The era of intelligent warfare has begun. Intelligent command and information systems will become the “central nervous system” of future intelligent combat command and control, serving as a supporting means for intelligent combat command and control. Accelerating the construction of intelligent command and information systems is an inherent requirement for the development of military intelligence. Only by clarifying the essence of intelligent command and information system development, grasping the key points of intelligent command and information system research and development, and exploring the essentials of intelligent command and information system development can we better promote the construction and development of intelligent command and information systems and gain a competitive advantage in future intelligent warfare.
Clarify the key points of the development of intelligent command and information systems
Intelligent command and information systems are an inevitable choice in the development of warfare towards informationized and intelligent warfare, a natural outcome of the technological revolution, and a contemporary demand for the intelligent development of the military. Clarifying the key points of intelligent command and information system development helps to grasp the direction of its construction and establish long-term goals.
Promoting the intelligent evolution of warfare. In future intelligent warfare, the battlefield situation will change rapidly and the battlefield environment will be complex and harsh. In order to gain the initiative on the battlefield, “intellectual superiority” will become the new commanding height. Intelligent command and information systems are undoubtedly an important support for future combat command and operations. Their intelligent development can help promote the intelligent evolution of warfare and is an important foundation for gaining the initiative and seeking victory in intelligent warfare.
Supporting Intelligent Innovation in Combat Concepts. Future intelligent warfare requires corresponding combat command concepts, and intelligent command information systems are a crucial foundation for the practical application of these concepts, serving as the fertile ground for their innovation and development. New intelligent combat command concepts such as human-machine hybrid command formations, data-driven command activities, open development command models, and intelligent convergence command processes all rely on the support of intelligent command information systems. These systems will act as an extension of the human brain, breaking through the physiological limits of the human body and achieving the organic integration of the art of combat command and intelligent technology.
Promoting the intelligent transformation of combat methods. The widespread application of artificial intelligence technology in the military field has brought about significant changes in the mechanisms of combat victory. Intelligence has surpassed firepower and information power to become the primary factor determining the outcome of war. The development and construction of intelligent command and control information systems will promote the transformation of combat methods towards intelligence, shifting combat methods from the “combat network + precision-guided weapons” of the information age to the “intelligent Internet of Things + manned/unmanned combat platforms” of the intelligent age. Correspondingly, the basic combat style is evolving from “network-centric warfare” to “cognition-centric warfare”.
Focus on the key points of intelligent command and information system research and development
Command and information systems are a product of the information warfare era. With the rapid development of military intelligence and the research and practical application of intelligent warfare mechanisms, the intelligent upgrading and construction of command and information systems is urgently needed. Emphasis should be placed on key functional development aspects to create a completely new intelligent command and information system.
“Super-brain-based” decision-making. In future intelligent warfare, the battlefield information data is massive and complex, and commanders are easily overwhelmed by the “sea of information,” leading to confusion and affecting command and decision-making. With the emergence of intelligent decision-making technology and “cloud brains” and “digital advisors,” a new decision-making model based on the collaboration of “human brain + artificial intelligence” is quietly taking shape. Intelligent command information systems will break through the limits of human intelligence, acting as an extension of the human brain to assist commanders in their work, transforming war decision-making from purely human brain-based decision-making to super-brain-based command and decision-making combining “human brain + artificial intelligence.”
“All-dimensional” situational awareness. Future intelligent warfare will be characterized by multi-dimensional space, diverse forces, varied tactics, and accelerated pace. A comprehensive and flexible grasp of the battlefield situation will be fundamental to commanders’ decision-making. The integrated, intelligent, and dynamic presentation of the all-dimensional battlefield situation across multiple domains is an inevitable requirement for the development of command information systems. Command information systems are expanding their perception, understanding, integration, and prediction of battlefield situations, such as target identification, threat level assessment, operational action prediction, and future battle trajectory forecasting, from land, sea, air, space, electromagnetic, and cyberspace to the cognitive and social domains, achieving “all-dimensional” situational awareness.
“Intelligent connectivity” is crucial for future intelligent warfare. This will involve numerous intelligent command and control platforms and intelligent weapon platforms, connected by intelligent information and communication systems. Like the nerves and blood vessels of the human body, intelligent information and communication systems act as a link and lubricant in intelligent warfare. Therefore, it is essential to establish a comprehensive, uninterrupted intelligent information network to support the connectivity and control of intelligent equipment, enabling intelligent optimization of the network structure, intelligent reorganization to withstand network damage, and intelligent anti-interference capabilities. This will ensure intelligent collaborative operations between platforms and maximize overall combat effectiveness.
“Unmanned” Autonomous Collaboration. The extensive use of drones in recent local conflicts worldwide, playing a crucial role in determining the course of war, has attracted widespread attention. Unmanned weaponry is the material foundation of intelligent warfare, leading to disruptive combat styles such as intrusive lone-wolf operations, manned/unmanned collaborative system sabotage operations, independent operations by unmanned system formations, and drone swarm operations. While unmanned warfare is human-led, with machines granted a degree of autonomy from the backend, enabling unmanned operations on the front lines, the unmanned battlefield is constantly evolving. Disruptions to human-machine collaboration will become commonplace. Therefore, the command and control systems of unmanned intelligent equipment platforms must be more intelligent, capable of autonomous collaborative operations based on operational objectives.
“Proactive” information defense. Intelligent warfare will inevitably face diverse and multi-dimensional information attacks from powerful adversaries. The level of information security protection capabilities directly affects the outcome of the battle for “intellectual dominance” on the battlefield and is a key aspect of the construction of intelligent command information systems. Therefore, proactive measures should be taken to actively formulate and improve network protection strategies, enrich intrusion detection capabilities and authentication and identification methods, strengthen the application of advanced information security technologies, enhance the anti-interference and anti-interference capabilities of various wireless transmission methods, and build strong intelligent traceability and countermeasure capabilities to effectively curb information attacks.
Exploring the key points of intelligent command and information system development
The development of intelligent command and information systems is not merely a matter of technological innovation; it also requires further liberating our thinking and updating our concepts. To advance the development of intelligent command and information systems, we must change the traditional approach of simply adding hardware, building large networks, and collecting and storing various types of data. We must break through existing hierarchical structures, create open and service-oriented systems, and target the needs of intelligent combat command and action, exploring and researching the key aspects of intelligent command and information system development.
Innovation Concept. Guided by innovative thinking, and drawing on the development strategies of intelligent command and information systems for building a strong military, we will explore a development path with our own characteristics, tailored to actual needs. We must break away from traditional “chimney” approaches, adhere to top-level design and overall planning of the command and information system, unify interfaces, protocols, and standards, and form an open and sustainable system architecture. We must adhere to a system development approach that combines research, development, and application, formulating short-term, medium-term, and long-term development strategies to standardize the direction of system construction and development. We must adhere to iterative upgrades and optimization strategies to continuously improve the intelligence level of various subsystems, including command and control, intelligence reconnaissance, communication, information warfare, and comprehensive support, ensuring the continuous and healthy development of the intelligent command and information system.
Focusing on Key Capabilities. Concentrating on building key capabilities of intelligent command and information systems is crucial for intelligent warfare to leverage intelligence to achieve victory, and is key to gaining the “right to win” in intelligent warfare. Algorithms, computing power, and data are not only the intrinsic driving force and support for the development of artificial intelligence, but also the core capability requirements and advantages of intelligent command and information systems. The development of intelligent command and information systems must adhere to algorithmic innovation research to improve the system’s cognitive, speed, and decision-making advantages; accelerate the research and development of next-generation computers, such as quantum computers, to provide stronger computing power support for intelligent command and information systems; and deeply mine the deeper and broader information value from massive combat data resources to seek the initiative in victory.
Collective Efforts to Overcome Challenges. The construction and development of intelligent command and information systems is one of the major projects in military intelligence. It is a complex and collaborative project involving multiple fields, disciplines, departments, and units. The construction and development of intelligent command and information systems must adhere to the spirit of collective wisdom, collaborative problem-solving, and pioneering innovation. It should target strategic and forward-looking fields such as sensors, quantum information, network communication, integrated circuits, key software, big data, artificial intelligence, and blockchain. It should be driven by high-tech advancements and the demands of intelligent warfare, conducting in-depth research and exchanges across multiple fields, levels, and forms to continuously break through, innovate, and upgrade, making the functions of intelligent command and information systems more complete and intelligent.
Collaborative Development. To deeply promote the construction and development of intelligent command and information systems, it is essential to fully absorb advanced local technological achievements and integrate into the global trend of artificial intelligence innovation. Currently, artificial intelligence technology is booming worldwide, accumulating strong development momentum and technological advantages. Artificial intelligence technology has strong versatility in application, and its technological achievements have broad prospects for transformation and application, making it an important pathway to the construction and development of intelligent command and information systems. It is necessary to research and formulate general technical standards, break down barriers, overcome obstacles, and facilitate military-civilian cooperation to achieve the sharing and linkage of technological achievements. Through collaboration, it is also crucial to cultivate and shape new types of military personnel, enabling them to continuously adapt to the needs of various positions under intelligent conditions and fully leverage the effectiveness of intelligent command and information systems.
Quantum technology is considered one of the world-changing technologies of the 21st century and is a cutting-edge field of scientific and technological development, encompassing multiple aspects such as quantum communication, quantum computing, and quantum detection. In recent years, significant progress has been made in the preparation of quantum entangled states, the realization of quantum communication, and quantum computing. The latest advancements in quantum technology have brought revolutionary changes to the military field, and major military forces worldwide are paying close attention to its development and application. To this end, the National Strategy Research Institute of Shanghai Jiao Tong University has conducted a special study on the application of quantum technology in the military field. Excerpts of some of the research results are presented below:
I. Some major applications of quantum technology in the military field
1. Encrypted communication
Quantum communication technology utilizes the quantum entanglement effect for information transmission, offering unparalleled confidentiality compared to traditional communication methods. Quantum key distribution (QKD) is a secure communication technology based on the principles of quantum mechanics, ensuring the security of information during transmission. The U.S. military has been operating an experimental quantum key distribution network since 2003, and the White House and the Pentagon have also installed and are using quantum communication systems.
2. Navigation and Positioning
Quantum positioning technology is an emerging navigation and positioning technology that utilizes quantum accelerators and quantum gyroscopes to provide high-precision, lightweight navigation devices. These devices do not require periodic position correction via navigation satellites, significantly improving the autonomous navigation capabilities of military platforms. For example, the Royal Navy found that its submarine’s quantum navigation system had a positioning error of only 1 meter over 24 hours during testing.
Scientists are testing quantum gyroscopes.
3. Intelligence reconnaissance
Quantum imaging technology has important applications in military intelligence reconnaissance. It can simultaneously detect and identify multiple targets, offering advantages such as high imaging speed, anti-jamming capabilities, and anti-radiation properties. Furthermore, quantum imaging can precisely track and monitor moving targets, improving the efficiency and accuracy of intelligence gathering.
4. Data Processing
Quantum computing boasts the advantage of parallel processing, enabling the rapid aggregation and analysis of massive amounts of battlefield data. Following the laws of quantum mechanics, quantum computers utilize physical properties such as quantum superposition and entanglement, using qubits (quantum bits) composed of microscopic particles as their basic units, and achieving computational processing through the controlled evolution of quantum states. This will drive the real-time and efficient connection of battlefield IoT and various information terminals, realizing the intelligent and networked upgrade of the battlefield.
5. Battlefield decision support
Quantum technology can enhance the confidentiality of military network information, improve the accuracy of military navigation and positioning, and enable the efficient processing of massive amounts of intelligence, thus providing strong support for battlefield decision-making. The ultrafast computing power of quantum computers can help analyze complex battlefield situations, provide more accurate battlefield simulations and predictions, and assist commanders in making more informed strategic decisions.
The application of quantum technology in the military field will have a significant impact on the future form of warfare and combat methods. As quantum technology continues to develop and mature, its application in the military will become increasingly widespread, providing strong technical support for improving military operational efficiency, ensuring information security, and enhancing battlefield command capabilities.
II. Application Prospects of Quantum Technology in the Civilian Field
1. Quantum communication
Quantum communication is an important application area of quantum technology, utilizing quantum entanglement and the no-cloning principle to achieve secure information transmission. Quantum key distribution (QKD) is a secure communication technology based on quantum mechanics principles, ensuring the security of information during transmission. Through quantum communication, metropolitan quantum communication networks, intercity quantum networks, and even long-distance quantum communication via satellite relay can be realized, providing secure data and information transmission for fields such as finance and government.
2. Quantum computing
Quantum computing leverages the superposition and entanglement properties of qubits to significantly surpass the computational capabilities of traditional computers for specific problems. Quantum computers have potential applications in areas such as cryptography, optimization problems, drug discovery, and materials science. For example, quantum factorization algorithms can break the widely used RSA encryption system, while quantum search algorithms can provide exponential speedups in areas such as database queries.
The same superconducting quantum computer as the “Zu Chongzhi” series
3. Quantum precision measurement
Quantum precision measurement leverages the hypersensitivity of quantum states to achieve measurement accuracy surpassing classical methods. This can be applied to gravitational wave detection, geophysics, biology, and other scientific fields, as well as improving the accuracy and reliability of navigation systems. For example, new approaches to gravitational wave detection can be achieved through quantum entangled light sources and precise optical clocks, or quantum mechanical nonlocality tests can be conducted over distances on the order of light seconds between the Earth and the Moon.
4. Quantum Simulation
Quantum simulators can simulate complex quantum systems, providing new tools for research in fields such as physics, chemistry, and materials science. Through quantum simulators, scientists can explore complex phenomena such as high-temperature superconductivity and quantum phase transitions, accelerating the development of new materials and drugs.
5. Quantum Networks
Quantum networks combine quantum communication and quantum computing, enabling the efficient transmission and processing of quantum information. The development of quantum networks will drive the formation of a quantum internet, providing a new platform for applications such as information security, telemedicine, and intelligent transportation.
6. Quantum Imaging
Quantum imaging technology utilizes the principles of quantum entanglement and quantum interference to achieve high-resolution imaging in low-light or high-noise environments. This has important applications in fields such as medical imaging, night vision systems, and remote sensing.
7. Quantum Sensing
Quantum sensors utilize the properties of quantum states to achieve extremely high-precision measurements of physical quantities. Quantum sensing technology can be applied to fields such as precision measurement, environmental monitoring, and geological exploration, improving the accuracy and reliability of measurements.
On November 1, 2022, Huawei, a major Chinese mobile phone manufacturer, announced its patent for a superconducting quantum chip, stating that the invention reduced crosstalk between quantum bits. Huawei has been investing in quantum chip research and development for more than 5 years and has published a number of quantum technology patents. In addition, it is rumored that the Chinese quantum computer “Wukong” will be unveiled soon, and the first quantum chip production line is being rushed to completion, using the “NDPT-100 non-destructive probe electrical measurement platform” developed by Origin Quantum in Hefei to improve yield. At the same time, the University of Science and Technology of China also announced on November 20 that it has achieved quantum storage of photons in the communication band, which can be directly connected to the existing fiber optic network, and may be able to build a long-distance, large-scale fiber optic quantum network in the future. [1]
On the other hand, the U.S. Department of Defense released the 2022 China Military Power Report on November 29, pointing out that the CCP discussed a new core operational concept in 2021—”Multi-Domain Precision Warfare”—using big data and artificial intelligence technologies to identify vulnerabilities in the opponent’s combat system and then carry out precise strikes. At the same time, the CCP has also acquired emerging technologies for both military and civilian use through its military-civilian integration strategy, such as artificial intelligence, autonomous systems, quantum technology, biotechnology, and advanced materials. [2]
Although quantum technology is still in the “proof of concept” (POC) stage and will take a considerable amount of time before it can be put into practical use, China’s quantum technology continues to make progress despite the strong technological blockade by the United States, and its application in combat may be prioritized, which deserves our special attention.II. Safety ImplicationsI. The CCP will take the lead in establishing a global quantum communication network.Quantum technology[3] is mainly divided into three major fields: quantum computing, quantum communication and quantum sensing.[4]
China’s quantum communication technology currently holds a leading position in the world and may be the first to complete industrialization.[5] Following the opening of the world’s first quantum communication network, the Hefei Metropolitan Area Quantum Communication Experimental Demonstration Network, in 2012, China successfully launched the world’s first quantum satellite, Micius, in 2016.
Subsequently, it achieved three major technological breakthroughs: quantum key distribution (QKD) between satellite and ground, quantum teleportation between ground and satellite, and quantum entanglement key distribution over a thousand kilometers. In 2017, the CCP opened the Beijing-Shanghai quantum communication line, which is more than 2,000 kilometers long. With the connection between the satellite “Micius” and the Beijing-Shanghai quantum communication line, the world’s first intercontinental (Beijing-Vienna) quantum communication video call was completed through the collaboration between Austrian scholar Anton Zeilinger[6] and Chinese quantum expert Pan Jianwei.The successful distribution of “space-to-ground quantum key” enables the CCP to use “low orbit satellites” (LEO) as relay stations to share keys between any two locations in the world.
If further combined with ground fiber optic quantum communication networks, a quantum communication network covering the whole world can be established. Currently, the CCP is planning to build a “national quantum internet” with a length of 35,000 kilometers, extending to Urumqi in Xinjiang and Lhasa in Tibet. In addition to ensuring that the content of messages is not intercepted or eavesdropped on, [7] “Quantum Digital Signature” (QDS) and “Quantum Secure Identification” (QSI) can also improve communication security. In military applications, in addition to ensuring the security of military communications, quantum communication networks can also be used as military 6G technology to assist quantum communication between space, special forces and different military branches, and solve the problem of underwater communication being susceptible to interference, thereby improving underwater combat capabilities. [8]
II. China’s quantum computing technology will accelerate the realization of unmanned intelligent warfare.The global quantum computing market is currently led by the United States and China, which are driving the development of related system software and algorithms. There are multiple technical approaches, with superconductivity and “ion trap” technology being the most advanced. On May 8, 2020, the CCP unveiled the superconducting quantum computer prototype “Zu Chongzhi”; on December 4 of the same year, it announced the successful construction of the photonic quantum computer prototype “Jiuzhang”. Currently, it is using ion trap technology to improve the computing power of photonic quantum chips. [9]
Quantum computers can combine artificial intelligence and big data analysis to process large amounts of information quickly, and are mainly used in chemical analogy, system optimization, password cracking, machine learning and other fields. In the military, in addition to being able to quickly crack public key cryptography and improve network combat capabilities,[10] quantum computing can also be used in battlefield simulation, wireless spectrum analysis, logistics management, energy management and other fields. It can also optimize existing combat command, deployment, decision-making, war game simulation, system verification, predictive analysis and other fields, and significantly shorten the time for weapon design and manufacturing, new material development and military battery research and development. Quantum edge computing can be applied to the collaborative operations of unmanned vehicles or unmanned weapons (see attached table). In addition, if the CCP can establish a battlefield “Internet of Military Things” (IoMT), it can realize precise, fast and highly complex unmanned intelligent operations in advance.
III. Quantum radar and quantum navigation capabilities will reverse the course of war.Quantum sensing technology uses quantum measurement of physical properties such as magnetic fields, electric fields, and gravity, which can greatly improve the accuracy of existing measurements. The main types include quantum radar, quantum navigation, and quantum imaging. Quantum sensing technology can identify targets in complex environments such as high noise, low light, and underwater, and the advantages of current ballistic missiles, stealth aircraft, and underwater nuclear submarines will no longer exist. [11]
In 2017, the CCP claimed that its “quantum imaging technology” (QI) could enable spy satellites to track US B-2 bombers and identify stealth fighters at night. [12]
China Electronics Technology Group Corporation (CETC) showcased the world’s first single-photon quantum radar prototype at the 2018 Zhuhai Airshow and recently claimed that it had completed a target detection test at a range of 100 kilometers in a real atmospheric environment, implying that its quantum radar was about to be launched. [13]
In addition, quantum positioning, timing and navigation (PNT) systems based on high-precision quantum clocks determine the coordinates of ground users by obtaining the time difference between the transmission of entangled photon pairs between the satellite and the ground through quantum satellites. [14]
Since it does not rely on the Global Positioning System (GPS), infrared or radar navigation, quantum navigation can not only greatly enhance the existing Global Navigation Satellite System (GNSS), but also function in environments where GPS cannot work, such as underwater, underground or in environments severely interfered with by electromagnetic waves. Once it is put into practical use, the CCP’s quantum navigation technology will improve the hit rate of its various weapons.
3. Trend Analysis
I. The CCP may be developing “quantum warfare”.Although the CCP acknowledges that its quantum technology still has many shortcomings and that it will take a considerable amount of time before it is commercialized, it has already identified quantum technology as a key technology for breaking through the US’s technological encirclement and establishing itself as a technologically powerful nation. The “second quantum revolution” will overturn existing technological, economic, and military models. It is conceivable that the CCP will continue to invest heavily in quantum technology development through a nationwide system. Under this general direction, the quantum industry and quantum military applications will be accelerated. In the future, as existing computers move towards miniaturization, cloud computing, and edge computing, quantum computers or quantum sensors may be deployed on smaller weapons and equipment, such as satellites, drones, or individual soldier mobile phones, and even for “quantum warfare” (see attached diagram).
II. Taiwan may need to develop quantum defense capabilities in advance.China’s quantum communication technology is currently ranked first in the world, and its quantum computing and quantum sensing technologies are ranked second in the world. Therefore, if China uses quantum technology to fight against us, our country may not have any ability to retaliate. In March 2022, China established a quantum national team, selected 17 industry-academia-research teams, and pointed out the development direction of quantum technology in the next 5 years. [15]
However, its plans are mostly biased towards the technological and economic aspects, and there are no defense measures against the Chinese Communist Party’s possible future attacks on us, such as password cracking, quantum navigation, quantum radar, and even quantum network warfare, quantum space warfare and quantum underwater warfare. Perhaps the Chinese Academy of Sciences should join the quantum national team in advance and cooperate with private industry-academia-research personnel to think about how to defend against the Chinese Communist Party’s future quantum warfare.Appendix: Examples of Military Applications of Quantum Technology
field
Possible applications
Quantum Communication
Quantum key distribution ( QKD )
Quantum communication technology is the most mature and is already commercially available.Long -distance quantum communication can be achieved through repeaters such as satellites.
Post-quantum cryptography
Used to defend against attacks from quantum computersThe United States expects to complete standardization in 2023-2024.
Quantum Communication Network
Quantum networks: quantum-secure direct communication in space, special forces, and between different military branches → military 6GQuantum digital signature ( QDS )Quantum Identity Recognition ( QSI )Quantum cryptography technology that requires specific locations to transmit and receive: military satellite communicationsQuantum clocks enable more precise time synchronization: C4ISR collaborative action
Quantum computing
Quantum simulation
Battlefield simulation, weapon development, simulation and verification
Quantum optimization
Optimize current operational deployments, exercises, system verification, predictive analysis, etc.Cracking existing passwords
Big Data Analytics/Machine Learning
Wireless spectrum analysis, logistics management, energy managementDecision Analysis and Reference
Edge computing
Consistency of action of unmanned vehicles or unmanned weapons within the same time period Cooperative operations between different military branches
Quantum sensing
Quantum positioning, navigation, and timing ( PNT )
High -precision quantum clockQuantum inertial navigation and quantum-enhanced navigation can be deployed on autonomous unmanned vehicles or missiles.Quantum navigation that does not rely on a global satellite navigation system
Quantum intelligence surveillance
Surface and subsurface monitoring: Quantum sensing technology deployed on low-Earth orbit satellites and unmanned vehicles
Quantum imaging: quantum 3D cameras, quantum gas sensors, low signal-to-noise ratio battlefield vision equipment, quantum rangefinders, quantum ghost imaging, etc.
Quantum Underwater Warfare
Quantum inertial navigation can be applied to large submarines and underwater vehicles.Quantum magnetometers can assist in mapping the seabed, detecting underwater mines, and, in conjunction with other sensors, perform underwater detection and analysis.
Quantum radar and quantum laser radar, etc.
Quantum laser radar: Short-range target illumination, applicable to anti-drone surveillance, short-range air defense, and small satellite detection in space.Quantum -enhanced radar: A high-precision, low-noise quantum radar that can be used to detect small, slow-moving objects such as drones.
otherCombat Applications
Quantum electronic warfare
Smaller general-purpose quantum antennas and array-type quantum radio frequency sensorsQuantum computing and quantum clocks can enhance the capabilities of existing electronic warfare systems.Quantum electronic warfare can interfere with, deceive, and obstruct the enemy.
Quantum Space Warfare
Deployment and development of technologies such as quantum radar, quantum electronic warfare, quantum sensing, and quantum communication on low-Earth orbit satellites
Biochemical Simulation and Detection
At least 200 qubits and more logic bits are required for simulation.It can be installed on drones and ground vehicles for detecting biochemical toxins in the environment.
quantum materials
Developing new military materials for camouflage, stealth, and high-temperature resistance by utilizing quantum properties such as superconductivity and topology.
Source: Table compiled by author Wang Xiuwen based on the literature. Michal Krelina, “Quantum Technology for Military Application,” EPJ Quantum Technology, (2021) 8:24,
另一方面,美國國防部11月29日公布《2022年中國軍力報告》(2022 China Military Power Report),指出中共在2021年曾討論新核心作戰概念──「多領域精確作戰」(Multi-Domain Precision Warfare),以大數據和人工智慧等技術,找出對手作戰系統之脆弱點後予以精準打擊。同時,中共也透過軍民融合戰略取得軍民兩用的新興技術,如:人工智慧、自主系統、量子技術、生物技術、先進材料等。[2]
儘管量子技術目前仍處於「概念驗證」(Proof of Concept, POC)階段,距離實用化尚需相當的時間,但是中共量子技術在美國強力的科技圍堵下仍持續進展,且作戰應用可能優先落實,值得我國特別注意。
量子電腦可結合人工智慧和大數據分析,快速處理大量資訊,主要應用在化學類比、系統優化、密碼破解、機器學習等方面。在軍事上,量子計算除了可快速破解公鑰密碼、提高網路作戰能力之外,[10] 還可運用於戰場模擬、無線頻譜分析、後勤管理、能源管理等,也可優化現有的作戰指揮、部署、決策、兵棋推演、系統驗證、預測分析等,並大幅縮短武器設計製造、新材料開發、軍用電池研發之時間;量子邊緣運算則可應用於無人載具或無人武器之協同作戰(參見附表)。此外,中共若能建立戰場「軍事物聯網」(Internet of Military Things, IoMT),可提早實現精準快速且高度複雜的無人智慧化作戰。
The following article is from Zhuanzhi Intelligent Defense , authored by Zhuanzhi Defense.
Quantum computing represents a paradigm shift in computing technology, promising to revolutionize various industries, including national security and defense. While the capabilities of quantum computing remain largely theoretical, significant progress is underway. Experiments by companies like Google and IBM have demonstrated early instances of quantum supremacy, where quantum computers outperform classical systems in specific tasks. These breakthroughs suggest that quantum computing is not only imminent but is considered an inevitable advancement, and stakeholders should prepare now.
Unlike classical computers, which rely on binary bits (1s and 0s) to process information in a linear or symmetric manner, quantum computers utilize qubits, or “qubits,” which can exist in multiple states simultaneously. This may be a difficult concept to grasp, but this capability enables quantum computers to perform complex calculations at unprecedented speeds, solving problems that even the most powerful supercomputers currently cannot. As irregular warfare and gray-zone conflicts increasingly rely on advanced technologies, the application of quantum computing in these areas has the potential to pose new threats, but also new strategic advantages. Quantum computing may fundamentally change the way conflicts are managed and resolved in the 21st century.
Understanding Quantum Computing
Classical computing, the backbone of today’s digital infrastructure, operates on a binary system where data is represented by “bits” of “0” or “1”. These bits are processed sequentially, and classical computers execute tasks step by step. While powerful, this approach faces significant limitations when dealing with complex problems requiring vast amounts of computational resources. Quantum computing, however, utilizes the principles of quantum mechanics, allowing qubits (also known as “qubits”) to exist in multiple states simultaneously through a phenomenon called superposition. Essentially, classical bits must choose between 0 and 1, while qubits can represent both states at the same time. Entanglement, another quantum property, connects qubits so that the state of one qubit directly influences the state of another, regardless of distance.
To better understand the power of quantum computing, it’s helpful to intuitively see how it solves problems compared to classical computing. The podcast “Ask A Spaceman” uses a very relatable analogy to illustrate this. Imagine you have a complex task that requires searching through a vast number of possibilities, like finding a mouse hiding somewhere in a huge mansion. What better way to find the mouse than with a cat? In this scenario, a classical computer is like a cat, methodically searching room by room. The cat can only stay in one room at a time, and it must explore each room sequentially until it finds the mouse. If the mansion is large, this process is extremely time-consuming. Now imagine a quantum computer as a cat with a unique ability: it can be in every room of the mansion simultaneously. You could call it a “q cat.” This “q cat” doesn’t need to search room by room; instead, it can examine every possible location in the mansion at the same time. The mouse’s location can be found almost instantly, without the need for methodical exploration of each room. This analogy captures the essence of quantum computing: the ability to perform multiple computations simultaneously. By utilizing the principles of superposition and entanglement, quantum computers can solve problems several times faster than classical computers.
The impact of quantum computing on irregular warfare
As quantum computing moves from theoretical research into practical applications, it has the potential to dramatically alter the landscape of irregular warfare and gray-zone conflicts. For example, adversaries possessing quantum-enhanced decryption capabilities could intercept and decrypt military communications, weakening security operations and exposing critical intelligence. Similarly, quantum-based data processing allows adversaries to analyze massive amounts of intercepted data in real time, uncovering patterns of action or vulnerabilities. With the continued development of quantum computing, the ability to rapidly process and analyze massive amounts of data could shift the balance of power, introducing previously unimaginable new methods of conflict. The promise of quantum computing lies not only in strengthening existing strategies but also in its potential to create new methods of engagement, forcing state and non-state actors to rethink their modus operandi. Understanding the potential applications of quantum computing in irregular warfare is crucial for predicting future threats and developing effective countermeasures, especially when adversaries attempt to exploit these technologies for their own strategic gain.
Feasible applications of quantum computing in irregular warfare
The following section explores some of the most viable applications of quantum computing in irregular warfare, highlighting how this emerging technology can enhance strategic capabilities and provide a competitive advantage in increasingly complex and unpredictable conflict environments.
Enhanced cryptographic capabilities
One of the most anticipated applications of quantum computing is its ability to break traditional cryptographic systems. Classical encryption, the foundation for secure communications and intelligence, relies on the computational difficulty of factoring large prime numbers, a method easily cracked by quantum algorithms like the Shor algorithm. This will have profound implications, as state and non-state actors could potentially intercept and decrypt sensitive communications, disrupting operations on multiple levels. This emerging threat has sparked a global race in “post-quantum cryptography” to develop encryption methods resistant to quantum attacks. This arms race between offensive quantum decryption capabilities and defensive quantum-resistant encryption is expected to be a decisive aspect of the future conflict landscape. As the U.S. and our adversaries develop increasingly sophisticated tools, the stakes for national security, espionage, and the protection of critical infrastructure are higher than ever.
Optimize actions and decisions
The potential of quantum computing in optimizing complex operations is particularly relevant to the logistical and decision-making needs of irregular warfare. Quantum algorithms can process massive datasets simultaneously, thus simplifying logistics, resource allocation, and strategic planning. Just as the advent of radar during World War II revolutionized military operations, providing near real-time intelligence on enemy movements and fundamentally altering the nature and outcome of battles, quantum computing could also transform modern conflict by enabling predictive conflict management. This involves simultaneously analyzing geopolitical, economic, and social variables to predict potential conflict zones or flashpoints. A study published in *Stability* within the *International Journal of Security and Development* demonstrates the feasibility and added value of machine learning in conflict prediction, primarily using classical computational methods. However, the principles explored in this study can be directly applied to quantum computing, offering a glimpse into how advanced quantum algorithms can enhance predictive conflict management. This capability will enable military and intelligence agencies to preemptively deploy resources and personnel, reducing reaction time and managing conflict in a more proactive manner. As these technologies advance, quantum-enhanced decision-making processes could allow operators to navigate the unpredictability of conflicts with greater confidence and precision.
Simulation and Modeling: The ability to simulate and model complex battlefield environments is another key area where quantum computing promises to have a significant impact. Traditional simulation methods often struggle to capture the unpredictability inherent in conflicts employing decentralized and variable tactics. Quantum-enhanced war games can revolutionize this process, enabling military strategists to run countless potential scenarios in parallel, exploring not only known strategies but also new and unforeseen outcomes. These simulations will provide unprecedented insights into adversary behavior, operational risks, and tactical opportunities, leading to more effective strategic planning. Beyond battlefield tactics, quantum computing can also simulate highly interconnected cyber-physical systems, such as power grids, transportation networks, and communication infrastructure. This helps identify vulnerabilities caused by unconventional threats like cyberattacks or sabotage and predict cascading failures. This ability to test the resilience of critical infrastructure in real time will provide decision-makers with actionable insights to mitigate risks and strengthen defenses, ensuring operational stability even under mixed or gray zone pressures.
Influence operations and information warfare
Quantum computing’s unparalleled data processing capabilities can significantly enhance influence operations and information warfare, which are central to modern irregular warfare and gray-zone conflicts. Quantum computing can analyze massive amounts of social media and information network data to identify patterns, trends, and anomalies that may indicate an adversary’s attempts to manipulate public opinion or spread disinformation. Beyond identifying these activities, quantum-enhanced disinformation countermeasures can go even further. By simulating how disinformation spreads in networks, quantum computers can generate counter-narratives on a massive scale in real time, dismantling adversary influence operations before they gain traction. This would mark a significant advancement in countering cognitive warfare tactics and information manipulation.
Addressing hybrid threats
Hybrid threats, often combining conventional warfare, cyberattacks, misinformation, and irregular tactics, are particularly challenging to address due to their multifaceted nature. Quantum computing offers a powerful solution through quantum-enhanced human topography mapping—a capability distinct from battlefield simulation. Unlike simulations that primarily focus on operational and tactical scenarios, human topography mapping centers on the socio-political and economic environment at the time of conflict. This speculative yet feasible application can rapidly analyze large datasets, such as demographic sentiment, resource distribution, and political instability, to identify patterns and trends indicating social unrest, insurgency, or emerging cross-regional conflicts.
For example, quantum-enhanced systems can integrate data from social media, economic reports, and historical conflict patterns to map areas of escalating tensions and predict where hybrid threats are most likely to occur. By providing a nuanced understanding of the human environment, military and intelligence organizations can develop tailored strategies to mitigate risks before they escalate. This capability will complement battlefield simulations, addressing the broader contextual factors driving conflict and providing a more comprehensive approach to addressing hybrid threats. These advances in human topography mapping, along with the continued development of quantum computing, could transform how policymakers navigate the complexities of gray zone conflicts, where the lines between peace and war are intentionally blurred.
Future Applications
While many of the potential uses of quantum computing in irregular warfare are near-term viability, some speculative ideas push the boundaries of current technology. These unconventional concepts offer glimpses into how quantum computing could radically alter future conflicts, introducing capabilities currently unattainable but potentially becoming a reality as technology advances.
Quantum autonomous systems
One of the most intriguing yet fascinating applications of quantum computing in irregular warfare is the development of quantum-driven artificial intelligence (AI)-controlled autonomous systems. Unlike current AI models that rely on the limitations of classical computing, quantum AI can process and adapt to massive amounts of battlefield data in real time. This will enable autonomous drones or ground systems to operate with unprecedented agility, making decisions faster and more accurately in highly dynamic and unpredictable operational environments. These systems can evolve and learn in ways that current machine learning models cannot match, leading to a new generation of adaptive warfare technologies. Such quantum-driven autonomous systems could alter the balance of power in conflict zones, creating advantages where rapid adaptability is crucial. Furthermore, these systems can operate across decentralized networks, coordinating seamlessly without continuous human intervention, further enhancing their effectiveness in conflict scenarios.
Quantum-supported surveillance evasion
A more speculative yet equally transformative application may involve quantum entanglement to develop untraceable communication networks. Quantum-supported surveillance evasion would leverage the principles of quantum mechanics to create detection systems that can evade traditional surveillance methods. By using entangled particles, information can be transmitted in such a way that any attempt to intercept or observe the communication alters its state, effectively rendering the transmission undetectable. This would provide a game-changing stealth capability, enabling agents or military assets to communicate and maneuver without fear of detection. This would have profound potential implications for covert operations, intelligence gathering, and reconnaissance missions. If fully realized, this technology would render traditional surveillance methods obsolete, requiring adversaries to develop entirely new methods to counter these stealthy quantum systems.
Strategic deception at the quantum levelQuantum mechanics elevates the concepts of false alarms and deception to a whole new level. It allows for the creation of false alarms or decoy signals that appear legitimate before being observed—a phenomenon deeply rooted in quantum mechanics itself. This will revolutionize deception operations. By exploiting the unique property of quantum superposition, quantum-based deception can simultaneously present multiple layers of false information, making it nearly impossible for the adversary to distinguish between real and fabricated data. Quantum-level strategic deception will provide a tactical advantage, forcing the adversary to waste resources and time on misleading targets. Furthermore, quantum-based deception can be used to manipulate decision-making processes, creating confusion or hesitation within enemy ranks. In an era where perception is often as important as reality, quantum mechanics can provide a powerful tool to shape the information environment in unpredictable and deceptive ways.
Quantum Limitations and Challenges
While quantum computing holds great promise, several major technical challenges must be addressed to fully realize its potential, particularly in military applications. The most significant of these is scalability. Current quantum computers remain experimental, with most systems capable of handling only a limited number of qubits. This limitation restricts their ability to handle the large-scale computations required for complex defense scenarios. Furthermore, quantum systems are highly sensitive to environmental factors such as temperature and electromagnetic interference, which can cause qubits to lose their quantum states during decoherence. This instability severely impacts the reliability of quantum computers, posing a significant obstacle to their widespread adoption.
Error correction is another key challenge. While error correction techniques in classical computing are quite mature, the situation is different for quantum systems. Due to the inherent fragility of qubits, quantum systems require much more complex methods. However, significant progress is being made in this area, and researchers are developing new quantum error correction techniques to mitigate these challenges. Although these advances show promise, creating scalable, stable quantum systems capable of real-time error correction remains crucial for deploying quantum systems in future warfare environments.
Beyond the technological challenges, the application of quantum computing in warfare raises significant strategic questions, particularly the potential for a quantum arms race. As nations strive to develop advanced quantum capabilities, the rapid pace of technological innovation risks escalating into a competition for quantum dominance. This competition could lead to instability, as nations prioritize offensive quantum technologies such as encryption breaking systems and autonomous combat capabilities, while others rush to build defensive systems to counter these emerging threats. The ability to decrypt secure communications, manipulate information on an unprecedented scale, or deploy autonomous quantum systems could disrupt the balance of power, putting pressure on nations to outpace each other technologically. Furthermore, quantum technologies could be misused for disinformation campaigns, elusive surveillance, or sabotage of critical infrastructure, further complicating the global security landscape. As quantum computing continues to advance, establishing an international framework to regulate its use in conflict is crucial to mitigating the risks posed by the unchecked development of quantum technologies.
in conclusion
As quantum computing continues its transition from theoretical exploration to practical applications, a comprehensive understanding of its potential and risks is crucial to shaping the future of irregular warfare. Integrating quantum technology into conflict scenarios will not only redefine strategic capabilities but also necessitate the establishment of robust international norms, regulatory frameworks, and multilateral agreements. These structures are essential to ensuring that the rapid development of quantum computing does not trigger an out-of-control arms race, exacerbate global tensions, or undermine geopolitical stability. While the full impact of quantum computing on irregular warfare remains to be seen, its disruptive potential is undeniable. As nations grapple with the opportunities and challenges presented by this revolutionary technology, quantum computing is poised to become a central element in the ongoing evolution of conflict dynamics in the 21st century.
Reference source: irregular warfare center
Reprinted from: Zhuanzhi Intelligent Defense
現代國語:
以下文章來自專知智能國防 ,作者專知國防
量子運算代表著運算技術的典範轉移,有望徹底改變包括國家安全和國防在內的各行各業。儘管量子運算的能力在很大程度上仍停留在理論層面,但它正在取得重大進展。谷歌和 IBM 等公司的實驗已經展示了量子優越性的早期實例,即量子電腦在特定任務中的表現優於經典系統。這些突破表明,量子計算不僅即將到來,而且被認為是一種不可避免的進步,而利益相關者現在就應該做好準備。
量子運算在優化複雜行動的潛力與非正規戰爭的後勤和決策需求特別相關。量子演算法能夠同時處理龐大的資料集,因此可以簡化後勤、資源分配和策略規劃。二戰期間雷達的出現徹底改變了軍事行動,它提供了關於敵機動向的近乎即時的情報,從根本上改變了戰鬥的方式和勝負。同樣,量子計算也可以透過實現預測性衝突管理,對地緣政治、經濟和社會變數進行同步分析,預測潛在的衝突地區或爆發點,從而徹底改變現代衝突。國際安全與發展期刊》(International Journal of Security and Development)在《穩定》(Stability:國際安全與發展期刊》(International Journal of Security and Development)上發表的一項研究證明了機器學習在衝突預測中的可行性和附加價值,該研究主要使用經典計算方法。突管理。
The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.
Military intelligence leads to accelerated development of cyberspace operations
■Respect the soldiers Zhou Dewang and Huang Anwei
Three major technologies support the intelligence of cyberspace weapons
Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:
First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.
Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.
Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.
The intelligent trend of network-controlled weapons has become increasingly prominent
Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.
In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.
Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.
Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.
Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.
Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.
Intelligent command information system changes traditional combat command methods
Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.
In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.
In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.
To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.
In the future battlefield, fighting courage requires more fighting “wisdom”
■Yang Jian and Zhao Lu
At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.
Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.
It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.
In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.
System “Gathering Excellent War” It is “systematic warfare in information warfare. It does not necessarily refer to a certain combat style, but is composed of multiple combat styles and tactics” “combination boxing”, or combat style group . Emphasizes that, depending on the combat mission, combat opponent and the changing battlefield situation, any appropriate means and style of combat can be used flexibly to form combat advantages as long as it is conducive to forming comparative advantages and achieving system victory. In the specific implementation process of “system-based superior warfare”, these specific combat styles and operational tactics can not only be organized and implemented separately as part of joint all-domain operations, but also emphasize fighting “combination boxing”, using multiple strategies simultaneously, and winning as a whole.
In order to better understand its core connotation, this article lists Nine typical combat styles including overall deterrence warfare, electromagnetic disturbance warfare, network penetration warfare, and cognitive control disturbance warfare And analyze . System “Juyouzhan” ――combination boxing that flexibly uses multiple combat styles“ 1. Overall deterrence war: Emphasis on multi-domain joint deterrence; Three elements should be present in the implementation of an overall deterrent war ; Strong overall strength is central to achieving effective deterrence 2. Electromagnetic Disturbance Warfare : The key to competing for information advantage; On the combined means approach, information empowerment is achieved through “connection + sharing” ; Crack down on effective tactics for unmanned cluster operations 3. Cyber-sabotage: Soft “kill” is the main focus, combining soft and hard, focusing on breaking the net and reducing energy failure 4. Cognitive scrambling: Control the cognitive power of situational awareness and compete for information advantage; control the decision-making power of command and compete for decision-making advantage; control “brain” power and seize the advantage of brain control 5. Agile mobile warfare: High-efficiency and rapid decision-making; high-efficiency formation of a favorable combat situation; high-efficiency and instant gathering of combat forces; agile mobile warfare is an innovative development of traditional mobile warfare 6. Swarm autonomous warfare: It is conducive to forming a system advantage to suppress the enemy; it is conducive to enhancing the combat effect; it is conducive to falling into the enemy’s combat dilemma 7. Point-and-kill War: Achieving an efficient cost ratio for operations; targeting key nodes is an important option; large-scale system support is a basic condition; it is inseparable from precise intelligence support 8. Supply-breaking: The supply guarantee chain has a huge impact on the overall combat situation; the center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain; the focus is on choosing the right time and making full use of tactics 9. System “paralysis battle:” The objectives of the operation are to make the enemy combat system run out of order; to strike the key nodes of the combat system with heavy blows; and to carry out soft strikes against the enemy combat system For learning reference only, welcome to communicate and correct! Article views do not represent the position of this body The concept of combat was first proposed as a new combat style. Innovative combat styles are a core element in the development of combat concepts. It can be said that system-gathering battle is a general term for a series of specific tactics. The following nine typical combat styles constitute the tactical system of system-gathering and superior warfare. They are: One is Overall deterrence warfare, actively organize static power display and deterrence actions in system excellence battles, and strive to defeat others without fighting or small battles; Two is Electromagnetic disturbance warfare uses various combat methods and action styles such as electronic detection, attack and defense to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize the right to control information, and then win the initiative in combat; Three is In cyber attack warfare, various means such as soft strikes and hard destruction are used to defeat the enemy’s command network, intelligence network, communication network, logistics supply network, and disrupt the enemy’s command and support; Four is Cognitively Controlled Disturbance. Form a controlling advantage in the cognitive space through information attacks, public opinion attacks, and brain attacks; Five is Agile mobile warfare. Quickly adjust the deployment of troops and weapons, quickly gather capabilities on the battlefield, and seize combat opportunities; Six is Swarm autonomous warfare. Extensively use unmanned combat methods such as “bee swarms”, “wolf swarms”, and “fish swarms” to independently organize actions and distributed attacks to achieve joint human-machine victory; Seven is Pointkill. Accurately obtain intelligence, carry out multi-domain precision strikes, strive to shake the overall situation with one point, and maximize combat benefits; Eight is Supply-breaking. Organize an elite force to attack enemy logistics supplies and equipment supply supply chains, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle; Nine is System “paralysis battle”. A variety of means, such as breaking the net, exercising, and hitting nodes, are used to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken its functions.
1. Overall deterrence Overall deterrence warfare refers to actively organizing static power display and deterrence actions in the system’s battle for excellence, and striving to defeat others without fighting or small battles. Sun Tzu said: “Subduing one’s troops without fighting is a good thing.” Deterrence and war are the two main forms of military activity. And “deterrence” is mainly the act of showing determination and will to potential opponents by showing strength or threatening to use strong strength to deter opponents from action. It can be said that the overall deterrence war in the system-based battle of excellence is an important means or tactic to achieve the goal of “stopping” human troops without fighting. Clausewitz emphasized that the first rule of strategy is to be as strong as possible, first in general, and then in key locations. Modern warfare is system-to-system confrontation. The overall deterrence war under informationized local warfare requires not only traditional deterrence methods and capabilities on land, sea, air and space, but also new deterrence methods and capabilities such as space deterrence, electromagnetic deterrence, and network deterrence. It also requires an overall deterrence that shows the overall strength of the country. Especially with the rapid development of advanced technologies such as information technology, the technological revolution, industrial revolution, and military revolution have accelerated their integration, and strategic competitiveness, social productivity, and military combat effectiveness have become more closely coupled. Winning the information war is to a greater extent a contest between the will of the country and the overall strength of the country. To contain the war, we must first act as a deterrent to our opponents in terms of overall strength.
1.1 Emphasis on multi-domain joint deterrence Means of deterrence typically include both nuclear and conventional deterrence. In the “system-based battle for excellence”, the overall deterrence war is implemented, aiming to comprehensively use conventional deterrence methods across the land, sea, air and space power grids to achieve the purpose of deterrence. Especially with the application of information network technology and space and directed energy technology in the military, space, networks, electromagnetic weapons, etc. have become new means of deterrence. Space deterrence, It mainly uses equipment such as rapid response electromagnetic orbit weapons, space-to-ground networked anti-navigation and positioning service systems, large elliptical orbit laser weapons, and high-power microwave weapons to threaten and attack the opponent’s space targets and form a deterrent against enemy space information “interference blocking”. Cyber deterrence mainly uses cyberspace situational awareness and attack equipment to threaten and attack the opponent’s military network and other critical information infrastructure to achieve deterrence against the enemy. Electromagnetic deterrence mainly uses electromagnetic spectrum combat systems to threaten and attack enemy detection, navigation, communications and other information weapons and equipment systems to achieve deafening and blinding deterrence against the enemy.
1.2 The implementation of overall deterrence should have three major elements Implementing an overall deterrent war and achieving the desired effect of deterrence usually requires three main elements: One is strength. The deterrent must have the reliable ability or strength to frighten and fear the opponent; the second is determination and will. The deterrent party must dare to use this capability when necessary; third, to transmit information clearly. The deterring party must make the ability to act and the determination clearly known to the other party accurately and effectively.
Historically, the criteria for judging deterrent strength have varied in three main ways: First, the active military force; second, the combined national strength or war potential; and third, the total number of main battle weapons and equipment. For quite a long period of history, the number of troops was deterrence, and the strength of military strength depended directly on the size of the active military, the amount of vital weapons and equipment, and non-material factors such as the morale of the army’s training organization. After the twentieth century, with the expansion of the scale of warfare, deterrence power has become less limited to the strength of the military and the quantity of vital weapons and equipment, but is determined by the nation’s war potential, which includes economic power, scientific and technological power, energy resources, and even population size, among others. The overall deterrence war in the system’s “gathering and excellence war”, the formation of its deterrence strength is mainly based on the network information system, as well as the joint global deterrence capability formed under the integration of the system.
1.3 Strong overall strength is the core of achieving effective deterrence The development of information technology and its widespread penetration and application in the military sector provide favourable conditions for building overall strength and achieving overall deterrence. System “Juyouzhan” is supported by the network information system, making full use of the permeability and connectivity of information technology, not only integrating various combat forces, combat elements, and combat units into an organic whole, realizing the military system combat advantages, but also integrating Various fields related to war and national mobilization, such as national politics, economy, diplomacy, finance, transportation, and energy, are connected and integrated into the national war mobilization system Gather all forces and resources to form an overall synergy, realize the emergence effect of system capabilities, show the overall strength advantage, and form a powerful invisible deterrent of united efforts and sharing the same hatred Create a situation that makes the enemy “powerful but unable to act ”“able to act but ineffective”, and play a role in containing and winning the war. In the “overall deterrence war”, the scope of national war mobilization will be wider, not limited to a certain direction or region, but throughout the country and even the relevant regions of the world; mobilization time will be faster, and using networks and information systems, mobilization and action information can be quickly transmitted to everyone and every node at the first time; action coordination and synergy will be more consistent, and all forces distributed in various regions can be based on the same situation Under the same order, the operation is unified at almost the same time, which greatly improves the efficiency of operational synergy; resources are more fully utilized, and various war resources based on the Internet can quickly realize the conversion between peacetime and wartime, military-civilian conversion, and achieve integrated front and rear guarantees and precise guarantees.
2. Electromagnetic Disturbance Warfare Electromagnetic disturbance warfare refers to the flexible use of electronic detection, attack and defense and other combat methods and action styles to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize information control rights, and then win operational initiative.
2.1 The key to competing for information advantage Informatization local warfare is highly dependent on the electromagnetic spectrum, the Control and counter-control of electromagnetic space have become the focus of competition for information rights. Organize and carry out electromagnetic obstruction warfare, mainly to destroy the enemy’s electromagnetic spectrum and protect one’s own side from destruction. The electromagnetic spectrum is the main carrier for transmitting information. The use of electromagnetic means to disrupt the enemy’s electromagnetic spectrum will effectively reduce the enemy’s information combat capabilities and enable our own side to ensure the rapid and effective flow of information in the scenario of ownership of information rights, driving command flow, action flow, and material flow through information flow, energy flow, and then have the dominance and initiative in combat.
2.2 The basic focus is to implement electromagnetic disturbance warfare in the battle to deactivate the enemy’s combat system. It is mainly aimed at the enemy’s dependence on electromagnetic space. At the same time, in order to ensure its own effective use of electromagnetic space, it organizes various electronic reconnaissance and interference, attack, defense and support forces to attack enemy communication networks, radar networks, computer networks and command centers, communication hubs, radar stations, etc Computer network nodes, global navigation and positioning systems, space link systems such as the “Heaven and Earth Integrated Internet”, and various other frequency-using weapons and equipment carry out interference and attacks, block and destroy their communication and data transmission, and destroy the enemy’s combat system. “Connection” and “sharing” structural center of gravity provide support for seizing information control and electromagnetic control from the root, thereby weakening the enemy’s command and control capabilities Deactivating and disabling the enemy’s entire combat system.
2.3 Crack effective tactics for unmanned cluster operations “Unmanned autonomous group operations such as swarms ”“wolves ”“fishes” are important features of information-based local warfare with intelligent characteristics. The various unmanned autonomous clusters are large in number, diverse in type, and complex in characteristics, and each individual can complement each other and play a role in replacing each other. It will be very difficult to intercept and damage the entire unmanned cluster. However, from a technical point of view, for unmanned combat clusters to achieve effective synergy, each individual must share and interact with each other. Once the communication coordination between unmanned clusters is interfered with, it will be impossible to share battlefield posture and information, and will not be able to coordinate actions with each other, making it difficult to achieve the combat effectiveness it deserves. This gives the other party an opportunity to implement interception of communications and electromagnetic interference. Therefore, the implementation of electromagnetic spectrum warfare, interference and attacks on the information and communication networks of unmanned clusters, and the destruction of their information sharing and interaction will make it impossible for each individual in the unmanned cluster to achieve effective synergy and thus lose its operational capabilities.
3. Cyber-sabotage Cyber-blowout, It refers to military confrontation operations that comprehensively use technologies such as networks and computers and other effective means to control information and information networks. It is a major combat style of cyberspace operations and competition for network control. Its main combat operations are both soft-kill and hard-destroy, focusing on soft and combining soft and hard. Among them, soft kill is mainly a cyber attack, that is, it comprehensively uses blocking attacks, virus attacks and other means to block and attack enemy information networks, command systems, weapon platforms, etc., making it difficult for enemy networks, command information systems, etc. to operate effectively or even paralyze; hard destruction mainly uses precision fire strikes, high-energy microwaves, electromagnetic pulses, and anti-radiation attacks to paralyze and destroy enemy information network physical facilities Destroy enemy combat and weapons and equipment entities. The important thing is to “break the net and reduce energy failure”. Organizing a cyber attack in a “system-based battle of excellence” is to target the weaknesses of the combat opponent’s military information network, use the advantages of the system to organize various cyber attack forces, and conduct combat command networks, reconnaissance intelligence networks, communication networks and even logistics throughout the entire operation. Supply networks, etc., continue to carry out soft killing and hard destruction operations to destroy the enemy’s network system The overall function of the enemy’s combat system is reduced or even disabled. It mainly targets core targets such as the enemy’s basic information network, intelligence network, command network, and support network, and implements a series of combat operations such as network-to-electronics coordinated attacks, deception and confusion, link blocking, and takeover control, so that the enemy’s intelligent combat network system becomes incapacitated and ineffective, achieving a critical victory that paralyzes the enemy system.
4. Cognitively Controlled Disturbance Warfare Cognitive interference control war refers to interfering with, destroying or controlling the enemy’s thinking and cognition through information attacks, public opinion attacks, and brain attacks in the system optimization war, so that the enemy cannot make correct judgments and decisions, thereby controlling the enemy in cognitive space. form a controlling advantage. Cognitive domains, That is, “human thinking space and consciousness space are areas that have a critical impact on combat decision-making and judgment”. The development of information technology, especially artificial intelligence technology, and its widespread application in the military field have expanded the battle of war from physical space and information space to cognitive space, making cognitive space a completely new combat domain. With the development of information and intelligent technology and its widespread and in-depth application in the military field, the Human-machine intelligence tends to converge This has made the status of cognition in intelligent warfare more prominent, and the cognitive field has gradually become an important battlefield. The right to control cognition has become a key element of future battlefield control. Fighting for cognitive control has become an important combat style for winning information-based local warfare operations with intelligent characteristics.
4.1 Control the cognitive rights of situational awareness and compete for information advantages In the system’s “excellence battle”, information flow drives the flow of matter and energy, and information advantage determines decision-making advantage. Rapid and accurate knowledge of intelligence information and battlefield situations has an important impact on seizing command and decision-making advantages. Therefore, when organizing and implementing system-based battle gathering, we must make full use of intelligent technology and big data technology to conduct comprehensive analysis and judgment on massive intelligence information data, mine and extract the required intelligence information, and achieve more accurate and faster understanding of battlefield situations and combat environments. Cognition ensures that the enemy is discovered first and the enemy is recognized first from the source. While removing one’s own side “the fog of war”, create “the fog” for the opponent. Therefore, in order to compete for cognitive rights, we must not only control and process information before the enemy, but also take measures such as online public opinion attacks and high virtual reality chaos to actively create and spread false information, disrupt and disrupt the perception and cognition of hostile battlefield situations, maximize confusion and increase uncertainty, interfere with the opponent’s combat decisions, and delay its combat operations.
4.2 Control and command decision-making power and compete for decision-making advantages Decision strengths determine action strengths. Quick decision-making by the commander is the key to shortening “the command cycle” and achieving quick wins. The organizational system focuses on excellent combat, and the success or failure of combat operations depends largely on the speed of the commander’s decision-making. It is necessary to “use intelligent auxiliary decision-making systems, select the best combat plans, scientifically and rationally allocate combat resources, and maximize combat effectiveness; use ubiquitous intelligent networks to access required combat nodes and combat platforms at any time to build and form an integrated combat system.” Achieve decentralized deployment of power, information, and capabilities, cross-domain linkage, form advantages at locations and times required for operations, gather energy to release energy, and gather advantages to win; Implementation “core attack”, Errors or deviations in the enemy’s command decisions are caused by hacking into the other party “chip”, tampering with its programs, and command and decision system algorithms.
4.3 Control “brain” power and seize the advantage of brain control Cognitive interference control warfare in the system’s “gathering excellence war” emphasizes “attacking the heart and seizing the will”, that is, using network warfare, electromagnetic warfare and other methods to control the enemy’s human brain and consciousness cognition as well as the control system of the unmanned autonomous platform “attacking the heart Cognitive control warfare to control the brain and seize ambitions” Replace “destroy” with “control”, To achieve the goal of stopping and winning the war at the minimum cost. Attacking the heart and controlling the brain is different from traditional strategic deterrence. It places more emphasis on active attack. It is an active attack operation that mainly uses advanced information combat technology, brain control technology, etc. to attack the enemy’s decision-making leader, as well as intelligent unmanned autonomous combat platforms, auxiliary decision-making systems, etc., carry out controlled “brain” attacks, directly control and disrupt the opponent “brain”, influence and control the enemy’s decision-making, or disable it Enable stealth control of enemy combat operations. For example, “Targeting human cognitive thinking, using brain reading and brain control technology, and using mental guidance and control methods to directly carry out “inject ”“invasive” attacks on the brains of enemy personnel, interfering with, controlling or destroying the cognitive system of enemy commanders.”, deeply control it from the perspective of consciousness, thinking and psychology, seize “control intellectual power”, disrupt the enemy’s decision-making, destroy the enemy’s morale, and force the enemy to disarm.
5. Agile Mobile Warfare Agile mobile warfare refers to the efficient decision-making, efficient adjustment of troop deployment and high-efficiency real-time gathering of combat forces in systematic battle, efficient gathering of capabilities on the existing battlefield, and seizing combat opportunities. Agility is the ability to respond quickly and timely to changes in the battlefield environment. It has the characteristics of responsiveness, robustness, flexibility, elasticity, innovation and adaptability.
Table 1 Connotation of the concept of agile warfare
5.1 Efficient and fast decision-making To implement agile and mobile warfare, we must first make efficient and rapid decisions to win operational opportunities. Therefore, it is necessary to comprehensively use various means of reconnaissance, detection, perception and surveillance to obtain battlefield posture and target information in a timely manner, especially characteristic information, activity trajectories and real-time position information of time-sensitive targets, so as to ensure precise intelligence support for rapid decision-making. Efficient decision-making is also reflected in the speed of intelligence processing. It takes less time to screen effective intelligence information, formulate action plans at a faster speed according to changes in circumstances, and seize the initiative and seize the opportunity with one step ahead. High-efficiency decision-making focuses on shortening the decision-making cycle, taking the target time window as the central point, and integrating decision-making command with combat units and weapon platforms, rapid response, and overall linkage to improve combat efficiency.
5.2 High efficiency forms a favorable combat situation It is necessary to “keep abreast of changes in the battlefield situation at any time, rely on the support of information networks, and achieve dynamic reorganization of combat forces and integration during movement through cross-domain, cross-dimensional, and diversified three-dimensional maneuvers. Combat resources flow efficiently throughout the region and gather during movement to achieve mobility and excellence.”, forming a favorable battlefield situation. Agile mobile warfare relies on data fusion processing, intelligent assisted decision-making and other means to quickly form combat plans, quickly project combat forces at a high frequency according to the case, organize troops to quickly form favorable combat deployments, and realize enemy discovery, enemy decision-making, and enemy fire, first enemy assessment, change the balance of power in the shortest time and fastest speed, form combat advantages, and improve the efficiency of combat operations.
5.3 Efficient and instant gathering of combat power To organize agile mobile warfare, the key is to select the right combat force within a limited time, coordinate the entire battle situation, and form an overall synergy to ensure a fatal blow. Therefore, in response to changes in battlefield posture, especially target situations, it is necessary to draw up groups to form a joint mobile combat system formed by multi-domain combat forces, gather combat forces in real time, deploy quickly and mobilely to a favorable battlefield, and carry out real-time strikes against the enemy. For deep space, deep sea, etc. to become a new combat space, an intelligent unmanned autonomous combat platform can be organized Rapid mobility is deployed to lurk near key targets or important passages that are difficult for humans to reach due to physiological limitations, and ambush operations are carried out on standby, creating new cross-domain checks and balances.
5.4 Agile mobile warfare is an innovative development of traditional mobile warfare In the history of both ancient and modern warfare at home and abroad, there have been numerous examples of successful battles that relied on rapid covert maneuvers to achieve combat objectives. However, the combat process of information-based local warfare has been greatly compressed, the combat rhythm has accelerated rapidly, and fighter aircraft are fleeting. It has put forward higher requirements for fast mobile capture fighters. It is difficult to meet the requirements of joint operations and all-area operations under information conditions alone “fast pace, high speed”. requirements, so agile mobility must be implemented.
6. Unmanned cluster autonomous warfare Unmanned cluster autonomous warfare refers to the widespread use of unmanned combat methods such as “bees”“ wolves ”“fishes” in system optimization warfare to independently organize actions and distributed attacks to achieve joint human-machine victory. With unmanned autonomous equipment becoming the main combat force on the battlefield, defeating the enemy with unmanned autonomous equipment clusters and numerical superiority has become an important combat style in information warfare.
6.1 It is conducive to forming a system advantage to suppress the enemy Unmanned cluster independent warfare gives full play to the special advantages of unmanned combat weapons such as all-weather, unlimited, difficult to defend, and low consumption, and builds and forms large-scale unmanned combat clusters or formations such as unmanned “bee swarms”“ wolves ”“fish swarms”, and organizes independently, mutual coordination, can implement close-range and full-coverage reconnaissance, or act as bait to interfere or deceive, or cooperate with main battle weapons to implement distributed coordinated attacks Enable overall mobility and joint control of the enemy.
6.2 Conducive to enhancing combat effectiveness In “unmanned cluster autonomous operations”, different combat units within the unmanned cluster organization are responsible for different functions and different tasks, including those responsible for reconnaissance, those carrying out electromagnetic interference and fire strikes, and those playing “decoy” roles. Clusters transmit and share battlefield information through inter-group networks, perform their respective duties according to the division of labor, and collaborate in real-time, independently, and dynamically according to battlefield changes. They not only give full play to their advantages in quantity and scale, but also use information networks and intelligent integration technology to achieve integration effects, using cluster advantages to consume enemy defense detection, tracking and interception capabilities, rapidly saturating and paralyzing the enemy’s defense system.
6.3 Conducive to getting into enemy combat difficulties Unmanned cluster autonomous warfare uses a large number of autonomous unmanned combat platforms with different functions to form an unmanned combat cluster integrating reconnaissance and detection, electronic interference, cyber attacks, and fire strikes. It can carry out multi-directional and multi-directional operations against the same target or target group. Multiple, continuous attacks will make it difficult for the enemy to make effective counterattacks.
7. Pointkill Battle “Precise point-killing warfare” refers to accurately obtaining intelligence in system-based battles, implementing multi-domain precision strikes, striving to shake the overall situation with one point, and maximizing combat benefits. Informationized local warfare is an overall confrontation between systems. Implementing precise point-killing warfare and precise strikes on important nodes and key links of the enemy’s combat system will destroy the enemy’s combat system and reduce enemy combat capabilities, which will achieve twice the result with half the effort. Combat effect.
7.1 Achieve efficient combat cost ratio Achieving maximum combat effectiveness at the minimum cost is a goal pursued by both sides of the war. With the widespread application of information technology in the military field and the advent of information warfare, precision-guided weapons, intelligent kinetic energy weapons, integrated surveillance and attack drones, and laser weapons are widely equipped with troops; through the use of big data, artificial intelligence and other technologies, it has become possible to accurately calculate the required troops and weapons. These all provide material and technical conditions for achieving precision point kill warfare, achieving operational objectives at a lesser cost, and achieving operationally efficient fee ratios.
7.2 Targeting key nodes is an important option The key to precise point-killing battles is to hit the key points and nodes. If you don’t hit, it will be enough. If you hit, it will be painful. If you hit, you will win. If you hit a point, you will break the enemy’s system and shake the overall situation. The target of the strike is not limited to the enemy’s dispersed deployment of ships and aircraft, but should also be targeted at local, dynamic, time-sensitive targets or independent targets such as enemy command centers, important hubs, and even major generals and commanders, in pursuit of deterrence, shock and enemy-breaking system effects. It will also be an effective countermeasure to use precision strike fire to carry out “point-kill” strikes in response to the distributed tactic of decomposing expensive large-scale equipment functions into a large number of small platforms and implementing decentralized deployment of forces.
7.3 Large-scale system support is the basic condition The implementation of precise point-kill warfare cannot be separated from the support of a large-scale system. Focusing on achieving combat goals, the required troops and weapons are transferred from each operational domain that is dispersed and deployed. With the support of the network information system, they are dynamically integrated to form a precision strike system to achieve overall linkage and system energy gathering. Through reasonable and sufficient firepower, the target is concentrated. Strike to achieve precise use of troops and precise release of energy. To implement precise point-and-kill operations to be precise, all links within the entire combat system need to be closely connected without any mistakes. The U.S. military’s killing of bin Laden in 2011 can be said to be a typical strategic precision killing operation supported by the strategic system.
7.4 It is inseparable from precise intelligence support In precision point kill warfare, precise intelligence support is always the key to achieving operational goals. Therefore, before the war, various means should be used to collect various enemy intelligence information, especially accurate analysis and judgment of enemy targets. During combat operations, various sensors and intelligence reconnaissance methods should be used to accurately grasp enemy target changes and dynamic target situations in a timely manner, so as to provide powerful and effective intelligence support for the implementation of precise point-kill warfare. The U.S. military’s targeted killing operation against Soleimani was a typical precise point-killing battle supported by an efficient intelligence system.
8. Supply-breaking Supply chain-breaking warfare refers to organizing elite forces in a system-gathering battle to attack the enemy’s logistics supplies and equipment supply supply chain, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle. In response to weaknesses such as the enemy’s long logistics supply line and large equipment support stalls, the organization of elite forces to build “chain-breaking warfare” combat systems, and to carry out sustained, precise and devastating strikes against enemy logistics supplies and equipment supply chains, supply lines and supply bases, will make it unsustainable due to the loss of supplies and will have to withdraw from the battle.
8.1 The supply guarantee chain has a huge impact on the overall combat situation Logistics equipment support is an important basis for operations. The constant supply of logistical supplies and weapons and equipment ultimately determines the size of an army’s combat troops, whether they can fight, in what season, where they can fight, how far they can leave their rear bases, how long they can fight, how fast they can maneuver, and so on. In information warfare, the consumption of battlefield materials has increased exponentially. Not only has the dependence on logistics equipment support for operations not decreased, but it has become larger and larger. Moreover, the requirements for the specialization of support have also become higher and higher In particular, modern combat equipment is available in a wide variety of models and specifications, with huge volumes of mixed transport, more dispersed troop deployment and very high requirements for transport capacity, which makes bases, communication lines and transport more important than ever. The stable and efficient operation of the supply guarantee chain and continuous and uninterrupted supply guarantee are the key to operational victory and have a huge impact on the overall operational situation.
8.2 The center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain The operational center of gravity of supply chain-breaking warfare is a key link in attacking the enemy’s supply support chain, and its continuous support capability is lost through chain-breaking. Therefore, the organization of supply chain-breaking warfare should mainly target enemy ground railway and road transport lines, maritime supply convoys, military requisitioned merchant ships and combat support ships, large and medium-sized air transport aircraft, and rear supply bases. For example, striking the enemy’s maritime supply support chain and cutting off the enemy’s fuel, ammunition, fresh water, and food supplies will make the enemy aircraft carrier battle group lose its ability to continue fighting, which in turn will even affect the outcome of a battle.
8.3 The key is to choose the right time and make full use of tactics It is crucial to organize the implementation of supply chain-breaking warfare and to choose a favorable time to strike. The timing of strikes in supply chain-breaking warfare should be organized and implemented when the enemy’s supply maneuvers are selected, so as to surprise and attack unprepared concealed tactics, carry out sudden strikes on enemy supply vehicles, ships and transport aircraft, and terminate their supply operations. Specific tactics usually include covert ambush warfare, organizing capable forces to ambush the routes and routes that enemy transportation must pass through, waiting for opportunities to carry out covert surprise attacks; stealth surprise warfare, using submarines, stealth fighters, etc. to covertly move forward to carry out attacks on enemy transportation targets, and win by surprise; long-range precision warfare, using long-range conventional surface-to-surface missile forces to attack enemy supply bases and airports Long-range precision strikes are carried out at the departure points of supplies such as docks.
9. System “paralysis battle” System destruction and paralysis war refers to the comprehensive use of various means such as breaking the network, breaking the chain, and defeating nodes in the system optimization war to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken the functions of the enemy’s combat system. The essence of system destruction and paralysis warfare is to weaken the correlation and structural power between the elements of the enemy’s combat system, degrade the functions of the system, and fail to play a role in doubling capabilities.
9.1 The combat goal is to disorderly operate the enemy’s combat system In information warfare, the combat systems of both warring parties have their own internal order, and this order is the key to maintaining and supporting the operation of the combat system. The side that can maintain and navigate the internal order of the combat system will gain an advantage and, conversely, a disadvantage. Therefore, the goal of “disrupting the enemy’s winning mechanism and causing the enemy’s combat system to become disordered” should be established in system destruction and paralysis warfare. This requires that the system be fully utilized in the battle of paralysis Information technology in particular intelligent algorithms The “powerful enabling effect” can quickly adjust and reconstruct one’s own combat system, quickly generate and release powerful combat power, and implement agile and precise strikes on the enemy’s combat system, causing the enemy’s combat system to lose normal operating order and become disordered. The system functions are destroyed and the overall combat capabilities are significantly reduced.
9.2 A key node in the heavy strike combat system Systematic confrontation is a major feature of information warfare. System is an important foundation and support for system confrontation, and is also the key to effectively exerting combat effectiveness by integrating various combat forces, weapon platforms and weapon systems on the battlefield. Whether the system can be kept robust and run smoothly has a decisive influence on the achievement of war and campaign victories. In the battle to destroy and paralyze the system, the key is to focus on the enemy’s integrated combat system of land, sea, air and space power grids, breaking the network, breaking the chain, and attacking nodes. By attacking key node targets, the operating mechanism of the enemy’s combat system will be out of order, and it may even be severely damaged or destroyed. Paralysis. Therefore, the basic direction of system destruction and paralysis warfare is to select key units, key nodes, and key elements of the enemy’s combat system to carry out strikes, attack one point, destroy one part, and paralyze the whole, so as to achieve the goal of defeating the enemy.
9.3 Implement soft strikes against the enemy’s combat system When organizing and implementing system breaking and hard destruction, it simultaneously organizes soft-kill combat operations such as electronic warfare, cyber warfare, psychological warfare, and public opinion warfare, and carries out soft strikes on the information domain and cognitive domain of the enemy’s combat system. Electronic warfare uses the power of electronic warfare to carry out strong electromagnetic interference against the enemy, causing its information to malfunction and fall into the fog of war; cyber warfare uses the power of cyber attack to attack the enemy’s network information system, causing the enemy’s command and communication system and computer network to be severely damaged, causing its command to malfunction and fall into information islands or even war islands; psychological warfare and public opinion warfare, using psychological warfare and public opinion warfare methods It carries out psychological strikes and public opinion guidance against the enemy, severely damaging his will to fight and inducing his cognitive disorientation. Organizing “people’s livelihood wars” to attack the opponent’s major national economy and people’s livelihood facilities can also play a role in the enemy’s combat system “drawing fuel from the bottom of the cauldron”. In the 1999 Kosovo War, the US military did not attack the Yugoslav army, but attacked its war potential target system, causing the Yugoslav soldiers and civilians to lose their will to fight and lead to defeat.
Soldiers are a major event for the country. In the great journey of “building a powerful country and rejuvenating the nation, and against the background of the accelerated evolution of major changes unseen in the world in a century, building and consolidating national defense and a strong people’s army are directly related to the future and destiny of the country and the nation”. The Third Plenary Session of the 20th Central Committee of the Communist Party of China pointed out that “national defense and military modernization are important components of Chinese-style modernization”, which fully reflects the great importance that the Party Central Committee with Comrade Xi Jinping as the core attaches to national defense and military construction, and provides guidance for national defense and military modernization on the new journey. Modernization points out the direction.
The modernization of the national defense and military is the security guarantee and strategic support for Chinese-style modernization
”If you fall behind, you will be beaten. Only when the army is strong can the country be safe”. Without a strong army, there can be no strong state. After the Opium War in 1840, modern China was repeatedly defeated in its battles with Western powers. The vast country gradually became a semi-colonial and semi-feudal society, with the country humiliated, the people in trouble, and civilization in dust. History has inspired us that the Chinese nation’s emergence from suffering and the liberation of the Chinese people depend on a heroic people’s army; to comprehensively promote the great cause of building a powerful country and national rejuvenation with Chinese-style modernization, we must place national defense and military modernization as a barrier to national security, plan and deploy in strategic positions based on career development, and accelerate the construction and consolidation of national defense and a strong people’s army.
The modernization of the national defense and military is closely linked and internally unified with Chinese-style modernization. Without the modernization of national defense and the military, there would be no Chinese-style modernization. Comrade Mao Zedong once profoundly pointed out “the original requirements for building socialism were industrial modernization, agricultural modernization, scientific and cultural modernization, and now we must add national defense modernization”; Comrade Deng Xiaoping also emphasized “four modernizations, one of which is national defense modernization”, these all reflect the great importance our party attaches to national defense and military construction.
Since the 18th National Congress of the Communist Party of China, President Xi has always adhered to the integrated operation of strengthening the country and the military, put national defense and military modernization in the chess game of Chinese-style modernization, and opened up the road to strengthening the military with Chinese characteristics, forming a new strategy for national defense and military modernization by 2027, 2035, and the middle of this century, a new “three-step” strategy for national defense and military modernization that connects near, medium and long-term goals Created a new situation in the cause of strengthening the military. Guided by the party’s goal of strengthening the military in the new era, we will comprehensively implement the strategy of reforming and strengthening the military, promote the reform of the leadership and command system, the reform of scale structure and force organization, and the reform of military policies and systems. Our military’s organizational structure will achieve historic changes, and the force system will achieve revolutionary changes. Reshaping, the basic framework of the socialist military policy system with Chinese characteristics has been constructed and formed. Our military system has been completely new, its structure has been completely new, its pattern has been completely new, and its appearance has been completely new It has laid a solid foundation for the modernization of national defence and the army.
Military means, as a means of guaranteeing the realization of great dreams, can only stop a war if it can be fought. The current and future periods are critical periods for comprehensively promoting the great cause of building a powerful country and rejuvenating the nation through Chinese-style modernization, and will inevitably encounter various risks, challenges and even turbulent waves. We must comprehensively modernize our national defense and military, build the People’s Army into a world-class military, effectively guarantee Chinese-style modernization, and safeguard national sovereignty, security, and development interests.
Comprehensive and accurate grasp of the scientific connotation of national defense and military modernization
Since the 18th National Congress of the Communist Party of China, President Xi has issued a series of important expositions around “Chinese-style modernization”, summarizing the Chinese characteristics, essential requirements and major principles for the formation of Chinese-style modernization, building a theoretical system for Chinese-style modernization, and promoting the new era and new journey. Chinese-style modernization provides scientific guidance and also carries out strategic design and scientific deployment for national defense and military modernization.
The most fundamental thing about modernizing the national defense and military is to uphold the absolute leadership of the party over the military. The leadership of the Party is the fundamental guarantee of Chinese-style modernization, which determines the fundamental nature of Chinese-style modernization, and it must also determine the fundamental nature of national defense and military modernization. To promote the modernization of national defense and the military on the new journey, we must fully implement a series of fundamental principles and systems for the party to lead the people’s army, comprehensively and thoroughly implement the chairman’s responsibility system of the Military Commission, and effectively unify thoughts and actions into the decisions and arrangements of the Party Central Committee and President Xi; Adhere to the party’s management of cadres and talents, and highlight political standards and combat capabilities Ensure that the barrel of the gun is always in the hands of those who are loyal and reliable to the party; improve the comprehensive and strict governance of the party system, enhance the political and organizational functions of party organizations at all levels, and integrate the party’s leadership throughout the entire process of continuing to deepen national defense and military reforms in all aspects.
To modernize national defense and the military is to modernize military doctrine, military organization, military personnel, and weapons and equipment. This reflects the inherent requirements for the construction of military forces resulting from changes in the concept of victory in modern warfare, elements of victory and methods of victory, and clarifies the main signs of the basic realization of national defence and military modernization. To realize the modernization of military theory is to keep pace with the times, innovate war and strategic guidance, and form a military theoretical system that is contemporary, leading, and unique; to realize the modernization of organizational form is to deepen the reform of national defense and the military, and the military force structure layout is scientific and reasonable, strategic deterrence capabilities are consolidated and improved, new areas and new quality combat forces continue to grow, and elite operations, system support, and joint victory have become the basic application models; To realize the modernization of military personnel is to deeply implement the strategy of strengthening the military with talents in the new era, promote the comprehensive transformation and upgrading of military personnel’s capabilities, structural layout, and development management, and forge high-quality, professional new military talents with both ability and political integrity; to realize the modernization of weapons and equipment, It is necessary to focus on strengthening national defense scientific and technological innovation and accelerating the development of strategic, cutting-edge and disruptive technologies Accelerate the upgrading of weapons and equipment and the development of intelligent weapons and equipment.
For the modernization of national defence and the military, we must adhere to the integrated development of mechanization, informatization and intelligence. The military conflicts and local wars that have taken place in recent years have shown that new qualitative combat capabilities generated based on intelligent combat systems are increasingly becoming core military capabilities. Based on mechanization, dominated by informatization, and oriented by intelligence, the three superimpose, penetrate, and support each other, jointly giving rise to new forms of warfare and methods of warfare. Only by accelerating the integrated development of mechanization, informatization and intelligence and keeping up with the new military revolutionary trends in the world can we seize the opportunity and take the initiative in seizing the commanding heights of the military struggle.
The modernization of national defence and the army is a guarantee of security for insisting on the path of peaceful development. Since ancient times, soldiers have not been warlike. Chinese-style modernization is modernization on the path of peaceful development. Building a consolidated national defense and a strong military commensurate with international status and national security and development interests is a strategic task of China’s socialist modernization drive and an insistence on taking the path of peaceful development. Safety guarantee is an inevitable choice for summarizing historical experience. China has always pursued a defensive defence policy and adhered to the strategic idea of active defence, and no matter how far it develops, China will never seek hegemony or engage in expansion. To promote the modernization of national defense and the military on the “new journey”, we must faithfully implement the concept of a community with a shared future for mankind, resolutely oppose all forms of hegemony and bullying, and contribute China’s strength to building a beautiful world of lasting peace and universal security.
Advancing the modernization of national defence and the military at a new historical starting point
The Third Plenary Session of the 20th Central Committee of the Communist Party of China included “continuous deepening of national defense and military reforms into the overall plan for further comprehensive deepening of reforms, and made a series of major strategic arrangements for improving the leadership and management system and mechanism of the people’s army, deepening the reform of the joint operations system, and deepening cross-military and civilian reforms”. On the new journey, we must deeply understand and grasp the themes, major principles, major measures, and fundamental guarantees for further comprehensively deepening reforms, resolutely implement the new “three-step” strategy for national defense and military modernization, and accelerate the modernization of military theory, military organizational form, and military personnel. Modernize and modernize weapons and equipment, and lead the modernization of national defense and the military to move forward with better strategies, higher efficiency, and faster speed.
Strengthening the Party’s theoretical and scientific leadership in military guidance. Our party insists on combining the basic principles of Marxism with the practice of building the people’s army, absorbing the essence of China’s excellent traditional military culture, and constantly exploring new realms in the development of contemporary Chinese Marxist military theory and military practice. As an important part of Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, Xi Jinping Thought on Strengthening the Military has achieved a new leap forward in the Sinicization and modernization of Marxist military theory. It is the fundamental guiding ideology of our party building and military governance in the new era. We must unremittingly arm our minds with Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, further firmly establish the guiding position of Xi Jinping Thought on Strengthening the Military in national defense and military construction, and build and consolidate national defense and a strong people’s army under the guidance of Xi Jinping Thought on Strengthening the Military. Take new and greater steps on the road to strengthening the military with Chinese characteristics.
Efforts should be made to make the main responsibility and business of war preparation more solid and effective. The People’s Army is an armed group that performs the party’s political tasks. It must be both politically strong and capable. In the final analysis, this ability can win wars. To accelerate the modernization of national defense and the military, we must firmly grasp the fundamental direction of winning wars, establish the only fundamental standard of combat effectiveness, focus all our energy on fighting wars, and work hard on fighting wars. Conscientiously implement the military strategic policy for the new era, operate war preparation and cessation, deterrence and actual combat, war operations and the use of military forces in peacetime as a whole, innovate strategies, tactics and tactics, effectively shape the situation, manage crises, contain wars, and win wars. Adhere to the principle of “training troops as they fight, and comprehensively improve the actual combat level of military training and the ability to perform missions and tasks”.
Promote high-quality development of national defense and military construction through “reform and innovation”. Reform is a key move that will determine the growth of our army and its future. On the new journey, we must put innovation at the core of the overall military construction and development, transform development concepts, innovate development models, enhance development momentum, and promote the transformation of national defense and military modernization from quantitative growth to qualitative improvement. Focus on integrating national defense and military construction into the national economic and social development system on a wider scale, at a higher level, and to a deeper extent, continuously improve the quality and efficiency of national defense and military modernization, promote the simultaneous improvement of national defense strength and economic strength, and consolidate and improve the integration National strategic system and capabilities, and constantly write a new chapter of strengthening the country and the military.
Since the 1990s, the concepts of multi-dimensional central warfare, such as network-centric warfare, personnel-centric warfare, action-centric warfare, and decision-centric warfare, have been proposed one after another. The evolution of the concept of multi-dimensional central warfare reflects the overall goal of seeking advantages such as platform effectiveness, information empowerment, and decision-making intelligence by relying on military science and technology advantages, and also reflects the contradictory and unified relationship between people and equipment, strategy and skills, and the strange and the normal. Dialectically understanding these contradictory and unified relationships with centralized structured thinking makes it easier to grasp the essential connotation of its tactics and its methodological significance.
Strengthen the integration of the “human” dimension in the combination of people and equipment
The concepts of personnel-centric warfare and platform-centric warfare largely reflect the relationship between people and weapons and equipment. Some have specially formulated human dimension strategies, emphasizing continuous investment in the human dimension of combat effectiveness, which is the most reliable guarantee for dealing with an uncertain future. Since the beginning of the 21st century, with the rapid development of intelligent weapons and equipment, unmanned combat has emerged, and voices questioning the status and role of people have arisen one after another. It is imperative to strengthen the integration of the human dimension and enhance the synergy of the human dimension.
First, we need to enhance spiritual cohesion. Marxism believes that consciousness is the reflection of objective matter in the human mind. Tactics are the expression and summary of combat experience, and they themselves have spiritual or conscious forms. When studying tactics, we naturally need to put spiritual factors first. Some scholars believe that war is still fundamentally a contest of human will. In the information age, people’s spirits are richer and more complex, and enhancing the spiritual cohesion of the human dimension is more challenging and difficult. To enhance people’s spiritual cohesion, we need to coordinate the cultivation of collective spirit and individual spirit, maximize the satisfaction of individual spiritual needs in leading the collective spirit, realize individual spiritual pursuits in shaping the value of collective spirit, and empower people’s spirit with all available and useful information; we need to coordinate the cultivation of critical spirit and innovative spirit, adhere to the tactical epistemology of dialectical materialism, resolutely oppose idealism and mechanism in tactical cognition, and constantly inherit and innovate in criticism; we need to coordinate the cultivation of fighting spirit and scientific spirit, and promote the revolutionary spirit of facing death with courage and winning, and promote the spirit of winning by science and technology.
The second is to enhance the organizational structure. Organizations are the organs of the military, and people are the cells of the organization. The settings of military organizations in different countries have their own characteristics and commonalities. For example, the Ministry of National Defense is generally set up to distinguish between the structure of military branches, hierarchical structures and regional structures, and to distinguish between peacetime and wartime organizations. Although the purpose of construction and war is the same, the requirements for the unity of construction and the flexibility of war are different. To enhance the organizational structure and promote the consistency of war and construction, it is necessary to smooth the vertical command chain, reasonably define the command power and leadership power, command power and control power, so that the government and orders complement each other, and enhance the vertical structural strength of the organization; it is necessary to open up horizontal coordination channels, explore the establishment of normalized cross-domain (organizations, institutions, departments) coordination channels, change the simple task-based coordination model, and enhance the horizontal structural strength of the organization; it is necessary to improve the peace-war conversion mechanism, focus on the organization connection, adjustment and improvement in the change of leadership or command power of the troops, and maintain the stability and reliability of the organizational structure network.
The third is to enhance material support. The spiritual strength of people in combat can be transformed into material strength, but spiritual strength cannot be separated from the support of material strength. To enhance material support and thus realize the organic unity of material and spirit, it is necessary to ensure combat equipment, bedding, food, and medical care, build good learning venues, training facilities, and re-education channels, provide good technical services in combat regulations, physiological medicine, etc., help design diversified and personalized capacity improvement plans and career development plans, and provide strong material and technical support for the development of people’s physical fitness, skills, and intelligence, and thus comprehensively improve people’s adaptability and combat effectiveness in the uncertain battlefield environment of the future.
Deepen the practice of the “skill” dimension in the combination of combat and skills
The combination of combat skills is an important principle of tactical application. The technology includes not only the technology at the practical operation level (such as shooting technology), but also the technology at the theoretical application level (such as information technology). It can be said that tactics, technology, art and procedures together constitute its “combat methodology”. Scientific and technological development and scientific technology are important characteristics of scientific and technological development. To deepen the combination of combat skills, it is necessary to correctly grasp the relationship between technology and tactics, art and procedures, and continuously deepen the practice of the “skill” dimension.
First, promote the tacticalization of advanced technology. Technology determines tactics, which is the basic view of dialectical materialism’s tactical theory. The evolution of the concept of multi-dimensional central warfare is also an example of technology driving the development and change of tactics. Engels once pointed out: “The entire organization and combat methods of the army and the related victory or defeat… depend on the quality and quantity of the population and on technology.” However, technology-driven tactics have a “lag effect”, especially in the absence of actual combat traction. This requires actively promoting the military transformation of advanced civilian technologies and the tactical application of advanced military technologies. On the one hand, we must actively introduce advanced civilian technologies, especially accelerate the introduction and absorption of cutting-edge technologies such as deep neural networks and quantum communication computing; on the other hand, we must strengthen tactical training of advanced technology equipment, closely combine technical training with tactical training, and promote the formation of new tactics and new combat capabilities with new equipment as soon as possible.
Second, promote the technicalization of command art. “Art” is a highly subjective concept. Some Chinese and foreign scholars believe that “the art of command is rooted in the commander’s ability to implement leadership to maximize performance”, while others believe that “the art of command is the way and method for commanders to implement flexible, clever and creative command”. Chinese and foreign scholars generally regard command as an art. The main reason is that although command has objective basis and support such as combat regulations, superior orders and technical support, the more critical factor lies in the commander’s subjective initiative and creativity, which is difficult to quantify by technical means. With the development of disciplines and technologies such as cognitive psychology and cognitive neuroscience, the cognitive structure and mechanism of command will become more explicit, the mysterious veil of “command art” will gradually fade, and the technicalization of command art will become an inevitable trend. This requires continuous strengthening of technical thinking, continuous deepening of the construction of artificial intelligence-assisted command decision-making means, continuous deepening of the application of human brain decision-making mechanisms, practical use of technology to deconstruct art, and continuous promotion of the technicalization of command art.
The third is to promote the regulation of combat technology. Many scholars place technology on a position that is almost as important as tactics. This insistence on the integrated development of tactical regulation and the regulation of specialized military technology and special combat technology is an important way to promote the systematic and standardized construction of combat regulations and further achieve the integration and unification of tactics and technology at the legal level.
Seeking the advantage of the “odd” dimension in combining the odd and the regular
The odd and the even are a basic contradictory structure of tactics, with inherent identity. Without the odd, there is no even, and without the even, there is no odd; either the odd or the even, ever-changing. The choice of the odd and the even is the category of decision-centered warfare, and the application of the odd and the even is the category of action-centered warfare. In the 1990s, the theories of asymmetric warfare, non-contact warfare, and non-linear warfare were proposed. If “symmetric warfare, contact warfare, and linear warfare” are even, then “asymmetric warfare, non-contact warfare, and non-linear warfare” can be called odd. From the perspective of natural science, “symmetry, contact, and linear” are general, and “asymmetry, non-contact, and non-linear” are detailed. It is an inevitable requirement to grasp the dimension of “odd” in the combination of odd, odd, and even, and to seek the advantages of the “three nons”.
First, seek “asymmetric” advantages. “Symmetry” and “asymmetry” originally refer to the morphological characteristics of things or space. Symmetrical warfare is a battle between two troops of the same type, and asymmetric warfare is a battle between two different types of troops. The theory of asymmetric warfare requires the scientific and reasonable organization of troops, combat forces and weapon systems of different military services, deployment in a wide area, and the concentration of superior forces to deal a fatal blow to the enemy at the best combat opportunity, and then quickly redeploy the forces. Due to the limited combat power, the troops have positive asymmetric advantages and negative asymmetric disadvantages. Seeking asymmetric advantages and avoiding asymmetric disadvantages is the common expectation of the warring parties, which will lead to such a situation that the warring parties cycle back and forth between symmetry and asymmetry. Therefore, to seek “asymmetric” advantages, it is necessary to seek asymmetry in combat power, combat capability, combat command and other aspects, adhere to and carry forward “avoid the strong and attack the weak, avoid the real and attack the virtual”, “you fight yours, I fight mine”, and effectively play advantages and avoid disadvantages in asymmetry. For example, when weapons and equipment are symmetrical, strive to gain an asymmetric advantage in personnel capabilities; when forces are symmetrical, strive to gain an asymmetric advantage in command art.
The second is to seek “non-contact” advantages. “Contact” and “non-contact” are a description of the distance between different things. Contact in the military field is usually defined by the projection distance of weapons. The concept of “non-contact combat” originated from World War II and was created during the Cold War. The connotation of contact combat and non-contact combat changes with the change of the striking distance of weapons and equipment. The warring parties always seek to attack each other at a farther distance or in a wider space without being threatened. Since the 1990s, the theory of “non-contact combat” has been used in many local wars. Non-contact combat is a combat action style that implements long-range precision strikes outside the defense zone while being far away from the opponent. Non-contact combat embodies the idea of winning by technology, flexible mobility, and center of gravity strikes. With the rapid development of military science and technology, the armies of major countries in the world will have the ability to perceive and strike globally, and the connotation of “non-contact” will be further compressed to space, cognitive domain and other space fields. To this end, on the one hand, we must base ourselves on the reality of “contact combat”, learn from each other’s strengths and overcome our weaknesses in contact, and continuously accumulate advantages; on the other hand, we must expand the space for “non-contact combat”, seize the initiative and seize the opportunity in non-contact, and continuously expand our advantages.
The third is to seek “nonlinear” advantages. “Linear” and “nonlinear” usually refer to people’s thinking or behavior patterns. The movement of all things in the universe is complex and mostly nonlinear, while human cognition always tends to be simple, abstract, and linear, and has invented concepts such as logic lines, time lines, and linear mathematics. In military science, the transition from linear operations to nonlinear operations reflects the development and progress of military technology theory. Since the second half of the 20th century, nonlinear operations have been on the historical stage. Some scholars have pointed out that in linear operations, each unit mainly acts in a coordinated manner along a clear front line of its own side. The key is to maintain the relative position between its own units to enhance the safety of the units; in nonlinear operations, each unit simultaneously carries out combat operations from multiple selected bases along multiple combat lines. The key is to create specific effects at multiple decision points against the target. Linear operations mainly reflect the action-centered warfare idea, while nonlinear operations mainly reflect the target-centered warfare idea. To this end, on the one hand, we must deepen the use of linear warfare and make full use of its practical value in facilitating command, coordination and support; on the other hand, we must boldly try non-linear warfare and maximize its potential advantages of extensive mobility and full-dimensional jointness. (Yin Tao, Deng Yunsheng, Sun Dongya)
The US military is accelerating the application of artificial intelligence technology in actual combat.
According to foreign media reports, the US Department of Defense recently released a strategic planning document on artificial intelligence technology to strengthen top-level design and promote the rapid development of related technologies. At the same time, the US military has also continued to strengthen its combat use of artificial intelligence technology.
Release of strategic planning documents
Recently, U.S. Deputy Secretary of Defense Hicks signed the strategic document “Responsible Artificial Intelligence Strategy and Implementation Approach”, which clarified the basic principles and main framework for the U.S. Department of Defense to implement the artificial intelligence strategy. The main contents include the following two aspects.
Sort out the “demand side”. First, adjust the management structure and process, and continue to follow up on the development of artificial intelligence technology in the Ministry of National Defense. Second, pay attention to the research and development and procurement of artificial intelligence products, and adjust the speed of artificial intelligence technology development in a timely manner. Third, use the demand verification procedure to ensure that artificial intelligence capabilities are consistent with operational requirements.
Optimize the “R&D end”. First, create a trustworthy AI system and AI-enabled system. Second, promote a common understanding of the concept of “responsible AI” through domestic and international cooperation. Third, improve the theoretical and operational level of AI-related personnel in the Ministry of National Defense.
In addition to the military’s strategic planning report, American think tanks have recently made recommendations on the cooperation between the United States and its allies in the application of artificial intelligence technology. The Center for Security and Emerging Technologies at Georgetown University in the United States released a report stating that the U.S. government, universities, research institutions and the private sector should promote artificial intelligence technology research cooperation with Australia, India and Japan in various ways to achieve an open, accessible and secure technology ecosystem and improve the performance of relevant U.S. military weapons and equipment.
Accelerate the pace of technology application
In addition to formulating a “roadmap” for the development of artificial intelligence technology in top-level design, the US military has also taken a number of measures recently to try to apply relevant mature technologies to military practice.
From the perspective of military construction, the Army’s “Integration Plan”, the Navy’s “Winning Plan” and the Air Force’s “Advanced Combat Management System” are the three major artificial intelligence programs of the US military. All three programs are being promoted simultaneously. Recently, the US Army Contracting Command awarded a US military contractor Engineering and Computer Simulation a contract totaling $63.28 million to design and develop new artificial intelligence algorithms. Kitchener, commander of the US Navy’s surface forces, said that the US Navy’s surface forces will focus on integrating capabilities such as artificial intelligence and machine learning in the near future to significantly enhance their combat advantages. The US Air Force recently successfully demonstrated an artificial intelligence algorithm called Artuu, which can automatically manipulate U-2 reconnaissance aircraft to search for enemy missile launchers and generate real-time combat maps of cross-domain threats.
From the perspective of combat power generation, the U.S. military is accelerating the application of artificial intelligence technology in actual combat. The U.S. National Interest bimonthly website recently published an article saying that the U.S. Navy and Air Force are developing a new generation of training systems to help their fighters better deal with new air threats. This intelligent technology, called the “P5 Combat Training System,” can help U.S. military pilots conduct virtual training in high-threat, high-confrontation combat scenarios.
The Defense Advanced Research Projects Agency (DARPA) is busy verifying an “autonomous cyber attack system based on artificial intelligence chips”. It is reported that the system can generate a set of attack codes every 24 hours and dynamically adjust the attack program according to the real-time network environment. Since the attack code is newly generated, it is difficult for antivirus systems that rely on existing virus libraries and behavior recognition to identify it, and the code is highly concealed and destructive. The Defense Advanced Research Projects Agency (DARPA) believes that the system has extremely high application potential and can help the US military gain technological advantages in future cyber operations.
Triggering a cutting-edge military competition
Overall, the US military has been active in the development of artificial intelligence recently, and related developments may trigger a new round of global cutting-edge military competition.
On the one hand, the US military is promoting the idea of ”everything can be intelligent” internally. The US military claims that fighter jets, tanks, ground control stations and surface ships can not only serve as entities with combat capabilities, but also as nodes for monitoring battlefields and obtaining war information. To achieve this goal, artificial intelligence will play an irreplaceable role. Combined with the US military’s strategic planning documents, it is not difficult to see that in order to create more nodes, the US military will give full play to the enabling role of artificial intelligence in the next step to help various weapon platforms find and strike targets faster.
On the other hand, it will have an external impact on the global military development pattern. The US military and its allies are vigorously promoting the development of artificial intelligence technology, mainly to use these advanced technologies to suppress rival countries, and the backlash effect of related practices may be immediate. At present, many countries in the world are vigorously developing related technologies. It can be foreseen that with the rapid development and support of technologies such as artificial intelligence, the future battlefield will accelerate the transition to an intelligent and unmanned battlefield. Cross-domain collaborative operations such as land, sea, air, space, and the Internet will become the main combat style of future wars, driving the development and application of equipment technology, and promoting major changes in the global military development pattern.
In today’s era of rapid technological development, the technological competition between China and the United States is like a war without gunpowder, especially in cutting-edge technology fields such as lithography machines and chips. The United States has relied on its technological advantages to blockade and suppress my country, trying to curb the pace of my country’s technological rise. However, things suddenly turned around, and pressure can often be transformed into motivation. my country’s technology companies did not retreat, but instead accelerated the pace of independent research and development. Recently, the first appearance of a new generation of domestic optical quantum computers is undoubtedly a shining star in my country’s science and technology field, illuminating the road to future technological development.
Stunning debut, showing strength
This device, called “TurningQ Gen2 Large-Scale Programmable Optical Quantum Computing System”, attracted countless eyes. It looks like a double-door refrigerator, seemingly ordinary, but contains huge scientific and technological energy. The device is mainly composed of three core components: quantum light source unit, quantum computing unit, and detection unit. Each component embodies the hard work and wisdom of scientific researchers.
According to relevant persons in charge of Turing Quantum, this optical quantum computer has a quantum superiority level of 56 photons. When solving certain specific problems, its computing power is almost comparable to that of the top supercomputer, Tianhe-2. As an outstanding representative of my country’s supercomputers, Tianhe-2 has been ranked among the top in the global supercomputer rankings many times. Its powerful computing power has provided strong support for many scientific research and engineering fields. Today, the computing power of domestic optical quantum computers on specific problems is comparable to that of Tianhe-2, which is undoubtedly a major breakthrough in my country’s quantum computing field.
What is even more surprising is that compared with Tianhe-2, this optical quantum computer has obvious advantages in terms of floor space and energy consumption. Supercomputers usually require huge computer rooms and a large amount of energy supply to maintain operation, while optical quantum computers are only the size of a refrigerator, which greatly saves space and energy. This not only reduces the cost of use, but also makes it possible for the widespread application of quantum computers.
Key components, simultaneously unveiled
At the exhibition, the key device for the industrialization of this quantum computer, the photonic chip based on 110 nanometer technology, was also unveiled. The photonic chip is one of the core components of the optical quantum computer. It uses photons to transmit and process information and has the advantages of high speed and low energy consumption. The emergence of the photonic chip based on 110 nanometer technology marks that my country has made important progress in photonic chip manufacturing technology.
The development and production of photonic chips require high-precision manufacturing processes and advanced equipment. Through unremitting efforts, Chinese researchers have overcome technical difficulties one after another and successfully developed photonic chips based on 110-nanometer technology. This achievement not only lays a solid foundation for the industrialization of my country’s optical quantum computers, but also wins my country an advantage in the development of photonic chips.
Future prospects, unlimited potential
With the continuous advancement of quantum computing technology, the further optimization of CPO optoelectronic co-packaging and related micro-nano processing technologies, quantum computers are expected to significantly improve computing power while reducing their size to the size of a laptop computer. This prospect is exciting and will bring revolutionary changes to the popularization and application of quantum computers.
In the field of scientific research, quantum computers will provide powerful tools for solving complex scientific problems. For example, in the fields of quantum chemistry, materials science, biomedicine, etc., quantum computers can simulate the structure and properties of molecules and accelerate the process of new drug development and material design. In the financial field, quantum computers can be used for risk assessment, portfolio optimization, etc. to improve the accuracy and efficiency of financial decision-making. In the field of artificial intelligence, quantum computers can accelerate the training of machine learning and deep learning algorithms and promote the development of artificial intelligence technology.
In addition, the widespread application of quantum computers will also drive the development of related industries. From the manufacture of photon chips to the assembly and debugging of quantum computers, to the development and application of quantum computing software, a huge industrial chain will be formed. This will inject new impetus into my country’s economic development and create a large number of employment opportunities.
Independent innovation, forging ahead
The debut of the new generation of domestic optical quantum computers is another major achievement of my country’s independent scientific and technological innovation. In the face of the blockade and suppression of the United States, my country’s technology companies did not choose to rely on imports, but firmly embarked on the path of independent research and development. This spirit of independent innovation is the core driving force of my country’s scientific and technological development.
However, we must also be aware that there is still a certain gap between my country and the world’s advanced level in the field of quantum computing. In future development, we need to continue to increase investment in scientific research, cultivate more scientific and technological talents, strengthen international cooperation and exchanges, and continuously enhance my country’s core competitiveness in the field of quantum computing.
The debut of the new generation of domestic optical quantum computers is an important milestone in the history of my country’s scientific and technological development. It allows us to see the huge potential and broad prospects of my country in the field of quantum computing. I believe that in the near future, quantum computers will enter our lives and bring more surprises and changes to the development of human society. Let us look forward to the arrival of this day and work hard for the brilliant future of my country’s science and technology!