Category Archives: Chinese military cognitive warfare

Chinese Military Grasping Pulse of Information and Intelligent Warfare Development

中國軍方掌握資訊戰和智慧戰發展的脈搏

現代英語:

Currently, the deep penetration and integrated application of cutting-edge technologies such as artificial intelligence in the military field are profoundly reshaping the form of warfare and driving the evolution of informationized and intelligent warfare to a higher and more complex level. This process brings new challenges, such as the full-dimensional expansion of the operational space, but also contains the enduring underlying logic of the essential laws of warfare. We must deeply analyze the evolutionary mechanism of informationized and intelligent warfare, understand and clarify the specific manifestations of the new challenges and underlying logic, and continuously explore the practical paths and winning principles for strategizing future warfare.

Recognizing the new challenges that information technology and intelligent technology bring to warfare

Technological iteration and upgrading have driven profound changes in combat styles, which in turn bring new challenges. Currently, with the accelerated development of information and intelligent technologies, the form of warfare is showing significant changes such as cross-domain integration, system confrontation, and intelligent dominance, thereby giving rise to new challenges such as mixed-domain nature, intelligence, and all-personnel involvement.

The Challenges of Multi-Domain Operations. In future warfare, the physical boundaries of traditional operational domains will be broken, with information and social domains deeply nested, forming a new type of battlefield characterized by multi-domain coordination. This multi-dimensional battlefield environment presents two challenges to current combat systems. First, system compatibility is difficult. In a multi-domain operational environment, combat operations “span” multiple physical and virtual spaces, while traditional combat systems are often built based on specific operational domains, making seamless compatibility of their technical standards and information interfaces difficult. Second, command and control are highly complex. In informationized and intelligent warfare, combat operations unfold simultaneously or alternately across multiple dimensions, with various demands exhibiting non-linear, explosive, and multi-domain characteristics. Traditional, hierarchical, tree-like command structures are ill-suited to handle this complex multi-domain coordination situation.

The Challenges of Intelligence. The deep integration of technologies such as artificial intelligence into the war decision-making and action chain presents new challenges to traditional decision-making models and action logic. On the one hand, defining the boundaries and dominance of human-machine collaboration is challenging. Intelligent systems demonstrate superior capabilities in information processing, decision support, and even autonomous action, but over-reliance on algorithms can lead to a “decision black box”; excessive restrictions on machine intelligence may result in the loss of the speed and efficiency advantages of intelligent algorithms. Therefore, how to construct a human-machine symbiotic, human-led, and intelligence-assisted decision-making model has become an unavoidable “test” in winning informationized and intelligent warfare. On the other hand, the complexity and vulnerability of algorithmic warfare are becoming increasingly prominent. The higher the level of intelligence in warfare, the stronger the dependence on core algorithms. Adversaries may launch attacks through data pollution, model deception, and network intrusion, inducing intelligent systems to misjudge and fail. This kind of “bottom-up” attack based on algorithmic vulnerabilities is far more covert and destructive than traditional methods, placing higher demands on the construction and maintenance of defense systems.

A challenge affecting all personnel. Informationized and intelligent warfare blurs the lines between wartime and peacetime, front lines and rear areas. Combat operations are no longer confined to professional soldiers and traditional battlefields; non-military sectors such as economics, finance, and technology, along with related personnel, may all be integrated into modern combat systems to varying degrees, bringing entirely new challenges. Specifically, non-military sectors may become new focal points of offense and defense. In an information society, critical infrastructure such as energy networks, transportation hubs, and information platforms are highly interconnected and interdependent, with broad social coverage and significant influence, making them prime targets for attack or disruption in hybrid warfare, thus significantly increasing the difficulty of protection. The national defense mobilization system faces transformation pressure. The traditional “peacetime-wartime conversion” model is ill-suited to the demands of high-intensity, fast-paced, and high-consumption informationized and intelligent warfare. There is an urgent need to build a modern mobilization mechanism that is “integrated in peacetime and wartime, military-civilian integrated, precise, and efficient,” ensuring the rapid response and efficient transformation of core resources such as technological potential, industrial capabilities, and professional talent.

Clarifying the underlying logic of information-based and intelligent warfare

Although the development of information and intelligent technologies has profoundly reshaped the mode of force application, the inherent attributes of war have not been fundamentally shaken. Ensuring that strategy follows policy, adhering to the principle that people are the decisive factor, and recognizing that the “fog of war” will persist for a long time are still key measures for us to understand, plan, and respond to future wars.

Strategic subordination with political strategy is paramount. Currently, the proliferation of new technologies and attack methods easily fosters “technocentrism”—when algorithms and computing power are seen as the key to victory, and when technological superiority in equipment is considered an absolute advantage, military operations risk deviating from the political and strategic trajectory. This necessitates that we always integrate military operations within the overall national political framework, ensuring that technological advantages serve strategic objectives. Under informationized and intelligent conditions, strategic subordination with political strategy transcends the purely military level, requiring precise alignment with core national political goals such as diplomatic maneuvering and domestic development and stability. Therefore, it is essential to clearly define the boundaries, intensity, and scope of information and intelligent means of application, avoid significant political and strategic risks arising from the misuse of technology, and strive for a dynamic unity between political objectives and military means.

The decisive factor remains human. While intelligent technology can indeed endow weapons with superior autonomous perception and decision-making capabilities, the ultimate control and winning formula in war always firmly rests in human hands. Marxist warfare theory reveals that regardless of how warfare evolves, humans are always the main actors and the ultimate decisive force. Weapons, as tools, ultimately rely on human creativity in their effective use. Therefore, facing the wave of informationized and intelligent warfare, we must achieve deep integration and synchronous development of human-machine intelligence, building upon a foundation of human dominance. Specifically, intelligentization must not only “transform” things—improving equipment performance—but also “transform” people—enhancing human cognitive abilities, decision-making levels, and human-machine collaborative efficiency, ensuring that no matter how high the “kites” of intelligent equipment fly, humanity always firmly grasps the “control chain” that guides their development.

Recognizing the persistent nature of the “fog of war,” while information technology has significantly improved battlefield transparency, technological means can only reduce the density of the “fog,” not completely dispel it. The fundamental reason is that war is a dynamic game; the deception generated by the continuous strategic feints and other maneuvers employed by opposing sides transcends the scope of mere technological deconstruction, possessing an inherent unpredictability. Therefore, we must acknowledge the perpetual nature of the “fog of war” and employ appropriate measures to achieve the goal of “reducing our own fog and increasing the enemy’s confusion.” Regarding the former, we must strengthen our own reconnaissance advantages by integrating multi-source intelligence, including satellite reconnaissance, drone surveillance, and ground sensors, to achieve a real-time dynamic map of the battlefield situation. Regarding the latter, we must deepen the enemy’s decision-making dilemma by using techniques such as false signals and electronic camouflage to mislead their intelligence gathering, forcing them to expend resources in a state of confusion between truth and falsehood, directly weakening their situational awareness.

Exploring the winning factors of information-based and intelligent warfare

To plan for future wars, we must recognize the new challenges they bring, follow the underlying logic they contain, further explore the winning principles of informationized and intelligent warfare, and work hard to strengthen military theory, make good strategic plans, and innovate tactics and methods.

Strengthening theoretical development is crucial. Scientific military theory is combat power, and maintaining the advancement of military theory is essential for winning informationized and intelligent warfare. On the one hand, we must deepen the integration and innovation of military theory. We must systematically integrate modern scientific theories such as cybernetics, game theory, and information theory, focusing on new combat styles such as human-machine collaborative operations and cross-domain joint operations, to construct an advanced military theoretical system that is forward-looking, adaptable, and operable. On the other hand, we must adhere to practical testing and iterative updates. We must insist on linking theory with practice, keenly observing problems, systematically summarizing experiences, and accurately extracting patterns from the front lines of military struggle preparation and training, forming a virtuous cycle of “practice—understanding—re-practice—re-understanding,” ensuring that theory remains vibrant and effectively guides future warfare.

Strategic planning is crucial. Future-oriented strategic planning is essentially a proactive shaping process driven by technology, driven by demand, and guaranteed by dynamic adaptation. It requires a broad technological vision and flexible strategic thinking, striving to achieve a leap from “responding to war” to “designing war.” First, we must anticipate technological changes. We must maintain a high degree of sensitivity to disruptive technologies that may reshape the rules of war and deeply understand the profound impact of the cross-integration of various technologies. Second, we must focus on key areas. Emerging “high frontiers” such as cyberspace, outer space, the deep sea, and the polar regions should be the focus of strategic planning, concentrating on shaping the rules of operation and seizing advantages to ensure dominance in the invisible battlefield and emerging spaces. Third, we must dynamically adjust and adapt. The future battlefield is constantly changing and full of uncertainty. Strategic planning cannot be a static, definitive text, but rather a resilient, dynamic framework. We must assess the applicability, maturity, and potential risks of various solutions in conjunction with reality to ensure that the direction of military development is always precisely aligned with the needs of future warfare.

Promoting Tactical Innovation. Specific tactics serve as a bridge connecting technological innovation and combat operations. Faced with the profound changes brought about by informationized and intelligent warfare, it is imperative to vigorously promote tactical innovation and explore “intelligent strategies” adapted to the future battlefield. On the one hand, it is necessary to deeply explore the combat potential of emerging technologies. We should actively explore new winning paths such as “algorithms as combat power,” “data as firepower,” “networks as the battlefield,” and “intelligence as advantage,” transforming technological advantages into battlefield victories. On the other hand, it is necessary to innovatively design future combat processes. Various combat forces can be dispersed and deployed across multiple intelligent and networked nodes, constructing a more flattened, agile, and adaptive “observation-judgment-decision-action” cycle. Simultaneously, we must strengthen multi-domain linkage, breaking down inherent barriers between different services and combat domains, striving to achieve cross-domain collaboration, system-wide synergy, autonomous adaptation, and dynamic reorganization, promoting the overall emergence of combat effectiveness.

現代國語:

目前,人工智慧等尖端技術在軍事領域的深度滲透與融合應用,正深刻重塑戰爭形態,推動資訊化、智慧化戰爭朝向更高、更複雜的層面演進。這個過程帶來了作戰空間全方位擴展等新挑戰,同時也蘊含著戰爭基本法則的持久邏輯。我們必須深入分析資訊化、智慧化戰爭的演進機制,理解並釐清新挑戰的具體表現及其內在邏輯,不斷探索未來戰爭戰略的實踐路徑與勝利原則。

認識資訊科技和智慧科技為戰爭帶來的新挑戰

技術的迭代升級推動了作戰方式的深刻變革,進而帶來了新的挑戰。目前,隨著資訊科技與智慧科技的加速發展,戰爭形態呈現出跨域融合、系統對抗、智慧主導等顯著變化,由此產生了混合域作戰、智慧化作戰、全員參與等新挑戰。

多域作戰的挑戰。在未來的戰爭中,傳統作戰領域的物理邊界將被打破,資訊領域和社會領域將深度交織,形成以多域協同為特徵的新型戰場。這種多維戰場環境對現有作戰系統提出了兩大挑戰。首先,系統相容性面臨挑戰。在多域作戰環境中,作戰行動「跨越」多個實體和虛擬空間,而傳統作戰系統通常基於特定的作戰領域構建,難以實現技術標準和資訊介面的無縫相容。其次,指揮控制高度複雜。在資訊化和智慧化戰爭中,作戰行動在多個維度上同時或交替展開,各種需求呈現出非線性、爆發性和多域性的特徵。傳統的層級式、樹狀指揮結構難以應付這種複雜的多域協同局面。

情報的挑戰。人工智慧等技術深度融入戰爭決策和行動鏈,對傳統的決策模型和行動邏輯提出了新的挑戰。一方面,界定人機協作的邊界和主導地位極具挑戰性。智慧型系統在資訊處理、決策支援乃至自主行動方面展現出卓越的能力,但過度依賴演算法可能導致「決策黑箱」;對機器智慧的過度限制則可能喪失智慧演算法的速度和效率優勢。因此,如何建構人機共生、人主導、智慧輔助的決策模型,已成為贏得資訊化和智慧化戰爭的必經「考驗」。另一方面,演算法戰的複雜性和脆弱性日益凸顯。戰爭智能化程度越高,對核心演算法的依賴性就越強。敵方可能透過資料污染、模型欺騙和網路入侵等手段發動攻擊,誘使智慧型系統誤判和失效。這種基於演算法漏洞的「自下而上」攻擊比傳統手段更加隱蔽和破壞性,對防禦系統的建構和維護提出了更高的要求。

這是一項影響全體人員的挑戰。資訊化與智慧化戰爭模糊了戰時與和平時期、前線與後方的界線。作戰行動不再侷限於職業軍人和傳統戰場;經濟、金融、科技等非軍事領域及其相關人員都可能在不同程度上融入現代作戰體系,帶來全新的挑戰。具體而言,非軍事領域可能成為攻防的新焦點。在資訊社會中,能源網路、交通樞紐、資訊平台等關鍵基礎設施高度互聯互通、相互依存,覆蓋範圍廣、影響力大,使其成為混合戰爭中攻擊或破壞的主要目標,大大增加了防禦難度。國防動員體系面臨轉型壓力。傳統的「和平時期向戰爭時期轉換」模式已無法滿足高強度、快節奏、高消耗的資訊化和智慧化戰爭的需求。迫切需要…建構「和平時期與戰爭時期一體化、軍民融合、精準高效」的現代化動員機制,確保技術潛力、產業能力、專業人才等核心資源的快速反應與高效轉換。

釐清資訊化與智慧化戰爭的內在邏輯

儘管資訊和智慧科技的發展深刻地重塑了兵力運用方式,但戰爭的固有屬性並未發生根本性改變。確保戰略服從政策,堅持以人為本的原則,並認識到「戰爭迷霧」將長期存在,仍然是我們理解、規劃和應對未來戰爭的關鍵。

戰略服從政治戰略至關重要。目前,新技術和新攻擊手段的湧現容易滋生「技術中心主義」——當演算法和運算能力被視為取勝的關鍵,裝備的技術優勢被視為絕對優勢時,軍事行動就有可能偏離政治戰略軌道。這就要求我們始終將軍事行動納入國家整體政治框架,確保技術優勢服務於戰略目標。在資訊化和智慧化條件下,戰略對政治戰略的服從超越了純粹的軍事層面,需要與外交斡旋、國內發展穩定等核心國家政治目標精準契合。因此,必須明確界定資訊和智慧手段應用的邊界、強度和範圍,避免因技術濫用而引發重大政治和戰略風險,並努力實現政治目標與軍事手段的動態統一。

決定性因素仍然是人。雖然智慧科技確實可以賦予武器卓越的自主感知和決策能力,但戰爭的最終控制權和勝利之道始終牢牢掌握在人手中。馬克思主義戰爭理論表明,無論戰爭如何演變,人類始終是主要行動者和最終的決定性力量。武器作為工具,其有效使用最終依賴於人的創造力。因此,面對資訊化、智慧化戰爭的浪潮,我們必須在人類主導的基礎上,實現人機智慧的深度融合與同步發展。具體而言,智慧化不僅要「改造」物——提升裝備性能——更要「改造」人——增強人類的認知能力、決策水平和人機協同效率,確保無論智慧裝備的「風箏」飛得多高,人類始終牢牢掌控著引導其發展的「控制鏈」。

認識到「戰爭迷霧」的持久性,儘管資訊技術顯著提升了戰場透明度,但技術手段只能降低「迷霧」的密度,而無法徹底驅散它。根本原因在於戰爭是一場動態賽局;交戰雙方不斷進行的戰略佯攻和其他戰術動作所產生的欺騙性,遠非簡單的技術解構所能及,具有固有的不可預測性。因此,我們必須正視「戰爭迷霧」的永恆性,並採取適當措施,實現「減少自身迷霧,增加敵方混亂」的目標。就前者而言,我們必須整合衛星偵察、無人機監視、地面感測器等多源情報,強化自身偵察優勢,以實現戰場態勢的即時動態測繪。就後者而言,我們必須運用假訊號、電子偽裝等手段,誤導敵方情報蒐集,使其在真假難辨的狀態下耗費資源,從而直接削弱其態勢感知能力,加深敵方決策困境。

探索資訊化、智慧化戰爭的勝利要素

為因應未來戰爭,我們必須體認到戰爭帶來的新挑戰,掌握其內在邏輯,進一步探索資訊化、智慧化戰爭的勝利原則,努力加強軍事理論建設,制定完善的戰略規劃,並創新戰術方法。

加強理論發展至關重要。科學的軍事理論就是戰鬥力,維持軍事理論的進步是贏得資訊化、智慧化戰爭的關鍵。一方面,我們必須深化軍事理論的整合與創新,有系統地將現代科學融入軍事理論。

運用控制論、博弈論、資訊理論等理論,著重研究人機協同作戰、跨域聯合作戰等新型作戰方式,建構前瞻性、適應性和可操作性的先進軍事理論體系。另一方面,必須堅持實戰檢驗、迭代更新。必須堅持理論與實踐結合,敏銳觀察問題,系統總結經驗,準確提煉軍事鬥爭前線備戰訓練中的規律,形成「實踐—理解—再實踐—再理解」的良性循環,確保理論保持活力,有效指導未來戰爭。

策略規劃至關重要。面向未來的策略規劃本質上是一個由技術驅動、需求驅動、動態調適保障的主動塑造過程。它需要廣闊的技術視野和靈活的戰略思維,力求實現從「應對戰爭」到「設計戰爭」的飛躍。首先,我們必須預見技術變革。我們必須對可能重塑戰爭規則的顛覆性技術保持高度敏感,並深刻理解各種技術交叉融合的深遠影響。其次,我們必須聚焦重點領域。網路空間、外太空、深海、極地等新興「高前沿」應成為戰略規劃的重點,著力塑造作戰規則,奪取優勢,確保在無形戰場和新興空間佔據主導地位。第三,我們必須動態調整與適應。未來的戰場瞬息萬變,充滿不確定性。策略規劃不能是一成不變的固定文本,而應是一個具有韌性的動態架構。我們必須結合實際情況,評估各種解決方案的適用性、成熟度和潛在風險,確保軍事發展方向始終與未來戰爭的需求精準契合。

推進戰術創新。具體戰術是連結技術創新與作戰行動的橋樑。面對資訊化、智慧化戰爭帶來的深刻變革,必須大力推動戰術創新,探索適應未來戰場的「智慧戰略」。一方面,要深入挖掘新興技術的作戰潛力,積極探索「演算法即戰力」、「數據即火力」、「網路即戰場」、「情報即優勢」等新的致勝路徑,將技術優勢轉化為戰場勝利。另一方面,要創新地設計未來作戰流程,使各類作戰力量分散部署於多個智慧化、網路化的節點,建構更扁平、更敏捷、適應性更強的「觀察-判斷-決策-行動」循環。同時,要加強多域連結,打破不同軍種、不同作戰域之間的固有壁壘,力爭實現跨域協同、系統協同、自主適應、動態重組,進而提升整體作戰效能。

(編:任嘉慧、彭靜)

李书吾 丁 盛

2026年01月27日0x:xx | 来源:解放军报

中國原創軍事資源:https://military.people.com.cn/n1/2026/08127/c10811-4808868538648.html

Looking at Intelligent Warfare: Focusing on Counter-AI Operations in Chinese Military Operations During Intelligent Warfare

檢視情報戰:聚焦中國軍事行動中的反空戰策略

現代英語:

Original Title: A Look at Intelligent Warfare: Focusing on Counter-AI Operations in Intelligent Warfare

    introduction

    The widespread application of science and technology in the military field has brought about profound changes in the form of warfare and combat methods. Military competition among major powers is increasingly manifested as technological subversion and counter-subversion, surprise attacks and counter-surprise attacks, and offsetting and counter-offsetting. To win future intelligent warfare, it is necessary not only to continuously promote the deep transformation and application of artificial intelligence technology in the military field, but also to strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-AI warfare theories and tactics, and proactively plan research on anti-AI technologies and the development of weapons and equipment to achieve victory through “breaking AI” and strive to seize the initiative in future warfare.

    Fully recognize the inevitability of anti-artificial intelligence warfare

    In his essay “On Contradiction,” Comrade Mao Zedong pointed out that “the law of contradiction in things, that is, the law of unity of opposites, is the most fundamental law of dialectical materialism.” Throughout the history of military technology development and its operational application, there has always been a dialectical relationship between offense and defense. The phenomenon of mutual competition and alternating suppression between the “spear” of technology and the “shield” of corresponding countermeasures is commonplace.

    In the era of cold weapons, people not only invented eighteen kinds of weapons such as knives, spears, swords, and halberds, but also corresponding helmets, armor, and shields. In the era of firearms, the use of gunpowder greatly increased attack range and lethality, but it also spurred tactical and technical innovations, exemplified by defensive fortifications such as trenches and bastions. In the mechanized era, tanks shone brightly in World War II, and the development of tank armor and anti-tank weapons continues to this day. In the information age, “electronic attack” and “electronic protection,” centered on information dominance, have sparked a new wave of interest, giving rise to electronic warfare units. Furthermore, numerous opposing concepts in the military field, such as “missiles” versus “anti-missile,” and “unmanned combat” versus “counter-unmanned combat,” abound.

    It should be recognized that “anti-AI warfare,” as the opposite concept of “intelligent warfare,” will inevitably emerge gradually with the widespread and in-depth application of intelligent technologies in the military field. Forward-looking research into the concepts, principles, and tactical implementation paths of anti-AI warfare is not only a necessity for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable step to seize the high ground in future military competition and implement asymmetric warfare.

    Scientific Analysis of Counter-AI Combat Methods and Paths

    Currently, artificial intelligence (AI) technology is undergoing a leapfrog development, moving from weak to strong and from specialized to general-purpose applications. From its underlying support perspective, data, algorithms, and computing power remain its three key elements. Data is the fundamental raw material for training and optimizing models, algorithms determine the strategies and mechanisms for data processing and problem-solving, and computing power provides the hardware support for complex calculations. Seeking ways to “break through” AI by addressing these three elements—data, algorithms, and computing power—is an important methodological approach for implementing counter-AI warfare.

    Counter-data warfare. Data is the raw material for artificial intelligence to learn and reason, and its quality and diversity significantly impact the accuracy and generalization ability of models. Numerous examples in daily life demonstrate how minute changes in data can cause AI models to fail. For instance, facial recognition models on mobile phones may fail to accurately identify individuals due to factors such as wearing glasses, changing hairstyles, or changes in ambient light; autonomous driving models may also misjudge road conditions due to factors like road conditions, road signs, and weather. The basic principle of counter-data warfare is to mislead the training and judgment processes of military intelligent models by creating “contaminated” data or altering its distribution characteristics. This “inferiority” in the data leads to “errors” in the model, thereby reducing its effectiveness. Since AI models can comprehensively analyze and cross-verify multi-source data, counter-data warfare should focus more on multi-dimensional features, packaging false data information to enhance its “authenticity.” In recent years, foreign militaries have conducted relevant experimental verifications in this area. For example, by using special materials for coating and infrared emitter camouflage, the optical and infrared characteristics of real weapon platforms, and even the vibration effects of engines, can be simulated to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage can be implemented to improve the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

    Anti-algorithm warfare. The essence of an algorithm is a strategy mechanism for solving problems described in computer language. Because the scope of application of such strategy mechanisms is limited, they may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “divine move” in the 2016 human-machine Go match. Many professional Go players, after reviewing the game, stated that the “divine move” was actually invalid, yet it worked against AlphaGo. AlphaGo developer Silva explained this by saying that Lee Sedol exploited a previously unknown vulnerability in the computer; other analyses suggest that this move might have contradicted AlphaGo’s Go logic or been outside its strategic learning range, making it unable to respond. The basic principle of anti-algorithm warfare is to target the vulnerabilities in the algorithm’s strategy mechanism and weaknesses in its model architecture through logical attacks or deception to reduce the algorithm’s effectiveness. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading and deceiving” the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithms to plan reconnaissance paths. In this case, irregular or abnormal actions can be created to reduce or disable the reward mechanism in the reinforcement learning algorithm model, thereby reducing its reconnaissance search efficiency.

    Counter-computing power warfare. The strength of computing power represents the speed at which data processing can be converted into information and decision-making advantages. Unlike counter-data warfare and counter-algorithm warfare, which primarily rely on soft confrontation, counter-computing power warfare employs a combination of hard and soft tactics. Hard destruction mainly refers to attacks on enemy computing centers and computing network infrastructure, crippling their AI models by cutting off their computing power. Soft confrontation focuses on increasing the enemy’s computing costs, primarily by creating a “fog of war” and data noise. For example, during operations, large quantities of meaningless data of various types, such as images, audio, video, and electromagnetic data, can be generated to constrain and deplete the enemy’s computing resources, reducing their effective utilization rate. Furthermore, attacks can also be launched against weak points in the defenses of the computing power support environment and infrastructure. Computing centers consume enormous amounts of electricity; attacking and destroying their power support systems can also achieve the effect of counter-computing power warfare.

    Forward-looking planning for the development of anti-artificial intelligence combat capabilities

    In all warfare, one engages with conventional tactics and wins with unconventional ones. Faced with intelligent warfare, while continuously advancing and improving intelligent combat capabilities, it is also necessary to strengthen preparedness for counter-AI warfare, proactively planning for theoretical innovation, supporting technology development, and equipment platform construction related to counter-AI warfare, ensuring the establishment of an intelligent combat system that integrates offense and defense, and combines defense and counter-attack.

    Strengthen theoretical innovation in counter-AI warfare. Scientific military theory is combat effectiveness. Whether it’s military strategic innovation, military technological innovation, or other aspects of military innovation, all are inseparable from theoretical guidance. We must adhere to liberating our minds, broadening our horizons, and strengthening dialectical thinking. We must use theoretical innovation in counter-AI warfare as a supplement and breakthrough to construct an intelligent warfare theoretical system that supports and serves the fight for victory. We must adhere to the principle of “you fight your way, I fight my way,” strengthening asymmetric thinking. Through in-depth research on the concepts, strategies, and tactics of counter-AI warfare, we must provide scientific theoretical support for seizing battlefield intelligence dominance and effectively leverage the leading role of military theory. We must adhere to the integration of theory and technology, enhancing our scientific and technological awareness, innovation, and application capabilities. We must establish a closed loop between counter-AI warfare theory and technology, allowing them to complement and support each other, achieving deep integration and positive interaction between theory and technology.

    Emphasis should be placed on accumulating military technologies for countering artificial intelligence. Science and technology are crucial foundations for generating and enhancing combat effectiveness. Breakthroughs in some technologies can have disruptive effects, potentially even fundamentally altering the traditional landscape of warfare. Currently, major world powers view artificial intelligence as a disruptive technology and have elevated the development of military intelligence to a national strategy. Simultaneously, some countries are actively conducting research on technologies related to countering artificial intelligence warfare, exploring methods to counter AI and aiming to reduce the effectiveness of adversaries’ military intelligent systems. Therefore, it is essential to both explore and follow up, strengthening research and tracking of cutting-edge technologies, actively discovering, promoting, and fostering the development of technologies with counter-disruptive capabilities, such as intelligent countermeasures, to seize the technological advantage at the outset of counter-AI warfare and prevent enemy technological surprise attacks; and to carefully select technologies, maintaining sufficient scientific rationality and accurate judgment to dispel the technological “fog” and avoid falling into the adversary’s technological traps.

Developing anti-AI warfare weapons and equipment. Designing weapons and equipment is designing future warfare; we develop weapons and equipment based on the types of warfare we will fight in the future. Anti-AI warfare is an important component of intelligent warfare, and anti-AI weapons and equipment will play a crucial role on the future battlefield. When developing anti-AI warfare weapons and equipment, we must first closely align with battlefield needs. We must closely integrate with the adversary, mission, and environment to strengthen anti-AI warfare research, accurately describe anti-AI warfare scenarios, and ensure that the requirements for anti-AI warfare weapons and equipment are scientifically sound, accurate, and reasonable. Secondly, we must adopt a cost-conscious approach. Recent local wars have shown that cost control is a crucial factor influencing the outcome of future wars. Anti-AI warfare focuses on interfering with and deceiving the enemy’s military intelligent systems. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulated decoy targets to deceive the enemy’s intelligent reconnaissance systems, the “de-intelligence” effect can be extended and amplified, aiming to deplete their high-value precision-guided missiles and other high-value strike weapons. Finally, we must emphasize simultaneous development, use, and upgrading. Intelligent technologies are developing rapidly and iterating quickly. It is crucial to closely monitor the application of cutting-edge military intelligent technologies by adversaries, accurately understand their intelligent model algorithm architecture, and continuously promote the upgrading of the latest counter-artificial intelligence technologies in weapon platforms to ensure their high efficiency in battlefield application. (Kang Ruizhi, Li Shengjie)

現代國語:

原文標題:智慧化戰爭面面觀-關注智慧化戰爭中的反人工智慧作戰

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力掌握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關係,技術之矛與反制止制、反制止制相較制、相較制抗擊現象之間的技術之緣關係。

冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之對應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「稜堡」等防禦工事為代表的技戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反坦克武器」相關技術戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「飛彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧科技在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,資料是訓練與最佳化模型的基礎原料,演算法決定了資料處理與問題解決的策略機制,算力則為複雜運算提供硬體支撐。從資料、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反資料作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉辨識模型,可能會因人戴上眼鏡、改變髮型或環境明暗變化等原因,而無法準確辨識身分;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路狀況的誤判。實施反數據作戰,其基本原理是透過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外線特徵甚至是引擎震動效果,用來欺騙智慧情報處理模型;在網路空間,實施流量資料偽裝,以提升網路攻擊靜默運作能力,降低網路攻擊偵測模型的效果。

反演算法作戰。演算法的本質,是用電腦語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一」。不少職業圍棋選手複盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。有別於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網路設施等實施的打擊,透過斷其算力的方式使其人工智慧模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭「迷霧」和資料雜訊為主。例如,作戰時大量產生影像、音訊、視訊、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達成反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建設

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推動提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展與裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開拓視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,透過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合與良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。目前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要建立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。透過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力求消耗其精確導引飛彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效性。 (康睿智 李聖傑)

中國原創軍事資源:https://mil.news.sina.com.cn/zonghe/2025-05-20/doc-inexeiih2818486808984.shtml

Chinese Military Embracing the Challenges of Intelligent Warfare with New Combat Concepts

中國軍隊以新的作戰概念迎接智慧戰爭的挑戰

現代英語:

Foreword

Breakthroughs in artificial intelligence technology, marked by deep learning, and their applications across various fields have propelled intelligentization to new heights globally, becoming a focal point of attention. In the military field, where technological innovation and application are never lagging behind, a new revolution is also actively brewing. We must accurately grasp the pulse of intelligent warfare’s evolution and analyze its intrinsic nature in order to embrace and master intelligent warfare with a fresh perspective.

How far away is intelligent warfare from us?

Intelligent warfare is warfare primarily supported by artificial intelligence technology. Imbuing weapon platforms with human-like intelligence and replacing human combatants on the battlefield has been a dream for humanity for millennia. With the powerful impact of AI systems like AlphaGo and Atlas, and the emerging concepts and platforms of new warfare such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The laws of historical development foreshadow the inevitable rise of intelligent warfare on the battlefield. Advances in science and technology drive the evolution of weaponry, triggering fundamental changes in military organization, combat methods, and military theory, ultimately forcibly propelling a historical transformation in the form of warfare. The arrival of intelligent warfare aligns with this inevitable historical trend. Looking back at the evolution of human warfare, every major advancement in science and technology has driven significant military transformations. The invention of gunpowder ushered in the era of firearms, wiping out infantry and cavalry formations under the linear warfare tactics of firearms. The application of the steam engine in the military led to the mechanized era, giving rise to large-scale mechanized warfare led by armored ships, tanks, and aircraft. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, once again triggering a major military revolution, and intelligent warfare will inevitably take center stage.

The development of artificial intelligence (AI) technology determines the pace of intelligent warfare. The continuous development and widespread application of AI technology are propelling intelligent warfare from its initial stages of uncertainty to reality, gradually emerging and growing, step by step approaching us. To truly enter the era of intelligent warfare, AI technology needs to advance through four stages. The first stage is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near real-time computing and storage capabilities—capabilities far beyond the reach of large computers and massive servers. The widespread application of cloud computing has already firmly placed humanity on this first stage. The second stage is perceptual intelligence, where machines can understand, see, distinguish, and recognize, enabling direct communication and dialogue with humans. Natural language understanding, image and graphics recognition, and biometric identification technologies based on big data have allowed humanity to reach this second stage. The third stage is cognitive intelligence, where machines can understand human thought, reason and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms are propelling humanity towards this third stage. The fourth stage is human-machine integrated augmented intelligence, which involves complementary and two-way closed-loop interaction between humans’ strengths in perception, reasoning, induction, and learning, and machines’ strengths in search, computation, storage, and optimization. Virtual reality augmentation technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humanity can reach this fourth stage. When humanity reached the second stage, the intelligent warfare began to approach; when we step onto the fourth stage, the era of intelligent warfare will fully begin.

Self-learning and growth are accelerating the sudden arrival of the intelligent warfare revolution. “Learning” ability is the core capability of artificial intelligence; once machines can learn on their own, their learning speed will be astonishing. Once machines possess self-learning capabilities, they will enter a rapid growth trajectory of continuous “intelligence enhancement and accelerated evolution.” All the technical difficulties in moving towards intelligent warfare will be readily resolved as “learning” deepens. The era of intelligent warfare may very well arrive suddenly in ways no one could have imagined!

What exactly will intelligent warfare change?

Intelligent warfare will break through the limits of traditional spatiotemporal cognition . In intelligent warfare, artificial intelligence technology can collect, calculate, and push information on the actions of all forces in combat in real time and across all domains. This will enable humans to break through the logical limits of thought, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space. It will allow for real-time and precise control over all actions of all forces, and enable the rapid transfer, aggregation, and attack of superior combat resources in multidimensional space and domains. Any time and any space may become a point in time and space where victory can be achieved.

Intelligent warfare will reshape the relationship between humans and weaponry . With the rapid advancement of intelligent technologies and the continuous improvement of their intelligence levels, weapon platforms and combat systems can not only passively and mechanically execute human commands, but also, based on deep understanding and prediction, leverage the computational, storage, and retrieval capabilities that machines excel at, thereby autonomously and proactively executing specific tasks to a certain extent. It can be said that weapon platforms and combat systems can also, to some extent, proactively exert human consciousness, even exceeding the scope of human understanding, autonomously and even creatively completing combat missions according to specific programs. The traditional distinction between humans and weaponry becomes blurred, even making it difficult to differentiate whether it is humans or machines at work. People are exclaiming that “humans and weaponry will become partners.” Therefore, in intelligent warfare, while humans remain the most important factor in combat effectiveness, the changing way humans and weaponry are integrated enriches the connotation of combat effectiveness, and the traditional relationship between humans and weaponry will be restructured on this basis.

Intelligent warfare will spur the emergence of new combat methods . Revolutionary advancements in science and technology inevitably lead to revolutionary changes in combat methods; significant progress in intelligent technologies will inevitably bring about a period of rapid transformation in combat methods. On the one hand, emerging technologies in fields such as deep cognition, deep learning, and deep neural networks, driven by computing, data, algorithms, and biology, along with their cross-integration with achievements in information, biology, medicine, engineering, and manufacturing, will inevitably drive an explosive emergence of new combat methods. On the other hand, the intense confrontation between intelligent weapon platforms and combat systems will inevitably become the target and driving force for innovative combat methods. The higher the level of intelligent technology in a war, the more it will become the focus of confrontation. Disadvantages in areas such as the limits of spatiotemporal cognition, massive information storage and computing capabilities, and neural network organization and generation capabilities will lead to new types of “blinding,” “deafening,” and “paralyzing” combat methods in new domains.

Intelligent warfare will incubate entirely new command and control methods. The advantages of command and control are a focal point in warfare, and intelligent warfare calls for entirely new command and control approaches. First, human-machine collaborative decision-making will become the primary command and decision-making method in intelligent warfare. In previous wars, command and decision-making was primarily driven by commanders, with technology playing a supporting role. In intelligent warfare, intelligent auxiliary decision-making systems will proactively urge or prompt commanders to make decisions based on changes in the battlefield situation. This is because the human brain can no longer quickly absorb and efficiently process the massive and rapidly changing battlefield situational information, and human senses can no longer withstand the extraordinary speed of change. Under such circumstances, decisions made solely by commanders are likely to be delayed and useless. Only human-machine collaborative decision-making driven by intelligent auxiliary decision-making systems can compensate for time and space differences and the gap between machine and brain, ensuring the advantage of command and decision-making. Second, brain-computer interface control will become the primary command and control method in intelligent warfare. In previous wars, commanders issued commands to control troops level by level through documents, radio, and telephone, in written or voice form. In intelligent warfare, commanders use intelligent, brain-like neurons to issue commands to troops through a neural network combat system platform. This reduces the conversion process of command presentation formats and shortens the time for commands to be converted across media, resulting in a faster pace and higher efficiency. When the combat system platform is attacked and partially damaged, this command and control method can autonomously repair or reconstruct the neural network, quickly restoring its main functions or even all functions, making it more resistant to attack.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content with lagging behind and following others. We must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Breakthroughs in intelligent technologies will drive a leap in the effectiveness of intelligent combat systems. While significant progress has been made in areas such as neural network algorithms, intelligent sensing and networking technologies, data mining, and knowledge graph technologies, intelligent technologies are still largely in the weak intelligence stage, far from reaching the advanced stage of strong intelligence, and there is still vast potential for future development. It is essential to strengthen basic research in artificial intelligence, follow the laws of scientific and technological development, scientifically plan the development direction of intelligent technologies, select appropriate technological breakthroughs, and strengthen key core technologies in artificial intelligence, especially fundamental research that plays a supporting role. Emphasis should be placed on research into key military technologies. Driven by military needs, and focusing on key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support, intelligent reconnaissance and perception systems, command and control systems, weapon systems, and combat support systems should be developed. Collaborative innovation between military and civilian technologies should be promoted, fully leveraging the advantages of civilian intelligent technology development, relying on the advantages of military and civilian resources, strengthening strategic cooperation between the military and civilian sectors, and building a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the integration of general standards between the military and civilian sectors, thus forming a new landscape of open, integrated, and innovative development of intelligent combat technologies.

Leading the innovation of combat methods with the concept of intelligent warfare. A shift in mindset is a prerequisite for welcoming the arrival of intelligent warfare. Mindset precedes action; if our mindset remains at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has brought about profound changes in technological support, combat forces, and winning mechanisms, requiring us to first establish the concept of intelligent warfare and use it to guide the innovation of our military’s future combat methods. First, we must strengthen the struggle for “intelligent control.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to utilize intelligence, while maintaining our own freedom to utilize intelligence, is fundamental to ensuring the smooth implementation of intelligent warfare. The militaries of developed Western countries are exploring various means, such as electromagnetic interference, electronic suppression, high-power microwave penetration, and takeover control, to block the opponent’s ability to utilize intelligence, seize “intelligent control,” and thus gain battlefield advantage. Second, we must innovate intelligent combat methods. We must focus on fully leveraging the overall effectiveness of the intelligent combat system, strengthening research on new intelligent combat methods such as human-machine collaborative intelligent warfare, intelligent robot warfare, and intelligent unmanned swarm warfare, as well as the processes and methods of intelligent combat command and intelligent combat support. With a view to effectively counter the threat of intelligent warfare from the enemy, we should study strategies to defeat the enemy, such as intelligent disruption warfare and intelligent interdiction warfare.

Intelligent training innovation is driving a transformation in combat capability generation. Intelligent warfare will be a war jointly waged by humans and machines, with intelligent unmanned combat systems playing an increasingly important role. It is imperative to adapt to the new characteristics of intelligent warfare force systems, innovate and develop intelligent training concepts, and explore new models for generating combat capability in intelligent warfare. On the one hand, it is necessary to strengthen training for humans in operating intelligent systems. By leveraging big data, cloud computing, VR technology, and other technologies to create new training environments, we can continuously improve human intelligence literacy, enhance human-machine cognition, understanding, and interaction quality, and improve the ability of humans to operate intelligent combat systems. On the other hand, it is necessary to explore new training models with machines as the primary focus. Previous training has primarily focused on humans, emphasizing the ability of humans to master and use weapons and equipment in specific environments to improve combat effectiveness. To adapt to the new characteristics of the force structure in intelligent warfare, the training organization concept and model of traditional training, which is centered on people, should be changed. Instead, the focus should be on improving the self-command, self-control, and self-combat capabilities of intelligent combat systems. By making full use of the characteristics of intelligent systems that can engage in self-competition and self-growth, a training system, training environment, and training mechanism specifically for intelligent combat systems should be formed. This will enable intelligent combat systems to achieve a geometric leap in combat capability after a short period of autonomous intensive training.

現代國語:

前言

以深度學習為代表的人工智慧技術的突破及其在各個領域的應用,已將全球智慧化推向新的高度,成為關注的焦點。在科技創新與應用從未落後的軍事領域,一場新的革命也正悄悄醞釀。我們必須精確掌握智慧戰爭演進的脈搏,分析其內在本質,才能以全新的視角擁抱和掌握智慧戰爭。

智慧戰爭離我們還有多遠?

智慧戰爭是指以人工智慧技術為主要的支撐戰爭。賦予武器平台類人智能,並在戰場上取代人類作戰人員,一直是人類數千年來的夢想。隨著AlphaGo和Atlas等人工智慧系統的強大影響力,以及集群作戰、飛行航空母艦等新型戰爭概念和平台的湧現,智慧戰爭的大門似乎正在悄悄開啟。

歷史發展的規律預示著智慧戰爭在戰場上的必然崛起。科技進步推動武器裝備的演進,引發軍事組織、作戰方式和軍事理論的根本性變革,最終強而有力地推動戰爭形式的歷史性轉型。智慧戰爭的到來正契合這不可避免的歷史趨勢。回顧人類戰爭的發展歷程,每一次科技的重大進步都帶來了意義深遠的軍事變革。火藥的發明開啟了火器時代,在火器線性戰術下,步兵和騎兵陣型被徹底摧毀。蒸汽機在軍事上的應用開啟了機械化時代,催生了以裝甲艦、坦克和飛機為主導的大規模機械化戰爭。智慧科技的出現與應用將深刻改變人類的認知、戰爭思維和作戰方式,再次引發一場重大的軍事革命,智慧戰爭必定成為戰爭的核心。

人工智慧(AI)技術的發展速度決定著智慧戰爭的進程。人工智慧技術的持續發展和廣泛應用正推動智慧戰爭從最初的不確定階段走向現實,逐步興起、發展壯大,一步步向我們逼近。要真正進入智慧戰爭時代,人工智慧技術需要經歷四個階段。第一階段是運算智能,這意味著突破運算能力和儲存空間的限制,實現近實時運算和儲存能力——這種能力遠遠超出大型電腦和海量伺服器的範疇。雲端運算的廣泛應用已經使人類穩固地邁入了這個階段。第二階段是感知智能,機器能夠理解、觀察、區分和識別,從而實現與人類的直接溝通和對話。基於大數據技術的自然語言理解、影像和圖形識別以及生物特徵識別技術,已經使人類邁入了第二階段。第三階段是認知智能,機器能夠理解人類的思維,像人類一樣進行推理、判斷和決策。知識探勘、知識圖譜、人工神經網路以及由深度學習演算法驅動的決策樹技術,正在推動人類邁向第三階段。第四階段是人機融合增強智能,它涉及人類在感知、推理、歸納和學習方面的優勢與機器在搜尋、計算、儲存和最佳化方面的優勢之間互補的雙向閉環互動。虛擬實境增強技術、類腦認知技術和類腦神經網路技術正在探索人類如何達到這個第四階段。當人類達到第二階段時,智慧戰爭開始逼近;當我們邁入第四階段時,智慧戰爭時代將全面開啟。

自主學習和成長正在加速智慧戰爭革命的到來。 「學習」能力是人工智慧的核心能力;一旦機器能夠自主學習,其學習速度將令人驚嘆。一旦機器擁有自主學習能力,它們將進入持續「智慧增強和加速進化」的快速成長軌跡。隨著「學習」能力的加深,邁向智慧戰爭的所有技術難題都將迎刃而解。智慧戰爭時代很可能以我們無法想像的方式突然降臨!

智慧戰爭究竟會帶來哪些改變?

智慧戰爭將突破…的限制。在傳統時空認知中,人工智慧技術能夠即時、跨域地收集、計算並推送所有作戰力量的行動資訊。這將使人類突破思維的邏輯限制、感官的生理限制以及存在的物理限制,大大拓展時空認知範圍。它將實現對所有作戰力量行動的即時精準控制,並能夠在多維空間和領域內快速調動、聚合和攻擊優勢作戰資源。任何時間、任何空間都可能成為取得勝利的時空點。

智慧戰爭將重塑人與武器之間的關係。隨著智慧技術的快速發展和智慧水準的不斷提升,武器平台和作戰系統不僅可以被動、機械地執行人類指令,還能基於深度理解和預測,充分利用機器強大的運算、儲存和檢索能力,在一定程度上自主、主動地執行特定任務。可以說,武器平台和作戰系統也能在某種程度上主動發揮人類意識,甚至超越人類理解的範疇,根據特定程序自主、甚至創造性地完成作戰任務。人與武器之間的傳統界線變得模糊,甚至難以區分究竟是人在工作還是機器在工作。人們開始高喊「人與武器將成為夥伴」。因此,在智慧戰爭中,雖然人仍是作戰效能的最重要因素,但人與武器融合方式的改變豐富了作戰效能的內涵,傳統的人與武器關係也將在此基礎上重構。

智慧戰爭將催生新的作戰方式。科技的革命性進步必然導致作戰方式的革命性變革;智慧技術的顯著進步必然會帶來作戰方式的快速轉型期。一方面,由計算、數據、演算法和生物學驅動的深度認知、深度學習和深度神經網路等領域的新興技術,以及它們與資訊、生物、醫學、工程和製造等領域成果的交叉融合,必將推動新型作戰方式的爆發式湧現。另一方面,智慧武器平台與作戰系統之間的激烈對抗,必將成為創新作戰方式的目標與驅動力。戰爭中智慧科技的程度越高,就越會成為對抗的焦點。時空認知能力、海量資訊儲存和運算能力以及神經網路組織和生成能力等方面的局限性,將導致在新的領域出現新型的「致盲」、「致聾」和「致癱」作戰方式。

智慧戰爭將孕育全新的指揮控制方式。指揮控制的優勢是戰爭的關鍵所在,而智慧戰爭需要全新的指揮控制方法。首先,人機協同決策將成為智慧戰中主要的指揮決策方式。以往戰爭中,指揮決策主要由指揮官主導,技術僅扮演輔助角色。而在智慧戰中,智慧輔助決策系統將根據戰場態勢的變化,主動敦促或提示指揮官做出決策。這是因為人腦已無法快速有效地吸收和處理大量且瞬息萬變的戰場態勢訊息,人類的感官也無法承受如此巨大的變化速度。在這種情況下,僅由指揮官做出的決策很可能滯後且無效。只有由智慧輔助決策系統驅動的人機協同決策才能彌補時空差異以及人機之間的差距,從而確保指揮決策的優勢。其次,腦機介面控制將成為智慧戰中主要的指揮控制方式。以往戰爭中,指揮官透過文件、無線電、電話等方式,以書面或語音形式,逐級下達命令來控制部隊。在智慧戰爭中,指揮官利用類似大腦的智慧神經元,透過神經網路作戰系統平台向部隊下達命令。這減少了命令呈現格式的轉換過程,並且 縮短跨媒介指令轉換時間,進而加快速度,提高效率。當作戰系統平台遭受攻擊並部分受損時,這種指揮控制方法可以自主修復或重建神經網絡,快速恢復其主要功能甚至全部功能,使其更具抗攻擊能力。

我們該如何應對智慧戰爭?

在智慧戰爭的研究和探索中,我們不能滿足於落後和跟隨他人。我們必須以贏得未來戰爭為目標,以更積極的態度、先進的理念和積極的行動迎接智慧戰爭的挑戰。

智慧技術的突破將推動智慧作戰系統效能的飛躍。雖然在神經網路演算法、智慧感知和網路技術、資料探勘和知識圖譜技術等領域已經取得了顯著進展,但智慧技術仍處於弱智慧階段,距離強智慧的先進階段還有很長的路要走,未來發展潛力巨大。必須加強人工智慧基礎研究,遵循科技發展規律,科學規劃智慧技術發展方向,選擇合適的技術突破點,強化人工智慧核心技術,特別是起到支撐作用的基礎研究。重點要加強關鍵軍事技術的研究。在軍事需求的驅動下,聚焦智慧感知、智慧決策、智慧控制、智慧打擊、智慧支援等關鍵軍事技術,發展智慧偵察感知系統、指揮控制系統、武器系統、作戰支援系統等。要推動軍民技術協同創新,充分發揮民用智慧技術發展優勢,依托軍民資源優勢,加強軍民戰略合作,建構人工智慧科技成果聯合研究共享、條件設施聯合建設共享、軍民通用標準融合的服務平台,形成智慧作戰技術開放、融合、創新發展的新格局。

以智慧戰理念引領作戰方式創新。思維方式的轉變是迎接智能戰到來的先決條件。思考方式先於行動;如果我們的思考方式仍停留在傳統層面,就難以適應智慧戰的需求。智能戰為技術保障、作戰力量和致勝機制帶來了深刻的變革,這就要求我們先確立智能戰的理念,並以此指導我軍未來作戰方式的創新。首先,我們必須加強對「智慧控制」的爭奪。人工智慧是智能戰的基礎。在保障自身智慧運用自由的同時,削弱和限制對手運用智慧的能力,是確保智能戰順利實施的根本。西方已開發國家的軍隊正在探索各種手段,例如電磁幹擾、電子壓制、高功率微波穿透和控制權奪取等,以阻斷對手運用智能的能力,奪取“智能控制權”,從而獲得戰場優勢。其次,我們必須創新智慧作戰方式。我們必須集中精力充分發揮智慧作戰系統的整體效能,加強對人機協同智能戰、智能機器人戰、智能無人集群戰等新型智能作戰方式以及智能作戰指揮、智能作戰支援的流程和方法的研究。為有效應對敵方智能戰的威脅,我們應研究擊敗敵方的策略,例如智慧幹擾戰、智慧封鎖戰等。

智慧訓練創新正在推動作戰能力產生方式的改變。智慧戰將是一場人機協同作戰,智慧無人作戰系統將發揮日益重要的作用。必須適應智慧戰部隊系統的新特點,創新發展智慧訓練理念,探索智慧作戰能力生成的新模式。智慧戰爭。一方面,需要加強操作智慧系統的人員的訓練。利用大數據、雲端運算、虛擬實境等技術創造新的訓練環境,可以不斷提高人員的智慧素養,增強人機認知、理解和互動質量,提高人員操作智慧作戰系統的能力。另一方面,需要探索以機器為核心的新型訓練模式。過去的訓練主要以人為中心,強調人員在特定環境下掌握和使用武器裝備以提升作戰效能的能力。為了適應智慧戰爭部隊結構的新特點,需要改變以人為中心的傳統訓練組織理念和模式,轉而專注於提升智慧作戰系統的自主指揮、自主控制和自主作戰能力。充分利用智慧系統能夠進行自我競爭和自我成長的特性,建構專門針對智慧作戰系統的訓練體系、訓練環境和訓練機制。這將使智慧作戰系統在經過短時間的自主強化訓練後,作戰能力實現幾何級的飛躍。

李始江 杨子明 陈分友

中国军网 国防部网
2018年7月26日 星期四

中國原創軍事資源:http://www.81.cn/jfjbmap/content/28018-07/286/content_28118827.htm

Chinese Military AI Empowerment: Accelerating the Iterative Upgrade of Cognitive Electronic Warfare

中國軍事人工智慧賦能:加速認知電子戰迭代升級

現代英語:

In the invisible dimension of war, a silent contest has been raging for a century. From the electromagnetic fog of the Battle of Tsushima to the spectral chaos of modern battlefields, from the rudimentary metal chaff used during World War II to the cognitive electronic warfare systems incorporating artificial intelligence, electronic warfare has undergone a magnificent transformation from a supporting role to a pillar of war. It is now deeply embedded in the “operating system” of modern warfare, rewriting its form and rules. It is invisible and intangible, yet it profoundly controls the lifeline of battlefield operations; it is silent, yet it is enough to determine the life and death of thousands of troops. The balance of future wars will increasingly depend on who can see more clearly, react faster, and control more firmly in this silent yet deadly spectrum.

In modern warfare, the field of electronic warfare is evolving rapidly. The electromagnetic spectrum is considered an important operational domain after land, sea, air, space, and cyberspace, becoming a focal point for both sides to gain comprehensive dominance in joint operations. As warfare accelerates its evolution towards intelligence, cognitive electronic warfare, which integrates artificial intelligence and machine learning technologies, is increasingly demonstrating its autonomous countermeasure advantages, becoming a crucial tool for paralyzing entities in the electromagnetic space.

New Needs of Intelligent Warfare

In informationized and intelligent warfare, information equipment is widely distributed, and unmanned intelligent equipment is deployed, making the battlefield electromagnetic environment increasingly complex. Due to the adoption of cognitive and adaptive technologies, radar and communication equipment are becoming increasingly resistant to interference, rendering traditional electronic countermeasures inadequate. Therefore, it is necessary to leverage artificial intelligence and machine learning to endow electronic warfare systems with the ability to self-identify threats, extract threat source signals in real time, quickly organize and analyze them, determine the threat level and weaknesses of the signals, and promptly and effectively counteract them.

The need for precise perception. In modern warfare, to increase battlefield “transparency,” both sides extensively utilize electronic information equipment. Simultaneously, unmanned equipment and “swarm” systems are widely employed. On a battlefield filled with numerous information devices and massive amounts of electromagnetic signals, a single electronic warfare device may simultaneously receive radiation from dozens or even hundreds of other electronic devices, making signal identification extremely difficult. This necessitates that electronic warfare systems break through existing technological limitations, integrate big data analysis and deep learning technologies, enhance their perception capabilities, and comprehensively identify various electromagnetic radiation targets on the battlefield.

The need for intelligent countermeasures. Driven by emerging technologies, agile radar, frequency-hopping radios, and other equipment have been deployed extensively on the battlefield. These devices form a closed loop between transmission and reception, and can autonomously adjust their operating modes, transmission parameters, and waveform selection according to the environment, possessing autonomous interference avoidance capabilities. Traditional electronic warfare equipment, based on existing experience and pre-set interference rule libraries, has rigid functions and poor flexibility, making it unable to cope with emerging adaptive electronic targets. This necessitates that electronic warfare systems integrate intelligent algorithms to become “smarter,” possessing adaptive countermeasure capabilities of “using intelligence against intelligence.”

The need to disrupt networked systems. The winning mechanism of modern combat systems, when mapped onto the information domain, has spurred the networked operation of radar and communication systems. The aim is to eliminate the global loss of control caused by interference with a single device or part of the link through information fusion and redundant design, leveraging the resilience of the network system. Faced with networked information systems, electronic warfare systems need to embed intelligent countermeasure analysis and reasoning technologies, possessing the ability to effectively identify networked information systems in order to discover key nodes and critical parts, and implement targeted, integrated hardware and software attacks.

A New Transformation Driven by Digital Intelligence

Cognitive electronic warfare can be considered a combination of electronic warfare and artificial intelligence. It is a new generation of electronic warfare systems with autonomous perception, intelligent decision-making, and adaptive jamming capabilities, representing a major upgrade to traditional electronic warfare.

The shift from human to machine cognition. Advances in modern electronic technology have enabled electronic information equipment to offer diverse functions and multiple modes. Traditional electronic warfare systems rely on manually analyzed threat databases for countermeasures, which are only effective against known signal patterns and become significantly less effective against unknown threats. Cognitive electronic warfare systems, through autonomous interactive swarm learning and intelligent algorithms, can quickly intercept and identify signal patterns, analyze changing patterns, make autonomous decisions based on changes in the electromagnetic environment, optimize interference signal waveforms, and autonomously complete the operational cycle of “observation-judgment-decision-action.”

The focus is shifting from precision-driven to data-driven. Electronic warfare systems rely on the measurement and sensing of electronic signals as their fundamental premise. However, with the rise of new technologies, the sensitivity and resolution of these systems are approaching their limits, hindering their development and upgrades. Recognizing that electronic warfare systems can break through traditional models by utilizing big data analytics and mining large datasets can not only efficiently intercept and accurately identify unknown signals, but also predict the timing of frequency changes, mode adjustments, and power conversions. This allows for the correlation analysis of the electronic target’s operational patterns, enabling proactive adjustments to jamming strategies, rules, and parameters to conduct targeted electronic attacks.

The focus has shifted from jamming single targets to disrupting networked targets. Driven by network technology, new-generation radar and communication equipment are beginning to network, using system advantages to compensate for the shortcomings of single points. Traditional electronic warfare jamming relies on human experience and knowledge, lacking sufficient self-learning capabilities. It is mainly used to jam point and chain-like electronic targets, and cannot effectively jam networked targets. Cognitive electronic warfare systems utilize deep learning technology to perceive the network structure and operating modes of new networked systems such as radar and communication. Based on logical reasoning, it can identify nodes, hubs, and key links in the networked system, thereby implementing precise jamming and making it possible to disrupt the system.

New forms of structural reshaping

Cognitive electronic warfare systems, based on the traditional open-loop structure, introduce behavioral learning processes and reshape the modular architecture, enabling them to evaluate the effectiveness of interference and optimize interference strategies based on interference feedback, thus completing a closed loop of “reconnaissance-interference-evaluation” countermeasures.

Reconnaissance and Sensing Module. Reconnaissance and sensing is the primary link in electronic warfare and a crucial prerequisite for the successful implementation of cognitive electronic warfare. This module utilizes deep learning and feature learning techniques to continuously learn from the surrounding environment through constant interaction with the battlefield electromagnetic environment. It performs parameter measurement and sorting of signals, analyzes and extracts characteristic data of target threat signals with the support of prior knowledge, assesses behavioral intent, determines the threat level, and transmits the data to the decision-making and effectiveness evaluation module.

Decision-Making Module. The decision-making module is the core of the cognitive electronic warfare system, primarily responsible for generating interference strategies and optimizing interference waveforms. Based on the analysis and identification results of reconnaissance and perception, the feedback effect of interference assessment, and a dynamic knowledge base, this module uses machine learning algorithms to predict threat characteristics, generates countermeasures through reasoning from past experience, rapidly formulates attack strategies and optimizes interference waveforms, automatically allocates interference resources, and ultimately completes autonomous attacks on target signals.

Effectiveness assessment module. Effectiveness assessment is key to the closed-loop operation of cognitive electronic warfare systems, playing a crucial role in linking all modules. This module analyzes the target’s response to the jamming measures based on feedback information after the signals sensed by reconnaissance are jammed. It calculates and assesses the degree of jamming or damage to the target online, and then feeds the results back to the decision-making module to help adjust jamming strategies and optimize waveforms.

The dynamic knowledge base module primarily provides basic information and data support, including a threat target base, an interference rule base, and a prior knowledge base. This module provides prior information such as models, parameters, and data for reconnaissance and perception, decision-making, and performance evaluation. It utilizes feedback information for cognitive learning, accumulates learning results into experience, and updates the knowledge graph, knowledge rules, and reasoning models in the knowledge base, achieving real-time updates to the knowledge base.

New applications that enhance efficiency

With further breakthroughs in algorithm models and learning reasoning technologies, information-based and intelligent warfare will lead to more mature and sophisticated cognitive electronic warfare systems. Their role in empowering and enhancing efficiency will become more prominent, their application scenarios will become more diverse, and they will become an indispensable weapon on the battlefield.

Precision energy release for strike operations. Under informationized and intelligent conditions, the battlefield situation is presented in real time, command and decision-making are timely and efficient, and combat operations are controlled in real time, enabling precision operations to move from scenario conception to the real battlefield. At the same time, with the connection of cyber information facilities, the combat system has a higher degree of coupling and stronger resilience, becoming an important support for the implementation of joint operations. The cognitive electronic warfare system possesses high-precision perception capabilities and strong directional jamming capabilities. Through its distributed deployment across a wide battlefield, it can work in conjunction with troop assaults and fire strikes, under the unified command of joint operations commanders, to conduct precise attacks on key nodes and important links of the combat system. This includes precise targeting, precise frequency coverage, and precise and consistent modulation patterns, thereby blinding and degrading the effectiveness of enemy early warning detection and command and control systems, and facilitating the implementation of system disruption operations.

Networked Collaborative Swarm Warfare. In future warfare, unmanned swarms such as drones, unmanned vehicles, and unmanned boats will be the main force in combat, making the construction of a low-cost, highly redundant force system crucial for victory. Facing unmanned combat systems like “swarms,” ​​”wolf packs,” and “fish schools,” cognitive electronic warfare systems possess a natural advantage in evolving into unmanned electronic warfare swarms. Based on networked collaborative technologies, reconnaissance and jamming payloads are deployed on unmanned swarm platforms. Information and data exchange between platforms is achieved through information links. With the support of intelligent algorithms, cognitive electronic warfare systems can optimize the combination of jamming functions and dynamically allocate resources based on the battlefield electromagnetic situation. Based on autonomous collaborative guidance and centralized control, they can conduct swarm-to-swarm electronic attacks.

Electronic warfare and cyber warfare are two fundamentally different modes of combat. Electronic warfare focuses on low-level confrontation at the physical and signal layers, while cyber warfare focuses on high-level confrontation at the logical and information layers. However, with information networks covering the electromagnetic spectrum, the convergence of electronic and cyber warfare has become increasingly possible. Breakthroughs in wireless access and encryption technologies have enabled cognitive electronic warfare systems to infiltrate network infrastructure, achieving seamless integration of cyber and electronic space situational awareness and mission decision-making. By combining autonomous learning, pattern evaluation, and algorithmic prediction, a closed-loop system integrating cyber and electronic space perception, evaluation, decision-making, and feedback can be established, enabling integrated cyber and electronic warfare offense and defense.

現代國語:

在戰爭的無形維度中,一場無聲的較量已持續了一個世紀。從馬海戰的電磁迷霧到現代戰場的光譜混亂,從二戰時期簡陋的金屬箔條到融合人工智慧的認知電子戰系統,電子戰經歷了從輔助角色到戰爭支柱的華麗蛻變。如今,它已深深融入現代戰爭的“操作系統”,改寫了戰爭的形式和規則。它無形無質,卻深刻地掌控著戰場行動的生命線;它悄無聲息,卻足以決定成千上萬士兵的生死。未來戰爭的勝負將越來越取決於誰能更清晰地洞察、更快地反應、更牢固地掌控這片無聲卻致命的頻譜。

在現代戰爭中,電子戰領域正快速發展。電磁頻譜被視為繼陸地、海洋、空中、太空和網路空間之後的重要作戰領域,成為交戰雙方在聯合作戰中爭奪全面優勢的關鍵所在。隨著戰爭加速朝向智慧化演進,融合人工智慧和機器學習技術的認知電子戰正日益展現其自主對抗優勢,成為癱瘓電磁空間目標的關鍵工具。

智慧戰爭的新需求

在資訊化和智慧化戰爭中,資訊裝備廣泛分佈,無人智慧裝備也投入使用,使得戰場電磁環境日益複雜。由於認知和自適應技術的應用,雷達和通訊裝備的抗干擾能力不斷增強,傳統的電子對抗手段已難以應對。因此,必須利用人工智慧和機器學習技術,賦予電子戰系統自主識別威脅、即時提取威脅源訊號、快速整理分析、判斷威脅等級和訊號弱點並及時有效對抗的能力。

精準感知的需求。在現代戰爭中,為了提高戰場“透明度”,交戰雙方廣泛使用電子資訊裝備。同時,無人裝備和「集群」系統也被廣泛應用。在充斥著大量資訊設備和海量電磁訊號的戰場上,單一電子戰設備可能同時接收來自數十甚至數百個其他電子設備的輻射,使得訊號識別極為困難。這就要求電子戰系統突破現有技術限制,融合大數據分析與深度學習技術,增強感知能力,並全面辨識戰場上各種電磁輻射目標。

智能對抗的需求。在新興技術的推動下,敏捷雷達、跳頻無線電等設備已廣泛部署於戰場。這些設備在收發之間形成閉環,能夠根據環境自主調整工作模式、發射參數和波形選擇,並具備自主抗干擾能力。傳統的電子戰設備基於現有經驗和預設的干擾規則庫,功能僵化,靈活性差,難以應對新興的自適應電子目標。這就要求電子戰系統融合智慧演算法,變得更加“智慧”,具備“以智制智”的自適應對抗能力。

顛覆網路化系統的需求。現代作戰系統的致勝機制,一旦映射到資訊領域,便會推動雷達和通訊系統的網路化運作。其目標是透過資訊融合和冗餘設計,利用網路系統的韌性,消除因單一設備或連結某部分受到干擾而導致的全局失控。面對網路化資訊系統,電子戰系統需要嵌入智慧對抗分析和推理技術,具備有效識別網路化資訊系統的能力,從而發現關鍵節點和重要部件,並實施有針對性的軟硬體一體化攻擊。

數位智慧驅動的新轉型

認知電子戰可以被視為電子戰與人工智慧的結合。它是新一代電子戰系統,具備自主感知、智慧決策和自適應幹擾能力。智慧電子戰系統代表傳統電子戰的重大升級。

認知方式的轉變:從人腦認知轉向機器認知。現代電子技術的進步使得電子資訊設備能夠提供多樣化的功能和多種模式。傳統的電子戰系統依賴人工分析的威脅資料庫進行對抗,而這種方法僅對已知的訊號模式有效,而對未知威脅的對抗效果則顯著降低。認知電子戰系統透過自主互動群體學習和智慧演算法,能夠快速截獲和識別訊號模式,分析變化的模式,根據電磁環境的變化做出自主決策,優化干擾訊號波形,並自主完成「觀察-判斷-決策-行動」的作戰循環。

電子戰的重點正從精度驅動轉向數據驅動。電子戰系統以測量和感知電子訊號為基本前提。然而,隨著新技術的出現,這些系統的靈敏度和解析度正接近極限,阻礙了其發展和升級。認識到電子戰系統可以透過利用大數據分析和挖掘大型資料集來突破傳統模式,不僅可以高效截獲和準確識別未知訊號,還可以預測頻率變化、模式調整和功率轉換的時機。這使得對電子目標的運作模式進行關聯分析成為可能,從而能夠主動調整幹擾策略、規則和參數,並實施有針對性的電子攻擊。

幹擾的重點已從單一目標轉向幹擾網路化目標。在網路技術的驅動下,新一代雷達和通訊設備開始連網,利用系統優勢彌補單點目標的不足。傳統的電子戰幹擾依賴人的經驗和知識,缺乏足夠的自學習能力,主要用於幹擾點狀和鏈狀電子目標,無法有效幹擾網路化目標。認知電子戰系統利用深度學習技術感知雷達、通訊等新型網路化系統的網路結構與運作模式。基於邏輯推理,該系統能夠識別網路系統中的節點、樞紐和關鍵鏈路,從而實現精準幹擾,並有可能破壞系統。

新型結構重塑

認知電子戰系統在傳統開環結構的基礎上,引入行為學習過程並重塑模組化架構,使其能夠評估幹擾效果,並基於乾擾反饋優化干擾策略,從而形成「偵察-幹擾-評估」對抗的閉環。

偵察感知模組。偵察感知是電子戰的核心環節,也是成功實施認知電子戰的關鍵前提。本模組利用深度學習和特徵學習技術,透過與戰場電磁環境的持續交互,不斷學習周圍環境。它對訊號進行參數測量和分類,在先驗知識的支持下分析和提取目標威脅訊號的特徵數據,評估行為意圖,確定威脅等級,並將數據傳輸至決策和效果評估模組。

決策模組。決策模組是認知電子戰系統的核心,主要負責產生幹擾策略和最佳化干擾波形。此模組基於偵察感知的分析識別結果、幹擾評估的回饋效果以及動態知識庫,利用機器學習演算法預測威脅特徵,透過對過往經驗的推理生成對抗措施,快速制定攻擊策略並優化干擾波形,自動分配幹擾資源,最終完成對目標訊號的自主攻擊。

效果評估模組。效果評估是認知電子戰系統閉環運作的關鍵,在連接所有模組中發揮至關重要的作用。此模組在偵察感知到訊號被幹擾後,基於回饋資訊分析目標對幹擾措施的反應,在線上計算和評估目標受到的干擾或損害程度,並將結果回饋給決策模組,以幫助調整幹擾策略和優化波形。

動態知識庫模組主要提供…此模組提供基礎資訊和資料支持,包括威脅目標庫、幹擾規則庫和先驗知識庫。它提供先驗信息,例如用於偵察感知、決策和性能評估的模型、參數和數據。它利用回饋資訊進行認知學習,將學習結果累積為經驗,並更新知識庫中的知識圖譜、知識規則和推理模型,從而實現知識庫的即時更新。

提升效率的新應用

隨著演算法模型和學習推理技術的進一步突破,資訊化和智慧化戰爭將催生更成熟和精密的認知電子戰系統。它們在增強作戰效率方面的作用將更加突出,應用場景將更加多樣化,並將成為戰場上不可或缺的武器。

精確能量釋放用於打擊行動。在資訊化和智慧化條件下,戰場態勢即時呈現,指揮決策及時高效,作戰行動即時控制,使精確打擊行動能夠從場景構思到實際戰場。同時,隨著網路資訊設施的互聯互通,作戰系統具有更高的耦合度和更強的韌性,成為聯合作戰的重要支撐。認知電子戰系統具備高精度感知能力及強大的定向幹擾能力。透過其在廣大戰場上的分散部署,該系統可在聯合作戰指揮官的統一指揮下,與部隊突擊和火力打擊協同作戰,對作戰系統的關鍵節點和重要環節進行精確打擊。這種打擊包括精確目標定位、精確頻率覆蓋以及精確一致的調製模式,從而乾擾和削弱敵方預警和指揮控制系統的效能,並為系統破壞作戰的實施提供便利。

網路協同集群作戰。在未來的戰爭中,無人機、無人車輛、無人艇等無人集群將成為作戰的主力,因此建造低成本、高冗餘度的作戰系統對於取得勝利至關重要。面對「集群」、「狼群」和「魚群」等無人作戰系統,認知電子戰系統在演進為無人電子戰集群方面具有天然優勢。基於網路協同技術,偵察和乾擾載荷部署在無人集群平台上。平台間的資訊和資料交換透過​​資訊鏈路實現。在智慧演算法的支援下,認知電子戰系統能夠根據戰場電磁態勢優化干擾功能組合併動態分配資源。基於自主協同導引和集中控制,它們可以進行群集間的電子攻擊。

電子戰和網路戰是兩種截然不同的作戰模式。電子戰著重於實體層和訊號層的低層對抗,而網路戰則著重於邏輯層和資訊層的高層對抗。然而,隨著資訊網路覆蓋電磁頻譜,電子戰和網路戰的融合變得越來越可能。無線存取和加密技術的突破使得認知電子戰系統能夠滲透網路基礎設施,實現網路空間和電子空間態勢感知及任務決策的無縫融合。透過結合自主學習、模式評估和演算法預測,可以建立一個整合網路空間和電子空間感知、評估、決策和回饋的閉環系統,從而實現網路戰和電子戰的一體化攻防。

王志勇 楊連山 崔怡然

來源:中國軍網-解放軍報 作者:王志勇 楊連山 崔怡然 責任編輯:林詩清 發布:2026-01-22

中國原創軍事資源:http://www.81.cn/ll_208543/168483878784.html

Reshaping the PLA’s force Structure to Ensure Winning Future Battlefields

重塑解放軍部隊結構,確保贏得未來戰場

現代英語:

The reason why outstanding professional athletes can maximize their physical capabilities compared to ordinary people lies in the fact that long-term scientific training strengthens their bones, removes excess fat and bulges their muscles, and achieves a perfect proportion and coordination of the body’s functional elements. Similarly, those armies that can dominate the battlefield and fully exert their combat effectiveness are all powerful forces that have achieved an optimized combination of military force systems in their respective eras.

“Military tactics are ever-changing, just as water has no fixed shape.” Since its inception, the People’s Liberation Army has continuously innovated its force structure in response to changes in the situation and tasks and the needs of actual military struggles. In particular, the several major streamlining and reorganizations since the reform and opening up have promoted the continuous optimization of the PLA’s size, structure, and force composition, effectively liberating and developing its combat capabilities.

“Standard systems cannot meet the demands of change, and one approach cannot address all situations.” Faced with the rapidly evolving nature of warfare in the world today and the new requirements for the expansion of the PLA’s missions and tasks, the shortcomings and weaknesses in the PLA’s force structure have once again become prominent. Problems such as excessive size and scale, imbalance in major proportions, insufficient proportion of new combat capabilities, and low degree of modularization and integration of troops have become bottlenecks affecting and restricting the improvement of the PLA’s combat capabilities and its ability to win future battlefields.

In matters of the world, “what must be seized is the momentum, and what must not be missed is the opportunity.” Only by assessing the situation and seizing the moment can one “easily gain advantage.” The world today faces unprecedented changes. The rapid development of global technological and military revolutions has historically converged with the deepening of my country’s efforts to strengthen its military. Changes in warfare, technology, and the overall landscape of struggle are profoundly impacting national security and military strategy. The historical responsibility of reshaping and rebuilding the PLA’s force structure, and constructing a modern military force system with Chinese characteristics capable of winning informationized wars and effectively fulfilling its missions, has been placed before the People’s Liberation Army.

The system determines the structure and function. The composition of the military’s force system determines the size of the military’s energy and the form, scale, and effect of releasing that energy in the appropriate time and space. The Party Central Committee, the Central Military Commission, and President Xi Jinping, after careful consideration and decisive decision-making, comprehensively launched reforms to the size, structure, and force composition of the military, undertaking a holistic and revolutionary reshaping of the PLA’s force system. This strategic deployment is a crucial step in rationally allocating and optimizing the PLA’s force system, gaining the initiative in future fierce military competition by “strengthening its muscles and bones.”

“One part planning, nine parts implementation”—the restructuring of the PLA’s force system has been rapidly and steadily unfolding. The total number of officers has decreased, with a batch of civilian personnel or soldiers in brand-new uniforms filling the original officer positions, thus optimizing the officer-to-soldier ratio. The number of active-duty personnel in regimental-level and above organs has been significantly reduced, resulting in a marked optimization of the ratio between organs and troops, and between combat and non-combat units. Despite the reduction in the overall size of the military, the number of personnel in combat units has increased rather than decreased, making the “muscle” stronger. The size of the army has been reduced, with traditional branches and outdated equipment units being repurposed for new combat forces, optimizing the structure of the services and increasing the proportion of new combat capabilities, making the “skeleton” stronger. With a more streamlined size, more scientific organization, and more optimized layout, the PLA is continuously transforming from a quantity-oriented to a quality- and efficiency-oriented force, and from a labor-intensive to a technology-intensive force. The organization of troops is developing towards being more robust, integrated, multi-functional, and flexible, and a joint combat force system with elite combat forces as its main body has been basically formed.

The reshaping of the force structure has unlocked the full potential for combat effectiveness, enabling the PLA to take solid steps toward achieving the Party’s goal of building a strong military under the new circumstances. This provides a stronger guarantee for effectively safeguarding my country’s sovereignty, security, and development interests, and for making greater contributions to maintaining world peace and stability.

With sails hoisted high, the People’s Liberation Army embarks on a journey across vast oceans. Reborn and transformed, the People’s Liberation Army will surely achieve new leaps forward on the path to building a strong military with Chinese characteristics and stride towards an even more glorious future!

現代國語:

優秀專業運動員與一般人相比,之所以能把人體機能發揮到極限,關鍵在於長期的科學訓練強壯了骨骼,去除了多餘的贅肉與脂肪,實現了人體機能要素群的完美比例與配合。同樣道理,那些能夠笑傲疆場充分發揮出戰鬥力能效的軍隊,無不是在其所處時代實現了軍事力量體系優化組合的雄師勁旅。

「兵無常勢,水無常形。」人民軍隊自誕生以來,力量體系構成一直隨著形勢任務的變化和現實軍事鬥爭的需要而不斷自我革新。特別是改革開放以來幾次大的精簡整編,推動了我軍規模結構和力量編成的不斷優化,有效解放和發展了戰鬥力。

「常制不可以待變化,一塗不可以應萬方。」面對當今世界戰爭形態加速演變新趨勢、我軍使命任務拓展新要求,我軍力量體系構成方面的不足和短板再次凸顯,規模體量偏大、重大比例關係失衡、新質戰鬥力比重偏小、部隊模組化合成化程度低等問題,成為影響力、制約軍場戰鬥力提升、制約軍場等問題,成為影響力、制約軍場的戰鬥力提升、制約軍場等問題,成為影響力、制約軍場戰鬥力提升、制約軍場等問題,成為影響力、制約軍場等問題,成為影響力、制約軍場等問題,成為影響力、制約軍場戰鬥力提升、制約軍戰的未來。

天下事,“所當乘者勢也,不可失者時也”,審時度勢,乘勢而上,才能“取之易也”。當今世界面臨前所未有之大變局,世界科技革命、軍事革命迅速發展與我國強軍興軍事業的深入推進歷史性地交匯在一起,戰爭之變、科技之變、鬥爭格局之變深刻影響國家安全和軍事戰略全局。實現我軍力量體系的重塑再造,建構能夠打贏資訊化戰爭、有效履行使命任務的中國特色現代軍事力量體系,這一重任歷史性地擺在人民軍隊面前。

體系決定結構和功能,軍隊的力量體系構成,決定了軍隊能量的大小及其在適當的時間和空間內釋放能量的形態、規模與效果。黨中央、中央軍委會和習主席審時度勢、果斷決策,全面啟動軍隊規模結構與力量編成改革,對我軍力量體系進行整體性、革命性重塑。這項戰略部署是對我軍力量體系進行合理編配與優化組合,透過「強肌、壯骨骼」贏得未來激烈軍事競爭主動權的關鍵一環。

“一分部署,九分落實”,我軍力量體系重塑快速而穩健地鋪開。軍官總數減少,一群身穿嶄新制服的文職人員或士兵補充到原軍官崗位上,官兵比例得到優化。團級以上機關現役員額明顯壓縮,機關與部隊比例、作戰部隊與非戰鬥單位比例已明顯優化。在軍隊總規模壓下來以後,作戰部隊人員不減反增,「肌肉」更豐滿了。壓縮陸軍規模,傳統兵種及老舊裝備部隊為新型作戰力量“騰籠換鳥”,軍兵種結構得到優化,新質戰鬥力的比重增加,“骨骼”更加強壯了。規模更精幹、編成更科學、佈局更優化,不斷推動我軍由數量規模型向質量效能型、由人力密集型向科技密集型的轉變,部隊編成向充實、合成、多能、靈活方向發展,以精銳作戰力量為主體的聯合作戰力量體系基本形成。

力量體系的重塑打通了激活戰鬥力的“任督二脈”,我軍向著實現黨在新形勢下的強軍目標邁出了堅實步伐,為有效捍衛我國主權安全發展利益、為維護世界和平穩定作出更大貢獻提供了更加堅強有力的保證。

雲帆已高掛,征程濟滄海。換羽重生的人民軍隊一定能夠在中國特色強軍之路上實現新的跨越、邁向更光輝的未來!

中國軍網 國防部網
2018年12月18日 星期二

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/18/content_282834834.htm

Functional Orientation of the Modern Combat System with Chinese Characteristics

中國特色現代作戰體系的功能定位

2018年08月14日 xx:xx 来源:解放军报

現代英語:

Functional Orientation of the Modern Combat System with Chinese Characteristics

  Key Points

  ● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.

  ● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.

  The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.

  Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.

  The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.

  A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.

  Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.

  Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.

  The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.

  Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.

  The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.

  Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.

  Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.

  The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.

  Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.

  (Author’s affiliation: Institute of War Studies, Academy of Military Sciences)

Zhang Qianyi

現代國語:

中國特色現代作戰體系的功能取向

要點提示

●機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。

●傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告提出,站在新的歷史起點上,面對強國強軍的時代要求,“構建中國特色現代作戰體系”。這是適應戰爭形態加速演變的時代要求,深入貫徹習近平強軍思想、全面推進國防和軍隊現代化、瞄準建設世界一流軍隊的戰略抉擇。其中,對中國特色現代作戰體系功能取向的把握,極大影響著體系構建的目標、方向和質量。

抓住時代機遇,以機械化信息化智能化融合發展為歷史方位

作戰體係是戰爭的物質基礎,與戰爭形態緊密關聯。當今世界,新一輪科技革命和產業革命正在孕育興起,一些重大科學問題的原創性顛覆性突破正在開闢新前沿新方向,促使人類社會向智能化快速轉型,戰爭形態向智能化加速演變。當前,我軍正處於機械化信息化複合發展階段,機械化尚未完成、信息化深入推進,又面臨智能化軍事革命帶來的機遇和挑戰。新時代為我們實現創新超越、快速發展提供了難得歷史機遇,也為我軍作戰體系建設實現跨代超越、彎道超車提供了難得歷史機遇。

新時代新起點,需要確立新的坐標系。機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。應準確把握戰爭形態演變的歷史進程,準確把握機械化信息化複合發展的歷史階段,準確把握智能化戰爭帶來的歷史機遇,堅持把軍事智能化建設擺在優先發展位置,以智能化引領帶動機械化信息化,在智能化建設全局中統籌機械化信息化,在智能化進程中完成機械化信息化發展的任務;注重搞好軍事智能化發展的頂層設計,研究制定軍事智能化發展戰略綱要和路線圖,明確智能化發展的關鍵領域、核心技術、重點項目和步驟措施等,加快軍事智能化作戰體系建設進程;盡快在深度學習、跨界融合、人機協同、自主操控、神經網絡等關鍵技術上取得重大進展,提高先進科技力物化為先進武器裝備的能力,為構建現代作戰體系提供物質條件。

突出體係對抗,以打造聯合作戰和全域作戰能力為核心指標

信息化局部戰爭,一體化聯合作戰成為基本形式,網絡支撐、信息主導、體係對抗成為主要特徵,戰鬥力生成模式向基於網絡信息體系轉變。當前及今後一個時期,我國地緣戰略環境仍然複雜,傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,同時隨著國家利益的拓展,海外利益安全問題日益凸顯,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告指出,“提高基於網絡信息體系的聯合作戰能力、全域作戰能力”,這是對新時代我軍作戰能力的新概括,也是中國特色現代作戰體系建設的核心指標。應積極探索現代戰爭特點規律和製勝機理,前瞻設計未來作戰行動模式、力量運用方式、指揮協同程式等,為構建中國特色現代作戰體系提供先進理論支撐;按照軍委管總、戰區主戰、軍種主建的新格局,適應聯合作戰指揮新體制、軍隊規模結構和力量編成改革,突出網絡信息體系這個核心支撐,打造能夠生成強大聯合作戰能力的作戰體系,充分發揮諸軍兵種作戰力量整體威力;著眼妥善應對各戰略方向、傳統和非傳統安全威脅,確保我軍可靠遂行各種作戰任務,打造能夠生成強大全域作戰能力的作戰體系,實現陸海空天電網多維戰場、多域戰場的整體聯動。

著眼現實威脅,以形成對敵非對稱作戰優勢為戰略指向

當今世界,國際形勢正處在新的轉折點上,大國戰略博弈呈現新態勢,圍繞國際和地區秩序主導權的鬥爭空前激烈。霸權主義和強權政治陰魂不散,一些國家加緊對華防範和遏制。我國地緣戰略環境日趨複雜,存在多重不穩定因素,面對多方向安全壓力,我海上安全環境日趨複雜等,這些都使得國家安全面臨的危險和挑戰增多。

有效應對現實軍事安全威脅,是我軍事鬥爭準備的重要戰略任務,也是中國特色現代作戰體系建設的戰略指向。應注重技術跟進,大力研發先進裝備,力避與潛在對手拉開新的技術代差,為作戰體系建設提供堅實物質支撐,同時注重發揮我軍歷來堅持的靈活機動、自主作戰原則,揚長避短,擊敵弱項、軟肋,不單純在高科技領域“與龍王比寶”,著眼懾敵止戰,加快發展非對稱制衡手段,加強常規戰略手段、新概念新機理和新型領域戰略威懾手段建設,支撐形成具有新質威懾與實戰能力的新型作戰體系;不懼直面過招,立足最複雜最困難情況,構建能夠提供多種手段、多種力量、多種方式應對多樣化戰爭威脅的作戰體系,確保一旦有事,充分發揮作戰體係綜合效能,確保戰而勝之、以戰止戰。

推進軍民融合,以國家戰略體系支撐打贏新時代人民戰爭為根本要求

戰爭偉力之最深厚根源存在於民眾之中。人民戰爭思想是我軍克敵制勝的法寶。現代戰爭是敵對雙方綜合實力的整體對抗,涉及政治、經濟、軍事、科技、文化等各條戰線,各種武裝力量緊密結合、各種鬥爭形式相互配合,民用技術和民間力量在戰爭中的地位作用日益提升,更加要求把國防體系融入國家經濟社會體系,努力打贏新時代人民戰爭。

發揮軍民融合時代偉力,以國家戰略體系支撐打贏新時代人民戰爭,是中國特色現代作戰體系建設的根本要求。要深入實施軍民融合發展國家戰略,推動我軍作戰體系建設深度融入國家戰略體系,利用國家資源和整體力量實現戰鬥力的持續躍升,最大限度發揮人民戰爭的整體威力;注重加強在新興戰略領域的軍民融合發展,積極搶占未來軍事競爭的製高點,不斷創造人民戰爭的新優勢;把軍事創新體系納入國家創新體系之中,加強需求對接、協同創新,增強自主創新、原始創新、集成創新能力,主動發現、培育和運用戰略性顛覆性前沿性技術,為構建現代作戰體系提供先進技術支撐;抓好民用資源深度挖掘,強化可服務於國防和軍隊建設的各種資源整合力度,防止重複浪費、自成體系、封閉運行,最大限度發揮民用資源對現代作戰體系構建的孵化效應。

(作者單位:軍事科學院戰爭研究院)

張謙一

中國原創軍事資源:https://www.chinanews.com.cn/mil/2018/08-14/8599617888.shtml

Chinese Military Intelligence Drives Accelerated Development of Cyberspace Warfare

中國軍事情報推動網絡空間戰爭加速發展

現代英語:

The report to the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint operational capabilities and all-domain operational capabilities based on network information systems.” Today’s *PLA Daily* published an article stating that military intelligence is a new trend and direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, while using intelligence to drive mechanization and informatization to a higher level and a higher standard. Cyberspace, as a new operational domain, is a new field with high technological content and the greatest innovative vitality. Under the impetus of military intelligence, it is ushering in a period of rapid development opportunities.Illustration: Lei Yu

Military intelligence is driving the accelerated development of cyberspace operations.

■ Respected soldiers Zhou Dewang Huang Anwei

Three key technologies support the intelligentization of cyberspace weapons.

Intelligence is a kind of wisdom and capability; it is the perception, cognition, and application of laws by all systems with life cycles. Intelligentization is the solidification of this wisdom and capability into a state. Cyberspace weapons are weapons used to carry out combat missions in cyberspace. Their form is primarily software and code, essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, there’s intelligent vulnerability discovery. Vulnerabilities are the foundation of cyber weapon design. The ransomware that spread globally this May exploited a vulnerability in the Microsoft operating system, causing a huge shock in the cybersecurity community. Vulnerabilities are expensive, with a single zero-day vulnerability costing tens to hundreds of thousands of dollars. Previously, vulnerability discovery relied mainly on experienced hackers using software tools to inspect and analyze code. However, at the International Cybersecurity Technology Competition finals held during this year’s China Internet Security Conference, participants demonstrated how intelligent robots could discover vulnerabilities on-site, then use these vulnerabilities to write network code, creating cyber weapons to breach target systems and capture the flag. This change signifies that vulnerability discovery has entered the era of intelligent technology.

Second, intelligent signal analysis and cryptography. Signals are the carriers of network data transmission, and cryptography is the last line of defense for network data security. Signal analysis and cryptography are core technologies for cyberspace warfare. Breaking through signals and cryptography is the fundamental path to entering cyberspace and a primary target of cyber weapons attacks. Intelligent signal analysis solves problems such as signal protocol analysis, modulation identification, and individual identification through technologies such as big data, cloud computing, and deep learning. Cryptography is the “crown jewel” of computational science. Intelligent cryptography, through the accumulation of cryptographic data samples, continuously learns and searches for patterns to find the key to decryption, thereby opening the last door of the network data “safe” and solving the critical links of network intrusion and access.

Thirdly, there is the design of intelligent weapon platforms. In 2009, the U.S. military proposed the “Cyber ​​Aircraft” project, providing platforms similar to armored vehicles, ships, and aircraft for cyberspace operations. These platforms can automatically conduct reconnaissance, load cyber weapons, autonomously coordinate, and autonomously attack in cyberspace. When threatened, they can self-destruct and erase traces, exhibiting a certain degree of intelligence. In the future, the weapons loaded onto “Cyber ​​Aircraft” will not be pre-written code by software engineers, but rather intelligent cyber weapons will be designed in real-time based on discovered vulnerabilities, enabling “order-based” development and significantly improving the targeting of cyberspace operations.

The trend of intelligentization in network-controlled weapons is becoming increasingly prominent.

Weapons controlled by cyberspace, or cyber-controlled weapons, are weapons that connect to a network, receive commands from cyberspace, execute cross-domain missions, and achieve combat effects in physical space. Most future combat weapon platforms will be networked, making military information networks essentially the Internet of Things (IoT). These networks connect to satellites, radars, drones, and other network entities, enabling control from perception and detection to tracking, positioning, and strike. The intelligence of cyber-controlled weapons is rapidly developing across land, sea, air, space, and cyber domains.

In 2015, Syria used a Russian robotic force to defeat militants. The operation employed six tracked robots, four wheeled robots, an automated artillery corps, several drones, and a command system. Commanders used the command system to direct drones to locate militants, and the robots then charged, supported by artillery and drone fire, inflicting heavy casualties. This small-scale battle marked the beginning of robotic “team” operations.

Network-controlled intelligent weapons for naval and air battlefields are under extensive research and development and verification. In 2014, the U.S. Navy used 13 unmanned surface vessels to demonstrate and verify the interception of enemy ships by unmanned surface vessel swarms, mainly by exchanging sensor data, and achieved good results. When tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became its prominent feature of intelligence.

The development of swarms of small, micro-sized drones for aerial combat is also rapid. In recent years, the U.S. Department of Defense has conducted multiple tests of the Partridge micro-drone, capable of deploying dozens or even hundreds at a time. By enhancing its coordination capabilities during reconnaissance missions, progress has been made in drone formation, command, control, and intelligent management.

Space-based cyber-control weapons are becoming increasingly “intelligent.” The space-based cyber-control domain primarily comprises two categories of weapons: reconnaissance and strike weapons. Satellites of various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various microsatellite constellations, satellites are exhibiting new characteristics: small size, rapid launch, large numbers, and greater intelligence. Microsatellite constellations offer greater flexibility and reliability in performing reconnaissance and communication missions, and currently, the world’s leading satellite powers are actively developing microsatellite constellation plans with broader coverage.

Various hypersonic strike weapons are cruising in the air, like a sword of Damocles hanging over people’s heads. The U.S. Air Force Research Laboratory stated that the “hypersonic strike weapon” will begin flight testing around 2018, and other countries are also actively developing similar weapons. The most prominent features of these weapons are their high speed, long range, and high level of intelligence.

Intelligent command information systems are changing traditional combat command methods.

Cyber ​​weapons and weapons controlled by cyberspace constitute the “fist” of intelligent warfare, while the command information systems that direct the use of these weapons are the “brain” of intelligent warfare. Cyberspace operational command information systems must keep pace with the process of intelligentization. Currently, almost all global command information systems face the challenge of “intelligent lag.” Future warfare requires rapid and autonomous decision-making, which places higher demands on intelligent support systems.

In 2007, the U.S. Defense Advanced Research Projects Agency (DARPA) launched the “Deep Green Program,” a research and development program for command and control systems, aiming to enable computer-aided commanders to make rapid decisions and gain a decisive advantage. This is a campaign-level command information system, developed to be embedded into the U.S. Army’s brigade-level C4ISR wartime command information system, enabling intelligent command by commanders. Even today, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace warfare, network targets are represented by a single IP address accessing the network. Their sheer number makes efficient manual operation difficult, necessitating the support of intelligent command and information systems. Currently, intelligent command and information systems need to achieve functions such as intelligent intelligence analysis, intelligent sensing, intelligent navigation and positioning, intelligent decision support, intelligent collaboration, intelligent assessment, and intelligent unmanned combat. In particular, they must enable swarm operational control of unmanned network control systems. All of these requirements urgently demand intelligent command and information systems, necessitating accelerated research and development and application of relevant key technologies.

In conclusion, intelligent cyber weapons and network control weapons, coordinated through intelligent information systems, will form enormous combat capabilities, essentially enabling them to carry out all actions in current combat scenarios. Future warfare, from command force organization to target selection, action methods, and tactical applications, will all unfold within an intelligent context. The “gamification” of warfare will become more pronounced, and operational command methods will undergo significant changes.

In future battlefields, combat will require not only courage but also intelligence.

■ Yang Jian, Zhao Lu

Currently, artificial intelligence is entering a new stage of development and is rapidly penetrating various fields. Influenced by this process, military competition among nations surrounding intelligent technologies has begun. Our army has always been a brave and tenacious people’s army, determined to fight and win. On the future battlefield, we should continue to carry forward our glorious traditions while more broadly mastering and utilizing the latest technological achievements to develop more intelligent weapons and equipment, thereby gaining a decisive advantage on the future battlefield.

Intelligentization is a trend in human societal development, and intelligent warfare is rapidly approaching. The development of military intelligence has a solid foundation thanks to successful innovations that transcend existing computational models, the gradual popularization of nanotechnology, and breakthroughs in research on the mechanisms of the human brain. Consequently, intelligent weaponry is increasingly prominent, surpassing and even replacing human capabilities in areas such as intelligence analysis and combat response. Furthermore, intelligent weaponry offers significant advantages in terms of manpower requirements, comprehensive support, and operating costs, and is increasingly becoming the dominant force in warfare.

The development and application of intelligent weaponry have proven to expand the scope of military operations and significantly enhance the combat effectiveness of troops. In the battlefields of Afghanistan and Iraq, drones have undertaken most of the reconnaissance, intelligence, and surveillance support missions, and have been responsible for approximately one-third of the air strike missions. In the past two years, Russia has also repeatedly used highly intelligent unmanned reconnaissance aircraft and combat robots in the Syrian theater. Intelligent weaponry is increasingly demonstrating its significant value, surpassing that of traditional weapons.

In future wars, the contest of intelligent combat systems will be the key to victory in high-level competition and ultimate showdowns. As the development of technology-supported military means becomes increasingly uneven, whoever first acquires the capability to conduct intelligent warfare will be better positioned to seize the initiative on the battlefield. Those with a technological advantage will minimize the costs of war, while the weaker will inevitably suffer enormous losses and pay a heavy price. We must not only accelerate innovation in core technologies and the development of weaponry, but also research and explore organizational structures, command methods, and operational models adapted to the development of intelligent military operations. Furthermore, we must cultivate a talent pool capable of promoting intelligent military development and forging intelligent combat capabilities, fully leveraging the overall effectiveness of our military’s combat system, and winning wars in a more “intelligent” manner against our adversaries.

現代國語:

党的十九大报告指出,要“加快军事智能化发展,提高基于网络信息体系的联合作战能力、全域作战能力”。今天的《解放军报》刊发文章指出,军事智能化是机械化、信息化之后军事领域发展的新趋势和新方向,我们要在现有机械化和信息化基础上发展智能化,同时用智能化牵引机械化和信息化向更高水平、更高层次发展。网络空间作为新型作战领域,是科技含量高、最具创新活力的新领域,在军事智能化的牵引下,正在迎来快速发展的机遇期。制图:雷 煜

军事智能化牵引网络空间作战加速发展

■敬兵 周德旺 皇安伟

三大技术支撑网络空间武器智能化

智能是一种智慧和能力,是一切有生命周期的系统对规律的感应、认知与运用,智能化就是把这种智慧和能力固化下来,成为一种状态。网络空间武器是网络空间遂行作战任务的武器,其形态以软件和代码为主,本质上是一段数据。网络空间武器的智能化主要体现在以下三个方面:

一是智能化漏洞挖掘。漏洞是网络武器设计的基础,今年5月在全球范围内传播的勒索病毒软件,就是利用了微软操作系统漏洞,给网络安全界带来了巨大震动。漏洞价格昂贵,一个零日漏洞价值几万到几十万美元不等。以往漏洞的发现,主要依靠有经验的黑客,利用软件工具对代码进行检查和分析。在今年中国互联网安全大会期间举办的国际网络安全技术对抗联赛总决赛中,参赛人员演示由智能机器人现场进行漏洞挖掘,然后通过漏洞编写网络代码,形成网络武器,攻破目标系统,夺取旗帜。这一变化,意味着漏洞挖掘进入了智能化时代。

二是智能化信号分析和密码破译。信号是网络数据传输的载体,密码是网络数据安全最后的屏障,信号分析和密码破译是网络空间作战的核心技术,突破信号和密码是进入网络空间的基本路径,是网络武器攻击的首要目标。智能化信号分析将信号的协议分析、调制识别、个体识别等问题,通过大数据、云计算、深度学习等技术进行解决。密码破译是计算科学“皇冠上的明珠”,智能化密码破译通过对密码数据样本的积累,不断学习、寻找规律,能找到破译的钥匙,从而打开网络数据“保险柜”的最后一道门,解决网络入侵和接入的关键环节。

三是智能化武器平台设计。美军在2009年提出“网络飞行器”项目,为网络空间作战提供像战车、舰艇、飞机这样的平台,可以实现在网络空间里自动侦察、加载网络武器、自主协同、自主攻击,受到威胁时自我销毁、清除痕迹,具备了一定的智能化特征。未来“网络飞行器”加载的武器,不是软件人员编好的代码,而是根据侦察结果直接对发现的漏洞,现场实时进行智能化网络武器设计,实现“订购式”开发,从而极大地提高网络空间作战的针对性。

网控武器的智能化趋势愈加凸显

受网络空间控制的武器简称网控武器,是通过网络连接,接受网络空间指令,执行跨域任务,在物理空间达成作战效果的武器。未来的各种作战武器平台,大多是联网的武器平台,这样军事信息网本质上就是物联网,上联卫星、雷达、无人机等网络实体,从感知到发现、跟踪、定位、打击都可通过网络空间控制,网控武器的智能化已在陆海空天电等战场蓬勃发展。

2015年,叙利亚利用俄罗斯机器人军团击溃武装分子,行动采用了包括6个履带式机器人、4个轮式机器人、1个自动化火炮群、数架无人机和1套指挥系统。指挥员通过指挥系统调度无人机侦察发现武装分子,机器人向武装分子发起冲锋,同时伴随火炮和无人机攻击力量支援,对武装分子进行了致命打击。这仅仅是一场小规模的战斗,却开启了机器人“组团”作战的先河。

海空战场网控智能武器正在大量研发验证。2014年,美国海军使用13艘无人水面艇,演示验证无人艇集群拦截敌方舰艇,主要通过交换传感器数据,取得了不错的效果。2016年再次试验时,新增了协同任务分配、战术配合等功能,“蜂群意识”成为其智能化的显著特点。

用于空中作战的小微型无人机蜂群也在快速发展。近年来,美国国防部多次试验“山鹑”微型无人机,可一次投放数十架乃至上百架,通过提升其执行侦察任务时的协同能力,在无人机编队、指挥、控制、智能化管理等方面都取得了进展。

空天网控武器越来越“聪明”。空天领域主要包含侦察和打击两类网控武器,各种功能的卫星主要执行侦察任务,是典型的侦察传感器。随着各种小微卫星群的出现,使卫星表现出新的特征:体积小、发射快、数量多、更加智能。小微卫星群在执行侦察和通信任务时,有了更大的灵活度和可靠性,目前世界卫星强国都在积极制定覆盖范围更广的小微卫星群计划。

各种高超音速打击武器在空天巡航,仿佛悬在人们头顶的利剑。美国空军研究室称“高速打击武器”将在2018年前后启动飞行试验,其它各国也正在积极研发类似武器。这类武器最大的特点是速度快、航程远、智能化程度高。

智能化指挥信息系统改变传统作战指挥方式

网络空间武器和受网络空间控制的武器,是智能化战争的“拳头”,而指挥这些武器运用的指挥信息系统是智能化战争的“大脑”,网络空间作战指挥信息系统要同步跟上智能化的进程。当前,几乎全球的指挥信息系统都面临着“智能滞后”的难题,未来战争需要快速决策、自主决策,这对智能辅助系统提出了更高要求。

2007年,美国国防部高级研究计划局启动关于指挥控制系统的研发计划——“深绿计划”,以期能实现计算机辅助指挥员快速决策赢得制胜先机。这是一个战役战术级的指挥信息系统,其研发目的是将该系统嵌入美国陆军旅级C4ISR战时指挥信息系统中去,实现指挥员的智能化指挥。直到今天,美军也没有放松对智能化指挥信息系统的开发。

在网络空间作战中,网络目标表现为一个接入网络的IP地址,数量众多导致人工难以高效操作,作战更需要智能化指挥信息系统的辅助支撑。当前,智能化指挥信息系统需要实现智能情报分析、智能感知、智能导航定位、智能辅助决策、智能协同、智能评估、智能化无人作战等功能,尤其是实现对无人网控系统的集群作战操控,这都对智能化指挥信息系统提出了迫切需求,需要加快相应关键技术的研发和运用。

综上所述,智能化的网络武器和网控武器,通过智能化的信息系统调度,将形成巨大的作战能力,基本能遂行现行作战样式中的所有行动。未来战争,从指挥力量编组、到目标选择、行动方式、战法运用等,都将在智能化的背景下展开,战争“游戏化”的特点将更显著,作战指挥方式也将发生重大变化。

未来战场 斗勇更需斗“智”

■杨建 赵璐

当前,人工智能发展进入崭新阶段,并开始向各个领域加速渗透。受这一进程的影响,各国围绕智能化的军事竞争已拉开帷幕。我军历来是一支英勇顽强、敢打必胜的人民军队,未来战场上应继续发扬光荣传统,同时要更加广泛地掌握和利用最新的科技成果,研制出更多智能化的武器装备,在未来战场上掌握制胜先机。

智能化是人类社会发展的趋势,智能化战争正在加速到来。正是由于超越原有体系结构计算模型的成功创新、纳米制造技术的逐步普及,以及对人脑机理研究的突破性进展,军事智能化发展才拥有了坚实的基础。因此,智能化武器装备的表现日益突出,并在情报分析、战斗反应等方面开始超越并替代人类。此外,在人力需求、综合保障、运行成本等方面,智能化武器装备也具有明显的优势,正在日益成为战争的主导力量。

事实证明,智能化武器装备的发展应用,拓展了军事行动的能力范围,大幅提升了部队的作战效能。在阿富汗和伊拉克战场上,无人机已承担了大部分侦察、情报、监视等作战保障任务,并担负了约三分之一的空中打击任务。近两年,俄罗斯在叙利亚战场上也多次使用具有较高智能化程度的无人侦察机、战斗机器人等装备。智能化武器装备正在愈来愈多地展现出超越传统武器的重要价值。

未来战争中,作战体系智能化的较量将是高手过招、巅峰对决的制胜关键。随着以科技为支撑的军事手段发展的不平衡性越来越大,谁先具备实施智能化作战的能力,谁就更能掌握战场的主动权,拥有技术代差优势的强者会尽可能将战争成本降到最低,而弱者必然遭受巨大损失,付出惨重代价。我们不仅要加紧核心技术创新、武器装备研制,还要研究探索适应军事智能化发展的组织结构、指挥方式和运用模式,更要培养一支能够担起推进军事智能化发展、锻造智能化作战能力的人才队伍,充分发挥我军作战体系的整体效能,在与对手的较量中,以更加“智慧”的方式赢得战争。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841898885.htm

Chinese Military Development Trends & Governance Strategies of Weaponizing Artificial Intelligence

中國軍事發展趨勢與人工智能武器化治理策略

現代英語:

The weaponization of artificial intelligence (AI) is an inevitable trend in the new round of military revolution. Recent local wars have further spurred relevant countries to advance their AI weaponization strategies in order to seize the high ground in future warfare. The potential risks of AI weaponization cannot be ignored. It may intensify the arms race and disrupt the strategic balance; empower operational processes and increase conflict risks; increase accountability and collateral damage; and lower the proliferation threshold, leading to misuse and abuse. To address this, it is necessary to strengthen international strategic communication to ensure consensus and cooperation among countries on the military applications of AI; promote dialogue and coordination in the development of laws and regulations to form a unified and standardized legal framework; strengthen ethical constraints on AI to ensure that technological development conforms to ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.

    [Keywords] Artificial intelligence, military applications, security risks, security governance [Chinese Library Classification Number] F113 [Document Code] A

    The weaponization of artificial intelligence (AI) refers to the application of AI-related technologies, platforms, and services to the military field, making them a crucial driving force for military operations and thereby enhancing their efficiency, precision, and autonomy. With the widespread application of AI technology in the military, major powers and military leaders have increased their strategic and resource investment, accelerating research and application. The frequent regional conflicts in recent years have further stimulated the battlefield application of AI, profoundly shaping the nature of warfare and the future direction of military transformation.

    It cannot be ignored that artificial intelligence, as a rapidly developing technology, inherently carries potential risks due to its immature technology, inaccurate scenario matching, and incomplete supporting conditions. Furthermore, human misuse, abuse, or even malicious use can easily bring various risks and challenges to the military and even international security fields. To earnestly implement the global security initiatives proposed by General Secretary Xi Jinping, we must directly confront the global trend of weaponizing artificial intelligence, deeply analyze the potential security risks arising from the weaponization of AI, and consider scientifically feasible governance approaches and measures.

    Current trend of weaponization of artificial intelligence

    In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of warfare, changing future combat systems, and influencing the future direction of military transformation. Major military powers have regarded artificial intelligence as a disruptive key technology that will change the rules of future warfare, and have invested heavily in the research and development and application of AI weapons.

    The weaponization of artificial intelligence is an inevitable trend in military transformation.

    With the rapid development of science and technology, the necessity and urgency of military transformation are becoming increasingly prominent. Artificial intelligence, by simulating human thought processes, extends human mental and physical capabilities, enabling rapid information processing, analysis, and decision-making. It can also develop increasingly complex unmanned weapon system platforms, thereby providing unprecedented intelligent support for military operations.

    First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, making it difficult to effectively cope with the demands of large-scale, high-speed, and highly complex intelligence processing. The introduction of artificial intelligence (AI) technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of AI technology can build intelligent monitoring systems, providing high-precision, real-time intelligence perception services. In the field of intelligence reconnaissance, AI technology has the ability to process multiple “information streams” in real time, thereby greatly improving analysis efficiency. ① By using technologies such as deep learning, it is also possible to “see through the phenomena to the essence,” uncovering the deep-seated connections and causal relationships within various fragmented intelligence information, rapidly transforming massive amounts of fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.

    Secondly, it provides data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situational awareness. Its advantage lies in its ability to perform key tasks such as data mining, data fusion, and predictive analysis. In informationized and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is enormous, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become important tools to assist commanders in managing intelligence data, assessing the enemy situation, proposing operational plans, and formulating plans and orders. For example, the US military’s ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system, developed by Raytheon Technologies Corporation, encompasses intelligence gathering, surveillance, target identification, and tracking functions. It can aggregate data from diverse information sources such as satellites, ships, aircraft, and ground stations, and perform in-depth analysis and processing. This not only significantly improves the speed at which commanders acquire information but also provides data support through intelligent analysis systems, making decision-making faster, more efficient, and more accurate.

    Third, it provides crucial support for unmanned combat systems. Unmanned combat systems are a new type of weapon system capable of independently completing military missions without direct human control. They primarily consist of intelligent unmanned combat platforms, intelligent munitions, and intelligent combat command and control systems, possessing significant autonomy and intelligence. As a technological equipment leading the transformation of future warfare, unmanned combat systems have become a crucial bargaining chip in inter-state military competition. This system achieves adaptability to different battlefield environments and operational spaces by utilizing key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise target strikes. The design philosophy of this system is “unmanned platform, manned system,” essentially an intelligent extension of manned combat systems. For example, the MQM-57 Falconer unmanned aerial vehicle developed by the U.S. Defense Advanced Research Projects Agency (DARPA) employs advanced artificial intelligence technology and possesses highly autonomous target recognition and tracking capabilities.

    Fourth, it provides technical support for military logistics and equipment support. In the context of information warfare, the pace of war has accelerated, mobility has increased, and combat consumption has significantly risen. The traditional “overstocking” support model is no longer adequate to meet the rapidly changing needs of the modern battlefield. Therefore, higher demands are placed on combat troops to provide timely, location-appropriate, demand-based, and precise rapid and precise logistical support. Artificial intelligence, as a technology with spillover and cross-integration characteristics, is merging with cutting-edge technologies such as the Internet of Things, big data, and cloud computing. This has enabled AI knowledge, technology, and industry clusters to fully penetrate the military logistics field, significantly enhancing logistical equipment support capabilities.

    Major countries are actively developing military applications of artificial intelligence.

    To enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan are accelerating their strategic deployments for the military applications of AI. First, they are updating and adjusting their top-level strategic plans in the field of AI to provide clear guidance for future development. Second, in response to the needs of future warfare, they are accelerating the deep integration of AI technology with the military field, promoting the intelligent, autonomous, and unmanned development of equipment systems. Furthermore, they are actively innovating operational concepts to drive innovation in combat forces, thereby enhancing combat effectiveness and competitive advantage.

    First, strategic planning is being developed. Driven by a strategic obsession with pursuing military, political, and economic hegemony through technological dominance, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense released the “Data, Analytics, and Artificial Intelligence Adoption Strategy,” aiming to expand the advanced capabilities of the entire Department of Defense system to gain a lasting military decision-making advantage. The Russian military issued what is known as “Version 3.0,” the “Russian Armaments Development Program for 2024-2033,” designed to guide weapons development over the next decade. The program emphasizes continued advancement in nuclear and conventional weapons development, with a focus on research into artificial intelligence and robotics, hypersonic weapons, and other strike weapons based on new physical principles.

    Second, the development of advanced equipment systems. Since 2005, the U.S. military has released a “Roadmap for Unmanned Systems” every few years to envision and design unmanned system platforms in various fields, including air, ground, and surface/underwater, connecting the development chain of unmanned weapons and equipment from research and development to production, testing, training, combat, and support. Currently, more than 70 countries worldwide are capable of developing unmanned system platforms, and various types of drones, unmanned vehicles, unmanned boats (vessels), and unmanned underwater vehicles are emerging rapidly. On July 15, 2024, former Chairman of the Joint Chiefs of Staff Mark Milley stated in an interview with *Defense News* that by 2039, one-third of the U.S. military force will be composed of robots. The Russian military’s Platform-M combat robot, the “Lancet” suicide drone, and the S-70 “Hunter” heavy drone have already been deployed in combat.

    Third, innovate future operational concepts. Operational concepts are forward-looking studies of future warfare styles and methods, often guiding new force organization and leapfrog development of weaponry. In recent years, the US military has proposed operational concepts such as “distributed lethality,” “multi-domain warfare,” and “mosaic warfare,” attempting to guide the direction of military transformation. Taking “mosaic warfare” as an example, this concept treats various sensors, communication networks, command and control systems, and weapon platforms as “mosaic fragments.” These “fragment” units, empowered by artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems, forming an on-demand integrated, highly flexible, and mobile lethality network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan,” which aims to expand multi-domain operations to an all-domain operations concept, connecting sensors from various services to a unified “Internet of Things” and using artificial intelligence algorithms to help improve operational command decisions. ③

    War and conflict have spurred the weaponization of artificial intelligence.

    In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukraine crisis, and the Kazakh-Israeli conflict have continued, further stimulating the development of the weaponization of artificial intelligence.

    In the Libyan conflict, both sides employed various types of drones for reconnaissance and combat missions. A report by the UN Group of Experts on Libya noted that the Turkish-made Kargu-2 drone conducted a “pursuit and long-range engagement” operation in Libya in 2020, autonomously attacking retreating enemy soldiers. This event marked the first use of a lethal autonomous weapon system in actual combat. As American scholar Zachary Callenburn stated, if anyone were to die in such an autonomous attack, it would likely be the first known instance of an AI-powered autonomous weapon being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan successfully penetrated Armenian air defenses using a formation of Turkish-made TB2 “Standard” drones and Israeli-made Harop drones, gaining air superiority and the initiative. The significant success of Azerbaijani drone warfare largely stemmed from the Armenian army’s underestimation of the enemy’s capabilities and insufficient understanding of the importance and threat posed by drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They have flexibly utilized advanced equipment such as reconnaissance and strike drones and loitering munitions, which has not only improved combat efficiency but also greatly enhanced the surprise and lethality of the battles. ⑤

    During the 2022 Ukraine crisis, both Russia and Ukraine extensively used military-grade and commercial drones for reconnaissance, surveillance, artillery targeting, and strike missions. The Ukrainian army, through the use of the TB2 “Standard” drone and the US-supplied “Switchblade” series of suicide drones, conducted precision strikes and achieved high kill rates, becoming a notorious “battlefield killer.” In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock onto bombing targets in Gaza, marking as many as 37,000 Palestinians in Gaza as suspected “militants” and identifying them as targets for direct assassination. This Israeli military action drew widespread international attention and condemnation.

    Security risks arising from the weaponization of artificial intelligence

    From automated command systems to intelligent unmanned combat platforms, and then to intelligent decision-making systems in cyber defense, the application of artificial intelligence (AI) technology in the military field is becoming increasingly widespread and has become an indispensable part of modern warfare. However, with the trend of weaponizing AI, its misuse, abuse, and even malicious use will also bring significant risks and challenges to international security.

    It intensifies the arms race and disrupts the strategic balance.

    In the information and intelligent era, the disruptive potential of artificial intelligence is irresistible to major military powers, who are all focusing on the development and application of AI military capabilities, fearing that falling behind in this field will result in missing strategic opportunities. Deepening the military application of artificial intelligence can achieve “asymmetric advantages” in a lower cost and with higher efficiency.

    First, countries are vying for “first-mover advantage.” When a country achieves a technological lead in the development of intelligent weapon systems, it signifies that the country possesses more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and contingency response. This advantage includes higher autonomy, intelligence, and adaptability, thereby increasing the country’s military strength and strategic competitive advantage. At the same time, the military advantage of a first-mover can become a security threat to competitors, leading to a competitive race among countries to advance the military application of advanced technologies. ⑦ In August 2023, U.S. Deputy Secretary of Defense Kathleen Hicks announced the “Replicator initiative,” which aims to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧

    Secondly, the lack of transparency in the development of AI-based military equipment by various countries may exacerbate the arms race. This is mainly due to two reasons: First, AI technology is an “enabling technology” that can be used to design a variety of applications. This means that verifying the specific military applications of AI is extremely difficult, unlike nuclear weapons, where monitoring uranium, centrifuges, and weapon and delivery systems can help determine whether a country is developing or deploying nuclear weapons. The differences between semi-autonomous and fully autonomous weapon systems are primarily due to differences in computer software algorithms, making it difficult to verify treaty compliance through physical means. Second, to maintain their strategic advantage, countries often keep details of the military applications of advanced technologies secret, preventing adversaries from discerning their strategic intentions. In the current international environment, this lack of transparency not only intensifies the arms race but also sows the seeds for future escalation of conflict.

    Third, the uncertainty of national strategic intentions also exacerbates the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence, and the escalation of war largely depends on other countries’ perception of its capabilities, rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often feature risk competition, testing courage more than force. The relationship between major adversaries is determined by which side is ultimately willing to invest more power, or to make it appear as if it is about to invest more power.⁹ An actor’s perception of the capabilities of others, whether true or false, significantly influences the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors, uncertain of the other’s intentions, will become suspicious of the competitor’s military capabilities and the intentions behind their military development, often taking reciprocal measures, namely, developing their own military to meet their own security needs. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.

    Empowering operational processes increases the risk of conflict.

    Empowered by big data and artificial intelligence technologies, traditional combat processes will undergo intelligent restructuring, shifting from “situational awareness—command and decision-making—offensive and defensive coordination—comprehensive support” to “intelligent situational awareness across the entire domain—human-machine integrated hybrid decision-making—manned/unmanned autonomous coordination—proactive and on-demand precise support.” However, while this intelligent restructuring of combat processes improves operational efficiency and accuracy, it also increases the risk of conflict and miscalculation.

    First, wars that break out at “machine speed” will increase the risk of hasty action. Artificial intelligence weapon systems demonstrate formidable capabilities in precision and reaction speed, making future wars likely to erupt at “machine speed.”⑩ However, excessively rapid warfare will also increase the risk of conflict. In areas that emphasize autonomy and reaction speed, such as missile defense, autonomous weapon systems, and cyberspace, faster reaction times will bring significant strategic advantages. At the same time, they will drastically reduce the time window for the defending side to react to military actions, placing commanders and decision-makers under immense “time pressure,” exacerbating the risk of “hasty action,” and increasing the possibility of unexpected escalation of the crisis.

    Second, relying on system autonomy may increase the probability of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on dynamic changes in mission parameters, efficiently achieving human-preset goals. Increased autonomy not only significantly reduces reliance on human labor and improves overall operational efficiency, but is also regarded by defense planners as a key element in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, because human commanders cannot react quickly enough, they may gradually delegate control to autonomous systems, increasing the probability of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly identified a friendly Tornado fighter jet as an anti-radiation missile. Under pressure with only a few seconds to react, the commanders chose to launch the missile, resulting in the deaths of two pilots.⑫

    Third, it weakens the effectiveness of crisis termination mechanisms. During the Cold War, the US and the Soviet Union spearheaded a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear war. In these measures, humans played a crucial “monitoring” role, able to initiate termination measures within sufficient time to avert large-scale humanitarian catastrophes should a risk of spiraling out of control. However, with the increasing computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become more rapid, precise, and destructive, potentially weakening human intervention mechanisms for crisis termination.

    Accountability for war is difficult, and collateral damage is increased.

    Artificial intelligence weapon systems make it more difficult to define responsibility in war. In traditional warfare, weapon systems are controlled by humans, and if errors or crises occur, the human operator or the developer of the operating system bears the corresponding responsibility. Artificial intelligence technology itself weakens human agency and control, making the attribution of responsibility for technical actions unclear.

    First, there’s the “black box” problem of artificial intelligence. While AI has significant advantages in processing and analyzing data, its internal operating principles and causal logic are often difficult for humans to understand and explain. This makes it challenging for programmers to correct erroneous algorithms, a problem often referred to as the “black box” of algorithmic models. If an AI-powered weapon system poses a security threat, the “algorithm black box” could become a convenient excuse for those responsible to shirk accountability. Those seeking accountability would face generalized blame-shifting and deflection, ultimately pointing the finger at the AI ​​weapon system. In practice, the inability to understand and explain the decision-making process of AI can lead to a series of problems, such as decision-making errors, trust crises, and information misuse.

    Secondly, there is the issue of delineating human-machine responsibility in military operations. When an AI system malfunctions or makes a decision-making error, should it be treated as an independent entity and held responsible? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this responsibility delineation lies not only in the technical aspects but also in the ethical and legal ones. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human-preset programs and algorithms, therefore their responsibility cannot be completely independent of humans. On the other hand, in certain situations, AI systems may exceed the pre-set limits of humans and make independent decisions; how to define their responsibility in such cases also becomes a difficult problem in the field of arms control.

    Thirdly, there is the issue of the allocation of decision-making power between humans and AI weapon systems. Depending on the level of machine autonomy, AI systems can execute tasks in three decision-making and control modes: semi-autonomous, supervised autonomy, and fully autonomous. In semi-autonomous systems, human decision-making power rests with the user; in supervised autonomy, humans supervise and intervene when necessary; in fully autonomous operations, humans do not participate in the process. As the military application of AI deepens, the role of humans in combat systems is gradually shifting from the traditional “human-in-the-loop” model to “human-on-the-loop,” evolving from direct controllers within the system to external supervisors. However, this shift also raises new questions. How to ensure that AI weapon systems adhere to human ethics and values ​​while operating independently is a major challenge currently facing the field of AI weapon development.

    Lowering the threshold for dissemination leads to misuse and abuse.

    Traditional strategic competition typically involves large-scale weapons system development and procurement, requiring substantial financial and technological support. With the maturation and diffusion of artificial intelligence (AI) technology, its accessibility and low cost make it possible for even small and medium-sized countries to develop advanced intelligent weapons systems. Currently, strategic competition in the field of military AI is primarily concentrated among major military powers such as the US and Russia. However, in the long run, the proliferation of AI technology will broaden the scope of strategic competition, posing a disruptive threat to the existing strategic balance. Once smaller countries possessing AI technology achieve relatively strong competitiveness, their willingness to confront threats from major powers may increase.

    First, artificial intelligence (AI) facilitates the development of lightweight and agile combat methods, encouraging smaller states and non-state actors to engage in small-scale, opportunistic military adventures to achieve their strategic objectives at a lower cost and with more diverse means. Second, the rapid development of AI has led to the increasing prominence of new forms of warfare such as cyber warfare and electronic warfare. In a highly competitive battlefield environment, malicious third-party actors can manipulate information to influence military planning and strategic deterrence, leading to escalation. The 2022 Ukraine crisis saw numerous instances of online disinformation used to confuse the public. Third, the widespread application of AI technology has also reduced strategic transparency. Traditional military strategies often rely on extensive intelligence gathering, analysis, and prediction; however, with the assistance of AI, operational planning and decision-making processes become more complex and unpredictable. This lack of transparency can lead to misunderstandings and misjudgments, thereby increasing the risk of conflict escalation.

    Governance Path of Artificial Intelligence Weaponization Security Risks

    To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military applications of artificial intelligence, promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework, strengthen ethical constraints on artificial intelligence to ensure that technological development conforms to ethical standards, and actively participate in global security governance cooperation to jointly safeguard the peace and stability of the international community.

    We attach great importance to strategic communication at the international level.

    Artificial intelligence governance is a global issue that requires concerted efforts from all countries to resolve. On the international stage, the interests of nations are intertwined yet conflicting; therefore, addressing global issues through effective communication channels is crucial for maintaining world peace and development.

    On the one hand, it is essential to accurately grasp the challenges of international governance of artificial intelligence. This involves understanding the consensus among nations on the weaponization of AI, while also closely monitoring policy differences among countries regarding the security governance of AI weaponized applications. Through consultation and cooperation, relevant initiatives should be aligned with the UN agenda to effectively prevent the misuse of AI for military purposes and promote its peaceful application.

    On the other hand, it is crucial to encourage governments to reach relevant agreements and build strategic mutual trust through official or semi-official dialogues. Compared to the “Track 1 dialogue” at the government level, “Track 1.5 dialogue” refers to dialogues involving both government officials and civilians, while “Track 2 dialogue” is a non-official dialogue conducted by academics, retired officials, and others. These two forms of dialogue offer greater flexibility and serve as important supplements and auxiliary means to official intergovernmental dialogues. Through diverse dialogue methods, officials and civilians can broadly discuss possible paths to arms control, share experiences and expertise, and avoid escalating the arms race and worsening tensions. These dialogue mechanisms will provide countries with a continuous platform for communication and cooperation, helping to enhance mutual understanding, strengthen strategic mutual trust, and jointly address the challenges posed by the militarization of artificial intelligence.

    Scientifically formulate laws and ethical guidelines for artificial intelligence.

    Artificial intelligence (AI) technology itself is neither right nor wrong, good nor evil. However, there are certainly distinctions of good and evil intentions in the design, research and development, manufacturing, use, operation, and maintenance of AI. The weaponization of AI has sparked widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on complex battlefields? Furthermore, if AI weapon systems cause unintended harm, how should liability be determined? Is entrusting life-or-death decision-making power to machines in accordance with ethical standards? These concerns highlight the necessity of strengthening ethical constraints on AI.

    On the one hand, it is essential to prioritize ethics and integrate the concept of “intelligent for good” from the very source of technology. In the design of AI military systems, values ​​such as human-centeredness and intelligent for good should be embedded within the system. The aim is to prevent potential indiscriminate killing and harm caused by AI at the source, control its excessive destructive power, and prevent accidental damage, thereby limiting the extent of damage caused by AI weapon systems to the smallest possible range. Currently, nearly a hundred institutions and government departments both domestically and internationally have published various AI ethics principles documents, and the academic and industrial communities have reached a consensus on basic AI ethical principles. In 2022, China’s “Position Paper on Strengthening Ethical Governance of Artificial Intelligence,” submitted to the United Nations, provided an important reference for the development of global AI ethics regulation. The document explicitly emphasizes that AI ethics regulation should be promoted through measures such as institutional construction, risk management, and collaborative governance.

    On the other hand, it is necessary to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of artificial intelligence entities. Strict technical review standards should be established to ensure the safety and reliability of AI systems. Comprehensive testing should be conducted before AI systems are deployed to ensure they do not negatively impact human life and social order. The legal responsibilities of developers, users, maintainers, and other parties throughout the entire lifecycle of AI systems should be clearly defined, and corresponding accountability mechanisms should be established.

    We will pragmatically participate in international cooperation on artificial intelligence security governance.

    The strategic risks posed by the military applications of artificial intelligence further highlight the importance of pragmatic international security cooperation. It is recommended to focus on three key areas:

    First, we should promote the formulation of guidelines for the application of artificial intelligence in the military field. Developing codes of conduct for the military application of artificial intelligence is an important responsibility of all countries in regulating its military use, and a necessary measure to promote international consensus and comply with international regulations. In 2021, the Chinese government submitted its “Position Paper on Regulating the Military Application of Artificial Intelligence” to the UN Convention on Certain Conventional Weapons Conference, and in 2023, it released the “Global Artificial Intelligence Governance Initiative,” both of which provide constructive references for improving the codes of conduct for regulating the military application of artificial intelligence.

    Second, it is essential to establish a suitable regulatory framework. The dual-use nature of artificial intelligence (AI) involves numerous stakeholders, making the role of non-state actors such as NGOs, technical communities, and technology companies increasingly prominent in the global governance of AI, thus becoming a crucial force in building a regulatory framework for the military application of AI. Technical regulatory measures that countries can adopt include: clarifying the scope of AI technology use, responsible parties, and penalties for violations; strengthening technological research and development to improve the security and controllability of the technology; and establishing regulatory mechanisms to monitor the entire process of technology research and development and application, promptly identifying and resolving problems.

    Third, we will jointly develop technologies and solutions for AI security. We encourage the inclusion of bilateral or multilateral negotiations between governments and militaries in the dialogue options for military AI applications, and promote extensive exchanges on military AI security technologies, operating procedures, and practical experience. We will also promote the sharing and reference of relevant risk management technical standards and usage norms, and continuously inject new stabilizing factors into the international security and mutual trust mechanism in the context of the militarization of AI.

    (The author is the director and researcher of the National Defense Science and Technology Strategy Research Think Tank at the National University of Defense Technology, and a doctoral supervisor; Liu Hujun, a master’s student at the School of Foreign Languages ​​of the National University of Defense Technology, also contributed to this article.)

現代國語:

朱啟超
《人民論壇》(2025年02月05日 第 02版)

【摘要】人工智能武器化是新一輪軍事變革的必然趨勢,近年來的局部戰爭衝突進一步刺激相關國家推進人工智能武器化戰略部署,搶占未來戰爭制高點。人工智能武器化的潛在風險不容忽視,將可能加劇軍備競賽,打破戰略平衡;賦能作戰流程,加大衝突風險;提升問責難度,增加附帶傷亡;降低擴散門檻,導致誤用濫用。對此,應加強國際間戰略溝通,確保各國在人工智能軍事應用上的共識與協作;推進法律法規建設的對話與協調,以形成統一規範的法律框架;加強人工智能倫理約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

【關鍵詞】人工智能 軍事應用 安全風險 安全治理 【中圖分類號】F113 【文獻標識碼】A

人工智能武器化,是將人工智能相關技術、平台與服務應用到軍事領域,使其成為賦能軍事行動的重要驅動力量,進而提升軍事行動的效率、精準度和自主性。隨著人工智能技術在軍事領域的廣泛應用,各主要大國和軍事強國紛紛加大戰略與資源投入,加快研發應用步伐。近年來頻發的地區戰爭衝突也進一步刺激了人工智能的戰場運用,並深刻形塑戰爭形態以及軍事變革的未來走向。

不容忽視的是,人工智能作為一類快速發展中的技術,其本身由於內在技術的不成熟、場景匹配的不准確、支持條件的不完備,可能存在潛在風險,而由於人為的誤用、濫用甚至惡意使用,也容易給軍事領域乃至國際安全領域帶來多種風險挑戰。認真貫徹落實習近平總書記提出的全球安全倡議,必須直面世界範圍內人工智能武器化的發展趨勢,深入分析人工智能武器化應用可能帶來的安全風險,並思考科學可行的治理思路與舉措。

當前人工智能武器化的發展趨勢

近年來,人工智能在軍事領域的應用,正在從根本上重塑未來戰爭形態、改變未來作戰體系,影響軍事變革的未來走向。主要軍事大國已將人工智能視為改變未來戰爭規則的顛覆性關鍵技術,紛紛挹注大量資源,推進人工智能武器的研發與應用。

人工智能武器化是軍事變革的必然趨勢。

隨著科學技術的飛速發展,軍事變革的必要性與緊迫性愈發凸顯。人工智能通過模擬人類的思維過程,延展人類的腦力與體力,可實現信息快速處理、分析和決策,可研發日益複雜的無人化武器系統平台,從而為軍事行動提供前所未有的智能化支持。

一是為軍事情報偵察與分析提供智能支持。傳統的情報偵察方式受到人力和時間等多重因素制約,難以有效應對大規模、高速度和高複雜度的情報處理需求。人工智能技術的引入,為情報偵察領域帶來革新和突破。在軍事基礎設施中,應用人工智能技術,可構建智能監測系統,提供高精度實時的情報感知服務。在情報偵察領域,人工智能技術具備對多個“信息流”進行實時處理的能力,從而極大地提高分析效率。 ①通過使用深度學習等技術工具,還可以“透過現像看本質”,挖掘出各類碎片化情報信息中的深層脈絡與因果聯繫,將海量碎片化數據快速轉變為可以利用的情報,從而提升情報分析的質效。

二是為作戰指揮與決策提供數據支持。人工智能在戰場態勢感知方面為作戰指揮和軍事決策提供有力支持。 ②其優勢在於能夠進行數據挖掘、數據融合以及預測分析等關鍵任務。在信息化智能化戰爭中,戰場環境瞬息萬變,情報信息量龐大,要求決策響應迅速且準確。因此,先進的計算機系統就成為協助指揮人員管理情報數據、進行敵情判斷、提出作戰方案建議以及擬制計劃與命令的重要工具。以美軍為例,美國雷神技術公司(Raytheon Technologies Corporation)研製的ISTAR(情報、監視、目標識別和跟踪)系統,涵蓋了情報採集、監視、目標識別及跟踪功能,可匯聚來自衛星、艦船、飛機及地面站等多元信息源的數據,並對其進行深度分析與處理。這不僅顯著提高了指揮官獲取信息的速度,而且可藉助智能分析系統提供數據支持,使決策更加快速、高效和精準。

三是為無人作戰系統提供重要支撐。無人作戰系統是一種無需人類直接操縱,便可獨立完成軍事任務的新型武器裝備系統,主要包括智能化無人作戰平台、智能化彈藥和智能化作戰指揮控制系統等組成部分,具備顯著的自主性和智能化特徵。無人作戰系統,作為引領未來戰爭形態變革的技術裝備,已成為國家間軍事競爭的重要籌碼。該系統通過運用自主導航、目標識別、路徑規劃等關鍵技術,實現了不同戰場環境及作戰空間的適應能力。借助深度學習、強化學習等先進算法,無人作戰系統能夠獨立完成導航任務,並實現精準打擊目標。這種系統的設計理念是“平台無人,系統有人”,其本質是對有人作戰系統的智能化延伸。例如,美國國防部高級研究計劃局(DARPA)研發的“MQM-57獵鷹者”無人機,就採用了先進的人工智能技術,具備高度自主的目標識別和追踪功能。

四是為軍事後勤與裝備保障提供技術支持。在信息化戰爭的背景下,戰爭進程加快、機動性提升、作戰消耗顯著增加。傳統的“超量預儲”保障模式已無法適應現代戰場快速變化的需求,因此,對作戰部隊進行適時、適地、適需、適量的快速精確後裝保障提出了更高的要求。人工智能作為一種具有溢出帶動和交叉融合特性的技術,與物聯網、大數據、雲計算等前沿技術相互融合,使得人工智能知識群、技術群和產業群全面滲透到軍事後裝領域,顯著提升了後勤裝備保障能力。

主要國家紛紛佈局人工智能軍事應用。

為增強在人工智能領域的全球競爭力,美國、俄羅斯、日本等主要大國加緊對人工智能軍事應用的戰略佈局。首先,通過更新和調整人工智能領域的頂層戰略規劃,為未來的發展提供明確指導;其次,針對未來戰爭需求,加快人工智能技術與軍事領域的深度融合,推動裝備系統的智能化、自主化和無人化發展;此外,積極創新作戰概念,以驅動作戰力量創新,進而提升作戰效能和競爭優勢。

一是製定戰略規劃。基於技術霸權追求軍事霸權、政治霸權、經濟霸權的戰略偏執,美國正加快自身軍事智能化進程。 2023年11月,美國國防部發布《數據、分析與人工智能採用戰略》,旨在擴展整個國防部體系的先進能力,以獲得持久的軍事決策優勢。俄軍頒布被稱為“3.0版本”的《2024年至2033年俄羅斯武器裝備發展綱要》,旨在為未來10年武器裝備發展提供指導,綱要強調繼續推進核武器和常規武器建設,並重點研究人工智能和機器人技術、高超音速武器和其他基於新物理原理的打擊兵器。

二是研發先進裝備系統。美軍自2005年開始每隔幾年都會發布一版“無人系統路線圖”,以展望並設計空中、地面、水面/水下等各領域無人系統平台,貫通研發—生產—測試—訓練—作戰—保障等無人化武器裝備發展鏈路。目前,世界上已有70多個國家可以研發無人化系統平台,各種類型的無人機、無人車、無人船(艇)、無人潛航器如雨後春筍般不斷出現。 2024年7月15日,美軍參聯會前主席馬克·米利接受《美國防務新聞》採訪時稱,到2039年,三分之一的美軍部隊將由機器人組成。俄軍研發的平台-M作戰機器人、“柳葉刀”自殺式無人機和S70“獵人”重型無人機等,已投入實戰檢驗。

三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來先後提出“分佈式殺傷”“多域戰”“馬賽克戰”等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種傳感器、通信網絡、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智能技術賦能支持下,通過網絡信息系統可動態鏈接、自主規劃、協同組合,從而形成一個按需集成、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計劃》,該計劃旨在將多域作戰向全域作戰概念拓展,將各軍種傳感器連接到一個統一“物聯網”中,利用人工智能算法幫助改善作戰指揮決策。 ③

戰爭衝突刺激人工智能武器化進程。

近年來,利比亞衝突、納卡衝突、烏克蘭危機、哈以沖突等局部衝突不斷,進一步刺激了人工智能武器化的發展進程。

在利比亞衝突中,交戰雙方採用多種型號無人機執行偵察和作戰任務。據聯合國利比亞問題專家小組發布的報告指出,土耳其製造的“卡古-2”(Kargu-2)無人機2020年在利比亞執行了“追捕並遠程交戰”行動,可自主攻擊撤退中的敵方士兵。這一事件標誌著致命性自主武器系統在實戰中的首次運用。如美國學者扎卡里·卡倫伯恩所述,若有人在此類自主攻擊中不幸喪生,這極有可能是歷史上首個已知的人工智能自主武器被用於殺戮的例子。在2020年納卡衝突中,阿塞拜疆運用土耳其生產的“旗手”TB2無人機編隊和以色列生產的“哈洛普”無人機成功突破了亞美尼亞防空系統,掌握了戰場製空權和主動權。 ④ 阿塞拜疆軍隊無人機作戰的顯著成效,在很大程度上源於亞美尼亞軍隊的“輕敵”心態,對無人機在現代戰爭中的重要性和威脅性認識不足。其次,從進攻策略的角度來看,阿塞拜疆軍隊在無人機戰法上進行了大膽的創新。他們靈活運用察打一體無人機和巡飛彈等先進裝備,不僅提升了作戰效率,也大大增強了戰鬥的突然性和致命性。 ⑤

在2022年爆發的烏克蘭危機中,俄羅斯和烏克蘭都廣泛使用軍用級和商用無人機執行偵察監視、火砲瞄準和打擊任務。烏克蘭軍隊通過使用“旗手”TB2無人機以及美國援助的“彈簧刀”系列自殺式無人機,實施精確打擊和高效殺傷,成為令世界矚目的“戰場殺手”。在哈以沖突中,以色列軍方被指控使用名為“薰衣草”(Lavender)的人工智能係統來識別並鎖定加沙境內的轟炸目標,曾將多達3.7萬名加沙巴勒斯坦人標記為“武裝分子”嫌疑對象,並將其認定為可直接“暗殺”的目標,以軍行動引發了國際社會廣泛關注和譴責。 ⑥

人工智能武器化帶來的​​安全風險

從自動化指揮系統到智能無人作戰平台,再到網絡防禦中的智能決策系統,人工智能技術在軍事領域的應用正變得愈發普遍,已成為現代戰爭不可或缺的一部分。然而,人工智能武器化的趨勢下,其誤用、濫用甚至惡意使用,也將給國際安全帶來不可忽視的風險挑戰。

加劇軍備競賽,打破戰略平衡。

在信息化智能化時代,人工智能所具有的顛覆性潛力讓軍事大國都難以抗拒,紛紛聚焦人工智能軍事能力的開發和運用,唯恐在這一領域落後而喪失戰略機遇。深化人工智能軍事應用,則能夠以更低成本、更高效率的方式獲得“非對稱優勢”。

一是各國紛紛搶抓“先行者優勢”。當一個國家在智能武器系統開發領域取得技術領先地位時,意味著該國具備更高級的人工智能和相關應用能力,使其在武器系統開發、控制和應急響應等方面具有先發優勢。這種優勢包括更高的自主性、智能化程度和自適應能力,從而增加了該國的軍事實力和戰略競爭優勢。與此同時,先行者的軍事優勢可能會成為競爭對手的安全威脅,導致各國在先進技術的軍事應用上呈現出你爭我趕的態勢。 ⑦ 2023年8月,美國國防部副部長凱瑟琳·希克斯宣布了“複製者計劃”(Replicator initiative),該倡議力求在不到兩年的時間內在印太地區部署數千個“自主武器系統”。 ⑧

二是各國人工智能軍備建設的不透明性可能加劇軍備競賽。這主要有兩個方面的原因:一是人工智能技術是一種可用於設計多種應用的“使能技術”,這意味著人工智能軍事應用具體情況核查難度較高,難以像核武器可以通過對鈾、離心機以及武器和運載系統的監測來判斷一個國家是否在進行核武器的開發或部署。半自主、完全自主武器系統之間的差別主要是由於計算機軟件算法不同導致的,很難通過物理核查手段來對各國的條約執行情況進行核查。二是各國為了保持己方的戰略優勢,往往對先進技術的軍事應用相關細節採取保密措施,從而使對手無法探知其戰略意圖。在當前國際環境中,這種不透明性不僅僅加劇了軍備競賽,更為未來衝突升級埋下了伏筆。

三是各國戰略意圖的不確定性也會加劇軍備競賽。人工智能對於戰略穩定、核威懾和戰爭升級的影響,很大程度上取決於他國對於其能力的感知,而非其實質能力。正如美國學者托馬斯·謝林指出,國際關係常常具有風險競爭的特徵,更多的是對勇氣而不是武力的考驗,主要對手之間的關係是由哪一方最終願意投入更大的力量,或者使之看起來即將投入更大的力量來決定的。 ⑨ 一個行為體對於他者能力的感知,無論真假,都會在很大程度上影響軍備競賽進程。如果一個國家大力發展智能武器系統,競爭對手在不確定對方意圖的情況下,會對競爭對手的軍備能力及發展軍備的意圖產生猜忌,往往採取對等措施,即通過發展軍備來滿足自身安全需求。正是這種意圖的模糊性刺激了技術積累,加劇武器部署的不穩定性,最終導致惡性循環。

賦能作戰流程,加大衝突風險。

在大數據和人工智能技術賦能下,傳統作戰流程將實現智能化再造,即由“態勢感知—指揮決策—攻防協同—綜合保障”向“全域態勢智能認知—人機一體混合決策—有人/無人自主協同—主動按需精准保障”轉變。然而,作戰流程的智能化再造雖然提高了作戰的效率和精確性,但也提升了衝突和誤判的風險。

一是以“機器速度”爆發的戰爭將增加倉促行動的風險。人工智能武器系統在精確度和反應速度上表現出強大的能力,使得未來戰爭將以“機器速度”爆發。 ⑩ 但戰爭速度過快也將升高衝突風險。在導彈防禦、自主武器系統和網絡空間等重視自主性以及反應速度的領域,更快的反應速度將帶來巨大的戰略優勢,同時也極大地壓縮了防禦方對軍事行動作出反應的時間窗口,導致作戰指揮員和決策者置身於巨大的“時間壓力”之下,加劇了“倉促行動”的風險,並增加了危機意外升級的可能性。

二是依賴系統自主性可能增加壓力下的誤判機率。美國國防部認為,“高度自主化的人工智能係統,能夠根據任務參數的動態變化,自主選擇並執行相應操作,高效實現人類預設的目標。自主性的增加不僅大幅減少了對人力的依賴,提高了整體操作效率,更被國防規劃者視為保持戰術領先、確保戰場優勢的關鍵要素。”⑪然而,由於人類指揮官無法作出足夠快的反應,可能逐漸將控制權下放給自主系統,增加誤判機率。 2003年3月,美國“愛國者”導彈系統曾錯誤地將友軍的“龍捲風”戰鬥機標記為反輻射導彈,指揮人員在只有幾秒鐘反應時間的壓力狀態下,選擇發射導彈,造成了兩名飛行員的死亡。 ⑫

三是削弱了危機終止機制的有效性。冷戰時期,美蘇主導構建了一系列限制性措施來遏制危機的升級,避免其演化為大規模的核戰爭。在這些措施中,人類扮演著至關重要的“監督者”角色,在可能出現風險失控時,能夠在充足的時間內啟動終止措施,避免大規模人道主義災難發生。但是,隨著人工智能係統運算能力的提升及其與機器學習的深度融合,作戰響應變得更為迅捷、精確和具有破壞性,人類對於危機的終止干預機制將可能被削弱。

戰爭問責困難,增加附帶傷亡。

人工智能武器系統使得戰爭責任更難界定。在傳統作戰模式下,由人類控制武器系統,一旦造成失誤或危機,人類操作員或者操作系統的研發者將承擔相應的責任。人工智能技術本身弱化了人類的能動性和控制能力,致使技術性行為的責任歸屬變得模糊不清。

一是人工智能“黑箱”問題。儘管人工智能在處理和分析數據方面有著顯著優勢,但是其內部運行規律和因果邏輯卻常常難以被人類理解和解釋,這使得程序員難以對錯誤算法進行糾偏除誤,這一問題常常被稱為算法模型的“黑箱”。一旦人工智能武器系統產生安全危害,“算法黑箱”可能成為相關責任方推卸責任的合理化藉口,追責者只能面臨泛化的卸責與推諉,並將責任矛頭指向人工智能武器系統。在實踐中,如果無法理解並解釋人工智能的決策過程,可能會引發一系列的問題,如決策失誤、信任危機、信息濫用等。

二是軍事行動中人機責任劃分問題。當人工智能係統出現故障或者決策失誤時,是否應將其視為一種獨立的實體來承擔責任?或者,是否應該將其視為一種工具,由人類操作者承擔全部或部分責任?這種責任劃分的複雜性不僅在於技術層面,更在於倫理和法律層面。一方面,人工智能係統雖然能夠自主決策,但其決策過程仍然受到人類預設的程序和算法限制,因此其責任不能完全獨立於人類。另一方面,人工智能係統在某些情況下可能會超越人類的預設範圍,作出獨立的決策,此時其責任又該如何界定,也成為軍控領域的難題。

三是人與人工智能武器系統的決策權分配問題。按照機器自主權限的不同,人工智能係統能夠以半自主、有監督式自主以及完全自主三種決策與控制方式執行任務。在半自主系統中,行動的決策權由人類掌控;在有監督式自主行動中,人類實施監督並在必要時干預;在完全自主行動中,人類不參與行動過程。隨著人工智能軍事應用程度的逐漸加深,人在作戰系統中的角色正經歷由傳統的“人在迴路內”模式逐步向“人在迴路上”轉變,人類從系統內部的直接操控者演化為系統外部的監督者。然而,這一轉變也引發了新的問題。如何確保人工智能武器系統在獨立運作時仍能遵循人類倫理和價值觀,這是當前人工智能武器研發領域面臨的重大挑戰。

降低擴散門檻,導致誤用濫用。

傳統的戰略競爭通常涉及大規模的武器系統研發和採購,需要大量資金和技術支持。人工智能技術成熟擴散後,具有易獲取且價格低廉等優勢,即便是中小國家也可能具備開發先進智能武器系統的能力。當前,軍用人工智能領域的戰略競爭主要集中在美俄等軍事大國之間。但長遠來看,人工智能技術的擴散將擴大戰略競爭的範圍,對現有的戰略平衡構成破壞性威脅。一旦掌握人工智能技術的較小規模國家擁有相對較強的競爭力,這些國家在面臨大國威脅時發起對抗的意願可能就會增強。

一是人工智能有助於發展一些輕便靈巧的作戰手段,從而鼓勵一些中小國家或者非國家行為體利用其開展小型的、機會主義的軍事冒險,以更低廉的成本和更豐富的途徑來達到其戰略目地。二是人工智能的快速發展使得網絡戰、電子戰等新型戰爭形態日益凸顯。在競爭激烈的戰場環境中,惡意的第三方行為體可以通過操縱信息來影響軍事規劃和戰略威懾,導致局勢升級。在2022年爆發的烏克蘭危機中,就有眾多網絡虛假信息傳播混淆視聽。三是人工智能技術的廣泛應用還降低了戰略透明度。傳統的軍事戰略往往依賴於大量的情報收集、分析和預測,而在人工智能技術的輔助下,作戰計劃和決策過程變得更加複雜和難以預測。這種不透明性可能導致誤解和誤判,從而增加了衝突升級的風險。

人工智能武器化安全風險的治理路徑

為確保人工智能安全發展,避免其武器化帶來的​​潛在危害,應加強國際間的治理戰略溝通,尋求各國在人工智能軍事應用方面的共識與協作;推進法律法規對話協調,以形成統一規範的法律框架;加強人工智能倫理的約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

高度重視國際層面戰略溝通。

人工智能治理是一個全球性問題,需要各國通力合作,共同解決。在國際舞台上,各國利益交融與利益衝突並存,因此,通過有效的溝通渠道來處理全球性問題成為維護世界和平與發展的關鍵。

一方面,要準確把握人工智能國際治理挑戰。既要把握各國對人工智能武器化發展的共識,也要密切關注各國在人工智能武器化應用安全治理方面的政策差異,通過協商合作,使相關倡議與聯合國議程相協調,從而有效防止人工智能在軍事上的濫用,推動人工智能用於和平目的。

另一方面,推動各國政府通過官方或半官方對話,達成相關協議,建立戰略互信。相較於政府層面的“1軌對話”,“1.5軌對話”指的是政府官員與民間人士共同參與的對話,而“2軌對話”則是由學者、退休官員等進行的民間非官方形式的對話。這兩種對話形式具有更高的靈活性,是政府間官方對話的重要補充和輔助手段。通過多樣化的對話交流方式,官方和民間人士可以廣泛磋商軍備控制的可能實現路徑,分享經驗和專業知識,以避免軍備競賽的升級和緊張局勢的惡化。這些對話機制將為各國提供持續的溝通與合作平台,有助於增進相互理解、加強戰略互信,共同應對人工智能軍事化應用帶來的挑戰。

科學制定人工智能法律和倫理規約。

人工智能技術本身並無對錯善惡之分,但對於人工智能的設計、研發、製造、使用、運行以及維護確有善惡意圖之別。人工智能武器化引發了廣泛的倫理關注。國際法框架下,自主武器系統是否能夠在復雜戰場上精準區分戰鬥人員與平民?此外,若人工智能武器系統導致非預期的傷害,其責任歸屬如何界定?將關乎生死的決策權交付於機器,這一做法是否符合道德倫理標準?這些擔憂凸顯了加強人工智能倫理約束的必要性。

一方面,要堅持倫理先行,從技術源頭上融入“智能向善”的理念。在人工智能軍事系統的設計過程中,將以人為本、智能向善等價值觀內嵌於系統中。其目的是從源頭上杜絕人工智能可能引發的濫殺濫傷行為,控制其過度殺傷力,防範意外毀傷的發生,從而將人工智能武器系統所帶來的毀傷程度限制在盡可能小的範圍內。目前,國內外已有近百家機構或政府部門發佈各類人工智能倫理原則文件,學術界和產業界亦就人工智能基本倫理原則達成共識。 2022年,中國向聯合國遞交的《關於加強人工智能倫理治理的立場文件》為全球人工智能倫理監管的發展提供了重要參考。文件明確強調,應通過制度建設、風險管控、協同共治等多方面的措施來推進人工智能倫理監管。

另一方面,要完善相關法律法規,明確人工智能主體的權責邊界。制定嚴格的技術審核標準,確保人工智能係統的安全性和可靠性。在人工智能係統上線前進行全面的測試,確保其不會對人類生活和社會秩序造成負面影響。明確開發者、使用者、維護者等各方在人工智能係統全生命週期中的法律責任,以及建立相應的追責機制。

務實參與人工智能安全治理國際合作。

人工智能軍事應用所帶來的戰略風險,更加凸顯出國際安全務實合作的重要性。建議重點從三個方面著手:

一是推動制定人工智能在軍事領域的運用準則。制定人工智能軍事應用的行為準則,是各國規範人工智能軍事應用的重要責任,也是推動國際共識和遵守國際法規的必要舉措。中國政府2021年向聯合國《特定常規武器公約》大會提交了《中國關於規範人工智能軍事應用的立場文件》,2023年發布《全球人工智能治理倡議》,這些都為完善規範人工智能軍事應用的行為準則提供了建設性參考。

二是建立適用的監管框架。人工智能軍民兩用性使其涉及眾多利益攸關方,一些非國家行為體如非政府組織、技術社群、科技企業在人工智能全球治理進程中的作用將更加突出,成為人工智能軍事應用監管框架建設的重要力量。各國可採取的技術監管措施包括:明確人工智能技術的使用範圍、責任主體和違規處罰措施;加強技術研發,提高技術的安全性和可控性;建立監管機制,對技術的研發和應用進行全程監管,及時發現和解決問題。

三是共同研發人工智能安全防範技術和解決方案。鼓勵將政府間和軍隊間的雙邊或多邊談判納入軍用人工智能應用的對話選項,就軍用人工智能安全防範技術、操作規程及實踐經驗廣泛交流,推動相關風險管理技術標準和使用規範的分享借鑒,為人工智能軍事化背景下的國際安全互信機制不斷注入新的穩定因素。

(作者為國防科技大學國防科技戰略研究智庫主任、研究員,博導;國防科技大學外國語學院碩士研究生劉胡君對本文亦有貢獻)

【註釋】

①Katz B. Analytic edge: Leveraging emerging technologies to

transform intelligence analysis [R]. Washington D.C.: Center for

Strategic and International Studies, 2020.

②Paul McLeary. Pentagon’s Big AI Program, Maven, Already

Hunts Data in Middle East, Africa[N]. Breaking Defense, May 1, 2018.

③唐新華:《美國綜合威懾戰略中的技術互操作性》,《太平洋學報》, 2022年第12期,第15-25頁。

aijan’s Drones Owned the Battlefield in

Nagorno-Karabakh—and Showed Future of Warfare[N]. The

Washington Post, November 11, 2020.

⑤朱啟超、陳曦、龍坤:《無人機作戰與納卡衝突》,《中國國際戰略評論》,2020年第2期,第167-183頁。

⑥The Verge Report: Israel used AI to identify bombing targets in

Gaza [EB/OL].[2024-04-05].

artificial-intelligence-gaza-ai#:~:text.

⑦羅易煊、李彬:《軍用人工智能競爭中的先行者優勢》,《國際政治科學》, 2022第3期,第1-33頁。

⑧U.S. Department of Defense. Deputy Secretary of Defense

Kathleen Hicks Keynote Address: The Urgency to Innovate (As

Delivered) [EB/OL]. [2023-08-28]. https://www.defense.gov/News/Speeches/Speech/Article/3507156/deputy-

secretary-of-defense-kathleen-hicks-keynote-address-the-urgency-

to-innov/.

⑨[美]托馬斯·謝林著,毛瑞鵬譯:《軍備及其影響》,上海:上海人民出版社,2017年,第81頁。

⑩Rautenbach P. Keeping Humans in the Loop is Not Enough to

Make AI Safe for Nuclear Weapons[EB/OL],

enough-to-make-ai-safe-for-nuclear-weapons/,2023-02-16/2024-01-

09.

⑪Mayer M. The new killer drones: understanding the strategic

implications of next-generation unmanned combat aerial vehicles[J],

International Affairs, 2015,91(04):771.

⑫[美]保羅·沙瑞爾著,朱啟超、王姝、龍坤譯:《無人軍隊:自主武器與未來戰爭》,北京:世界知識出版社,2019年,第153-156頁。

中國原創軍事資源:https://paper.people.com.cn/rmlt/pc/content/202502/05/content_30058889349.html

Chinese Military Exclusive Requirements for Strategies & Tactics of People’s War in The New Era

新時代中國軍隊對人民戰爭戰略戰術的獨特要求

現代英語:

Looking back on its glorious combat history, the People’s Army has consistently adhered to the absolute leadership of the Party, proposing and implementing a comprehensive set of strategies and tactics for people’s war. These strategies and tactics are a crucial weapon for the People’s Army to defeat the strong with the weak and to conquer the enemy. Over the past 98 years, with the changing times and evolving forms of warfare, the specific content and manifestations of the strategies and tactics for people’s war have continuously evolved. To confront the challenges of information-based and intelligent warfare, we must firmly grasp the essential requirements and value orientations of the strategies and tactics for people’s war amidst the rapidly evolving global trends and practices, unifying the inherently unchanging laws of conduct with the external realities of change, and continuously innovating and developing the strategies and tactics for people’s war in the new era.

President Xi Jinping emphasized that no matter how the situation develops, the magic weapon of people’s war must never be lost. However, we must grasp the new characteristics and new requirements of people’s war in the new era, innovate its content, methods and approaches, and unleash its overall power. Currently, facing profound challenges brought about by changes in science and technology, warfare, and our adversaries, we must not only inherit and carry forward the fine traditions of people’s war, but also be sensitive to changes, actively respond to them, and proactively seek change. We must accurately grasp the inherent requirements of the strategies and tactics of people’s war in the new era, consciously update our thinking and concepts, and innovate strategic guidance, so that this magic weapon of defeating the enemy can be demonstrated on future battlefields.

Adhere to relying on the people and deeply rooted

In the long practice of revolutionary war, the people are the most profound force for victory. The people are the primary force behind the strategies and tactics of people’s war, a magic weapon for victory. People’s war has its roots deeply rooted in the people, and its confidence comes from the people. Regardless of how the times change or how the war evolves, relying closely on the people and fully mobilizing them will always be the fundamental condition and the only way to carry out people’s war. Developing the strategies and tactics of people’s war in the new era requires adhering to the mass perspective of history and the fundamental requirement that soldiers and civilians are the foundation of victory. We must integrate the traditional strategic advantages of people’s war with the mass line, broaden the sources of vitality for the strategies and tactics of people’s war, draw strategic wisdom and tactical methods from the people, and develop an intellectual advantage for people’s war in the new era. We must solidly carry out national defense education throughout the nation, continuously foster a strong sense of patriotism, inspire patriotism, strengthen awareness of potential dangers, and enhance national defense awareness. We must guide the masses to actively care about and support national defense, thereby infusing powerful spiritual strength into people’s war in the new era. We must focus on promoting high-quality population development, comprehensively improve the cultural, scientific, and innovative qualities of the entire population, accelerate the development of a modern human resource base of high quality, sufficient in volume, optimized in structure, and rationally distributed, and promote the shift of the dominant force in people’s war from quantitative to qualitative. Further improve the national defense mobilization system and mechanism, promote the establishment of a rapid response system that is connected with the national emergency response mechanism and integrated with the joint combat system, fully tap and gather the unlimited war potential contained in the people, and give full play to the resource aggregation and value-added effect.

Focus on overall planning and full-area offense and defense

In the long-term practice of revolutionary warfare, the strategies and tactics of people’s war require the comprehensive mobilization of diverse forces and resources in the political, economic, cultural, diplomatic, and military sectors, and the integrated use of various forms of struggle and methods of operation. This holistic approach compensates for local deficiencies and disadvantages, ultimately defeating powerful adversaries. Modern warfare is not only a fierce confrontation in the military sphere, but also a comprehensive struggle in the political, economic, and diplomatic spheres, exhibiting the distinct characteristics of hybrid warfare. To develop the strategies and tactics of people’s war in the new era, we must establish a broad systemic mindset, relying on the national strategic system and supported by the joint operations system, explore the implementation methods of people’s war strategies and tactics, and win the total war of people’s war in the new era. We should fully leverage the advantages of the new national system, relying on the integrated national strategic system and capabilities, efficiently aggregate superior resources across the board, fully activate the country’s national defense potential, and weave various forces and resources into a network. We should integrate and plan the subsystems of people’s war, including leadership, organization, personnel, command, technology, equipment, and support, to maximize the effectiveness of holistic linkage and systemic operation, and achieve the maximum benefits of all-round effort and multiplied energy. We must strengthen comprehensive coordination across the physical, information, and social domains, focusing on seeking breakthroughs in new domains and new qualities, and making achievements in new dimensions such as unmanned warfare, human-machine collaborative warfare, network and electronic warfare, space and deep-sea warfare, and intelligent and autonomous warfare. Military and non-military means must be coordinated, integrating various forms of struggle, including political, economic, diplomatic, public opinion, and military. Comprehensive measures must be implemented to effectively wage diplomatic offensive and defensive battles, financial and trade battles, psychological defense battles, and public opinion and legal battles. We must leverage the combined effectiveness of political offensives and armed strikes to effectively fight the political and military battles.

Strengthen active defense and take the initiative

Through the long practice of revolutionary warfare, the People’s Army has developed a comprehensive strategic philosophy of active defense, emphasizing, for example, the unity of strategic defense and offensive action in campaigns and battles, the principles of defense, self-defense, and preemptive strike, and the principle of “if no one offends me, I will not offend; if someone offends me, I will certainly offend.” Active defense is fundamentally defensive, its essence lies in activeness, and its inherent characteristic is proactiveness. Currently, profound changes have taken place in the international, national, and Party, military, and political landscapes. The strategies and tactics of people’s war in the new era generally adhere to the fundamental principle of defense and are not aimed at hegemony, aggression, or oppression of other countries. Consequently, they will win the support and endorsement of the vast majority of the Chinese people, as well as the understanding and assistance of peace-loving and justice-loving countries and peoples around the world. Developing the strategies and tactics of people’s war in the new era must adapt to the times and circumstances. We must adhere to a defensive national defense policy, implement the military strategic guidelines of the new era, excel at observing and analyzing issues from a political perspective, and be adept at considering and applying strategies from regional and global perspectives to consolidate the political foundation for victory in people’s war. We must persist in neither provoking trouble nor fearing it, strengthen the regular and diversified use of military force, firmly and flexibly carry out military struggle, and while adhering to the strategic preemptive strike, we must not give up campaign and combat offensives under favorable conditions and when necessary. We must advance steadily, make progress within stability, and be proactive within stability, effectively shape the security situation, contain crises and conflicts, and firmly grasp the initiative in the struggle.

Highlight new quality dominance and technological empowerment

In the long practice of revolutionary warfare, while emphasizing that victory in war is primarily determined by people, not objects, the People’s Army has also placed great emphasis on the research and development of advanced military technology, particularly weaponry. Comrade Mao Zedong once emphasized that without modern equipment, it would be impossible to defeat the armies of imperialism. The technological content of modern warfare has undergone a qualitative leap, with advanced technologies and new weaponry such as artificial intelligence, big data, quantum computing, unmanned aerial vehicles, and brain control being widely applied in the military. While the people remain the decisive force in determining victory in war, the manifestation of this power has undergone significant changes. Science and technology are core combat power, and People’s War will place greater emphasis on the application of scientific and technological means and rely even more heavily on the wisdom and creativity of the people. Developing the strategies and tactics of People’s War in the new era should prioritize winning information-based and intelligent warfare. We should deeply study the essential characteristics, winning mechanisms, and strategies and tactics of high-end warfare, accelerate the shift from “winning by numbers” to “winning by talent,” and from “winning by manpower” to “winning by intelligence,” effectively enhance our ability to win through scientific and technological empowerment and digital intelligence, and truly unleash the crucial role of science and technology and talent in People’s War in the new era. We will accelerate the development of high-tech industries, vigorously strengthen the construction of new forces in new domains such as ocean, space, cyberspace, artificial intelligence, and quantum technology, increase military-civilian collaboration in high-tech fields, accelerate the transformation and application of new productive forces into new combat capabilities, and promote the expansion of war potential reserves into emerging fields and the focus on new forces. We will integrate and coordinate military and civilian scientific and technological advantages, shifting the focus from traditional support and guarantee elements such as human and material resources to new support and guarantee elements such as information, technology, and intelligence. We will build information, resource, and technology pools with profound foundations and rich reserves, actively cultivate capable, strong, and professional professional support units, and continuously expand the breadth and depth of people’s participation in the war and scientific and technological support.

Emphasis on flexibility, maneuverability, innovation and checks and balances

In the long-term practice of revolutionary warfare, the strategies and tactics of People’s War are highly flexible and maneuverable. Their most essential requirement is to prioritize self-reliance, attacking the enemy without being attacked by them. Based on the actual situation of both sides, we fight the battles based on our weapons, against the enemy, and at the right time and place. We identify the enemy’s weaknesses and vulnerabilities, leverage our strengths and advantages, and defeat the enemy with our own strengths, always seizing the initiative on the battlefield. Flexible and maneuverable strategies and tactics are the magic weapon for defeating an enemy with superior equipment with inferior equipment. “You fight yours, I fight mine” is a summary and generalization of the long-term experience of China’s revolutionary war and the soul and essence of the strategies and tactics of People’s War. Developing the strategies and tactics of People’s War in the new era must grasp the methodological requirements of asymmetric checks and balances, leverage innovative operational concepts, adhere to the mechanisms of victory in modern warfare, and continuously develop practical and effective tactics to defeat the enemy. We must proceed from the actual circumstances of both sides, gaining a deep understanding of operational missions, adversaries, and the evolving operational environment. We must thoroughly grasp the concepts, elements, and methods of victory, objectively analyze and study the strengths and weaknesses, advantages and disadvantages of both sides, know the enemy and ourselves, adapt to the situation, and flexibly utilize various combat forces and methods, striving to achieve maximum results at the lowest cost. We must adhere to the principle of “attacking the enemy without being attacked by them,” capitalize on strengths and avoid weaknesses, avoid the real and attack the weak, attack where the enemy is least prepared, and attack where they must be defended. We must proactively create opportunities, flexibly maneuver the enemy, and fight wherever we are most advantageous and wherever we are most skilled. We must adhere to the principle of “using what we can to defeat what we cannot,” advancing the research and application of military theory, operational guidance, tactics, and training methods in a timely manner, innovating core operational concepts, and developing new types of combat methods. We must fight against the enemy’s tactics, targeting their weaknesses, and leveraging our military’s strengths, thus creating new winning advantages in people’s war through asymmetric checks and balances.

Emphasis on accumulating small things into big things and focusing on unity of purpose

Throughout the long practice of revolutionary warfare, our army has been at an overall disadvantage for considerable periods. Therefore, the strategies and tactics of people’s war emphasize leveraging strength against weakness locally, persisting in accumulating small victories into larger ones, and concentrating forces to wage annihilation campaigns. This has become a key strategy for the people’s army to defeat powerful foes. Compared to previous eras, modern warfare often unfolds across multiple dimensions and domains, providing greater scope for implementing this strategy of “accumulating small victories into larger ones.” Developing the strategies and tactics of people’s war in the new era requires strengthening the concept of “dispersed in appearance, yet focused in spirit; dispersed in form, yet united in strength.” This involves dynamically consolidating and uniting the numerous combat forces distributed across the multidimensional battlefield. Through the fusion of capabilities and immediate optimization, we can launch rapid localized focused-energy attacks, wide-area guerrilla harassment, and deliver annihilating and destructive strikes against key enemy locations. This not only creates a hammering effect, but also continuously wears down the enemy, gradually depriving them of the initiative on the battlefield. This highly integrated distributed warfare emphasizes the wide-area dispersion of troop deployment and the discrete distribution of capabilities. Based on the needs of achieving operational intent, objectives, and missions, it prioritizes the best operational elements, units, and forces. Through the integration of operational capabilities and the accumulation of operational impacts, it aggregates optimal operational effects, unleashes maximum operational potential, maximizes operational effectiveness, and achieves optimal operational results. This distributed warfare has evolved from “geographical dispersion” to “dynamic coupling across all domains and dimensions”: no longer limited to the physical dispersion of personnel and equipment, it extends to multi-dimensional battlefields such as cyber, electromagnetic, and cognitive. Relying on data links, artificial intelligence, and distributed command systems to achieve cross-domain collaboration, it significantly enhances battlefield survivability and multiplies strike effectiveness.

現代國語:

編者按

回望輝煌戰鬥歷程,人民軍隊始終堅持在黨的絕對領導下,提出並實施了一整套人民戰爭戰略戰術,這是人民軍隊以弱勝強、克敵制勝的重要法寶。 98年來,隨著時代變遷和戰爭形態演變,人民戰爭戰略戰術的具體內容和表現形式不斷發展變化。直面資訊化智慧化戰爭挑戰,我們要在快速變化發展的世界大勢和實踐樣態中,牢牢把握人民戰爭戰略戰術的本質要求和價值取向,把內在不變的規律性特徵與外在變化的現實性特徵統一起來,不斷創新發展新時代人民戰爭戰略戰術。

習主席強調指出,無論形勢如何發展,人民戰爭這個法寶永遠不能丟,但要把握新的時代條件下人民戰爭的新特點新要求,創新內容和方式方法,充分發揮人民戰爭的整體威力。當前,面對科技之變、戰爭之變、對手之變帶來的深刻挑戰,我們既要繼承發揚人民戰爭優良傳統,也要敏銳識變、積極應變、主動求變,準確把握新時代人民戰爭戰略戰術內在要求,自覺更新思維理念,創新戰略指導,讓克敵制勝的法寶顯威未來戰場。

堅持依靠人民、深根基

在長期革命戰爭實踐中,人民群眾是戰爭勝利最深厚的偉力。人民戰爭戰略戰術,人民是構成這一制勝法寶的主體,人民戰爭的根基深植於人民、底氣來自於人民,無論時代如何發展、戰爭如何演進,緊緊依靠人民、充分動員群眾,永遠是開展人民戰爭的基礎條件和不二法門。新時代條件下發展人民戰爭戰略戰術,必須堅持群眾史觀和兵民是勝利之本的根本要求,把人民戰爭的傳統謀略優勢和群眾路線結合起來,拓展人民戰爭戰略戰術的源頭活水,從人民群眾中汲取戰略智慧和策略方法,形成新時代人民戰爭的智力優勢。札實開展全民防衛教育,不斷厚植家國情懷,激發愛國動力,強化憂患意識,增強國防觀念,引導廣大群眾主動關心國防事業、支持國防建設,為新時代人民戰爭注入強大精神力量。聚力推進人口高品質發展,全面提升全民文化素質、科技素質和創新能力,加速塑造素質優良、總量充裕、結構優化、分佈合理的現代化人力資源,推動人民戰爭主體由數量優勢向質量優勢轉變。進一步完善國防動員體制機制,推動建立與國家應急響應機制相銜接、與聯合作戰體系相融合的快速響應制度,把內含於人民群眾中的無限戰爭潛力充分挖掘出來、聚攏起來,充分發揮資源集聚增值效應。

注重整體運籌、全域攻防

在長期革命戰爭實踐中,人民戰爭戰略戰術要求整體動員政治、經濟、文化、外交、軍事等多方面的力量資源,綜合運用多種鬥爭形式和作戰方式,以整體合力彌補局部的不足和劣勢,從而戰勝強大對手。現代戰爭既是軍事領域的激烈對抗,也是政治、經濟、外交等領域的全面角力,整體呈現混合戰爭的鮮明特徵。新時代條件下發展人民戰爭戰略戰術,必須確立大體系思維模式,以國家戰略體係為依托,以聯合作戰體係為支撐,探索人民戰爭戰略戰術的實現形式,打贏新時代人民戰爭總體戰。應充分發揮新型舉國體制優勢,依託一體化國家戰略體系與能力,高效能聚合全域優勢資源,全方位激活國家國防潛力,將各種力量資源擰線成繩、結繩成網,把人民戰爭的領導要素、組織要素、人員要素、指揮要素、技術要素、裝備要素、保障要素等分系統結合起來,統合、統合方式要加強物理域、資訊域、社會域等領域全面統籌,重點在新域新質上尋求突破,在無人作戰、人機協同作戰、網電作戰、太空深海作戰、智慧自主作戰等新維度有所作為。軍事與非軍事手段相互配合,把政治、經濟、外交、輿論和軍事鬥爭等多種形式結合起來,綜合施策著力打好外交攻防戰、金融貿易戰、心理防護戰、輿論法理戰等,發揮政治攻勢和武裝打擊的綜合效能,統籌打好政治軍事仗。

強化積極防禦、主動進取

在長期革命戰爭實踐中,人民軍隊形成了一整套積極防禦戰略思想,如堅持戰略上防禦與戰役戰斗上進攻的統一,堅持防禦、自衛、後發製人的原則,堅持“人不犯我,我不犯人;人若犯我,我必犯人”,等等。積極防禦,根本在防禦、要義在積極,主動進取是其內在特質。當前,世情國情黨情軍情發生深刻變化,新時代人民戰爭的戰略戰術在總體上堅持防禦性的根本原則,不以霸道霸權和侵略欺壓他國為目的,因此也會贏得國內最廣大人民群眾擁護和支持以及世界上愛好和平與正義的國家和人民的理解和幫助。新時代條件下發展人民戰爭戰略戰術,須應時而變、應勢而動。堅持奉行防禦性國防政策,貫徹落實新時代軍事戰略方針,善於從政治高度出發觀察和分析問題,善於從地區和全球視角來思考和運用策略,夯實人民戰爭制勝的政治基礎。堅持不惹事也不怕事,加強軍事力量常態化多樣化運用,堅定靈活開展軍事鬥爭,在堅持戰略上後發製人的同時,不放棄有利條件下和必要時的戰役戰鬥進攻,穩紮穩打、穩中有進、穩中有為,有效塑造安全態勢,遏止危機沖突,牢牢把握爭鬥主動權。

突顯新質主導、科技賦能

在長期革命戰爭實踐中,人民軍隊在強調決定戰爭勝負的主要因素是人而不是物的同時,同樣高度重視對先進軍事技術特別是武器裝備的研發。毛澤東同志就曾強調,沒有現代的裝備,要戰勝帝國主義的軍隊是不可能的。現代戰爭的科技含量發生了質的飛躍,人工智慧、大數據、量子計算、無人自主、腦控等高新技術與新型武器裝備廣泛應用於軍事領域。雖然人民群眾依然是戰爭勝負的決定性力量,但是這種力量的表現形式發生了重要變化。科技是核心戰鬥力,人民戰爭將更重視科技手段的運用,更依賴人民群眾的智慧和創造力。新時代條件下發展人民戰爭戰略戰術,應把打贏資訊化智能化戰爭作為戰爭準備的著眼點,深研高端戰爭的本質特徵、制勝機理、戰略戰法,加速推動從「人多製勝」向「人才制勝」、從「人力製勝」向「智力製勝」轉變,切實提高新科技賦能、數智者發揮勝利能力、數智性的科技人才、新人民主義中的關鍵人民發揮作用。加速推進高新產業發展,大力加強海洋、太空、網路空間、人工智慧、量子科技等新域新質力量建設,加大高新技術領域軍地協作力度,加速新質生產力向新質戰鬥力轉化運用,推動戰爭潛力儲備向新興領域拓展、向新質力量聚焦。聚合協同軍地科技優勢,由聚焦人力物力等傳統支撐保障要素向聚焦資訊、技術、智慧等新質支撐保障要素轉變,建設底蘊深厚、儲備豐富的資訊池、資源池、技術池,積極打造精幹強能、專業性強的專業支前分隊,不斷拓展人民參戰與科技支前的廣度與深度。

講究靈活機動、創新制衡

在長期革命戰爭實踐中,人民戰爭戰略戰術是高度靈活機動的戰略戰術,最本質的要求是堅持以我為主,致人而不致於人,根據敵我雙方的實際情況,有什麼武器打什麼仗,對什麼敵人打什麼仗,在什麼時間地點打什麼時間地點的仗,找準敵之弱點和軟肋,發揚我之長主動和優勢,能永遠不能掌握戰場。靈活機動的戰略戰術是以劣勢裝備戰勝優勢裝備之敵的致勝法寶。 “你打你的、我打我的”,是中國革命戰爭長期經驗的總結和概括,是人民戰爭戰略戰術的靈魂和精髓。新時代條件下發展人民戰爭戰略戰術,必須掌握非對稱制衡的方法論要求,以作戰概念創新為抓手,遵循現代戰爭制勝機理,不斷推出實用管用的克敵制勝招法。堅持一切從敵我雙方的實際情況出發,深刻洞悉作戰任務、作戰對手、作戰環境變化,深刻把握制勝觀念、制勝要素、制勝方式發展,客觀分析研究敵我雙方的強弱、優劣,知彼知己、因勢而變,靈活運用各種作戰力量和作戰方法,努力以最小代價取得最大戰果。堅持“致人而不致於人”,揚長避短、避實就虛,出其不趨、攻其必救,主動創造戰機,靈活調動敵人,怎麼有利就怎麼打,怎麼擅長就怎麼打。堅持“以能擊不能”,與時俱進推進軍事理論、作戰指導、戰法訓法研究運用,創新核心作戰概念,發展新質作戰手段,不按敵人套路打、盯著敵人軟肋打、發揮我軍優長打,在非對稱制衡中創造人民戰爭新的製勝優勢。

重視積小為大、神聚力合

在長期革命戰爭實踐中,我軍在相當長的時間內都是處於全局上的劣勢地位,所以人民戰爭戰略戰術重視局部上以強對弱,堅持積小勝為大勝,集中力量打殲滅戰,這成為人民軍隊戰勝強敵的關鍵一招。相較於以往,現代戰爭作戰往往在多維多域中展開,為實施「積小勝為大勝」提供了更加廣闊空間。新時代條件下發展人民戰爭戰略戰術,要強化「貌散而神聚,形散而力合」的理念,將分佈在多維戰場的諸多作戰力量動態集中聯合起來,通過效能融合、即時聚優,實施局部快速聚能攻擊、廣域遊擊襲擾,對敵分佈的要點實施殲這種神聚力合的分散式作戰更強調兵力部署廣域分散、能力狀態離散分佈,根據實現作戰企圖、達成作戰目的、遂行作戰任務需要,優選最佳作戰要素、單元、力量,通過作戰能力融合、行動作用累積,聚合最優作戰效應,激發最大作戰潛能,實現作戰效益最大化,達成最佳作戰效果。這種分散式作戰已經從「地理空間的分散」上升為「全局全維的動態耦合」:不再局限於人員裝備在物理空間的分散,而是拓展到網絡、電磁、認知等多維戰場;依託數據鏈、人工智能和分佈式指揮系統實現跨域協同,既極大提升了戰場生存力,又倍增了打擊效能。

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-08-01&paperNumber=07&articleid=960384888

Military Intelligence Drives Accelerated Development of Chinese Army Cyberspace Operations

軍事情報推動中國軍隊網路空間作戰加速發展

現代英語:

The report of the 19th National Congress of the Communist Party of China pointed out that it is necessary to “accelerate the development of military intelligence and improve joint combat capabilities and all-region combat capabilities based on network information systems”. Today’s “Liberation Army Daily” published an article pointing out that military intelligence is a new trend and new direction in the development of the military field after mechanization and informatization. We must develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to Traction mechanization and informatization to develop to a higher level and at a higher level. As a new combat field, cyberspace is a new field with high technological content and the most innovative vitality. Driven by military intelligence, it is ushering in a period of rapid development opportunities.

Military intelligence leads to accelerated development of cyberspace operations

■Respect the soldiers Zhou Dewang and Huang Anwei

Three major technologies support the intelligence of cyberspace weapons

Intelligence is a kind of wisdom and ability. It is the induction, cognition and application of laws by all systems with a life cycle. Intelligence is to solidify this wisdom and ability and become a state. A cyberspace weapon is a weapon used in cyberspace to carry out combat missions. Its form is dominated by software and code, and it is essentially a piece of data. The intelligence of cyberspace weapons is mainly reflected in the following three aspects:

First, intelligent vulnerability mining. Vulnerabilities are the basis for the design of cyber weapons. The ransomware that spread around the world in May this year took advantage of vulnerabilities in Microsoft’s operating system and caused a huge shock to the cybersecurity community. Vulnerabilities are expensive, ranging from tens to hundreds of thousands of dollars for a zero-day. The discovery of previous vulnerabilities mainly relied on experienced hackers, who used software tools to check and analyze the code. In the finals of the International Cybersecurity Technology Competition League held during this year’s China Internet Security Conference, participants demonstrated that intelligent robots conduct vulnerability mining on site, and then write network code through vulnerabilities to form cyber weapons, break through target systems, and seize flags. This change means that vulnerability mining has entered an era of intelligence.

Second, intelligent signal analysis and password deciphering. Signals are the carrier of network data transmission, and passwords are the last barrier to network data security. Signal analysis and password deciphering are core technologies for cyberspace operations. Breaking through signals and passwords is the basic path into cyberspace and the primary target of cyber weapon attacks. Intelligent signal analysis solves problems such as protocol analysis, modulation recognition, and individual recognition of signals through big data, cloud computing, deep learning and other technologies. Code-breaking is computational science “the crown jewel”. Through the accumulation of password data samples, intelligent code-breaking can continuously learn and find patterns, and can find the key to deciphering, thereby opening the last door of network data “safe” and solving network problems. Key links of intrusion and access.

Third, the design of an intelligent weapons platform. The U.S. military proposed the “Cyber Aircraft” project in 2009 to provide platforms such as tanks, ships, and aircraft for cyberspace operations. It can realize automatic reconnaissance, loading of cyber weapons, autonomous coordination, and autonomous attacks in cyberspace. When threatened, Self-destruction and removal of traces have certain intelligent characteristics. The weapons loaded by future “cyber aircraft” are not code compiled by software personnel, but directly based on the reconnaissance results to design intelligent cyber weapons on site in real time and achieve “ordered” development, thus greatly improving cyberspace operations. Targeted.

The intelligent trend of network-controlled weapons has become increasingly prominent

Weapons controlled by cyberspace are referred to as cyber-controlled weapons. They are weapons that connect through the network, accept cyberspace instructions, perform cross-domain tasks, and achieve combat effects in physical space. Most of the various combat weapons platforms in the future will be networked weapons platforms. In this way, the military information network is essentially the Internet of Things. Network entities such as uplink satellites, radars, and drones can detect, track, locate, and strike through the Internet. Space control, the intelligence of network-controlled weapons has flourished in battlefields such as land, sea, air, space and electricity.

In 2015, Syria used the Russian Robot Corps to defeat militants. The operation used 6 tracked robots, 4 wheeled robots, 1 automated artillery group, several drones and 1 command system. The commander dispatches drone reconnaissance through the chain of command to spot the militants, and the robots charge the militants, while accompanied by artillery and drone attack force support, delivering a fatal blow to the militants. It was only a small-scale battle, but it set the precedent for robot “group” operations.

Network-controlled intelligent weapons for sea and air battlefields are being developed and verified in large quantities. In 2014, the U.S. Navy used 13 unmanned surface boats to demonstrate and verify that unmanned boat groups intercepted enemy ships and achieved good results mainly by exchanging sensor data. When it was tested again in 2016, functions such as collaborative task allocation and tactical coordination were added, and “swarm awareness” became a distinctive feature of its intelligence.

Swarms of small and micro UAVs for aerial combat are also growing rapidly. In recent years, the U.S. Department of Defense has repeatedly tested the “Quail” micro-drone, which can drop dozens or even hundreds at a time. By improving its coordination capabilities when performing reconnaissance missions, it has made great progress in drone formation, command, control, and intelligence. Progress has been made in management and other aspects.

Space-based cyber-controlled weapons are becoming more and more “smart”. The air and space field mainly contains two types of network-controlled weapons: reconnaissance and strike. Satellites with various functions mainly perform reconnaissance missions and are typical reconnaissance sensors. With the emergence of various small and microsatellite groups, satellites have been made to exhibit new characteristics: small size, fast launch, large number, and greater intelligence. Small and microsatellite groups have greater flexibility and reliability when performing reconnaissance and communication missions, and currently the world’s satellite powers are actively developing plans for small and microsatellite groups with wider coverage.

Hypersonic strike weapons of all kinds cruised in the air and space, as if sharp swords were hanging over people’s heads. The U.S. Air Force Research Office stated that “high-speed strike weapons” will launch flight tests around 2018, and other countries are also actively developing similar weapons. The biggest features of this type of weapon are their high speed, long range, and high intelligence.

Intelligent command information system changes traditional combat command methods

Cyberspace weapons and weapons controlled by cyberspace are the “fist” of intelligent warfare, and the command information system that directs the use of these weapons is the “brain” of intelligent warfare. Cyberspace combat command information systems must keep up with intelligence simultaneously. process. At present, almost all command information systems in the world are facing the difficult problem of “intelligent lag”. In future wars, rapid decision-making and autonomous decision-making are required, which places higher requirements on intelligent auxiliary systems.

In 2007, the U.S. Department of Defense’s Advanced Research Projects Agency launched a research and development program on command and control systems ——“Project Dark Green” in order to enable computer-aided commanders to make rapid decisions and win opportunities. This is a campaign tactical-level command information system. Its research and development purpose is to embed the system into the U.S. Army brigade-level C4ISR wartime command information system to achieve intelligent command of commanders. To this day, the U.S. military has not relaxed its development of intelligent command information systems.

In cyberspace operations, the network target appears as an IP address connected to the network. The large number makes it difficult for manual operations to operate efficiently, and operations require the auxiliary support of intelligent command information systems. Currently, intelligent command information systems need to realize functions such as intelligent intelligence analysis, intelligent perception, intelligent navigation and positioning, intelligent assisted decision-making, intelligent collaboration, intelligent evaluation, and intelligent unmanned combat, especially to realize cluster combat control of unmanned network control systems, which has put forward urgent needs for intelligent command information systems and requires accelerating the research and development and application of corresponding key technologies.

To sum up, intelligent cyber weapons and cyber-controlled weapons, through intelligent information system scheduling, will form huge combat capabilities and can basically carry out all actions in the current combat style. In future wars, from the formation of command forces, to target selection, mode of action, use of tactics, etc., will all be carried out in an intelligent context. The characteristics of war “gamification” will be more significant, and the combat command method will also undergo major changes.

In the future battlefield, fighting courage requires more fighting “wisdom”

■Yang Jian and Zhao Lu

At present, the development of artificial intelligence has entered a new stage, and its penetration into various fields has begun to accelerate. As a result of this process, military competition among nations around intelligence has begun. Our army has always been a heroic and tenacious people’s army that dares to fight and win. In the future, we should continue to carry forward the glorious tradition on the battlefield. At the same time, we must more extensively master and utilize the latest scientific and technological achievements, develop more intelligent weapons and equipment, and develop more intelligent weapons and equipment. Take advantage of the opportunity to win on the battlefield.

Intelligence is a trend in the development of human society, and the war on intelligence is accelerating. It is thanks to successful innovations that go beyond the original architectural computing models, the gradual popularization of nanofabrication technologies, and breakthrough advances in the study of human brain mechanisms that the development of military intelligence has acquired a solid foundation. As a result, intelligent weapons and equipment have become increasingly prominent and are beginning to surpass and replace humans in intelligence analysis, combat response, and more. In addition, in terms of manpower requirements, comprehensive support and operating costs, intelligent weapons and equipment also have obvious advantages and are increasingly becoming the dominant force in warfare.

It has been proven that the development and application of intelligent weapons and equipment has expanded the scope of capabilities for military operations and greatly improved the combat effectiveness of the troops. On the battlefields of Afghanistan and Iraq, UAVs have taken on most of the operational support tasks of reconnaissance, intelligence, surveillance, and about one-third of the air strike tasks. In the past two years, Russia has also repeatedly used unmanned reconnaissance aircraft, combat robots and other equipment with a high degree of intelligence on the Syrian battlefield. Intelligent weapons and equipment are increasingly demonstrating important values that go beyond traditional weapons.

In future wars, the competition for intelligent combat systems will be the key to victory in master battles and peak duels. With the increasing imbalance in the development of military means supported by science and technology, whoever has the ability to implement intelligent operations first will be better able to take the initiative on the battlefield. The strong with the advantage of technological generation will try their best to The cost of war is minimized, while the weak will inevitably suffer huge losses and pay heavy prices. We must not only step up core technological innovation and weapons and equipment development, but also study and explore organizational structures, command methods and application models that adapt to the intelligent development of the military. We must also cultivate a team that can take on the responsibility of promoting the intelligent development of the military and forging intelligent combat capabilities. Talent team, give full play to the overall effectiveness of our military’s combat system, and compete with our opponents Win wars in a more “intelligent” way.

現代國語:

資料來源:中國軍網綜合作者:敬兵 周德旺 皇安偉 等責任編輯:胡雪珂

黨的十九大報告指出,要「加速軍事智慧化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。今天的《解放軍報》刊發文章指出,軍事智能化是機械化、資訊化之後軍事領域發展的新趨勢和新方向,我們要在現有機械化和資訊化基礎上發展智能化,同時用智能化牽引機械化和信息化向更高水平、更高層次發展。網路空間作為新型作戰領域,是科技含量高、最具創新活力的新領域,在軍事智慧化的牽引下,正迎來快速發展的機會期。

軍事智慧化牽引網路空間作戰加速發展

■敬兵 週德旺 皇安偉

三大技術支撐網路空間武器智慧化

智能是一種智慧和能力,是一切有生命週期的系統對規律的感應、認知與運用,智能化就是把這種智慧和能力固化下來,成為一種狀態。網路空間武器是網路空間遂行作戰任務的武器,其形態以軟體和程式碼為主,本質上是一段資料。網路空間武器的智慧化主要體現在以下三個方面:

一是智慧化漏洞挖掘。漏洞是網路武器設計的基礎,今年5月在全球傳播的勒索病毒軟體,就是利用了微軟作業系統漏洞,為網路安全界帶來了巨大震動。漏洞價格昂貴,零日漏洞價值幾萬到幾十萬美元不等。過去漏洞的發現,主要依靠有經驗的駭客,利用軟體工具對程式碼進行檢查和分析。今年中國網路安全大會期間舉辦的國際網路安全技術對抗聯賽總決賽中,參賽人員示範由智慧機器人現場進行漏洞挖掘,然後透過漏洞編寫網路程式碼,形成網路武器,攻破目標系統,奪取旗幟。這項變化,意味著漏洞挖掘進入了智慧化時代。

二是智能化訊號分析和密碼破譯。訊號是網路資料傳輸的載體,密碼是網路資料安全的最後屏障,訊號分析和密碼破解是網路空間作戰的核心技術,突破訊號和密碼是進入網路空間的基本路徑,也是網路武器攻擊的首要目標。智慧化訊號分析將訊號的協定分析、調變辨識、個體辨識等問題,透過大數據、雲端運算、深度學習等技術來解決。密碼破解是計算科學“皇冠上的明珠”,智能化密碼破譯通過對密碼數據樣本的積累,不斷學習、尋找規律,能找到破譯的鑰匙,從而打開網絡數據“保險櫃”的最後一扇門,解決網絡入侵和接入的關鍵環節。

三是智慧化武器平台設計。美軍在2009年提出「網路飛行器」項目,為網路空間作戰提供像戰車、艦艇、飛機這樣的平台,可以實現在網路空間裡自動偵察、載入網路武器、自主協同、自主攻擊,受到威脅時自我銷毀、清除痕跡,具備了一定的智慧化特徵。未來「網路飛行器」載入的武器,不是軟體人員編好的程式碼,而是根據偵察結果直接對發現的漏洞,現場即時進行智慧化網路武器設計,實現「訂購式」開發,從而大大提高網路空間作戰的針對性。

網控武器的智慧化趨勢愈加凸顯

受網路空間控制的武器簡稱網路武器,是透過網路連接,接受網路空間指令,執行跨域任務,在實體空間達成作戰效果的武器。未來的各種作戰武器平台,大多是聯網的武器平台,這樣軍事資訊網本質上就是物聯網,上聯衛星、雷達、無人機等網路實體,從感知到發現、追蹤、定位、打擊都可透過網路空間控制,網控武器的智慧化已在陸海空天電等戰場蓬勃發展。

2015年,敘利亞利用俄羅斯機器人軍團擊潰武裝分子,行動採用了包括6個履帶式機器人、4個輪式機器人、1個自動化火砲群、數架無人機和1套指揮系統。指揮官透過指揮系統調度無人機偵察發現武裝分子,機器人向武裝分子發動衝鋒,同時伴隨火砲和無人機攻擊力量支援,對武裝分子進行了致命打擊。這只是一場小規模的戰鬥,卻開啟了機器人「組團」作戰的先河。

海空戰場網控智慧武器正在大量研發驗證。 2014年,美國海軍使用13艘無人水面艇,示範驗證無人艇集群攔截敵方艦艇,主要透過交換感測器數據,取得了不錯的效果。 2016年再次試驗時,新增了協同任務分配、戰術配合等功能,「蜂群意識」成為其智慧化的顯著特徵。

用於空中作戰的小微型無人機蜂群也正在快速發展。近年來,美國國防部多次試驗「山銻」微型無人機,可一次投放數十架乃至上百架,透過提升其執行偵察任務時的協同能力,在無人機編隊、指揮、控制、智慧化管理等方面都取得了進展。

空天網控武器越來越「聰明」。空天領域主要包含偵察和打擊兩類網控武器,各種功能的衛星主要執行偵察任務,是典型的偵察感測器。隨著各種小微衛星群的出現,使衛星表現出新的特徵:體積小、發射快、數量多、更聰明。小微衛星群在執行偵察和通訊任務時,有了更大的彈性和可靠性,目前世界衛星強國都在積極制定覆蓋範圍更廣的小微衛星群計畫。

各種高超音速打擊武器在空天巡航,彷彿懸在人們頭頂的利劍。美國空軍研究室稱「高速打擊武器」將在2018年前後啟動飛行試驗,其它各國也正積極研發類似武器。這類武器最大的特色是速度快、航程遠、智能化程度高。

智慧化指揮資訊系統改變傳統作戰指揮方式

網路空間武器和受網路空間控制的武器,是智慧化戰爭的“拳頭”,而指揮這些武器運用的指揮資訊系統是智慧化戰爭的“大腦”,網路空間作戰指揮資訊系統要同步跟上智慧化的進程。目前,幾乎全球的指揮資訊系統都面臨著「智慧滯後」的難題,未來戰爭需要快速決策、自主決策,這對智慧輔助系統提出了更高要求。

2007年,美國國防部高級研究計劃局啟動關於指揮控制系統的研發計劃——“深綠色計劃”,以期能實現計算機輔助指揮官快速決策贏得制勝先機。這是一個戰役戰術級的指揮資訊系統,其研發目的是將該系統嵌入美國陸軍旅級C4ISR戰時指揮資訊系統中去,實現指揮官的智慧化指揮。直到今天,美軍也沒有放鬆對智慧化指揮資訊系統的發展。

在網路空間作戰中,網路目標表現為一個接取網路的IP位址,數量眾多導致人工難以有效率操作,作戰更需要智慧化指揮資訊系統的輔助支撐。目前,智慧化指揮資訊系統需要實現智慧情報分析、智慧感知、智慧導航定位、智慧輔助決策、智慧協同、智慧評估、智慧化無人作戰等功能,尤其是實現對無人網控系統的集群作戰操控,這都對智慧化指揮資訊系統提出了迫切需求,需要加快相應關鍵技術的研發和運用。

綜上所述,智慧化的網路武器和網路控制武器,透過智慧化的資訊系統調度,將形成巨大的作戰能力,基本能遂行現行作戰樣式中的所有行動。未來戰爭,從指揮力量編組、到目標選擇、行動方式、戰法運用等,都將在智能化的背景下展開,戰爭「遊戲化」的特徵將更顯著,作戰指揮方式也將發生重大變化。

未來戰場 鬥勇更需鬥“智”

■楊建 趙璐

目前,人工智慧發展進入嶄新階段,並開始向各個領域加速滲透。受此一進程的影響,各國圍繞智慧化的軍事競爭已揭開序幕。我軍歷來是一支英勇頑強、敢打必勝的人民軍隊,未來戰場上應繼續發揚光榮傳統,同時要更加廣泛地掌握和利用最新的科技成果,研製出更多智能化的武器裝備,在未來戰場上掌握制勝先機。

智慧化是人類社會發展的趨勢,智慧化戰爭正加速到來。正是由於超越原有體系結構計算模型的成功創新、奈米製造技術的逐步普及,以及對人腦機制研究的突破性進展,軍事智慧化發展才擁有了堅實的基礎。因此,智慧化武器裝備的表現日益突出,並在情報分析、戰鬥反應等方面開始超越並取代人類。此外,在人力需求、綜合保障、運作成本等方面,智慧化武器裝備也具有明顯的優勢,日益成為戰爭的主導力量。

事實證明,智慧化武器裝備的發展應用,拓展了軍事行動的能力範圍,大幅提升了部隊的作戰效能。在阿富汗和伊拉克戰場上,無人機已承擔了大部分偵察、情報、監視等作戰保障任務,並承擔了約三分之一的空中打擊任務。近兩年,俄羅斯在敘利亞戰場上也曾多次使用較高智慧化程度的無人偵察機、戰鬥機器人等裝備。智慧化武器裝備正愈來愈地展現出超越傳統武器的重要價值。

未來戰爭中,作戰體系智能化的較量將是高手過招、巔峰對決的勝利關鍵。隨著以科技為支撐的軍事手段發展的不平衡性越來越大,誰先具備實施智能化作戰的能力,誰就更能掌握戰場的主動權,擁有技術代差優勢的強者會盡可能將戰爭成本降到最低,而弱者必然遭受巨大損失,付出慘重代價。我們不僅要加緊核心技術創新、武器裝備研製,還要研究探索適應軍事智能化發展的組織結構、指揮方式和運用模式,更要培養一支能夠擔起推進軍事智能化發展、鍛造智能化作戰能力的人才隊伍,充分發揮我軍作戰體系的整體效能,在與對手的較量中,以更加“智慧”的方式贏得戰爭。

中國原創軍事資源:http://www.81.cn/jwzl/2017-11/24/content_7841895888.htm