作戰強調以優勢單域為基礎構成優勢多域,對組成多域的各單域之間的耦合關係提出了更高要求。單域的發展才能為多域的發展提供堅實的基礎,為實現跨域融合創造前提條件。

從歷史進程來看,單域到多域是領域拓展的過程。縱觀人類歷史,每個時代的戰爭都運用所在時代的技術,印刻著所在時代的烙印,並隨著戰爭時間和空間的發展而發展。農業時代的戰爭,以冷兵器為主要軍事裝備,戰場廝殺主要局限在陸域及近海海域,屬於較低級的「全接觸式」戰爭,作戰域較為單一,使得早期的作戰呈現出「鬆散性」聯合特徵。

進入工業時代,隨著蒸汽機和內燃機的發明與使用,以作戰飛機為代表的空戰武器出現在戰場,作戰空間突破陸域和海域的局限,形成陸海空三維立體戰場,戰爭轉向“半接觸式”,使得聯合作戰呈現出“協同性”聯合特徵。進入資訊時代,作戰空間突破三維地理空間,形成陸、海、空、天、電、網、認知領域等多域一體,使得聯合作戰呈現多域「一體化」聯合特徵。伴隨著單域向多域發展,制陸權、制海權、制空權、製天權、制資訊權等單域制權不斷出現,且後續單域制權的重要性不斷提升,推動著多域制權內涵的拓展變化,對綜合製權的爭奪成為敵我對抗的首要。

從發展形態來看,單域到多域是聚鏈成網的過程。受技術條件等製約,資訊時代之前的作戰活動,不論是在戰場時間、戰場空間,還是在作戰力量布勢運用等方面,各單域間條塊分明,各級行動層次分明,表現出強烈的順序性和漸進性,呈現出單域鏈條式發展形態。

進入資訊時代,在網路系統的充分“粘合”下,多域力量編成由“組合”發展為“融合”,形成空間分散部署、時間協調一致、能量釋放多維一體的彈性結構。根據戰場態勢和情況變化,作戰活動以網路資訊體系為“紐帶”,將作戰單域的“形散神聚”聯結成“網絡”狀,形成同類強點聚焦、優勢互補,實現了各單域“形散神聚”和“聚指成拳”,實現了由單域鏈條式向多域網絡式的轉變。

從效能指數來看,單域到多域是聚能增效的過程。戰爭敵對雙方都力圖發揮整體作戰威力以求得作戰勝利,但由於以往各單域邊界清晰、聯繫較為鬆散,提高整體戰力只能透過各作戰域的線性「疊加」來實現。隨著資訊化技術和智慧化技術的發展,特別是資訊系統在軍事上的廣泛應用,網路資訊體系實現了對各單域力量的指揮調控,並能無縫連結各作戰域,各作戰力量最大限度地發揮空間多維性和力量多元性優勢,實現了各單域各層級在力量、手段和行動等方面的高度融合、多維聚力、整體聯動和集成釋能,達成了優勢互補、協同一致、內聚融合的效果,有利於實現對敵全面優勢或局部壓倒性優勢。

「多域」是「單域」的方向主導與強力支配

聯合作戰制勝機理本質在於跨域融合實現聚優增效,要求單域與多域在功能上必須「同向統一」。多域規定了各單域在作戰中的地位與作用,各單域必須從聯合作戰整體功能需要出發,著眼為作戰體系提供極限貢獻率,實現同步跨域機動、跨域協同、跨域打擊,達成整體對抗中的體系優勢。目前,多域主要從以下方面主導並支配單域朝向與體系形成合力的方向發展。

多域作戰需求轉變為混合戰爭威脅。目前,常規性威脅不斷拓展,非常規威脅成為新的現實威脅,正規戰場與非正規戰場之間的界線趨於模糊,戰鬥人員與非戰鬥人員之間的界線趨於模糊,物理維度與虛擬維度之間的界線趨於模糊。聯合作戰仍是基本作戰形式,但具體的作戰樣式呈現出向多種樣式結合方向發展的趨勢,來自於傳統或非傳統、正規或非正規、高強度或低強度的各種威脅存在於陸、海、空、天、電、網、認知等多域中。這些威脅為戰爭概念增添了新的內涵。因此,既要做好針對某單一威脅的鬥爭,更要發展出具有融入多域作戰應對混合戰爭的能力。

多域作戰重心轉移到網路資訊體系。近年來爆發的幾場資訊化局部戰爭表明,無戰不聯、無聯不勝,凝聚各單域作戰要素的網路資訊體系成為作戰重心,匯聚網路資訊體系戰力的作戰指揮資訊系統,成為軍隊作戰主要依託的“神經中樞”,成為對手打擊的要害。指揮資訊系統的一體化程度越來越高,各單域的指揮系統必然要向整體指揮體系匯聚和靠攏,從而實現各軍種、各作戰單位的系統集成以及各作戰要素的深度耦合。與之相適應,資訊域、認知域、電磁域作為戰爭的新興領域,其核心地位和重要性不斷增強,日益成為敵對雙方爭奪制權的核心作戰域,成為能夠致敵「眼盲、失能、智障」的關鍵作戰域。所以,各單域必須在統一的標準體系框架內,加強自身有機融入網路資訊體系的能力,達成各單域間的互聯互通互通,才能確保在多域精確戰中提供基礎支撐,進而贏得整體優勢。

多域作戰力量轉型為聯合作戰單元。一體化聯合作戰具有平台作戰、體系支撐與戰術行動、戰略保障的特點,戰略級規劃、戰役級指揮、戰術級行動將成為未來戰爭的常態。大規模兵團作戰可能愈發少見,代之的將是聯合戰鬥更多地出現在多域戰場。聯合戰鬥單元將匯集各單域作戰力量,涵蓋各作戰要素,聯合的層級體現在戰術級,呈現出一個包括預警偵察、資訊保障、作戰指揮、多域攻防、作戰保障等多要素的可獨立作戰的聯合戰術單元形態。各單域作戰力量耦合關係更加緊密,自身特色優勢將更加突出。

加速推動「單域優勢」向「多域優勢」拓展

單域與多域辯證統一,我們既要看到多域的統一性,又要尊重單域的獨立性;既不能把二者完全地對立起來,又不可抹殺它們之間的聯繫。應針對作戰對手、作戰環境、自身實力等實際情況,綜合考慮政治、經濟、技術、文化等各種因素,加速推動「單域優勢」向「多域優勢」拓展,形成對敵的資訊優勢、決策優勢與行動優勢。

一要鞏固拓展單域優勢。 「梅特卡夫定律」告訴我們,增加網路實體能夠產生對體系戰鬥力的非線性指數聚能。多域作戰是深度融合的體係作戰,各單域作為多域存在的基礎要素,其建設的強度必將影響多域融合的效能。形成多域優勢實質是深度聚合各單域優勢,必須不斷加強單域能力建構形成單域優勢,限制對手力量優勢極限發揮。事實上,鞏固和拓展單域優勢不僅是為了增強單域效能,更是為了實現多域融合而服務。單域建設要加強頂層設計,制定標準規範,努力克服因不同軍種特有作戰樣式與戰鬥文化形成的不同作戰建設理念而帶來的矛盾衝突。同時,要統籌好各項軍隊建設資源,注重研發多域作戰武器平台,滿足聯合作戰整體需求,而非僅是各單域自身需要。

二要促進實現跨域協同。跨域協同強調打破軍兵種間界限,進行跨軍種、跨兵種、跨建制的作戰力量融合。基於網路資訊體系,各域作戰力量廣域分佈,多域整體連動,優勢互補增效,快速逐級聚能,推動將單域優勢擴展為多域融合優勢和體系優勢,形成對敵重要目標的聚能打擊。在聯合作戰中各域作戰力量不僅要具備獨立遂行多種作戰任務的能力,更需要利用自身的跨域感知、目標識別和打擊能力,能夠支援甚至直接參與其他作戰域行動。

三要靈活機動作戰運用。聯合作戰的致勝機制在於透過多域作戰力量快速且持續地整合,在特定時間窗口形成多重優勢和即時優勢,迫敵陷入被動、劣勢和困境。對於單域和多域力量的運用,猶如指頭與拳頭的使用,究竟是“指針點穴”還是“攥指成拳”,甚至是作戰中相互轉化運用,都需堅持實事求是,綜合考慮作戰效果效率效益,以及對戰爭制勝的貢獻率等因素科學決斷,切實做到因情用兵、因地用兵。如果單域作戰力量能很好解決問題,就不必再使用多域作戰力量,進而提升作戰效益。

王榮輝  鄧仕峰

中國軍網 國防部網 2022年1月20日 星期四

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-01/20/content_307852888.htm

Research on Chinese Military Affairs, Studying War丨Brief Analysis of China’s Winning Mechanisms of Intelligent Warfare

研究中國軍事,研究戰爭丨中國智慧化戰爭制勝機制淺析

現代英語:

President Xi pointed out that the core of studying combat issues is to clarify the characteristic rules and winning mechanisms of modern warfare. In today’s world, major changes unseen in a century are accelerating. Disruptive technologies represented by artificial intelligence are developing rapidly and widely used in the military field, accelerating the evolution of war forms towards intelligence. The corresponding war winning mechanism is also changing. “ Victory tends to smile at those who can foresee changes in the characteristics of war, rather than at those who wait for changes to occur before adapting”. Only by discovering changes in a timely manner, proactively responding to changes, and actively adapting to changes can we better grasp the initiative in future wars and remain invincible in future wars.

Outwitted

In the “intelligent warfare confrontation”, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. Global multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build combat systems according to mission requirements, and independently implement coordinated operations, the mission ends and quickly returns to a state of readiness for war, showing a trend of intelligent autonomy. Whoever possesses the empowerment and gain advantage of intelligent technology in the combat system can design wars, lead the development of the battlefield, master battlefield initiative, and achieve “using wisdom to defeat clumsiness”. First, algorithms, computing power, and data determine system operational capabilities. Relying on intelligent algorithms and powerful computing power, it can quickly and efficiently analyze targets and match resource means, solve high-frequency cross-domain collaboration problems, achieve coordinated planning, parallel actions, and real-time evaluation, and greatly improve system operating speed and strike efficiency. Second, intelligent networks support cross-domain all-in-one action. The intelligent network information system provides basic support and link links for the combat system. Combat units and combat elements in different combat domains can be integrated into the entire combat system at any time “plug and play” to achieve rapid information transmission and sharing. Again, an intelligent weapon platform enables autonomous and flexible strikes. Intelligent technology achieves the organic combination of human strategy and machine’s autonomous perception, autonomous decision-making, and autonomous action by empowering weapon platforms, elements, and forces. Through “software defines the combat system structure and functions, and uses software to empower weapon platforms and ammunition, the platform can independently select and attack targets, and flexibly build a kill chain”.

Gathering is better than scattering

With the support of the “intelligent network information system”, the combat system has become an organic whole with a high degree of autonomous coordination, allowing the overall linkage of combat operations and the operational effectiveness index to be magnified, relying on the overall power of the system to win. First, the multiple elements of information, firepower, military power and cognition are linked together to release energy. With the injection of intelligent factors into the combat system, information, firepower, force and cognition will be given new quality capabilities, and based on the support of intelligent network information systems, software and hardware capabilities will be organically combined and physical and intangible means will be closely integrated to achieve combat effectiveness. maximize. Secondly, the multi-spatial multi-directional linkage of land, sea, air, space, network, electricity and other forces gathers forces to release energy. The seizure and control of battlefield control will rely more on the integrated linkage and cross-domain coordination of multi-domain space operations. By dispersing various combat forces deployed in a vast space, they will immediately gather advantages, forming a multi-domain, multi-directional energy release advantage for dimensionality reduction attacks in one domain, thereby taking control of battlefield initiative. Again, the multi-link linkage of detection, control, and evaluation gathers strength to release energy. Through the “ubiquitous Internet network”, cross-domain response to combat operations, cross-domain sharing of combat information, and cross-domain complementation of combat functions can be realized, and anti-virus networks can be dynamically adjusted or constructed according to the enemy’s circumstances and circumstances to achieve rapid system operation and concentrated energy release.

“Exquisite” is better than coarse

Intelligent warfare must be reasonably invested, effectively regulate combat forces, and be used as a means of warfare to achieve the goal of “refining the rough” and winning at the lowest cost. First, a precise target-information-driven system operates efficiently. Relying on various intelligent sensing platforms covering multi-dimensional and wide-area deployment, it detects and locates obstacles or targets in the battlefield environment. Precisely control the flow, flow, and velocity of information to achieve rational allocation of combat resources, coordinated and orderly combat operations, and precise release of combat energy. Second, precise breaching operations achieve a rapid transition between good and bad. The application of big data, big model analysis algorithms and other technologies can accurately analyze and judge combat systems “weak spots ”“ Achilles’ heel”, accurately guide the use of weapons and high-energy weapons such as lasers and hypersonic speeds, make the choice of precise strike methods more diverse, and can make the enemy Combat systems are instantly disabled. Again, precise strike evaluation supports the optimal superposition of combat effects. The target damage effect is accurately obtained through intelligent channels and means, and the conclusion is revised based on the human-computer interaction evaluation system. The commander can compare, interact, feedback, and correct the damage effect assessment conclusions with the information stored in the system knowledge base and his or her own professional knowledge to achieve the purpose of accurately assessing the impact effect of the target.

Faster than Slow

“The main speed of military intelligence”, the rapid development of military intelligence has greatly improved the speed of information transmission and the accuracy of weapon strikes, greatly reduced the time for reconnaissance and early warning, intelligence processing, command and decision-making, fire strike, and damage assessment, and accelerated “OODA” kill chain Cycle, new rapid-fire weapons such as hypersonic missiles, laser weapons, microwave weapons, and electromagnetic pulse weapons further push the rhythm of war to “instant kill”. Hybrid human-machine decision-making becomes the key to enemy action first. On the one hand, the new model of human-machine hybrid cloud-brain decision-making is based on the intelligent “network, cloud, terminal” system and integrates intelligent battlefield perception, decision-making and weapon control systems to quickly select combat plans and achieve instant decision-making advantages. On the other hand, the speed at which the kill chain is constructed becomes the basic yardstick for system confrontation. Under the empowerment of “intelligent technology”, the acquisition, processing and transmission time of battlefield information is greatly shortened. The intelligent platform uses algorithms to analyze battlefield spatial situations and target information in real time, and the time of the kill chain is shortened to seconds, thus achieving “destroy upon discovery”.

Toughness is better than crispness

War is not only a military contest, but also a competition between the country’s human, material and financial resources. Maintaining the lasting resilience of the combat system has become a key factor affecting the outcome of the operation. First, the large-scale use of low-cost unmanned intelligence platforms has become a completely new way of fighting. Unmanned intelligence platforms, micro-intelligent robot autonomous combat clusters, etc., dispersed to more small and low-cost combat platforms, can enhance the recovery speed and overall penetration of the combat system after damage, and achieve maximum combat benefits at a smaller cost. Secondly, the continued guarantee of intelligent resources becomes the key to the operation of the combat system. Various new weapons and new means such as unmanned combat platforms, intelligent algorithms, and cyber attacks are constantly emerging. Powerful computing power, advanced algorithms, and accurate data support have become the guarantee for the continued and stable operation of the system, and intelligent resources “timely, appropriately, applicable, and appropriately” continue to be effective. Guarantee has become an important influencing factor in the victory of intelligent warfare. Again, the operational system’s requirements for balance of offensive and defensive capabilities are getting higher and higher. The local area network, wide area network and even brain network behind the network and digitalization of the combat system leave room for opponents to launch attacks; the “cloud— network —end” structure of the combat system intelligent network information system, its data center, supercomputing center and other network infrastructure It will also be an important hub for opponents to focus on attacking and destroying.

Heart is better than things

Intelligent warfare is different from traditional warfare in which the main purpose is to eliminate the enemy’s effective power. It will pay more attention to weakening the enemy’s morale, disintegrating the enemy’s will, and destroying the enemy’s psychology. Smart technology has become a new way to influence the minds of all employees at all times. First of all, intelligent new media, new technologies and new means have created new ways for the psychological influence of public opinion. Enhanced consciousness and the development of information editing and other technologies have made the methods of conscious attack and defense more diverse, the methods of confrontation more varied, and the technological content higher. Use “intelligent weapons, intelligent technology and intelligent information struggle methods to carry out information attacks on the enemy, thereby forming psychological deterrence”. Secondly, intelligent and deep interaction makes obtaining data richer and more complete. Technologies such as AI face-changing, holographic projection, and audio-visual synthesis provide new means to implement intelligent manufacturing and confuse facts. Again, smart models, massive amounts of data, and high-performance servers provide new tools for quickly concocting information ammunition. Mental guidance and control can be closely coordinated with military, economic, and diplomatic forces to amplify the deterrent effect, constantly create pressure from public opinion to force the enemy to compromise, form psychological deterrence and make them hesitate to give in, change the enemy’s cognition through differentiation of value identity, and achieve subjugation without fighting.

More than single

The rapid development of science and technology has opened up new space for activities and interests for human society, but new security threats and challenges have followed suit, promoting the corresponding expansion of battlefield space and confrontation fields. Currently, wars are constrained and influenced by many factors such as politics, economy, diplomacy, military, technology, geography, and psychology. Unconventional mixed wars supported by military capabilities have become more intense. The competition space for hybrid warfare has extended to various fields such as politics, economy, diplomacy, culture, and military. It emphasizes the comprehensive use of national strategic resources and strategic tools to achieve traditional war goals and transcend traditional war methods. It has a special status and role. As intelligent technology matures, the threshold for intelligent warfare will show a downward trend. Participating parties may adopt an undeclared war approach to launch a variety of integrated economic warfare, diplomatic warfare, cyber warfare, public opinion warfare, psychological warfare, legal warfare, etc. Mixed warfare, mixed victory means giving priority to politics, economy, diplomacy, etc. on the basis of comparing the advantages and disadvantages of the opponent and one’s own side in all aspects Public opinion and other non-military tools and means that can use strengths and avoid weaknesses, use four taels to move a thousand pounds, pursue “no war” or “less war ”“small war” and subjugate others. As long as we deeply understand and accurately grasp the characteristic rules and operating mechanisms of future hybrid warfare, and creatively use clever and efficient strategic techniques, we can fully achieve the expected strategic results.

現代國語:

羅振華 鑫 言

引 言

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。當今世界,百年未有之大變局加速演進,以人工智能為代表的顛覆性技術迅猛發展,並廣泛應用於軍事領域,使戰爭形態向智能化加速演變,與之相應的戰爭制勝機理也正在發生嬗變。“勝利往往向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生後才去適應的人微笑”。及時發現變化,主動應對變化,積極適應變化,才能夠更好地把握未來戰爭主動權,在未來戰爭中立於不敗之地。

智勝於拙

在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,全域多維、各種類型的智能化作戰平台能夠快速耦合作戰力量,根據任務需求構建作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智能自主趨勢。誰佔有智能技術對作戰體系的賦能增益優勢,誰就能據此設計戰爭、主導戰局發展,掌握戰場主動,實現“以智制拙”。首先,算法、算力和數據決定體系作戰能力。依托智能算法和強大算力,可以快速高效地分析目標、匹配資源手段,解決高頻次跨域協同難題,實現協調規劃、並行行動、即時評估,大幅提高體系運行速度和打擊效能。其次,智能網絡支撐跨域一體行動。智能網絡信息系統為作戰體系提供基礎支撐和鏈接紐帶,不同作戰域的作戰單元、作戰要素,隨時可“即插即用”融入整個作戰體系,實現信息快速傳遞共享。再次,智能化武器平台實現自主靈活打擊。智能技術通過賦能武器平台、要素和力量,達到人的謀略與機器的自主感知、自主決策、自主行動有機結合。通過軟件定義作戰體系結構和功能,用軟件賦能武器平台和彈藥,可實現平台自主選擇和打擊目標,靈活構建殺傷鏈。

聚勝於散

在智能化網絡信息系統支撐下,作戰體系成為具有高度自主協調力的有機整體,使得作戰行動整體聯動、作戰效能指數級放大,靠系統湧現的整體威力制勝。首先,信息、火力、兵力和認知等多要素聯動聚力釋能。隨著作戰體系注入智能因素,信息、火力、兵力和認知都將賦予新質能力,並基於智能化網絡信息系統的支撐,實現軟硬能力有機復合、有形無形手段緊密融合,達成作戰效能最大化。其次,陸海空天網電等多空間多方向聯動聚力釋能。戰場制權的奪控,將更加依賴多域空間行動的一體聯動和跨域協同,通過分散部署在廣闊空間的各種作戰力量即時聚優,形成多域多向對一域降維打擊的釋能優勢,從而掌握戰場主動。再次,偵控打評等多環節聯動聚力釋能。通過泛在互聯網絡,實現作戰行動跨域響應、作戰信息跨域共享、作戰功能跨域互補,因敵因情因勢動態調整或構建殺傷網,實現體系快速運轉和聚力釋能。

精勝於粗

智能化戰爭必須合理投入、有效調控作戰力量,恰當選用作戰手段,達成“以精制粗”,以最小代價取勝的目的。首先,精准的目標信息驅動體系高效運行。依托覆蓋全域多維、廣域部署的各種智能感知平台,探測、定位戰場環境中的障礙或目標。精確控制信息的流向、流量、流速,實現作戰資源的合理分配、作戰行動的協調有序和作戰能量的精確釋放。其次,精准的破擊行動實現快速優劣轉化。大數據、大模型分析算法等技術的運用,可精確分析判斷作戰體系“軟肋”“死穴”,精確制導武器和激光、高超聲速等高能武器的使用,讓精確打擊的手段選擇更加多樣,可使敵作戰體系瞬時失能。再次,精准的打擊評估支撐作戰效果最優疊加。通過智能化途徑和手段准確獲取目標毀傷效果,依托人機交互評估系統對結論進行修正。指揮員可將毀傷效果評估結論與系統知識庫儲存的信息以及自身專業知識進行比對、交互、反饋、修正,達到精准評估目標打擊效果的目的。

快勝於慢

“兵之情主速”,軍事智能化的飛速發展大大提升了信息傳遞速度和武器打擊精度,大幅縮減了偵察預警、情報處理、指揮決策、火力打擊、毀傷評估的時間,加速“OODA”殺傷鏈循環,高超聲速導彈、激光武器、微波武器、電磁脈沖武器等新型快速殺傷武器進一步將戰爭節奏推向“秒殺”。人機混合決策成為先敵行動的關鍵。一方面,人機混合的雲腦決策的全新模式,以智能“網、雲、端”體系為依托,集智能化戰場感知、決策和武器控制系統於一體,可快速優選作戰方案,實現即時決策優勢。另一方面,殺傷鏈構建速度成為體系對抗的基本衡量標准。在智能技術賦能作用下,戰場信息的獲取、處理和傳輸時間極大縮短,智能平台利用算法可對戰場空間態勢和目標信息實時分析,殺傷鏈的時間縮短至秒級,從而實現“發現即摧毀”。

韌勝於脆

戰爭不但是軍事的較量,更是國家人力物力財力的比拼。保持作戰體系持久韌性,成為影響作戰勝負的關鍵因素。首先,低成本無人智能平台的規模化運用成為全新作戰方式。無人智能平台、微型智能機器人自主作戰集群等,分散到更多小型廉價作戰平台的做法,可增強作戰體系受損後的恢復速度和整體突防力,以較小代價取得最大作戰效益。其次,智能資源的持續保障成為作戰體系運行的關鍵。無人作戰平台、智能算法、網絡攻擊等各種新武器、新手段不斷湧現,強大算力、先進算法和精准數據支撐成為體系持續穩定運行的保證,“適時、適地、適用、適量”的智能資源持續有效保障,成為智能化戰爭制勝的重要影響因素。再次,作戰體系的攻防一體能力平衡性要求越來越高。作戰體系網絡化、數字化背後的局域網、廣域網甚至腦聯網,給對手發起攻擊留下空間;作戰體系的“雲—網—端”結構智能網信系統,其數據中心、超算中心等網絡基礎設施也將是對手重點攻擊破壞的重要樞紐。

心勝於物

智能化戰爭與傳統戰爭中以消滅敵人有生力量為主要目的不同,將更加注重削弱敵方的士氣,瓦解敵方的意志,摧毀敵方的心理。智能科技已成為全時全域影響全員心智的全新方式。首先,智能化的新媒體、新技術和新手段,為輿論心理影響開創了新方式。意識增強、信息編輯等技術的發展,使得意識攻防手段更加多樣、對抗方式更加多變、科技含量更高。運用智能武器、智能技術和智能信息斗爭的方法,對敵實施信息打擊,從而形成心理威懾。其次,智能化的深度互動,使得獲取數據更為豐富,要素更加齊全。AI換臉、全息投影、影音合成等技術,為實施智能制造、混淆事實真相提供了新手段。再次,智能模型、海量數據和高性能服務器,為快速炮制信息彈藥提供了新工具。心智導控可與軍事、經濟、外交密切配合,放大震懾效應,不斷制造輿論壓力迫敵妥協,形成心理震懾使其遲疑退讓,通過價值認同分化改變敵認知,實現不戰而屈人之兵。

多勝於單

科學技術的迅猛發展,為人類社會打開了新的活動空間和利益空間,但新的安全威脅和挑戰也隨之而來,推動了戰場空間和對抗場域的相應拓展。當前,戰爭受到政治、經濟、外交、軍事、技術、地理、心理等諸多因素的制約和影響,以軍事能力為支撐的非常規的混合戰爭反而更加激烈。混合戰爭的角逐空間已經延伸至政治、經濟、外交、文化、軍事等各領域,強調綜合運用國家戰略資源和戰略工具聚合發力,既能夠實現傳統戰爭目標,又能夠超越傳統戰爭手段,地位作用特殊。隨著智能技術的發展成熟,智能化戰爭的門檻將呈現下降趨勢,參戰方可能采取不宣而戰的方式發起融合經濟戰、外交戰、網絡戰、輿論戰、心理戰、法律戰等多種樣式的混合戰爭,混合制勝就是要在對比敵手和己方各方面優勢劣勢的基礎之上,優先選擇政治、經濟、外交、輿論等能揚長避短的非軍事類工具和手段,以四兩撥千斤,追求“不戰”或“少戰”“小戰”而屈人之兵。只要深刻認識和准確把握未來混合戰爭的特點規律、運行機理,創造性地運用巧妙、高效的策略手法,完全能夠達到預期戰略效果。

中國原創軍事資源:http://www.81.cn/yw_208727/16393427.html

Military Intelligence Drives Accelerated Development of Chinese Army Cyberspace Operations

軍事情報推動中國軍隊網路空間作戰加速發展

現代英語:

The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.

Military intelligence leads to accelerated development of cyberspace operations

■Respect the soldiers Zhou Dewang and Huang Anwei

Three major technologies support the intelligence of cyberspace weapons

Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.

Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.

Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.

The intelligent trend of network-controlled weapons has become increasingly prominent

Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.

In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.

Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.

Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.

Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.

Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.

Intelligent command information system changes traditional combat command methods

Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.

In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.

To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.

In the future battlefield, fighting courage requires more fighting “wisdom”

■Yang Jian and Zhao Lu

At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.

Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.

It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.

In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.

現代國語:

資料來源:中國軍網綜合作者:敬兵 周德旺 皇安偉 等責任編輯:胡雪珂

黨的十九大報告指出,要「加速軍事智慧化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。今天的《解放軍報》刊發文章指出,軍事智能化是機械化、資訊化之後軍事領域發展的新趨勢和新方向,我們要在現有機械化和資訊化基礎上發展智能化,同時用智能化牽引機械化和信息化向更高水平、更高層次發展。網路空間作為新型作戰領域,是科技含量高、最具創新活力的新領域,在軍事智慧化的牽引下,正迎來快速發展的機會期。

軍事智慧化牽引網路空間作戰加速發展

■敬兵 週德旺 皇安偉

三大技術支撐網路空間武器智慧化

智能是一種智慧和能力,是一切有生命週期的系統對規律的感應、認知與運用,智能化就是把這種智慧和能力固化下來,成為一種狀態。網路空間武器是網路空間遂行作戰任務的武器,其形態以軟體和程式碼為主,本質上是一段資料。網路空間武器的智慧化主要體現在以下三個方面:

一是智慧化漏洞挖掘。漏洞是網路武器設計的基礎,今年5月在全球傳播的勒索病毒軟體,就是利用了微軟作業系統漏洞,為網路安全界帶來了巨大震動。漏洞價格昂貴,零日漏洞價值幾萬到幾十萬美元不等。過去漏洞的發現,主要依靠有經驗的駭客,利用軟體工具對程式碼進行檢查和分析。今年中國網路安全大會期間舉辦的國際網路安全技術對抗聯賽總決賽中,參賽人員示範由智慧機器人現場進行漏洞挖掘,然後透過漏洞編寫網路程式碼,形成網路武器,攻破目標系統,奪取旗幟。這項變化,意味著漏洞挖掘進入了智慧化時代。

二是智能化訊號分析和密碼破譯。訊號是網路資料傳輸的載體,密碼是網路資料安全的最後屏障,訊號分析和密碼破解是網路空間作戰的核心技術,突破訊號和密碼是進入網路空間的基本路徑,也是網路武器攻擊的首要目標。智慧化訊號分析將訊號的協定分析、調變辨識、個體辨識等問題,透過大數據、雲端運算、深度學習等技術來解決。密碼破解是計算科學“皇冠上的明珠”,智能化密碼破譯通過對密碼數據樣本的積累,不斷學習、尋找規律,能找到破譯的鑰匙,從而打開網絡數據“保險櫃”的最後一扇門,解決網絡入侵和接入的關鍵環節。

三是智慧化武器平台設計。美軍在2009年提出「網路飛行器」項目,為網路空間作戰提供像戰車、艦艇、飛機這樣的平台,可以實現在網路空間裡自動偵察、載入網路武器、自主協同、自主攻擊,受到威脅時自我銷毀、清除痕跡,具備了一定的智慧化特徵。未來「網路飛行器」載入的武器,不是軟體人員編好的程式碼,而是根據偵察結果直接對發現的漏洞,現場即時進行智慧化網路武器設計,實現「訂購式」開發,從而大大提高網路空間作戰的針對性。

網控武器的智慧化趨勢愈加凸顯

受網路空間控制的武器簡稱網路武器,是透過網路連接,接受網路空間指令,執行跨域任務,在實體空間達成作戰效果的武器。未來的各種作戰武器平台,大多是聯網的武器平台,這樣軍事資訊網本質上就是物聯網,上聯衛星、雷達、無人機等網路實體,從感知到發現、追蹤、定位、打擊都可透過網路空間控制,網控武器的智慧化已在陸海空天電等戰場蓬勃發展。

2015年,敘利亞利用俄羅斯機器人軍團擊潰武裝分子,行動採用了包括6個履帶式機器人、4個輪式機器人、1個自動化火砲群、數架無人機和1套指揮系統。指揮官透過指揮系統調度無人機偵察發現武裝分子,機器人向武裝分子發動衝鋒,同時伴隨火砲和無人機攻擊力量支援,對武裝分子進行了致命打擊。這只是一場小規模的戰鬥,卻開啟了機器人「組團」作戰的先河。

海空戰場網控智慧武器正在大量研發驗證。 2014年,美國海軍使用13艘無人水面艇,示範驗證無人艇集群攔截敵方艦艇,主要透過交換感測器數據,取得了不錯的效果。 2016年再次試驗時,新增了協同任務分配、戰術配合等功能,「蜂群意識」成為其智慧化的顯著特徵。

用於空中作戰的小微型無人機蜂群也正在快速發展。近年來,美國國防部多次試驗「山銻」微型無人機,可一次投放數十架乃至上百架,透過提升其執行偵察任務時的協同能力,在無人機編隊、指揮、控制、智慧化管理等方面都取得了進展。

空天網控武器越來越「聰明」。空天領域主要包含偵察和打擊兩類網控武器,各種功能的衛星主要執行偵察任務,是典型的偵察感測器。隨著各種小微衛星群的出現,使衛星表現出新的特徵:體積小、發射快、數量多、更聰明。小微衛星群在執行偵察和通訊任務時,有了更大的彈性和可靠性,目前世界衛星強國都在積極制定覆蓋範圍更廣的小微衛星群計畫。

各種高超音速打擊武器在空天巡航,彷彿懸在人們頭頂的利劍。美國空軍研究室稱「高速打擊武器」將在2018年前後啟動飛行試驗,其它各國也正積極研發類似武器。這類武器最大的特色是速度快、航程遠、智能化程度高。

智慧化指揮資訊系統改變傳統作戰指揮方式

網路空間武器和受網路空間控制的武器,是智慧化戰爭的“拳頭”,而指揮這些武器運用的指揮資訊系統是智慧化戰爭的“大腦”,網路空間作戰指揮資訊系統要同步跟上智慧化的進程。目前,幾乎全球的指揮資訊系統都面臨著「智慧滯後」的難題,未來戰爭需要快速決策、自主決策,這對智慧輔助系統提出了更高要求。

2007年,美國國防部高級研究計劃局啟動關於指揮控制系統的研發計劃——“深綠色計劃”,以期能實現計算機輔助指揮官快速決策贏得制勝先機。這是一個戰役戰術級的指揮資訊系統,其研發目的是將該系統嵌入美國陸軍旅級C4ISR戰時指揮資訊系統中去,實現指揮官的智慧化指揮。直到今天,美軍也沒有放鬆對智慧化指揮資訊系統的發展。

在網路空間作戰中,網路目標表現為一個接取網路的IP位址,數量眾多導致人工難以有效率操作,作戰更需要智慧化指揮資訊系統的輔助支撐。目前,智慧化指揮資訊系統需要實現智慧情報分析、智慧感知、智慧導航定位、智慧輔助決策、智慧協同、智慧評估、智慧化無人作戰等功能,尤其是實現對無人網控系統的集群作戰操控,這都對智慧化指揮資訊系統提出了迫切需求,需要加快相應關鍵技術的研發和運用。

綜上所述,智慧化的網路武器和網路控制武器,透過智慧化的資訊系統調度,將形成巨大的作戰能力,基本能遂行現行作戰樣式中的所有行動。未來戰爭,從指揮力量編組、到目標選擇、行動方式、戰法運用等,都將在智能化的背景下展開,戰爭「遊戲化」的特徵將更顯著,作戰指揮方式也將發生重大變化。

未來戰場 鬥勇更需鬥“智”

■楊建 趙璐

目前,人工智慧發展進入嶄新階段,並開始向各個領域加速滲透。受此一進程的影響,各國圍繞智慧化的軍事競爭已揭開序幕。我軍歷來是一支英勇頑強、敢打必勝的人民軍隊,未來戰場上應繼續發揚光榮傳統,同時要更加廣泛地掌握和利用最新的科技成果,研製出更多智能化的武器裝備,在未來戰場上掌握制勝先機。

智慧化是人類社會發展的趨勢,智慧化戰爭正加速到來。正是由於超越原有體系結構計算模型的成功創新、奈米製造技術的逐步普及,以及對人腦機制研究的突破性進展,軍事智慧化發展才擁有了堅實的基礎。因此,智慧化武器裝備的表現日益突出,並在情報分析、戰鬥反應等方面開始超越並取代人類。此外,在人力需求、綜合保障、運作成本等方面,智慧化武器裝備也具有明顯的優勢,日益成為戰爭的主導力量。

事實證明,智慧化武器裝備的發展應用,拓展了軍事行動的能力範圍,大幅提升了部隊的作戰效能。在阿富汗和伊拉克戰場上,無人機已承擔了大部分偵察、情報、監視等作戰保障任務,並承擔了約三分之一的空中打擊任務。近兩年,俄羅斯在敘利亞戰場上也曾多次使用較高智慧化程度的無人偵察機、戰鬥機器人等裝備。智慧化武器裝備正愈來愈地展現出超越傳統武器的重要價值。

未來戰爭中,作戰體系智能化的較量將是高手過招、巔峰對決的勝利關鍵。隨著以科技為支撐的軍事手段發展的不平衡性越來越大,誰先具備實施智能化作戰的能力,誰就更能掌握戰場的主動權,擁有技術代差優勢的強者會盡可能將戰爭成本降到最低,而弱者必然遭受巨大損失,付出慘重代價。我們不僅要加緊核心技術創新、武器裝備研製,還要研究探索適應軍事智能化發展的組織結構、指揮方式和運用模式,更要培養一支能夠擔起推進軍事智能化發展、鍛造智能化作戰能力的人才隊伍,充分發揮我軍作戰體系的整體效能,在與對手的較量中,以更加“智慧”的方式贏得戰爭。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841895888.htm