Functional Orientation of the Modern Combat System with Chinese Characteristics
Key Points
● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.
● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.
The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.
Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.
The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.
A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.
Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.
Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.
The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.
Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.
The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.
Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.
Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.
The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.
Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.
(Author’s affiliation: Institute of War Studies, Academy of Military Sciences)
The report to the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint operational capabilities and all-domain operational capabilities based on network information systems.” Today’s *PLA Daily* published an article stating that military intelligence is a new trend and direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, while using intelligence to drive mechanization and informatization to a higher level and a higher standard. Cyberspace, as a new operational domain, is a new field with high technological content and the greatest innovative vitality. Under the impetus of military intelligence, it is ushering in a period of rapid development opportunities.Illustration: Lei Yu
Military intelligence is driving the accelerated development of cyberspace operations.
■ Respected soldiers Zhou Dewang Huang Anwei
Three key technologies support the intelligentization of cyberspace weapons.
Intelligence is a kind of wisdom and capability; it is the perception, cognition, and application of laws by all systems with life cycles. Intelligentization is the solidification of this wisdom and capability into a state. Cyberspace weapons are weapons used to carry out combat missions in cyberspace. Their form is primarily software and code, essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:
First, there’s intelligent vulnerability discovery. Vulnerabilities are the foundation of cyber weapon design. The ransomware that spread globally this May exploited a vulnerability in the Microsoft operating system, causing a huge shock in the cybersecurity community. Vulnerabilities are expensive, with a single zero-day vulnerability costing tens to hundreds of thousands of dollars. Previously, vulnerability discovery relied mainly on experienced hackers using software tools to inspect and analyze code. However, at the International Cybersecurity Technology Competition finals held during this year’s China Internet Security Conference, participants demonstrated how intelligent robots could discover vulnerabilities on-site, then use these vulnerabilities to write network code, creating cyber weapons to breach target systems and capture the flag. This change signifies that vulnerability discovery has entered the era of intelligent technology.
Second, intelligent signal analysis and cryptography. Signals are the carriers of network data transmission, and cryptography is the last line of defense for network data security. Signal analysis and cryptography are core technologies for cyberspace warfare. Breaking through signals and cryptography is the fundamental path to entering cyberspace and a primary target of cyber weapons attacks. Intelligent signal analysis solves problems such as signal protocol analysis, modulation identification, and individual identification through technologies such as big data, cloud computing, and deep learning. Cryptography is the “crown jewel” of computational science. Intelligent cryptography, through the accumulation of cryptographic data samples, continuously learns and searches for patterns to find the key to decryption, thereby opening the last door of the network data “safe” and solving the critical links of network intrusion and access.
Thirdly, there is the design of intelligent weapon platforms. In 2009, the U.S. military proposed the “Cyber Aircraft” project, providing platforms similar to armored vehicles, ships, and aircraft for cyberspace operations. These platforms can automatically conduct reconnaissance, load cyber weapons, autonomously coordinate, and autonomously attack in cyberspace. When threatened, they can self-destruct and erase traces, exhibiting a certain degree of intelligence. In the future, the weapons loaded onto “Cyber Aircraft” will not be pre-written code by software engineers, but rather intelligent cyber weapons will be designed in real-time based on discovered vulnerabilities, enabling “order-based” development and significantly improving the targeting of cyberspace operations.
The trend of intelligentization in network-controlled weapons is becoming increasingly prominent.
Weapons controlled by cyberspace, or cyber-controlled weapons, are weapons that connect to a network, receive commands from cyberspace, execute cross-domain missions, and achieve combat effects in physical space. Most future combat weapon platforms will be networked, making military information networks essentially the Internet of Things (IoT). These networks connect to satellites, radars, drones, and other network entities, enabling control from perception and detection to tracking, positioning, and strike. The intelligence of cyber-controlled weapons is rapidly developing across land, sea, air, space, and cyber domains.
In 2015, Syria used a Russian robotic force to defeat militants. The operation employed six tracked robots, four wheeled robots, an automated artillery corps, several drones, and a command system. Commanders used the command system to direct drones to locate militants, and the robots then charged, supported by artillery and drone fire, inflicting heavy casualties. This small-scale battle marked the beginning of robotic “team” operations.
Network-controlled intelligent weapons for naval and air battlefields are under extensive research and development and verification. In 2014, the U.S. Navy used 13 unmanned surface vessels to demonstrate and verify the interception of enemy ships by unmanned surface vessel swarms, mainly by exchanging sensor data, and achieved good results. When tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became its prominent feature of intelligence.
The development of swarms of small, micro-sized drones for aerial combat is also rapid. In recent years, the U.S. Department of Defense has conducted multiple tests of the Partridge micro-drone, capable of deploying dozens or even hundreds at a time. By enhancing its coordination capabilities during reconnaissance missions, progress has been made in drone formation, command, control, and intelligent management.
Space-based cyber-control weapons are becoming increasingly “intelligent.” The space-based cyber-control domain primarily comprises two categories of weapons: reconnaissance and strike weapons. Satellites of various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various microsatellite constellations, satellites are exhibiting new characteristics: small size, rapid launch, large numbers, and greater intelligence. Microsatellite constellations offer greater flexibility and reliability in performing reconnaissance and communication missions, and currently, the world’s leading satellite powers are actively developing microsatellite constellation plans with broader coverage.
Various hypersonic strike weapons are cruising in the air, like a sword of Damocles hanging over people’s heads. The U.S. Air Force Research Laboratory stated that the “hypersonic strike weapon” will begin flight testing around 2018, and other countries are also actively developing similar weapons. The most prominent features of these weapons are their high speed, long range, and high level of intelligence.
Intelligent command information systems are changing traditional combat command methods.
Cyber weapons and weapons controlled by cyberspace constitute the “fist” of intelligent warfare, while the command information systems that direct the use of these weapons are the “brain” of intelligent warfare. Cyberspace operational command information systems must keep pace with the process of intelligentization. Currently, almost all global command information systems face the challenge of “intelligent lag.” Future warfare requires rapid and autonomous decision-making, which places higher demands on intelligent support systems.
In 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) launched the “Deep Green Program,” a research and development program for command and control systems, aiming to enable computer-aided commanders to make rapid decisions and gain a decisive advantage. This is a campaign-level command information system, developed to be embedded into the U.S. Army’s brigade-level C4ISR wartime command information system, enabling intelligent command by commanders. Even today, the U.S. military has not relaxed its development of intelligent command information systems.
In cyberspace warfare, network targets are represented by a single IP address accessing the network. Their sheer number makes efficient manual operation difficult, necessitating the support of intelligent command and information systems. Currently, intelligent command and information systems need to achieve functions such as intelligent intelligence analysis, intelligent sensing, intelligent navigation and positioning, intelligent decision support, intelligent collaboration, intelligent assessment, and intelligent unmanned combat. In particular, they must enable swarm operational control of unmanned network control systems. All of these requirements urgently demand intelligent command and information systems, necessitating accelerated research and development and application of relevant key technologies.
In conclusion, intelligent cyber weapons and network control weapons, coordinated through intelligent information systems, will form enormous combat capabilities, essentially enabling them to carry out all actions in current combat scenarios. Future warfare, from command force organization to target selection, action methods, and tactical applications, will all unfold within an intelligent context. The “gamification” of warfare will become more pronounced, and operational command methods will undergo significant changes.
In future battlefields, combat will require not only courage but also intelligence.
■ Yang Jian, Zhao Lu
Currently, artificial intelligence is entering a new stage of development and is rapidly penetrating various fields. Influenced by this process, military competition among nations surrounding intelligent technologies has begun. Our army has always been a brave and tenacious people’s army, determined to fight and win. On the future battlefield, we should continue to carry forward our glorious traditions while more broadly mastering and utilizing the latest technological achievements to develop more intelligent weapons and equipment, thereby gaining a decisive advantage on the future battlefield.
Intelligentization is a trend in human societal development, and intelligent warfare is rapidly approaching. The development of military intelligence has a solid foundation thanks to successful innovations that transcend existing computational models, the gradual popularization of nanotechnology, and breakthroughs in research on the mechanisms of the human brain. Consequently, intelligent weaponry is increasingly prominent, surpassing and even replacing human capabilities in areas such as intelligence analysis and combat response. Furthermore, intelligent weaponry offers significant advantages in terms of manpower requirements, comprehensive support, and operating costs, and is increasingly becoming the dominant force in warfare.
The development and application of intelligent weaponry have proven to expand the scope of military operations and significantly enhance the combat effectiveness of troops. In the battlefields of Afghanistan and Iraq, drones have undertaken most of the reconnaissance, intelligence, and surveillance support missions, and have been responsible for approximately one-third of the air strike missions. In the past two years, Russia has also repeatedly used highly intelligent unmanned reconnaissance aircraft and combat robots in the Syrian theater. Intelligent weaponry is increasingly demonstrating its significant value, surpassing that of traditional weapons.
In future wars, the contest of intelligent combat systems will be the key to victory in high-level competition and ultimate showdowns. As the development of technology-supported military means becomes increasingly uneven, whoever first acquires the capability to conduct intelligent warfare will be better positioned to seize the initiative on the battlefield. Those with a technological advantage will minimize the costs of war, while the weaker will inevitably suffer enormous losses and pay a heavy price. We must not only accelerate innovation in core technologies and the development of weaponry, but also research and explore organizational structures, command methods, and operational models adapted to the development of intelligent military operations. Furthermore, we must cultivate a talent pool capable of promoting intelligent military development and forging intelligent combat capabilities, fully leveraging the overall effectiveness of our military’s combat system, and winning wars in a more “intelligent” manner against our adversaries.
Since the beginning of the new century, the rapid development of intelligent technologies, with artificial intelligence (AI) at its core, has accelerated the process of a new round of military revolution, and competition in the military field is rapidly moving towards an era of intellectual dominance. Combat elements represented by “AI, cloud, network, cluster, and terminal,” combined in diverse ways, constitute a new battlefield ecosystem, completely altering the mechanisms of victory in warfare. AI systems based on models and algorithms will be the core combat capability, permeating all aspects and stages, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made to decision by AI. Traditional human-centric tactics are being replaced by AI models and algorithms, making intellectual dominance the core control in future warfare. The stronger the intelligent combat capability, the greater the hope of subduing the enemy without fighting.
[Author Biography] Wu Mingxi is the Chief Scientist and Researcher of China Ordnance Industry Group, Deputy Secretary-General of the Science and Technology Committee of China Ordnance Industry Group, and Deputy Director of the Science and Technology Committee of China Ordnance Science Research Institute. His research focuses on national defense science and technology and weaponry development strategies and planning, policies and theories, management and reform research. His major works include “Intelligent Warfare – AI Military Vision,” etc.
Competition in the Age of Intellectual Property
The history of human civilization is a history of understanding and transforming nature, and also a history of understanding and liberating oneself. Through the development of science and technology and the creation and application of tools, humanity has continuously enhanced its capabilities, reduced its burdens, freed itself from constraints, and liberated itself. The control of war has also constantly changed, enriched, and evolved with technological progress, the expansion of human activity space, and the development of the times. Since the 19th century, humanity has successively experienced the control and struggle for land power, sea power, air power, space power, and information power. With the rapid development of intelligent technologies such as artificial intelligence (AI), big data, cloud computing, bio-interdisciplinary technologies, unmanned systems, and parallel simulation, and their deep integration with traditional technologies, humanity’s ability to understand and transform nature has been transformed in terms of epistemology, methodology, and operational mechanisms. This is accelerating the major technological revolutions in machine intelligence, bionic intelligence, swarm intelligence, human-machine integrated intelligence, and intelligent perception, intelligent decision-making, intelligent action, intelligent support, as well as intelligent design, research and development, testing, and manufacturing, thus accelerating the evolution of warfare towards the control and struggle for intellectual power.
The rapid development of intelligent technology has garnered significant attention from major countries worldwide, becoming a powerful driving force for the leapfrog development of military capabilities. The United States and Russia have placed intelligent technology at the core of maintaining their strategic status as global military powers, and significant changes have occurred in their development concepts, models, organizational methods, and innovative applications. They have also carried out substantive applications and practices of military intelligence (see Figure 1).
In August 2017, the U.S. Department of Defense stated that future AI warfare was inevitable and that the U.S. needed to “take immediate action” to accelerate the development of AI warfare technologies. The U.S. military’s “Third Offset Strategy” posits that a military revolution, characterized by intelligent armies, autonomous equipment, and unmanned warfare, is underway; therefore, they have identified intelligent technologies such as autonomous systems, big data analytics, and automation as key development directions. In June 2018, the U.S. Department of Defense announced the establishment of the Joint Artificial Intelligence Center, which, guided by the national AI development strategy, coordinates the planning and construction of the U.S. military’s intelligent military system. In February 2019, then-President Trump signed the “American Artificial Intelligence Initiative” executive order, emphasizing that maintaining U.S. leadership in AI is crucial for safeguarding U.S. economic and national security, and requiring the federal government to invest all resources in promoting innovation in the U.S. AI field. In March 2021, the U.S. National Security Council on Artificial Intelligence released a research report stating that, “For the first time since World War II, the technological advantage that has been the backbone of U.S. economic and military power is under threat. If current trends do not change, China possesses the power, talent, and ambition to surpass the United States as the global leader in artificial intelligence within the next decade.” The report argues that the United States must use artificial intelligence swiftly and responsibly to prepare for these threats in order to safeguard national security and enhance defense capabilities. The report concludes that artificial intelligence will transform the world, and the United States must take a leading role.
Russia also attaches great importance to the technological development and military application of artificial intelligence. The Russian military generally believes that artificial intelligence will trigger the third revolution in the military field, following gunpowder and nuclear weapons. In September 2017, Russian President Vladimir Putin publicly stated that artificial intelligence is the future of Russia, and whoever becomes the leader in this field will dominate the world. In October 2019, Putin approved the “Russian National Strategy for the Development of Artificial Intelligence until 2030,” aiming to accelerate the development and application of artificial intelligence in Russia and seek a world-leading position in the field.
In July 2017, the State Council of China issued the “New Generation Artificial Intelligence Development Plan,” which put forward the guiding ideology, strategic goals, key tasks and safeguard measures for the development of new generation artificial intelligence towards 2030, and deployed efforts to build a first-mover advantage in the development of artificial intelligence and accelerate the construction of an innovative country and a world-class science and technology power.
Other major countries and military powers around the world have also launched their own artificial intelligence development plans, indicating that the global struggle for “intellectual power” has fully unfolded. Land power, sea power, air power, space power, information power, and intellectual power are all results of technological progress and products of their time, each with its own advantages and disadvantages, and some theories are constantly expanding with the changing times. From the development trend of control over warfare since modern times, it can be seen that information power and intellectual power involve the overall situation, carrying greater weight and influence. In the future, with the accelerated pace of intelligent development, intellectual power will become a rapidly growing new type of battlefield control with greater strategic influence on the overall combat situation.
The essence of military intelligence lies in leveraging intelligent technologies to establish diverse identification, decision-making, and control models for the war system. These models constitute artificial intelligence (AI), the core of the new era’s intellectual power struggle. The war system encompasses: equipment systems such as individual units, clusters, manned/unmanned collaborative operations, and multi-domain and cross-domain warfare; combat forces such as individual soldiers, squads, detachments, combined arms units, and theater command; operational links such as networked perception, mission planning and command, force coordination, and comprehensive support; specialized systems such as network attack and defense, electronic warfare, public opinion control, and infrastructure management; and military industrial capabilities such as intelligent design, research and development, production, mobilization, and support. AI, in the form of chips, algorithms, and software, is embedded in every system, level, and link of the war system, forming a systematic brain. Although AI is only a part of the war system, its increasingly powerful “brain-like” functions and capabilities “surpassing human limits” will inevitably dominate the overall situation of future warfare.
Battlefield Ecosystem Reconstruction
Traditional warfare involves relatively independent and separate combat elements, resulting in a relatively simple battlefield ecosystem, primarily consisting of personnel, equipment, and tactics. In the intelligent era, warfare is characterized by significant integration, correlation, and interaction among various combat elements. This will lead to substantial changes in the battlefield ecosystem, forming a combat system, cluster system, and human-machine system comprised of an AI brain, distributed cloud, communication networks, collaborative groups, and various virtual and physical terminals—collectively known as the “AI, Cloud, Network, Cluster, Terminal” intelligent ecosystem (see Figure 2). Among these, AI plays a dominant role.
AI Brain System. The AI brain system of the intelligent battlefield is a networked and distributed system that is inseparable from and interdependent with combat platforms and missions. It can be classified in several ways. Based on function and computing power, it mainly includes cerebellum, swarm brain, midbrain, hybrid brain, and cerebrum; based on combat missions and stages, it mainly includes sensor AI, combat mission planning and decision-making AI, precision strike and controllable destruction AI, network attack and defense AI, electronic warfare AI, intelligent defense AI, and integrated support AI; based on form, it mainly includes embedded AI, cloud AI, and parallel system AI.
The cerebellum mainly refers to the embedded AI in sensor platforms, combat platforms, and support platforms, which mainly performs tasks such as battlefield environment detection, target recognition, rapid maneuver, precision strike, controlled destruction, equipment support, maintenance support, and logistical support.
“Swarm brain” mainly refers to the AI that enables intelligent control of unmanned swarm platforms on the ground, in the air, at sea, in the water, and in space. It mainly performs tasks such as collaborative perception of the battlefield environment, swarm maneuver, swarm attack, and swarm defense. The key components include algorithms for homogeneous swarm systems and algorithms for heterogeneous systems such as manned-unmanned collaboration.
The midbrain mainly refers to the AI system of the command center, data center, and edge computing of the front-line units on the battlefield. It mainly performs dynamic planning, autonomous decision-making, and auxiliary decision-making for tactical unit combat missions under online and offline conditions.
Hybrid brain mainly refers to a hybrid decision-making system in which commanders and machine AI collaborate in combat operations of organized units. Before the battle, it mainly performs human-based combat mission planning; during the battle, it mainly performs adaptive dynamic mission planning and adjustment based on machine AI; and after the battle, it mainly performs hybrid decision-making tasks oriented towards counter-terrorism and defense.
The “brain” primarily refers to the model, algorithm, and tactical libraries of the theater command center and data center, playing a key supporting role in campaign and strategic decision-making. Due to the abundant data, various battlefield AI systems can be trained and modeled here, and then loaded into different mission systems once mature.
In future battlefields, there will be other AIs of different functions, types, and sizes, such as sensor AI, which mainly includes image recognition, electromagnetic spectrum recognition, sound recognition, speech recognition, and human activity behavior recognition. With the rapid development and widespread application of intelligence, AIs of all sizes will exist throughout society, serving the public and society in peacetime, and potentially serving the military in wartime.
Distributed cloud. Military cloud differs from civilian cloud. Generally speaking, a military cloud platform is a distributed resource management system that uses communication networks to search, collect, aggregate, analyze, calculate, store, and distribute operational information and data. By constructing a distributed system and a multi-point fault-tolerant backup mechanism, a military cloud platform possesses powerful intelligence sharing capabilities, data processing capabilities, resilience, and self-healing capabilities. It can provide fixed and mobile, public and private cloud services, achieving “one-point collection, everyone sharing,” greatly reducing information flow links, making command processes flatter and faster, and avoiding redundant and decentralized construction at all levels.
From the perspective of future intelligent warfare needs, military cloud needs to construct at least a four-tiered system: tactical front-end cloud, troop cloud, theater cloud, and strategic cloud. Based on operational elements, it can also be divided into specialized cloud systems such as intelligence cloud, situational awareness cloud, firepower cloud, information warfare cloud, support cloud, and nebula.
1. Front-end cloud primarily refers to computing services provided by units, squads, and platforms, including information perception, target identification, battlefield environment analysis, autonomous and assisted decision-making, and operational process and effect evaluation. The role of front-end cloud is mainly reflected in two aspects. First, it facilitates the sharing and collaboration of computing and storage resources among platforms, and the interactive integration of intelligent combat information. For example, if a platform or terminal is attacked, relevant perception information, damage status, and historical data will be automatically backed up, replaced, and updated through a networked cloud platform, and the relevant information will be uploaded to the higher command post. Second, it provides online information services and intelligent software upgrades for offline terminals.
2. Military cloud primarily refers to the cloud systems built at the battalion and brigade level for operations. Its focus is on providing computing services such as intelligent perception, intelligent decision-making, autonomous action, and intelligent support in response to different threats and environments. The goal of military cloud construction is to establish a networked, automatically backed-up, distributed cloud system connected to multiple links with higher-level units. This system should meet the computing needs of different forces, including reconnaissance and perception, mobile assault, command and control, firepower strikes, and logistical support, as well as the computing needs of various combat missions such as tactical joint operations, manned/unmanned collaboration, and swarm offense and defense.
3. Theater Cloud primarily provides battlefield weather, geographical, electromagnetic, human, and social environmental factors and information data for the entire operational area. It offers comprehensive information on troop deployments, weaponry, movement changes, and combat losses for both sides, as well as relevant information from higher command, friendly forces, and civilian support. Theater Cloud should possess networked, customized, and intelligent information service capabilities. It should interconnect with various operational units through military communication networks (space-based, airborne, ground-based, maritime, and underwater) and civilian communication networks (under secure measures) to ensure efficient, timely, and accurate information services.
4. Strategic cloud is mainly established by a country’s defense system and military command organs. It is primarily based on military information and covers comprehensive information and data related to defense technology, defense industry, mobilization support, economic and social support capabilities, as well as politics, diplomacy, and public opinion. It provides core information, assessments, analyses, and suggestions such as war preparation, operational planning, operational schemes, operational progress, battlefield situation, and battle situation analysis; and provides supporting data such as strategic intelligence, the military strength of adversaries, and war mobilization potential.
The various clouds mentioned above are interconnected, exhibiting both hierarchical and horizontal relationships of collaboration, mutual support, and mutual service. The core tasks of the military cloud platform are twofold: first, to provide data and computing support for building an AI-powered intelligent warfare system; and second, to provide operational information, computing, and data support for various combat personnel and weapon platforms. Furthermore, considering the needs of terminals and group operations, it is necessary to pre-process some cloud computing results, models, and algorithms into intelligent chips and embed them into weapon platforms and group terminals, enabling online upgrades or offline updates.
Communication networks. Military communication and network information constitute a complex super-network system. Since military forces primarily operate in land, sea, air, space, field maneuver, and urban environments, their communication networks encompass strategic and tactical communications, wired and wireless communications, secure communications, and civilian communications. Among these, wireless, mobile, and free-space communication networks are the most crucial components of the military network system, and related integrated electronic information systems are gradually established based on these communication networks.
Military communications in the mechanized era primarily followed the platform, terminal, and user, satisfying specific needs but resulting in numerous silos and extremely poor interconnectivity. In the information age, this situation is beginning to change. Currently, military communication networks are adopting new technological systems and development models, characterized by two main features: first, “network-data separation,” where information transmission does not depend on any specific network transmission method—”network access is all that matters”—any information can be delivered as long as the network link is unobstructed; second, internet-based architecture, utilizing IP addresses, routers, and servers to achieve “all roads lead to Beijing,” i.e., military networking or grid-based systems. Of course, military communication networks differ from civilian networks. Strategic and specialized communication needs exist at all times, such as nuclear button communications for nuclear weapons and command and control of strategic weapons, information transmission for satellite reconnaissance, remote sensing, and strategic early warning, and even specialized communications in individual soldier rooms and special operations conditions. These may still adopt a mission-driven communication model. Even so, standardization and internet connectivity are undoubtedly the future trends in military communication network development. Otherwise, not only will the number of battlefield communication frequency bands, radios, and information exchange methods increase, leading to self-interference, mutual interference, and electromagnetic compatibility difficulties, but radio spectrum management will also become increasingly complex. More importantly, it will be difficult for platform users to achieve automatic communication based on IP addresses and routing structures, unlike email on the internet where a single command can be sent to multiple users. Future combat platforms will certainly be both communication user terminals and also function as routers and servers.
Military communication network systems mainly include space-based communication networks, military mobile communication networks, data links, new communication networks, and civilian communication networks.
1. Space-Based Information Networks. The United States leads in the construction and utilization of space-based information networks. This is because more than half of the thousands of orbiting platforms and payloads in space are American-owned. Following the Gulf War, and especially during the Iraq War, the US military accelerated the application and advancement of space-based information networks through wartime experience. After the Iraq War, through the utilization of space-based information and the establishment of IP-based interconnection, nearly 140 vertical “chimneys” from the Gulf War period were completely interconnected horizontally, significantly shortening the “Out-of-Target-Action” (OODA) loop time. The time from space-based sensors to the shooter has been reduced from tens of hours during the Gulf War to approximately 20 seconds currently using artificial intelligence for identification.
With the rapid development of small satellite technology, low-cost, multi-functional small satellites are becoming increasingly common. As competition intensifies in commercial launches, costs are dropping dramatically, and a single launch can carry several, a dozen, or even dozens of small satellites. If miniaturized electronic reconnaissance, visible light and infrared imaging, and even quantum dot micro-spectroscopy instruments are integrated onto these satellites, achieving integrated reconnaissance, communication, navigation, meteorological, and mapping functions, the future world and battlefield will become much more transparent.
2. Military Mobile Communication Networks. Military mobile communication networks have three main uses. First, command and control between various branches of the armed forces and combat units in joint operations; this type of communication requires a high level of confidentiality, reliability, and security. Second, communication between platforms and clusters, requiring anti-jamming capabilities and high reliability. Third, command and control of weapon systems, mostly handled through data links.
Traditional military mobile communication networks are mostly “centralized, vertically focused, and tree-like structures.” With the acceleration of informatization, the trend towards “decentralized, self-organizing networks, and internet-based” is becoming increasingly apparent. As cognitive radio technology matures and is widely adopted (see Figure 3), future network communication systems will be able to automatically identify electromagnetic interference and communication obstacles on the battlefield, quickly locate available spectrum resources, and conduct real-time communication through frequency hopping and other methods. Simultaneously, software and cognitive radio technology can be compatible with different communication frequency bands and waveforms, facilitating seamless transitions from older to newer systems.
3. Data Links. A data link is a specialized communication technology that uses time division, frequency division, and code division to transmit pre-agreed, periodic, or irregular, regular or irregular critical information between various combat platforms. Unless fully understood or deciphered by the enemy, it is very difficult to interfere with. Data links are mainly divided into two categories: dedicated and general-purpose. Joint operations, formation coordination, and swarm operations primarily utilize general-purpose data links. Satellite data links, UAV data links, missile-borne data links, and weapon fire control data links are currently mostly dedicated. In the future, generalization will be a trend, and specialization will decrease. Furthermore, from the perspective of the relationship between platforms and communication, the information transmission and reception of platform sensors and internal information processing generally follow the mission system, exhibiting strong specialization characteristics, while communication and data transmission between platforms are becoming increasingly general-purpose.
4. New Communication Technologies. Traditional military communication primarily relies on microwave communication. Due to its large divergence angle and numerous application platforms, corresponding electronic jamming and microwave attack methods have developed rapidly, making it easy to carry out long-range interference and damage. Therefore, new communication technologies such as millimeter waves, terahertz waves, laser communication, and free-space optical communication have become important choices that are both anti-jamming and easy to implement high-speed, high-capacity, and high-bandwidth communication. Although high-frequency electromagnetic waves have good anti-jamming performance due to their smaller divergence angle, achieving precise point-to-point aiming and omnidirectional communication still presents certain challenges, especially under conditions of high-speed maneuvering and rapid trajectory changes of combat platforms. How to achieve alignment and omnidirectional communication is still under technological exploration.
5. Civilian Communication Resources. The effective utilization of civilian communication resources is a strategic issue that must be considered and cannot be avoided in the era of intelligentization. In the future, leveraging civilian communication networks, especially 5G/6G mobile communications, for open-source information mining and data correlation analysis to provide battlefield environment, target, and situational information will be crucial for both combat and non-combat military operations. In non-combat military operations, especially overseas peacekeeping, rescue, counter-terrorism, and disaster relief, the military’s dedicated communication networks can only be used within limited areas and regions, raising the question of how to communicate and connect with the outside world. There are two main ways to utilize civilian communication resources: one is to utilize civilian satellite communication resources, especially small satellite communication resources; the other is to utilize civilian mobile communication and internet resources.
The core issue in the interactive utilization of military and civilian communication resources is addressing security and confidentiality. One approach is to employ firewalls and encryption, directly utilizing civilian satellite communications and global mobile communication infrastructure for command and communication; however, the risks of hacking and cyberattacks remain. Another approach is to utilize emerging technologies such as virtualization, intranets, semi-physical isolation, one-way transmission, mimicry defense, and blockchain to address these challenges.
Collaborative swarms. By simulating the behavior of bee colonies, ant colonies, flocks of birds, and schools of fish in nature, this research studies the autonomous collaborative mechanisms of swarm systems such as drones and smart munitions to accomplish combat missions such as attacking or defending against enemy targets. This can achieve strike effects that are difficult to achieve with traditional combat methods and approaches. Collaborative swarms are an inevitable trend in intelligent development and a major direction and key area of intelligent construction. No matter how advanced the combat performance or how powerful the functions of a single combat platform, it cannot form a collective or scalable advantage. Simply accumulating quantity and expanding scale, without autonomous, collaborative, and orderly intelligent elements, is just a disorganized mess.
Collaborative swarms mainly comprise three aspects: first, manned/unmanned collaborative swarms formed by the intelligent transformation of existing platforms, primarily constructed from large and medium-sized combat platforms; second, low-cost, homogeneous, single-function, and diverse combat swarms, primarily constructed from small unmanned combat platforms and munitions; and third, biomimetic swarms integrating human and machine intelligence, possessing both biological and machine intelligence, primarily constructed from highly autonomous humanoid, reptile-like, avian-like, and marine-like organisms. Utilizing collaborative swarm systems for cluster warfare, especially swarm warfare, offers numerous advantages and characteristics.
1. Scale Advantage. A large unmanned system can disperse combat forces, increasing the number of targets the enemy can attack and forcing them to expend more weapons and ammunition. The survivability of a swarm, due to its sheer number, is highly resilient and resilient; the survivability of a single platform becomes less important, while the overall advantage becomes more pronounced. The sheer scale prevents drastic fluctuations in combat effectiveness, because unlike high-value manned combat platforms and complex weapon systems such as the B-2 strategic bomber and advanced F-22 and F-35 fighter jets, the loss of a low-cost unmanned platform, once attacked or destroyed, results in a sharp decline in combat effectiveness. Swarm operations can launch simultaneous attacks, overwhelming enemy defenses. Most defensive systems have limited capabilities, able to handle only a limited number of threats at a time. Even with dense artillery defenses, a single salvo can only hit a limited number of targets, leaving some to escape. Therefore, swarm systems possess extremely strong penetration capabilities.
2. Cost Advantage. Swarm warfare, especially bee warfare, primarily utilizes small and medium-sized UAVs, unmanned platforms, and munitions. These have simple product lines, are produced in large quantities, and have consistent quality and performance requirements, facilitating low-cost mass production. While the pace of upgrades and replacements for modern weapons and combat platforms has accelerated significantly, the cost increases have also been staggering. Since World War II, weapons development and procurement prices have shown that equipment costs and prices have risen much faster than performance improvements. Main battle tanks during the Gulf War cost 40 times more than those during World War II, while combat aircraft and aircraft carriers cost as much as 500 times more. From the Gulf War to 2020, the prices of various main battle weapons and equipment increased several times, tens of times, or even hundreds of times. In comparison, small and medium-sized UAVs, unmanned platforms, and munitions with simple product lines have a clear cost advantage.
3. Autonomous Advantage. Under a unified spatiotemporal reference platform, through networked active and passive communication and intelligent perception of battlefield targets, individual platforms in the group can accurately perceive the distance, speed, and positional relationships between each other. They can also quickly identify the nature, size, priority, and distance of target threats, as well as their own distance from neighboring platforms. With pre-defined operational rules, one or more platforms can conduct simultaneous or wave-based attacks according to the priority of target threats, or they can attack in groups simultaneously or in multiple waves (see Figure 4). Furthermore, the priority order for subsequent platforms to replace a damaged platform can be clearly defined, ultimately achieving autonomous decision-making and action according to pre-agreed operational rules. This intelligent combat operation, depending on the level of human involvement and the difficulty of controlling key nodes, can be either completely autonomous, or semi-autonomous, with human intervention.
4. Decision-making advantage. The future battlefield environment is becoming increasingly complex, with combatants vying for dominance in intense strategic maneuvering and confrontation. Therefore, relying on humans to make decisions in a high-intensity confrontation environment is neither timely nor reliable. Thus, only by entrusting automated environmental adaptation, automatic target and threat identification, autonomous decision-making, and coordinated action to collaborative groups can adversaries be rapidly attacked or effective defenses implemented, thereby gaining battlefield advantage and initiative.
The coordination group brings new challenges to command and control. How to implement command and control of the cluster is a new strategic issue. Control can be implemented in a hierarchical and task-based manner, which can be roughly divided into centralized control mode, hierarchical control mode, consistent coordination mode, and spontaneous coordination mode. [1] Various forms can be adopted to achieve human control and participation. Generally speaking, the smaller the tactical unit, the more autonomous action and unmanned intervention should be adopted; at the level of organized unit operations, since the control of multiple combat groups is involved, centralized planning and hierarchical control are required, and human participation should be limited; at the higher strategic and operational levels, the cluster is only used as a platform weapon and combat style, which requires unified planning and layout, and the degree of human participation will be higher. From the perspective of mission nature, the operation and use of strategic weapons, such as nuclear counterattacks, requires human operation and is not suitable for autonomous handling by weapon systems. When conducting offensive and defensive operations against important or high-value targets, such as decapitation strikes, full human participation and control are necessary, while simultaneously leveraging the autonomous functions of the weapon systems. For offensive operations against tactical targets, if the mission requires lethal strikes and destruction, limited human participation is permissible, or, after human confirmation, the coordinated group can execute the operation automatically. When performing non-strike missions such as reconnaissance, surveillance, target identification, and clearance, or short-duration missions such as air defense and missile defense where human involvement is difficult, the coordinated group should primarily execute these tasks automatically, without human involvement. Furthermore, countermeasures for swarm operations must be carefully studied. Key research should focus on countermeasures against electronic deception, electromagnetic interference, cyberattacks, and high-power microwave weapons, electromagnetic pulse bombs, and artillery-missile systems, as their effects are relatively significant. Simultaneously, research should be conducted on countermeasures such as laser weapons and swarm-to-swarm tactics, gradually establishing a “firewall” that humans can effectively control against coordinated groups.
Virtual and physical terminals. Virtual and physical terminals mainly refer to various terminals linked to the cloud and network, including sensors with pre-embedded intelligent modules, command and control platforms, weapon platforms, support platforms, related equipment and facilities, and combat personnel. Future equipment and platforms will be cyber-physical systems (CPS) and human-computer interaction systems with diverse front-end functions, cloud-based back-end support, virtual-physical interaction, and online-offline integration. Simple environmental perception, path planning, platform maneuverability, and weapon operation will primarily rely on front-end intelligence such as bionic intelligence and machine intelligence. Complex battlefield target identification, combat mission planning, networked collaborative strikes, combat situation analysis, and advanced human-computer interaction will require information, data, and algorithm support from back-end cloud platforms and cloud-based AI. The front-end intelligence and back-end cloud intelligence of each equipment platform should be combined for unified planning and design, forming a comprehensive advantage of integrated front-end and back-end intelligence. Simultaneously, virtual soldiers, virtual staff officers, virtual commanders, and their intelligent and efficient interaction with humans are also key areas and challenges for future research and development.
Qualitative change in the form of warfare
Since modern times, human society has mainly experienced large-scale mechanized warfare and smaller-scale informationized local wars. The two world wars that occurred in the first half of the 20th century were typical examples of mechanized warfare. The Gulf War, the Kosovo War, the Afghanistan War, the Iraq War, and the Syrian War since the 1990s fully demonstrate the form and characteristics of informationized warfare. In the new century and new stage, with the rapid development and widespread application of intelligent technologies, the era of intelligent warfare, characterized by data and computing, models and algorithms, is about to arrive (see Figure 5).
Mechanization is a product of the industrial age, focusing on mechanical power and electrical technology. Its weaponry primarily manifests as tanks, armored vehicles, artillery, aircraft, and ships, corresponding to mechanized warfare. Mechanized warfare is mainly based on classical physics, represented by Newton’s laws, and large-scale socialized production. It is characterized by large-scale, linear, and contact warfare. Tactically, it typically involves on-site reconnaissance, terrain surveys, understanding the opponent’s forward and rear deployments, making decisions based on one’s own capabilities, implementing offensive or defensive maneuvers, and assigning tasks, coordinating operations, and ensuring logistical support. It exhibits clear characteristics such as hierarchical command and control and sequential temporal and spatial operations.
Information technology, a product of the information age, focuses on information technologies such as computers and network communications. Its equipment primarily manifests as radar, radios, satellites, missiles, computers, military software, command and control systems, cyber and electronic warfare systems, and integrated electronic information systems, corresponding to the form of information warfare. Information warfare is mainly based on the three laws of computers and networks (Moore’s Law, Gilder’s Law, and Metcalfe’s Law), emphasizing integrated, precise, and three-dimensional operations. It establishes a seamless and rapid information link from sensor to shooter, seizing information dominance and achieving preemptive detection and strike. Tactically, it requires detailed identification and cataloging of the battlefield and targets, highlighting the role of networked perception and command and control systems, and placing new demands on the interconnectivity and other information functions of platforms. Due to the development of global information systems and diversified network communications, information warfare blurs the lines between front and rear lines, emphasizing horizontal integration of reconnaissance, control, strike, assessment, and support, as well as the integration and flattening of strategy, campaign, and tactics.
Intelligentization is a product of the knowledge economy era. Technologically, it focuses on intelligent technologies such as artificial intelligence, big data, cloud computing, cognitive communication, the Internet of Things, biological cross-disciplinary, hybrid enhancement, swarm intelligence, autonomous navigation and collaboration. In terms of equipment, it mainly manifests as unmanned platforms, intelligent munitions, swarm systems, intelligent sensing and database systems, adaptive mission planning and decision-making systems, combat simulation and parallel training systems, military cloud platforms and service systems, public opinion early warning and guidance systems, and intelligent wearable systems, which correspond to the form of intelligent warfare.
Intelligent warfare, primarily based on biomimetic, brain-like principles, and AI-driven battlefield ecosystems, is a new combat form characterized by “energy mobility and information interconnection,” supported by “network communication and distributed cloud,” centered on “data computing and model algorithms,” and focused on “cognitive confrontation.” It features multi-domain integration, cross-domain offense and defense, unmanned operation, cluster confrontation, and integrated interaction between virtual and physical spaces.
Intelligent warfare aims to meet the needs of nuclear and conventional deterrence, joint operations, all-domain operations, and non-war military operations. It focuses on multi-domain integrated operations encompassing cognitive, informational, physical, social, and biological domains, exhibiting characteristics such as distributed deployment, networked links, flattened structures, modular combinations, adaptive reconfiguration, parallel interaction, focused energy release, and nonlinear effects. Its winning mechanisms overturn traditions, its organizational forms undergo qualitative changes, its operational efficiency is unprecedentedly improved, and its combat power generation mechanisms are transformed. These substantial changes are mainly reflected in the following ten aspects.
The Winning Mechanism Dominated by AI. Under intelligent conditions, new combat elements represented by “AI, cloud, network, cluster, and terminal” will reshape the battlefield ecosystem, completely changing the winning mechanism of war. Among them, AI systems based on models and algorithms are the core combat capability, permeating all aspects and links, playing a multiplicative, transcendent, and proactive role. Platforms are controlled by AI, clusters are guided by AI, and systems are made by AI. The traditional human-based combat methods are being replaced by AI models and algorithms. Algorithmic warfare will play a decisive role in war, and the combat system and process will ultimately be dominated by AI. The right to intelligence will become the core control in future warfare.
Different eras and different forms of warfare result in different battlefield ecosystems, with entirely different compositions of combat elements and winning mechanisms. Mechanized warfare is platform-centric warfare, with “movement” as its core and firepower and mobility as its dominant forces, pursuing energy delivery and release through equipment. Combat elements mainly include: personnel + mechanized equipment + tactics. The winning mechanism is based on human-led decision-making in the operational use of mechanized equipment, achieving victory with superior numbers, overwhelming smaller forces, and controlling slower forces, with comprehensive, efficient, and sustainable mobilization capabilities playing decisive or important roles. Informationized warfare is network-centric warfare, with “connectivity” as its core and information power as its dominant force, pursuing energy aggregation and release through networks. Combat elements and their interrelationships mainly consist of “personnel + informationized equipment + tactics” based on network information. Information permeates personnel, equipment, and tactics, establishing seamless information connections “from sensor to shooter,” achieving system-wide and networked combat capabilities, using systems against localized forces, networks against discrete forces, and speed against slow forces, becoming a crucial mechanism for achieving victory in war. Information plays a multiplier role in equipment and combat systems, but the platform remains human-centric. Information assists in decision-making, but most decisions are still made by humans. Intelligent warfare is cognitive-centric warfare, with “computation” at its core and intelligence as the dominant force. Intelligence will carry more weight than firepower, mobility, and information power, pursuing the use of intelligence to control and dominate capabilities, using the virtual to overcome the real, and achieving victory through superiority. The side with more AI and whose AI is smarter will have greater initiative on the battlefield. The main combat elements and their interrelationships are: AI × (cloud + network + swarm + human + equipment + tactics), which can be simplified to an interconnected and integrated battlefield ecosystem composed of “AI, cloud, network, swarm, and terminal” elements. In the future, AI’s role in warfare will become increasingly significant and powerful, ultimately playing a decisive and dominant role.
Emphasizing the leading role of AI does not deny the role of humans in warfare. On the one hand, human intelligence has been pre-emptively utilized and endowed into AI; on the other hand, at the pre-war, post-war, and strategic levels, for a considerable period of time and in the foreseeable future, AI cannot replace humans.
Modern warfare is becoming increasingly complex, with combat operations moving at ever faster paces. The ability to quickly identify and process massive amounts of information, respond rapidly to battlefield situations, and formulate decisive strategies is far beyond human capability and exceeds the limits of current technology (see Tables 1 and 2). As AI becomes more widely applied and plays a more significant role in warfare, operational processes will be reshaped, and the military kill chain will be accelerated and made more efficient. Rapid perception, decision-making, action, and support will become crucial factors for victory in future intelligent warfare.
In the future, intelligent recognition and pattern recognition of images, videos, electromagnetic spectrum, and voice will enable rapid and accurate target identification from complex battlefield information gathered by air, land, and sea sensor networks. Utilizing big data technology, through multi-source, multi-dimensional directional search and intelligent correlation analysis, not only can various targets be accurately located, but also human behavior, social activities, military operations, and public opinion trends can be precisely modeled, gradually improving the accuracy of early warning and prediction. Based on precise battlefield information, each theater and battlefield can adaptively implement mission planning, autonomous decision-making, and operational process control through extensive parallel modeling and simulation training in virtual space. AI on various combat platforms and cluster systems can autonomously and collaboratively execute tasks around operational objectives according to mission planning, and proactively adjust to changes that may occur at any time. By establishing a distributed, networked, intelligent, and multi-modal support system and pre-positioned deployment, rapid and precise logistics distribution, material supply, and intelligent maintenance can be implemented. In summary, through the widespread application of intelligent technologies and the proactive and evolving capabilities of various AI systems, the entire operational process—including planning, prediction, perception, decision-making, implementation, control, and support—can be re-engineered to achieve a “simple, fast, efficient, and controllable” operational workflow. This will gradually free humanity from the burdens of arduous combat tasks. Operational workflow re-engineering will accelerate the pace, compress time, and shorten processes on the future battlefield.
The winning mechanism dominated by AI is mainly manifested in combat capabilities, methods, strategies, and measures. It fully integrates human intelligence, approaches human intelligence, surpasses human limits, leverages the advantages of machines, and embodies advancement, disruption, and innovation. This advancement and innovation is not a simple extension or increase in quantity in previous wars, but a qualitative change and leap, a higher-level characteristic. This higher-level characteristic is reflected in intelligent warfare possessing “brain-like” functions and many “capabilities that surpass human limits” that traditional warfare lacks. As AI continues to optimize and iterate, it will one day surpass ordinary soldiers, staff officers, commanders, and even elite and expert groups, becoming a “super brain” and a “super brain group.” This is the core and key of intelligent warfare, a technological revolution in the fields of epistemology and methodology, and a high-level combat capability that humanity can currently foresee, achieve, and evolve.
The role of cyberspace is rising. With the progress of the times and the development of technology, the operational space has gradually expanded from physical space to virtual space. The role and importance of virtual space in the operational system are gradually rising and becoming increasingly important, and it is increasingly deeply integrated with physical space and other fields. Virtual space is an information space based on network electromagnetics constructed by humans. It can reflect human society and the material world from multiple perspectives, and can be utilized by transcending many limitations of the objective world. It is constructed by the information domain, connected by the physical domain, reflected by the social domain, and utilized by the cognitive domain. In a narrow sense, virtual space mainly refers to the civilian Internet; in a broad sense, virtual space mainly refers to cyberspace, including various Internet of Things, military networks, and dedicated networks. Cyberspace is characterized by being easy to attack but difficult to defend, using software to fight hard, integrating peacetime and wartime, and blurring the lines between military and civilian sectors. It has become an important battlefield for conducting military operations, strategic deterrence, and cognitive confrontation.
The importance of cyberspace is mainly reflected in three aspects: First, through network information systems, it connects dispersed combat forces and elements into a whole, forming a systematic and networked combat capability, which becomes the foundation of information warfare; second, it becomes the main battlefield and basic support for cognitive confrontation such as cyberspace, intelligence, public opinion, psychology, and consciousness; and third, it establishes virtual battlefields, conducts combat experiments, realizes virtual-real interaction, and forms the core and key to parallel operations and the ability to use the virtual to defeat the real.
In the future, with the accelerated upgrading of global interconnection and the Internet of Things, and with the establishment, improvement and widespread application of systems such as space-based networked reconnaissance, communication, navigation, mobile internet, Wi-Fi, high-precision global spatiotemporal reference platforms, digital maps, and industry big data, human society and global military activities will become increasingly “transparent,” increasingly networked, perceived, analyzed, correlated, and controlled (see Figure 6). This will have a profound, all-round, and ubiquitous impact on military construction and operations. The combat system in the intelligent era will gradually expand from closed to open, and from military-led to a “source-open and ubiquitous” direction that integrates military and civilian sectors.
In the era of intelligentization, information and data from the physical, informational, cognitive, social, and biological fields will gradually flow freely. Combat elements will achieve deep interconnection and the Internet of Things. Various combat systems will evolve from basic “capability combinations” to advanced “information fusion, data linking, and integrated behavioral interaction,” possessing powerful all-domain perception, multi-domain fusion, and cross-domain combat capabilities, and the ability to effectively control important targets, sensitive groups, and critical infrastructure anytime, anywhere. A report from the U.S. Army Joint Arms Center argues that the world is entering an era of “ubiquitous global surveillance.” Even if the world cannot track all activities, the proliferation of technology will undoubtedly cause the potential sources of information to grow exponentially.
Currently, network-based software attacks have acquired the capability to cause physical damage, and cyberattacks by militarily advanced countries possess operational capabilities such as intrusion, deception, interference, and sabotage. Cyberspace has become another important battlefield for military operations and strategic deterrence. The United States has already used cyberattacks in actual combat. Ben Ali of Tunisia, Gaddafi of Libya, and Saddam Hussein of Iraq were all influenced by US cyberattacks and WikiLeaks, causing shifts in public opinion, psychological breakdowns, and social unrest, leading to the rapid collapse of their regimes and having a disruptive impact on traditional warfare. Through the Snowden revelations, a list of 49 cyber reconnaissance projects across 11 categories used by the United States was gradually exposed. Incidents such as the Stuxnet virus’s sabotage of Iranian nuclear facilities, the Gauss virus’s mass intrusion into Middle Eastern countries, and the Cuban Twitter account’s control of public opinion demonstrate that the United States possesses powerful monitoring capabilities, as well as soft and hard attack and psychological warfare capabilities over the internet, closed networks, and mobile wireless networks.
The war began with virtual space experiments. The US military began exploring combat simulation, operational experiments, and simulation training in the 1980s. Later, the US military pioneered the use of virtual reality, wargaming, and digital twin technologies in virtual battlefields and combat experiments. Analysis shows that the US military conducted combat simulations in military operations such as the Gulf War, the Kosovo War, the Afghanistan War, and the Iraq War, striving to find the optimal operational and action plans. It has been reported that before Russia intervened militarily in Syria, it conducted pre-war exercises in its war labs. Based on the experimental simulations, it formulated the “Center-2015” strategic exercise plan, practicing “mobility and accessibility in unfamiliar areas” for combat in Syria. After the exercise, Russian Chief of the General Staff Gerasimov emphasized that the primary means would be political, economic, and psychological warfare, supplemented by long-range precision air strikes and special operations, ultimately achieving political and strategic objectives. Practice shows that the process of Russia’s intervention in Syria was largely consistent with these experiments and exercises.
In the future, with the application and development of virtual simulation, mixed reality, big data, and intelligent software, a parallel military artificial system can be established, allowing physical forces in the physical space to map and iterate with virtual forces in the virtual space. This will enable rapid, high-intensity adversarial training and supercomputing that are difficult to achieve in the physical space. It can also engage in combat and games against highly realistic “blue force systems,” continuously accumulating data, building models and algorithms, and ultimately using the optimal solutions to guide the construction and combat of physical forces, achieving the goal of virtual-real interaction, using the virtual to control the real, and winning with the virtual. On January 25, 2019, DeepMind, Google’s AI team, and Blizzard Entertainment, the developer of StarCraft, announced the results of the December 2018 match between AlphaSTAR and professional players TLO and MANA. In the best-of-five series, AlphaSTAR won both matches 5-0. AlphaSTAR completed the training workload that would take human players 200 years in just two weeks, demonstrating the enormous advantages and bright prospects of simulated adversarial training in virtual space.
The combat style is dominated by unmanned operations. In the era of intelligentization, unmanned warfare will become the basic form, and the integration and development of artificial intelligence and related technologies will gradually push this form to an advanced stage. Unmanned systems represent the full pre-positioning of human intelligence in the combat system and are a concentrated manifestation of the integrated development of intelligence, informatization, and mechanization. Unmanned equipment first appeared in the field of drones. In 1917, Britain built the world’s first drone, but it was not used in actual combat. With the development of technology, drones were gradually used in target drones, reconnaissance, and reconnaissance-strike integrated operations. Since the beginning of the 21st century, unmanned technologies and equipment have achieved tremendous leaps and major breakthroughs in exploration and application due to their advantages such as mission-centric design, no need to consider crew requirements, and high cost-effectiveness. They have shown a rapid and comprehensive development trend, and their application scope has expanded rapidly, covering various fields such as air, surface, underwater, ground, and space.
In recent years, technologies such as artificial intelligence, bionic intelligence, human-machine integrated intelligence, and swarm intelligence have developed rapidly. With the help of satellite communication and navigation, and autonomous navigation, unmanned combat platforms can effectively achieve remote control, formation flight, and swarm collaboration. Currently, unmanned combat aerial vehicles, underwater unmanned platforms, and space-based unmanned autonomous robots have emerged one after another. Bipedal, quadrupedal, multi-legged, and cloud-based intelligent robots are developing rapidly and have entered the fast lane of engineering and practical application, with military applications not far off.
Overall, unmanned warfare in the era of intelligentization will enter three stages of development. The first stage is the initial stage, characterized by manned dominance and unmanned support, where “unmanned warfare under manned leadership” means that combat behavior is completely controlled and dominated by humans before, during, and after the operation. The second stage is the intermediate stage, characterized by manned support and unmanned dominance, where “unmanned warfare under limited control” means that human control is limited, auxiliary, but crucial throughout the entire combat process, and in most cases, the autonomous action capabilities of the platform can be relied upon. The third stage is the advanced stage, characterized by manned rules and unmanned action, where “unmanned warfare with manned design and minimal control” means that humans conduct overall design in advance, clarifying autonomous behavior and rules of the game under various combat environments, and the execution phase is mainly entrusted to unmanned platforms and unmanned forces for autonomous execution.
Autonomous behavior or autonomy is the essence of unmanned warfare and a common and prominent feature of intelligent warfare, manifested in many aspects.
First, the autonomy of combat platforms, mainly including the autonomous capabilities and intelligence level of unmanned aerial vehicles, ground unmanned platforms, precision-guided weapons, underwater and space robots.
Second, the detection system is autonomous, which mainly includes automatic search, tracking, association, aiming, and intelligent recognition of information such as images, voice, video, and electronic signals.
Thirdly, there is autonomous decision-making, the core of which is AI-based autonomous decision-making within the combat system. This mainly includes automatic analysis of the battlefield situation, automatic planning of combat missions, automated command and control, and intelligent human-machine interaction.
Fourthly, autonomous coordination in combat operations, which initially includes autonomous coordination between manned and unmanned systems, and later includes autonomous unmanned swarms, such as various combat formations, bee swarms, ant swarms, fish swarms, and other combat behaviors.
Fifth, autonomous network attack and defense behaviors, including automatic identification, automatic tracing, automatic protection, and autonomous counterattack against various viruses and network attacks.
Sixth, cognitive electronic warfare, which automatically identifies the power, frequency band, and direction of electronic interference, automatically hops frequencies and autonomously forms networks, and engages in active and automatic electronic interference against adversaries.
Seventh, other autonomous behaviors, including intelligent diagnosis, automatic repair, and self-protection.
In the future, with the continuous upgrading of the integration and development of artificial intelligence and related technologies, unmanned operations will rapidly develop towards autonomy, biomimicry, swarming, and distributed collaboration, gradually pushing unmanned warfare to an advanced stage and significantly reducing direct confrontation between human forces on the battlefield. Although manned platforms will continue to exist in the future, biomimetic robots, humanoid robots, swarm weapons, robot armies, and unmanned system warfare will become the norm in the intelligent era. Since unmanned systems can replace human beings in many combat domains and can accomplish tasks autonomously, unmanned combat systems will always be there to protect humans before they suffer physical attacks or injuries. Therefore, unmanned combat systems in the intelligent era are humanity’s main protective barrier, its shield and shield.
All-domain operations and cross-domain offense and defense. In the era of intelligent warfare, all-domain operations and cross-domain offense and defense are also a fundamental style of combat, manifested in many combat scenarios and aspects. From land, sea, air, and space to multiple domains including physical, information, cognitive, social, and biological domains, as well as the integration and interaction of virtual and physical elements, from peacetime strategic deterrence to wartime high-confrontation, high-dynamic, and high-response operations, the time and space span is enormous. It involves not only physical space operations and cyberspace cyber offense and defense, information warfare, public opinion guidance, and psychological warfare, but also tasks such as global security governance, regional security cooperation, counter-terrorism, and rescue, and the control of critical infrastructure such as networks, communications, power, transportation, finance, and logistics.
Since 2010, supported by advancements in information and intelligent technologies, the U.S. military has proposed concepts such as operational cloud, distributed lethality, multi-domain warfare, algorithmic warfare, mosaic warfare, and joint all-domain operations. The aim is to maintain battlefield and military superiority by using system-wide systems against localized ones, multi-functional systems against simpler ones, multi-domain systems against single-domain ones, integrated systems against discrete ones, and intelligent systems against non-intelligent ones. The U.S. military proposed the concept of multi-domain warfare in 2016 and joint all-domain operations in 2020, aiming to develop cross-service and cross-domain joint operational capabilities, ensuring that each service’s operations are supported by all three services, and possessing all-domain capabilities against multi-domain and single-domain ones.
In the future, with breakthroughs in key technologies for the cross-disciplinary integration of artificial intelligence and multidisciplinary collaboration, multi-domain integration and cross-domain offense and defense based on AI and human-machine hybrid intelligence will become a distinctive feature of intelligent warfare. This will be achieved across functional domains such as physics, information, cognition, society, and biology, as well as geographical domains such as land, sea, air, and space.
In the intelligent era, multi-domain and cross-domain operations will expand from mission planning, physical collaboration, and loose coordination to heterogeneous integration, data linking, tactical interoperability, and cross-domain offensive and defensive integration.
First, multi-domain integration. Based on different battlefields and adversaries in a multi-domain environment, different combat styles, combat procedures and missions are planned in accordance with the requirements of joint operations, and unified as much as possible. This achieves the overall planning and integration of information, firepower, defense, support and command and control, and the integration of combat capabilities at the strategic, operational and tactical levels, forming the capability of one-domain operations and multi-domain joint rapid support.
Second, cross-domain offense and defense. Supported by a unified network information system, and through a unified battlefield situation and data information exchange based on unified standards, the information links for cross-domain joint operations reconnaissance, control, strike, and assessment are completely opened up, enabling seamless integration of operational elements and capabilities at the tactical and fire control levels, as well as collaborative actions between services, cross-domain command and interoperability.
Third, the entire process is interconnected. Multi-domain integration and cross-domain offense and defense are treated as a whole, with coordinated design and interconnectedness throughout. Before the war, intelligence gathering and analysis are conducted, along with public opinion warfare, psychological warfare, propaganda warfare, and necessary cyber and electronic warfare attacks. During the war, special operations and cross-domain actions are used to carry out decapitation strikes, key point raids, and precise and controllable strikes (see Figure 7). After the war, defense against cyberattacks on information systems, elimination of negative public opinion’s impact on the public, and prevention of enemy damage to infrastructure are addressed through post-war governance, public opinion control, and the restoration of social order across multiple areas.
Fourth, AI support. Through combat experiments, simulation training, and necessary test verification and real-world testing, we continuously accumulate data, optimize models, and establish AI combat models and algorithms for different combat styles and adversaries, forming an intelligent brain system to better support joint operations, multi-domain operations, and cross-domain offense and defense.
Human-AI hybrid decision-making. The continuous improvement, optimization, upgrading, and perfection of the AI brain system in intelligent battlefields will enable it to surpass humans in many aspects. The human-dominated command, control, and decision-making model of human warfare for thousands of years will be completely transformed. Humans commanding AI, AI commanding humans, and AI commanding AI are all possible scenarios in warfare.
Distributed, networked, flattened, and parallel structures are key characteristics of intelligent combat systems. The centralized, human-centric single-decision-making model is gradually being replaced by decentralized or weakly centralized models based on AI, such as unmanned systems, autonomous swarms, and manned-unmanned collaboration. Hybrid compatibility among these models is becoming a development trend. The lower the operational level and the simpler the mission, the more prominent the role of unmanned and decentralized systems; the higher the level and the more complex the mission, the more important human decision-making and centralized systems become. Pre-war decision-making is primarily human, supplemented by AI; during war, AI is primarily AI, supplemented by human; post-war, both are used, with hybrid decision-making becoming the dominant approach (see Table 3).
In the future battlefield, combat situations will be highly complex, rapidly changing, and exceptionally intense. The convergence of various information sources will generate massive amounts of data, which cannot be processed quickly and accurately by the human brain alone. Only by achieving a collaborative operation mode of “human brain + AI,” based on technologies such as combat cloud, databases, network communication, and the Internet of Things, can “commanders” cope with the ever-changing battlefield and complete command and control tasks. With the increasing autonomy of unmanned systems and the enhancement of swarm and system-wide AI functions, autonomous decision-making is gradually emerging. Once command and control achieve different levels of intelligence, the Out-of-Loop (OODA) loop time will be significantly reduced, and efficiency will be significantly improved. In particular, pattern recognition for network sensor image processing, “optimization” algorithms for combat decision-making, and particle swarm optimization and bee swarm optimization algorithms for autonomous swarms will endow command and control systems with more advanced and comprehensive decision-making capabilities, gradually realizing a combat cycle where “humans are outside the loop.”
Nonlinear amplification and rapid convergence. Future intelligent warfare will no longer be a gradual release of energy and a linear superposition of combat effects, but rather a rapid amplification of multiple effects such as nonlinearity, emergence, self-growth, and self-focusing, and a rapid convergence of results.
Emergence primarily refers to the process by which each individual within a complex system, following local rules and continuously interacting, generates a qualitative change in the overall system through self-organization. In the future, while battlefield information will be complex and ever-changing, intelligent recognition of images, voice, and video, along with processing by military cloud systems, will enable “one-point collection, multi-user sharing.” Through big data technology, it will be rapidly linked with relevant information and integrated with various weapon fire control systems to implement distributed strikes, swarm strikes, and cyber psychological warfare. This will allow for “detection and destruction,” “aggressive attacks at the first sign of trouble,” and “numerical superiority generating psychological panic”—these phenomena constitute the emergence effect.
The emergent effects of intelligent warfare are mainly reflected in three aspects: first, the acceleration of the kill chain caused by the speed of AI decision-making chain; second, the combat effect caused by the numerical advantage of manned and unmanned collaborative systems, especially swarm systems; and third, the rapid swarm emergence behavior based on network interconnection.
As military intelligence develops to a certain stage, the combined effects of advanced AI, quantum computing, IPv6, and hypersonic technologies will result in combat systems exhibiting nonlinear, asymmetric, self-growing, rapid-response, and uncontrollable amplification and operational effects. This is particularly evident in unmanned, swarm, cyber warfare, and cognitive confrontation. The emergence of intelligence from collective ignorance, increased efficiency through sheer numbers, nonlinear amplification, and other emergent effects will become increasingly prominent. AI-driven cognitive, informational, and energy confrontations will intertwine and rapidly converge around a target, with time becoming increasingly compressed and the speed of confrontation accelerating. This will manifest as a dramatic amplification of multiple effects and a rapid convergence of outcomes. Energy shockwaves, rapid-fire combat, AI terminators, public opinion reversals, social unrest, psychological breakdowns, and the chain reaction of the Internet of Things will become prominent characteristics of intelligent warfare.
In unmanned swarm attacks, assuming roughly the same platform performance, the Lanchester equation applies: combat effectiveness is proportional to the square of the number of units; quantity advantage translates to quality advantage. Network attack and defense, and psychological and public opinion effects, follow Metcalfe’s Law, being proportional to the square of the number of interconnected users, with nonlinear and emergent effects becoming more pronounced. The quantity and intelligence of battlefield AI determine the overall level of intelligence in the combat system, impacting battlefield intelligence control and influencing the outcome of war. In the era of intelligent warfare, how to manage the interrelationships between energy, information, cognition, quantity, quality, virtuality, and physicality, and how to skillfully design, control, utilize, and evaluate nonlinear effects, are major new challenges and requirements for future warfare.
In the future, whether it is a reversal of public opinion, psychological panic, swarm attacks, mass operations, or autonomous combat by humans outside the ring, their emergence effects and strike effects will become relatively common phenomena and easy-to-implement actions, forming a capability that is compatible with deterrence and actual combat. It is also a form of warfare that human society must strictly manage and control.
An organically symbiotic relationship between humans and equipment. In the era of intelligence, the relationship between humans and weapons will undergo fundamental changes, becoming increasingly distant physically but increasingly closer in thought. The form of equipment and its development and management models will be completely transformed. Human thought and wisdom will be deeply integrated with weaponry through AI, fully integrated in the early stages of equipment development, optimized and iterated during the use and training phase, and further upgraded and improved after combat verification, in a continuous cycle of progress.
First, with the rapid development of technologies such as network communication, mobile internet, cloud computing, big data, machine learning, and bionics, and their widespread application in the military field, the structure and form of traditional weapons and equipment will be completely changed, exhibiting diverse functions such as front-end and back-end division of labor and cooperation, efficient interaction, and adaptive adjustment. They will be complex entities integrating mechanics, information, networks, data, and cognition.
Secondly, while humans and weapons are gradually becoming physically detached, they are also becoming increasingly integrated into an organic symbiotic entity in terms of mindset. The gradual maturation of drones and robots is shifting their focus from assisting humans in combat to replacing them, with humans taking a more backseat. The integration of humans and weapons will take on entirely new forms. Human thought and wisdom will participate in the entire lifecycle of design, research and development, production, training, use, and support. Unmanned combat systems will perfectly combine human creativity and intellect with the precision, speed, reliability, and fatigue resistance of machines.
Third, profound changes are taking place in equipment development and management models. Mechanized equipment becomes increasingly outdated with use, while information technology software becomes increasingly new, and intelligent algorithms become increasingly sophisticated with use. Traditional mechanized equipment is delivered to the troops using a “pre-research—development—finalization” model, resulting in a decline in combat performance over time and vehicle hours. Information technology equipment is a product of the combined development of mechanization and informatization; the platform remains the same, but the information system is constantly iterated and updated with the development of computer CPUs and storage devices, exhibiting a step-by-step development characteristic of “information-led, software-driven hardware, rapid replacement, and spiral ascent.” Intelligent equipment, based on mechanization and informatization, continuously optimizes and improves training models and algorithms with the accumulation of data and experience, showing an upward curve of becoming stronger and better with use over time and frequency. Therefore, the development, construction, use, training, and support models for intelligent equipment will undergo fundamental changes.
Evolving through learning and confrontation. Evolution will undoubtedly be a defining characteristic of future intelligent warfare and combat systems, and a commanding height in future strategic competition. Combat systems in the intelligent era will gradually acquire adaptive, self-learning, self-confrontational, self-repairing, and self-evolving capabilities, becoming an evolvable ecosystem and game-theoretic system.
The most distinctive and unique feature of intelligent combat systems lies in the combination of human-like and human-like intelligence with the advantages of machines, achieving “superhuman” combat capabilities. The core of this capability is that numerous models and algorithms improve and refine with use, possessing an evolutionary function. If future combat systems resemble the human body, with the brain as the command and control center, the nervous system as the network, and the limbs as weapons and equipment controlled by the brain, like a living organism, possessing self-adaptive, self-learning, self-defense, self-repair, and self-evolutionary capabilities, then we believe it possesses the ability and function of evolution. Because intelligent combat systems are not entirely the same as living organisms, while a single intelligent system is similar to a living organism, a multi-system combat system is more like an “ecosystem + adversarial game system,” more complex than a single living organism, and more adversarial, social, collective, and emergent.
Preliminary analysis suggests that with the development and application of technologies such as combat simulation, virtual reality, digital twins, parallel training, intelligent software, brain-inspired chips, brain-like systems, bionic systems, natural energy harvesting, and novel machine learning, future combat systems can gradually evolve from single-function, partial-system evolution to multi-functional, multi-element, multi-domain, and multi-system evolution. Each system will be able to rapidly formulate response strategies and take action based on changes in the battlefield environment, different threats, different adversaries, and its own strengths and capabilities, drawing upon accumulated experience, extensive simulated adversarial training, and models and algorithms built through reinforcement learning. These strategies will then be continuously revised, optimized, and self-improved through practical warfare. Single-mission systems will possess characteristics and functions similar to living organisms, while multi-mission systems, like species in a forest, will have a cyclical function and evolutionary mechanism of mutual restraint and survival of the fittest, possessing the ability to engage in game-theoretic confrontation and competition under complex environmental conditions, forming an evolvable ecological and game-theoretic system.
The evolution of combat systems mainly manifests in four aspects: First, the evolution of AI. With the accumulation of data and experience, it will inevitably be continuously optimized, upgraded, and improved. This is relatively easy to understand. Second, the evolution of combat platforms and cluster systems, mainly moving from manned control to semi-autonomous and autonomous control. Because it involves not only the evolution of platform and cluster control AI, but also the optimization and improvement of related mechanical and information systems, it is relatively more complex. Third, the evolution of mission systems, such as detection systems, strike systems, defense systems, and support systems. Because it involves multiple platforms and multiple missions, the factors and elements involved in the evolution are much more complex, and some may evolve quickly, while others may evolve slowly. Fourth, the evolution of the combat system itself. Because it involves all elements, multiple missions, cross-domain operations, and confrontations at various levels, its evolutionary process is extremely complex. Whether a combat system can evolve cannot rely entirely on its own growth; it requires the proactive design of certain environments and conditions, and must follow the principles of biomimicry, survival of the fittest, mutual restraint, and full-system lifecycle management to possess the function and capability for continuous evolution.
Intelligent design and manufacturing. In the era of intelligentization, the defense industry will shift from a relatively closed, physical-based, and time-consuming research and manufacturing model to an open-source, intelligent design and manufacturing model that can rapidly meet military needs.
The defense industry is a strategic industry of the nation, a powerful pillar of national security and defense construction. In peacetime, it primarily provides the military with advanced, high-quality, and reasonably priced weaponry and equipment. In wartime, it is a crucial force for operational support and a core pillar for ensuring victory. The defense industry is a high-tech intensive sector. The research and development and manufacturing of modern weaponry and equipment are technology-intensive, knowledge-intensive, systemically complex, and highly integrated. The development of weapons and equipment such as large aircraft carriers, fighter jets, ballistic missiles, satellite systems, and main battle tanks typically takes ten, twenty, or even more years before finalization and delivery to the armed forces, involving large investments, long cycles, and high costs. From the post-World War II period to the end of the last century, the defense industrial system and capability structure were products of the mechanized era and warfare. Its research, testing, manufacturing, and support were primarily geared towards the needs of the military branches and industry systems, mainly including weaponry, shipbuilding, aviation, aerospace, nuclear, and electronics industries, as well as civilian supporting and basic industries. After the Cold War, the US defense industry underwent strategic adjustments and mergers and reorganizations, generally forming a defense industrial structure and layout adapted to the requirements of informationized warfare. The top six defense contractors in the United States can provide specialized combat platforms and systems for relevant branches of the armed forces, as well as overall solutions for joint operations, making them cross-service and cross-domain system integrators. Since the beginning of the 21st century, with the changing demands of system-of-systems and information-based warfare and the development of digital, networked, and intelligent manufacturing technologies, the traditional development model and research and production capabilities of weapons and equipment have begun to gradually change, urgently requiring reshaping and adjustment in accordance with the requirements of informationized warfare, especially intelligent warfare.
In the future, the defense science and technology industry will, in accordance with the requirements of joint operations, all-domain operations, and the integrated development of mechanization, informatization, and intelligence, shift from the traditional focus on service branches and platform construction to cross-service and cross-domain system integration. It will also shift from relatively closed, self-contained, independent, fragmented, physical-based, and long-cycle research, design, and manufacturing to open-source, democratic crowdsourcing, virtual design and integration verification, adaptive manufacturing, and rapid fulfillment of military needs (see Figure 8). This will gradually form a new innovation system and intelligent manufacturing system that combines hardware and software, virtual and real interaction, intelligent human-machine-object-environment interaction, effective vertical industrial chain connection, horizontal distributed collaboration, and military-civilian integration. Joint design and demonstration by multiple military and civilian parties, joint research and development by supply and demand sides for construction and use, iterative optimization based on parallel military systems in both virtual and real environments, and improvement through combat training and real-world verification—a model of simultaneous research, testing, use, and construction—is the basic mode for the development and construction of intelligent combat systems and the generation of combat power.
Wu Mingxi 8
The risk of spiraling out of control. Since intelligent warfare systems theoretically possess the ability to self-evolve and reach “superhuman” levels, if humans do not pre-design control programs, control nodes, and a “stop button,” the result could very well be destruction and disaster. A critical concern is that numerous hackers and malicious warmongers may exploit intelligent technology to design uncontrollable warfare programs and combat methods, allowing numerous machine brains (AIs) and swarms of robots to fight adaptively and self-evolving according to pre-set combat rules, becoming invincible and relentlessly advancing, ultimately leading to an uncontrollable situation and irreparable damage. This is a major challenge facing humanity in the process of intelligent warfare and a crucial issue requiring research and resolution. This problem needs to be recognized and prioritized from the perspective of a shared future for all humanity and the sustainable development of human civilization. It requires designing rules of war, formulating international conventions, and regulating these systems technically, procedurally, ethically, and legally, implementing mandatory constraints, checks, and management.
The above ten transformations and leaps constitute the main content of the new form of intelligent warfare. Of course, the development and maturity of intelligent warfare is not a castle in the air or a tree without roots, but is built upon mechanization and informatization. Without mechanization and informatization, there is no intelligence. Mechanization, informatization, and intelligence form an organic whole, interconnected and mutually reinforcing, iteratively optimizing and leapfrog developing. Currently, mechanization is the foundation, informatization is the guiding principle, and intelligence is the direction. Looking to the future, mechanization will remain the foundation, informatization will provide support, and intelligence will be the guiding principle.
A Bright Future
In the time tunnel of the new century, we see the train of intelligent warfare speeding along. Will humanity’s greed and technological might lead us into a more brutal darkness, or will it propel us towards a more civilized and enlightened future? This is a major philosophical question that humanity needs to ponder. Intelligentization is the future, but it is not everything. Intelligentization can handle diverse military tasks, but it is not omnipotent. Faced with sharp contradictions between civilizations, religions, nations, and social classes, and with extreme events such as thugs wielding knives, suicide bombings, and mass riots, the role of intelligentization remains limited. Without resolving global political imbalances, unequal rights, unfair trade, and social contradictions, war and conflict will be inevitable. Ultimately, the world is determined by strength, and technological, economic, and military strength are extremely important. While military strength cannot determine politics, it can influence it; it cannot determine the economy, but it can bring security for economic development. The stronger the intelligent warfare capabilities, the stronger its deterrent and war-preventing function, and the greater the hope for peace. Like nuclear deterrence, it plays a crucial role in preventing large-scale wars to avoid terrible consequences and uncontrolled disasters.
The level of intelligence in warfare, in a sense, reflects the progress of civilization in warfare. The history of human warfare, initially a struggle between groups for food and habitation, has evolved into land occupation, resource plunder, expansion of political power, and domination of the spiritual world—all fraught with bloodshed, violence, and repression. As the ultimate solution to irreconcilable contradictions in human society, war’s ideal goal is civilization: subjugation without fighting, minimal resource input, minimal casualties, and minimal damage to society… However, past wars have often failed to achieve this due to political struggles, ethnic conflicts, competition for economic interests, and the brutality of technological destructive methods, frequently resulting in the utter destruction of nations, cities, and homes. Past wars have failed to achieve these ideals, but future intelligent warfare, due to technological breakthroughs, increased transparency, and deeper mutual sharing of economic benefits, especially as the confrontation of human forces gradually gives way to confrontation between robots and AI, will see decreasing casualties, material consumption, and collateral damage. This presents a significant possibility of achieving civilization, offering humanity hope. We envision future warfare gradually transitioning from the mutual slaughter of human societies and the immense destruction of the material world to wars between unmanned systems and robots. This will evolve into deterrence and checks and balances limited to combat capabilities and overall strength, AI confrontations in the virtual world, and highly realistic war games… The energy expenditure of human warfare will be limited to a certain scale of unmanned systems, simulated confrontations and experiments, or even merely the energy needed to wage a war game. Humanity will transform from the planners, designers, participants, leaders, and victims of war into rational thinkers, organizers, controllers, observers, and adjudicators. Human bodies will no longer suffer trauma, minds will no longer be frightened, wealth will no longer be destroyed, and homes will no longer be devastated. Although this beautiful ideal and aspiration may always fall short of harsh reality, we sincerely hope that this day will arrive, and arrive as soon as possible. This is the highest stage of intelligent warfare development, the author’s greatest wish, and humanity’s beautiful vision!
(Thanks to my colleague, Researcher Zhou Xumang, for his support and assistance in writing this paper. He has unique thoughts and insights into the development and construction of intelligent systems.)
Notes
[1] Robert O. Walker et al., 20YY: War in the Age of Robots, translated by Zou Hui et al., Beijing: National Defense Industry Press, 2016, p. 148.
The Era of Intelligent War Is Coming Rapidly
Wu Mingxi
Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.
Abstract: Since the entry into the new century, the rapid development of intelligent technology with artificial intelligence (AI) at the core has accelerated the process of a new round of military revolution. The competition in the military field is going rapidly to the era of intelligent power. The operational elements represented by “AI, cloud, network, group and end” and their diverse combinations constitute a new battlefield ecosystem, and the winning mechanism of war has changed completely. The AI system based on models and algorithms will be the core combat capability, running through all aspects and links and playing a multiplier, transcendence and active role. The platform has AI control, the cluster has AI guidance, and the system has AI decision-making. The traditional human-based combat method is replaced by AI models and algorithms, and intelligent dominance becomes the core of future war. The stronger the intelligent combat capability, the more hopeful the soldiers may win the war without firing a shot.
The weaponization of artificial intelligence (AI) is an inevitable trend in the new round of military revolution. Recent local wars have further spurred relevant countries to advance their AI weaponization strategies in order to seize the high ground in future warfare. The potential risks of AI weaponization cannot be ignored. It may intensify the arms race and disrupt the strategic balance; empower operational processes and increase conflict risks; increase accountability and collateral damage; and lower the proliferation threshold, leading to misuse and abuse. To address this, it is necessary to strengthen international strategic communication to ensure consensus and cooperation among countries on the military applications of AI; promote dialogue and coordination in the development of laws and regulations to form a unified and standardized legal framework; strengthen ethical constraints on AI to ensure that technological development conforms to ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.
[Keywords] Artificial intelligence, military applications, security risks, security governance [Chinese Library Classification Number] F113 [Document Code] A
The weaponization of artificial intelligence (AI) refers to the application of AI-related technologies, platforms, and services to the military field, making them a crucial driving force for military operations and thereby enhancing their efficiency, precision, and autonomy. With the widespread application of AI technology in the military, major powers and military leaders have increased their strategic and resource investment, accelerating research and application. The frequent regional conflicts in recent years have further stimulated the battlefield application of AI, profoundly shaping the nature of warfare and the future direction of military transformation.
It cannot be ignored that artificial intelligence, as a rapidly developing technology, inherently carries potential risks due to its immature technology, inaccurate scenario matching, and incomplete supporting conditions. Furthermore, human misuse, abuse, or even malicious use can easily bring various risks and challenges to the military and even international security fields. To earnestly implement the global security initiatives proposed by General Secretary Xi Jinping, we must directly confront the global trend of weaponizing artificial intelligence, deeply analyze the potential security risks arising from the weaponization of AI, and consider scientifically feasible governance approaches and measures.
Current trend of weaponization of artificial intelligence
In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of warfare, changing future combat systems, and influencing the future direction of military transformation. Major military powers have regarded artificial intelligence as a disruptive key technology that will change the rules of future warfare, and have invested heavily in the research and development and application of AI weapons.
The weaponization of artificial intelligence is an inevitable trend in military transformation.
With the rapid development of science and technology, the necessity and urgency of military transformation are becoming increasingly prominent. Artificial intelligence, by simulating human thought processes, extends human mental and physical capabilities, enabling rapid information processing, analysis, and decision-making. It can also develop increasingly complex unmanned weapon system platforms, thereby providing unprecedented intelligent support for military operations.
First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, making it difficult to effectively cope with the demands of large-scale, high-speed, and highly complex intelligence processing. The introduction of artificial intelligence (AI) technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of AI technology can build intelligent monitoring systems, providing high-precision, real-time intelligence perception services. In the field of intelligence reconnaissance, AI technology has the ability to process multiple “information streams” in real time, thereby greatly improving analysis efficiency. ① By using technologies such as deep learning, it is also possible to “see through the phenomena to the essence,” uncovering the deep-seated connections and causal relationships within various fragmented intelligence information, rapidly transforming massive amounts of fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.
Secondly, it provides data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situational awareness. Its advantage lies in its ability to perform key tasks such as data mining, data fusion, and predictive analysis. In informationized and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is enormous, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become important tools to assist commanders in managing intelligence data, assessing the enemy situation, proposing operational plans, and formulating plans and orders. For example, the US military’s ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system, developed by Raytheon Technologies Corporation, encompasses intelligence gathering, surveillance, target identification, and tracking functions. It can aggregate data from diverse information sources such as satellites, ships, aircraft, and ground stations, and perform in-depth analysis and processing. This not only significantly improves the speed at which commanders acquire information but also provides data support through intelligent analysis systems, making decision-making faster, more efficient, and more accurate.
Third, it provides crucial support for unmanned combat systems. Unmanned combat systems are a new type of weapon system capable of independently completing military missions without direct human control. They primarily consist of intelligent unmanned combat platforms, intelligent munitions, and intelligent combat command and control systems, possessing significant autonomy and intelligence. As a technological equipment leading the transformation of future warfare, unmanned combat systems have become a crucial bargaining chip in inter-state military competition. This system achieves adaptability to different battlefield environments and operational spaces by utilizing key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise target strikes. The design philosophy of this system is “unmanned platform, manned system,” essentially an intelligent extension of manned combat systems. For example, the MQM-57 Falconer unmanned aerial vehicle developed by the U.S. Defense Advanced Research Projects Agency (DARPA) employs advanced artificial intelligence technology and possesses highly autonomous target recognition and tracking capabilities.
Fourth, it provides technical support for military logistics and equipment support. In the context of information warfare, the pace of war has accelerated, mobility has increased, and combat consumption has significantly risen. The traditional “overstocking” support model is no longer adequate to meet the rapidly changing needs of the modern battlefield. Therefore, higher demands are placed on combat troops to provide timely, location-appropriate, demand-based, and precise rapid and precise logistical support. Artificial intelligence, as a technology with spillover and cross-integration characteristics, is merging with cutting-edge technologies such as the Internet of Things, big data, and cloud computing. This has enabled AI knowledge, technology, and industry clusters to fully penetrate the military logistics field, significantly enhancing logistical equipment support capabilities.
Major countries are actively developing military applications of artificial intelligence.
To enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan are accelerating their strategic deployments for the military applications of AI. First, they are updating and adjusting their top-level strategic plans in the field of AI to provide clear guidance for future development. Second, in response to the needs of future warfare, they are accelerating the deep integration of AI technology with the military field, promoting the intelligent, autonomous, and unmanned development of equipment systems. Furthermore, they are actively innovating operational concepts to drive innovation in combat forces, thereby enhancing combat effectiveness and competitive advantage.
First, strategic planning is being developed. Driven by a strategic obsession with pursuing military, political, and economic hegemony through technological dominance, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense released the “Data, Analytics, and Artificial Intelligence Adoption Strategy,” aiming to expand the advanced capabilities of the entire Department of Defense system to gain a lasting military decision-making advantage. The Russian military issued what is known as “Version 3.0,” the “Russian Armaments Development Program for 2024-2033,” designed to guide weapons development over the next decade. The program emphasizes continued advancement in nuclear and conventional weapons development, with a focus on research into artificial intelligence and robotics, hypersonic weapons, and other strike weapons based on new physical principles.
Second, the development of advanced equipment systems. Since 2005, the U.S. military has released a “Roadmap for Unmanned Systems” every few years to envision and design unmanned system platforms in various fields, including air, ground, and surface/underwater, connecting the development chain of unmanned weapons and equipment from research and development to production, testing, training, combat, and support. Currently, more than 70 countries worldwide are capable of developing unmanned system platforms, and various types of drones, unmanned vehicles, unmanned boats (vessels), and unmanned underwater vehicles are emerging rapidly. On July 15, 2024, former Chairman of the Joint Chiefs of Staff Mark Milley stated in an interview with *Defense News* that by 2039, one-third of the U.S. military force will be composed of robots. The Russian military’s Platform-M combat robot, the “Lancet” suicide drone, and the S-70 “Hunter” heavy drone have already been deployed in combat.
Third, innovate future operational concepts. Operational concepts are forward-looking studies of future warfare styles and methods, often guiding new force organization and leapfrog development of weaponry. In recent years, the US military has proposed operational concepts such as “distributed lethality,” “multi-domain warfare,” and “mosaic warfare,” attempting to guide the direction of military transformation. Taking “mosaic warfare” as an example, this concept treats various sensors, communication networks, command and control systems, and weapon platforms as “mosaic fragments.” These “fragment” units, empowered by artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems, forming an on-demand integrated, highly flexible, and mobile lethality network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan,” which aims to expand multi-domain operations to an all-domain operations concept, connecting sensors from various services to a unified “Internet of Things” and using artificial intelligence algorithms to help improve operational command decisions. ③
War and conflict have spurred the weaponization of artificial intelligence.
In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukraine crisis, and the Kazakh-Israeli conflict have continued, further stimulating the development of the weaponization of artificial intelligence.
In the Libyan conflict, both sides employed various types of drones for reconnaissance and combat missions. A report by the UN Group of Experts on Libya noted that the Turkish-made Kargu-2 drone conducted a “pursuit and long-range engagement” operation in Libya in 2020, autonomously attacking retreating enemy soldiers. This event marked the first use of a lethal autonomous weapon system in actual combat. As American scholar Zachary Callenburn stated, if anyone were to die in such an autonomous attack, it would likely be the first known instance of an AI-powered autonomous weapon being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan successfully penetrated Armenian air defenses using a formation of Turkish-made TB2 “Standard” drones and Israeli-made Harop drones, gaining air superiority and the initiative. The significant success of Azerbaijani drone warfare largely stemmed from the Armenian army’s underestimation of the enemy’s capabilities and insufficient understanding of the importance and threat posed by drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They have flexibly utilized advanced equipment such as reconnaissance and strike drones and loitering munitions, which has not only improved combat efficiency but also greatly enhanced the surprise and lethality of the battles. ⑤
During the 2022 Ukraine crisis, both Russia and Ukraine extensively used military-grade and commercial drones for reconnaissance, surveillance, artillery targeting, and strike missions. The Ukrainian army, through the use of the TB2 “Standard” drone and the US-supplied “Switchblade” series of suicide drones, conducted precision strikes and achieved high kill rates, becoming a notorious “battlefield killer.” In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock onto bombing targets in Gaza, marking as many as 37,000 Palestinians in Gaza as suspected “militants” and identifying them as targets for direct assassination. This Israeli military action drew widespread international attention and condemnation.
Security risks arising from the weaponization of artificial intelligence
From automated command systems to intelligent unmanned combat platforms, and then to intelligent decision-making systems in cyber defense, the application of artificial intelligence (AI) technology in the military field is becoming increasingly widespread and has become an indispensable part of modern warfare. However, with the trend of weaponizing AI, its misuse, abuse, and even malicious use will also bring significant risks and challenges to international security.
It intensifies the arms race and disrupts the strategic balance.
In the information and intelligent era, the disruptive potential of artificial intelligence is irresistible to major military powers, who are all focusing on the development and application of AI military capabilities, fearing that falling behind in this field will result in missing strategic opportunities. Deepening the military application of artificial intelligence can achieve “asymmetric advantages” in a lower cost and with higher efficiency.
First, countries are vying for “first-mover advantage.” When a country achieves a technological lead in the development of intelligent weapon systems, it signifies that the country possesses more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and contingency response. This advantage includes higher autonomy, intelligence, and adaptability, thereby increasing the country’s military strength and strategic competitive advantage. At the same time, the military advantage of a first-mover can become a security threat to competitors, leading to a competitive race among countries to advance the military application of advanced technologies. ⑦ In August 2023, U.S. Deputy Secretary of Defense Kathleen Hicks announced the “Replicator initiative,” which aims to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧
Secondly, the lack of transparency in the development of AI-based military equipment by various countries may exacerbate the arms race. This is mainly due to two reasons: First, AI technology is an “enabling technology” that can be used to design a variety of applications. This means that verifying the specific military applications of AI is extremely difficult, unlike nuclear weapons, where monitoring uranium, centrifuges, and weapon and delivery systems can help determine whether a country is developing or deploying nuclear weapons. The differences between semi-autonomous and fully autonomous weapon systems are primarily due to differences in computer software algorithms, making it difficult to verify treaty compliance through physical means. Second, to maintain their strategic advantage, countries often keep details of the military applications of advanced technologies secret, preventing adversaries from discerning their strategic intentions. In the current international environment, this lack of transparency not only intensifies the arms race but also sows the seeds for future escalation of conflict.
Third, the uncertainty of national strategic intentions also exacerbates the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence, and the escalation of war largely depends on other countries’ perception of its capabilities, rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often feature risk competition, testing courage more than force. The relationship between major adversaries is determined by which side is ultimately willing to invest more power, or to make it appear as if it is about to invest more power.⁹ An actor’s perception of the capabilities of others, whether true or false, significantly influences the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors, uncertain of the other’s intentions, will become suspicious of the competitor’s military capabilities and the intentions behind their military development, often taking reciprocal measures, namely, developing their own military to meet their own security needs. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.
Empowering operational processes increases the risk of conflict.
Empowered by big data and artificial intelligence technologies, traditional combat processes will undergo intelligent restructuring, shifting from “situational awareness—command and decision-making—offensive and defensive coordination—comprehensive support” to “intelligent situational awareness across the entire domain—human-machine integrated hybrid decision-making—manned/unmanned autonomous coordination—proactive and on-demand precise support.” However, while this intelligent restructuring of combat processes improves operational efficiency and accuracy, it also increases the risk of conflict and miscalculation.
First, wars that break out at “machine speed” will increase the risk of hasty action. Artificial intelligence weapon systems demonstrate formidable capabilities in precision and reaction speed, making future wars likely to erupt at “machine speed.”⑩ However, excessively rapid warfare will also increase the risk of conflict. In areas that emphasize autonomy and reaction speed, such as missile defense, autonomous weapon systems, and cyberspace, faster reaction times will bring significant strategic advantages. At the same time, they will drastically reduce the time window for the defending side to react to military actions, placing commanders and decision-makers under immense “time pressure,” exacerbating the risk of “hasty action,” and increasing the possibility of unexpected escalation of the crisis.
Second, relying on system autonomy may increase the probability of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on dynamic changes in mission parameters, efficiently achieving human-preset goals. Increased autonomy not only significantly reduces reliance on human labor and improves overall operational efficiency, but is also regarded by defense planners as a key element in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, because human commanders cannot react quickly enough, they may gradually delegate control to autonomous systems, increasing the probability of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly identified a friendly Tornado fighter jet as an anti-radiation missile. Under pressure with only a few seconds to react, the commanders chose to launch the missile, resulting in the deaths of two pilots.⑫
Third, it weakens the effectiveness of crisis termination mechanisms. During the Cold War, the US and the Soviet Union spearheaded a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear war. In these measures, humans played a crucial “monitoring” role, able to initiate termination measures within sufficient time to avert large-scale humanitarian catastrophes should a risk of spiraling out of control. However, with the increasing computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become more rapid, precise, and destructive, potentially weakening human intervention mechanisms for crisis termination.
Accountability for war is difficult, and collateral damage is increased.
Artificial intelligence weapon systems make it more difficult to define responsibility in war. In traditional warfare, weapon systems are controlled by humans, and if errors or crises occur, the human operator or the developer of the operating system bears the corresponding responsibility. Artificial intelligence technology itself weakens human agency and control, making the attribution of responsibility for technical actions unclear.
First, there’s the “black box” problem of artificial intelligence. While AI has significant advantages in processing and analyzing data, its internal operating principles and causal logic are often difficult for humans to understand and explain. This makes it challenging for programmers to correct erroneous algorithms, a problem often referred to as the “black box” of algorithmic models. If an AI-powered weapon system poses a security threat, the “algorithm black box” could become a convenient excuse for those responsible to shirk accountability. Those seeking accountability would face generalized blame-shifting and deflection, ultimately pointing the finger at the AI weapon system. In practice, the inability to understand and explain the decision-making process of AI can lead to a series of problems, such as decision-making errors, trust crises, and information misuse.
Secondly, there is the issue of delineating human-machine responsibility in military operations. When an AI system malfunctions or makes a decision-making error, should it be treated as an independent entity and held responsible? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this responsibility delineation lies not only in the technical aspects but also in the ethical and legal ones. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human-preset programs and algorithms, therefore their responsibility cannot be completely independent of humans. On the other hand, in certain situations, AI systems may exceed the pre-set limits of humans and make independent decisions; how to define their responsibility in such cases also becomes a difficult problem in the field of arms control.
Thirdly, there is the issue of the allocation of decision-making power between humans and AI weapon systems. Depending on the level of machine autonomy, AI systems can execute tasks in three decision-making and control modes: semi-autonomous, supervised autonomy, and fully autonomous. In semi-autonomous systems, human decision-making power rests with the user; in supervised autonomy, humans supervise and intervene when necessary; in fully autonomous operations, humans do not participate in the process. As the military application of AI deepens, the role of humans in combat systems is gradually shifting from the traditional “human-in-the-loop” model to “human-on-the-loop,” evolving from direct controllers within the system to external supervisors. However, this shift also raises new questions. How to ensure that AI weapon systems adhere to human ethics and values while operating independently is a major challenge currently facing the field of AI weapon development.
Lowering the threshold for dissemination leads to misuse and abuse.
Traditional strategic competition typically involves large-scale weapons system development and procurement, requiring substantial financial and technological support. With the maturation and diffusion of artificial intelligence (AI) technology, its accessibility and low cost make it possible for even small and medium-sized countries to develop advanced intelligent weapons systems. Currently, strategic competition in the field of military AI is primarily concentrated among major military powers such as the US and Russia. However, in the long run, the proliferation of AI technology will broaden the scope of strategic competition, posing a disruptive threat to the existing strategic balance. Once smaller countries possessing AI technology achieve relatively strong competitiveness, their willingness to confront threats from major powers may increase.
First, artificial intelligence (AI) facilitates the development of lightweight and agile combat methods, encouraging smaller states and non-state actors to engage in small-scale, opportunistic military adventures to achieve their strategic objectives at a lower cost and with more diverse means. Second, the rapid development of AI has led to the increasing prominence of new forms of warfare such as cyber warfare and electronic warfare. In a highly competitive battlefield environment, malicious third-party actors can manipulate information to influence military planning and strategic deterrence, leading to escalation. The 2022 Ukraine crisis saw numerous instances of online disinformation used to confuse the public. Third, the widespread application of AI technology has also reduced strategic transparency. Traditional military strategies often rely on extensive intelligence gathering, analysis, and prediction; however, with the assistance of AI, operational planning and decision-making processes become more complex and unpredictable. This lack of transparency can lead to misunderstandings and misjudgments, thereby increasing the risk of conflict escalation.
Governance Path of Artificial Intelligence Weaponization Security Risks
To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military applications of artificial intelligence, promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework, strengthen ethical constraints on artificial intelligence to ensure that technological development conforms to ethical standards, and actively participate in global security governance cooperation to jointly safeguard the peace and stability of the international community.
We attach great importance to strategic communication at the international level.
Artificial intelligence governance is a global issue that requires concerted efforts from all countries to resolve. On the international stage, the interests of nations are intertwined yet conflicting; therefore, addressing global issues through effective communication channels is crucial for maintaining world peace and development.
On the one hand, it is essential to accurately grasp the challenges of international governance of artificial intelligence. This involves understanding the consensus among nations on the weaponization of AI, while also closely monitoring policy differences among countries regarding the security governance of AI weaponized applications. Through consultation and cooperation, relevant initiatives should be aligned with the UN agenda to effectively prevent the misuse of AI for military purposes and promote its peaceful application.
On the other hand, it is crucial to encourage governments to reach relevant agreements and build strategic mutual trust through official or semi-official dialogues. Compared to the “Track 1 dialogue” at the government level, “Track 1.5 dialogue” refers to dialogues involving both government officials and civilians, while “Track 2 dialogue” is a non-official dialogue conducted by academics, retired officials, and others. These two forms of dialogue offer greater flexibility and serve as important supplements and auxiliary means to official intergovernmental dialogues. Through diverse dialogue methods, officials and civilians can broadly discuss possible paths to arms control, share experiences and expertise, and avoid escalating the arms race and worsening tensions. These dialogue mechanisms will provide countries with a continuous platform for communication and cooperation, helping to enhance mutual understanding, strengthen strategic mutual trust, and jointly address the challenges posed by the militarization of artificial intelligence.
Scientifically formulate laws and ethical guidelines for artificial intelligence.
Artificial intelligence (AI) technology itself is neither right nor wrong, good nor evil. However, there are certainly distinctions of good and evil intentions in the design, research and development, manufacturing, use, operation, and maintenance of AI. The weaponization of AI has sparked widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on complex battlefields? Furthermore, if AI weapon systems cause unintended harm, how should liability be determined? Is entrusting life-or-death decision-making power to machines in accordance with ethical standards? These concerns highlight the necessity of strengthening ethical constraints on AI.
On the one hand, it is essential to prioritize ethics and integrate the concept of “intelligent for good” from the very source of technology. In the design of AI military systems, values such as human-centeredness and intelligent for good should be embedded within the system. The aim is to prevent potential indiscriminate killing and harm caused by AI at the source, control its excessive destructive power, and prevent accidental damage, thereby limiting the extent of damage caused by AI weapon systems to the smallest possible range. Currently, nearly a hundred institutions and government departments both domestically and internationally have published various AI ethics principles documents, and the academic and industrial communities have reached a consensus on basic AI ethical principles. In 2022, China’s “Position Paper on Strengthening Ethical Governance of Artificial Intelligence,” submitted to the United Nations, provided an important reference for the development of global AI ethics regulation. The document explicitly emphasizes that AI ethics regulation should be promoted through measures such as institutional construction, risk management, and collaborative governance.
On the other hand, it is necessary to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of artificial intelligence entities. Strict technical review standards should be established to ensure the safety and reliability of AI systems. Comprehensive testing should be conducted before AI systems are deployed to ensure they do not negatively impact human life and social order. The legal responsibilities of developers, users, maintainers, and other parties throughout the entire lifecycle of AI systems should be clearly defined, and corresponding accountability mechanisms should be established.
We will pragmatically participate in international cooperation on artificial intelligence security governance.
The strategic risks posed by the military applications of artificial intelligence further highlight the importance of pragmatic international security cooperation. It is recommended to focus on three key areas:
First, we should promote the formulation of guidelines for the application of artificial intelligence in the military field. Developing codes of conduct for the military application of artificial intelligence is an important responsibility of all countries in regulating its military use, and a necessary measure to promote international consensus and comply with international regulations. In 2021, the Chinese government submitted its “Position Paper on Regulating the Military Application of Artificial Intelligence” to the UN Convention on Certain Conventional Weapons Conference, and in 2023, it released the “Global Artificial Intelligence Governance Initiative,” both of which provide constructive references for improving the codes of conduct for regulating the military application of artificial intelligence.
Second, it is essential to establish a suitable regulatory framework. The dual-use nature of artificial intelligence (AI) involves numerous stakeholders, making the role of non-state actors such as NGOs, technical communities, and technology companies increasingly prominent in the global governance of AI, thus becoming a crucial force in building a regulatory framework for the military application of AI. Technical regulatory measures that countries can adopt include: clarifying the scope of AI technology use, responsible parties, and penalties for violations; strengthening technological research and development to improve the security and controllability of the technology; and establishing regulatory mechanisms to monitor the entire process of technology research and development and application, promptly identifying and resolving problems.
Third, we will jointly develop technologies and solutions for AI security. We encourage the inclusion of bilateral or multilateral negotiations between governments and militaries in the dialogue options for military AI applications, and promote extensive exchanges on military AI security technologies, operating procedures, and practical experience. We will also promote the sharing and reference of relevant risk management technical standards and usage norms, and continuously inject new stabilizing factors into the international security and mutual trust mechanism in the context of the militarization of AI.
(The author is the director and researcher of the National Defense Science and Technology Strategy Research Think Tank at the National University of Defense Technology, and a doctoral supervisor; Liu Hujun, a master’s student at the School of Foreign Languages of the National University of Defense Technology, also contributed to this article.)
三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來先後提出“分佈式殺傷”“多域戰”“馬賽克戰”等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種傳感器、通信網絡、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智能技術賦能支持下,通過網絡信息系統可動態鏈接、自主規劃、協同組合,從而形成一個按需集成、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計劃》,該計劃旨在將多域作戰向全域作戰概念拓展,將各軍種傳感器連接到一個統一“物聯網”中,利用人工智能算法幫助改善作戰指揮決策。 ③
Recent global regional wars and military conflicts demonstrate that modern warfare practice is gradually evolving toward an information-based, intelligent form. Facing a new wave of military revolution, to fully explore the evolutionary laws of intelligent warfare practice, we need to further clarify the fundamental underpinnings of this evolution, fully assess the technological advantages of warfare practice, and identify the key challenges driving the current evolution of warfare practice.
The evolution of intelligent warfare practice requires the support of social practice foundation
As an important part of social activities, military activities have a very close relationship with social activities. Similarly, as a specific form of military activities, war practice cannot be examined in isolation from the larger system of social practice.
The level of development of productive forces determines the height of practical evolution. Warfare is part of human social practice and always aligns with the level of social production. How humans conduct material production often determines how they organize war; the way humans conduct warfare reflects their mode of production. Engels argued that victory through violence is based on the production of weapons, which in turn is based on the entire production system. Therefore, with the development of productive forces, the means of warfare are also constantly evolving. Just as it was impossible to find a weapon from the information age in the cold weapon age, it is difficult to use typical cold weaponry on the battlefields of the information age. Even daggers produced in the information age differ from those of the cold weapon age. From the alloy composition to the forging and molding technology, they embody the technological advancements of the information age and are weapons of the information age.
Changes in the production relations system influence the outcomes of practical evolution. As a special form of social practice, the development and changes in war practice closely revolve around the direction and speed of social practice evolution. In other words, behind every transformation in war practice, a similar social transformation is also taking place simultaneously, and success requires the completion of a systemic transformation of production relations as a whole. Marx insightfully pointed out that in all social forms, a certain type of production determines the status and influence of all other types of production, and thus its relations also determine the status and influence of all other relations. This is a pervasive light that obscures all other colors and alters their characteristics. Concepts of war practice that are too far ahead of their time often struggle to succeed due to a lack of hardware and software support that aligns with the development of contemporary social practice. For example, the concept of joint operations was unlikely to emerge in the era of cold weapons. Even if military theorists had anticipated this concept a priori, they would have been unable to apply it in practice. Modern joint operations, however, are in fact a microcosm of large-scale socialized joint production in military practice. Therefore, the design of war should return to social practice itself, seeking inspiration and reflection from it. Ignoring the overall level of development in production relations and prematurely designing war scenarios for the intelligent era can lead to scenarios and objectives that become sci-fi, game-like, and fictional.
The winning effect of intelligent warfare practice requires further testing in war
The goal of the evolution of warfare practice is always to enhance operational superiority and achieve victory. However, this does not mean that the evolutionary process will naturally lead to this goal. Sometimes, in the early stages of a change in warfare practice, the effectiveness of victory is not obvious, and the effectiveness of various combat methods must be continuously evaluated during the development process.
A first-mover advantage does not guarantee victory on the battlefield. While it’s undeniable that whoever first masters the latest winning strategies will be able to seize the initiative on the battlefield through technical and tactical advantages, this first-mover advantage does not necessarily lead to ultimate victory. While a first-mover advantage does have a significant impact on winning wars, the history of warfare demonstrates that technical and tactical advantages can be offset by mistakes or disadvantages in other areas. In World War II, the German army, which was the first to master the winning strategies of mechanized warfare, gained an advantage in the initial battles on the Western Front in Europe and the Eastern Front between the Soviet Union and Germany. However, this initial advantage was quickly eroded by strategic errors and overall disadvantages.
First-mover advantage rarely creates an absolutely overwhelming advantage. In the era of globalization, human social practices are closely interconnected, and technological innovations from one country or region quickly spread abroad. Therefore, technological and tactical advantages in the intelligent era are often short-term and localized, making it difficult for a single country or region to establish a long-term, global, monopolistic lead. Currently, the rapid development of network communications technology is bringing humans closer than ever before. Similarly, in the practice of intelligent warfare, various advanced reconnaissance methods will continue to penetrate the secrecy of both sides. Sometimes, after the emergence of a new weapon, countervailing weapons or methods will quickly be invented.
The advantages of intelligence don’t necessarily create optimal combat situations. Currently, the intelligence content of war practice has yet to become a decisive factor in determining victory or defeat. Currently, the practice of intelligent warfare is still in its infancy. The mechanisms of victory in war require in-depth research, many equipment require further development and verification, and various experimental pre-war practices require further testing and improvement. In comparison, the practice of informationized warfare is relatively mature, with various types of weapons and equipment, as well as supporting operational and tactical means, becoming more stable. This leaves much room for the application of informationized warfare methods. Therefore, as war practice evolves, we must continuously innovate the means of intelligent warfare practice while fully tapping the operational potential of informationized warfare practice.
The development and transformation of intelligent warfare practice requires the integrated promotion of people and technology
There are many factors that drive the evolution of intelligent practice. On the premise of clarifying development support and evaluating the effectiveness of combat methods, it is necessary to comprehensively analyze various contradictions, grasp the key points, distinguish the main points, and highlight the leading role of people.
Technological change is the most dynamic factor. Science and technology are core combat capabilities. As the most revolutionary factor in the development of war practice, every major scientific and technological innovation has a profound impact on the nature of warfare. Engels once pointed out that once technological advances can be applied to military purposes and have already been applied to military purposes, they immediately and almost forcibly, and often against the will of the commander, lead to changes or even revolutions in combat methods. However, equating the intelligent military revolution with the high-tech revolution, leading to an overemphasis on intelligent technology and an excessive pursuit of the development of various intelligent weapons, undoubtedly fails to correctly grasp the essence of the evolution of intelligent warfare practice. While technology plays an important role, it is not the only decisive factor; culture, politics, and individuals themselves also play a role. In his book A History of World Wars, British historian Jeremy Black repeatedly reminds readers not to fall into the trap of technological determinism and simply attribute all major changes in military history to technological innovation.
Institutional innovation is a challenge. To fully leverage the combat effectiveness of equipment in the evolution of intelligent warfare, all operational elements must be integrated into a unified system, integrating ideology, combat methods, organizational structures, education and training, and military technology. Renowned military theorist Dupuy argued in his book The Evolution of Weapons and Warfare that no matter how much a weapon’s lethality improves, its compatibility with military tactics and organizational structure is far more important than its invention and adoption. Only when the advantages of equipment are integrated into scientific organizational structures can optimal combat effectiveness be achieved. Historically, Britain was the first country to possess aircraft carriers and tanks, but it was not the country that successfully led the mechanized warfare revolution. While the most easily achieved transformation in warfare practice is the upgrading of weaponry and equipment, comprehensive innovation in warfare practice requires holistic innovation at the institutional level to achieve a comprehensive effect. A military that only upgrades equipment without institutional reform will struggle to develop sustained and effective combat effectiveness and cannot truly lead a revolution in warfare practice.
The integration of people and weapons is crucial. People are the primary actors in the practice of warfare. In the era of intelligent warfare, the decisive role of people in warfare remains unchanged and remains the driving force behind its evolution. From the perspective of the two major categories of people and weapons, military technology falls more heavily on the “weapons” side, while other elements of warfare, such as military strategy, organizational structure, strategic tactics, and combat methods, fall more heavily on the “people” side. The more advanced high-tech equipment becomes, the more it requires human expertise to master and utilize it. In the era of intelligent warfare, greater emphasis must be placed on the importance of wisdom and strategy, relying more heavily on individuals equipped with the concepts and thinking of the intelligent era to direct and design operations. Therefore, promoting the evolution of warfare requires focusing on people as the decisive factor, fully integrating “people” and “weapons,” vigorously developing joint education within the context of intelligent warfare, and focusing on cultivating scientific and technical personnel and command personnel who meet the requirements of intelligent warfare.
Looking back on its glorious combat history, the People’s Army has consistently adhered to the absolute leadership of the Party, proposing and implementing a comprehensive set of strategies and tactics for people’s war. These strategies and tactics are a crucial weapon for the People’s Army to defeat the strong with the weak and to conquer the enemy. Over the past 98 years, with the changing times and evolving forms of warfare, the specific content and manifestations of the strategies and tactics for people’s war have continuously evolved. To confront the challenges of information-based and intelligent warfare, we must firmly grasp the essential requirements and value orientations of the strategies and tactics for people’s war amidst the rapidly evolving global trends and practices, unifying the inherently unchanging laws of conduct with the external realities of change, and continuously innovating and developing the strategies and tactics for people’s war in the new era.
President Xi Jinping emphasized that no matter how the situation develops, the magic weapon of people’s war must never be lost. However, we must grasp the new characteristics and new requirements of people’s war in the new era, innovate its content, methods and approaches, and unleash its overall power. Currently, facing profound challenges brought about by changes in science and technology, warfare, and our adversaries, we must not only inherit and carry forward the fine traditions of people’s war, but also be sensitive to changes, actively respond to them, and proactively seek change. We must accurately grasp the inherent requirements of the strategies and tactics of people’s war in the new era, consciously update our thinking and concepts, and innovate strategic guidance, so that this magic weapon of defeating the enemy can be demonstrated on future battlefields.
Adhere to relying on the people and deeply rooted
In the long practice of revolutionary war, the people are the most profound force for victory. The people are the primary force behind the strategies and tactics of people’s war, a magic weapon for victory. People’s war has its roots deeply rooted in the people, and its confidence comes from the people. Regardless of how the times change or how the war evolves, relying closely on the people and fully mobilizing them will always be the fundamental condition and the only way to carry out people’s war. Developing the strategies and tactics of people’s war in the new era requires adhering to the mass perspective of history and the fundamental requirement that soldiers and civilians are the foundation of victory. We must integrate the traditional strategic advantages of people’s war with the mass line, broaden the sources of vitality for the strategies and tactics of people’s war, draw strategic wisdom and tactical methods from the people, and develop an intellectual advantage for people’s war in the new era. We must solidly carry out national defense education throughout the nation, continuously foster a strong sense of patriotism, inspire patriotism, strengthen awareness of potential dangers, and enhance national defense awareness. We must guide the masses to actively care about and support national defense, thereby infusing powerful spiritual strength into people’s war in the new era. We must focus on promoting high-quality population development, comprehensively improve the cultural, scientific, and innovative qualities of the entire population, accelerate the development of a modern human resource base of high quality, sufficient in volume, optimized in structure, and rationally distributed, and promote the shift of the dominant force in people’s war from quantitative to qualitative. Further improve the national defense mobilization system and mechanism, promote the establishment of a rapid response system that is connected with the national emergency response mechanism and integrated with the joint combat system, fully tap and gather the unlimited war potential contained in the people, and give full play to the resource aggregation and value-added effect.
Focus on overall planning and full-area offense and defense
In the long-term practice of revolutionary warfare, the strategies and tactics of people’s war require the comprehensive mobilization of diverse forces and resources in the political, economic, cultural, diplomatic, and military sectors, and the integrated use of various forms of struggle and methods of operation. This holistic approach compensates for local deficiencies and disadvantages, ultimately defeating powerful adversaries. Modern warfare is not only a fierce confrontation in the military sphere, but also a comprehensive struggle in the political, economic, and diplomatic spheres, exhibiting the distinct characteristics of hybrid warfare. To develop the strategies and tactics of people’s war in the new era, we must establish a broad systemic mindset, relying on the national strategic system and supported by the joint operations system, explore the implementation methods of people’s war strategies and tactics, and win the total war of people’s war in the new era. We should fully leverage the advantages of the new national system, relying on the integrated national strategic system and capabilities, efficiently aggregate superior resources across the board, fully activate the country’s national defense potential, and weave various forces and resources into a network. We should integrate and plan the subsystems of people’s war, including leadership, organization, personnel, command, technology, equipment, and support, to maximize the effectiveness of holistic linkage and systemic operation, and achieve the maximum benefits of all-round effort and multiplied energy. We must strengthen comprehensive coordination across the physical, information, and social domains, focusing on seeking breakthroughs in new domains and new qualities, and making achievements in new dimensions such as unmanned warfare, human-machine collaborative warfare, network and electronic warfare, space and deep-sea warfare, and intelligent and autonomous warfare. Military and non-military means must be coordinated, integrating various forms of struggle, including political, economic, diplomatic, public opinion, and military. Comprehensive measures must be implemented to effectively wage diplomatic offensive and defensive battles, financial and trade battles, psychological defense battles, and public opinion and legal battles. We must leverage the combined effectiveness of political offensives and armed strikes to effectively fight the political and military battles.
Strengthen active defense and take the initiative
Through the long practice of revolutionary warfare, the People’s Army has developed a comprehensive strategic philosophy of active defense, emphasizing, for example, the unity of strategic defense and offensive action in campaigns and battles, the principles of defense, self-defense, and preemptive strike, and the principle of “if no one offends me, I will not offend; if someone offends me, I will certainly offend.” Active defense is fundamentally defensive, its essence lies in activeness, and its inherent characteristic is proactiveness. Currently, profound changes have taken place in the international, national, and Party, military, and political landscapes. The strategies and tactics of people’s war in the new era generally adhere to the fundamental principle of defense and are not aimed at hegemony, aggression, or oppression of other countries. Consequently, they will win the support and endorsement of the vast majority of the Chinese people, as well as the understanding and assistance of peace-loving and justice-loving countries and peoples around the world. Developing the strategies and tactics of people’s war in the new era must adapt to the times and circumstances. We must adhere to a defensive national defense policy, implement the military strategic guidelines of the new era, excel at observing and analyzing issues from a political perspective, and be adept at considering and applying strategies from regional and global perspectives to consolidate the political foundation for victory in people’s war. We must persist in neither provoking trouble nor fearing it, strengthen the regular and diversified use of military force, firmly and flexibly carry out military struggle, and while adhering to the strategic preemptive strike, we must not give up campaign and combat offensives under favorable conditions and when necessary. We must advance steadily, make progress within stability, and be proactive within stability, effectively shape the security situation, contain crises and conflicts, and firmly grasp the initiative in the struggle.
Highlight new quality dominance and technological empowerment
In the long practice of revolutionary warfare, while emphasizing that victory in war is primarily determined by people, not objects, the People’s Army has also placed great emphasis on the research and development of advanced military technology, particularly weaponry. Comrade Mao Zedong once emphasized that without modern equipment, it would be impossible to defeat the armies of imperialism. The technological content of modern warfare has undergone a qualitative leap, with advanced technologies and new weaponry such as artificial intelligence, big data, quantum computing, unmanned aerial vehicles, and brain control being widely applied in the military. While the people remain the decisive force in determining victory in war, the manifestation of this power has undergone significant changes. Science and technology are core combat power, and People’s War will place greater emphasis on the application of scientific and technological means and rely even more heavily on the wisdom and creativity of the people. Developing the strategies and tactics of People’s War in the new era should prioritize winning information-based and intelligent warfare. We should deeply study the essential characteristics, winning mechanisms, and strategies and tactics of high-end warfare, accelerate the shift from “winning by numbers” to “winning by talent,” and from “winning by manpower” to “winning by intelligence,” effectively enhance our ability to win through scientific and technological empowerment and digital intelligence, and truly unleash the crucial role of science and technology and talent in People’s War in the new era. We will accelerate the development of high-tech industries, vigorously strengthen the construction of new forces in new domains such as ocean, space, cyberspace, artificial intelligence, and quantum technology, increase military-civilian collaboration in high-tech fields, accelerate the transformation and application of new productive forces into new combat capabilities, and promote the expansion of war potential reserves into emerging fields and the focus on new forces. We will integrate and coordinate military and civilian scientific and technological advantages, shifting the focus from traditional support and guarantee elements such as human and material resources to new support and guarantee elements such as information, technology, and intelligence. We will build information, resource, and technology pools with profound foundations and rich reserves, actively cultivate capable, strong, and professional professional support units, and continuously expand the breadth and depth of people’s participation in the war and scientific and technological support.
Emphasis on flexibility, maneuverability, innovation and checks and balances
In the long-term practice of revolutionary warfare, the strategies and tactics of People’s War are highly flexible and maneuverable. Their most essential requirement is to prioritize self-reliance, attacking the enemy without being attacked by them. Based on the actual situation of both sides, we fight the battles based on our weapons, against the enemy, and at the right time and place. We identify the enemy’s weaknesses and vulnerabilities, leverage our strengths and advantages, and defeat the enemy with our own strengths, always seizing the initiative on the battlefield. Flexible and maneuverable strategies and tactics are the magic weapon for defeating an enemy with superior equipment with inferior equipment. “You fight yours, I fight mine” is a summary and generalization of the long-term experience of China’s revolutionary war and the soul and essence of the strategies and tactics of People’s War. Developing the strategies and tactics of People’s War in the new era must grasp the methodological requirements of asymmetric checks and balances, leverage innovative operational concepts, adhere to the mechanisms of victory in modern warfare, and continuously develop practical and effective tactics to defeat the enemy. We must proceed from the actual circumstances of both sides, gaining a deep understanding of operational missions, adversaries, and the evolving operational environment. We must thoroughly grasp the concepts, elements, and methods of victory, objectively analyze and study the strengths and weaknesses, advantages and disadvantages of both sides, know the enemy and ourselves, adapt to the situation, and flexibly utilize various combat forces and methods, striving to achieve maximum results at the lowest cost. We must adhere to the principle of “attacking the enemy without being attacked by them,” capitalize on strengths and avoid weaknesses, avoid the real and attack the weak, attack where the enemy is least prepared, and attack where they must be defended. We must proactively create opportunities, flexibly maneuver the enemy, and fight wherever we are most advantageous and wherever we are most skilled. We must adhere to the principle of “using what we can to defeat what we cannot,” advancing the research and application of military theory, operational guidance, tactics, and training methods in a timely manner, innovating core operational concepts, and developing new types of combat methods. We must fight against the enemy’s tactics, targeting their weaknesses, and leveraging our military’s strengths, thus creating new winning advantages in people’s war through asymmetric checks and balances.
Emphasis on accumulating small things into big things and focusing on unity of purpose
Throughout the long practice of revolutionary warfare, our army has been at an overall disadvantage for considerable periods. Therefore, the strategies and tactics of people’s war emphasize leveraging strength against weakness locally, persisting in accumulating small victories into larger ones, and concentrating forces to wage annihilation campaigns. This has become a key strategy for the people’s army to defeat powerful foes. Compared to previous eras, modern warfare often unfolds across multiple dimensions and domains, providing greater scope for implementing this strategy of “accumulating small victories into larger ones.” Developing the strategies and tactics of people’s war in the new era requires strengthening the concept of “dispersed in appearance, yet focused in spirit; dispersed in form, yet united in strength.” This involves dynamically consolidating and uniting the numerous combat forces distributed across the multidimensional battlefield. Through the fusion of capabilities and immediate optimization, we can launch rapid localized focused-energy attacks, wide-area guerrilla harassment, and deliver annihilating and destructive strikes against key enemy locations. This not only creates a hammering effect, but also continuously wears down the enemy, gradually depriving them of the initiative on the battlefield. This highly integrated distributed warfare emphasizes the wide-area dispersion of troop deployment and the discrete distribution of capabilities. Based on the needs of achieving operational intent, objectives, and missions, it prioritizes the best operational elements, units, and forces. Through the integration of operational capabilities and the accumulation of operational impacts, it aggregates optimal operational effects, unleashes maximum operational potential, maximizes operational effectiveness, and achieves optimal operational results. This distributed warfare has evolved from “geographical dispersion” to “dynamic coupling across all domains and dimensions”: no longer limited to the physical dispersion of personnel and equipment, it extends to multi-dimensional battlefields such as cyber, electromagnetic, and cognitive. Relying on data links, artificial intelligence, and distributed command systems to achieve cross-domain collaboration, it significantly enhances battlefield survivability and multiplies strike effectiveness.
With the continuous advancement of space technology and the rapid spread of the Internet world, space and the Internet have almost become a battleground for military strategists. America Establish a space force Japan A Space Operations Team was established, the Russian Air Force was renamed the Aerospace Forces, and the French Air Force followed suit and incorporated into the mission establishment of space operations. And China Then established Strategic Support Force , and after the Rocket Force, it became the fifth largest service branch of the Chinese People’s Liberation Army.
Simply put, the Strategic Support Force has jurisdiction over new areas such as space, electromagnetism, and the Internet that are not part of the traditional land, sea, and air battlefields. In addition to focusing on the development of space combat capabilities, it also brings together electronic combat units, cyber offensive and defensive units and intelligence reconnaissance systems scattered across various services in the past to establish a unified command system and integrate these different fields. Its most important purpose is to use this new non-traditional combat method to support front-line troops and gain future battlefield advantages.
Since China is an opaque country and the People’s Liberation Army has always been mysterious, the outside world’s understanding of strategic support forces is still very limited. However, judging from the publicly available information, the Strategic Support Force has several main components, including the “Space Systems Department”, “Cyber Systems Department”, “Political Work Department” and related administrative units, which are responsible for “space development”, “electronic confrontation”, “cyber offensive and defensive”, “cognitive operations”, and “intelligence reconnaissance” respectively.
The PLA’s Strategic Support Force: Space Development Contending with the United States
The “Aerospace Systems Department” responsible for “space development” has jurisdiction over the past satellite research, production, launch, and ground control centers, and is currently the backbone of China’s development of space combat capabilities. It is mainly divided into three major directions, covering space image reconnaissance, anti-satellite operations, and the construction and maintenance of navigation and communication satellite systems. It also uses a large number of “military-civilian integration” strategies, uses civilian use as cover, and introduces, steals or imitates space technology from European and American countries. For military purposes. For example, general civilian communication satellites are also of great help to the People’s Liberation Army’s drone development or combat communications.
The best examples are Beidou satellite This space navigation system independently developed by China has now developed into the third generation, and its signal service scope covers the world. Although the Beidou satellite has high commercial value, it is widely used in automobile navigation, maritime shipping, land surveying, etc. But more importantly, in the military field, it can significantly increase the PLA’s missile accuracy, assist troops and military unmanned vehicles in positioning and navigation, and become the basis for information-based joint operations together with communication satellites. Leaving the strategic support force responsible for maintaining and operating these satellite systems will undoubtedly further coordinate with the People’s Liberation Army’s combat tasks and development direction, and can also ensure the safety of these satellites.
In addition, China has frequently launched various resource detection and scientific research satellites in recent years, many of which are suspected to be related to military purposes. Like Ocean Satellite Series , ostensibly used for ocean research, but because this series of satellites has the ability to monitor, identify and track maritime targets, it is also a powerful weapon for the People’s Liberation Army to carry out anti-access operations at sea in the future, and will have a great impact on China’s control of disputed waters such as the South China Sea and the East China Sea. Great help. Another series High-score satellite It has reconnaissance capabilities. Although it is euphemistically used for resource protection and improving land planning efficiency, it is actually an out-and-out spy satellite. More than 20 have been launched into space.
China’s strategic support forces not only operate and protect their own satellites, but are also actively studying how to attack other countries’ satellites. For example, China’s long-term development of kinetic energy series anti-satellite weapons has successfully shot down abandoned Chinese satellites. In recent years, China has continuously tested new anti-ballistic missile systems and is also considered to have the ability to attack space satellites. The recently launched Shijian-21 satellite was also found in space orbit, directly grabbing a retired Beidou navigation satellite with a robotic arm, towing it to a higher orbit and discarding it, which attracted the attention of foreign media. Beautiful National Army General Fang has long stated in his testimony before Congress that China has the ability to use these technologies to destroy American satellites during wartime and compete with the United States on the space battlefield.
PLA’s Strategic Support Force: Capturing the Advantage of the Cyber Area
The “Network Systems Department” responsible for “electronic operations” and “cyber offensive and defensive” was restructured from the electronic listening and electronic warfare units of the past, and integrated the network forces established in recent years to specialize in electromagnetic space and virtual space. offensive and defensive. In terms of electronic warfare, it is divided into two parts: passive electronic signal interception and analysis, and active interference destruction. The two are actually two sides of the same coin. For example, the J-16D and J-15D electric fighters of the Chinese Air Force are equipped with electronic warfare systems that rely on electronic reconnaissance aircraft and electronic signal intelligence collected by spy ships on weekdays. Because this information will be analyzed by the “Network Systems Department” to develop countermeasures and interference methods, it has become a key basis for electronic warfare systems to launch attacks.
Cyber warfare is the latest and hottest field, and China is also developing very vigorously in this regard. On more than one occasion, the United States has directly accused hackers related to the People’s Liberation Army of hacking into sensitive units to steal data. In this information age, it has long been common to use the far-reaching characteristics of the Internet to carry out theft, destruction and psychological warfare. The theft of data online is not limited to military secrets, but is more about business technology and even personal privacy. It is not news that China systematically steals foreign information on a large scale to assist domestic technological development. It is a common method to use stealing the privacy of overseas dissidents or officials to achieve the purpose of threatening and inducing.
In addition to stealing information in peacetime, in wartime, you can directly attack the enemy’s infrastructure through the Internet. Such as electricity, communications, water supply and transportation networks, etc., to create chaos, slow down the enemy’s response speed and counterattack ability, and even supplement it with psychological warfare to disintegrate the enemy’s will to resist. Take the recent conflict between Armenia and Azerbaijan as an example. After the war broke out, the two countries continued to publish videos of destroying each other’s fighter planes or armored vehicles on the Internet, supplemented by news that it was difficult to distinguish between true and false, in order to boost each other’s morale. This new model of “cognitive warfare” has received more and more attention as the Internet spreads pervasively.
The use of psychological warfare to achieve military or political goals has been a common tactic since ancient times, and China is particularly good at using united front methods. It can even be said to be one of the keys to the People’s Liberation Army’s victory in the civil war between the Kuomintang and the Communist Party. In recent years, the tactic of integrating public opinion warfare, psychological warfare, and legal warfare has been developed, referred to as the “Three Wars”, and is also written into the political and labor regulations of the People’s Liberation Army. Its highest command unit is the “Political Work Department” of the Central Military Commission. The “Political Work Department” of the Strategic Support Force accepts orders from superiors to monitor the troops internally and ensure the loyalty of personnel. To the outside world, it uses its own satellite communication channels and electronic warfare. Interference and destruction technology, online public opinion guidance skills, etc. to support the “Three Wars”. Various infiltrations were carried out at the same time to carry out “intelligence reconnaissance” work.
Increase alertness to new combat modes
This new war, which combines information gathering, destruction and theft, public opinion infiltration, and cognitive warfare, is something we have never seen before. From state-of-the-art space and electronics to the oldest gossip, everything is used to help frontline combat forces gain an advantage. At the same time, the Strategic Support Force also has jurisdiction over the “Strategic Support Force Aerospace Engineering University” and the “Strategic Support Force Information Engineering University”, merging many colleges and universities in the past to cultivate talents for the “Aerospace Systems Department” and “Network Systems Department”. And use these academic units to develop the latest tactics and tactics. The threat to Taiwan cannot be underestimated.
Such as a few that have been exposed Strategic Support Force Base 311 Fuzhou City, located in Fujian Province, is responsible for conducting the People’s Liberation Army’s “Three Wars”. It is only separated from Taiwan by one water, and the targets it targets are self-evident. In addition to preventing regular military attacks, Taiwan must also be more vigilant against this new form of aggression. In recent years, the National Army has also actively developed this invisible combat power and established the “Information and Telecommunications Army”, which is responsible for operations in the fields of network, communications, electronic warfare and other fields, and is positioned as the fourth service. However, due to national strength, it has not been able to invest significantly in the space field. In addition, Taiwan is a democratic country, and the military is unable to use the Internet to develop public opinion warfare and psychological warfare, which puts Taiwan at a great disadvantage in this competition.
China’s strategic support forces support front-line combat forces from various fields. This concept is worth learning from Taiwan, because although the government’s slogan of “National Defense for All” is often shouted at sky-high prices, ministries other than the Ministry of National Defense often lack the concept of enemy situation and fail to think about whether it will have an impact on national security when formulating policies.
Hybrid warfare in the new era is a battlefield everywhere and is no longer something that the Ministry of National Defense can deal with or deal with alone. Taiwanese society faces a huge threat from the enemy, but its failure to establish a universal national defense concept is really frustrating, let alone integrate resources and provide strategic support to the national army.
Joint operations are the basic form of combat in modern warfare. They emphasize the strength of more than two services and arms and other participating forces, and jointly implement operations in multi-domain space under unified command. “Single domain” and “multidomain” interdependence and interaction in joint operations are a pair of important military categories. Grasping the relationship between single domain and multi-domain is the core content and key to solving the “internal interface” problem in the construction and application of joint combat forces. The relationship between the two should be viewed dialectically and correctly handled, and the winning mechanism of joint operations should be continuously enriched to promote joint operations. Really achieve cross-domain integration, energy gathering and efficiency improvement.
“Single domain” is the constituent element and development basis of “multi-domain”
Joint operations emphasize the formation of advantageous multi-domains based on advantageous single domains, and place higher demands on the coupling relationship between each single domain that makes up the multi-domain. The development of a single domain can provide a solid foundation for the development of multiple domains and create prerequisites for achieving cross-domain integration.
In terms of historical process, single domain to multi-domain is the process of domain expansion. Throughout human history, the wars of each era have applied the techniques of their own era, imprinted the imprint of their own era, and developed with the time and space of the war. War in the agricultural era, with cold weapons as the main military equipment, battlefield fighting is mainly limited to land and offshore waters. It is a lower-level “full contact” war, and the combat domain is relatively single, making early operations “loose” Joint characteristics.
Entering the industrial era, with the invention and use of steam engines and internal combustion engines, air combat weapons represented by combat aircraft appeared on the battlefield. The combat space broke through the limitations of land and sea areas, forming a three-dimensional battlefield between land, sea and air. The war turned “semi-contact”, making joint operations take on “cooperative” joint characteristics. Entering the information age, the combat space breaks through the three-dimensional geographical space and forms a multi-domain integration of land, sea, air, space, electricity, network, and cognitive fields, making joint operations present multi-domain “integrated” characteristics. With the development of single domain to multi-domain, single-domain control rights such as land control, sea control, air control, heaven control, and information control have continued to appear, and the subsequent importance of single-domain control has continued to increase, promoting the connotation of multi-domain control. Expanding and changing, the competition for comprehensive control has become the first priority in the confrontation between ourselves and the enemy.
In terms of development form, single domain to multi-domain is a process of clustering into a network. Restricted by technical conditions and other constraints, combat activities before the information age, whether in terms of battlefield time, battlefield space, or the deployment and use of combat forces, have clear sections between single domains and clear levels of action at all levels, showing a strong Sequential and progressive, showing a single-domain chain development form.
Entering the information age, under the full “adhesion” of the network system, the multi-domain force formation develops from “combination” to “convergence”, forming an elastic structure with spatial dispersion and deployment, time coordination, and multi-dimensional energy release. According to the battlefield situation and changes in the situation, combat activities use the network information system as a “link” to connect the “links” of the combat single domain into a “network” shape, forming the focus of similar strong points and complementary advantages, and realizing each single domain “shape and spirit gathering” and “gathering fingers into fists”, The transition from single-domain chain to multi-domain network was achieved.
In terms of performance index, single domain to multi-domain is a process of energy aggregation and efficiency. Both opposing sides in the war tried to exert their overall combat power in order to achieve combat victory. However, due to the clear boundaries and loose connections of each single domain in the past, improving the overall combat power can only be achieved through the linearity “superposition” of each combat domain. With the development of information technology and intelligent technology, especially the widespread application of information systems in the military, the network information system realizes the command and control of each single domain force and can seamlessly link each combat domain. Each combat force maximizes The advantages of spatial multidimensionality and power diversity have been realized, and the strength and strength of each single domain and each level have been realized The high degree of integration, multi-dimensional cohesion, overall linkage and integrated energy release in terms of means and actions has achieved the effect of complementary advantages, synergy and cohesion, which is conducive to achieving a comprehensive advantage or local overwhelming advantage over the enemy.
“Multi-domain” is the direction-dominant and powerful dominance of “single-domain”
The essence of the winning mechanism of joint operations lies in cross-domain integration to achieve excellence and efficiency, which requires that single domain and multi-domain must be functionally “unified in the same direction”. “Multi-domain” stipulates the status and role of each single domain in combat. Each single domain must start from the overall functional needs of joint operations, focus on providing the ultimate contribution rate to the combat system, and achieve synchronous cross-domain maneuvering, cross-domain coordination, and cross-domain strike, to achieve system advantages in overall confrontation. Currently, the multi-domain dominates and dominates the single-domain in the direction of forming a resultant force with the system mainly from the following aspects.
Transition of multidomain operational requirements to hybrid war threats. At present, conventional threats are expanding and unconventional threats are becoming new and present threats, with the boundaries between regular and irregular battlefields tending to be blurred, between combatants and non-combatants and between physical and virtual dimensions. Joint operations are still the basic form of operations, but specific combat styles show a trend towards combining multiple styles. Various threats from traditional or non-traditional, formal or informal, high-intensity or low-intensity exist on land, sea, air, space, electricity, network, cognition and other multi-domains. These threats add a new dimension to the concept of war. Therefore, it is necessary not only to do a good job in the fight against a single threat, but also to develop the ability to integrate into multi-domain operations to deal with hybrid warfare.
The focus of multi-domain operations shifts to the network information system. Several informatization local wars that have broken out in recent years have shown that no war, no alliance, no alliance, no victory, the network information system that condenses various single-domain combat elements has become the focus of operations, and the combat command information system that gathers the combat power of the network information system has become the main basis for military operations “nerve center” and has become the key point for opponents to attack. The degree of integration of command and information systems is getting higher and higher, and the command systems of each single domain must converge and move closer to the overall command system, so as to achieve system integration of various services and combat units and deep coupling of various combat elements. In line with this, the information domain, the cognitive domain, and the electromagnetic domain, as emerging fields of warfare, have increased in their core status and importance, and have increasingly become the core operational domains for opposing sides to compete for control, becoming capable of causing enemy “blind, incapacitated, and mentally retarded” key operational domains. Therefore, each single domain must strengthen its ability to organically integrate into the network information system within the framework of a unified standard system and achieve interconnection and interoperability between each single domain, so as to ensure that it provides basic support in multi-domain precision warfare and thus wins overall advantages.
Transformation of multi-domain combat forces into joint combat units. Integrated joint operations have the characteristics of platform operations, system support and tactical operations, and strategic support. Strategic-level planning, campaign-level command, and tactical-level operations will become the norm in future wars. Large-scale corps operations may become increasingly rare and will be replaced by joint battles more often on multi-domain battlefields. The joint combat unit will bring together various single-domain combat forces and cover various combat elements. The level of the joint is reflected in the tactical level, presenting an independent combat capability that includes early warning and reconnaissance, information support, combat command, multi-domain attack and defense, combat support and other elements. Joint tactical unit form. Each “single-domain combat force” has a closer coupling relationship, and its own characteristics and advantages will become more prominent.
Accelerate the expansion of “single-domain advantages” to “multi-domain advantages”
For the dialectical unity of a single domain and a multi-domain, we must not only see the unity of a multi-domain, but also respect the independence of a single domain; we must neither completely oppose the two, nor erase the connection between them. In view of the actual situation of combat opponents, combat environment, own strength, etc., and taking into account various political, economic, technological, cultural and other factors, we should accelerate the expansion of “single-domain advantage” to “multi-domain advantage”, so as to form an information advantage, decision-making advantage and operational advantage against the enemy.
First, we must consolidate and expand the advantages of single domain.“ Metcalfe’s law ” tells us that increasing a network entity is capable of producing nonlinear exponential convergence of the combat power of the system. Multi-domain operations are deeply integrated system operations. As the basic element of multi-domain existence, the strength of each single domain’s construction will definitely affect the effectiveness of multi-domain integration. The essence of forming a multi-domain advantage is to deeply aggregate the advantages of each single domain. It is necessary to continuously strengthen the construction of single domain capabilities to form a single domain advantage and limit the opponent’s strength advantage to the limit. In fact, consolidating and expanding the advantages of single domains is not only to enhance single domain performance, but also to serve the purpose of multi-domain convergence. Single-domain construction requires strengthening top-level design, formulating standards and specifications, and striving to overcome conflicts caused by different combat construction concepts formed by the unique combat styles and combat culture of different services. At the same time, it is necessary to coordinate all military construction resources and focus on the development of multi-domain combat weapon platforms to meet the overall needs of joint operations, rather than just the needs of each single domain itself.
Second, we must promote the achievement of cross-domain synergy. Cross-domain synergy emphasizes breaking the boundaries between services and arms and integrating combat forces across services, arms and institutions. Based on the network information system, the combat forces in each domain are distributed in a wide area, and the multiple domains are linked as a whole to complement each other’s advantages and increase efficiency, and quickly gather energy step by step, promoting the expansion of single-domain advantages into multi-domain integration advantages and system advantages, and forming a concentrated energy strike against important enemy targets. In “joint operations”, combat forces in various fields must not only have the ability to independently perform a variety of combat missions, but also need to use their own cross-domain perception, target recognition and strike capabilities to support or even directly participate in other combat domain operations.
3. “Flexible mobile combat application is required!”. The winning mechanism of joint operations lies in the rapid and continuous integration of multi-domain combat forces to form multiple advantages and immediate advantages in specific time windows, forcing the enemy into passivity, disadvantage and dilemma. For the use of single-domain and multi-domain forces, such as the use of fingers and fists, whether it is “pointing points with hands” or “clenching fingers into fists”, or even the mutual transformation and use in combat, we must adhere to seeking truth from facts and comprehensively consider the efficiency of combat effects. Scientifically make decisions based on factors such as efficiency and contribution to the victory of war, and effectively use troops according to circumstances, location, and situation. If the single-domain combat force can solve the problem well, it is no longer necessary to use multi-domain combat forces, thereby improving operational effectiveness.
President Xi pointed out that the core of studying combat issues is to clarify the characteristic rules and winning mechanisms of modern warfare. In today’s world, major changes unseen in a century are accelerating. Disruptive technologies represented by artificial intelligence are developing rapidly and widely used in the military field, accelerating the evolution of war forms towards intelligence. The corresponding war winning mechanism is also changing. “ Victory tends to smile at those who can foresee changes in the characteristics of war, rather than at those who wait for changes to occur before adapting”. Only by discovering changes in a timely manner, proactively responding to changes, and actively adapting to changes can we better grasp the initiative in future wars and remain invincible in future wars.
Outwitted
In the “intelligent warfare confrontation”, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. Global multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build combat systems according to mission requirements, and independently implement coordinated operations, the mission ends and quickly returns to a state of readiness for war, showing a trend of intelligent autonomy. Whoever possesses the empowerment and gain advantage of intelligent technology in the combat system can design wars, lead the development of the battlefield, master battlefield initiative, and achieve “using wisdom to defeat clumsiness”. First, algorithms, computing power, and data determine system operational capabilities. Relying on intelligent algorithms and powerful computing power, it can quickly and efficiently analyze targets and match resource means, solve high-frequency cross-domain collaboration problems, achieve coordinated planning, parallel actions, and real-time evaluation, and greatly improve system operating speed and strike efficiency. Second, intelligent networks support cross-domain all-in-one action. The intelligent network information system provides basic support and link links for the combat system. Combat units and combat elements in different combat domains can be integrated into the entire combat system at any time “plug and play” to achieve rapid information transmission and sharing. Again, an intelligent weapon platform enables autonomous and flexible strikes. Intelligent technology achieves the organic combination of human strategy and machine’s autonomous perception, autonomous decision-making, and autonomous action by empowering weapon platforms, elements, and forces. Through “software defines the combat system structure and functions, and uses software to empower weapon platforms and ammunition, the platform can independently select and attack targets, and flexibly build a kill chain”.
Gathering is better than scattering
With the support of the “intelligent network information system”, the combat system has become an organic whole with a high degree of autonomous coordination, allowing the overall linkage of combat operations and the operational effectiveness index to be magnified, relying on the overall power of the system to win. First, the multiple elements of information, firepower, military power and cognition are linked together to release energy. With the injection of intelligent factors into the combat system, information, firepower, force and cognition will be given new quality capabilities, and based on the support of intelligent network information systems, software and hardware capabilities will be organically combined and physical and intangible means will be closely integrated to achieve combat effectiveness. maximize. Secondly, the multi-spatial multi-directional linkage of land, sea, air, space, network, electricity and other forces gathers forces to release energy. The seizure and control of battlefield control will rely more on the integrated linkage and cross-domain coordination of multi-domain space operations. By dispersing various combat forces deployed in a vast space, they will immediately gather advantages, forming a multi-domain, multi-directional energy release advantage for dimensionality reduction attacks in one domain, thereby taking control of battlefield initiative. Again, the multi-link linkage of detection, control, and evaluation gathers strength to release energy. Through the “ubiquitous Internet network”, cross-domain response to combat operations, cross-domain sharing of combat information, and cross-domain complementation of combat functions can be realized, and anti-virus networks can be dynamically adjusted or constructed according to the enemy’s circumstances and circumstances to achieve rapid system operation and concentrated energy release.
“Exquisite” is better than coarse
Intelligent warfare must be reasonably invested, effectively regulate combat forces, and be used as a means of warfare to achieve the goal of “refining the rough” and winning at the lowest cost. First, a precise target-information-driven system operates efficiently. Relying on various intelligent sensing platforms covering multi-dimensional and wide-area deployment, it detects and locates obstacles or targets in the battlefield environment. Precisely control the flow, flow, and velocity of information to achieve rational allocation of combat resources, coordinated and orderly combat operations, and precise release of combat energy. Second, precise breaching operations achieve a rapid transition between good and bad. The application of big data, big model analysis algorithms and other technologies can accurately analyze and judge combat systems “weak spots ”“ Achilles’ heel”, accurately guide the use of weapons and high-energy weapons such as lasers and hypersonic speeds, make the choice of precise strike methods more diverse, and can make the enemy Combat systems are instantly disabled. Again, precise strike evaluation supports the optimal superposition of combat effects. The target damage effect is accurately obtained through intelligent channels and means, and the conclusion is revised based on the human-computer interaction evaluation system. The commander can compare, interact, feedback, and correct the damage effect assessment conclusions with the information stored in the system knowledge base and his or her own professional knowledge to achieve the purpose of accurately assessing the impact effect of the target.
Faster than Slow
“The main speed of military intelligence”, the rapid development of military intelligence has greatly improved the speed of information transmission and the accuracy of weapon strikes, greatly reduced the time for reconnaissance and early warning, intelligence processing, command and decision-making, fire strike, and damage assessment, and accelerated “OODA” kill chain Cycle, new rapid-fire weapons such as hypersonic missiles, laser weapons, microwave weapons, and electromagnetic pulse weapons further push the rhythm of war to “instant kill”. Hybrid human-machine decision-making becomes the key to enemy action first. On the one hand, the new model of human-machine hybrid cloud-brain decision-making is based on the intelligent “network, cloud, terminal” system and integrates intelligent battlefield perception, decision-making and weapon control systems to quickly select combat plans and achieve instant decision-making advantages. On the other hand, the speed at which the kill chain is constructed becomes the basic yardstick for system confrontation. Under the empowerment of “intelligent technology”, the acquisition, processing and transmission time of battlefield information is greatly shortened. The intelligent platform uses algorithms to analyze battlefield spatial situations and target information in real time, and the time of the kill chain is shortened to seconds, thus achieving “destroy upon discovery”.
Toughness is better than crispness
War is not only a military contest, but also a competition between the country’s human, material and financial resources. Maintaining the lasting resilience of the combat system has become a key factor affecting the outcome of the operation. First, the large-scale use of low-cost unmanned intelligence platforms has become a completely new way of fighting. Unmanned intelligence platforms, micro-intelligent robot autonomous combat clusters, etc., dispersed to more small and low-cost combat platforms, can enhance the recovery speed and overall penetration of the combat system after damage, and achieve maximum combat benefits at a smaller cost. Secondly, the continued guarantee of intelligent resources becomes the key to the operation of the combat system. Various new weapons and new means such as unmanned combat platforms, intelligent algorithms, and cyber attacks are constantly emerging. Powerful computing power, advanced algorithms, and accurate data support have become the guarantee for the continued and stable operation of the system, and intelligent resources “timely, appropriately, applicable, and appropriately” continue to be effective. Guarantee has become an important influencing factor in the victory of intelligent warfare. Again, the operational system’s requirements for balance of offensive and defensive capabilities are getting higher and higher. The local area network, wide area network and even brain network behind the network and digitalization of the combat system leave room for opponents to launch attacks; the “cloud— network —end” structure of the combat system intelligent network information system, its data center, supercomputing center and other network infrastructure It will also be an important hub for opponents to focus on attacking and destroying.
Heart is better than things
Intelligent warfare is different from traditional warfare in which the main purpose is to eliminate the enemy’s effective power. It will pay more attention to weakening the enemy’s morale, disintegrating the enemy’s will, and destroying the enemy’s psychology. Smart technology has become a new way to influence the minds of all employees at all times. First of all, intelligent new media, new technologies and new means have created new ways for the psychological influence of public opinion. Enhanced consciousness and the development of information editing and other technologies have made the methods of conscious attack and defense more diverse, the methods of confrontation more varied, and the technological content higher. Use “intelligent weapons, intelligent technology and intelligent information struggle methods to carry out information attacks on the enemy, thereby forming psychological deterrence”. Secondly, intelligent and deep interaction makes obtaining data richer and more complete. Technologies such as AI face-changing, holographic projection, and audio-visual synthesis provide new means to implement intelligent manufacturing and confuse facts. Again, smart models, massive amounts of data, and high-performance servers provide new tools for quickly concocting information ammunition. Mental guidance and control can be closely coordinated with military, economic, and diplomatic forces to amplify the deterrent effect, constantly create pressure from public opinion to force the enemy to compromise, form psychological deterrence and make them hesitate to give in, change the enemy’s cognition through differentiation of value identity, and achieve subjugation without fighting.
More than single
The rapid development of science and technology has opened up new space for activities and interests for human society, but new security threats and challenges have followed suit, promoting the corresponding expansion of battlefield space and confrontation fields. Currently, wars are constrained and influenced by many factors such as politics, economy, diplomacy, military, technology, geography, and psychology. Unconventional mixed wars supported by military capabilities have become more intense. The competition space for hybrid warfare has extended to various fields such as politics, economy, diplomacy, culture, and military. It emphasizes the comprehensive use of national strategic resources and strategic tools to achieve traditional war goals and transcend traditional war methods. It has a special status and role. As intelligent technology matures, the threshold for intelligent warfare will show a downward trend. Participating parties may adopt an undeclared war approach to launch a variety of integrated economic warfare, diplomatic warfare, cyber warfare, public opinion warfare, psychological warfare, legal warfare, etc. Mixed warfare, mixed victory means giving priority to politics, economy, diplomacy, etc. on the basis of comparing the advantages and disadvantages of the opponent and one’s own side in all aspects Public opinion and other non-military tools and means that can use strengths and avoid weaknesses, use four taels to move a thousand pounds, pursue “no war” or “less war ”“small war” and subjugate others. As long as we deeply understand and accurately grasp the characteristic rules and operating mechanisms of future hybrid warfare, and creatively use clever and efficient strategic techniques, we can fully achieve the expected strategic results.
The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.
Military intelligence leads to accelerated development of cyberspace operations
■Respect the soldiers Zhou Dewang and Huang Anwei
Three major technologies support the intelligence of cyberspace weapons
Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:
First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.
Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.
Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.
The intelligent trend of network-controlled weapons has become increasingly prominent
Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.
In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.
Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.
Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.
Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.
Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.
Intelligent command information system changes traditional combat command methods
Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.
In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.
In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.
To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.
In the future battlefield, fighting courage requires more fighting “wisdom”
■Yang Jian and Zhao Lu
At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.
Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.
It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.
In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.