Category Archives: Chinese Military Characteristics & Development Trends of Cognitive Domain Operations and Warfare

China’s “Deep technology” Brings New Forms of Warfare

中國的「深度技術」帶來新的戰爭形式

現代英語:

China Military Network Ministry of National Defense Network

Friday , August 13, 2021

Since the 21st century, global scientific and technological innovation has entered an unprecedented period of intensive activity. A new round of scientific and technological revolution and industrial transformation is reshaping the global innovation landscape and reshaping the global economic structure. Some people therefore call the current era the era of “deep technology”.

The military field is the most sensitive to technological change. At present, some major disruptive technologies are constantly emerging, showing a trend of cross-integration and group leaps. Their military applications will bring about sudden and revolutionary consequences, and even bring about a new form of war.

Artificial Intelligence: Opening the Door to Intelligent Warfare

Artificial intelligence was born in 1956. Its essence is to simulate the human thinking process, that is, to make machines understand, think and learn like humans, form experience, and generate a series of corresponding judgments and processing methods. In the past 10 years, with the continuous development of new theories and technologies such as big data, neural networks, and deep learning, artificial intelligence has pressed the fast-forward button and started to develop rapidly, bringing fundamental changes to all areas of human society.

In 2016, the artificial intelligence program AlphaGo defeated the world Go champion Lee Sedol. By 2020, the latest algorithmic programs can teach themselves to play Go, chess and other games without even being told the rules of the game.

As a strategic technology leading a new round of scientific and technological revolution and industrial transformation, the application of artificial intelligence in the military field has accelerated the transformation of warfare from informationization to intelligence. This transformation will be full-dimensional and full-spectrum, involving almost all links in the military chain. The most prominent impacts basically include the following aspects:

——Assisting unmanned combat. The rapid development of artificial intelligence will greatly enhance the collaborative and autonomous combat capabilities of various unmanned combat systems. This will undoubtedly promote structural changes in the composition of combat forces, and unmanned combat mode will gradually become the “main theme” of war. In a simulated confrontation in August 2020, an intelligent system funded by the US Defense Advanced Research Projects Agency controlled a fighter jet and defeated experienced air force pilots. The trend of unmanned combat seems to be increasingly unstoppable.

——Reshape command and control. Complex adaptive systems supported by artificial intelligence, such as swarm systems, will have increasingly strong self-organizing capabilities, thereby breaking the traditional strict hierarchical command system and incubating a new command and control model. The action control of a swarm composed of thousands of unmanned systems will be completed by an intelligent and efficient algorithm system, which can achieve a high degree of decentralization and dynamic aggregation, demonstrating a new concept of group intelligent combat.

——Achieve intelligent decision-making. That is, generate intelligent evaluation and auxiliary decision-making capabilities, realize automatic generation, dynamic optimization, and real-time adjustment of combat plans, and enable combat planning to flexibly adapt to changes in the mission environment and battlefield uncertainties. At present, the new generation of artificial intelligence technology is in a stage of vigorous development, and new technologies will continue to emerge.

Quantum technology: writing the winning code in “entanglement”

Quantum is the smallest, indivisible unit of energy. The biggest feature of quantum technology is that it can break through the physical limits of existing information technology, play a huge role in information processing speed, information capacity, information security, information detection accuracy, etc., and thus significantly improve human ability to obtain, transmit and process information, providing strong impetus for the evolution and development of the future information society.

Quantum theory has gone through more than a hundred years of development since its birth. The development of quantum technology has directly given rise to modern information technology. Nuclear energy, semiconductor transistors, lasers, nuclear magnetic resonance, high-temperature superconducting materials, etc. have come into being, changing human production and life. In recent years, the continuous combination of quantum mechanics and information technology will usher in a new quantum technology revolution, impacting the traditional technology system and even causing the reconstruction of the traditional technology system.

Compared with the macroscopic physical world, quantum has many wonderful properties, the most representative of which are quantum superposition and quantum entanglement. Quantum superposition means that a quantum can be in different states at the same time, and can be in a superposition of these states. A vivid metaphor is the cat in a state of “both dead and alive” imagined by physicist Schrödinger. Quantum entanglement means that independent particles can be completely “entangled” together. No matter how far apart they are, when the state of one quantum changes, the other will change accordingly like “telepathy”.

These special properties of quantum contain great military potential. In quantum detection, quantum communication, quantum imaging, quantum computing, etc., they are gradually showing great military application value. For example, by taking advantage of the characteristics of quantum state superposition and the inability to accurately copy unknown quantum states, quantum codes that cannot be deciphered can be developed.

In addition, based on the characteristics of quantum entanglement, the high correlation between two microscopic particles with a common source can be utilized, and entangled photons can be used as light sources to achieve quantum imaging, which can greatly improve the resolution and anti-interference ability of imaging.

Gene technology: a new weapon that can be “edited”

Genes are the genetic information that controls various characteristics of organisms and are known as the “master switch” of various life activities of organisms. Gene editing is equivalent to a pair of “gene scissors”, which can accurately achieve gene “modification” such as insertion, removal, and replacement of specific target genes of organisms, thereby achieving control over the genetic information of organisms.

In 2012, researchers from the United States and Sweden found a very effective pair of “gene scissors”, namely the CRISPR/Cas9 system, which can cut any genome at any desired location. Since then, the development of gene editing technology has achieved unprecedented “acceleration”, realizing gene editing of fruit flies, mice, pigs, sheep, rice, wheat and other organisms, and also providing new medical means for treating diseases such as tumors, AIDS, and thalassemia.

While genetic technology is gradually unlocking the mysteries of life, it will also cause unpredictable military security issues. If gene editing is used in the development of biological weapons, it means that developers can modify genes to obtain new pathogenic microorganisms according to their own needs, or implant biological gene fragments with different characteristics and transform existing biological warfare agents, or even artificially design and synthesize new viruses that do not exist in nature. These may produce new biological weapons that humans cannot prevent and control, and even use the precision of genetic technology to make attacks more targeted. This new coronavirus epidemic has made the world suspicious of Fort Detrick and more than 200 American overseas biological experimental bases. The United States should disclose more facts and give an explanation to the international community.

Brain science: heading towards the battlefield of “brain control”

The human brain is a highly complex information processing system that consists of billions of neurons that communicate with each other and complete a variety of cognitive tasks in an overall coordinated manner.

The brain’s complex neural information processing and cognition are so complex that even supercomputers pale in comparison. Therefore, brain science research is regarded as the “ultimate frontier” of natural science research, and the International Brain Research Organization believes that the 21st century is the “era of brain science.”

In recent years, major countries in the world have announced the launch of brain science research programs. With the emergence of new imaging technologies, convergence technologies, and computing and information communication technology platforms, brain science research has made new breakthroughs in the fields of neural circuits, brain-like intelligence, and brain-computer interfaces.

As a branch of cognitive science, the “brain-computer interface” technology was born in the 1970s. It collects the EEG signals generated by the activity of the cerebral cortex nervous system, and converts them into signals that can be recognized by computers through methods such as amplification and filtering, so that external devices can read the brain’s neural signals, identify people’s true intentions, and achieve effective control of external physical devices. In other words, a certain operation is performed by the human brain without the need to complete it through the body.

As a new type of human-computer interaction, brain-computer interface technology provides a new intelligent development direction for the control of weapons and equipment. Realizing the direct control of weapons and equipment by the human brain and giving them the intelligent features of “moving at will” are becoming the goals pursued by Western military powers. In 2013, the US Department of Defense disclosed a research project called “Avatar”, which plans to control remote “machine warriors” through thoughts in the future to replace soldiers in the battlefield and carry out various combat tasks.

If the above research is regarded as “brain control”, then the use of “brain-computer interface” and other technical means to interfere with, destroy or even control people’s neural activities and thinking abilities is the so-called “brain control”. For example, electromagnetic waves and sound waves are used to affect the normal activities of human brain cells, and even suggestions and commands are directly “projected” into the human brain. In March 2018, a Western country proposed the “Next Generation Non-Invasive Neurotechnology (N3)” plan to develop a new generation of non-invasive two-way brain-computer interfaces to further improve the high-level interaction capabilities of soldiers and weapons and equipment.

In the future, the rapid development of brain science will give rise to a new cognitive domain combat model centered on the brain, and “brain control” will also become a new battlefield for the competition in the cognitive domain.

At present, a new round of scientific and technological revolution and military revolution is in a “qualitative change period”. Science and technology have never had such a profound impact on national security and military strategy as today. In the face of the rapid development of science and technology, we must vigorously enhance our scientific and technological cognition and acumen, strive to seize the commanding heights of science and technology, seek military competitive advantages, and seize the initiative in future wars.

Professor Liu Yangyue from the College of Arts and Sciences at the National University of Defense Technology 

現代國語:

中國軍網 國防部網
2021年8月13日 星期五

國防科技大學文理學院劉揚月教授

21世紀以來,全球科技創新進入空前密集活躍期,新一輪科技革命與產業變革,重建全球創新版圖、重塑全球經濟結構。有人因而將當今時代稱為「深度科技化」時代。

軍事領域是對科技變革最敏感的領域。目前,一些重大顛覆性技術不斷湧現,呈現交叉融合、群體躍進之勢,其軍事應用將會帶來突變性、革命性後果,甚至帶來戰爭新形態。

人工智慧:叩開智慧化戰爭之門

人工智慧誕生於1956年,它的實質是模擬人的思考過程,即讓機器像人一樣理解、思考和學習,形成經驗,並產生一系列相應的判斷與處理方式。近10年來,隨著大數據、神經網路、深度學習等新理論新技術不斷發展,人工智慧按下了快進鍵,開始飛速發展並為人類社會各領域帶來根本性改變。

2016年,人工智慧程式「阿爾法狗」擊敗了世界圍棋冠軍李世石。到了2020年,最新演算法程式甚至不需要被告知遊戲規則,就能自學成才,掌握下圍棋、西洋棋等技藝。

作為引領新一輪科技革命和產業變革的戰略性技術,人工智慧應用於軍事領域,使戰爭形態加速由資訊化轉變為智慧化。這項轉變將是全維度、全圖譜的,幾乎涉及軍事鏈的所有環節。最突出的影響基本上包括以下幾個方面:

——助力無人作戰。人工智慧的快速發展,將極大提升各類無人作戰系統的協同作戰、自主作戰能力。這無疑會推動作戰力量組成發生結構性變化,無人化作戰模式將逐步成為戰爭「主旋律」。在2020年8月的一場模擬對抗中,美國國防高級研究計畫局資助的智慧系統操縱戰機,完勝經驗豐富的空軍飛行員,無人作戰趨勢似乎愈發勢不可擋。

——重塑指揮控制。由人工智慧支撐的複雜自適應系統,如蜂群系統,將具備越來越強的自組織能力,從而打破傳統的嚴格層級的指揮體制,孵化出全新的指揮控制模式。由成千上萬個無人系統組成的蜂群,其行動控制將由智慧高效的演算法系統完成,能實現高度去中心化與動態聚合,展現出群體智慧作戰新概念。

——實現智能決策。即產生智慧化的評估和輔助決策能力,實現作戰方案計畫的自動生成、動態優化、即時調整,使作戰規劃靈活適應任務環境變化和戰場不確定性。目前,新一代人工智慧技術正處於蓬勃興起階段,新技術仍將持續出現。

量子技術:在「糾纏」中書寫制勝密碼

量子是最小的、不可再分割的能量單位。量子科技最大特點在於,它可以突破現有資訊科技的物理極限,在資訊處理速度、資訊容量、資訊安全、資訊偵測精準度等方面發揮極大作用,進而顯著提升人類獲取、傳輸和處理資訊的能力,為未來資訊社會的演進和發展提供強勁動力。

量子理論從誕生至今,已走過數百年發展歷程,量子科技的發展直接催生了現代資訊技術,核能、半導體電晶體、雷射、核磁共振、高溫超導材料等紛紛問世,改變了人類的生產生活。近年來,量子力學與資訊科技不斷結合,將開啟一場新的量子科技革命,衝擊著傳統科技體系,甚至引起傳統科技體系的重建。

相對於宏觀物理世界,量子有許多奇妙特性,最具代表性的莫過於量子疊加與量子糾纏。量子疊加意味著量子可同時處於不同狀態,且可處於這些狀態的疊加態。形象的比喻就是,物理學家薛丁格所設想的處於「既死又活」狀態的貓。量子糾纏則意味著相互獨立的粒子可以完全「糾纏」在一起,無論相隔多麼遙遠,當一個量子的狀態發生變化,另一個就會「心靈感應」般發生相應變化。

量子的這些特殊性,蘊藏著極大的軍事潛能。在量子探測、量子通訊、量子成像、量子計算等方面,正逐漸展現出巨大的軍事應用價值。如利用量子態疊加與未知量子態無法精確複製等特點,可研發出無法破解的量子密碼。

此外,根據量子的糾纏特性,利用兩個有共同來源的微觀粒子高度關聯性,將糾纏的光子作為光源實現量子成像,可大幅提升成像的解析度和抗干擾性。

基因技術:可以「編輯」的新武器

基因是控制生物各種特徵的遺傳訊息,被譽為生物體各種生命活動的「總開關」。基因編輯就相當於一把“基因剪刀”,透過它可精確實現對生物體特定目標基因的插入、移除、替換等基因“修飾”,從而實現對生物遺傳訊息的控制。

2012年,美國和瑞典的研究人員找到一把十分有效的“基因剪刀”,即使用CRISPR/Cas9系統,可在任何想要的地方切割任何基因組。此後,基因編輯技術發展獲得前所未有的“加速”,實現了對果蠅、鼠、豬、羊以及水稻、小麥等各類生物的基因編輯,也為治療腫瘤、愛滋病、地中海貧血等疾病提供了新的醫學手段。

基因技術在逐漸破解生命奧秘的同時,也將引發難以預料的軍事安全問題。如將基因編輯運用於生物武器的開發上,那就意味著開發者可根據自己的需要,修改基因獲得新的致病微生物,或是將具有不同特徵的生物基因片段植入並改造已有的生物戰劑,甚至人工設計與合成自然界本不存在的新型病毒。這些都可能產生人類無法預防和控制的新生物武器,甚至利用基因技術的精準性,使得攻擊更具針對性。這次新冠肺炎疫情,讓世界對美國德特里克堡以及200多個美國海外生物實驗基地疑雲叢生,美國應該公開更多事實,給國際社會一個交代。

腦科學:走向「制腦」戰場

人的大腦是一個高度複雜的訊息處理系統,它由數十億神經元透過相互連結來進行訊息交流,以整體協調的方式完成各種各樣的認知任務。

大腦複雜的神經訊息處理與認知,即便是超級電腦也相形見絀。因此,腦科學研究被視為自然科學研究的“終極疆域”,國際腦研究組織認為21世紀是“腦科學時代”。

近年來,世界主要國家紛紛宣布啟動腦科學研究計畫。隨著新型影像技術、匯聚技術以及基於計算和資訊通信技術平台的出現,腦科學研究在神經環路、類腦智能、腦機介面等領域不斷取得新突破。

作為認知科學的一個分支,「腦機介面」技術誕生於1970年代。它透過擷取大腦皮質神經系統活動產生的腦電訊號,經過放大、濾波等方法,將其轉化為可被電腦辨識的訊號,讓外部設備讀懂大腦的神經訊號,從中辨別出人的真實意圖,實現對外部實體設備的有效控制。也就是由人腦思考執行某項操作,而不需要透過肢體來完成。

腦機介面技術作為一種新型的人機互動方式,為武器裝備操控提供了全新的智慧化發展方向。實現人腦對武器裝備的直接控制,賦予武器裝備「隨心所欲」的智慧化特徵,正成為西方軍事強國追求的目標。 2013年,美國防部披露了一項名為“阿凡達”的研究項目,計劃在未來能通過意念操控遠程的“機器戰士”,以代替士兵在戰場上作戰,遂行各種戰鬥任務。

如果把上述研究視為“腦控”,那麼,利用“腦機介面”等技術手段對人的神經活動、思考能力等進行幹擾、破壞甚至控制,就是所謂的“控腦”。如使用電磁波和聲波等對人類腦細胞正常活動產生影響,甚至把建議和命令直接「投射」到人腦中。 2018年3月,某西方國家提出「下一代非侵入性神經技術(N3)」計劃,開發新一代非侵入式雙向腦機接口,進一步提高士兵與武器裝備的高水平交互能力。

未來,腦科學的快速發展,將催生以大腦為中心的認知域作戰新模式,「控腦」也將成為認知域爭奪的新陣地。

目前,新一輪科技革命、軍事革命正處於“質變期”,科技從未像今天這樣深刻影響國家安全和軍事戰略全局。面對快速發展的科學技術,必須大力增強科技認知力和敏銳性,努力搶佔科技制高點,謀取軍事競爭優勢,掌握未來戰爭的主動權。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2021-08/13/content_296410888.htm

Chinese Military to Utilize Artificial Intelligence Empowering Cognitive Confrontation Success on the Modern Battlefield

中國軍隊將利用人工智慧增強現代戰場認知對抗的成功

現代英語:

With the advent of the “smart +” era, artificial intelligence is widely used in the military field, and conventional warfare in physical space and cognitive confrontation in virtual space are accelerating integration. Deeply tapping the potential of artificial intelligence to empower cognitive confrontation is of great significance to improving the efficiency of cross-domain resource matching and controlling the initiative in future operations.

Data mining expands the boundaries of experience and cognition

Data-driven, knowing the enemy and knowing yourself. With the advancement of big data-related technologies, data information has become cognitive offensive and defensive ammunition, and information advantage has become increasingly important on the battlefield. Empowering traditional information processing processes with artificial intelligence technology can enhance the ability to analyze related information, accelerate information integration across domains through cross-domain data collection and false information screening, and enhance dynamic perception capabilities. Artificial intelligence can also help alleviate battlefield data overload, organically integrate enemy information, our own information, and battlefield environment information, and build a holographic intelligent database to provide good support for cognitive confrontation.

Everything is connected intelligently, and humans and machines collaborate. Modern warfare is increasingly integrated between the military and civilians, and the boundaries between peace and war are blurred. Technology has redefined the way people interact with each other, people with equipment, and equipment with equipment, and battlefield data is constantly flowing. Through big data mining and cross-domain comparative analysis, unstructured data such as images, audio, and video can be refined, and the truth can be retained to expand the boundaries of experience cognition and improve the level of human-machine collaboration. The in-depth application of the Internet of Things and big data technologies has promoted the continuous improvement of the intelligent level of data acquisition, screening, circulation, and processing processes, laying a solid foundation for the implementation of cognitive domain precision attacks.

Break through barriers and achieve deep integration. Relying on battlefield big data can effectively break through the barriers of full-domain integration, help connect isolated information islands, promote cross-domain information coupling and aggregation, accelerate barrier-free information flow, and promote the transformation of data fusion and information fusion to perception fusion and cognitive fusion. The comprehensive penetration of intelligent equipment into the command system can accelerate the deep integration of situation awareness, situation prediction and situation shaping, optimize multi-dimensional information screening and cognitive confrontation layout, and promote the continuous iteration and upgrading of cognitive domain combat styles.

Intelligent algorithms enhance decision-making efficiency

Accelerate decision-making and cause confusion to the enemy. The outcome of cognitive confrontation depends to a certain extent on the game of commanders’ wisdom and strategy. Through full-dimensional cross-domain information confrontation and decision-making games, with the help of intelligent technology, we can analyze and intervene in the opponent’s cognition and behavior, and finally gain the initiative on the battlefield. At present, artificial intelligence has become a catalyst for doubling combat effectiveness. In peacetime, it can play the role of an intelligent “blue army” to simulate and deduce combat plans; in wartime, through intelligent decision-making assistance, it can improve the quality and efficiency of the “detection, control, attack, evaluation, and protection” cycle, create chaos for the enemy, and paralyze its system.

Autonomous planning and intelligent formation. In the future intelligent battlefield, “face-to-face” fighting will increasingly give way to “key-to-key” offense and defense. In cognitive domain operations, the use of intelligent algorithms to accurately identify identity information, pre-judge the opponent’s intentions, and control key points in advance can quickly transform information advantages into decision-making advantages and action advantages. Using intelligent algorithms to support cognitive domain operations can also help identify the weaknesses of the enemy’s offense and defense system, autonomously plan combat tasks according to the “enemy”, intelligently design combat formations, and provide real-time feedback on combat effects. Relying on data links and combat clouds to strengthen intelligent background support, we can strengthen combat advantages in dynamic networking and virtual-real interaction.

Make decisions before the enemy and attack with precision. Intelligent algorithms can assist commanders in predicting risks, dynamically optimizing combat plans according to the opponent’s situation, and implementing precise cognitive attacks. In future intelligent command and control, the “cloud brain” can be used to provide algorithm support, combined with intelligent push to predict the situation one step ahead of the enemy, make decisions one step faster than the enemy, and completely disrupt the opponent’s thinking and actions. We should focus on using intelligent technology to collect and organize, deeply analyze the opponent’s decision-making and behavioral preferences, and then customize plans to actively induce them to make decisions that are beneficial to us, aiming at the key points and unexpectedly delivering a fatal blow to them.

Powerful computing power improves the overall operation level

Plan for the situation and create momentum, and suppress with computing power. “He who wins before the battle has more calculations; he who loses before the battle has less calculations.” The situation of cognitive confrontation is complex and changeable, and it is difficult to deal with it only by relying on the experience and temporary judgment of commanders. Intelligent tools can be used to strengthen the penetration of enemy thinking before the battle, actively divide and disintegrate the cognitive ability of the enemy team, and improve our battlefield control ability and combat initiative. At the same time, we should use powerful intelligent computing power to improve flexible command and overall planning capabilities, take advantage of the situation, build momentum, and actively occupy the main position of cognitive confrontation.

Smart soft attack, computing power raid. The rapid development of artificial intelligence has promoted the transformation of war from “hard destruction” to “soft killing”, which is expected to completely subvert the traditional war paradigm. For example, the latest technical concepts can be used to gain in-depth insights into the operating mechanism of the enemy system, actively familiarize oneself with the opponent, and mobilize the opponent. It is also possible to use the psychological anchoring effect and the network superposition amplification effect to interfere with the opponent’s cognitive loop link, disrupt the opponent’s command decision-making, and slow down the opponent’s reaction speed.

Cross-domain coordination and computing power support. To win the proactive battle of cognitive confrontation, we must coordinate across domains, gather forces in multiple dimensions, use intelligent tools to autonomously control the flow of information, realize the integrated linkage of physical domain, information domain and cognitive domain, lead forward-looking deployment and distributed coordination, launch a comprehensive parallel offensive, and form cognitive control over the enemy. Effectively carry out joint actions of virtual and real interaction in the entire domain, intervene in the enemy’s cognition, emotions and will, and use powerful computing power to take the initiative and fight proactive battles.

China Military Network Ministry of National Defense Network

Thursday, April 20, 2023

Chen Jialin, Xu Jun, Li Shan

現代國語:

伴隨「智慧+」時代的到來,人工智慧廣泛應用於軍事領域,物理空間的常規戰爭與虛擬空間的認知對抗加速融合。深度挖掘人工智慧潛力為認知對抗賦權,對提升跨域資源匹配效率,掌控未來作戰主動權具有重要意義。

資料挖潛拓展經驗認知邊界

數據驅動,知彼知己。隨著大數據相關技術的進步,數據資訊已成為認知攻防彈藥,資訊優勢在戰場上變得越來越重要。運用人工智慧技術賦能傳統資訊加工流程,可強化關聯資訊分析能力,透過跨領域資料擷取、虛假資訊甄別,加速資訊全局融合,強化動態感知能力。人工智慧還可協助緩解戰場數據過載,有機整合敵情、我情、戰場環境訊息,建立全像智慧資料庫,為認知對抗提供良好支撐。

萬物智聯,人機協同。現代戰爭日漸軍民一體、平戰界線模糊,技術重新定義了人與人、人與裝備、裝備與裝備的互動方式,戰場資料源源不絕。透過大數據探勘與跨域比較分析,可對影像、音訊、視訊等非結構化資料去粗取精、去偽存真,拓展經驗認知邊界,提升人機協同水準。物聯網、大數據技術的深度運用,推動資料取得、篩選、流轉、加工流程的智慧化程度不斷提升,為實施認知域精準攻擊夯實基礎。

打通壁壘,深度融合。依靠戰場大數據可有效突破全域融合的壁壘,有助於聯通條塊分割的資訊孤島,促進跨域資訊耦合聚合,加速資訊無障礙流通,推動資料融合與資訊融合向感知融合與認知融合轉化。智慧裝備全面滲透進入指揮體系,能夠加速態勢感知、態勢預測與態勢塑造的深度融合,優化多維資訊篩選與認知對抗佈局,推動認知域作戰樣式不斷迭代升級。

智慧演算法強化輔助決策效能

加速決策,致敵混亂。認知對抗的勝負,某種程度上取決於指揮家智慧謀略的博弈。可透過全維度跨域資訊對抗與決策博弈,借助智慧技術分析並介入對手認知與行為,最終贏得戰場主動。目前,人工智慧已成為戰鬥力倍增的催化劑,平時可扮演智慧「藍軍」模擬推演作戰方案;戰時透過智慧輔助決策,提升「偵、控、打、評、保」循環品質效率,給敵方製造混亂,促使其體系癱瘓。

自主規劃,智能編組。未來智慧化戰場上,「面對面」的拼殺將越來越多地讓位給「鍵對鍵」的攻防。在認知域作戰中,利用智慧演算法精準甄別身分資訊、預先研判對手企圖、事先扼控關鍵要點,能夠將資訊優勢快速轉化為決策優勢與行動優勢。利用智慧演算法支撐認知域作戰,還可協助摸清敵方攻防體系弱點,因「敵」制宜自主規劃作戰任務,智慧設計作戰編組,即時回饋作戰效果,依托資料鏈、作戰雲強化智慧後台支撐,在動態組網、虛實互動中強化作戰勝勢。

先敵決策,精準攻擊。智慧演算法可輔助指揮者預判風險,根據對手狀況動態優化作戰方案,實施精準認知攻擊。在未來智慧化指揮控制中,可利用「雲端大腦」提供演算法支撐,結合智慧推送先敵一步預判態勢,快敵一招制定決策,徹底打亂對手思路和行動。應著重運用智慧科技收集整理、深度分析對手決策和行為偏好,進而專項客製化計劃,積極誘導其作出有利於我的決策,瞄準要害出其不意地對其進行致命一擊。

強大算力提升全域運籌水平

謀勢造勢,算力壓制。 「夫未戰而廟算勝者,得算多也;未戰而廟算不勝者,得算少也。」認知對抗態勢複雜多變,僅靠指揮經驗和臨時判斷難以應對,可利用智能工具在戰前即對敵思維認知加強滲透,積極分化瓦解敵方團隊認知力,提升我戰場控局能力和作戰性。同時,應藉助強大智能算力,提升靈活指揮與全局運籌能力,順勢謀勢、借勢造勢,積極佔領認知對抗主陣地。

巧打軟攻,算力突襲。人工智慧的快速發展,推動戰爭進一步從「硬摧毀」轉向「軟殺傷」,可望徹底顛覆傳統戰爭範式。如可運用最新技術理念,深入洞察敵方體系運作機理,積極熟悉對手、調動對手。還可利用心理沉錨效應和網路疊加放大效應,幹擾對手認知循環鏈路,打亂對手指揮決策,遲滯對手反應速度。

跨域統籌,算力支撐。打贏認知對抗主動仗須全域跨域統籌、多維同向聚力,利用智慧工具自主控制資訊的流量流向,實現物理域、資訊域與認知域的一體聯動,引領前瞻性布勢與分散式協同,全面展開並行攻勢,形成對敵認知控制。有效進行全域虛實相生的聯合行動,對敵認知、情緒和意志實施幹預,借助強大算力下好先手棋、打好主動仗。

中國軍網 國防部網 // 2023年4月20日 星期四

陳佳琳 徐 珺 李 山

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2023-04/20/content_338002888.htm

Chinese Military Combat Management System: Core of Modern Combat Command & Control

中國軍事作戰管理系統:現代作戰指揮控制的核心

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan

2022-04-22 06:42

Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.

Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.

Combat Management System: The Core of Modern Combat System

Schematic diagram of the combat management system

Past and present life

Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.

The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.

After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”

At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.

The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.

For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.

Features

The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).

The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.

For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.

Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.

The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.

Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.

With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”

The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.

Future Development

Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.

The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.

The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.

For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.

The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.

The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.

(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)

現代國語:

作戰管理,是打贏現代化戰爭的基礎,是現代化作戰體系的核心,也是作戰過程中對人員、裝備、資訊、資源和時空等要素進行的規劃、組織、協調與控制活動。

作戰管理系統,指用來支撐作戰管理活動的指揮資訊系統,包括情報採集、資訊傳輸、目標識別、威脅判斷、分配武器、任務規劃等。其隨戰爭演化、技術進步而逐步發展。

作戰管理系統:現代化作戰體系核心

■楊蓮珍

作戰管理系統示意圖

前世今生

對作戰行動實施適時精確的指揮控制和作出及時果斷的作戰決策,是不同戰爭時期指揮員始終追求的目標與夢想。在科學管理產生前,戰爭中並無作戰管理這一概念,自然談不上作戰管理系統。但樸素的作戰管理活動和系統一直與戰爭相伴、融合發展。

作戰管理的核心是保證指揮員與部隊能順暢地交換資訊和指示。在古代作戰指揮號令系統中,金、鼓、旗號稱為“三官”,“言不相聞,故為之金鼓;視不相見,故為之旌旗”,目視耳聽是原始的指揮控製手段。

電報、電話、無線電發明後,作戰命令和戰鬥訊息的遠距離快速傳輸成為現實,作戰管理範圍由平面走向立體,「運籌帷幄、決勝千裡」的戰爭決策不再是神話。當然,傳統的戰場管理手段並非完全失去作用,例如在抗美援朝戰場上,我軍因通信條件受限,連以下分隊仍在通過軍號傳遞作戰命令,與作戰相關的號聲就有20餘種。 “四面邊聲連角起”,朝鮮戰場上的軍號曾讓美軍聞風喪膽。李奇微在回憶錄裡寫道:“只要它一響,中共軍隊就如著了魔法一般,全部不要命地撲向聯軍。這時,聯軍總被打得如潮水般潰退。”

20世紀初,科學管理的概念逐漸升溫,軍隊迅速將其應用於作戰。 「作戰管理」一詞,最早出現在美國空軍,其編成內的作戰管理員,基於雷達探測情況向戰機進行遠程目標指示和話音引導。作戰核心組織則稱為BM/C3系統,即作戰管理(Battle Management)和指揮、控制、通訊(Command,Control,Communication)。 1946年,第一台電子計算機「埃尼阿克」研製成功,軍隊開始使用計算機存儲和處理有關作戰的各種數據。 1958年,美軍建成世界上第一個半自動化作戰管理系統-「賽其」防空指揮控制系統,使用電腦首次實現了資訊擷取、處理、傳輸和指揮決策過程部分作業的自動化。同年,蘇軍建成「天空1號」半自動化防空指揮控制系統。作戰管理系統開始登上戰爭舞台,人機協作決策逐漸成為指揮主要的作戰決策形式。越戰中的「滾雷」戰役,美軍指揮5,000多架飛機出動129萬架次,投彈775萬噸,如果單靠人工指揮是不可能實現的。

作戰管理系統經歷了以武器為中心、以平台為中心、以網絡為中心和以體係為中心的建設階段,逐步能夠接收、處理來自多域的傳感器和其他來源信息,實時感知並生成作戰態勢圖,自動對兵力及裝備實施指揮控制,智能輔助指揮員決策,涉及陸、海、空等軍兵種。

如以色列陸軍的「統治者」作戰管理系統,單兵數字化裝置連接通道狀態資訊設備,用於為執行戰術作戰、火力支援等部隊提供即時態勢感知和指揮控制資訊。美國海軍的「宙斯盾」作戰系統,採用多任務訊號處理器整合防空與反導能力,實現艦載相控陣雷達、指揮決策、武器控制等一體化整合。北約空軍的ACCSLOC1系統,基於網路分散部署,整合40種型號的雷達和3000多個物理接口,承擔任務規劃、作戰指揮和戰鬥監督等空中行動。從發動第一次海灣戰爭到利比亞戰爭,美軍從傳感器獲取資訊到開火,時間由24小時縮短至2.5分鐘。

功能特徵

作戰管理系統是一個迅速發展並不斷完善的分散式操作系統,主要通過收集、處理傳感器數據,暢通各類信息傳輸和融合,進行態勢識別和預測,生成作戰方案,完成行動評估與選擇,下發作戰指令給武器平台和射手。其本質是實現高效率的作戰「觀察-判斷-決策-行動」循環(OODA環)。

作戰管理系統廣泛使用態勢評估與預測、作戰時空分析、線上即時規劃、作戰資源管控和作戰管理引擎技術等,採用基於資訊技術的「雲+網+端」的技術架構。

如美軍率先運用資訊技術,建構了集指揮、控制、計算機、通訊、情報、監視和偵察於一體的C4ISR系統,為作戰管理系統打下了基礎。阿富汗戰爭中,C4ISR系統首次實現作戰資訊近實時傳輸到作戰平台。隨著傳感器、網絡和人工智慧的不斷成熟,智能態勢理解和預測、智慧資訊推送、智慧任務規劃、智慧協同控制、智慧快速重構和智慧平行指控等技術,正在對作戰管理系統產生越來越重大的影響。

作戰管理系統通常支援態勢感知、任務規劃、交戰管理、通訊、建模及模擬與分析、試驗訓練等功能。如導彈防禦作戰管理系統,主要包括指揮控制、交戰管理及通訊等功能構成。指揮控制功能,實現對戰前的作戰規劃及對戰場態勢的感知;交戰管理功能,實現輔助作戰決策和分配反導武器並完成打擊任務;通信功能,實現系統各反導單元情報、數據的傳輸和共享。

作戰管理系統是一個開放的複雜系統。結構決定功能,不同的系統結構,決定不同系統的功能拓展:艦艇自防禦作戰管理系統通過自動化武器控制條令、協同交戰管理系統和戰術數據鍊等,使艦艇具備了強大的自防禦能力;電磁作戰管理系統通過融合並顯示戰場電磁頻譜數據,提高電磁戰兵器規劃能力、共享電磁力和單兵作戰力量;

作戰管理系統普遍具有一體化、自動化、最優化、即時化等特徵。現代戰爭作戰模式複雜、戰場規模擴大,對力量管控、資源整合和任務調度要求的提高,必須實現系統一體化整合。法國陸軍的「蝎子」系統,就將坦克、裝甲車、步兵戰車、無人地面車輛、無人機與攻擊直升機完整整合到同一個作戰群,並連結任務群中的所有平台和作戰單元。

現代戰爭作戰要素增加、戰場感知空間擴大,對人依賴較高的指揮自動化系統已無法完全適應,必須實現系統自動化運作。巴基斯坦作戰管理火砲控制系統所有操作功能全部自動化,「為準備、協調、傳遞、執行和修改火力支援計畫與射擊方案提供了自動化解決方案」。

現代戰爭作戰節奏加快、戰場數據海量,需要快速掌握狀況、有效率定下決心,必須實現系統最優化決策。各軍事強國正將人工智慧、雲端運算、物聯網與大數據技術結合起來,以利在多域作戰中更快決策。

未來發展

傳統作戰管理系統,更強調基於事先制定的交戰序列、作戰規則。但未來戰爭更突出體係與體系之間的對抗,不可能預先窮盡各種情況,需要掌握的戰場資訊也更趨複雜、海量。為此,各國軍隊開始摒棄傳統上為各作戰域單獨開發作戰管理系統的方法,以網絡為中心、以人工智能為支撐,力圖幫助指揮員更迅速作出作戰決策,實現各作戰域的傳感器與任意射手的實時連接。

作戰管理系統將推動作戰概念落地。美國空軍開發的“先進作戰管理系統”,規劃將各軍種及其武器平台實時連接在一個軍事物聯網中,其核心是將各類情報偵察平台、指揮控制平台、打擊平台和作戰管理平台與各種跨域能力無縫鏈接,把情報和目標指示數據轉化為及時、可用的信息,縮短“發現-定位-跟踪-瞄準-打擊-評估”速度,以執行對手的速度執行。俄羅斯軍隊提出“軍隊統一資訊空間”理論,組織開發陸海空網絡一體化聯合作戰“自動控制系統”,通過建立網絡中心指揮模式,試圖將全軍指揮、通信、偵察、火力、保障等進行融合,實現真正意義上的跨域作戰,提升戰場態勢感知能力與作戰指揮效率。

作戰管理系統將依賴人工智慧技術。人工智慧的應用不僅引起武器系統能力的倍增,也將從根本上改變OODA環的實現。未來的作戰管理系統,人工智慧技術將成為核心支撐和驅動引擎,關鍵因素是演算法的品質。系統將內置可升級的人工智慧,人們將處於監督或協同狀態的位置,最大限度地減少人工輸入,對作戰環境中的威脅目標進行自發識別分類、自主評估權衡和自動分配武器,從而提供自適應的作戰優勢和決策可選性。

如2021年7月美海軍發布的“智能自主系統戰略”,旨在通過高度分佈式的指揮和控制架構,加速智能平台的開發和部署,綜合無人系統、人工智能和自動駕駛等技術,實現由智能自主系統促成的未來作戰決策。俄軍在研的人工智慧項目超過150個,其重點之一是將人工智慧引入指揮控制系統,為不同武器平台適配智慧軟件,實現物理域與認知域的統一,以智慧賦能的方式實現戰鬥力倍增。

作戰管理系統將實現跨域能力突破。軍隊作戰管理能力正向陸、海、空、天、電、網和認知域、社會域等全域協同轉變。適應全局環境,作戰管理系統需要具備以下功能:有彈性和冗餘的通信系統,靈活安全的數據運行;人工智能和機器學習直接從傳感器中提取、處理數據,並進行去中心化集成、共享;根據保密級別分段訪問,滿足感知、理解和行動需要。在此基礎上,還需具備向部隊提供偵察監視、戰術通訊、數據處理、網路指控等能力。

未來的作戰管理系統,將聚焦安全處理、連通性、數據管理、應用、傳感器整合和效果整合等能力,優化全作戰域的數據共享、協同作戰和指揮控制,支援從戰術級到戰略級的決策優勢。其目的只有一個:賦予指揮員超越對手的能力。

(作者係武警指揮學院訓練管理系副主任、教授)

中國原創軍事資源:http://www.81.cn/yw_208727/10149663888.html

Chinese Military Evaluation of Foreign Armed Forces Perspectives on Multi-domain Operations

中國軍方對外軍多域作戰觀點的評估

現代英語:

The opening of each combat domain will inevitably lead to a new round of changes in combat methods. Driven by the new round of scientific and technological revolution and industrial revolution characterized by intelligence, ubiquity and integration, emerging combat domains such as space, cyberspace, electromagnetic spectrum, and cognitive space have an increasing impact on future operations. The concept of “multi-domain combat” has emerged through cross-domain collaboration with traditional land, sea, and air combat domains to achieve complementary advantages and system efficiency, and is becoming a new combat theory that adapts to the evolution of war forms.

The concept of “multi-domain combat” was first proposed by the US military. Subsequently, the United Kingdom, France, and other NATO member states have developed the concept of “multi-domain combat” in different forms. Israel was the first to apply the concept of “multi-domain operations” in actual combat. The Russian army innovatively proposed its own “multi-domain operations” theory from the perspective of its opponents. At present, the concept of “multi-domain operations” has become an important concept that triggers a new round of changes and transformations in foreign military operations.

The concept of “multi-domain operations” is a new operational concept first proposed by the US Army and jointly promoted by other services based on the changes in operational methods in the information age.

The US military believes that the winning mechanism of the concept of “multi-domain operations” is to form multiple advantages in a specific time window through the rapid and continuous integration of all war domains (land, sea, air, space, and cyberspace) and force the enemy into a dilemma. The U.S. Army proposed to be guided by the idea of ​​”global integrated operations” and the concept of “cross-domain collaboration”, and strive to form an asymmetric advantage in future wars through “multi-domain operations”. The multi-domain task force (brigade level) will be the core combat force of the U.S. Army to implement multi-domain operations, integrating artillery, land-based tactical missiles, land aviation, cyberspace, electromagnetic spectrum, space and air defense forces, and forming multi-domain combat capabilities through cross-domain mixed formations. The U.S. Air Force actively responded to the concept of “multi-domain operations”, focused on building a joint combat command and control system, proposed the concept of multi-domain command and control, and focused on developing advanced combat management systems, sinking multi-domain operations to the tactical level to improve the agility and cross-domain collaboration capabilities of future operations. The U.S. Navy has absorbed the core idea of ​​the “multi-domain combat” concept, proposed to build an “integrated global maritime military force”, focused on developing the “distributed lethality” combat concept, and proposed to strengthen the design and exercise of global combat.

The U.S. Department of Defense and the Joint Chiefs of Staff have gathered the ideas and mechanisms of the new combat concept of “multi-domain combat” of the military services, and proposed the top-level concept of “global combat”, aiming to form a new round of asymmetric advantages, lead the transformation of combat methods and military transformation. The global combat concept is centered on joint global command and control, aiming to integrate traditional combat domains with space, cyberspace, electromagnetic spectrum, air defense and anti-missile and cognitive domain capabilities, and compete with global competitors in a full-spectrum environment. It is reported that the concept is still in its infancy and is undergoing theoretical deepening, experimental verification, exercise evaluation and doctrine transformation, and is constantly enriching its conceptual core through multiple work lines. Among them, the US Joint Chiefs of Staff leads the transformation of concepts into policies, doctrines and requirements; the Air Force promotes the concept to maturity by developing advanced combat management systems, the Army by implementing the “Convergence Project”, and the Navy by launching the “Transcendence Project”. The US theater supports the development of multi-domain combat concepts and multi-domain combat modes through war games, project demonstrations and joint exercises.

Based on the perspective of reference and integration, NATO countries such as the United Kingdom actively participated in the development and testing of the US military’s “multi-domain operations” concept, and revised the operational concept in combination with actual conditions.

The British Ministry of Defense proposed the concept of “multi-domain integration”, which is consistent with the concept mechanism of the US military’s “multi-domain operations”, focusing on integrating operations in different domains and at different levels, preparing for the development of a joint force and maintaining competitive advantages in 2030 and beyond. The British Ministry of Defense pointed out that “integrating capabilities in different domains and at different levels through information systems, creating and utilizing synergies to gain relative advantages is the winning mechanism of the multi-domain integration concept.” The concept emphasizes gaining information advantages, shaping strategic postures, building a multi-domain combat environment, and creating and utilizing synergies. The concept raises four specific issues: how to provide an advantage over rivals by 2030 and beyond through “multi-domain integration”; how to achieve cross-domain integration of the Ministry of Defense in cooperation with allies, governments and civilian departments; how to solve the policy issues involved in the concept of “multi-domain integration”; how to promote research on defense concepts, capabilities and war development. With this as a starting point, the British Army has launched a multi-faceted, step-by-step, and systematic military transformation.

Other NATO countries are also jointly developing and innovatively applying the concept of “multi-domain operations” to varying degrees, and promoting the transformation and implementation of the concept of “multi-domain operations” in the form of joint exercises and allied cooperation. In 2019, the US Army led the “Joint Operational Assessment (2019)” exercise, which aimed to assess the combat capabilities of the Indo-Pacific Command’s multi-domain task force. Forces from France, Canada, Australia, New Zealand and other countries formed a multinational task force to participate in the exercise, which assessed the multi-domain combat concepts, formations and capabilities in the combat environment from 2025 to 2028. In October 2019, the NATO Joint Air Power Competition Center held a meeting on “Shaping NATO’s Future Multi-Domain Combat Posture”. In order to shape NATO’s future multi-domain combat posture, it explored and studied military thinking, multi-domain combat forces, multi-domain combat operations and training joint forces. In June 2020, the NATO Command and Control Center of Excellence released a white paper on the Multi-Domain Operations Command and Control Demonstration Platform, which aims to respond to threats and challenges in multiple operational domains with a decentralized, data-driven integrated environment by bridging the command and control gap between technology and operators, tactics and campaign levels, and academia and the military.

Based on the perspective of its opponents, the Russian army seeks a way to crack it on the one hand, and on the other hand, based on the winning mechanism of “cross-domain operations”, it combines its own characteristics to innovate combat theories

After the US military proposed the concept of “multi-domain operations”, the Russian army actively sought a way to crack it based on its own security interests. In December 2020, the Russian magazine “Air and Space Power Theory and Practice” published an article titled “Argument for the Use of Aviation Power to Break the Enemy’s Large-Scale Joint Air Strikes in Multi-Domain Operations”, which stated that large-scale joint air strikes are the initial stage for NATO countries to implement multi-domain operations. Large-scale coordinated operations will be carried out against Russia’s most important key facilities, creating conditions for subsequent decisive actions by NATO joint armed forces. The Russian army must comprehensively use the reconnaissance and strike system composed of the aviation forces of the theater forces to cause unbearable losses to the enemy, break its large-scale joint air strikes, and force NATO’s initial stage goals of multi-domain operations to fail to be achieved, causing NATO’s political and military leadership to abandon the attempt to continue to implement multi-domain operations.

On the other hand, the Russian army proposed the “military unified information space” theory for the new combat method of “cross-domain combat”. Its core idea is: to use modern information technology to establish a networked command and control system to achieve the deep integration of the army’s command, communication, reconnaissance, firepower, support and other elements, thereby improving the battlefield situation perception capability and combat command efficiency. The Russian military continues to promote theoretical development around the realization of cross-domain combat capabilities: first, relying on the unified information space of the army to establish a network-centric command model; second, introducing artificial intelligence into the command and control system to achieve the unification of the physical domain and the cognitive domain; third, developing network, space and underwater combat forces to gain advantages in emerging combat fields; fourth, establishing a unified military standard system to enhance the interoperability of forces and weapons. The Russian military has not completely absorbed the Western concept of “multi-domain combat”, nor has it completely denied the beneficial elements of the Western “multi-domain combat”, but has combined its own absorption of some advanced combat ideas of “multi-domain combat” to enrich its own unique combat theory.

Based on the perspective of combat needs, Israel took the lead in applying the concept of “multi-domain combat” on the Gaza battlefield, and used the multi-domain combat force “Ghost” as the main combat force.

The Israeli army believes that multi-domain joint combat is an inevitable trend in the development of future wars. For Israel, which mainly relies on ground combat, by integrating land, air, cyberspace, electromagnetic spectrum and sea elite forces, it can quickly identify, track and destroy enemy targets, and further improve the lethality of the Israeli army. This concept is in line with the concept of “multi-domain combat” proposed by the US Army. Under the guidance of this concept, the Israeli army formed the “Ghost” force and took the lead in actual combat testing on the Gaza battlefield. In the Israeli-Palestinian conflict in May 2021, Israel used the “Ghost” combat battalion for the first time to implement multi-domain operations in the code-named “Wall Guardian” operation against Hamas, which was called the world’s first “artificial intelligence war”. The Israeli army mainly relied on machine learning and data collection in this war, and artificial intelligence became a key component of combat and a force multiplier for the first time. In the operation to clear the Hamas tunnel network, the Israeli army used big data fusion technology to pre-identify and target, and then dispatched 160 fighter jets to carry out precise strikes, which greatly destroyed the Hamas tunnel network and achieved air control over the ground; in the attack on Hamas rocket launchers, the Israeli fighter pilots, ground intelligence forces and naval forces used command and control systems to quickly find targets and carry out real-time precise strikes, quickly shaping a favorable battle situation.

According to the Israeli army, the “Ghost” force is very different from traditional forces in terms of combat organization, weapon configuration and combat methods. The unit is temporarily organized under the 98th Paratrooper Division of Israel, including the brigade reconnaissance battalion, the ground forces of the Paratrooper Brigade, the armored brigade, the engineering corps, the special forces, the F-16 squadron and the Apache helicopter, as well as the “Heron” drone and other multi-domain combat forces. Through the use of multi-domain sensors and precision strike weapons, cross-domain maneuvers and strikes are achieved, “changing the battlefield situation in a very short time”. The battalion was established in July 2019. Although it is a ground force, it integrates multi-domain combat forces such as air strikes, network reconnaissance, precision firepower, electronic confrontation, intelligence interconnection and maritime assault. It is a battalion-level combat unit with division-level combat capabilities. After its establishment, the unit has continuously improved its multi-domain integration and cross-domain strike capabilities through exercises, and has quickly exerted two major functions with the support of the newly developed artificial intelligence technology platform: one is to serve as an elite weapon on the battlefield and fight in an asymmetric manner; the other is to serve as a test unit to continuously innovate and develop new combat concepts, combat theories and technical equipment, and to promote successful experiences to other units at any time.

現代國語:

褚 睿 劉瑤琦

每一個作戰域的開闢,必將引發新一輪作戰方式的變革。在以智慧、泛在、融合為特點的新一輪科技革命和產業革命的加速推動下,太空、網絡空間、電磁頻譜、認知空間等新興作戰域對未來作戰影響日益增大,透過與傳統陸、海、空作戰域跨域協同實現優勢互補、體系增效的「多域作戰理論」概念應而生,正成為適應戰爭形態演進的新型作戰理論。

「多域作戰」概念最早由美軍提出。隨後,英國、法國以及其他北約成員國均以不同形式發展「多域作戰」概念。以色列率先將「多域作戰」概念運用於實戰。俄軍從對手視角創新提出了自己的「多域作戰」理論。當前,「多域作戰」概念已成為引發外軍新一輪作戰方式變革轉型的重要概念。

「多域作戰」概念是基於資訊時代作戰方式變革,由美陸軍率先提出、其他軍種協力推進的新型作戰概念

美軍認為,透過所有戰爭領域(陸、海、空、太空、網路空間)快速且持續的整合,在特定時間窗口形成多重優勢,迫使敵人陷入困境是「多域作戰」概念的製勝機理。美陸軍提出以「全球一體化作戰」思想和「跨域協同」理念為指導,力求透過「多域作戰」方式形成未來戰爭非對稱優勢。多域特遣部隊(旅級)將是美陸軍實施多域作戰的核心作戰力量,集砲兵、陸基戰術導彈、陸航、網絡空間、電磁頻譜、太空以及防空力量於一身,通過跨域混合編組形成多域作戰能力。美空軍積極響應「多域作戰」概念,著眼於建構聯合作戰指揮與控制體系,提出多域指揮與控制概念,聚力開發先進作戰管理系統,將多域作戰向戰術級下沉,以提高未來作戰的敏捷性和跨域協同能力。美國海軍吸納“多域作戰”概念的核心思想,提出打造“一體化全局海上軍事力量”,重點開發“分佈式殺傷”作戰概念,提出加強全局作戰設計和演習。

美國國防部和參聯會匯集軍種「多域作戰」新型作戰概念的思想與機理,提出了「全局作戰」頂層概念,旨在瞄準形成新一輪非對稱優勢,牽引作戰方式變革與軍事轉型。全局作戰概念以聯合全局指揮與控制為核心,旨在將傳統作戰域與太空、網絡空間、電磁頻譜、防空反導和認知領域等能力整合在一起,與全球性競爭對手在全頻譜的環境中競爭。據悉,該概念目前尚處於萌芽期,正在進行理論深化、試驗驗證、演習評估和條令轉化,並通過多條工作線,不斷豐富其概念內核。其中美軍參聯會領導概念向政策、條令和需求轉化;空軍通過開發先進作戰管理系統、陸軍通過實施“融合項目”、海軍通過啟動“超越項目”共同推動該概念走向成熟。美戰區透過兵棋推演、項目展示和聯合演習等形式支援多域作戰概念和多域作戰模式開發。

英國等北約國家基於借鑑與融入視角,積極參與美軍「多域作戰」概念的發展與試驗,並結合實際修訂作戰概念

英國國防部提出了「多域融合」概念,與美軍「多域作戰」概念機理相一致,著重於整合不同領域和不同層次的作戰,為2030年及以後發展一支聯合部隊、保持競爭優勢做準備。英國國防部指出,「透過資訊系統整合不同領域和不同層級的能力,創造和利用協同效應,以獲得相對優勢,是多域融合概念的製勝機理。」該概念強調奪取資訊優勢、塑造戰略態勢、構設多域作戰環境、創造和利用協同效應。該概念提出4個具體問題:如何透過「多域融合」為2030年及以後提供超越對手的優勢;如何實現國防部與盟友、政府和民事部門合作的跨域融合;如何解決「多域融合」概念涉及的政策問題;如何促進國防概念、能力和戰爭發展方面的研究。以此為抓手,英軍開啟了多面向、分步驟、體系化的軍事轉型。

其他北約國家也正在不同程度地聯合開發和創新運用「多域作戰」概念,並以聯合演習、盟國協作等形式推動「多域作戰」概念轉化落地。 2019年美陸軍領導開展的、旨在評估印太司令部多域特遣部隊作戰能力的「聯合作戰評估(2019)」演習中,法國、加拿大、澳大利亞、新西蘭等國部隊組成多國任務組織參與其中,評估了2025-2028年作戰環境下的多域作戰概念、編組、能力。 2019年10月,北約聯合空中力量競爭中心召開了「塑造北約未來的多域作戰態勢」會議,為塑造北約未來多域作戰態勢,從軍事思想、多域作戰力量、多域作戰行動和訓練聯合部隊等方面進行了探索和研究。 2020年6月,北約指揮控制卓越中心發布了多域作戰指揮控制演示平台白皮書,旨在通過彌合技術和作戰人員、戰術和戰役層面、學術界和軍方之間的指揮控制鴻溝,以分散、數據驅動的綜合環境來應對多個作戰域的威脅與挑戰。

俄軍基於對手視角,一方面尋求破解之道,另一方面基於「跨域作戰」制勝機理,結合自身特點創新作戰理論

美軍提出「多域作戰」概念後,俄軍基於自身安全利益考量,積極尋求破解之道。 2020年12月,俄羅斯《空天力量理論與實踐》雜志刊發《論證運用航空力量打破敵方多域作戰中大規模聯合空襲》的文章,認為大規模聯合空襲是北約國家實施多域作戰的初始階段,將對俄羅斯最為重要的關鍵設施實施大規模協同作戰,為北約聯合武裝力量後續決定性行動創造條件。俄軍必須綜合運用戰區部隊的航空力量組成的偵察打擊系統,給敵造成無法承受的損失,打破其大規模聯合空襲,迫使北約多域作戰初始階段目標無法實現,致使北約政治軍事領導層放棄繼續實施多域作戰的企圖。

另一方面,俄軍針對「跨域作戰」這種新型作戰方式,提出了「軍隊統一資訊空間」理論,其核心思想是:利用現代資訊技術建立網絡化的指揮控制系統,以實現全軍指揮、通信、偵察、火力、保障等要素的深度融合,進而提升戰場態勢感知能力與作戰指揮效率。圍繞實現跨域作戰能力,俄軍持續推進理論開發:一是依托軍隊統一資訊空間,建立網絡中心指揮模式;二是將人工智慧引入指揮控制系統,實現物理域與認知域的統一;三是發展網絡、太空和水下作戰力量,爭取新興作戰領域優勢;四是建立統一的軍事標準體系,提升兵力兵器互操作能力。俄軍沒有全盤吸收西方「多域作戰」概念,也沒有全盤否定西方「多域作戰」有益成分,而是結合自身將「多域​​作戰」的一些先進作戰思想吸收,充實自身特色的作戰理論。

以色列基於作戰需求視角,率先運用「多域作戰」概念於加薩戰場,將多域作戰力量「幽靈」部隊作為主要作戰力量

以軍認為,多域聯合作戰是未來戰爭發展的必然趨勢,對於以地面作戰為主的以色列而言,透過整合陸上、空中、網絡空間、電磁頻譜和海上精銳力量,迅速識別、追踪和摧毀敵方目標,能夠進一步提高以軍的殺傷力。這一理念與美陸軍提出的「多域作戰」概念一脈相承。在這一理念的指導下,以軍組建了「幽靈」部隊,並率先在加薩戰場上進行了實戰檢驗。在2021年5月的巴以沖突中,以色列在對哈馬斯的代號為「城牆衛士」行動中首次運用「幽靈」戰鬥營實施了多域作戰,被稱為世界上第一場「人工智慧戰爭」。以軍在這場戰爭中主要依靠機器學習和數據收集,人工智慧首次成為作戰的關鍵組成部分和力量倍增器。在對哈馬斯地道網的清除行動中,以軍通過大數據融合技術進行預先識別和瞄準,而後出動戰機160架次進行精確打擊,極大破壞了哈馬斯的地道網,實現以空制地;在對哈馬斯火箭發射裝置的打擊中,以軍戰鬥機飛行員、地面情報部隊和海軍部隊之間使用和控制系統,快速指揮目標

根據以軍的說法,「幽靈」部隊在作戰編成、武器配置和作戰方式等方面與傳統部隊迥然不同。該部隊編制暫屬以色列第98傘兵師,包括旅偵察營、傘兵旅的地面部隊,裝甲旅、工程兵、特種部隊,F-16中隊和阿帕奇直升機,以及“蒼鷺”無人機等多域作戰力量,通過使用多域傳感器和精確打擊武器,實現跨域機動與打擊,“在極短時間內改變戰場局勢”。該營成立於2019年7月,雖然是一支地面部隊,但它整合了空中打擊、網絡偵防、精確火力、電子對抗、情報互聯以及海上突擊等多域作戰力量,是具備師旅級作戰能力的營級作戰單元。該部隊組建以後,不斷通過演習提升多域融合和跨域打擊能力,並在新開發的人工智能技術平台的支撐下迅速發揮兩大功能:一是在戰場上作為精兵利器,以非對稱方式作戰;二是作為試驗部隊,不斷創新和發展新型作戰概念、作戰理論和技術裝備,隨時將成功經驗推廣到其他部隊。

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/ll/10068139888.html

Chinese Military Intelligent Warfare Imminent

中國軍事智慧化戰爭迫在眉睫

現代英語:

At present, accelerating the development of military intelligence is becoming a consensus among the world’s superpowers. Artificial intelligence technology is accelerating its penetration into the military field and has become an important driving force for military reform. It will inevitably give rise to new combat styles and change the internal mechanism of war. We should firmly grasp the new quality growth point of military intelligence to enhance the combat effectiveness of the army, organically integrate military theory, science and technology, and military applications, intelligently upgrade traditional combat fields, and innovate combat concepts, so that the “intelligent factor” radiates from weapons and equipment to all aspects of military construction, and focus on breakthroughs in key areas such as military theory systems, command information systems, unmanned combat systems, comprehensive support systems, and new combat forces, and promote the reshaping, reconstruction, transformation and upgrading of combat systems.

Artificial intelligence stimulates new developments in theory

When new military technologies, operational concepts, and organizational structures interact to significantly enhance military operational capabilities, they will promote new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, thereby giving rise to new operational styles and changing the internal mechanism of winning wars.

Innovative combat theory. New disruptive technologies in the field of intelligence have opened up new space for innovation in military theory. Integrating precision strike ammunition and unmanned equipment into the network information system will give rise to new intelligent combat theories such as “distributed killing”, “multi-domain warfare”, “combat cloud”, “swarm tactics”, and “intelligent security warfare”; combining intelligent technology with information dominance theory, relying on one’s own information advantages and decision-making advantages, cutting off and delaying the opponent’s information and decision-making loops in the decentralized battlefield network will become the key to winning intelligent warfare. Enrich combat styles. With the development and maturity of intelligent technology and the large-scale deployment of unmanned autonomous combat platforms, unmanned combat will become a disruptive new combat style that dominates future battlefields. Infiltrate the entire process of warfare with intelligent elements, use intelligent perception, intelligent decision-making, intelligent control, and unmanned platforms to innovate the combat process. Use unmanned systems and manned systems in coordination, cluster and plan the use of unmanned combat platforms to enrich combat styles. Expand combat forces. The widespread application of intelligent systems and unmanned combat platforms will further enrich the connotation of new combat forces, and various “mixed” new combat forces will be applied on the battlefield. With the construction and application of the Internet of Things, big data, and cloud computing technologies in the military field, new combat forces such as space and networks will play an increasingly important role in future wars.

Accelerate the intelligent upgrade of command systems

The intelligence of command information systems is the key to achieving a leap forward in combat command means and forming decision-making advantages. In future wars, the battlefield space will be unprecedentedly expanded, the elements of war will be extremely rich, the tempo of confrontation will be significantly accelerated, and the combat system will change dynamically. There is an urgent need for the in-depth application of intelligent technology in battlefield perception, command decision-making, and human-computer interaction.

In terms of intelligent perception, intelligent sensing and networking technologies are adopted to widely and rapidly deploy various intelligent perception nodes, conduct active collaborative detection for tasks, and build a transparent and visible digital combat environment. Relying on technologies such as data mining and knowledge graphs, intelligent processing in aspects such as multi-source intelligence fusion and battlefield situation analysis is carried out to dispel the fog of war, analyze the enemy’s combat intentions, and predict the development of the battle situation. In terms of intelligent decision-making, by constructing combat model rules, using actuarial, detailed, deep and expert reasoning methods, commanders are assisted in making quick decisions in multi-level planning and ad hoc handling of strategies, campaigns, tactics, etc.; using machine learning, neural network and other technologies to create a “command brain” to learn and apply the laws of war and the art of command in terms of planning, strategy planning, and battle situation control, and expand the wisdom of commanders with machine intelligence. In terms of intelligent interaction, we comprehensively utilize intelligent interaction technologies such as feature recognition, semantic understanding, virtual augmented reality, holographic touch, and brain-computer interface to summarize and analyze the behavioral characteristics of commanders, build new human-computer interaction environments such as holographic projection digital sandbox, immersive battlefield perception command, and wearable smart devices, and provide intelligent means to support commanders in perceiving the battlefield and controlling the battle situation.

Build an intelligent unmanned combat system

Intelligent unmanned combat systems are a new trend in the development of future war equipment. The core is to aim at the requirements of “zero casualties”, “full coverage” and “quick response” in future wars, make full use of the development results of new theories, new materials, new processes, new energy and new technologies, and continuously make breakthroughs in human-machine collaboration and autonomous action, build a new type of intelligent unmanned army on a large scale, and realize the systematic collaborative combat of unmanned combat systems.

In terms of human-machine collaboration, relying on the integrated space-ground information network, self-organizing network and collaborative interaction technology, we will open up the human-machine interaction link and establish a manned-unmanned collaboration system of “human-led, machine-assisted, mixed formation, and joint action”. Facing complex combat missions and the global battlefield environment, we will strengthen the research on mechanisms and technologies such as safe and reliable information transmission, precise and efficient behavior control, and highly coordinated human-machine mixing to achieve highly compatible human-machine collaborative combat. In terms of autonomous action, relying on mission planning, distributed computing and intelligent networking technologies, research and develop unmanned combat systems and cluster formation technologies with fast response speed, strong adaptability, high reliability, flexible organization plan and reasonable action planning. They can fully respond to various changes in terrain, weather, disasters, damage, etc., and intelligently and dynamically adjust movement posture, travel route, firepower use, energy distribution, self-healing and self-destruction strategies to realize the replacement of humans by intelligent machines, expand the combat space, and avoid casualties.

Strengthening intelligent comprehensive security measures

Before troops move, support comes first. On the intelligent battlefield, the realization of comprehensive support for joint operations is an important factor that directly affects the combat effectiveness of troops. The development of intelligent technology will inevitably trigger revolutionary changes in the construction of the joint combat support system and realize intelligent comprehensive support.

In terms of political work, we will make full use of technologies such as social networks, personnel profiling, public opinion monitoring, sentiment analysis, and behavior prediction to build an intelligent political work system covering battlefield control, public opinion and legal struggle, social situation monitoring, personnel relationship analysis, personnel ideological trends, human resource management and other businesses, to provide support for exploring new approaches, new carriers, and new models for ideological and political work. In terms of after-sales support, by using technologies such as the Internet of Things, drones, smart cars, remote surgery, and 3D printing, we have upgraded and built an intelligent after-sales support system covering intelligent warehousing, intelligent delivery, intelligent maintenance, and intelligent medical care, to achieve automatic, rapid, and accurate supply of battlefield after-sales materials, rapid diagnosis and repair of equipment failures, and timely rescue of battlefield personnel, turning passive support into active services, and improving the overall efficiency and effectiveness of after-sales support. In terms of combat training, by comprehensively using technologies such as cloud computing, virtual reality, simulated confrontation, and adjudication and evaluation, we have created an integrated training platform for “guidance, control, adjudication, evaluation, and management”, an intelligent virtual blue army, and an immersive training environment to support tactics and strategy training, equipment skills training, and joint confrontation exercises.

Exploring the intelligent combat force system

The new intelligent combat force system is a comprehensive product of the development of artificial intelligence technology, the formation of new-quality combat power and the evolution of war forms. It is the “killer hand” for seizing the initiative in the future global combat space, the key to forming an integrated joint combat system, and a new growth point for our military’s combat power.

Focus on new battlefields. The combat space of the new era has expanded from the traditional battlefield space to new battlefields such as space, the Internet, and spiritual will, and gradually extended to various fields of human activities and ideology. New combat forces such as rapid response satellites, network autonomous security, brain-controlled weapons, and genetic weapons are being integrated into the combat system. Military intelligence plays an increasingly important role in new combat styles such as space warfare, network warfare, mind warfare, and biological warfare. Pay attention to new technologies. Intelligent space-based weapon systems, with outer space as the battlefield, will help achieve the struggle for control of the sky; based on autonomous network intelligent security technology, it will help achieve a network security confrontation with integrated offense and defense and dynamic defense; brain control technology will help to attack the enemy’s spirit, nerves and mind; intelligent means may also accelerate the development of genetic weapons in some countries. Military intelligence is integrating into all aspects of the military field at an unprecedented speed, breadth and depth, deconstructing and reshaping the traditional appearance of war presented to the world. We must plan ahead to be invincible.

Laying a solid foundation for the development of intelligent military

The construction of military intelligence is a large and complex systematic project. Accelerating the development of military intelligence requires advanced theories as support, institutional mechanism construction as guarantee, technological breakthroughs as the starting point, and talent team building as the source of motivation.

Establish a collaborative innovation mechanism for military-civilian integration. The rapid development of intelligent technology has become an accelerator for military intelligence. In the information age, the boundaries between military and civilian technologies are becoming increasingly blurred, and their convertibility is becoming increasingly stronger. Actively establish a collaborative innovation mechanism for military-civilian integration, continuously strengthen the driving force of military core technologies, build an open industry-university-research collaborative innovation system for the whole society, make forward-looking arrangements for core cutting-edge technologies such as artificial intelligence, support investment, give full play to the innovation power of the entire society, and promote the rapid and sustainable development of military intelligence. Accelerate the advancement of technological breakthroughs in key areas. We must focus on relevant key technology areas and break the technical bottlenecks that restrict the development of military intelligence. On the one hand, we should strengthen research in the basic support areas of military intelligence, such as military big data and military Internet of Things; on the other hand, based on battlefield needs, we should strengthen research on intelligent application technologies in various combat elements, especially intelligent command decision-making, intelligent weapon platforms, and intelligent battlefield perception. We should vigorously build a team of high-quality talents. Military intelligence places higher demands on the quality of people. Only the effective combination of high-quality personnel and intelligent weapons can maximize combat effectiveness. To accelerate the development of military intelligence, we should explore the training rules of relevant talents, make full use of military and local education resources, increase the training of relevant talents, and provide solid intellectual support and talent guarantee for promoting the construction of military intelligence.

(Yin Junsong, Cheng Gang)

現代國語:

當前,加速軍事智能化發展正成為世界強國的共識。人工智慧技術加速向軍事領域滲透,已成為軍事變革的重要推手,必將催生新的作戰樣式,改變戰爭的內在機理。應緊緊抓住軍事智能化這個提升軍隊戰鬥力的新質增長點,有機融合軍事理論、科學技術和軍事應用,智能升級傳統作戰領域、創新作戰概念,使「智能因子」由武器裝備輻射至軍隊建設的各個方面,在軍事理論體系、指揮資訊系統、無人作戰系統、綜合保障體系、新型作戰力量等重點領域聚力轉型,在軍事理論體系、指揮資訊系統、無人作戰系統、綜合保障體系、新型作戰力量等重點領域聚力轉型,推動戰力領域的重塑突破與再造和再造一個關鍵領域的重塑。

人工智慧催生理論新發展

當新的軍事技術、作戰理念和組織編成相互作用顯著提升軍事作戰能力時,將促進新的軍事變革。人工智慧在軍事領域越來越廣泛的應用,正成為軍事變革的重要推手,由此催生新的作戰樣式,改變戰爭制勝的內在機理。

創新作戰理論。智慧領域新的顛覆性技術,為軍事理論創新開啟了新的空間。將精確打擊彈藥、無人裝備融入網絡資訊體系,催生「分散式殺傷」「多域戰」「作戰雲」「蜂群戰術」「智慧安全戰」等新的智能化作戰理論;將智能化技術與資訊主導理論相結合,憑借己方的資訊優勢與決策優勢,在去中心化的戰場網絡中切斷關鍵與遲滯對手的資訊與決策迴路,成為智能化的戰場網絡中與決策迴路的資訊與決策迴滯。豐富作戰樣式。伴隨著智慧技術的發展成熟以及無人自主作戰平台的規模列裝,無人作戰將成為一種顛覆性的新型作戰樣式主導未來戰場。將智慧化要素滲透於戰爭的整個流程,運用智慧感知、智慧決策、智慧控制、無人平台,創新作戰流程。協同運用無人系統與有人系統,集群、規劃運用無人作戰平台,豐富作戰樣式。拓展作戰力量。智慧系統與無人作戰平台的廣泛應用,將進一步豐富新型作戰力量的內涵,各類「混搭式」新型作戰力量將邁向戰場應用。隨著物聯網、大數據、雲端運算技術在軍事領域的建設運用,太空、網路等新型作戰力量將在未來戰爭中發揮越來越重要的作用。

加速指揮系統智慧化升級

指揮資訊系統的智慧化是作戰指揮手段實現躍升、形成決策優勢的關鍵。未來戰爭,戰場空間空前擴展、戰爭要素極大豐富、對抗節奏明顯加快、作戰體系動態變化,迫切需要智慧技術在戰場感知、指揮決策和人機互動等方面深度運用。

在智能感知方面,採用智慧傳感與組網技術,廣泛快速部署各類智能感知節點,面向任務主動協同探測,構建透明可見的數字化作戰環境;依托數據挖掘、知識圖譜等技術,開展多源情報融合、戰場情況研判等方面的智能化處理,撥開戰爭迷霧,透析敵作戰意圖,預測戰局發展。在智能決策方面,通過構建作戰模型規則,以精算、細算、深算和專家推理方式,輔助指揮員在戰略、戰役、戰術等多級籌劃規劃和臨機處置中實現快速決策;運用機器學習、神經網絡等技術打造“指揮大腦”,從謀局布勢、方略籌劃、戰局控制等方面學習戰爭規律和拓展藝術員,以掌控機器和拓展藝術員。在智慧互動方面,綜合利用特徵識別、語義理解、虛擬增強現實、全像觸摸、腦機介面等智慧互動技術,歸納分析指揮人員行為特徵,建構全像投影數字沙盤、沉浸式戰場感知指揮、穿戴式智慧型裝置等新型人機互動環境,為指揮者感知戰場、掌控戰局提供智慧化手段支撐。

構建智慧化無人作戰系統

智慧化無人作戰系統是未來戰爭裝備發展新趨勢。其核心在於瞄準未來戰爭「零傷亡」「全覆蓋」「快響應」等要求,充分運用新理論、新材料、新工藝、新能源、新技術發展成果,在人機協同和自主行動兩個方面不斷取得突破,規模化打造新型智能無人之師,實現無人作戰系統的體系化協同作戰。

在人機協同方面,依托天地一體資訊網絡、自組網和協同交互技術,打通人機交互鏈路,建立“人為主導、機器協助、混合編組、聯合行動”的有人-無人協作體系,面向復雜作戰任務、全局戰場環境,加強安全可靠的信息傳輸、精準高效的行為控制、高度協同的人機組合作等機制和技術研究,實現高可靠的信息傳輸。在自主行動方面,依托任務規劃、分佈計算和智能組網技術,研究發展反應速度快、適應能力強、可靠程度高、編組計劃靈活、行動規劃合理的無人作戰系統及集群編隊技術,充分應對地形、天氣、災害、毀傷等各種變化,智能動態調整運動姿態、行動規劃、火力運用、能源分配和自傷自毀自毀等策略,實現智能機器等策略,以避免

建強智慧化綜合保障手段

兵馬未動,保障先行。智慧化戰場,聯合作戰綜合保障實現度是直接影響部隊戰鬥力生成的重要因素。智慧化技術的發展必將觸發聯合作戰保障體系建設的革命性變化,實現智慧化綜合保障。

在政治工作方面,充分運用社會網絡、人員畫像、輿情監控、情感分析、行為預測等技術,建構覆蓋戰場管控、輿論法理鬥爭、社情監控、人員關系分析、人員思想動態、人力資源管理等業務的智能政工體系,為探索思想政治工作的新途徑、新載體、新模式提供支撐。在後裝保障方面,透過運用物聯網、無人機、智慧車、遠端手術、3D列印等技術,升級打造涵蓋智慧倉儲、智慧投送、智慧維修、智慧醫療等智慧後裝保障體系,實現戰場後裝物資自動快速精準補給、裝備故障快速診斷與維修、戰場人員及時救護,變被動保障為整體主動保障。在作戰訓練方面,通過綜合運用雲計算、虛擬現實、模擬對抗、裁決評估等技術,打造「導、控、裁、評、管」一體化演訓平台、智慧化虛擬藍軍、沉浸式訓練環境,支撐戰法謀略研練、裝備技能訓練、聯合對抗演練。

探索智慧化作戰力量體系

智慧化新型作戰力量體係是人工智慧技術發展、新質戰鬥力形成與戰爭形態演變的綜合產物,是奪取未來全局作戰空間主動權的“殺手鐧”,是構成一體化聯合作戰體系的關鍵,是我軍戰鬥力新的增長點。

著眼新戰場。新時代的作戰空間由傳統戰場空間向太空、互聯網、精神意誌等新型戰場拓展,逐漸延伸至人類活動和意識形態各領域,快速響應衛星、網絡自主安防、大腦控制武器、基因武器等新質作戰力量正在融入作戰體系,軍事智能化在太空戰、網絡戰、意念戰、生物戰等新型作戰力量中扮演越來越重要的角色。關注新技術。智能化的天基武器系統,以外層空間為戰場,有助於實現對製天權的爭奪;基於自主網絡智能安全技術,有助於實現攻防一體、動態防禦的網絡安全對抗;控腦技術,有助於實現對敵方人員精神、神經和心靈進行攻擊;智能化手段還可能加速某些國家基因武器研製。軍事智能化正在以前所未有的速度、廣度和深度融入軍事領域的各個層面,解構重塑著戰爭呈現給世人的傳統面貌,我們必須未雨綢繆,方可立於不敗之地。

夯實軍事智能化發展基礎

軍事智能化建設是一個龐大復雜的系統工程,加快推進軍事智能化發展需要以先進的理論作為支撐,以體制機制建設作為保障,以技術突破為抓手,以人才隊伍建設為動力源泉。

建立軍民融合協同創新機制。智慧技術的快速發展,已成為軍事智能化的加速器。資訊時代軍用技術和民用技術的界線越來越模糊,可轉換性越來越強。積極建立軍民融合協同創新機制,不斷強化軍用核心技術原動力,建構全社會開放的產學研協同創新體系,對人工智慧等核心前沿技術前瞻佈局、扶持投資,充分發揮整個社會的創新力量,促進軍事智能化快速可持續發展。加速推進重點領域技術突破。要聚焦相關重點技術領域,打破限制軍事智慧化發展的技術瓶頸。一方面,加強軍事智慧化基礎支撐領域的研究,例如,軍事大數據、軍事物聯網等;另一方面,從戰場需求出發,加強各個作戰要素方面的智慧化應用技術研究,尤其是智慧化指揮決策、智慧化武器平台、智慧化戰場感知等方面的研究。大力建設高素質人才隊伍。軍事智能化對人的素質提出了更高要求,高素質人員和智慧化武器的有效結合,才能最大程度地發揮作戰效能。加速軍事智慧化發展,應抓緊探索相關人才的培養規律,充分利用軍地教育資源,加大相關人才培養力度,為推進軍事智慧化建設提供堅實的智力支持與人才保障。 (

尹峻松、程鋼)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4810306888.html?

Chinese Military Analysis Development Trends of Combat Coordination During Era of Intelligence

中國軍事分析智能化時代作戰協同發展趨勢

現代英語:

Operational coordination is a key element in achieving systemic operations, releasing overall effectiveness, and achieving operational objectives in modern warfare. In recent years, with the breakthrough progress of military science and technology represented by artificial intelligence, the enabling and efficiency-enhancing role of science and technology has become more prominent. While profoundly changing the form of war and combat style, it has also spawned a new mode of operational coordination – autonomous coordination. At present, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development trend of autonomous coordination, and thus promote the accelerated transformation and upgrading of combat methods.

Transforming towards intelligent empowerment and autonomous collaboration

Future wars will be all-round confrontations between the two sides using “people + intelligent equipment”. Limited by military technology, system platforms, combat capabilities, etc., traditional combat coordination has been difficult to adapt to the modern battlefield where opportunities are fleeting due to limitations such as periodic solidification and low fault tolerance. With the strong support of advanced technical means such as artificial intelligence and big data, the autonomy and automation level of combat coordination will be greatly improved, and autonomous coordination under intelligent empowerment will also become the key to defeating the enemy.

Wide-area ubiquitous collaboration. In recent years, the in-depth development of communication technology and intelligent technology, the accumulation of data, algorithms, and computing power have promoted the interconnection and aggregation of people, machines, objects, and energy, and extended the military Internet of Things to many fields such as situational awareness, command and control, information and fire strikes, and after-sales support. While promoting the iterative upgrade of combat capabilities, it also provides more options for modern combat collaboration. It can be foreseen that the military Internet of Things will shine on future battlefields. It is not only a key infrastructure to support combat operations, but also a joint hub to maintain combat collaboration. With this as a basis, it will give rise to ubiquitous operations with wide-area dispersion of forces, organizational modules, and highly coordinated actions, which are omnipresent, ubiquitous, and uncontrolled and autonomous.

Deep collaboration between humans and machines. In the Nagorno-Karabakh conflict, the Azerbaijani army built a strong battlefield advantage with the advantage of drones, and to some extent, it also announced the debut of “robot war”. In future wars, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are accelerating from backstage support and guarantee to front-line combat, and are beginning to play the “protagonist” of the battlefield. Compared with traditional combat coordination, manned and unmanned intelligent coordination presents the characteristics of “decentralization” of combat command, “de-division of labor” in the combat process, high-end skill operation, and fuzzification of the front and rear, and emphasizes human-machine collaboration and algorithm victory. Especially in recent years, intelligent unmanned clusters have emerged and begun to strongly impact the modern battlefield. In the face of these new situations and changes, cluster formation algorithms, formation control algorithms, and complex scene optimization algorithms should be used in a coordinated manner to promote unmanned and manned networking communications and intelligent coordination, promote the integrated operation of intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerate the generation of precise enemy comprehensive combat capabilities.

Digital intelligence drives collaboration. The traditional combat coordination model under progressive command is no longer able to adapt to the multi-dimensional fast pace of modern warfare. In future wars, intelligence is the key and data is king. The deep integration of big data, cloud computing, and artificial intelligence has realized the storage, analysis, integration, and application of massive battlefield data, making command and control more scientific and combat coordination more efficient. With powerful resource integration, computing processing, and data analysis capabilities, battlefield intelligence can be quickly integrated, battlefield situation can be perceived in real time, coordination plans can be efficiently formulated, and threat levels can be instantly assessed. The prediction of combat operations, the dissection of typical scenarios, the deployment of combat forces, and the allocation of combat resources can be coordinated as a whole, thereby comprehensively improving the comprehensive quality and efficiency of command and control, firepower strikes, and comprehensive support, and promoting revolutionary changes in combat coordination.

Evolving towards multi-domain linkage and autonomous collaboration

In future wars, the participating forces will be complex and diverse, weapons and equipment will be matched at different levels, and combat methods will be used in a mixed manner, showing distinct characteristics such as intelligent dynamic dispersion of combat command, intelligent wide-area deployment of combat forces, and intelligent dynamic differentiation of combat tasks. It can be foreseen that multi-domain linkage and autonomous coordination will become an important component of combat coordination.

System self-reshapes coordination. In future wars, the multi-domain battlefield space will be a combination of virtual and real, various military operations will interact, and constraints and collaboration will be randomly transformed. Only by adopting an engineered and systematic organizational model can we adapt to the complex multi-domain coordination needs. The essence of this coordination model is to form a wide-area holographic support framework for system self-reshape coordination. Specifically, it is to highlight the concept of system combat, and to solve the practical contradictions such as organizational system construction, institutional mechanism establishment, and coordination rule formulation from an overall perspective; to pay more attention to the system integration effect, and to achieve beyond-visual-range combat and cross-domain coordinated combat of combat units from a wide area; to emphasize efficient and flexible command, to refine the command relationship from various dimensions, and to clarify the command responsibilities; to pay more attention to data precision drive, to integrate network system platforms at all levels, and to establish a dynamic optimization network for detection, control, attack, evaluation and protection tasks. Once this coordination model is formed, it will undoubtedly be able to study and predict typical confrontation scenarios, dynamically select action coordination links, and plan combat operations in various fields in an integrated manner according to the combat environment, combat opponents, and combat tasks.

Tactical adaptive coordination. Local wars and conflicts in recent years have repeatedly shown that the complexity and systemicity of combat coordination have increased exponentially due to the extension of combat data information to the tactical level. Only by achieving efficient processing, integration and sharing of combat data information can adaptive and autonomous coordination between combat users be guaranteed. This coordination model pays more attention to scientific planning and innovative means to form a universal battlefield situation map with full-dimensional coverage, support hierarchical, leapfrog and cross-domain sharing and collaboration among users of all levels and types deployed in a wide area, realize the common perception of battlefield situation by command elements and combat units, and ensure self-synchronous operations within the framework of unified strategic intent, campaign guidance and coordination plan. This coordination model emphasizes the vertical integration of strategy, campaign and tactics, and the horizontal integration of land, sea, air, space and electricity, provides strong information sharing services in detection, early warning and surveillance, and relies on information media to promote the extension of campaign-level joint to tactical-level joint. This coordination model highlights the standardized operation of command operation and force application, and promotes the connection of combat command levels, cross-domain linkage, element interaction and situation sharing with the help of cutting-edge technologies such as big data and cloud computing, realizes intelligent coordination between command systems, weapon platforms and sensors, and implements the key to winning by defeating slowness with speed.

Advantages and intelligence complement and synergy. In future wars, combat operations in space, network and other fields will be deeply integrated into the traditional battlefield space, requiring higher standards and higher requirements for planning and design of the overall combat situation. Only by clarifying the complementary relationship of advantages in various combat domains and the proportion of input and effectiveness, and then sorting out the operational relationship of cross-domain coordination, can we bridge the gap in field operations and achieve complementary advantages on the multi-dimensional battlefield. In essence, this is also a concentrated reflection of the view of war efficiency. From another perspective, in a war, when the local advantage of the battlefield is not obvious or there is a hidden crisis, by gaining local advantages in other fields to make up for it and achieve comprehensive advantages, the overall goal of winning can also be achieved. In the future information-based and intelligent wars, this point will be more prominent and more complex, requiring comprehensive measures in the fields of military, politics, public opinion, legal theory, psychology, diplomacy, etc., and leveraging each other to fully release the maximum combat effectiveness; requiring traditional forces and new forces to work closely together, relying on the network information system to build an integrated combat system, and maximizing overall effectiveness through advantage synergy.

Transition to Dynamically Coupled Autonomous Collaboration

In the era of artificial intelligence, along with the profound changes in information technology and weapons and equipment, combat operations place more emphasis on breaking up traditional force groupings, connecting traditional platform functions, breaking traditional offensive and defensive boundaries, and achieving full-time dynamic control of combat operations through dynamic coupling and autonomous coordination.

Dynamic focal point coordination. In future wars, the enemy-to-enemy confrontation will be more intense, and the battlefield situation will be more changeable. The previous static, extensive, and step-by-step coordination methods will be difficult to adapt. It is necessary to pay close attention to the key nodes of the operation. On the basis of keeping a close eye on the overall situation, anchoring the combat mission, and focusing on the combat objectives, we must assess the situation and seize the opportunity. According to the predetermined coordination rules, we can flexibly change the coordination objects, flexibly adjust the coordination strategies, and autonomously negotiate and coordinate actions. It should be noted that this coordination method based on key combat nodes particularly emphasizes that combat forces transcend structural barriers and organically aggregate combat effectiveness. Through the flexible structure of the collaborative organization, self-coupling and autonomous elimination of contradictions and conflicts, bridging combat gaps, and promoting the precise release of the combined forces of the combat system.

Dynamic control and coordination. The battlefield situation in future wars is changing rapidly, and the combat process is often difficult to advance according to the predetermined combat plan, and combat operations have great uncertainty. Invisibly, this also requires us to break through traditional combat thinking, keep a close eye on the changes in the battlefield situation, and implement immediate, flexible and autonomous coordination of the combat process. This collaborative method, through real-time assessment of battlefield situation changes, the degree of damage to enemy targets, and the scale and efficiency of combat operations, can achieve rapid command and control, precise coordination in force projection, fire support, and comprehensive support, and always grasp the initiative on the battlefield. This collaborative method requires relying on advanced intelligent auxiliary means to quickly divide the combat phase, predict the duration of combat operations, analyze the overall deployment of combat forces, calculate the allocation of combat operation resources, and accurately control the decision-making cycle and combat rhythm, and accurately coordinate the actions of troops and the combat process to ensure that various randomness and uncertainties in combat can be effectively dealt with.

Dynamic response coordination. The operational mechanism of future wars is unpredictable. The deep effects of asymmetric operations, hybrid games, and system emergence will inevitably lead to various emergencies in the implementation of the planned operational plans. To this end, dynamic coordination for emergencies is an effective strategy to resolve the above-mentioned contradictions. This coordination method emphasizes the dynamic adjustment of coordinated actions according to different situations. When an emergency occurs on a local battlefield or in a local action, which has little impact on the overall operation and has sufficient time, the combat system automatically responds, partially adjusts the combat deployment and combat operations, and ensures the achievement of the expected combat objectives. When multiple urgent and slow situations coexist on the battlefield and partially affect the battlefield situation, the combat actions are dynamically and immediately coordinated according to the principle of first urgent and then slow according to the specific situation, so as to promote the development of the war in a direction that is beneficial to me. When there are multiple major unexpected situations or unexpected changes in the overall development of the war situation, coordination is carried out according to the principle of first major direction and then minor direction, and new coordinated disposal measures are quickly generated to effectively respond to various emergencies on the battlefield.

現代國語:

■吳思亮 賈春傑 侯永紅

引言

作戰協同是現代戰爭中實現體係作戰、釋放整體效能、達成作戰目標的關鍵要素。近年來,隨著以人工智慧為代表的軍事科學技術取得突破性進展,科技的賦能增效作用進一步凸顯,在深刻改變戰爭形態、作戰樣式的同時,也催生出一種新的作戰協同模式——自主協同。當前,應科學掌握新軍事革命的機會挑戰,動態統籌好自主協同發展走向,從而推動作戰方式加速轉型升級。

向智能賦能自主協同蛻變

未來戰爭將是對抗雙方採用「人+智慧裝備」展開的全方位對抗。受軍事技術、系統平台、作戰能力等限制,傳統作戰協同因為存在周期固化、容錯率低等局限,已難以適應戰機轉瞬即逝的現代戰場。在人工智慧、大數據等先進技術手段的強力支撐下,作戰協同的自主性、自動化水準將極大提升,智慧賦能下的自主協同也將成為克敵制勝的關鍵。

廣域泛在協同。近年來,通訊技術、智慧技術的深度發展,數據、演算法、算力的累積疊加,促進了人、機、物、能的互聯聚合,將軍事物聯網延伸擴展至態勢感知、指揮控制、信火打擊、後裝保障等諸多領域,在促進作戰能力迭代升級的同時,也為現代作戰協同提供了更多選項。可以預見,軍事物聯網將在未來戰場上大放異彩,不僅是支撐作戰行動的關鍵性基礎設施,也是維繫作戰協同的關節樞紐。以此為依托,將催生出力量廣域分散、組織模塊構成、行動高度協同的泛在式作戰,無時不在、無處不在、無控自主。

人機深度協同。在納卡沖突中,阿塞拜疆軍隊憑借無人機優勢構建起強大戰場優勢,某種程度上也宣告「機器人戰爭」登場。未來戰爭,無人機、無人車、無人艦等無人作戰力量,正加速從後台支援保障走向一線作戰前台,開始擔當戰場「主角」。較之傳統作戰協同,有人無人智能協同呈現出作戰指揮「去中心化」、作戰過程「去分工化」、技能操作高端化、前沿與後方模糊化等特點,更加強調人機協同、演算法取勝。尤其是近年來,智慧無人集群異軍突起,開始強烈沖擊現代戰場。面對這些新情況新變化,應統籌運用集群編隊演算法、隊形控制演算法以及復雜場景優化演算法等,推動無人與有人組網通訊、智慧協同,促進情報鏈、指揮鏈、機動鏈、打擊鍊和保障鏈一體運轉,加快生成精確制敵綜合作戰能力。

數智驅動協同。逐層遞進指揮下的傳統作戰協同模式,已難以適應現代戰爭的多維度快節奏。未來戰爭,智能為要,數據為王。大數據、雲計算、人工智慧等深度融合,實現了對海量戰場數據的儲存、分析、融合和運用,從而使得指揮控制更加科學、作戰協同更有效率。透過強大的資源整合、計算處理和數據分析能力,可以快速融合戰場情報、實時感知戰場態勢、高效製定協同計劃、瞬時評估威脅等級,將預測作戰行動、解剖典型場景、布勢作戰力量和配置作戰資源一體統籌,從而全面提升指揮控制、火力打擊、綜合保障等方面的綜合質效,推動作戰協同革命性變革。

向多域聯動自主協同演進

未來戰爭,參戰力量複雜多元、武器裝備高低搭配、作戰方法混合運用,呈現作戰指揮智能動態分散、作戰力量智聯廣域部署、作戰任務智配動態區分等鮮明特徵。可以預見,多域聯動自主協同將成為作戰協同的重要組成。

體係自重塑協同。未來戰爭多域戰場空間虛實結合、多樣軍事行動交互作用,約束與協作隨機轉化,只有採取工程化、系統化的組織模式,才能適應龐雜的多域協同需求。這種協同模式,其實質是要形成體係自重塑協同的廣域全像支撐架構。具體來看,就是更突顯體係作戰理念,從整體上破解組織體系建構、制度機制設立、協同規則制訂等現實矛盾;更重視體系融合效應,從廣域上實現作戰單元超視距作戰、跨域協同作戰;更強調高效率靈活指揮,從諸維度細化指揮指揮、釐清指揮權責優化;這種協同模式一旦形成,無疑能夠針對作戰環境、作戰對手和作戰任務等,研判預測典型對抗態勢場景,動態選擇行動協同鏈路,一體規劃各領域作戰行動。

戰術自適應協同。近年來的局部戰爭沖突一再表明,由於作戰數據資訊向戰術層共享應用延伸,作戰協同的複雜性系統性呈指數級躍升。只有實現作戰數據資訊的高效處理、融合共享,才能保證作戰用戶間自適應、自主化協同。這種協同模式,更重視科學規劃、創新手段,形成全維覆蓋的通用戰場態勢圖,支持廣域分散部署的各級各類用戶間按級、越級、跨域共享協作,實現指揮要素、作戰單元共同感知戰場態勢,確保在統一的戰略意圖、戰役指導、協同計劃框架內自同步作戰。這種協同模式,更強調縱向貫通戰略、戰役、戰術,橫向融匯陸海空天電,在探測、預警、監視等方面提供強力資訊共享服務,依托資訊介質推動戰役級聯合向戰術級聯合延伸。這種協同模式,更加突出指揮運行、力量運用等的標準化運行,借助大數據、雲計算等前沿技術推動作戰指揮層級銜接、跨域聯動、要素交互、態勢共享,實現指揮系統、武器平台、傳感器間的智能化協同,落地落實以快製慢制勝關鍵。

優勢智互補協同。未來戰爭,太空、網路等領域作戰行動深度融入傳統戰場空間,要求對作戰全局實施更高標準更高要求的規劃設計。只有搞清各作戰域優勢互補關聯、投入成效比重,進而梳理出跨領域協同的運行關系,才能彌合領域作戰縫隙,實現多維戰場優勢互補。從本質上看,這也是戰爭效益觀的集中反映。從另一個視角來看,一場戰爭,當戰場局部優勢不明顯或暗藏危機時,透過在其他領域取得局部優勢予以彌補並達成綜合優勢,同樣可以實現整體制勝目的。未來資訊化智能化戰爭,這一點將體現得更為突出也更為復雜,要求針對軍事、政治、輿論、法理、心理、外交等領域綜合施策,相互借力充分釋放最大作戰效能;要求傳統力量、新質力量密切配合,依托網絡信息體系打造一體化作戰體系,通過優勢協同實現整體效能最大化。

向動態耦合自主協同變遷

人工智慧時代,伴隨資訊科技與武器裝備的深度變革,作戰行動更強調打散傳統力量編組、打通傳統平台功能、打破傳統攻防界限,透過動態耦合自主協同實現對作戰行動的全時動態可控。

動態聚點協同。未來戰爭敵我對抗更加激烈、戰場態勢更為多變,以往那種靜態粗放、按部就班的協同方式將難以適應。必須對作戰的關鍵節點給予高度關注,在緊盯整體態勢、錨定作戰任務、聚焦作戰目標的基礎上,審時度勢把握戰機,依據預定的協同規則,敏捷變換協同對象、靈活調整協同策略、自主協商協同行動。需要注意的是,這種基於關鍵作戰節點的協同方式,特別強調作戰力量跨越結構壁壘、有機聚合作戰效能,透過協同組織的彈性結構,自耦合自主化消解矛盾沖突、彌合作戰縫隙,促進作戰體系合力精準釋放。

動態調控協同。未來戰爭戰場態勢瞬息萬變,作戰進程往往難以依照預定作戰計畫推進,作戰行動有著極大的不確定性。在無形中,這也要求我們突破傳統作戰思維,緊盯戰場態勢變化對作戰進程實施即時靈活自主協同。這種協同方式,透過即時評估戰場態勢變化、敵方目標毀傷程度、作戰行動規模效益等,從而在力量投送、火力支援、綜合保障等方面實現快速指控、精準協同,始終把握戰場主動權。這種協同方式,要求依托智能輔助先進手段,快速切分作戰階段,預測作戰行動持續時間,研判作戰力量整體布勢,計算作戰行動資源分配,據此精準控制決策週期和作戰節奏,精準協調部隊行動和作戰進程,確保能夠有效應對作戰中的各種隨機性、不確定性。

動態響應協同。未來戰爭作戰機理變化莫測,非對稱作戰、混合賽局、體制湧現等的深層作用,使得預定作戰方案計劃在執行中必然遇到各類突發情況。為此,針對突發情況動態協同是解決上述矛盾問題的有效策略。這種協同方式,更強調依據不同情況動態調整協同行動。當局部戰場或局部行動出現突發情況,對作戰全局影響不大且時間充裕時,作戰體係自動響應,部分調整作戰部署和作戰行動,確保實現預期作戰目標。當戰場出現多個急緩並存情況且部分影響戰場態勢時,根據具體情況按照先急後緩原則動態即時協調作戰行動,推動戰局向著有利於我的方向發展。當戰局整體發展出現多個重大意外情況或出現未曾預想的變化時,按先主要方向、後次要方向的原則展開協同,快速生成新的協同處置措施,有效應對戰場各類突發情況。

中國原創軍事資源:http://www.81.cn/ll_208543/16378145888.html

Promoting Chinese Military Integrated Development of The “Three Transformations” of Combat Training

推動中軍融合發展實戰化訓練“三個轉變”

現代英語:

Zhang Yingjie, Zhao Shihang, and She Hongle

中國軍網 國防部網
2023年2月22日,星期三

Adhering to the integrated development of mechanization, informationization and intelligence is an inherent requirement for national defense and military modernization, and is also an important means to accelerate the transformation and upgrading of military training. Promoting the integrated development of the “three transformations” of military training is a systematic project that requires both theoretical guidance and practical exploration; it is necessary to plan and design in line with the development of the times, and to boldly practice, dare to try and create, so as to realize the “three transformations” from sequential development to integrated progress, from point-line breakthroughs to system integration, and continuously improve the level and quality of military training.

Deepen theoretical research, guide practice and drive development by thoroughly understanding the mechanism, clarifying the principle and grasping the law. First, we must deepen the research on combat issues and thoroughly understand the future combat mechanism. In future wars, intelligent technology is an important factor in winning. We should explore the reason for winning and the way to win through the phenomenon. We can empower mechanized weapons, enhance the efficiency of informationized equipment and develop unmanned intelligent combat platforms through the power of intelligent technology, so that mechanization, informationization and intelligence coexist, the physical domain, information domain and cognitive domain are mixed, and power, will and land are seized in parallel. Second, we must deepen the research on technology-enhanced training and clarify the principle of technology empowerment and efficiency. Science and technology promote the development of military training, or indirectly affect the development of military training through technological progress to promote the reform of weapons and equipment, combat methods and organizational systems, or directly promote military training innovation through technology directly acting on training methods and management guarantees. In the process of iterative upgrading of mechanization, informationization and intelligence, the mechanized physical entity is the foundation and the “grafting” object of informationization and intelligence. The informationization and intelligence technology acts on mechanization, which is essentially the empowerment and efficiency enhancement of “virtual” control of “real”. Third, we must deepen the research on military training and grasp the law of combat effectiveness generation. The generation of combat effectiveness under mechanized conditions is to achieve a high degree of aggregation of material and energy flows through the superposition of combat platforms. Its generation mechanism is manifested in quantitative accumulation, hierarchical superposition, and linear growth. The generation of combat effectiveness under intelligent information conditions is to carry out a three-dimensional mesh integration of participating forces through the network information system and intelligent support. Its generation mechanism is manifested in information empowerment, network energy gathering, and intelligent energy enhancement. The integrated development of the “three transformations” of military training should shift from the linear step-by-step superposition of mechanized training to the criss-crossing and ascending of intelligent information training, and from simple training of people to training that emphasizes both human and machine learning.

Strengthen strategic management, set up a benchmark to guide development in clarifying the base point, planning and establishing rules and regulations. First, grasp the base point and recognize the coordinates of the times for the integrated development of the “three transformations” of military training. Since the 18th National Congress of the Communist Party of China, our army has adhered to actual combat training, joint combat training, science and technology training, and training in accordance with the law, and strengthened the training guiding ideology of reform and innovation, laying the foundation for the integrated development of the “three transformations”; the new round of national defense and military reform has established a joint training system, reconstructed the training leadership organs and special training institutions of the military services, and formulated military training laws and regulations, providing organizational and institutional guarantees for the integrated development of the “three transformations”; the exploration and practice of the mechanized and informationized compound development of military training has accumulated fresh experience for the integrated development of the “three transformations”; the construction of actual combat training, informationized training conditions and the implementation of the strategy of strengthening the army with science and technology have opened up new horizons for the integrated development of the “three transformations”. Second, top-level design, constructing a blueprint for the integrated development of the “three transformations” of military training. The top-level design of the integrated development of the “three transformations” of military training is an integrated plan of an open and complex system. It is constrained by many factors such as operational evolution and technological changes. At the same time, it is different from a single closed system design. It is difficult to achieve it in one go and make a final decision. We should grasp its characteristics of iterative updates and continuous adjustments and improvements. The integrated development of the “three transformations” of military training should formulate a plan that is compatible with the national defense and military construction development strategy, incorporate the integrated development plan of the “three transformations” of military training into the strategic plan for military construction, and focus on clarifying development goals, tasks, measures, etc. The third is to establish rules and regulations to standardize and guide the effective operation of the integrated development of the “three transformations” of military training. It is necessary to formulate the implementation measures for the integrated development of the “three transformations” of military training, unify the goals and tasks, division of responsibilities, content focus, methods and steps, and supporting measures, and ensure the implementation of regular order.

Focus on the transformation to intelligence, overcome difficulties and innovate in the optimization of content, innovation of methods and improvement of assessment. First, we must focus on “smart training” and optimize the content of military training. Research and practice machine deep learning, focusing on data screening, information input, confrontation game and iterative improvement training. Research and practice new domain and new quality combat forces, carry out new weapons and equipment training, new quality combat force formation and combat application training, new domain combat forces and traditional combat forces coordination training, and new domain and new quality forces into joint combat system training. Research and practice intelligent combat, carry out intelligent combat tactics research, command confrontation training based on intelligent network system, training to seize intellectual control and intelligent combat live-fire exercises. Second, we must focus on “intelligent training” and innovate military training methods. Develop intelligent simulation training methods, give full play to the virtual-real interaction, closed-loop feedback and parallel execution functions of intelligent simulation, upgrade existing electronic games and war game simulation systems, and support individual officers and soldiers or command organizations to carry out human-machine confrontation training based on intelligent simulation systems. On the basis of the existing real-life combat system, we should strengthen the material application of intelligent technology, and create an intelligent military exercise system that combines virtual and real, complements software and hardware, and is multi-domain linked as soon as possible to effectively support the development of real-life training. Third, we should focus on “intelligent testing” and improve precise assessment methods. Using virtual reality technology, relying on the three-dimensional virtual battlefield environment generated by computers, we can evaluate the operational skills and tactical application level of officers and soldiers immersed in it. Using augmented reality technology, human senses can directly obtain real-life experience in the augmented reality scene, which can be used to test and assess the technical training of officers and soldiers and the tactical training of squads. Using mixed reality technology, virtual digital objects are introduced into the real environment, which can support the construction of the environmental conditions of real-life test exercises and the inspection and evaluation of combat capabilities. Using the Internet of Things technology, sensors, data processing units and communication components are integrated into a sensor network to monitor the exercise situation in real time, and automatically collect, transmit, summarize and display exercise information data. Using big data technology to objectively evaluate combat capabilities and training quality, and realize automatic judgment of engagement results, statistical analysis of massive data, objective evaluation of combat capabilities and automatic evaluation of training results in data analysis and deep mining.

現代國語:

張英傑 趙士夯 佘紅樂

堅持機械化資訊智慧化融合發展,是國防和軍隊現代化的內在要求,也是加速推進軍事訓練轉型升級的重要抓手。推動軍事訓練「三化」融合發展,是一項系統工程,既需理論引領,更需實踐探索;既要順應時代發展搞好規劃設計,又要大膽實踐敢試敢創,實現「三化」由遞次發展向融合併進、由點線突破向體系集成,不斷提升軍事訓練水平和質量。

深化理論研究,在搞透機理弄清原理把握規律中引領實務牽引發展。一要深化作戰問題研究,搞透未來作戰機理。未來戰爭中,智慧科技是贏得勝利的重要因素,應透過現象探尋制勝之理、勝戰之道,可透過智慧科技之力賦能機械化武器、增效資訊化裝備和發展無人化智慧作戰平台,使得機械化、資訊化、智慧化並存,物理域、資訊域、認知域混融,奪權、奪志、奪志、奪權、奪志、奪地並行。二要深化科技強訓研究,釐清技術賦能增效原理。科技推動軍事訓練發展,或透過科技進步推動武器裝備、作戰方式、編制體制變革間接作用於軍事訓練發展,亦或科技直接作用於訓練手段和管理保障直接推動軍事訓練創新。在機械化、資訊化、智慧化迭代升級過程中,機械化的物理實體是基礎,是資訊化、智慧化的「嫁接」對象,資訊化、智慧化技術作用於機械化,實質上是以「虛」控「實」的賦能增效。三要深化軍事訓練研究,掌握戰鬥力生成規律。機械化條件下戰鬥力的生成,是透過作戰平台的疊加實現物質流和能量流的高度聚集,其生成機理表現為量變累積、層級疊加、線性增長。智慧化資訊化條件下戰力的生成,是透過網信系統和智慧支援對參戰力量進行網狀立體融合,其生成機製表現為資訊賦能、網路聚能、智慧增能。軍事訓練「三化」融合發展,應從機械化訓練的線性逐級疊加轉向智慧化資訊化訓練的縱橫交錯遞升,從單純對人的訓練轉向人與機器學習並重的訓練。

加強策略管理,在釐清基點規劃規劃建章立制中立起標桿指導發展。一是掌握基點,認清軍事訓練「三化」融合發展的時代座標。黨的十八大以來,我軍堅持實踐實踐、聯戰聯訓、科技強訓、依法治訓,強化改革創新的訓練指導思想,為「三化」融合發展奠定了基礎;新一輪國防和軍事改革,建立了聯合訓練體制,重構了軍兵種訓練領導機關和專制訓練機構,制定了軍事訓練法規制度,為「三化」融合發展提供了組織和製度保證;軍事訓練機械化資訊化複合發展的探索實踐,為「三化」融合發展累積了鮮活經驗;實戰化訓練、資訊化訓練條件建設和科技強軍戰略等的實施,為「三化」融合發展洞開了新天地。二是頂層設計,建構軍事訓練「三化」融合發展藍圖。軍事訓練「三化」融合發展的頂層設計,是開放的複雜系統的整合規劃,受作戰演化、技術變化等諸多因素的製約,同時區別於單一封閉系統設計,難以一次到位、一錘定音,應把握其迭代更新、不斷調整完善的特徵;軍事訓練「三化」融合行動應制定與國防建設和軍事發展目標三是建章立制,規範指導軍事訓練「三化」融合發展有效運作。要製定軍事訓練「三化」融合發展實施辦法,統一目標任務、職責分工、內容重點、方法步驟和配套措施,確保實施正規秩序。

聚焦向智轉型,在優化內容創新方法改進考評中攻堅克難創新發展。一要聚焦“訓智能化”,優化軍事訓練內容。研練機器深度學習,重點進行資料篩選、資訊輸入、對抗賽局和迭代提升訓練。研練新域新質作戰力量,進行新型武器裝備訓練、新質作戰力量編成與作戰運用訓練、新域作戰力量與傳統作戰力量協同訓練,以及新域新質力量融入聯合作戰體系訓練。研練智慧化作戰,進行智慧化作戰戰法研究、基於智慧網路系統指揮對抗訓練、奪取制智權訓練及智慧化作戰實兵演習等。二要聚焦“智能化訓”,創新軍事訓練方法。發展智慧模擬訓練方法,充分發揮智慧模擬虛實互動、閉環回饋與平行執行功能,升級現有電子遊戲與兵棋推演系統,支援官兵個體或指揮機構依托智慧模擬系統進行人機對抗訓練。在現有實兵交戰系統基礎上,加強智慧技術的物化應用,盡快創造虛實結合、軟硬互補、多域連結的智慧化演兵系統,有效支持實戰化訓練的發展。三要聚焦“智能化考”,改進精準評估手段。運用虛擬實境技術,依靠電腦生成的三維空間虛擬戰場環境,對沉浸其中的官兵操作技能和戰術應用水準實施考評。運用擴增實境技術,人體感官能夠直接在增強的現實場景中獲取實戰體驗,可對官兵技術訓練和分隊戰術訓練檢驗考核。運用混合實境技術,把虛擬數位物件引入現實環境,可支撐實兵檢驗性演習環境條件的架構與作戰能力檢驗評估。運用物聯網技術,將感測器、資料處理單元和通訊組件集成為一個感測器網絡,即時監控演練情況,自動擷取、傳輸、匯總和顯示演練資訊資料。運用大數據技術客觀評估作戰能力和訓練質量,在數據分析和深度挖掘中實現交戰結果自動裁決、海量數據統計分析、作戰能力客觀評估和訓練成績自動評定。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2023-02/22/content_33422088.htm

China’s Military Meeting Challenges of Intelligent Warfare with New Concepts

中國軍隊以新概念應對智慧化戰爭挑戰

現代英語:

Preface

The breakthrough achievements of artificial intelligence technology marked by deep learning and its application in various fields have pushed intelligence to a new high in the global wave and become the focus of attention from all parties. In the military field, which has never been willing to lag behind in technological innovation and application, a new revolution is also being actively nurtured. We must accurately grasp the evolution of intelligent warfare and analyze the inner essence of intelligent warfare in order to welcome and control intelligent warfare with a brand new look.

How far are we from intelligent warfare?

Intelligent warfare is a war that is mainly supported by artificial intelligence technology. It has been the dream of people for thousands of years to endow weapon platforms with human intelligence and replace humans in the battlefield. With the powerful impact brought to the world by artificial intelligence systems represented by AlphaGo and Atlas, and the emergence of new combat concepts and new platforms such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The law of historical development indicates that intelligent warfare will inevitably enter the battlefield. The progress of science and technology promotes the evolution of weapons and equipment, triggers fundamental changes in military organization, combat methods and military theories, and ultimately forcibly promotes historical changes in the form of war. The arrival of intelligent warfare also conforms to this inevitable law of historical development. Looking back at the evolution of human warfare, every major progress in science and technology has promoted major changes in the military. The invention of black powder has made human warfare evolve to the era of hot weapons. Infantry and cavalry formations were completely wiped out under the line-of-gun warfare. The use of steam engines in the military has made human warfare evolve to the mechanized era, and has further given rise to large-scale mechanized warfare led by armored ships, tanks, and airplanes. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, and once again set off major changes in the military. Intelligent warfare will inevitably enter the war stage.

The development of artificial intelligence technology determines the pace of intelligent warfare. The continuous development and widespread application of artificial intelligence technology have pushed intelligent warfare from chaos to reality. It has begun to sprout, grow gradually, and come to us step by step. To truly enter intelligent warfare, artificial intelligence technology needs to reach four levels. The first level is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near-real-time computing power and storage capacity, which is far beyond the reach of large computers and huge servers. The widespread application of cloud computing has steadily brought humans to the first level. The second level is perceptual intelligence, which means that the machine can understand what it hears, see what it sees, distinguish what is true, and recognize what it knows clearly, and can communicate directly with people. Natural language understanding, image and graphic recognition, and biometric recognition technologies based on big data have allowed humans to reach the second level. The third level is cognitive intelligence, which means that the machine can understand human thinking, think and reason like humans, and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms have allowed humans to strive to move towards the third level. The fourth stage is human-machine fusion enhanced intelligence, which is to combine the perception, reasoning, induction, and learning that humans are good at with the search, calculation, storage, and optimization that machines are good at, to complement each other’s advantages and interact in a two-way closed loop. Virtual reality enhancement technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humans can move towards the fourth stage. When humans stepped onto the second stage, intelligent warfare began to approach us; when we step onto the fourth stage, the era of intelligent warfare will be fully opened.

Self-learning growth accelerates the sudden arrival of intelligent warfare changes. The ability to “learn” is the core ability of artificial intelligence. Once a machine can learn by itself, its learning speed is amazing. Once a machine has the ability to self-learn, it will enter a rapid growth track of “improving intelligence and accelerating evolution” repeatedly. All technical difficulties in the direction of intelligent warfare will be solved as “learning” deepens. The era of intelligent warfare is likely to arrive suddenly in a way that people can’t imagine!

What will intelligent warfare change?

Intelligent warfare will break through the limits of traditional time and space cognition. In intelligent warfare, artificial intelligence technology can collect, calculate, and push all kinds of action information of all forces in combat in real time and in all domains, enabling humans to break through the logical limits of thinking, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space, and being able to accurately control all actions of all forces in real time, and to achieve rapid jump, gathering, and attack of superior combat resources in multi-dimensional space and multi-dimensional domains. Any space at any time may become a time and space point for winning the war.

Intelligent warfare will reconstruct the relationship between humans and weapons and equipment. With the rapid advancement of intelligent technology and the continuous improvement of the level of intelligence, weapon platforms and combat systems can not only passively and mechanically execute human instructions, but also can, based on deep understanding and deep prediction, super-amplify through the calculation, storage, and query that machines are good at, so as to autonomously and actively perform specific tasks in a certain sense. It can be said that weapon platforms and combat systems can also actively exert human consciousness to a certain extent, even beyond the scope of human cognition, and complete combat tasks autonomously and even creatively according to specific procedures. The distinction between humans and weapons and equipment in the traditional sense has become blurred, and it is even difficult to distinguish whether it is humans or machines that are playing a role. People exclaimed that “humans and weapons and equipment will become a partnership.” Therefore, in intelligent warfare, although humans are still the most important factor in combat effectiveness, the change in the way humans and weapons and equipment are combined has enriched the connotation of combat effectiveness, and the traditional relationship between humans and weapons and equipment will also be reconstructed on this basis.

Intelligent warfare will give rise to the emergence of new combat methods. The epoch-making progress of science and technology will inevitably bring about revolutionary changes in combat methods; major progress in intelligent technology will inevitably bring about an active period of change in combat methods. On the one hand, the continuous emergence of new technologies in the fields of deep cognition, deep learning, deep neural network, etc. driven by computing, data, algorithms, and biology, as well as the cross-integration of achievements in the fields of information, biology, medicine, engineering, manufacturing, etc., will inevitably promote the emergence of new combat methods. On the other hand, the fierce confrontation between intelligent weapon platforms and combat systems will inevitably become the goal and driving force of innovative combat methods. In war, the more intelligent the parts are, the more they become the focus of confrontation. The differences in advantages in terms of space-time cognitive limits, massive information storage and computing capabilities, and neural network organization generation capabilities will bring about new areas of “blinding”, “deafening”, and “paralyzing” combat methods.

Intelligent warfare will incubate a completely new command and control method. The advantages of command and control are the focus of attention in the field of warfare, and intelligent warfare calls for a completely new command and control method. First, human-machine collaborative decision-making has become the main command and decision-making method in intelligent warfare. In previous wars, command and decision-making were all led by commanders, with technical means as auxiliary decision-making. In intelligent warfare, intelligent auxiliary decision-making systems will actively urge or urge commanders to make decisions based on new battlefield situation changes. This is because in the face of massive and rapidly changing battlefield situation information data, the human brain can no longer quickly accommodate and efficiently process it, and human senses can no longer withstand the extraordinary speed of change. In this case, decisions made solely by commanders are likely to be late and useless. Only human-machine collaborative decision-making driven by intelligent decision-making assistance systems can make up for the time and space differences and the machine-computer differences and ensure the command decision-making advantage. Second, brain neural control has become the main command control method in intelligent warfare. In previous wars, commanders issued commands to command and control troops step by step through documents, radios, and telephones in the form of documents or voice. In intelligent warfare, commanders use intelligent brain-like neurons to issue commands to troops through the neural network combat system platform, which reduces the conversion process of command expression forms, shortens the conversion time of commands across media, and is faster and more efficient. When the combat system platform is partially damaged by an attack, this command and control method can autonomously repair or reconstruct the neural network, quickly restore the main function or even all functions, and have stronger anti-attack capabilities.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content to lag behind, but must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Use breakthroughs in intelligent technology to promote the leap in the effectiveness of intelligent combat systems. Although the development of intelligent technology has made great progress in neural network algorithms, intelligent sensing and networking technology, data mining technology, knowledge graph technology, etc., it is still in the weak intelligence stage overall and is far from reaching the advanced stage of strong intelligence. There is still broad room for development in the future. We must strengthen basic research on artificial intelligence, follow the laws of scientific and technological development, scientifically plan the direction of intelligent technology development, select technical breakthroughs, and strengthen key core technologies of artificial intelligence, especially basic research that plays a supporting role. Highlight research on key military technologies. Guided by military needs, we will develop intelligent reconnaissance and perception systems, command and control systems, weapon equipment systems, combat support systems and other weapons and equipment around key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support. We will focus on military-civilian scientific and technological collaborative innovation, give full play to the advantages of civilian intelligent technology development, rely on the superior resources of the military and the local area, strengthen military-civilian strategic cooperation, build a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the joint connection of general standards between the military and the local area, and form a new situation of open, integrated, innovative and development of intelligent combat technology.

Leading innovation in combat methods with the concept of intelligent warfare. To meet the arrival of intelligent warfare, changing concepts is a prerequisite. Concepts are the forerunner of action. If our concepts remain at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has undergone profound changes in technical support, combat power, and winning mechanisms. We must first establish the concept of intelligent warfare and use it to lead the innovation of our army’s future combat methods. First, we must strengthen the competition for “intellectual property rights.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to use intelligence in combat and maintaining the freedom of one’s own intelligence use are the basis for ensuring the smooth implementation of intelligent warfare. The armies of developed Western countries are exploring various means such as electromagnetic interference, electronic suppression, high-power microwave penetration and takeover control to block the opponent’s intelligent application capabilities, seize “intelligence control”, and thus seize battlefield advantages. Second, innovate intelligent combat methods. We must focus on giving full play to the overall effectiveness of the intelligent combat system, strengthen the research on new intelligent combat methods such as human-machine collaborative intelligent combat, intelligent robot combat, and intelligent unmanned swarm combat, as well as the processes and methods of intelligent combat command and intelligent combat support. Focus on effectively responding to the enemy’s intelligent combat threats and study strategies to defeat the enemy, such as intelligent blocking warfare and intelligent disruption warfare.

Use intelligent training innovation to promote the transformation of combat power generation mode. Intelligent warfare will be a war jointly implemented by humans and machines, and combat forces with intelligent unmanned combat systems as the main body will play an increasingly important role. It is necessary to adapt to the new characteristics of the intelligent warfare force system, innovate and develop intelligent training concepts, and explore new models for the generation of intelligent warfare combat power. On the one hand, it is necessary to strengthen the training of “people” driving intelligent systems. Relying on big data, cloud computing, VR technology, etc., create a new training environment, continuously improve people’s intelligent literacy, improve the quality of human-machine cognition, understanding, and interaction, and enhance the ability of people to drive intelligent combat systems. On the other hand, it is necessary to explore a new training model with “machines” as the main object. In the past, training was basically human-centered, focusing on people’s proficiency in mastering and using weapons and equipment in a specific environment to improve combat effectiveness. In order to adapt to the new characteristics of the intelligent warfare force system, the training object should change the traditional human-centered training organization concept and model, focus on improving the self-command, self-control, and self-combat capabilities of the intelligent combat system, make full use of the characteristics of the intelligent system’s ability to self-game and self-grow, and form a training system, training environment, and training mechanism specifically for the intelligent combat system, so that the intelligent combat system can obtain a geometric leap in combat capability after a short period of autonomous reinforcement training.

現代國語:

來源:解放軍報 作者:李始江 楊子明 陳分友 責任編輯:喬楠楠 2018-07-26 08:23:16
前言

以深度學習為標志的人工智慧技術突破性成果及其在各領域的應用,將智慧化推上了全球浪潮的新高,也成為各方關注的焦點。在科技創新與應用從未甘落後的軍事領域,也正在積極孕育一場新的變革。我們必須準確把握智能化戰爭的演進脈搏,透析智能化戰爭的內在本質,才能以嶄新的面貌迎接和駕馭智能化戰爭。

智慧化戰爭究竟離我們有多遠?

智能化戰爭,是以人工智慧技術為主要支撐的戰爭。賦予武器平台以人的智慧並取代人在戰場上廝殺,是千百年來人們夢寐以求的願望。隨著AlphaGo和Atlas為代表的人工智慧系統帶給世人的強大沖擊,蜂群作戰、飛行航空母艦等作戰新概念、新平台的初露端倪,智慧化戰爭大門彷彿正在悄然打開。

歷史發展規律預示著智慧化戰爭必將走上戰爭舞台。科學技術的進步推動武器裝備的演進,引發軍隊編成、作戰方式和軍事理論的根本性變化,並最終強制推動戰爭形態的歷史性變革。智能化戰爭的到來也符合這個歷史發展的必然規律。回顧人類戰爭的演變歷程,每一次科學技術的重大進步,都推動著軍事上的重大變革。黑火藥的發明使人類戰爭進化到熱兵器時代,步兵方陣、騎兵方陣在火槍線式作戰方式下被消滅的蕩然無存;蒸汽機在軍事上的運用使人類戰爭進化到機械化時代,並進而催生了以裝甲艦、坦克、飛機引領的大規模機械化戰爭。智慧化技術的出現與應用,必將深刻改變人類認知、戰爭思維與作戰方式,再一次掀起軍事上的重大變革,智慧化戰爭必將走上戰爭舞台。

人工智慧技術的發展進程決定著智慧化戰爭邁進的腳步。人工智慧技術的不斷發展與廣泛應用,推動智慧化戰爭從混沌走向現實,開始萌芽、逐漸成長,一步一步向我們走來。真正進入到智慧化戰爭,人工智慧技術需要邁上四階。第一級台階是計算智能,即突破計算能力的限制、突破存儲空間的限制,實現近乎實時的計算能力和存儲能力,這種能力是大型計算機和龐大服務器遠遠不可比擬的。雲計算的廣泛應用已經將人類穩穩地送上了第一級台階。第二級台階是感知智能,即機器能夠聽得懂、看得懂、辨得真、識得清,能夠與人進行直接交流對話。以大數據為基礎的自然語言理解、圖像圖形認知、生物特徵識別技術,讓人類走上了第二級台階。第三級台階是認知智能,即機器能夠理解人類的思維,能夠像人類一樣進行思考與推理,像人類一樣進行判斷和決策。以深度學習演算法為驅動的知識挖掘、知識圖譜、人工神經網絡、決策樹技術,讓人類努力邁向第三級台階。第四級台階是人機融合式增強型智能,即將人類擅長的感知、推理、歸納、學習,與機器擅長的搜尋、計算、儲存、優化,進行優勢互補、雙向閉環互動。虛擬現實增強技術、類腦認知技術、類腦神經網絡技術,正在探索人類如何邁向第四級。當人類走上第二級台階,智慧化戰爭開始向我們走來;當我們踏上第四級台階時,智慧化戰爭的時代就將全面開啟。

自我學習成長加速著智慧化戰爭變革的突然降臨。 「學習」能力是人工智慧最核心的能力,一旦機器能夠自我學習,其學習速度是驚人的。機器一旦具備自我學習的能力,就會進入一個不斷反復的「提升智慧、加快進化」的快速成長軌道,邁向智慧化戰爭的所有技術困難將隨著「學習」的深入迎刃而解,智能化戰爭時代很可能會以人們意想不到的方式突然降臨!

智能化戰爭究竟會改變什麼?

智能化戰爭將突破傳統時空認知的極限。在智慧化戰爭中,人工智慧技術能夠全時、全局對作戰中全部力量的各種行動信息,進行實時收集、實時計算、實時推送,使人類能夠突破思維的邏輯極限、感官的生理極限和存在的物理極限,大大提高對時間空間的認知範疇,能夠實時精準地掌控所有力量的所有行動,能夠在多維空間、多維空間、多維領域的優勢

智慧化戰爭將重構人與武器裝備的關系。隨著智慧化技術的快速進步,智慧化程度的不斷提升,武器平台和作戰體係不僅能夠被動、機械地執行人的指令,而且能夠在深度理解和深度預測的基礎上,通過機器擅長的算、存、查進行超級放大,從而在一定意義上自主、能動地執行特定任務。可以說,武器平台和作戰體係也可以在某種程度上主動地發揮出人的意識,甚至是超出人類的認識範疇,根據特定程序自主地、甚至是創造性地完成作戰任務,傳統意義上人與武器裝備的區別變得模糊,甚至難以區分是人在發揮作用還是機器在發揮作用,人們驚呼“人與武器裝備將成為夥伴關系”。因此,在智慧化戰爭中,人雖然仍是戰鬥力中最主要的因素,但人與武器裝備結合方式的改變豐富了戰鬥力的內涵,人與武器裝備的傳統關係也將在此基礎上進行重構。

智慧化戰爭將催生新型作戰方式的湧現。科學技術劃時代的進步,必然使作戰方式發生革命性的變化;智慧化技術的重大進步,必然帶來作戰方式變革的活躍期。一方面,以計算、數據、演算法、生物為驅動力的深度認知、深度學習、深度神經等領域不斷湧現的新技術,以及與資訊、生物、醫學、工程、製造等領域成果的交叉融合,必然推動新型作戰方式井噴式的湧現。另一方面,智慧化武器平台與作戰體系的激烈對抗,必然成為創新作戰方式的目標與動力。戰爭中智慧化技術程度越高的部位,越成為對抗中的焦點,時空認知極限、海量資訊存儲計算能力、神經網絡組織生成能力等方面的優勢差,將會帶來新領域的「致盲」「致聾」「致癱」作戰方式。

智慧化戰爭將孵化全新的指揮控制方式。指揮控制的優勢是戰爭領域的關注焦點,智慧化戰爭呼喚全新的指揮控制方式。一是人機協同決策成為智慧化戰爭中主要的指揮決策方式。以往戰爭中的指揮決策,都是以指揮為主導,牽引技術手段的輔助決策。在智慧化戰爭中,智慧輔助決策系統將根據新的戰場態勢變化,主動督促或催促指揮員做出決策。這是因為面對海量的、瞬息萬變的戰場態勢資訊數據,人的大腦已經無法快速容納和高效處理、人的感官已經無法承受超常規的變化速度。在這種情況下,單純依靠指揮員形成的決策很可能是遲到的、無用的決策。只有在智慧化輔助決策系統推動下的人機協同決策,才能夠彌補時空差和機腦差,確保指揮決策優勢。二是腦神經控製成為智慧化戰爭中主要的指令控制方式。以往戰爭中,指揮員透過文件、電台、電話,以文書或語音的形式,逐級下達指令指揮控制部隊。在智慧化戰爭中,指揮員用智慧化類腦神經元,透過神經網絡作戰體系平台向部隊下達指令,減少了指令表現形式的轉換過程,縮短了指令跨媒體的轉換時間,節奏更快、效率更高。當作戰體系平台遭到攻擊部分破壞時,這種指揮控制方式能夠自主修復或自主重構神經網絡,迅速恢復主體功能甚至全部功能,抗打擊能力更強。

我們應該如何迎接智能化戰爭?

在智慧化作戰的研究與探索中,絕不能甘於落後追隨,必須瞄準打贏未來戰爭,要以更主動的姿態、先進的理念、積極的行動,迎接智慧化戰爭的挑戰。

以智慧化技術突破推動智慧化作戰體系效能躍升。智慧化技術的發展目前雖然在神經網絡演算法、智慧傳感與組網技術、數據挖掘技術、知識圖譜技術等方面有了較大進展,但總體而言仍處於弱智能階段,遠未達到強智能高級階段,未來仍有廣闊的發展空間。要強化人工智慧基礎研究,遵循科學技術發展的規律,科學規劃智慧化技術發展方向,選好技術突破口,加強人工智慧關鍵核心技術,特別是起支撐作用的基礎性研究。突出軍用關鍵技術研究。以軍事需求為牽引,圍繞智慧感知、智慧決策、智慧控制、智慧打擊、智慧保障等軍用關鍵技術,發展智慧化偵察感知系統、指揮控制系統、武器裝備系統、作戰保障系統等武器裝備。抓好軍民科技協同創新,充分發揮民用智慧技術發展優勢,依托軍地優勢資源,強化軍地戰略協作,搭建人工智慧科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成智慧化作戰科技開放融合創新發展新局面。

以智能化作戰理念引領作戰方式創新。迎接智能化戰爭的到來,轉變觀念才是前提。觀念是行動的先導,如果我們的觀念還停留在傳統層面,就難以適應智慧化戰爭的需要。智慧化戰爭在技術支撐、作戰力量、制勝機理等方面都發生了深刻變化,要求我們必須先確立智慧化戰爭理念,並以此引領我軍未來作戰方式創新。一是要強化「制智權」爭奪。人工智慧是智慧化戰爭的基礎,作戰中剝奪和削弱對手智慧運用能力,保持己方智慧運用的自由,是確保智慧化作戰順利實施的基礎。西方發達國家軍隊正探索通過電磁幹擾、電子壓制、高功率微波穿透和接管控制等多種手段,阻斷對手的智能運用能力,奪取“制智權”,從而奪取戰場優勢。二是創新智能化作戰方式方法。要著眼於充分發揮智慧化作戰體系整體效能,加強人機協同智慧作戰、智慧化機器人作戰、智慧無人群聚作戰等的新的智慧化作戰方式方法研究,以及智慧化作戰指揮、智慧化作戰保障的流程與方式方法等。著眼有效應對敵智能化作戰威脅,研究克敵制勝之策,如智慧阻斷戰、智慧擾亂戰等。

以智慧化訓練創新催生戰鬥力生成模式轉變。智慧化戰爭將是人機結合共同實施的戰爭,以智慧化無人作戰系統為主體的作戰力量將發揮越來越重要的作用。必須適應智慧化戰爭力量體系新特點,創新發展智慧化訓練概念,探索智慧化戰爭戰鬥力生成新模式。一方面,要強化「人」駕馭智慧系統訓練。依託大數據、雲計算、VR技術等創設新型訓練環境,不斷提升人的智慧化素養,改善人機認知、理解、互動品質,提升人駕馭智慧化作戰系統的能力。另一方面,要探索以「機」為主體對象的新型訓練模式。過去的訓練基本是以人為主體對象的訓練,聚焦於人在特定環境下熟練掌握和使用武器裝備提高作戰效能。適應智慧化戰爭力量體系構成新特點,在訓練的對像上改變傳統訓練中以人為中心的訓練組織理念和模式,聚焦於智能化作戰系統自我指揮、自我控制、自我作戰能力的提升,充分利用智能化系統能夠自我博弈、自我成長的特點,形成專門針對智能化作戰系統訓練體系、訓練環境和訓練機制,從而使智能化作戰系統獲得短期的自主訓練即可升躍獲得短期能力強化的倍數。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/482056188.html?

China’s Military Ponders Integration Concept That Will be Adopted During Information Warfare

中國軍方思考資訊戰中將採用的一體化概念

現代英語:

The basic form of information warfare is system confrontation. Different from any form of warfare in history, information warfare is not a discrete confrontation or local decentralized warfare with the simple superposition of various combat units and elements, but a holistic confrontation between systems. The system integration capability of war determines the effectiveness of combat and the achievement of war objectives; achieving effective integration of various systems is the fundamental way to win information warfare.

Multi-space fusion

The battlefield space is the stage for the war hostile parties to compete. Due to the widespread use of high-tech weapons, the battlefield space of informationized warfare has been greatly expanded, forming a multi-dimensional battlefield space of land, sea, air, space, and information. Under the strong “bonding” of information technology, each battlefield space is integrated around a unified combat purpose. First, the three-dimensional, all-round reconnaissance and surveillance network covers the battlefield. Under the conditions of informatization, the military reconnaissance and surveillance capabilities have been unprecedentedly improved. The large-scale, three-dimensional, multi-means, and automated intelligence reconnaissance and surveillance network connects outer space, high altitude, medium altitude, low altitude, ground (sea), and underground (underwater) into one, thereby obtaining battlefield intelligence information in multiple fields. Second, long-range, high-precision informationized weapons are densely distributed and threaten the battlefield. The extraordinary combat capability of the informationized weapon system to cover and strike targets in the entire battlefield space has realized that discovery means destruction, and promoted the high integration of various battlefield spaces. In addition, the development of space and air power has made strikes more precise, means more flexible, and combat efficiency higher, and the battlefield space has become an integrated battlefield of sea, land, air, and space. This integrated battlefield structure has a high degree of integration of multiple spaces, and multiple spaces and multiple fields restrict each other. Third, the battlefield is restricted by electromagnetic and information competition in all time and space and throughout the entire process. The development of military information technology not only realizes the integration of tangible battlefields on land, sea, air and space through reconnaissance and strikes, but also opens up the competition for invisible battlefields in the electromagnetic and information fields. Electromagnetic and information are the soul of informationized warfare and the link between the battlefields on land, sea, air and space. They exist in the entire time and space of combat, act on all elements of war, run through the entire process of combat, and deeply affect the tangible battlefields on land, sea, air and space.

It can be seen that the informationized battlefield is precisely through the increasingly mature information technology, centering on the purpose of war and combat needs, closely integrating the multi-dimensional space of land, sea, air, space, information, etc., forming an inseparable and interdependent organic unity. Leaving any dimension of the battlefield space, or losing control of any dimension, will directly affect the overall combat effectiveness, thus leading to the failure of the war.

Fusion of multiple forces

War power is the protagonist of the battle between the two opposing sides of a war. The “integrated joint combat force” of system integration is a prominent feature of information warfare. Various participating forces in information warfare are highly integrated. Regardless of their affiliation and combat mission, they will be equal users and resources of the entire combat system and integrated into a unified large system. First, the participating forces are united. Information warfare is a joint operation in which the army, navy, air force, aerospace, special operations, information operations and other forces participate. Each participating force has advantages that other participating forces do not have or cannot replace. They communicate and connect through information technology to achieve “seamless connection” and form a force system that can play to its strengths and avoid its weaknesses and complement each other’s advantages, becoming an organic whole that combines “soft” strike and “hard” destruction capabilities, combat and support capabilities, mobility and assault capabilities, and attack and defense capabilities. Second, the participants are diversified. With the development of information networks, wars in the information age no longer have a distinction between the front and the rear, and the networking of combat systems can also make home a “battlefield”. In the industrial age, wars were “over, go home”; in the information age, wars can also be “go home and fight”. Participants in war are not limited to the military forces of countries and political groups. Non-governmental and group-based people can join the “battlefield” as long as they have high-tech knowledge and are proficient in computer applications. Third, the support force is socialized. With the development of science and technology, the mutual tolerance, intercommunication and compatibility of military and civilian technologies have been greatly enhanced. A large number of combat facilities and platforms will rely more on local basic resources. Not only does the material support in combat need to be socialized, but also the technical support and information support need to be socialized.

It can be seen that the victory or defeat of the informationized battlefield depends on the overall strength of the warring parties. Various combat forces are both interrelated and mutually influential, but any single force is difficult to determine the outcome of the war. Only when multiple forces work closely together and learn from each other’s strengths and weaknesses can the overall combat system benefits be brought into play and victory be ultimately achieved.

Multi-level integration

The war level is the pattern of the war between the two hostile parties. In information warfare, the distinction between strategy, campaign and battle is no longer as clear as in traditional warfare. Instead, there is a mutual integration of you and me, and the distinction between levels has become relatively vague. First, the war path is simplified. With the centralized use of a large number of informationized weapons and equipment and their information systems, the precision strike capability of the troops has been unprecedentedly improved. A small-scale combat operation and a high-efficiency information offensive operation can effectively achieve certain strategic goals. A battle, a campaign or a carefully planned information operation may be a war. The path to achieve the purpose of war is becoming simpler and the convergence of war, campaign and even battle in purpose and time and space is prominent. Second, command and control is real-time. The widespread use of automated command and control systems on the battlefield has greatly enhanced the command and control function. Campaign commanders and even the highest political and military leadership of the country can plan and command and control all participating forces and specific combat operations in a unified manner, and directly intervene in campaigns, battles and even the actions of individual soldiers or combat platforms in near real time. Combat and campaign operations are similar to strategic engagements. Third, the combat process is fast-tracked. Quick victory and quick decision are important features of information warfare. The combat time is showing a trend of shortening. There is no concept of time for all combat operations. More often, the participating forces at all levels are carried out simultaneously in different fields. The beginning and the end are closely linked. The combat operations in various battlefield spaces penetrate each other, are closely linked, and gradually merge into an integrated and coordinated system, which is difficult to distinguish at the level.

It can be seen that information warfare has a strong overall nature. Campaigns, as a bridge for achieving strategic and even war objectives, are gradually integrated into battles. Combat, as the most basic combat activity in war, is also gradually sublimated into strategies and campaigns. All levels are intertwined and serve to achieve the purpose of war. Only by comprehensively exerting the combat capabilities of all levels and achieving overall effects can we seize the initiative in the war.

Fusion of various styles

The combat style is the carrier for the war hostile parties to compete. Informationized warfare is a process of confrontation between multiple forces and multiple fields, and is manifested in multiple combat actions and confrontation styles. Various combat actions are inseparable from the overall combat situation, and various actions are closely linked, mutually conditional, coordinated, and integrated to form an overall combat power. The first is the unity of combat actions. The victory or defeat of informationized warfare is the result of the system confrontation between the two warring parties. Isolated and single combat actions are often difficult to work. This requires multiple military services to adopt a variety of combat styles in different combat spaces and combat fields, while the combat style dominated by a single military service can only “live” in the overall joint action as a sub-combat action, and all combat actions are unified in the system confrontation. The second is the integration of combat actions. Informationized warfare is a form of war that pursues high efficiency. Objectively, it requires that multiple combat styles and actions must be highly “integrated” from the perspective of system effectiveness. Comprehensively use a variety of combat styles and tactics, combine tangible combat actions with intangible combat actions, combine non-linear combat with non-contact combat and asymmetric combat, combine psychological warfare with public opinion warfare and legal warfare, combine regular combat with irregular combat, and combine soft strikes with hard destruction to form an overall advantage. The third is the mutation of combat actions. In information warfare, while integrating various combat resources and exerting overall power, both hostile parties strive to find the “center of gravity” and “joint points” of the other side. Once the enemy’s weak points are found, all combat forces and actions are linked as a whole and autonomously coordinated, and various styles and means of destruction are adopted to cause a sudden change in the enemy’s combat capability and a comprehensive “collapse” of the combat system, so as to achieve combat initiative and advantage.

It can be seen that information warfare is a practical activity in which various forces use a variety of combat styles and means to compete in multiple battlefield spaces and combat fields. Only when multiple combat styles and means cooperate, support and complement each other can a multiplier effect be produced, thereby exerting the maximum combat effectiveness of the entire system.

Multi-method integration

The means of war are methods used to achieve the purpose of war. In addition to powerful military means, information warfare must also use all available ways and means to cooperate with each other, organically integrate, and form a whole to achieve a favorable situation. First, the use of war means is comprehensive. All wars have a distinct political nature and serve certain political purposes. With the influence of factors such as the globalization of the world economy and the multipolarization of international politics, information warfare is more based on military means, and military means are used in combination with various means such as economy, diplomacy, culture, and technology. Second, the use of war means is gradient. With the development of the times, war as a means of maintaining and seeking power and interests has been increasingly restricted by international law and international public opinion. In addition, resorting to war requires a high price. Therefore, in the information age, the use of war means presents a gradual development gradient, usually starting from retaliation, display of force, and violent retaliation (strike) in the sense of international law, and finally developing into local or even large-scale wars. Third, the use of war means is systematic. Information warfare is a contest of the comprehensive national strength of the hostile parties. The victory of the war depends on the comprehensive and systematic use of various war means. In specific combat operations, various means of warfare have different functions and natures, occupying different positions and playing different roles in the war. Only by closely combining various effective means of warfare into an organic whole can we form a combat system that fully utilizes our strengths and avoids our weaknesses, and maximize the overall combat effectiveness.

It can be seen that information warfare is subject to more restrictive factors, simpler war objectives, and newer combat styles. In the process of decision-making and action, only by coordinating and integrating with struggle actions in other fields such as politics, economy, culture, and diplomacy can the overall goal of the war be achieved efficiently.

現代國語:

中國軍網 國防部網

2019年12月10日 星期二

張自廉 馬代武

資訊化戰爭的基本形式是體系對抗。與歷史上任何一種戰爭形態都不同,資訊化戰爭不是各作戰單元、要素簡單疊加的離散式對抗或局部分散式作戰,而是體系對體系的整體對抗。戰爭的體系融合能力,決定作戰效能的發揮和戰爭目的達成;實現各系統的有效融合,是打贏資訊化戰爭的根本途徑。

多空間融合

戰場空間是戰爭敵對雙方較量的舞台。由於高技術兵器的廣泛運用,資訊化戰爭戰場空間大為拓展,形成了陸、海、空、天、資訊等多維戰場空間。各戰場空間在資訊科技的強力「黏合」下,圍繞著統一的作戰目的融為一體。一是立體化、全方位的偵察與監視網覆蓋透視戰場。在資訊化條件下,軍事偵察與監視能力空前提高,大範圍、立體化、多手段、自動化的情報偵察與監視網,將外層空間、高空、中空、低空、地面(海上)、地下(水下)連為一體,進而獲取多領域的戰場情報資訊。二是遠射程、高精準度的資訊化武器密布威脅戰場。資訊化武器系統所具有的覆蓋和打擊戰場全空間目標的超常作戰能力,實現了發現即意味著摧毀,促進了各戰場空間的高度融合。加之太空和空中力量的發展,使打擊更精確,手段更靈活,作戰效益更高,戰場空間成為海陸空天一體化戰場。這種一體化的戰場結構,多空間高度融合,多空間、多領域相互制約。第三是全時空、全過程的電磁和資訊爭奪滲透制約戰場。軍事資訊科技的發展,不僅透過偵察、打擊等手段實現有形的陸海空天戰場一體化,也開闢了電磁和資訊領域無形戰場的爭奪。電磁和訊息是資訊化戰爭之魂,是連結陸海空天戰場的紐帶,存在於作戰的全時空,作用於戰爭的全要素,貫穿作戰的整個過程,深度影響著陸海空天各維有形的戰場。

可見,資訊化戰場正是透過日益成熟的資訊技術,圍繞著戰爭目的和作戰需要,把陸、海、空、天、資訊等多維空間緊密地融合在一起,形成不可分割、唇齒相依的有機統一體。離開了哪一維戰場空間,或是失去哪一維的控制權,都會直接影響全域作戰效能,進而導致戰爭失敗。

多力量融合

戰爭力量是戰爭敵對雙方較量的主角。體系融合的「一體化聯合作戰力量」是資訊化戰爭的突出特徵。資訊化戰爭各種參戰力量高度一體化,無論其隸屬關係如何、作戰任務如何,都將作為整個作戰系統的平等用戶和資源,融合成為一個統一的大系統。一是參戰部隊聯合化。資訊化戰爭是陸、海、空軍以及航太、特種作戰、資訊作戰等部隊參與的聯合作戰。各參戰部隊都具有其他參戰部隊所不具備或無法替代的優勢,它們通過信息技術溝通和聯繫,實現“無縫鏈接”,形成可以揚長避短、優勢互補的力量體系,成為具備“軟”打擊與“硬”摧毀能力、作戰與保障能力、機動與突擊能力、攻擊與防護能力相結合的有機整體。二是參加人員多元化。隨著資訊網路的發展,資訊時代的戰爭,不再有前方後方之分,作戰系統的網路化使家中也可能成為「戰場」。工業時代的戰爭,「結束了,回家去」;資訊時代的戰爭,也可以「回家,打仗去」。戰爭的參與者不僅只局限於國家和政治集團的軍事力量,非政府和團體性質的民眾,只要具有高技術知識就能投身“戰場”,只要熟練計算機應用都可能成為參與戰鬥的一員。三是保障力量社會化。科學技術的發展,軍用、民用技術的互容、互通和相容性大大增強,大量作戰設施和平台將更加依靠地方基礎資源,不僅作戰中的物資保障需要社會化,而且技術保障與資訊支援也需要社會化。

可見,資訊化戰場的勝負取決於交戰雙方整體力量的強弱,多種作戰力量既相互關聯,又相互影響,但其中任何單一的力量都難以決定戰爭的勝負。只有多種力量密切配合、取長補短,才能發揮整體作戰的系統效益,最終贏得勝利。

多層級融合

戰爭層級是戰爭敵對雙方較量的格局。在資訊化戰爭中,戰略、戰役、戰鬥之間已不再像傳統戰爭那樣涇渭分明,更多的是,你中有我,我中有你,層級區分變得相對模糊。一是戰爭途徑簡約化。大量資訊化武器裝備及其資訊系統的集中運用,部隊的精確打擊能力空前提高,一次小規模的作戰行動和高效益的資訊進攻行動,就能有效達成一定的戰略目的。一場戰鬥、一場戰役或一次周密計畫的資訊行動可能就是一場戰爭。達成戰爭目的的途徑不斷走向簡約,戰爭與戰役甚至戰鬥在目的和時空上的趨同性突出。二是指揮控制即時化。自動化指揮控制系統在戰場上的廣泛運用,指揮控制功能大大增強,戰役指揮員甚至國家最高政治、軍事領導層能夠對所有參戰力量和具體的作戰行動進行統一籌劃和指揮控制,近乎實時地直接幹預戰役、戰鬥甚至單兵或作戰平台的行動,戰鬥和戰役行動趨同於戰略交戰。三是作戰進程速決化。速戰速決是信息化戰爭的一個重要特徵,作戰時間呈現出縮短的趨勢,所有作戰行動已無時間上的概念,更多的是各層次的參戰力量在不同領域同時進行,開始與結束緊密相連,各戰場空間的作戰行動互相滲透、緊密聯繫、逐漸融合成一個整體聯動的綜合體系,難以作層級上的區分。

可見,資訊化戰爭整體性強,戰役作為戰鬥達成戰略乃至戰爭目的的橋樑,逐漸融合在戰鬥中;戰鬥作為戰爭中最基本的作戰活動,也逐漸昇華到戰略、戰役裡面,各層次之間,相互交融,共同為達成戰爭目的服務。只有綜合發揮各層級的作戰能力,達到整體效應,才能奪取戰爭的主動權。

多樣式融合

作戰樣式是戰爭敵對雙方較量的承載。資訊化戰爭是多力量、多領域實施對抗的過程,並表現為多種作戰行動和對抗樣式。各種作戰行動對於作戰全局來說都是不可分割的,各種行動之間也是緊密聯繫,互為條件,相互協調,融為一體,從而形成整體作戰威力。一是作戰行動的統一性。資訊化戰爭的勝負是交戰雙方體系對抗的結果,孤立、單一的作戰行動往往是難以發揮的。這就要求多個軍兵種在不同的作戰空間、作戰領域綜合採取多種作戰樣式,而單一軍兵種為主的作戰樣式將只能作為子作戰行動「棲身」於整體的聯合行動之中,所有的作戰行動統一於體系對抗之中。二是作戰行動的整合性。資訊化戰爭是追求高效益的戰爭形態,客觀上要求必須從系統效能出發,將多種作戰樣式和行動高度「整合」。綜合運用多種作戰樣式和戰法,把有形的作戰行動與無形的作戰行動結合起來,把非線式作戰與非接觸作戰、非對稱作戰結合起來,把心理戰與輿論戰、法律戰結合起來,把正規作戰與非正規作戰結合起來,把軟打擊與硬摧毀結合起來,形成整體優勢。三是作戰行動的突變性。在資訊戰爭中,敵對雙方在整合己方各種作戰資源、發揮整體威力的同時,都著力尋找對方“體系重心”“關節點”,一旦發現敵薄弱部位,所有作戰力量和行動通過整體聯動和自主協同,採取多樣式、多手段的破擊行動,造成敵作戰能力的突變和主動作戰體系的全面作戰,以實現“崩塌與優勢”,以崩潰與作戰能力的全面作戰。

可見,資訊化戰爭是各種力量在多個戰場空間、作戰領域中綜合運用多種戰鬥樣式和作戰手段同場競技的實踐活動。只有多種戰鬥樣式、作戰手段相互配合、相互支援、互補,才能產生倍增效應,進而發揮整個系統的最大作戰效能。

多手融合

戰爭手段是為達成戰爭目的而運用的方法。資訊化戰爭除了強大的軍事手段外,還必須動用一切可以動用的方式和手段,相互配合,有機融合,形成整體,以取得有利的態勢。一是戰爭手段運用綜合化。凡戰爭都有鮮明的政治性,都是為一定的政治目的服務的。隨著世界經濟全球化、國際政治多極化等因素的影響,資訊化戰爭更多的是以軍事手段為主,軍事手段與經濟、外交、文化、科技等多種手段的綜合運用。二是戰爭手段運用梯度化。隨著時代的發展,戰爭作為維護、謀求權力與利益的手段受到了國際法和國際輿論越來越多的限制,加上諸戰爭需付出高昂代價,所以信息化時代在戰爭手段運用上,呈現出逐步發展的梯度性,通常先由國際法意義上的報復、顯示武力、暴力性報復(打擊),最後發展至局部戰爭。三是戰爭手段運用的系統化。資訊化戰爭是敵對雙方綜合國力的較量,戰爭的取勝,有賴於各種戰爭手段綜合、系統運用。在具體的作戰行動中,各種戰爭手段因其功能、性質的不同,在戰爭中居於不同的地位,扮演不同的角色。只有把各種有效的戰爭手段緊密地結合成一個有機連結的整體,才能形成充分揚己之長、避己之短的作戰體系,最大限度地發揮整體作戰效能。

可見,資訊化戰爭受制因素增多、戰爭目的簡約、作戰樣式翻新,在決策與行動過程中,只有與政治、經濟、文化、外交等其他領域鬥爭行動互相配合,融為一體,才能高效地達成戰爭總體目標。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2019-12/10/content_24955988.htm

China’s Competition for Militarization of Artificial Intelligence Continues to Accelerate

中國人工智慧軍事化競爭持續加速

中國軍網 國防部網 // 2022年9月1日 星期四

現代英語:

Artificial intelligence is a general term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future war form, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.

With the rapid development of technology and the continuous acceleration of competition, major countries have launched their own artificial intelligence development plans, and accelerated the promotion of organizational mechanism reform, scientific and technological research and development, and tactical and combat innovation, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.

Accelerate organizational form innovation

Promote technology transformation and application

Unlike traditional technologies, the research and development and transformation of artificial intelligence have their own characteristics. The institutional settings and operation methods of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, breaking the institutional barriers in the process of artificial intelligence technology research and development, and accelerating the transformation and application of related technologies.

Emphasize “connection between the near and the far”. The United Kingdom, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Future Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative application of existing platforms in a “potential tapping and efficiency increase” manner, while buying time for the medium- and long-term technological innovation of the Defense Advanced Research Projects Agency, so as to effectively balance practical needs and long-term development.

Attach importance to “research and use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat selection, and other aspects. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements transformation, and promote the widespread application of artificial intelligence in the U.S. Department of Defense and various services.

Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Committee”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.

Highlight the “combination of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department, which fully demonstrates new technologies, new theories, and new concepts based on the specific effects of various systems organically integrated into various services and arms, so as to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of national defense technology innovation and application by re-establishing the position of Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, concepts, and methods, so as to select the focus of various technology research and development and the direction of strategic and tactical research, and achieve a benign interaction between technology development and theoretical innovation.

Project establishment for military needs

Seize the opportunity for future development

In recent years, various military powers have aimed at the research and development of cutting-edge artificial intelligence technologies, and have widely established projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, intending to seize the opportunity for future development.

Situational awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” with blurred peace and war, integration of soldiers and civilians, internal and external linkage, and full-domain integration, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use intelligent information analysis and data sharing platforms to improve the fire support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.

Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and operational advantages. Russia’s “Combat Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, and other aspects, and improving commanders’ ability to control complex battlefields and command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, using artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, event roots, and relationships behind the war; the “Marvin” project uses machine learning algorithms and face recognition technology to screen and sort out various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.

Unmanned combat field. In some technologically advanced countries, unmanned combat systems are becoming more mature and equipment types are becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and transport and recovery of drones in all-terrain and all-time conditions. The Russian military’s “Outpost-R” drone system, which has the ability to detect and strike in one, can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s effectiveness in performing combat missions such as reconnaissance and surveillance, auxiliary targeting, battle damage assessment, and communication relay.

Adapting to the transformation of future battlefields

Continuously exploring new tactics

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the participation efficiency of artificial intelligence in key military decisions and actions.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, fully utilizing the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side always leads the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the U.S. Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the U.S. military’s algorithmic warfare further moving towards actual combat.

Unmanned warfare, guided by low-cost attrition warfare of saturated quantity attack and system attack and defense operations, strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat mode. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”.

Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses shallow footprints, low-feature, fast-paced forces such as special forces to form small groups of multi-group mobile formations, disperse and infiltrate the combat area in a multi-directional and multi-domain manner, continuously break the enemy’s system shortcomings and chain dependence, and increase the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.

Fusion warfare, relying on network quantum communication and other means, builds an anti-interference, high-speed “combat cloud” to eliminate the technical barriers of data link intercommunication, interconnection and interoperability between military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break data barriers and greatly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information of various services, which improved the integration between services and enhanced the effectiveness of joint command and control.

(Author’s unit: National University of Defense Technology)

程柏华

現代國語:

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以「戰略能力辦公室」和「首席數位與人工智慧長」為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以「挖潛增效」方式加強現有平台的創新運用,同時為國防高級研究計劃局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新思想、新理念、新方法進行實踐檢驗,以選定各類技術研發焦點與戰略戰術攻關方向,實現技術發展與創新理論的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源信息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發製人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力和全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增大其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

(作者單位:國防科技大學)

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_32324488.htm