Category Archives: Chinese Military Artificial Intelligence Weaponizatio

STRENGTHENING THE FOUNDATION FOR CHINESE MILITARY INTELLIGENT TRANSFORMATION

加強中國軍事情報轉型的基礎

現代英語:

The nature of warfare is rapidly evolving towards intelligence. The intelligent transformation of the military is not merely a simple accumulation of technologies, but a systemic change supported by data, algorithms, and computing power. These three elements mutually empower and organically integrate, forming the technological foundation for generating new combat capabilities. To accelerate the intelligent development of the military, we must deeply grasp the technological logic of intelligent transformation, solidify the data foundation, activate the algorithm engine, and strengthen computing power support to provide a solid guarantee for winning future intelligent wars.

Operational data: the “digital cornerstone” of intelligent transformation

Data is the “lifeblood” of intelligence. Without the accumulation of high-quality, large-scale, and multi-dimensional operational data, the transformation of military intelligence will be like water without a source or a tree without roots. In intelligent warfare, all activities across the entire chain, including battlefield perception, command and decision-making, and combat operations, are essentially processes of data generation, flow, processing, and application. The completeness, accuracy, and timeliness of operational data directly determine the perception precision, decision-making speed, and strike accuracy of intelligent systems, and are an indispensable cornerstone for the intelligent transformation of the military field.

The core value of operational data lies in breaking through the “fog of war” and enabling a shift from experience-driven to data-driven approaches. In traditional warfare, commanders primarily rely on battlefield reconnaissance, intelligence analysis, and combat experience to make decisions. Limited by the breadth and depth of information acquisition, these decisions often carry a degree of subjectivity and limitation. However, in the era of intelligent warfare, a single reconnaissance drone can transmit 5GB of image data per second, and satellite networks constantly track tens of thousands of ground targets, resulting in a geometrical increase in the rate of battlefield data generation. This operational data, originating from multiple domains including land, sea, air, space, cyber, electronic, and psychological domains, can, after standardized processing and in-depth analysis, construct a transparent battlefield situation across all domains, providing commanders with precise decision-making support.

Building a comprehensive operational data resource system requires focusing on key aspects of the entire lifecycle governance. In the data acquisition phase, it’s essential to base data acquisition on the needs of all-domain operations, broaden data source channels, and achieve full coverage of data in both traditional and new domains. Traditional domains should focus on land, sea, and air battlefields, accurately collecting data on troop deployments, equipment performance, and terrain. New domains should extend to outer space, deep sea, polar regions, and cyberspace, prioritizing the collection of data on space target trajectories, deep-sea environmental parameters, and cyberspace situational awareness. In the data fusion and processing phase, a unified data standard system must be established to address prominent issues such as multiple values ​​for a single data point and inconsistent formats, achieving interconnectivity between data from different sources and of different types. In the data sharing phase, a sound cross-domain sharing mechanism must be established, along with tiered and categorized sharing rules, breaking down service-specific barriers, departmental boundaries, and network isolation to build a ubiquitous, all-encompassing, and interconnected data sharing environment, maximizing the utilization of data resources.

To fully leverage the multiplier effect of combat data, the key lies in cultivating data-driven thinking and building a strong professional team. Data-driven thinking is the prerequisite for activating data value. It is essential to guide officers and soldiers to develop the habit of “thinking with data, speaking with data, managing with data, and making decisions with data,” abandoning traditional thinking patterns based on experience and intuition. In operational planning, quantitative analysis should be based on data; in training evaluation, precise measurement should be based on data standards; and in equipment development, iterative optimization should be supported by data. Simultaneously, efforts should be focused on building a professional data talent team, clarifying the responsibilities of each position, and connecting the entire process from data generation to data application. Through various means such as academic training, on-the-job experience, and specialized training, the professional skills of officers and soldiers in data collection, processing, analysis, and application should be improved, creating a composite talent team that understands both military operations and data technology, providing talent support for releasing the value of data.

Specialized Algorithms: The “Digital Engine” of Intelligent Transformation

If data is the “fuel” of intelligence, then algorithms are the “engine” that transforms fuel into power. Specialized algorithms, as the core driving force of military intelligence, are the key link in realizing the transformation of data into knowledge, knowledge into decision-making, and decision-making into combat effectiveness. In intelligent warfare, the quality of algorithms directly determines the reaction speed, decision-making accuracy, and combat effectiveness of the combat system, becoming the engine of intelligent transformation in the military field.

The core advantage of algorithms lies in reconstructing the operational chain and achieving rapid iteration of the OODA loop. In traditional warfare, the chain of observation, judgment, decision-making, and action is lengthy and often struggles to adapt to rapidly changing battlefield situations due to limitations in human processing capabilities. Intelligent algorithms, however, can leverage machine learning, deep learning, and other technologies to process massive amounts of operational data in seconds, perform real-time analysis, and uncover patterns, significantly shortening the decision-making cycle. In simulation tests, foreign military AI command systems generated multiple complete operational plans in a very short time, demonstrating response speed and decision-making efficiency far exceeding that of human command teams, fully showcasing the enormous advantages of algorithms in accelerating the decision-making process. In combat operations, algorithms can span the entire chain, from reconnaissance and perception, command and decision-making, fire strikes, and effect assessment, constructing an autonomous, closed-loop “kill chain.” From target identification to threat ranking, from plan generation to fire allocation, from strike implementation to damage assessment, algorithms can autonomously complete a series of complex tasks, achieving a “detect and destroy” operational effect.

Enhancing the practical application effectiveness of algorithms requires strengthening technological innovation and scenario empowerment. In terms of technological innovation, it is essential to keep pace with the development trends of artificial intelligence and accelerate the military application transformation of cutting-edge algorithms. Focusing on emerging technologies such as generative AI, neuromorphic computing, and brain-computer interfaces, we should explore pathways for the deep integration of algorithms with military needs. Regarding scenario empowerment, we must build diverse typical scenarios for algorithms based on actual combat requirements, develop specialized algorithms for target recognition, situational assessment, and virtual training, overcome bottlenecks in information processing in complex electromagnetic environments, promote the modularization and lightweight transformation of algorithms, and rapidly integrate them with command and control systems and unmanned equipment systems. This will allow algorithms to continuously iterate and optimize in specific tasks within typical scenarios, transforming algorithmic advantages into practical combat capabilities.

Strengthening algorithm security is crucial for ensuring the steady and sustainable development of intelligent transformation. While algorithms enhance combat effectiveness, they also face security risks such as tampering, deception, and misuse, potentially leading to serious consequences like “algorithmic runaway.” It is essential to establish an algorithm security review mechanism to conduct full-process security assessments of algorithm models in military intelligent systems, focusing on their reliability, transparency, and controllability to prevent algorithmic bias and logical vulnerabilities. Strengthening the research and development of algorithmic countermeasures technologies is also vital. This involves improving the anti-interference and anti-attack capabilities of our own algorithms while mastering techniques to interfere with and deceive enemy algorithms, thus gaining the initiative in algorithmic confrontation. Simultaneously, it is crucial to emphasize algorithmic ethics, clearly defining the boundaries and rules of algorithm application to ensure that algorithm development and use comply with international laws and ethical standards, avoiding any violations of war ethics.

Supercomputing Power: The “Digital Energy” for Intelligent Transformation

Computing power is the fundamental capability supporting data processing and algorithm execution, much like the “energy support” for intelligent systems. In the transformation towards military intelligence, the explosive growth of data and the increasing complexity of algorithms have placed unprecedented demands on computing power. The scale, speed, and reliability of supercomputing power directly determine the operational efficiency and combat effectiveness of military intelligent systems, becoming the driving force behind the intelligent transformation of the military field.

The core role of computing power lies in overcoming performance bottlenecks and supporting the efficient operation of complex intelligent tasks. The demand for computing power in intelligent warfare exhibits an “exponential growth” characteristic: an advanced AI command system needs to run thousands of algorithm models simultaneously when processing battlefield data across the entire domain; a swarm of drones performing collaborative combat missions requires real-time interaction and decision-making calculations involving massive amounts of data; a large-scale virtual combat training exercise needs to simulate the interactive behaviors of tens or even hundreds of thousands of combat units. The completion of these complex tasks is inseparable from powerful computing power. Without sufficient computing power, even the highest quality data cannot be processed quickly, and even the most advanced algorithms cannot operate effectively. Currently, computing power has become a crucial indicator for measuring the level of military intelligence; whoever possesses stronger computing power holds the initiative in intelligent warfare.

Building a computing power system adapted to the needs of intelligent transformation requires creating a collaborative computing power layout across the cloud, edge, and terminal. In the cloud, distributed cloud computing centers need to be constructed to build a computing power foundation that covers the entire domain and is elastically scalable. Relying on infrastructure such as big data centers and supercomputing centers, various computing resources should be integrated to form a large-scale, intensive computing power supply capability. At the edge, computing power should be deployed more readily, enhancing the autonomous computing capabilities of the battlefield. For special scenarios such as forward positions, naval vessels, and air platforms, miniaturized, low-power, and highly reliable edge computing nodes should be developed to transfer some computing tasks from the cloud to the edge. This reduces reliance on communication links and data transmission latency, and ensures that combat units can autonomously complete basic tasks such as target identification, path planning, and coordination even in extreme environments such as communication interruptions or signal blackouts, thus improving the system’s survivability. At the terminal, the built-in computing power of equipment should be strengthened to improve the intelligence level of individual combat platforms. By embedding high-performance AI chips into platforms such as drones, unmanned vehicles, and missile weapons, equipment is endowed with the ability to autonomously perceive, make decisions, and act, making it an intelligent unit with independent combat capabilities and laying the foundation for cluster collaboration and system-on-system confrontation.

Enhancing the combat readiness of computing power support requires strengthening technological innovation and security protection. In terms of technological innovation, it is crucial to keep pace with the development trends of computing power technology and accelerate the military application of new computing technologies. Focusing on cutting-edge areas such as quantum computing, photonic computing, and neuromorphic computing, we must break through the performance bottlenecks of traditional computing architectures and develop disruptive new computing power equipment. Simultaneously, we must strengthen the construction of computing power networks, building high-bandwidth, low-latency, and interference-resistant computing power transmission networks. By integrating technologies such as 5G, 6G, and satellite communication, we can ensure computing power collaboration and data interaction between the cloud, edge, and terminals, achieving seamless connection and efficient scheduling of computing power resources. In terms of security protection, we must establish a computing power security system to prevent the risks of attacks, hijacking, and misuse of computing power resources. By adopting technologies such as encrypted computing and trusted computing, we can ensure the security and privacy of data during the computing process; strengthen the physical and network protection of computing power facilities, and build a multi-layered, all-round protective barrier to ensure that the computing power system can operate stably in wartime and is not subject to enemy interference or damage.

現代國語:

戰爭形態正加速向智慧化演進,軍事領域的智慧轉型絕非單純的技術疊加,而是以數據、演算法、算力為核心支撐的體系性變革,三者相互賦能、有機融合,構成了新型戰鬥力生成的技術基礎。加速軍事領域智慧化發展進程,應深刻掌握智慧轉型的技術邏輯,夯實數據基石、啟動演算法引擎、做強力支撐,為打贏未來智慧化戰爭提供堅實保障。

作戰數據:智慧轉型的“數位基石”

數據是智慧化的“血液”,沒有高品質、大規模、多維度的作戰數據積累,軍事智慧轉型就會成為無源之水、無本之木。在智慧化戰爭中,戰場感知、指揮決策、作戰行動等全連結活動,本質上都是資料的產生、流轉、處理與應用過程。作戰數據的完備性、準確性和時效性,直接決定了智慧系統的感知精度、決策速度和打擊準度,是軍事領域智慧轉型不可或缺的基石。

作戰資料的核心價值在於打破“戰爭迷霧”,實現從經驗驅動到數據驅動的轉變。在傳統戰爭中,指揮官主要依賴戰場偵察、情報研判和實戰經驗來做出決策,受限於資訊獲取的廣度和深度,決策往往帶有一定的主觀性和限制。而在智慧化戰爭時代,一架偵察無人機每秒可傳回5GB影像數據,衛星網路時刻追蹤成千上萬個地面目標,戰場數據生成速率呈幾何級數增長。這些來自陸、海、空、天、網、電、心理等多域的作戰數據,經過規範化處理和深度挖掘後,能夠建構起全局透明的戰場態勢,為指揮官提供精準決策支撐。

建構全域覆蓋的作戰資料資源體系,需要抓好全生命週期治理的關鍵環節。在資料擷取環節,要立足全域作戰需求,拓寬資料來源管道,實現傳統空間與新域空間的資料全覆蓋。傳統空間要聚焦陸戰場、海戰場、空戰場等傳統領域,精準採集兵力部署、裝備性能、地形地形等資料;新域空間要向太空、深海、極地、網路空間等領域延伸,重點收集太空目標軌跡、深海環境參數、網路空間態勢等資料。在資料融合處理環節,要建立統一的資料標準體系,解決「一數多值」「格式不一」等突出問題,實現不同來源、不同類型資料的互聯互通。在資料共享環節,要健全跨域共享機制,建立分級分類共享規則,打破軍種壁壘、部門界限和網路隔離,建構「無所不在、無所不含、無所不聯」的數據共享環境,實現數據資源的最大化利用。

發揮作戰數據的戰鬥力倍增效應,關鍵在於培育數據思維與建強專業隊伍。數據思維是啟動數據價值的前提,要引導官兵養成「用數據思考、用數據說話、用數據管理、用數據決策」的行為習慣,摒棄憑經驗、靠直覺的傳統思維模式。在作戰籌劃中,要以數據為依據進行量化分析;在訓練評估中,要以數據為標準進行精準衡量;在裝備研發中,要以數據為支撐進行迭代優化。同時,要著力建構專業化的資料人才隊伍,明確各環節職務職責,貫通從資料產生到資料運用的全流程連結。透過院校培養、職缺歷練、專案訓練等多種方式,提升官兵資料收集、處理、分析、運用的專業技能,打造一支既懂軍事業務又通資料技術的複合型人才隊伍,為資料價值釋放提供人才支撐。

專業演算法:智慧轉型的“數位引擎”

如果說數據是智慧化的“燃料”,那麼演算法就是將燃料轉化為動力的“引擎”。專業演算法作為軍事智慧的核心驅動力,是實現數據向知識、知識向決策、決策轉化為戰鬥力的關鍵環節。在智慧化戰爭中,演算法的優劣直接決定了作戰體系的反應速度、決策精準度和對抗效能,成為軍事領域智慧轉型的引擎。

演算法的核心優勢在於重構作戰鏈路,實現OODA循環的極速迭代。傳統作戰中,觀察、判斷、決策、行動的連結較長,受限於人工處理能力,往往難以適應瞬息萬變的戰場態勢。而智慧演算法能夠依賴機器學習、深度學習等技術,對海量作戰資料進行秒級處理、即時分析與規律挖掘,大幅縮短決策週期。外軍AI軍事指揮系統在模擬測試中,僅用很短時間就生成多套完整作戰方案,響應速度和決策效率遠超人類指揮團隊,充分展現了演算法在加速決策流程中的巨大優勢。在作戰行動中,演算法能夠貫穿偵察感知、指揮決策、火力打擊、效果評估等全鏈路,建構自主閉環的「殺傷鏈」。從目標識別到威脅排序,從方案生成到火力分配,從打擊實施到毀傷評估,演算法能夠自主完成一系列複雜任務,實現「發現即摧毀」的作戰效果。

提升演算法的實戰應用效能,需要強化技術創新與場景賦能。在技​​術創新方面,要緊跟人工智慧發展趨勢,加速前沿演算法的軍事應用轉換。聚焦生成式AI、神經形態運算、腦機介面等新技術方向,探索演算法與軍事需求的深度融合路徑。在場景賦能方面,要立足實戰需求建構多元演算法典型場景,研發目標辨識、態勢研判、虛擬訓練等專用演算法,突破複雜電磁環境資訊處理瓶頸,推動演算法模組化、輕量化改造,與指揮控制系統、無人裝備系統快速整合,讓演算法在典型場景具體任務中不斷迭代優化,讓優勢轉化為最佳化演算法。

築牢演算法安全防線,是確保智慧轉型行穩致遠的重要保障。演算法在帶來作戰效能提升的同時,也面臨被竄改、被欺騙、被濫用等安全風險,甚至可能出現「演算法失控」的嚴重後果。要建立演算法安全審查機制,對軍事智慧系統中的演算法模型進行全流程安全評估,重點在於審查演算法的可靠性、透明度和可控性,防止演算法偏見、邏輯漏洞等問題。加強演算法對抗技術研發,既要提升己方演算法的抗干擾、抗攻擊能力,也要掌握幹擾、欺騙敵方演算法的技術手段,在演算法對抗中佔據主動。同時,要注重演算法倫理建設,明確演算法應用的邊界和規則,確保演算法的研發和使用符合國際法律和倫理標準,避免違反戰爭倫理的情況。

超智算力:智慧轉型的“數位能量”

算力是支撐資料處理和演算法運作的基礎能力,如同智慧化體系的「能量支撐」。在軍事智慧轉型中,數據的爆炸性成長和演算法的複雜化發展,對算力提出了前所未有的高要求。超智算力的規模、速度和可靠性,直接決定了軍事智慧系統的運作效率和實戰效能,成為軍事領域智慧轉型的動力系統。

算力的核心作用在於突破性能瓶頸,支撐複雜智慧任務的高效運作。智慧化戰爭對算力的需求呈現出「指數級增長」特徵:一套先進的AI指揮系統,在處理全局戰場數據時,需要同時運行數千個演算法模型;一支無人機蜂群在執行協同作戰任務時,需要實時進行海量數據交互和決策計算;一次大規模的虛擬對抗訓練,需要模擬數萬甚至數十萬作戰單元的互動行為。這些複雜任務的完成,離不開強大的算力支撐。沒有足夠的算力,再優質的數據也無法快速處理,再先進的演算法也無法有效運作。目前,算力已成為衡量軍事智慧化程度的重要指標,誰掌握了更強的算力,誰就掌握了智慧對抗的主動權。

建構適應智慧轉型需求的算力體系,需要打造「雲端端」協同的算力佈局。在雲端,要建置分散式雲算力中心,建構覆蓋全域、彈性伸縮的算力基座。依託大資料中心、超級運算中心等基礎設施,整合各類運算資源,形成規模化、集約化的算力供給能力。在邊端,要推進算力下沉部署,提升戰場末端的自主運算能力。針對前線陣地、海上艦艇、空中平台等特殊場景,研發小型化、低功耗、高可靠的邊緣運算節點,將部分運算任務從雲端轉移至邊緣端。這樣既可以降低對通訊鏈路的依賴,減少資料傳輸延遲,又能在通訊中斷或訊號黑障等極端環境下,保障作戰單元自主完成目標辨識、路徑規劃、協同配合等基本任務,提升體系生存能力。在終端,要強化裝備內置算力,提升單一作戰平台的智慧等級。透過在無人機、無人車、飛彈武器等平台中嵌入高性能AI晶片,賦予裝備自主感知、自主決策、自主行動的能力,使其成為具備獨立作戰能力的智慧單元,為集群協同和體系對抗奠定基礎。

提升算力保障的實戰化水平,需要強化技術創新與安全防護。在技​​術創新方面,要緊跟算力技術發展趨勢,加速新型計算技術的軍事應用。聚焦量子運算、光子運算、神經形態運算等前沿方向,突破傳統運算架構的效能瓶頸,研發具有顛覆性的新型算力裝備。同時,要加強算力網路建設,建構高頻寬、低時延、抗干擾的算力傳輸網路。透過融合5G、6G、衛星通訊等技術,確保雲端、邊端、終端之間的算力協同與資料交互,實現算力資源的無縫銜接與高效調度。在安全防護方面,要建立算力安全保障體系,防範算力資源被攻擊、被劫持、被濫用的風險。透過採用加密運算、可信任運算等技術,確保資料在運算過程中的安全性和隱私性;加強算力設施的實體防護和網路防護,建構多層次、全方位的防護屏障,確保算力系統在戰時能夠穩定運行,不受敵方幹擾破壞。 (李建平、紀鳳珠、趙輓)

2025年12月30日09 | 資料來源:解放軍報

中國原創軍事資源:https://military.people.com.cn/n1/2025/1230/c1011-40688835461.html

A Look at Chinese Intelligent Warfare | “Order Dispatch”: A New Style of Precision Strike

中國情報戰概覽 | 「命令派遣」:一種新型的精確打擊方式

現代英語:

“Order Dispatch”: Precise Targeting of New Patterns

  introduction

  As Lenin said, “Without understanding the times, one cannot understand war.” In recent years, the widespread application of information and intelligent technologies in the military field has promoted the deep integration of technology and tactics. Relying on intelligent network information systems, it has given rise to “order-based” precision strikes. Commanders and command organs can generate strike requirements in a formatted manner according to combat missions. The decision-making system intelligently matches strike platforms, autonomously plans action paths, and scientifically selects strike methods based on personalized requirements such as strike time, operational space, and damage indicators, thereby rapidly and accurately releasing strike effectiveness.

  The operational characteristics of “order dispatch” type precision strike

  As the informatization and intelligence of weapons and ammunition continue to improve, the cost of modern warfare is also constantly increasing. How to achieve the highest cost-effectiveness ratio with limited strike resources and maximize combat effectiveness has become a central issue for commanders and command organs in operational planning. “Order-based” precision strikes can provide a “feasible solution” for this.

  Real-time, precise, and targeted strikes. Modern warfare places greater emphasis on structurally disrupting enemy operational systems, achieving operational objectives through the rapid and precise release of combat effectiveness. This requires commanders and command organs to seize fleeting “windows of opportunity” to strike high-value, nodal, and critical targets within an enemy’s operational system before the enemy can react. The traditional “detection-guided-strike-assessment” operational loop is time-consuming and ineffective. Therefore, “order-based” precision strikes rely on advanced intelligent network information systems, without pre-determining strike platforms. Target lists are released in real-time, and auxiliary decision-making systems rapidly assess the strike performance of various weapon platforms and the expected damage to targets. Tasks are autonomously allocated to strike platforms, rapidly linking and controlling multi-domain firepower, autonomously closing the kill chain, and conducting rapid strikes against key targets.

  Multi-domain coordinated strike. The advantage of modern precision strike over traditional firepower lies in its information-based and intelligent combat system. It requires no human intervention and autonomously completes tasks such as reconnaissance, control, strike, and assessment based on a closed strike chain. This not only saves strike costs and reduces resource waste but also enables adaptive coordination based on unified operational standards. Therefore, “order-based” precision strikes require firepower forces distributed across various operational domains to establish a unified standard grid. Once a demand is issued from one point, multiple points can respond and coordinate globally, flexibly concentrating forces and firepower, using multiple means to rapidly and multi-domain convergence, and determining the strike direction, sequence, and method for each strike platform while on the move. Through system integration, time is effectively saved, enabling multi-domain precision strikes against key enemy nodes and critical parts of core targets, fully leveraging the combined power of the integrated combat effectiveness of various operational units.

  The key to victory lies in swift and decisive action. Modern warfare is a “hybrid war” conducted simultaneously across multiple domains, where the interplay and confrontation of new domains and new types of forces, such as information, aerospace, and artificial intelligence, are becoming increasingly pronounced. This necessitates that both sides be able to detect and act faster than the enemy, crippling their operational systems and reducing their operational efficiency. On the one hand, it is crucial to pinpoint key nodes in the enemy’s system and launch timely and precise strikes; on the other hand, it is essential to conceal one’s own intentions and strike forces, striking swiftly and unexpectedly. “Order-based” precision strikes perfectly meet these two requirements. Supported by network information systems, they intelligently integrate firepower from various domains, achieving multi-source information perception, data interconnection, and multi-domain coordinated strikes. This enables seamless and high-speed operation of “target perception—decision and command—firepower strike—damage assessment,” resulting in a high degree of information and firepower integration and the rapid achievement of operational objectives.

  The system of “order dispatch” type precision strike

  ”Order dispatch” precision strikes compress action time and improve strike effectiveness by building an efficient closed strike chain, enabling various fire strike platforms to better integrate into the joint fire strike system and provide rapid and accurate battlefield fire support. Its key lies in the “network” and its focus is on the “four” systems.

  Multi-domain platform access network. Supported by information and intelligent technologies, an integrated information network system with satellite communication as the backbone is established. Firepower strike platforms distributed across multiple domain battlefields are integrated into the combat network to create a battlefield “cloud.” Different combat modules are distinguished, and “sub-network clouds” such as “reconnaissance, control, strike, and assessment” are established. Relying on an integrated communication network, the “sub-network clouds” are linked to the “cloud.” This can enhance the firepower strike platform’s capabilities in all domains, all times, on the move, autonomous networking, and spectrum planning, and realize network interconnection between firepower platforms, domain combat systems, and joint combat systems, as well as the interconnection and interoperability of internal strike forces.

  Joint reconnaissance and sensing system. This system leverages various reconnaissance and surveillance forces within the joint operations system to achieve all-weather, multi-directional, and high-precision battlefield awareness of the operational area. This requires constructing a ubiquitous, multi-dimensional reconnaissance and sensing force system encompassing physical and logical spaces, tangible and intangible spaces. It involves widely deploying intelligent sensing devices to form an intelligence data “cloud.” Through this intelligence data “cloud,” the system analyzes the enemy situation, identifies key points in the enemy’s operational system and time-sensitive targets, updates reconnaissance information in real time, and displays target dynamics.

  Intelligent Command and Decision-Making System. Relying on a new command and control system with certain intelligent control capabilities, this system constructs various planning and analysis models, expands functions such as intelligent intelligence processing, intelligent mission planning, automatic command generation, and precise action control, and expands and improves databases such as target feature database, decision-making knowledge base, and action plan database. It strengthens the system support capabilities for mission planning, action decision-making, and control during combat organization and implementation, enhances planning and decision-making and combat action control capabilities, clarifies “how to fight, where to fight, and who will fight,” and achieves precise “order dispatch.”

  Distributed fire strike system. Relying on intelligent network information systems, on the one hand, it integrates multi-dimensional fire strike platforms across land, sea, air, and space, enhancing functions such as intelligent target identification and remote-controlled strike, enabling various combat modes such as remote-controlled operations, manned-unmanned collaborative operations, and flexible mobile operations; on the other hand, it can construct a low-cost fire strike platform mainly composed of low-altitude and ultra-low-altitude unmanned strike platforms such as racing drones and loitering munitions. By adding different functional combat payloads, it can closely coordinate with high-end fire strike platforms to carry out tasks such as battlefield guidance, precision strikes, and fire assessment, efficiently completing “orders”.

  Autonomous Damage Assessment System. This system, built upon reconnaissance and surveillance capabilities within the joint operations system, autonomously assesses the effectiveness of attacks on targets after the firepower platform has completed its strike. It conducts real-time, dynamic, objective, and systematic analysis and evaluation of the target’s external condition and degree of functional loss, and promptly transmits relevant information back to decision-making and command centers at all levels via video images. The assessment centers then determine “how well it went” and whether the expected damage requirements were met. If not, operational actions can be adjusted in a timely manner for supplementary strikes, providing strong support for maximizing operational effectiveness.

  The planning and implementation of “order dispatch” style precision strikes

  The “order dispatch” style of precision strike is similar to the operation of ride-hailing services. Through a series of processes such as formatted “order” generation, intelligent target matching, and autonomous route planning, it autonomously completes the “OODA” combat cycle, making its actions more efficient, its strikes more precise, and its collaboration closer.

  Real-time reporting of firepower requirements allows combat units to submit orders on demand. Reconnaissance elements distributed across different operational areas and multi-dimensional battlefield spaces are acquired through radar, optical, infrared, and technical reconnaissance methods, forming battlefield target intelligence information across a wide area and multiple sources. This information is transmitted to the battlefield information network via intelligence links, and is constantly relayed to combat units. Combat units then perform correlation processing, multi-source comparison and verification, and comprehensively compile battlefield target information to generate precise mission orders. Combat units analyze target value and connect to the decision-making platform as needed, constructing a closed-loop strike chain based on these orders, and submitting mission orders in real time, achieving dynamic optimization and precise adaptation.

  The decision-making center intelligently “dispatches” fire support missions, differentiating them from actual fire strike missions. Through the battlefield information network and relying on an intelligent mission planning system, the center can automatically analyze the mission “order” information data submitted by combat units. Based on the nature, coordinates, movement status, and threat level of battlefield targets, it automatically generates mission requirements such as the type and quantity of ammunition needed for fire strike operations, the strike method, and damage indicators, forming a fire support mission “order.” By intelligently matching the optimal fire support platform and connecting link nodes as needed, the center conducts intelligent command-based “order dispatch,” delivering the orders instantly to the standby fire support platforms.

  Optimal target matching is performed continuously, and firepower platforms swiftly “accept orders.” Multiple firepower platforms distributed across the battlefield respond rapidly to these orders via the battlefield information network. The platforms autonomously establish links with combat units, mutually verifying their identities before directly establishing a guided strike chain. They coordinate firepower strikes, adjusting strike methods and firing parameters in a timely manner based on target damage and battlefield target dynamics before conducting further strikes until the assigned mission is completed. Firepower platforms consistently adhere to the principle of “strike-relocate-strike-relocate,” completing strike missions and rapidly relocating to new positions, maintaining a state of constant readiness and receiving orders online in real time. After the mission concludes, the guided strike chain between the firepower platform and the combat unit is automatically terminated.

  Multi-source damage information acquisition and real-time assessment by the evaluation center. Utilizing a comprehensive range of long-range, intelligent, and information-based reconnaissance methods, including satellite, radar, and drone reconnaissance, multi-domain, three-dimensional reconnaissance is conducted to acquire real-time target fire damage information, providing accurate assessments for precision fire strikes. A comprehensive assessment of damage effects is performed, quantitatively and qualitatively evaluating the strike results, distinguishing between physical, functional, and systemic damage states, and promptly feeding back to the decision-making center. Based on the damage assessment results, timely adjustment suggestions are made to modify fire strike plans, optimize operational actions, and achieve precise control of fire strikes. This facilitates commanders’ accurate control of the operational process and efficient command and control of fire strike effectiveness.

現代國語:

「訂單派單」:精確打擊新樣式

引言

列寧說過,「不理解時代,就不能理解戰爭」。近年來,資訊化智慧化技術在軍事領域的廣泛運用,促進了技術與戰術深度融合,依托智能化網路資訊體系,催生出「訂單派單」式精確打擊。指揮及指揮機關可依據作戰任務格式化產生打擊清單需求,決策系統依據打擊時間、作戰空間、毀傷指標等個人化需求智慧匹配打擊平台、自主規劃行動路徑、科學選擇打擊方式,進而快速精準釋放打擊效能。

「訂單派單」式精準打擊的作戰特點

隨著武器彈藥資訊化智慧化程度不斷提升,現代作戰成本也不斷提高。如何運用有限打擊資源打出最高效費比,實現作戰效能最大化,已成為指揮員及指揮機關作戰籌劃的中心問題,「訂單派單」式精準打擊可為此提供「可行解」。

即時聚優精確釋能。現代作戰更強調對敵作戰體系進行結構性打擊破壞,透過快速且精準地釋放作戰效能來實現作戰目的。這就要求指揮官及指揮機關能夠抓住稍縱即逝時機的“窗口”,在敵未做出反應之時對其作戰體系內高價值、節點性、關鍵性目標實施打擊。傳統的「發現—引導—打擊—評估」的作戰環路耗時長,作戰效果不佳。因此,「訂單派單」式精確打擊,需要依托先進的智慧化網路資訊體系,不預先確定打擊平台,即時發布打擊目標清單,由輔助決策系統對各種武器平台的打擊性能與目標打擊毀傷預期等進行快速評估,自主分配打擊平台任務,快速連結調控多領域火力打擊力量,自主閉合殺傷鏈,對關鍵目標實施快速打擊。

多域聚能協同打擊。現代作戰精準打擊較以往火力打擊的優勢在於資訊化智能化的作戰體系,不需人工介入,依托閉合打擊鏈自主完成「偵、控、打、評」等任務,不僅能夠節省打擊成本,減少資源浪費,還能夠實現基於統一作戰標準的自適應協同。因此,「訂單派單」式精確打擊,需要分佈在各作戰領域的火力打擊力量能夠建立統一標準網格,只要一點發出需求,就能夠多點響應、全局聯動,靈活集中兵力、火力,多手段、快速多域聚能,動中確定各打擊平台打擊方向、打擊次序以及打擊方式。透過體系整合有效節約時間,對敵關鍵節點目標以及核心目標的關鍵部位實施多域精確打擊,充分發揮各作戰單元作戰效能疊加融合的整體威力。

擊要破體速戰速決。現代作戰是在多領域同步實施的“混合戰爭”,資訊、空天、智慧等新域新質力量交織影響、對抗更加明顯。這就需要作戰雙方能夠快敵一秒發現、快敵一步行動,毀癱敵作戰體系、降低敵體系運作效率。一方面,要透過找準敵體系節點,即時聚優精準打擊;另一方面,要隱藏己方企圖及打擊力量,乘敵不備快速打擊。 「訂單派單」式精確打擊能夠很好地契合這兩點需求,在網路資訊系統的支撐下,智慧融合各領域火力打擊力量,實現資訊多源感知、數據交鍊、多域協同打擊,實現「目標感知—決策指揮—火力打擊—毀傷評估」無縫高速運轉,資訊火力高度融合,快速達成作戰目的。

「訂單派單」式精確打擊的體系構成

“訂單派單”式精確打擊通過構建高效閉合打擊鏈,壓縮行動時間,提高打擊效果,使各火力打擊平台能夠更好地融入聯合火力打擊體系,並提供快速精準的戰場火力支援,其關鍵在“網”,重點在“四個”系統。

多領域平台接入網。在資訊化智慧化技術支撐下,建立以衛星通訊為骨幹的一體化資訊網系,將分佈在多維域戰場的火力打擊平台融入作戰網路建立戰場“雲”,區分不同作戰模組,建立“偵、控、打、評”等“子網雲”,並依託一體化的通訊網鏈將“子網雲”鏈入“雲端”,能夠提升火力打擊平台全局全時、動中接入、自主組網、頻譜規劃的能力,實現火力平台、分域作戰體系與聯合作戰體系的網絡互聯,以及內部打擊力量的互聯互通。

聯合偵察感知系統。依托聯合作戰體系內的各種偵察監視力量對作戰地域進行全天候、多方位、高精度戰場感知。這就要建構物理空間和邏輯空間、有形空間和無形空間泛在存在的全維域偵察感知力量系統,廣域佈設智能感知設備,形成情報數據“雲”,通過情報數據“雲”分析敵情態勢,找出敵作戰體系關鍵點以及時敏性目標,實時更新偵察信息,展現目標動態。

智能指揮決策系統。依托具備一定智能控制能力的新型指控系統,建構各類規劃分析模型,擴展情報智能處理、任務智能規劃、指令自動生成、行動精確控制等功能,擴充完善目標特徵庫、決策知識庫、行動預案庫等資料庫,強化戰鬥組織與實施過程中的任務規劃、行動決策和控制的系統支撐能力,提昇決定決策和戰鬥能力,明確怎麼打」。

分佈火力打擊系統。依托智慧網路資訊系統,一方面,融入陸、海、空、天等多維域火力打擊平台,強化目標智慧識別、遠程遙控打擊等功能,實現作戰單元遠程遙控作戰、有人無人協同作戰、靈活機動作戰等多種作戰方式;另一方面,可建構以穿越機、巡飛彈等低空超低空無人打擊平台為主的低成本火力打擊平台,透過加掛不同功能作戰載重,與高端火力打擊平台密切協同來實施戰場引導、精確打擊、火力評估等任務,高效完成「訂單」。

自主毀傷評估系統。依托聯合作戰體系內的偵察監視力量建構毀傷評估系統,在火力平台打擊完畢後,自主對目標實施打擊效果查核。主要就目標的外觀狀態、功能喪失程度等進行實時、動態、客觀、系統的分析和評估,並及時通過視頻圖像的方式將相關信息回傳至各級決策指揮中心,由評估中心判斷“打得怎麼樣”,是否達到預期毀傷要求。如不符合,可適時調控作戰行動,進行補充打擊,為最大限度釋放作戰效能提供強力支撐。

「訂單派單」式精確打擊的規劃實施

「訂單派單」式精準打擊就如同叫車的運作方式一樣,透過格式化「訂單」產生、智慧化物件配對、自主化路徑規劃等一系列流程,自主完成「OODA」作戰循環,其行動更為高效、打擊更為精準、協同更為密切。

即時提報火力需求,作戰單元按需「提單」。分佈在不同作戰地域、多維戰場空間的偵察要素,透過雷達、光學、紅外線和技術偵察等方式,廣域多源偵獲形成戰場目標情報資訊。這些資訊依托情報鏈路接入戰場資訊網,隨時隨地被傳至作戰單元,由作戰單元進行關聯處理、多方對比印證,綜合整編戰場目標訊息,產生精確的任務「訂單」。作戰單元分析目標價值按需連通決策平台,建構“訂單”式閉合打擊鏈,實時提報任務“訂單”,實現動中集優、精準適配。

區分火力打擊任務,決策中心智能「派單」。決策中心透過戰場資訊網,依托智能任務規劃系統,能夠自動解析作戰單元提報的任務「訂單」資訊數據,根據戰場目標性質、座標方位、移動狀態、威脅程度等,自動產生火力打擊行動所需彈種彈量、打擊方式和毀傷指標等任務要求,形成火力支援任務「訂單」,透過智慧服務火力平台,按需使用火力平台節點,按需通路,支援任務「訂單」。

全時匹配最優目標,火力平台迅即「接單」。多點分佈在戰場區域內的火力平台,透過戰場資訊網迅即響應“接單”,火力平台與作戰單元之間自主建鏈,相互核驗“身份”後直接建立引導打擊鏈,協同配合火力打擊行動,並根據打擊後目標毀傷情況以及戰場目標動態,及時調整打擊方式、射擊參數等,而後再次實施火力打擊,直至完成“派單”任務。火力平台始終遵循「打擊—轉移—打擊—轉移」的原則,完成打擊任務,迅即轉移陣地,全時保持待戰狀態,即時在線接收「訂單」。任務結束後,火力平台與作戰單元之間的引導打擊鏈會自動取消。

多源獲取毀傷訊息,評估中心即時「評單」。綜合運用衛星偵察、雷達偵察、無人機偵察等遠距離資訊化智慧化偵察手段,實施多域立體偵察,即時取得目標的火力毀傷訊息,為進行精確火力打擊提供準確評估。綜合判定毀傷效果,對打擊效果進行定量和定性評估,區分目標物理、功能和系統三種毀傷狀態,及時回饋至決策中心。根據打擊目標的毀傷評估結果,適時提出調控建議,調整火力打擊計劃,優化作戰行動,實現對火力打擊的精確控制,便於指揮員精準把控作戰進程,達成對火力打擊效能的高效指揮控制。 (高凱 陳良)

中國原創軍事資源:https://www.news.cn/milpro/20250123/8f71783cff6a4284a43871e996bc31888a7/c.html

Analysis of Chinese Military Development Trend of Collaborative Combat in the Era of Intelligentization

智能化時代中國協同作戰軍事發展趨勢分析

現代英語:

Operational coordination is a key element in modern warfare for achieving system-of-systems operations, unleashing overall effectiveness, and achieving operational objectives. In recent years, with breakthroughs in military science and technology, particularly artificial intelligence, the empowering and efficiency-enhancing role of technology has become increasingly prominent. While profoundly changing the nature of warfare and operational styles, it has also given rise to a new operational coordination model—autonomous coordination. Currently, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development of autonomous coordination, and thus accelerate the transformation and upgrading of operational methods.

Transforming towards intelligent empowerment and autonomous collaboration

Future warfare will be a comprehensive confrontation between opposing sides employing “human + intelligent equipment.” Limited by military technology, system platforms, and combat capabilities, traditional combat coordination, with its fixed cycles and low fault tolerance, is no longer suitable for the rapidly changing modern battlefield. With the powerful support of advanced technologies such as artificial intelligence and big data, the autonomy and automation of combat coordination will be greatly enhanced, and intelligently empowered autonomous coordination will become key to victory.

Wide-area ubiquitous collaboration. In recent years, the profound development of communication and intelligent technologies, along with the accumulation and superposition of data, algorithms, and computing power, has promoted the interconnection and aggregation of people, machines, things, and energy. This has extended the military Internet of Things (IoT) to many fields such as situational awareness, command and control, information and fire strikes, and logistical support. While promoting the iterative upgrading of combat capabilities, it has also provided more options for modern combat collaboration. It is foreseeable that the military IoT will shine on the future battlefield, serving not only as a key infrastructure supporting combat operations but also as a crucial hub for maintaining combat collaboration. Based on this, ubiquitous warfare characterized by wide-area dispersion of forces, modular organizational structures, and highly coordinated actions will emerge, characterized by being omnipresent, ubiquitous, and autonomous without control.

Deep human-machine collaboration. In the Nagorno-Karabakh conflict, the Azerbaijani army leveraged its drone advantage to build a strong battlefield advantage, marking the beginning of “robot warfare.” In future warfare, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are rapidly moving from back-end support to the front lines, becoming the “protagonists” of the battlefield. Compared to traditional combat collaboration, manned-unmanned intelligent collaboration exhibits characteristics such as decentralized command, de-division of labor in combat processes, advanced skill operation, and blurred lines between the front and rear, placing greater emphasis on human-machine collaboration and algorithmic victory. Especially in recent years, intelligent unmanned swarms have emerged as a powerful force, strongly impacting the modern battlefield. Faced with these new situations and changes, we should comprehensively utilize swarm formation algorithms, formation control algorithms, and complex scenario optimization algorithms to promote networked communication and intelligent collaboration between unmanned and manned systems, facilitating the integrated operation of the intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerating the generation of comprehensive precision-based combat capabilities.

Data-driven collaboration. The traditional operational collaboration model under hierarchical command is no longer suitable for the multi-dimensional and fast-paced nature of modern warfare. In future warfare, intelligence is key, and data is king. The deep integration of big data, cloud computing, and artificial intelligence enables the storage, analysis, fusion, and application of massive amounts of battlefield data, making command and control more scientific and operational collaboration more efficient. Leveraging powerful resource integration, computing power, and data analysis capabilities, battlefield intelligence can be rapidly integrated, battlefield situation awareness can be achieved in real time, collaborative plans can be efficiently formulated, and threat levels can be assessed instantly. This allows for the integrated planning of predicting combat actions, analyzing typical scenarios, deploying combat forces, and allocating combat resources, thereby comprehensively improving the overall effectiveness of command and control, firepower strikes, and integrated support, and driving a revolutionary change in operational collaboration.

Towards Multi-Domain Collaborative Autonomous Evolution

Future warfare will feature complex and diverse participating forces, a mix of advanced and less sophisticated weaponry, and a hybrid application of combat methods. It will exhibit distinct characteristics such as intelligent, dynamically decentralized command and control, intelligent and wide-area deployment of combat forces, and intelligent allocation and dynamic differentiation of combat missions. It is foreseeable that multi-domain联动 (interconnected and autonomous) collaboration will become a crucial component of operational coordination.

System self-restructuring and collaboration. Future warfare will involve a multi-domain battlefield space that combines virtual and real elements, with diverse military operations interacting and constraints and collaboration shifting randomly. Only an engineered and systematic organizational model can adapt to the complex needs of multi-domain collaboration. The essence of this collaboration model is to form a wide-area holographic support architecture for system self-restructuring and collaboration. Specifically, this means emphasizing the concept of system-of-systems warfare, comprehensively resolving practical contradictions in organizational system construction, institutional mechanism establishment, and collaborative rule formulation; focusing more on the system integration effect, achieving beyond-visual-range and cross-domain collaborative operations for combat units across a wide area; emphasizing efficient and flexible command, refining command relationships and clarifying command responsibilities from multiple dimensions; and paying more attention to data-driven precision, integrating network system platforms at all levels to establish a dynamic optimization network for reconnaissance, control, strike, assessment, and support missions. Once this collaboration model is formed, it will undoubtedly be able to analyze and predict typical confrontation scenarios based on the operational environment, adversaries, and missions, dynamically select action collaboration links, and plan operational actions across various domains in an integrated manner.

Tactical Adaptive Collaboration. Recent local wars have repeatedly demonstrated that the complexity and systemic nature of operational collaboration have increased exponentially due to the extension of operational data and information sharing to the tactical level. Only by achieving efficient processing, integration, and sharing of operational data and information can adaptive and autonomous collaboration among operational users be guaranteed. This collaborative model places greater emphasis on scientific planning and innovative methods to form a universal battlefield situation map with full-dimensional coverage. It supports hierarchical, cross-level, and cross-domain sharing and collaboration among users deployed across a wide area, enabling command elements and operational units to jointly perceive the battlefield situation and ensuring self-synchronous operations within a unified strategic intent, operational guidance, and collaborative planning framework. This collaborative model further emphasizes vertical integration of strategy, operations, and tactics, and horizontal integration of land, sea, air, space, and cyberspace. It provides powerful information sharing services in detection, early warning, and surveillance, and promotes the extension of operational-level joint operations to tactical-level joint operations through information media. This collaborative model further highlights the standardized operation of command and control, and the use of cutting-edge technologies such as big data and cloud computing to promote the connection of operational command levels, cross-domain linkage, element interaction, and situational awareness sharing. It achieves intelligent collaboration among command systems, weapon platforms, and sensors, and implements the key to victory through speed.

Complementary and Synergistic Advantages. In future warfare, operations in space, cyberspace, and other domains will be deeply integrated into the traditional battlefield, requiring higher standards and more stringent planning and design for the overall operation. Only by clarifying the complementary relationships and proportions of input and output across different operational domains, and then outlining the operational relationships for cross-domain collaboration, can we bridge the gaps in domain operations and achieve multi-dimensional battlefield complementarity. Essentially, this is also a concentrated reflection of the concept of war effectiveness. From another perspective, in a war, when local battlefield advantages are not obvious or harbor hidden dangers, overall victory can still be achieved by gaining local advantages in other domains to compensate and achieve comprehensive superiority. In future informationized and intelligent warfare, this will be even more prominent and complex, requiring comprehensive strategies targeting military, political, public opinion, legal, psychological, and diplomatic fields, leveraging each other to fully unleash maximum operational effectiveness; requiring close cooperation between traditional and new-type forces, building an integrated operational system based on network information systems, and maximizing overall effectiveness through synergistic advantages.

Towards Dynamic Coupling and Autonomous Collaborative Transition

In the era of artificial intelligence, with the profound changes in information technology and weaponry, combat operations place greater emphasis on breaking down traditional force formations, integrating the functions of traditional platforms, and dismantling traditional offensive and defensive boundaries, so as to achieve all-weather dynamic control of combat operations through dynamic coupling and autonomous collaboration.

Dynamic convergence and coordination. Future warfare will see more intense adversarial confrontations and more volatile battlefield situations, rendering the static, extensive, and methodical coordination methods of the past inadequate. It is imperative to pay close attention to key operational nodes, closely monitoring the overall situation, anchoring operational tasks, and focusing on operational objectives. This requires assessing the situation, seizing opportunities, and swiftly changing coordination partners, flexibly adjusting coordination strategies, and autonomously negotiating coordinated actions based on predetermined coordination rules. It is important to note that this coordination method based on key operational nodes particularly emphasizes the ability of combat forces to overcome structural barriers and organically aggregate operational effectiveness. Through the flexible structure of the coordination organization, conflicts can be self-coupled and autonomously resolved, gaps in cooperation can be bridged, and the precise release of the combined forces of the operational system can be promoted.

Dynamic control and coordination. The battlefield situation in future warfare is constantly changing, and the course of operations often deviates from the predetermined plan, resulting in significant uncertainty. This implicitly requires us to break through traditional operational thinking and closely monitor changes in the battlefield situation to implement real-time, flexible, and autonomous coordination of the operational process. This coordination method, through real-time assessment of changes in the battlefield situation, the extent of damage to enemy targets, and the scale and effectiveness of operational operations, enables rapid command and control and precise coordination in areas such as force projection, fire support, and comprehensive support, ensuring that we always maintain the initiative on the battlefield. This coordination method requires relying on advanced intelligent auxiliary means to quickly divide the operational phases, predict the duration of operational operations, analyze the overall deployment of operational forces, calculate the allocation of operational resources, and accordingly precisely control the decision-making cycle and operational rhythm, accurately coordinating troop actions and the operational process to ensure effective response to various randomness and uncertainties in combat.

Dynamic Response and Coordination. The unpredictable nature of future warfare, coupled with the profound effects of asymmetric warfare, hybrid games, and system emergence, means that planned operations will inevitably encounter various unforeseen circumstances during execution. Therefore, dynamic coordination in response to unforeseen situations is an effective strategy for resolving these contradictions. This coordination method emphasizes dynamically adjusting actions based on different situations. When unforeseen circumstances arise in a local battlefield or operation, with minimal impact on the overall operation and sufficient time, the operational system automatically responds, partially adjusting operational deployments and actions to ensure the achievement of expected operational objectives. When multiple urgent and non-urgent situations coexist on the battlefield and partially affect the overall situation, operations are dynamically and instantly coordinated according to the principle of prioritizing urgent matters, pushing the battle situation in our favor. When multiple major unexpected situations or unforeseen changes occur in the overall battle situation, coordination is carried out according to the principle of prioritizing primary directions and then secondary directions, rapidly generating new coordinated response measures to effectively address various unforeseen battlefield situations. (Wu Siliang, Jia Chunjie, Hou Yonghong)

Source: PLA Daily

(Editors: Wang Xiaoxiao, Ren Yilin)

現代國語:

2025年04月01日08:59 |

小字号

引言

作战协同是现代战争中实现体系作战、释放整体效能、达成作战目标的关键要素。近年来,随着以人工智能为代表的军事科学技术取得突破性进展,科技的赋能增效作用进一步凸显,在深刻改变战争形态、作战样式的同时,也催生出一种新的作战协同模式——自主协同。当前,应科学把握新军事革命的机遇挑战,动态统筹好自主协同发展走向,从而推动作战方式加速转型升级。

向智能赋能自主协同蜕变

未来战争将是对抗双方采用“人+智能装备”展开的全方位对抗。受军事技术、系统平台、作战能力等限制,传统作战协同因为存在周期固化、容错率低等局限,已难以适应战机转瞬即逝的现代战场。在人工智能、大数据等先进技术手段的强力支撑下,作战协同的自主性、自动化水平将极大提升,智能赋能下的自主协同亦将成为克敌制胜的关键。

广域泛在协同。近年来,通信技术、智能技术的深度发展,数据、算法、算力的积累叠加,促进了人、机、物、能的互联聚合,将军事物联网延伸扩展至态势感知、指挥控制、信火打击、后装保障等诸多领域,在促进作战能力迭代升级的同时,也为现代作战协同提供了更多选项。可以预见,军事物联网将在未来战场大放异彩,不仅是支撑作战行动的关键性基础设施,也是维系作战协同的关节枢纽。以此为依托,将催生出力量广域分散、组织模块构成、行动高度协同的泛在式作战,无时不在、无处不在、无控自主。

人机深度协同。纳卡冲突中,阿塞拜疆军队凭借无人机优势构建起强大战场优势,某种程度也宣告“机器人战争”登场。未来战争,无人机、无人车、无人舰等无人作战力量,正加速从后台支援保障走向一线作战前台,开始担当战场“主角”。较之传统作战协同,有人无人智能协同呈现出作战指挥“去中心化”、作战过程“去分工化”、技能操作高端化、前沿与后方模糊化等特点,更加强调人机协同、算法取胜。尤其是近年来,智能无人集群异军突起,开始强烈冲击现代战场。面对这些新情况新变化,应统筹运用集群编队算法、队形控制算法以及复杂场景优化算法等,推动无人与有人组网通信、智能协同,促进情报链、指挥链、机动链、打击链和保障链一体运转,加快生成精确制敌综合作战能力。

数智驱动协同。逐层递进指挥下的传统作战协同模式,已难以适应现代战争的多维度快节奏。未来战争,智能为要,数据为王。大数据、云计算、人工智能等深度融合,实现了对海量战场数据的存储、分析、融合和运用,从而使得指挥控制更加科学、作战协同更加高效。借助强大的资源整合、计算处理和数据分析能力,可以快速融合战场情报、实时感知战场态势、高效制订协同计划、瞬时评估威胁等级,将预测作战行动、解剖典型场景、布势作战力量和配置作战资源一体统筹,从而全面提升指挥控制、火力打击、综合保障等方面的综合质效,推动作战协同革命性变革。

向多域联动自主协同演进

未来战争,参战力量复杂多元、武器装备高低搭配、作战方法混合运用,呈现作战指挥智能动态分散、作战力量智联广域部署、作战任务智配动态区分等鲜明特征。可以预见,多域联动自主协同将成为作战协同的重要构成。

体系自重塑协同。未来战争多域战场空间虚实结合、多样军事行动交互作用,约束与协作随机转化,只有采取工程化、系统化的组织模式,才能适应庞杂的多域协同需要。这种协同模式,其实质是要形成体系自重塑协同的广域全息支撑架构。具体来看,就是更加突出体系作战理念,从整体上破解组织体系构建、制度机制设立、协同规则制订等现实矛盾;更加注重体系融合效应,从广域上实现作战单元超视距作战、跨域协同作战;更加强调高效灵活指挥,从诸维度细化指挥关系、厘清指挥权责;更加关注数据精准驱动,从各层级整合网络系统平台,建立侦控打评保任务动态优化网。这种协同模式一旦形成,无疑能够针对作战环境、作战对手和作战任务等,研判预测典型对抗态势场景,动态选择行动协同链路,一体规划各领域作战行动。

战术自适应协同。近年来的局部战争冲突一再表明,由于作战数据信息向战术层共享应用延伸,作战协同的复杂性系统性呈指数级跃升。只有实现作战数据信息的高效处理、融合共享,才能保证作战用户间自适应、自主化协同。这种协同模式,更加注重科学规划、创新手段,形成全维覆盖的通用战场态势图,支持广域分散部署的各级各类用户间按级、越级、跨域共享协作,实现指挥要素、作战单元共同感知战场态势,确保在统一的战略意图、战役指导、协同计划框架内自同步作战。这种协同模式,更加强调纵向贯通战略、战役、战术,横向融汇陆海空天电,在探测、预警、监视等方面提供强力信息共享服务,依托信息介质推动战役级联合向战术级联合延伸。这种协同模式,更加突出指挥运行、力量运用等的标准化运行,借助大数据、云计算等前沿技术推动作战指挥层级衔接、跨域联动、要素交互、态势共享,实现指挥系统、武器平台、传感器间的智能化协同,落地落实以快制慢制胜关键。

优势智互补协同。未来战争,太空、网络等领域作战行动深度融入传统战场空间,要求对作战全局实施更高标准更高要求的规划设计。只有搞清各作战域优势互补关联、投入成效比重,进而梳理出跨领域协同的运行关系,才能弥合领域作战缝隙,实现多维战场优势互补。从本质上看,这也是战争效益观的集中反映。从另一视角来看,一场战争,当战场局部优势不明显或暗藏危机时,通过在其他领域取得局部优势予以弥补并达成综合优势,同样可以实现整体制胜目的。未来信息化智能化战争,这一点将体现得更为突出也更为复杂,要求针对军事、政治、舆论、法理、心理、外交等领域综合施策,相互借力充分释放最大作战效能;要求传统力量、新质力量密切配合,依托网络信息体系打造一体化作战体系,通过优势协同实现整体效能最大化。

向动态耦合自主协同变迁

人工智能时代,伴随信息技术和武器装备的深度变革,作战行动更加强调打散传统力量编组、打通传统平台功能、打破传统攻防界限,通过动态耦合自主协同实现对作战行动的全时动态可控。

动态聚点协同。未来战争敌我对抗更加激烈、战场态势更为多变,以往那种静态粗放、按部就班的协同方式将难以适应。必须对作战的关键节点给予高度关注,在紧盯整体态势、锚定作战任务、聚焦作战目标的基础上,审时度势把握战机,依据预定的协同规则,敏捷变换协同对象、灵活调整协同策略、自主协商协同行动。需要注意的是,这种基于关键作战节点的协同方式,尤为强调作战力量跨越结构壁垒、有机聚合作战效能,通过协同组织的弹性结构,自耦合自主化消解矛盾冲突、弥合作战缝隙,促进作战体系合力精准释放。

动态调控协同。未来战争战场态势瞬息万变,作战进程往往难以按照预定作战计划推进,作战行动有着极大的不确定性。在无形中,这也要求我们突破传统作战思维,紧盯战场态势变化对作战进程实施即时灵活自主协同。这种协同方式,通过实时评估战场态势变化、敌方目标毁伤程度、作战行动规模效益等,从而在力量投送、火力支援、综合保障等方面实现快速指控、精准协同,始终把握战场主动权。这种协同方式,要求依托智能辅助先进手段,快速切分作战阶段,预测作战行动持续时间,研判作战力量整体布势,计算作战行动资源分配,据此精准控制决策周期和作战节奏,精准协调部队行动和作战进程,确保能够有效应对作战中的各种随机性、不确定性。

动态响应协同。未来战争作战机理变化莫测,非对称作战、混合博弈、体系涌现等的深层作用,使得预定作战方案计划在执行中必然遇到各类突发情况。为此,针对突发情况动态协同是解决上述矛盾问题的有效策略。这种协同方式,更加强调依据不同情况动态调整协同行动。当局部战场或局部行动出现突发情况,对作战全局影响不大且时间充裕时,作战体系自动响应,部分调整作战部署和作战行动,确保实现预期作战目标。当战场出现多个急缓并存情况且部分影响战场态势时,根据具体情况按照先急后缓原则动态即时协调作战行动,推动战局向着有利于我的方向发展。当战局整体发展出现多个重大意外情况或出现未曾预想的变化时,按先主要方向、后次要方向的原则展开协同,快速生成新的协同处置措施,有效应对战场各类突发情况。(吴思亮、贾春杰、侯永红)

来源:解放军报

(责编:王潇潇、任一林)

中國原創軍事資源:https://military.people.com.cn/n1/2025/0401/c1011-40451255888.html

Chinese Military Research on Conceptual System-based Superior Warfare – How to Fight in Information Warfare System Operations? Analysis of Nine Typical Combat Styles

中國軍事體系優勢作戰概念研究-資訊化作戰體系如何作戰?九種典型作戰風格分析

現代英語:

System “Gathering Excellent War” It is “systematic warfare in information warfare. It does not necessarily refer to a certain combat style, but is composed of multiple combat styles and tactics” “combination boxing”, or combat style group . Emphasizes that, depending on the combat mission, combat opponent and the changing battlefield situation, any appropriate means and style of combat can be used flexibly to form combat advantages as long as it is conducive to forming comparative advantages and achieving system victory. In the specific implementation process of “system-based superior warfare”, these specific combat styles and operational tactics can not only be organized and implemented separately as part of joint all-domain operations, but also emphasize fighting “combination boxing”, using multiple strategies simultaneously, and winning as a whole. 


       In order to better understand its core connotation, this article lists Nine typical combat styles including overall deterrence warfare, electromagnetic disturbance warfare, network penetration warfare, and cognitive control disturbance warfare And analyze .

       System “Juyouzhan” ――combination boxing that flexibly uses multiple combat styles“
        1. Overall deterrence war: Emphasis on multi-domain joint deterrence; Three elements should be present in the implementation of an overall deterrent war ; Strong overall strength is central to achieving effective deterrence
        2. Electromagnetic Disturbance Warfare : The key to competing for information advantage; On the combined means approach, information empowerment is achieved through “connection + sharing” ; Crack down on effective tactics for unmanned cluster operations
       3. Cyber-sabotage: Soft “kill” is the main focus, combining soft and hard, focusing on breaking the net and reducing energy failure
       4. Cognitive scrambling: Control the cognitive power of situational awareness and compete for information advantage; control the decision-making power of command and compete for decision-making advantage; control “brain” power and seize the advantage of brain control
       5. Agile mobile warfare: High-efficiency and rapid decision-making; high-efficiency formation of a favorable combat situation; high-efficiency and instant gathering of combat forces; agile mobile warfare is an innovative development of traditional mobile warfare
       6. Swarm autonomous warfare: It is conducive to forming a system advantage to suppress the enemy; it is conducive to enhancing the combat effect; it is conducive to falling into the enemy’s combat dilemma
       7. Point-and-kill War: Achieving an efficient cost ratio for operations; targeting key nodes is an important option; large-scale system support is a basic condition; it is inseparable from precise intelligence support
       8. Supply-breaking: The supply guarantee chain has a huge impact on the overall combat situation; the center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain; the focus is on choosing the right time and making full use of tactics
       9. System “paralysis battle:” The objectives of the operation are to make the enemy combat system run out of order; to strike the key nodes of the combat system with heavy blows; and to carry out soft strikes against the enemy combat system

        For learning reference only, welcome to communicate and correct! Article views do not represent the position of this body
       The concept of combat was first proposed as a new combat style. Innovative combat styles are a core element in the development of combat concepts. It can be said that system-gathering battle is a general term for a series of specific tactics. The following nine typical combat styles constitute the tactical system of system-gathering and superior warfare. They are: One is Overall deterrence warfare, actively organize static power display and deterrence actions in system excellence battles, and strive to defeat others without fighting or small battles; Two is Electromagnetic disturbance warfare uses various combat methods and action styles such as electronic detection, attack and defense to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize the right to control information, and then win the initiative in combat; Three is In cyber attack warfare, various means such as soft strikes and hard destruction are used to defeat the enemy’s command network, intelligence network, communication network, logistics supply network, and disrupt the enemy’s command and support; Four is Cognitively Controlled Disturbance. Form a controlling advantage in the cognitive space through information attacks, public opinion attacks, and brain attacks; Five is Agile mobile warfare. Quickly adjust the deployment of troops and weapons, quickly gather capabilities on the battlefield, and seize combat opportunities; Six is Swarm autonomous warfare. Extensively use unmanned combat methods such as “bee swarms”, “wolf swarms”, and “fish swarms” to independently organize actions and distributed attacks to achieve joint human-machine victory; Seven is Pointkill. Accurately obtain intelligence, carry out multi-domain precision strikes, strive to shake the overall situation with one point, and maximize combat benefits; Eight is Supply-breaking. Organize an elite force to attack enemy logistics supplies and equipment supply supply chains, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle; Nine is System “paralysis battle”. A variety of means, such as breaking the net, exercising, and hitting nodes, are used to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken its functions.


       1. Overall deterrence
       Overall deterrence warfare refers to actively organizing static power display and deterrence actions in the system’s battle for excellence, and striving to defeat others without fighting or small battles. Sun Tzu said: “Subduing one’s troops without fighting is a good thing.” Deterrence and war are the two main forms of military activity. And “deterrence” is mainly the act of showing determination and will to potential opponents by showing strength or threatening to use strong strength to deter opponents from action. It can be said that the overall deterrence war in the system-based battle of excellence is an important means or tactic to achieve the goal of “stopping” human troops without fighting. Clausewitz emphasized that the first rule of strategy is to be as strong as possible, first in general, and then in key locations. Modern warfare is system-to-system confrontation. The overall deterrence war under informationized local warfare requires not only traditional deterrence methods and capabilities on land, sea, air and space, but also new deterrence methods and capabilities such as space deterrence, electromagnetic deterrence, and network deterrence. It also requires an overall deterrence that shows the overall strength of the country. Especially with the rapid development of advanced technologies such as information technology, the technological revolution, industrial revolution, and military revolution have accelerated their integration, and strategic competitiveness, social productivity, and military combat effectiveness have become more closely coupled. Winning the information war is to a greater extent a contest between the will of the country and the overall strength of the country. To contain the war, we must first act as a deterrent to our opponents in terms of overall strength.


       1.1 Emphasis on multi-domain joint deterrence
       Means of deterrence typically include both nuclear and conventional deterrence. In the “system-based battle for excellence”, the overall deterrence war is implemented, aiming to comprehensively use conventional deterrence methods across the land, sea, air and space power grids to achieve the purpose of deterrence. Especially with the application of information network technology and space and directed energy technology in the military, space, networks, electromagnetic weapons, etc. have become new means of deterrence. Space deterrence, It mainly uses equipment such as rapid response electromagnetic orbit weapons, space-to-ground networked anti-navigation and positioning service systems, large elliptical orbit laser weapons, and high-power microwave weapons to threaten and attack the opponent’s space targets and form a deterrent against enemy space information “interference blocking”. Cyber deterrence mainly uses cyberspace situational awareness and attack equipment to threaten and attack the opponent’s military network and other critical information infrastructure to achieve deterrence against the enemy. Electromagnetic deterrence mainly uses electromagnetic spectrum combat systems to threaten and attack enemy detection, navigation, communications and other information weapons and equipment systems to achieve deafening and blinding deterrence against the enemy.

1.2 The implementation of overall deterrence should have three major elements
       Implementing an overall deterrent war and achieving the desired effect of deterrence usually requires three main elements: One is strength. The deterrent must have the reliable ability or strength to frighten and fear the opponent; the second is determination and will. The deterrent party must dare to use this capability when necessary; third, to transmit information clearly. The deterring party must make the ability to act and the determination clearly known to the other party accurately and effectively.


       Historically, the criteria for judging deterrent strength have varied in three main ways: First, the active military force; second, the combined national strength or war potential; and third, the total number of main battle weapons and equipment. For quite a long period of history, the number of troops was deterrence, and the strength of military strength depended directly on the size of the active military, the amount of vital weapons and equipment, and non-material factors such as the morale of the army’s training organization. After the twentieth century, with the expansion of the scale of warfare, deterrence power has become less limited to the strength of the military and the quantity of vital weapons and equipment, but is determined by the nation’s war potential, which includes economic power, scientific and technological power, energy resources, and even population size, among others. The overall deterrence war in the system’s “gathering and excellence war”, the formation of its deterrence strength is mainly based on the network information system, as well as the joint global deterrence capability formed under the integration of the system.


       1.3 Strong overall strength is the core of achieving effective deterrence
       The development of information technology and its widespread penetration and application in the military sector provide favourable conditions for building overall strength and achieving overall deterrence. System “Juyouzhan” is supported by the network information system, making full use of the permeability and connectivity of information technology, not only integrating various combat forces, combat elements, and combat units into an organic whole, realizing the military system combat advantages, but also integrating Various fields related to war and national mobilization, such as national politics, economy, diplomacy, finance, transportation, and energy, are connected and integrated into the national war mobilization system Gather all forces and resources to form an overall synergy, realize the emergence effect of system capabilities, show the overall strength advantage, and form a powerful invisible deterrent of united efforts and sharing the same hatred Create a situation that makes the enemy “powerful but unable to act ”“able to act but ineffective”, and play a role in containing and winning the war.
       In the “overall deterrence war”, the scope of national war mobilization will be wider, not limited to a certain direction or region, but throughout the country and even the relevant regions of the world; mobilization time will be faster, and using networks and information systems, mobilization and action information can be quickly transmitted to everyone and every node at the first time; action coordination and synergy will be more consistent, and all forces distributed in various regions can be based on the same situation Under the same order, the operation is unified at almost the same time, which greatly improves the efficiency of operational synergy; resources are more fully utilized, and various war resources based on the Internet can quickly realize the conversion between peacetime and wartime, military-civilian conversion, and achieve integrated front and rear guarantees and precise guarantees.


       2. Electromagnetic Disturbance Warfare
       Electromagnetic disturbance warfare refers to the flexible use of electronic detection, attack and defense and other combat methods and action styles to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize information control rights, and then win operational initiative.


       2.1 The key to competing for information advantage Informatization local warfare is highly dependent on the electromagnetic spectrum, the Control and counter-control of electromagnetic space have become the focus of competition for information rights. Organize and carry out electromagnetic obstruction warfare, mainly to destroy the enemy’s electromagnetic spectrum and protect one’s own side from destruction. The electromagnetic spectrum is the main carrier for transmitting information. The use of electromagnetic means to disrupt the enemy’s electromagnetic spectrum will effectively reduce the enemy’s information combat capabilities and enable our own side to ensure the rapid and effective flow of information in the scenario of ownership of information rights, driving command flow, action flow, and material flow through information flow, energy flow, and then have the dominance and initiative in combat.


       2.2 The basic focus is to implement electromagnetic disturbance warfare in the battle to deactivate the enemy’s combat system. It is mainly aimed at the enemy’s dependence on electromagnetic space. At the same time, in order to ensure its own effective use of electromagnetic space, it organizes various electronic reconnaissance and interference, attack, defense and support forces to attack enemy communication networks, radar networks, computer networks and command centers, communication hubs, radar stations, etc Computer network nodes, global navigation and positioning systems, space link systems such as the “Heaven and Earth Integrated Internet”, and various other frequency-using weapons and equipment carry out interference and attacks, block and destroy their communication and data transmission, and destroy the enemy’s combat system. “Connection” and “sharing” structural center of gravity provide support for seizing information control and electromagnetic control from the root, thereby weakening the enemy’s command and control capabilities Deactivating and disabling the enemy’s entire combat system.


       2.3 Crack effective tactics for unmanned cluster operations
     “Unmanned autonomous group operations such as swarms ”“wolves ”“fishes” are important features of information-based local warfare with intelligent characteristics. The various unmanned autonomous clusters are large in number, diverse in type, and complex in characteristics, and each individual can complement each other and play a role in replacing each other. It will be very difficult to intercept and damage the entire unmanned cluster. However, from a technical point of view, for unmanned combat clusters to achieve effective synergy, each individual must share and interact with each other. Once the communication coordination between unmanned clusters is interfered with, it will be impossible to share battlefield posture and information, and will not be able to coordinate actions with each other, making it difficult to achieve the combat effectiveness it deserves. This gives the other party an opportunity to implement interception of communications and electromagnetic interference. Therefore, the implementation of electromagnetic spectrum warfare, interference and attacks on the information and communication networks of unmanned clusters, and the destruction of their information sharing and interaction will make it impossible for each individual in the unmanned cluster to achieve effective synergy and thus lose its operational capabilities.


       3. Cyber-sabotage
       Cyber-blowout, It refers to military confrontation operations that comprehensively use technologies such as networks and computers and other effective means to control information and information networks. It is a major combat style of cyberspace operations and competition for network control. Its main combat operations are both soft-kill and hard-destroy, focusing on soft and combining soft and hard. Among them, soft kill is mainly a cyber attack, that is, it comprehensively uses blocking attacks, virus attacks and other means to block and attack enemy information networks, command systems, weapon platforms, etc., making it difficult for enemy networks, command information systems, etc. to operate effectively or even paralyze; hard destruction mainly uses precision fire strikes, high-energy microwaves, electromagnetic pulses, and anti-radiation attacks to paralyze and destroy enemy information network physical facilities Destroy enemy combat and weapons and equipment entities.
       The important thing is to “break the net and reduce energy failure”. Organizing a cyber attack in a “system-based battle of excellence” is to target the weaknesses of the combat opponent’s military information network, use the advantages of the system to organize various cyber attack forces, and conduct combat command networks, reconnaissance intelligence networks, communication networks and even logistics throughout the entire operation. Supply networks, etc., continue to carry out soft killing and hard destruction operations to destroy the enemy’s network system The overall function of the enemy’s combat system is reduced or even disabled. It mainly targets core targets such as the enemy’s basic information network, intelligence network, command network, and support network, and implements a series of combat operations such as network-to-electronics coordinated attacks, deception and confusion, link blocking, and takeover control, so that the enemy’s intelligent combat network system becomes incapacitated and ineffective, achieving a critical victory that paralyzes the enemy system.


      4. Cognitively Controlled Disturbance Warfare
      Cognitive interference control war refers to interfering with, destroying or controlling the enemy’s thinking and cognition through information attacks, public opinion attacks, and brain attacks in the system optimization war, so that the enemy cannot make correct judgments and decisions, thereby controlling the enemy in cognitive space. form a controlling advantage.
      Cognitive domains, That is, “human thinking space and consciousness space are areas that have a critical impact on combat decision-making and judgment”. The development of information technology, especially artificial intelligence technology, and its widespread application in the military field have expanded the battle of war from physical space and information space to cognitive space, making cognitive space a completely new combat domain. With the development of information and intelligent technology and its widespread and in-depth application in the military field, the Human-machine intelligence tends to converge This has made the status of cognition in intelligent warfare more prominent, and the cognitive field has gradually become an important battlefield. The right to control cognition has become a key element of future battlefield control. Fighting for cognitive control has become an important combat style for winning information-based local warfare operations with intelligent characteristics.


       4.1 Control the cognitive rights of situational awareness and compete for information advantages
       In the system’s “excellence battle”, information flow drives the flow of matter and energy, and information advantage determines decision-making advantage. Rapid and accurate knowledge of intelligence information and battlefield situations has an important impact on seizing command and decision-making advantages. Therefore, when organizing and implementing system-based battle gathering, we must make full use of intelligent technology and big data technology to conduct comprehensive analysis and judgment on massive intelligence information data, mine and extract the required intelligence information, and achieve more accurate and faster understanding of battlefield situations and combat environments. Cognition ensures that the enemy is discovered first and the enemy is recognized first from the source. While removing one’s own side “the fog of war”, create “the fog” for the opponent. Therefore, in order to compete for cognitive rights, we must not only control and process information before the enemy, but also take measures such as online public opinion attacks and high virtual reality chaos to actively create and spread false information, disrupt and disrupt the perception and cognition of hostile battlefield situations, maximize confusion and increase uncertainty, interfere with the opponent’s combat decisions, and delay its combat operations.


       4.2 Control and command decision-making power and compete for decision-making advantages
       Decision strengths determine action strengths. Quick decision-making by the commander is the key to shortening “the command cycle” and achieving quick wins. The organizational system focuses on excellent combat, and the success or failure of combat operations depends largely on the speed of the commander’s decision-making. It is necessary to “use intelligent auxiliary decision-making systems, select the best combat plans, scientifically and rationally allocate combat resources, and maximize combat effectiveness; use ubiquitous intelligent networks to access required combat nodes and combat platforms at any time to build and form an integrated combat system.” Achieve decentralized deployment of power, information, and capabilities, cross-domain linkage, form advantages at locations and times required for operations, gather energy to release energy, and gather advantages to win; Implementation “core attack”, Errors or deviations in the enemy’s command decisions are caused by hacking into the other party “chip”, tampering with its programs, and command and decision system algorithms.


       4.3 Control “brain” power and seize the advantage of brain control
       Cognitive interference control warfare in the system’s “gathering excellence war” emphasizes “attacking the heart and seizing the will”, that is, using network warfare, electromagnetic warfare and other methods to control the enemy’s human brain and consciousness cognition as well as the control system of the unmanned autonomous platform “attacking the heart Cognitive control warfare to control the brain and seize ambitions” Replace “destroy” with “control”, To achieve the goal of stopping and winning the war at the minimum cost. Attacking the heart and controlling the brain is different from traditional strategic deterrence. It places more emphasis on active attack. It is an active attack operation that mainly uses advanced information combat technology, brain control technology, etc. to attack the enemy’s decision-making leader, as well as intelligent unmanned autonomous combat platforms, auxiliary decision-making systems, etc., carry out controlled “brain” attacks, directly control and disrupt the opponent “brain”, influence and control the enemy’s decision-making, or disable it Enable stealth control of enemy combat operations. For example, “Targeting human cognitive thinking, using brain reading and brain control technology, and using mental guidance and control methods to directly carry out “inject ”“invasive” attacks on the brains of enemy personnel, interfering with, controlling or destroying the cognitive system of enemy commanders.”, deeply control it from the perspective of consciousness, thinking and psychology, seize “control intellectual power”, disrupt the enemy’s decision-making, destroy the enemy’s morale, and force the enemy to disarm.


      5. Agile Mobile Warfare
      Agile mobile warfare refers to the efficient decision-making, efficient adjustment of troop deployment and high-efficiency real-time gathering of combat forces in systematic battle, efficient gathering of capabilities on the existing battlefield, and seizing combat opportunities. Agility is the ability to respond quickly and timely to changes in the battlefield environment. It has the characteristics of responsiveness, robustness, flexibility, elasticity, innovation and adaptability.

Table 1 Connotation of the concept of agile warfare


      5.1 Efficient and fast decision-making
      To implement agile and mobile warfare, we must first make efficient and rapid decisions to win operational opportunities. Therefore, it is necessary to comprehensively use various means of reconnaissance, detection, perception and surveillance to obtain battlefield posture and target information in a timely manner, especially characteristic information, activity trajectories and real-time position information of time-sensitive targets, so as to ensure precise intelligence support for rapid decision-making. Efficient decision-making is also reflected in the speed of intelligence processing. It takes less time to screen effective intelligence information, formulate action plans at a faster speed according to changes in circumstances, and seize the initiative and seize the opportunity with one step ahead. High-efficiency decision-making focuses on shortening the decision-making cycle, taking the target time window as the central point, and integrating decision-making command with combat units and weapon platforms, rapid response, and overall linkage to improve combat efficiency.


      5.2 High efficiency forms a favorable combat situation
      It is necessary to “keep abreast of changes in the battlefield situation at any time, rely on the support of information networks, and achieve dynamic reorganization of combat forces and integration during movement through cross-domain, cross-dimensional, and diversified three-dimensional maneuvers. Combat resources flow efficiently throughout the region and gather during movement to achieve mobility and excellence.”, forming a favorable battlefield situation. Agile mobile warfare relies on data fusion processing, intelligent assisted decision-making and other means to quickly form combat plans, quickly project combat forces at a high frequency according to the case, organize troops to quickly form favorable combat deployments, and realize enemy discovery, enemy decision-making, and enemy fire, first enemy assessment, change the balance of power in the shortest time and fastest speed, form combat advantages, and improve the efficiency of combat operations.


      5.3 Efficient and instant gathering of combat power
      To organize agile mobile warfare, the key is to select the right combat force within a limited time, coordinate the entire battle situation, and form an overall synergy to ensure a fatal blow. Therefore, in response to changes in battlefield posture, especially target situations, it is necessary to draw up groups to form a joint mobile combat system formed by multi-domain combat forces, gather combat forces in real time, deploy quickly and mobilely to a favorable battlefield, and carry out real-time strikes against the enemy. For deep space, deep sea, etc. to become a new combat space, an intelligent unmanned autonomous combat platform can be organized Rapid mobility is deployed to lurk near key targets or important passages that are difficult for humans to reach due to physiological limitations, and ambush operations are carried out on standby, creating new cross-domain checks and balances.


      5.4 Agile mobile warfare is an innovative development of traditional mobile warfare
      In the history of both ancient and modern warfare at home and abroad, there have been numerous examples of successful battles that relied on rapid covert maneuvers to achieve combat objectives. However, the combat process of information-based local warfare has been greatly compressed, the combat rhythm has accelerated rapidly, and fighter aircraft are fleeting. It has put forward higher requirements for fast mobile capture fighters. It is difficult to meet the requirements of joint operations and all-area operations under information conditions alone “fast pace, high speed”. requirements, so agile mobility must be implemented.


       6. Unmanned cluster autonomous warfare
       Unmanned cluster autonomous warfare refers to the widespread use of unmanned combat methods such as “bees”“ wolves ”“fishes” in system optimization warfare to independently organize actions and distributed attacks to achieve joint human-machine victory. With unmanned autonomous equipment becoming the main combat force on the battlefield, defeating the enemy with unmanned autonomous equipment clusters and numerical superiority has become an important combat style in information warfare.


       6.1 It is conducive to forming a system advantage to suppress the enemy
       Unmanned cluster independent warfare gives full play to the special advantages of unmanned combat weapons such as all-weather, unlimited, difficult to defend, and low consumption, and builds and forms large-scale unmanned combat clusters or formations such as unmanned “bee swarms”“ wolves ”“fish swarms”, and organizes independently, mutual coordination, can implement close-range and full-coverage reconnaissance, or act as bait to interfere or deceive, or cooperate with main battle weapons to implement distributed coordinated attacks Enable overall mobility and joint control of the enemy.


       6.2 Conducive to enhancing combat effectiveness
       In “unmanned cluster autonomous operations”, different combat units within the unmanned cluster organization are responsible for different functions and different tasks, including those responsible for reconnaissance, those carrying out electromagnetic interference and fire strikes, and those playing “decoy” roles. Clusters transmit and share battlefield information through inter-group networks, perform their respective duties according to the division of labor, and collaborate in real-time, independently, and dynamically according to battlefield changes. They not only give full play to their advantages in quantity and scale, but also use information networks and intelligent integration technology to achieve integration effects, using cluster advantages to consume enemy defense detection, tracking and interception capabilities, rapidly saturating and paralyzing the enemy’s defense system.


       6.3 Conducive to getting into enemy combat difficulties
       Unmanned cluster autonomous warfare uses a large number of autonomous unmanned combat platforms with different functions to form an unmanned combat cluster integrating reconnaissance and detection, electronic interference, cyber attacks, and fire strikes. It can carry out multi-directional and multi-directional operations against the same target or target group. Multiple, continuous attacks will make it difficult for the enemy to make effective counterattacks.


       7. Pointkill Battle
       “Precise point-killing warfare” refers to accurately obtaining intelligence in system-based battles, implementing multi-domain precision strikes, striving to shake the overall situation with one point, and maximizing combat benefits. Informationized local warfare is an overall confrontation between systems. Implementing precise point-killing warfare and precise strikes on important nodes and key links of the enemy’s combat system will destroy the enemy’s combat system and reduce enemy combat capabilities, which will achieve twice the result with half the effort. Combat effect.


      7.1 Achieve efficient combat cost ratio
      Achieving maximum combat effectiveness at the minimum cost is a goal pursued by both sides of the war. With the widespread application of information technology in the military field and the advent of information warfare, precision-guided weapons, intelligent kinetic energy weapons, integrated surveillance and attack drones, and laser weapons are widely equipped with troops; through the use of big data, artificial intelligence and other technologies, it has become possible to accurately calculate the required troops and weapons. These all provide material and technical conditions for achieving precision point kill warfare, achieving operational objectives at a lesser cost, and achieving operationally efficient fee ratios.


       7.2 Targeting key nodes is an important option
       The key to precise point-killing battles is to hit the key points and nodes. If you don’t hit, it will be enough. If you hit, it will be painful. If you hit, you will win. If you hit a point, you will break the enemy’s system and shake the overall situation. The target of the strike is not limited to the enemy’s dispersed deployment of ships and aircraft, but should also be targeted at local, dynamic, time-sensitive targets or independent targets such as enemy command centers, important hubs, and even major generals and commanders, in pursuit of deterrence, shock and enemy-breaking system effects. It will also be an effective countermeasure to use precision strike fire to carry out “point-kill” strikes in response to the distributed tactic of decomposing expensive large-scale equipment functions into a large number of small platforms and implementing decentralized deployment of forces.


       7.3 Large-scale system support is the basic condition
       The implementation of precise point-kill warfare cannot be separated from the support of a large-scale system. Focusing on achieving combat goals, the required troops and weapons are transferred from each operational domain that is dispersed and deployed. With the support of the network information system, they are dynamically integrated to form a precision strike system to achieve overall linkage and system energy gathering. Through reasonable and sufficient firepower, the target is concentrated. Strike to achieve precise use of troops and precise release of energy. To implement precise point-and-kill operations to be precise, all links within the entire combat system need to be closely connected without any mistakes. The U.S. military’s killing of bin Laden in 2011 can be said to be a typical strategic precision killing operation supported by the strategic system.


       7.4 It is inseparable from precise intelligence support
       In precision point kill warfare, precise intelligence support is always the key to achieving operational goals. Therefore, before the war, various means should be used to collect various enemy intelligence information, especially accurate analysis and judgment of enemy targets. During combat operations, various sensors and intelligence reconnaissance methods should be used to accurately grasp enemy target changes and dynamic target situations in a timely manner, so as to provide powerful and effective intelligence support for the implementation of precise point-kill warfare. The U.S. military’s targeted killing operation against Soleimani was a typical precise point-killing battle supported by an efficient intelligence system.


       8. Supply-breaking
       Supply chain-breaking warfare refers to organizing elite forces in a system-gathering battle to attack the enemy’s logistics supplies and equipment supply supply chain, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle. In response to weaknesses such as the enemy’s long logistics supply line and large equipment support stalls, the organization of elite forces to build “chain-breaking warfare” combat systems, and to carry out sustained, precise and devastating strikes against enemy logistics supplies and equipment supply chains, supply lines and supply bases, will make it unsustainable due to the loss of supplies and will have to withdraw from the battle.


       8.1 The supply guarantee chain has a huge impact on the overall combat situation
       Logistics equipment support is an important basis for operations. The constant supply of logistical supplies and weapons and equipment ultimately determines the size of an army’s combat troops, whether they can fight, in what season, where they can fight, how far they can leave their rear bases, how long they can fight, how fast they can maneuver, and so on. In information warfare, the consumption of battlefield materials has increased exponentially. Not only has the dependence on logistics equipment support for operations not decreased, but it has become larger and larger. Moreover, the requirements for the specialization of support have also become higher and higher In particular, modern combat equipment is available in a wide variety of models and specifications, with huge volumes of mixed transport, more dispersed troop deployment and very high requirements for transport capacity, which makes bases, communication lines and transport more important than ever. The stable and efficient operation of the supply guarantee chain and continuous and uninterrupted supply guarantee are the key to operational victory and have a huge impact on the overall operational situation.


       8.2 The center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain
       The operational center of gravity of supply chain-breaking warfare is a key link in attacking the enemy’s supply support chain, and its continuous support capability is lost through chain-breaking. Therefore, the organization of supply chain-breaking warfare should mainly target enemy ground railway and road transport lines, maritime supply convoys, military requisitioned merchant ships and combat support ships, large and medium-sized air transport aircraft, and rear supply bases. For example, striking the enemy’s maritime supply support chain and cutting off the enemy’s fuel, ammunition, fresh water, and food supplies will make the enemy aircraft carrier battle group lose its ability to continue fighting, which in turn will even affect the outcome of a battle.


       8.3 The key is to choose the right time and make full use of tactics
       It is crucial to organize the implementation of supply chain-breaking warfare and to choose a favorable time to strike. The timing of strikes in supply chain-breaking warfare should be organized and implemented when the enemy’s supply maneuvers are selected, so as to surprise and attack unprepared concealed tactics, carry out sudden strikes on enemy supply vehicles, ships and transport aircraft, and terminate their supply operations. Specific tactics usually include covert ambush warfare, organizing capable forces to ambush the routes and routes that enemy transportation must pass through, waiting for opportunities to carry out covert surprise attacks; stealth surprise warfare, using submarines, stealth fighters, etc. to covertly move forward to carry out attacks on enemy transportation targets, and win by surprise; long-range precision warfare, using long-range conventional surface-to-surface missile forces to attack enemy supply bases and airports Long-range precision strikes are carried out at the departure points of supplies such as docks.


       9. System “paralysis battle”
       System destruction and paralysis war refers to the comprehensive use of various means such as breaking the network, breaking the chain, and defeating nodes in the system optimization war to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken the functions of the enemy’s combat system. The essence of system destruction and paralysis warfare is to weaken the correlation and structural power between the elements of the enemy’s combat system, degrade the functions of the system, and fail to play a role in doubling capabilities.


       9.1 The combat goal is to disorderly operate the enemy’s combat system
       In information warfare, the combat systems of both warring parties have their own internal order, and this order is the key to maintaining and supporting the operation of the combat system. The side that can maintain and navigate the internal order of the combat system will gain an advantage and, conversely, a disadvantage. Therefore, the goal of “disrupting the enemy’s winning mechanism and causing the enemy’s combat system to become disordered” should be established in system destruction and paralysis warfare. This requires that the system be fully utilized in the battle of paralysis Information technology in particular intelligent algorithms The “powerful enabling effect” can quickly adjust and reconstruct one’s own combat system, quickly generate and release powerful combat power, and implement agile and precise strikes on the enemy’s combat system, causing the enemy’s combat system to lose normal operating order and become disordered. The system functions are destroyed and the overall combat capabilities are significantly reduced.


       9.2 A key node in the heavy strike combat system
       Systematic confrontation is a major feature of information warfare. System is an important foundation and support for system confrontation, and is also the key to effectively exerting combat effectiveness by integrating various combat forces, weapon platforms and weapon systems on the battlefield. Whether the system can be kept robust and run smoothly has a decisive influence on the achievement of war and campaign victories. In the battle to destroy and paralyze the system, the key is to focus on the enemy’s integrated combat system of land, sea, air and space power grids, breaking the network, breaking the chain, and attacking nodes. By attacking key node targets, the operating mechanism of the enemy’s combat system will be out of order, and it may even be severely damaged or destroyed. Paralysis. Therefore, the basic direction of system destruction and paralysis warfare is to select key units, key nodes, and key elements of the enemy’s combat system to carry out strikes, attack one point, destroy one part, and paralyze the whole, so as to achieve the goal of defeating the enemy.


       9.3 Implement soft strikes against the enemy’s combat system
       When organizing and implementing system breaking and hard destruction, it simultaneously organizes soft-kill combat operations such as electronic warfare, cyber warfare, psychological warfare, and public opinion warfare, and carries out soft strikes on the information domain and cognitive domain of the enemy’s combat system. Electronic warfare uses the power of electronic warfare to carry out strong electromagnetic interference against the enemy, causing its information to malfunction and fall into the fog of war; cyber warfare uses the power of cyber attack to attack the enemy’s network information system, causing the enemy’s command and communication system and computer network to be severely damaged, causing its command to malfunction and fall into information islands or even war islands; psychological warfare and public opinion warfare, using psychological warfare and public opinion warfare methods It carries out psychological strikes and public opinion guidance against the enemy, severely damaging his will to fight and inducing his cognitive disorientation. Organizing “people’s livelihood wars” to attack the opponent’s major national economy and people’s livelihood facilities can also play a role in the enemy’s combat system “drawing fuel from the bottom of the cauldron”. In the 1999 Kosovo War, the US military did not attack the Yugoslav army, but attacked its war potential target system, causing the Yugoslav soldiers and civilians to lose their will to fight and lead to defeat. 

現代國語:

體系聚優戰是資訊化戰爭中的體係作戰,其不限定特指某一種作戰樣式,而是由多種作戰樣式和戰法組成的“組合拳”,或作戰樣式群。強調根據作戰任務、作戰對手和戰場情勢變化,只要有利於形成相對優勢、達成體系製勝,可以靈活運用任何適宜的作戰手段和样式,形成作戰優勢。在體系聚優戰具體實施過程中,這些具體作戰樣式和行動戰法既可以作為聯合全局作戰的一部分單獨組織實施,更強調打“組合拳”,多策並舉,整體制勝。
為更能理解其核心內涵,本文列舉了整體威懾戰、電磁擾阻戰、網路破擊戰、認知控擾戰等九大典型作戰樣式,並進行分析。

體系聚優戰――靈活運用多種作戰樣式的「組合拳」作者:學術plus高級觀察員 東週
本文主要內容及關鍵字
1.整體威懾戰:強調多域聯合威懾;實施整體威懾戰應具備三大要素;強大整體實力是實現有效威懾的核心
2.電磁擾阻戰:爭奪資訊優勢的關鍵;在組合手段方法上,透過「連結+共享」實現資訊賦能;破解無人集群作戰的有效戰法
3.網路破擊戰:軟殺傷為主,軟硬結合,重在破網降能失效
4.認知控擾:控制態勢感知認知權,爭奪資訊優勢;控制指揮決策權,爭奪決策優勢;控制「腦」權,奪取腦控優勢
5.敏捷機動戰:高效率快速決策;高效率形成有利作戰態勢;高效率即時聚合作戰力量;敏捷機動戰是對傳統機動作戰的創新發展
6.蜂群自主戰:有利於形成體系優勢壓制敵方;有利於增強作戰效果;有利於陷敵於作戰困境
7.精確點殺戰:實現作戰的高效費比;打關鍵節點目標是重要選項;大範圍體系支撐是基本條件;離不開精確情報保障
8.補給斷鍊戰:供應保障鏈對作戰全局影響巨大;打擊重心是斷敵供應保障鏈的關鍵節點;重在選準時機活用戰法
9.體系毀癱戰:作戰目標是使敵作戰體系運作失序;重拳打擊作戰體系的關鍵節點;對敵作戰體系實施軟打擊

僅供學習參考,歡迎交流指正!文章觀點不代表本機構立場
作戰概念首先是作為一種新的作戰樣式提出。創新作戰樣式是作戰概念開發的核心內容。可以說,體系聚優戰是一系列具體戰法的總稱。以下九大典型作戰樣式構成了體系聚優戰的戰法體系。分別為:一是整體威懾戰,在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵;二是電磁擾阻戰,運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制資訊權,進而贏得作戰主動;三是網路破擊戰,運用軟打擊和硬摧毀等多種手段,破敵指揮網、情報網、通信網、後勤補給網,亂敵指揮保障;四是認知控擾。透過資訊攻擊、輿論攻擊、腦攻擊,在認知空間形成控制優勢;五是敏捷機動戰。快速調整兵力兵器部署,在即設戰場快速聚集能力,搶奪作戰先機;六是蜂群自主戰。廣泛運用「蜂群」、「狼群」、「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝;七是精確點殺戰。精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化;八是補給斷鏈戰。組織精銳力量,打敵後勤物資裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥;九是體系毀癱戰。綜合採取破網、鍛鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰系統功能。
1.整體威懾戰
整體威懾戰是指在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵。孫子曰:「不戰而屈人之兵,善之善者也。」威懾和戰爭是軍事活動的兩種主要形式。而威懾,主要是透過展現力量或威脅使用強大實力,向潛在對手錶明決心意志,以嚇阻對手行動的行為。可以說,體系聚優戰中的整體威懾戰是實現不戰而「止」人之兵的重要手段或戰法。克勞塞維茨強調,策略的第一條規則是盡可能強大,首先是整體的強大,然後是在關鍵部位的強大。現代戰爭是體系與體系的對抗。資訊化局部戰爭下的整體威懾戰,不僅要有陸海空天傳統威懾手段和能力,也需要太空威懾、電磁威懾、網路威懾等新型威懾手段和能力,更需要有顯示國家整體實力的整體威懾。特別是隨著資訊科技等先進科技的快速發展,科技革命、產業革命、軍事革命加速融合,戰略競爭力、社會生產力和軍隊戰鬥力耦合關聯更加緊密,打贏資訊化戰爭更大程度上是國家意志和國家整體實力的較量。若要遏止戰爭,首先要從整體實力上對對手形成嚇阻。
1.1 強調多域聯合威懾
威懾手段通常包括核威懾和常規威懾。在體系聚優戰中,實施整體威懾戰,旨在綜合運用陸海空天電網全域常規威懾手段,以達成威懾目的。特別是隨著資訊網路技術及太空、定向能技術在軍事上的應用,太空、網路、電磁武器等成為新型威懾手段。太空威懾,主要以快速回應電磁軌道武器、天地網路化反導航定位服務系統、大橢圓軌道雷射武器、高功率微波武器等裝備,威脅攻擊對手空間目標,形成對敵空間訊息「幹擾阻斷」威懾。網路威懾,主要是以網路空間態勢感知和攻擊裝備,威脅攻擊對手軍事網路及其它關鍵資訊基礎設施,實現對敵威懾。電磁威懾,主要以電磁頻譜作戰系統,威脅攻擊敵探測、導航、通訊等資訊化武器裝備系統,實現對敵致聾致盲威懾。 1.2 實施整體嚇阻戰應具備三大要素
實施整體威懾戰並達成嚇阻預期效果,通常必須具備三大要素:一是實力。威嚇方必須具備令對手感到忌憚畏懼的可靠能力或力量;二是決心意志。威懾方在必要時必須敢於使用這種能力;三是明確傳遞訊息。威懾方必須將行動能力與決心準確、有效地讓對方清楚知道。
從歷史上看,判斷威懾實力的標準主要有三個面向變化:一是現役軍事力量;二是綜合國力或戰爭潛力;三是主戰武器裝備總數。在相當長一段歷史時期內,軍隊數量就是威懾,軍事實力的強弱直接取決於現役軍隊的規模、重要武器裝備的數量,以及軍隊訓練組織士氣等非物質因素。二十世紀後,隨著戰爭規模的擴大,威懾實力已不再僅限於軍隊兵力和重要武器裝備的數量,而是由國家戰爭潛力所決定,其中包括經濟實力、科技實力、能源資源,甚至人口數量,等等。體系聚優戰中的整體威懾戰,其威懾實力的形成主要基於網路資訊體系,以及在該體系融合整合下形成的聯合全局威懾能力。
1.3 強大整體實力是實現有效威懾的核心綜合分析研判,挖掘提取所需情報訊息,實現對戰場態勢、作戰環境的更精準、更快速認知,從源頭確保先敵發現、先敵認知。在消除己方「戰爭迷霧」的同時,也要為對手製造「迷霧」。因此,爭奪認知權,不僅要先敵掌握、先敵處理信息,還要採取網絡輿論攻擊、高度虛擬現實亂真等措施,積極製造、散佈虛假信息,破壞、擾亂敵對戰場態勢的感知、認知,最大限度地製造混亂、增加不確定性,幹擾對手的作戰決策,遲滯其作戰行動。
4.2 控制指揮決策權,爭奪決策優勢
決策優勢決定行動優勢。指揮者的快速決策是縮短「指揮週期」、實現快速勝利的關鍵。組織體系聚優戰,作戰行動成敗很大程度取決於指揮的決策速度。要利用智慧輔助決策系統,優選最佳作戰方案,科學合理調配作戰體系,實現力量、資訊、能力分散部署、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施法實作「攻芯」,透過反義程式定義、原則性反制勝;
4.3 控制「腦」權,奪取腦控優勢
體系聚優戰中的認知控擾戰,強調“攻心奪志”,即利用網絡戰、電磁戰等方式,對敵方人腦和意識認知以及無人自主平台的控制系統實施“攻心控腦奪志”的認知控制戰,以“控制”取代“摧毀”,以最小代價實現止戰、勝戰之目的。攻心控腦與傳統的謀略威懾不同,其更強調主動攻擊,是一種主動攻擊行動,主要運用先進信息作戰技術、控腦技術等,對敵決策首腦,以及智能化無人自主作戰平台、輔助決策系統等,實施控“腦”攻擊,直接控制、擾亂對手“大腦”,影響、控制敵對決策,或使其失能,實現隱形敵作戰。如以人的認知思維為目標,利用讀腦、腦控技術,運用心智導控手段,直接對敵方人員大腦實施“注入”“侵入”式攻擊,幹擾、控製或破壞敵指揮人員認知體系,從意識、思維和心理上對其深度控制,奪取“制智權”,以亂敵決策、破敵士氣,迫敵繳械。
5.敏捷機動戰
敏捷機動戰,指在體系聚優戰中高效率決策、高效率調整兵力兵器部署和高效率即時聚合作戰力量,在既設戰場高效率聚集能力,搶奪作戰先機。敏捷是一種快速及時應對戰場環境變化的能力,具有響應性、穩健性、柔性、彈性、創新性和適應性等特徵。
表1 敏捷作戰概念內涵

5.1 高效率快速決策
實施敏捷機動戰,首先要高效率快速決策,贏得作戰先機。因此,要綜合運用各種偵察探測感知與監視手段,及時獲取戰場態勢和目標信息,特別是時敏目標的特徵信息、活動軌跡以及實時位置信息,確保為快速決策提供精準情報支持。高效率決策也體現在情報處理速度上,要用更少的時間甄別有效情報訊息,根據情況變化,以更快的速度製定行動方案,快敵一步佔據主動,奪取先機。高效率決策重在縮短決策週期,要以目標時間窗口為中心點,決策指揮與作戰單元、武器平台一體協同、快速反應、整體連動,提高作戰效率。
5.2 高效率形成有利作戰態勢
要隨時掌握戰場態勢變化,依靠資訊網支撐,透過跨域、跨維、多樣化立體機動,達成作戰力量動態重組、動中融合,作戰資源全局高效流動、動中聚集,實現機動聚優,形成有利戰場態勢。敏捷機動戰依賴資料融合處理、智慧化輔助決策等手段,快速形成作戰方案,依案高頻率快速投送作戰力量,組織部隊快速形成有利作戰部署,實現先敵發現、先敵決策、先敵開火、先敵評估,以最短時間、最快速度改變力量對比,形成作戰優勢,提高作戰行動效率。
5.3 高效率即時聚合作戰力量
組織敏捷機動戰,關鍵在於有限時間內選準作戰力量,協調整個戰局,形成整體合力,確保一擊致命。因此,要針對戰場態勢特別是目標情況變化,抽組形成由多域作戰力量形成的聯合機動作戰系統,即時聚合作戰力量,快速機動部署至有利戰場,對敵實施即時打擊。針對深空、深海等成為新的作戰空間,可組織智慧化無人自主作戰平台,快速機動部署至人類因生理所限而難以到達的重點目標或重要通道附近潛伏,待機實施伏擊作戰,形成新的跨域制衡優勢。
5.4 敏捷機動戰是對傳統機動作戰的創新發展
古今中外戰爭史上,靠著快速隱密機動達成作戰目的的成功戰例比比皆是。但資訊化局部戰爭作戰進程大幅壓縮,作戰節奏極速加快,戰機稍縱即逝,對快速機動捕捉戰機提出更高要求,僅靠「快節奏、高速度」已難以滿足資訊化條件下聯合作戰、全局作戰的要求,因而必須實施敏捷機動。
6.無人集群自主戰
無人集群自主戰,指在體系聚優戰中廣泛運用「蜂群」「狼群」「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝。隨著無人自主裝備成為戰場上的主要作戰力量,以無人自主裝備集群和數量優勢戰勝敵人,已成為資訊化戰爭中的重要作戰風格。
6.1 有利於形成體系優勢壓制敵方
無人群聚自主戰充分發揮無人作戰兵器全天候、無極限、難防禦、低消耗等特殊優勢,建構組成無人「蜂群」「狼群」「魚群」等大規模無人作戰集群或編隊,自主組織、相互協同,可實施近距離、全覆蓋偵察,或充當誘敵實施幹擾、欺騙,或配合主戰兵器實施分佈式協同攻擊,實現整體分散式協同攻擊者。
6.2 有利於增強作戰效果
在無人群聚自主作戰中,無人群集編成內的不同作戰單元分別擔負不同功能、不同任務,既有負責偵察的,也有實施電磁幹擾、火力打擊的,還有扮演「誘餌」角色的。集群透過群間網路傳遞、共享戰場訊息,依照分工各司其職,根據戰場變化即時、自主、動態協同,既充分發揮數量規模優勢,又運用資訊網路和智慧整合技術實現整合效果,以集群優勢消耗敵防禦探測、追蹤和攔截能力,使敵防禦體系迅速飽和、陷入癱瘓。
6.3 有利於陷敵於作戰困境
無人集群自主戰以大量不同功能的自主無人作戰平台混合編組,形成集偵察探測、電子乾擾、網路攻擊、火力打擊於一體的無人作戰集群,對同一目標或目標群實施多方向、多波次、持續不斷的攻擊,將使敵難以作出有效反擊。
7.精確點殺戰
精確點殺戰,是指在體系聚優戰中精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化。資訊化局部戰爭是體系與體系之間的整體對抗,實施精確點殺戰,對敵方作戰體系重要節點與關鍵環節實施精確打擊,破壞敵作戰體系,降維敵作戰能力,將形成事半功倍的作戰效果。
7.1 實現作戰的高效費比
以最小代價實現最大作戰效益是作戰雙方都在追求的目標。隨著資訊科技在軍事領域的廣泛應用及資訊化戰爭來臨,精確導引武器、智慧化動能武器、察打一體無人機以及雷射武器等廣泛裝備部隊;透過運用大數據、人工智慧等技術,精確計算所需兵力兵器已成為可能。這些都為實現精確點殺戰,以較小代價達成作戰目標,實現作戰高效費比,提供了物質和技術條件。
7.2 打關鍵節點目標是重要選項
精確點殺戰重在打關鍵、打節點,不打則已,打則必痛、打則必勝,打一點破敵體系、撼動全局。打擊的目標不僅限於敵分散部署的艦機等,還應針對敵指揮中心、重要樞紐,甚至主要將領、指揮等局部、動態、時敏目標或獨立目標實施打擊,追求威懾震撼和破敵體系效果。針對將昂貴的大型裝備功能分解到大量小型平台、實施兵力分散部署這一分佈式戰術,運用精確打擊火力對其進行「點殺」式打擊,也將是一個有效對策。
7.3 大範圍體系支撐是基本條件
實施精確點殺戰,離不開大範圍體系支撐。圍繞著實現作戰目標,從分散部署的各作戰域抽調所需兵力兵器,在網路資訊體系支撐下,動態融合形成精確打擊體系,實現整體連動、體系聚能,透過合理夠用的火力集中對目標實施打擊,達成精確用兵、精確釋能。實施精確點殺戰要做到精確,需要整個作戰體系內各環節緊密銜接,不能有絲毫差錯。 2011年美軍擊斃賓拉登作戰行動,可以說是戰略體系支撐下的一次典型的戰略精確點殺作戰行動。
7.4 離不開精確情報保障
在精確點殺戰中,精確情報保障始終是達成作戰目標的關鍵。因此,戰前應動用各種手段蒐集敵方各種情報資料信息,特別要對敵方目標作出精準分析研判。作戰行動中,應動用各種感測器和情報偵察手段,適時精準掌握敵方目標變化及動態目標狀況,為實施精確點殺戰提供有力有效的情報保障。美軍對蘇萊曼尼的定點清除行動,就是一場典型的以高效情報體系支撐的精確點殺戰。
8.補給斷鍊戰
補給斷鏈戰,是指在體系聚優戰中組織精銳力量,打敵後勤物資和裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥。針對敵後勤補給線長、裝備保障攤子大等弱點,組織精銳力量建構「斷鍊戰」作戰體系,對敵後勤物資和裝備供應補給鏈、補給線和補給基地等,實施持續、精確、毀滅性打擊,將使其因失去補給而難以為繼,不得不退出戰鬥。
8.1 供應保障鏈對作戰全局影響巨大
後勤裝備保障是作戰的重要基礎。後勤物資和武器裝備持續不斷的供應補給,最後決定一支軍隊作戰部隊的規模、能否作戰、在什麼季節作戰、在哪裡作戰、能離開後方基地多遠、能作戰多長時間、機動的速度多快,等等。在資訊化戰爭中,戰場物資消耗呈指數級上升,作戰對後勤裝備保障的依賴程度不僅沒有減小,反而越來越大,而且保障的專業化程度要求也越來越高,特別是現代化作戰裝備器材型號規格紛繁多樣,混裝運輸體積巨大,部隊部署更加分散,對運力也提出非常高的要求,這使線路、通信和運輸比以往任何時候都更加重要。供應保障鏈的穩定高效運作和持續不間斷的供應保障,是作戰制勝的關鍵,對作戰全局產生巨大影響。
8.2 打擊重心是斷敵供應保障鏈的關鍵節點
補給斷鍊戰的作戰重心是打擊敵方供應保障鏈的關鍵環節,透過斷鍊使其喪失持續保障能力。因此,組織補給斷鍊戰應主要以敵方地面鐵路公路運輸線、海上補給船隊、軍事徵用的商船和戰鬥支援艦,空中大中型運輸機,以及後方補給基地等作為打擊目標。例如打擊敵方海上供應保障鏈,斷敵燃料、彈藥、淡水、食物補給,將使敵航母戰鬥群失去持續作戰能力,進而影響一場戰役的勝負。
8.3 重在選準時機活用戰法
組織實施補給斷鍊戰,選擇有利打擊時機至關重要。補給斷鍊戰的打擊時機,應選擇敵補給機動時組織實施,以出其不意攻其不備的隱蔽戰法,對敵補給車輛、艦船和運輸機實施突然打擊,終止其補給行動。具體戰法通常有隱蔽伏擊戰,組織精幹力量埋伏在敵運輸工具必經路線和航線上,伺機實施隱密性突然打擊;隱形奇襲戰,使用潛艦、隱形戰機等隱蔽前出,對敵運輸目標實施打擊,以奇制勝;遠程精確補給
9.體系毀癱戰
體系毀癱戰,指在體系聚優戰中,綜合採取破網、斷鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰體系功能。體系毀癱戰的本質,是透過削弱敵作戰體係要素間的關聯性與結構力,使體系功能退化,無法發揮能力倍增作用。
9.1 作戰目標是使敵作戰體系運作失序
在資訊化戰爭中,交戰雙方作戰體係都有其內在秩序,而這種秩序是維繫和支撐作戰體系運作的關鍵所在。能夠維護和駕馭作戰體系內在秩序的一方將獲得優勢,反之則處於劣勢。因此,體系毀癱戰應確立亂敵制勝機制、致敵作戰體系失序此目標。這就要求在體系毀癱戰中要充分利用資訊科技特別是智慧演算法的強大賦能作用,對己方作戰體系進行快速調整和重構,迅即生成並釋放強大的作戰威力,對敵方作戰體系實施敏捷精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰能力顯著下降。
9.2 重拳打擊作戰體系的關鍵節點
體系對抗是資訊化戰爭的一個主要特徵。體係是體系對抗的重要基礎與支撐,也是戰場上各種作戰部隊、武器平台和
資訊科技的發展及在軍事領域的廣泛滲透和應用,為建構整體實力、實現整體威懾提供了有利條件。體系聚優戰以網路資訊體系為支撐,充分利用資訊科技的滲透性和聯通性,不僅把各種作戰力量、作戰要素、作戰單元融合為一個有機整體,實現軍事上的體係作戰優勢,而且把國家政治、經濟、外交、金融、交通、能源等與戰爭和國家動員相關的各領域,都連接、匯入國家戰爭動員體系,凝聚各方面力量和資源形成整體合力,實現體系能力的湧現效應,從整體上顯示綜合實力優勢,形成眾志成城、同仇敵愾的強大無形威懾,塑造使敵「有力量但不能行動」「能行動但沒有效果」的態勢,起到遏制和打贏戰爭的作用。
在整體威懾戰中,國家戰爭動員的範圍將更加廣泛,不僅限於某一方向、區域,而是遍及全國各地,乃至世界有關地區;動員時間更加迅速,利用網絡和信息系統,動員和行動信息可在第一時間迅速傳達到每個人、每個節點;行動協調和協同更加一致,分佈在各域各地的各方力量可以基於同一態勢、根據同一命令幾乎在同一時間統一行動,極大提高行動協同效率;資源利用更加充分,基於網絡的各種戰爭資源,可以快速實現平戰轉換、軍民轉換,實現前方後方一體化保障、精確保障。
2.電磁擾阻戰
電磁擾動戰,指靈活運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制信息權,進而贏得作戰主動。
2.1 爭奪資訊優勢的關鍵資訊化局部戰爭高度依賴電磁頻譜,對電磁空間的控制與反控製成為爭奪制資訊權的焦點。組織實施電磁阻擾戰,主要是破壞敵方電磁頻譜,保護己方不受破壞。電磁頻譜是傳遞訊息的主要載體。使用電磁手段對敵方電磁頻譜實施阻擾破壞,將有效降低敵資訊作戰能力,並使己方在擁有製資訊權的場景下,保障資訊的快速有效流動,透過資訊流驅動指揮流、行動流、物質流、能量流,進而擁有作戰的主導權、主動權。
2.2基本著眼導航定位系統、天地一體互聯網等空間鏈路系統,及其他各種用頻武器裝備,實施幹擾、攻擊,阻斷、破壞其通信聯絡及資料傳輸,破壞敵作戰體系的「連結」與「共享」結構重心,從根源為奪取制資訊權、制電磁權提供支撐,進而削弱整個作戰控制能力,使敵軍系統失能、失效。
2.3 破解無人集群作戰的有效戰法
「蜂群」「狼群」「魚群」等無人自主集群作戰,是具有智慧化特徵的資訊化局部戰爭的重要特徵。各種無人自主集群數量龐大、類型多樣、特徵複雜,且每個個體都可以互補位置、互相替代發揮作用,攔截毀傷整個無人集群將十分困難。但從技術角度分析,無人作戰集群為實現有效協同,每個個體之間必須進行資訊共享與互動。無人集群間通訊協同一旦受到干擾,將無法分享戰場態勢與訊息,無法相互協同行動,也就很難發揮應有作戰效能。這就給對方實施通訊攔截與電磁幹擾提供了機會。因此,實施電磁頻譜戰,對無人集群的資訊通訊網路實施幹擾、攻擊,破壞其資訊共享與交互,將使無人集群中每個個體無法實現有效協同,從而失去作戰能力。
3.網路破擊戰
網路破擊戰,指綜合運用網路和電腦等技術以及其他有效手段,圍繞著資訊、資訊網路的控制權而進行的軍事對抗行動,是網路空間作戰、爭奪制網權的主要作戰樣式。其主要作戰行動既有軟殺傷也有硬摧毀,以軟為主、軟硬結合。其中,軟殺傷主要是網路攻擊,即綜合利用阻塞攻擊、病毒攻擊等手段,對敵資訊網路、指揮系統、武器平台等進行阻滯與攻擊,使敵網路、指揮資訊系統等難以有效運作甚至癱瘓;硬摧毀主要是利用精確火力打擊、高能量微波、電磁脈衝以及反輻射攻擊等手段,癱毀敵資訊資訊網路和物理設施,摧毀敵人實體武器。
重在破網降能失效。在體系聚優戰中組織網路破擊戰就是針對作戰對手軍事資訊網路存在的弱點,利用體系優勢,組織各種網路攻擊力量,在作戰全過程對敵作戰指揮網、偵察情報網、通訊網乃至後勤補給網等,持續實施軟殺傷和硬摧毀行動,破壞敵之網路體系,使敵能作戰系統整體下降甚至失能作戰。主要對敵基礎資訊網、情報網、指揮網、保障網等核心目標,實施網電協同攻擊、欺騙迷惘、連結阻塞、接管控制等一系列作戰行動,使敵智能化作戰網路體系失能失效,達成癱敵體系的關鍵性勝利。
4.認知控擾戰
認知控擾戰,是指在體系聚優戰中透過資訊攻擊、輿論攻擊、腦攻擊,幹擾、破壞或控制敵對思維認知,使敵不能做出正確判斷、決策,從而在認知空間對敵形成控制優勢。
認知域,即人的思考空間、意識空間,是對作戰決策、判斷等具有關鍵性影響的領域。資訊科技特別是人工智慧技術的發展及在軍事領域的廣泛應用,使戰爭的較量從物理空間、資訊空間擴大到認知空間,使認知空間成為一個全新的作戰域。隨著資訊化、智慧化技術發展並在軍事領域廣泛深入應用,人機智慧趨於融合,使認知在智慧化戰爭作戰中的地位更加凸顯,認知領域逐漸成為重要的戰場。制認知權成為未來戰場控制權的關鍵要素。爭奪認知控制權成為具有智慧化特徵的資訊化局部戰爭作戰制勝的重要作戰樣式。
4.1 控制態勢感知認知權,爭奪資訊優勢
體系聚優戰中,資訊流驅動物質流、能量流,資訊優勢決定決策優勢。對情報資訊與戰場態勢的快速、準確認知,對奪取指揮決策優勢有重要影響。因此,組織實施體系聚優戰,要充分利用智慧技術、大數據技術,對海量情報資訊資料進行武器系統聯為一體,有效發揮作戰效能的關鍵。體系能否保持健壯、順暢運轉,對取得戰爭和戰役勝利具有決定性影響。體系毀癱戰中,關鍵在於著眼敵方陸海空天電網整合作戰體系,破網、斷鍊、打節點,透過打關鍵節點目標,使敵方作戰體系運作機理失序,甚至遭到重創或毀癱。因此,體系毀癱戰的基本指向是選敵作戰體系的關鍵單元、關鍵節點、關鍵要素實施打擊,擊其一點、毀其一片、癱其整體,達成克敵制勝的目的。
9.3 對敵作戰體系實施軟性打擊
組織實施體系破擊戰硬摧毀時,同步組織電子戰、網路戰、心理戰、輿論戰等軟殺傷作戰行動,對敵作戰體系的資訊域、認知域實施軟打擊。電子戰,使用電子戰力量對敵實施強電磁幹擾,使其信息失靈,陷入戰爭迷霧之中;網絡戰,使用網絡進攻力量對敵網絡信息體系實施攻擊,使敵指揮通信系統和計算機網絡受到嚴重破壞,使其指揮失靈,陷入信息孤島乃至戰爭孤島;心理戰和作戰論戰,使用心理戰、輿論手段,對敵對認知,打擊其戰爭論戰,使用心理戰、輿論手段,對敵對心理打擊行為論組織民生戰,打擊對手的重大國計民生設施,同樣可以對敵作戰體係起到「釜底抽薪」作用。 1999年科索沃戰爭中,美軍沒有打擊南聯盟軍隊,而是打擊其戰爭潛力目標體系,使南聯盟軍民失去戰鬥意志走向失敗。

中國原創軍事資源:http://www.81it.com/2022/0901/13716888.html

AI integrated into Chinese Armed Forces: PLA Strategic Support Force Developed Artificial Intelligence Innovation Capabilities

人工智慧融入中國軍隊:解放軍戰略支援部隊發展人工智慧創新能力

現代英語:

Artificial Intelligence ( AI ) technology has advanced by leaps and bounds in recent years . All major powers have developed advanced AI capabilities and attempted to effectively integrate AI into their armed forces. Beijing has also released an ambitious plan to make China a global leader in advanced artificial intelligence by 2030. Chinese Communist Party leader Xi Jinping also reiterated at the 20th Party Congress that China should attach equal importance to the development of artificial intelligence and “intelligent warfare.”

Although China’s strategic goals in the field of artificial intelligence are clear, how it will integrate artificial intelligence into the People’s Liberation Army remains opaque. But at least the recently established PLA Strategic Support Force (SSF) provides some clues: the organization has been given an innovative mission and is responsible for integrating multiple “strategic functions.” To effectively understand the Strategic Support Force, we need to explore whether it will have a “game-changing” impact in future conflicts, where mastery of the information domain and effective integration of artificial intelligence may determine victory or defeat.

The PLA’s “Joint Operationality”: Strategic Support Force

The PLA underwent major reforms in 2015, partly motivated by the need to shift the PLA’s force focus from land territorial defense to extended force projection to ensure China’s strategic interests in areas such as space, cyber warfare and the far seas. A key element of these reforms is the creation of the Strategic Support Force, which concentrates tasks in these broad areas.

The Strategic Support Force (SSF) is tasked with integrating many “strategic” functions and capabilities previously dispersed across the PLA, including space, cyber, information, and psychological warfare. Today, the Strategic Support Force consists of two departments covering these functions: the Space Systems Department, which is responsible for all space-related missions; and the Cyber ​​Systems Department, which undertakes the PLA’s broad information warfare activities.

The ultimate goal of the Strategic Support Force is to gain information advantage, achieve decision-making advantage, and thus achieve ultimate victory. Analysts recently concluded that its mission is likely to support the pursuit of information superiority and can be divided into two categories: providing strategic information superiority and support capabilities to the PLA’s top leadership, including counter-space operations and offensive cyber warfare, and providing information support services to theater military commands.

The Strategic Support Force appears to be designed to enhance the PLA’s “jointness,” or its ability to conduct joint operations. Historically, the PLA has faced challenges integrating joint operations due to the difficulty in innovating and implementing new command and control and intelligence, surveillance, and reconnaissance capabilities. Because the information support provided by the Strategic Support Force is likely to include “intelligence, surveillance and reconnaissance to achieve operational and strategic objectives”, some experts believe that the Strategic Support Force plays a key role in improving the overall joint combat effectiveness of the PLA.

The SSF also appears to have several mechanisms in place to develop or acquire technology in order to carry out its mission effectively. While the SSF is not the only agency within the PLA with this function, the SSF is responsible for more AI-related equipment contracts than any other service in the PLA. For example, the Strategic Support Force has made significant investments in artificial intelligence innovation, leveraging citizen partnerships to acquire new technologies such as intelligence, surveillance and reconnaissance, autonomous vehicles, information and electronic warfare, simulation and training, and target identification.

On December 31, 2015, the founding ceremony of the leadership bodies of the People's Liberation Army (PLA) Ground Force, the PLA Rocket Force, and the PLA Strategic Support Force was grandly held at the Bayi Building in Beijing. Xi Jinping awarded military flags to the Army, Rocket Force and Strategic Support Force and delivered a speech. Photo/Xinhua News Agency
On December 31, 2015, the founding ceremony of the leadership bodies of the People’s Liberation Army (PLA) Ground Force, the PLA Rocket Force, and the PLA Strategic Support Force was grandly held at the Bayi Building in Beijing. Xi Jinping awarded military flags to the Army, Rocket Force and Strategic Support Force and delivered a speech. Photo/Xinhua News Agency

PLA Artificial Intelligence Innovation

The U.S. National Security Council pointed out in its 2022 final report that “while artificial intelligence will be widely used in all fields, the large amount of data associated with space, cyber, and information operations makes these application cases particularly suitable for priority integration of AI technology in war simulations, exercises, and experiments.” This is exactly the area where the Strategic Support Force operates.

Many of the Strategic Support Force’s functions involve processing a variety of diverse, large volumes of rapidly changing information flows at speeds exceeding human capacity, making them excellent candidates for the application of artificial intelligence. For example, AI can help create and maintain situational awareness and can be used for prediction by collecting, integrating and analyzing information. AI can also be used to analyze the consequences and planning of potential actions and conduct war simulations.

However, actual command decisions are made by the theater military command or the Joint Chiefs of Staff. At the same time, the development of AI for decision-support applications may be the responsibility of other PLA components, such as the National University of Defense Technology and the Academy of Military Sciences, rather than the Strategic Support Force. Nevertheless, in providing information support to these decision makers, the Strategic Support Force is likely to play an important role in human-machine interface interaction with such artificial intelligence systems, thereby effectively supporting decision making.

At the same time, of the twelve major military applications currently being developed by the PLA, at least five are closely related to the missions of the Strategic Support Force, namely smart satellites, intelligence, surveillance and reconnaissance software, automated cyber attack software, cognitive electronic software, and possible automated vehicles, including:

  1. Space Battle
  2. Cyber ​​Warfare
  3. Electronic warfare
Schematic diagram. The picture shows facial recognition technology demonstrated at the "Security China" held in Beijing, China in 2018. Photo/Associated Press

While many applications of AI within the SSU mission area can be identified today, the most important long-term impacts may be difficult to predict. Furthermore, the AI ​​plans proposed in China’s national white paper are not consistent with actual innovation progress.

In fact, most of China’s major investments in AI appear to be business-related and have little to do with military missions. Some assessments suggest that previous estimates of China’s current AI capabilities may be overstated. This means that it is not possible to immediately see the effective integration of artificial intelligence into the PLA’s mission areas, but the Strategic Support Force does have the mission of gaining information advantages to achieve decision-making advantages and ultimate victory.

As for artificial intelligence, it means that the Strategic Support Force must integrate artificial intelligence applications to make up for the PLA’s weaknesses in ensuring and utilizing information advantages. But this does not mean that the Strategic Support Force will become the focus of the PLA’s overall artificial intelligence innovation.

While many of the SSF’s missions are amenable to AI and there may be synergies between missions for applying AI, it is unclear which applications the SSF will use, whether these synergies are feasible, and whether the SSF has the capability to execute them. There will inevitably be a certain degree of prioritization in innovation for specific AI applications that are differentiated across different tasks.

China is determined to become a global leader in artificial intelligence and apply its technology to military missions to suppress U.S. advantages in the Indo-Pacific region. In many ways, the SSF has the advantages to achieve these goals, including a relaxed policy environment that promotes innovation, the SSF’s clear innovation responsibilities, and senior leadership support for “smartness.” The SSF also builds partnerships with China’s high-tech commercial sector and academia. These efforts are consistent with China’s military-civil fusion agenda, which aims to overcome barriers that prevent the People’s Liberation Army from acquiring resources from the commercial sector.

Schematic diagram. Photo/Associated Press
Schematic diagram. Photo/Associated Press

Obstacles to the Strategic Support Force’s Implementation of the PLA’s Innovation Plan

However, the Strategic Support Force also faces huge obstacles in implementing the People’s Liberation Army’s innovation-driven plan. The SSF and the PLA as a whole will face several challenges in AI applications, including attracting and retaining high-quality high-tech talent and mainland China’s inability to domestically develop and manufacture advanced logic and memory chips that are critical to developing cutting-edge AI—a clear weakness now that the United States has disrupted its supply of high-end semiconductors. In addition, research institutions in the United States and other Western countries are now increasingly cautious about collaborating with Chinese researchers in fields such as artificial intelligence, which have significant military potential.

The PLA’s limited combat experience has led to a lack of relevant “real and empirical” data, which may hinder the development of decision-making support artificial intelligence systems. More importantly, unless the PLA focuses on understandable, trustworthy AI, the use of AI systems with opaque operations, uncertain effective areas, and uncertain failure modes could cause serious damage.

For the national army , although there may be some limitations and uncertainties in the military application of artificial intelligence, with the continuous development and maturity of artificial intelligence technology, its application potential in the military field is still huge. As technology advances, we can expect to see more artificial intelligence systems introduced into military applications to improve operational efficiency and combat effectiveness.

However, to ensure that artificial intelligence technology can be robustly applied to military missions, it is necessary to strengthen technology research and development and testing, ensure the safety and reliability of the system, and rationally plan and manage the use of artificial intelligence technology. Only in this way can we better utilize artificial intelligence technology to enhance the information-based combat effectiveness of our military and achieve stronger and more robust combat capabilities.

現代國語:

近年來人工智能(Artificial Intelligence, AI)技術突飛猛進,所有主要大國都發展先進的AI能力,並試圖將AI有效地融入武裝力量。北京亦發佈雄心勃勃之計畫,要求2030年將中國建設成為全球先進人工智能強國。中共領導人習近平亦於第20次黨代表大會再次強調,中國應於人工智慧領域發展與「智慧戰爭」 並重。

雖然中國大陸於人工智能領域的戰略目標明確,但其如何將人工智能融入解放軍仍然是不透明的。但至少,最近成立的解放軍戰略支援部隊(Strategic Support Force, SSF)提供了一些線索:該組織賦予了創新任務,負責整合多種「戰略功能」。為了有效理解戰略支援部隊,探究它是否將在未來衝突中產生「改變遊戲規則」的影響,其中掌握資訊領域和有效整合人工智能可能決定勝負。

解放軍的「聯合作戰性」:戰略支援部隊

2015年解放軍軍隊進行重大改革,部分動機是將解放軍武力重點從陸地領土防禦轉向延伸武力投射,以確保中國在太空、網絡戰和遠海等領域的戰略利益。這些改革的主要關鍵要素即為成立戰略支援部隊,集中了這些廣泛領域中的任務。

戰略支援部隊(SSF)的任務是整合先前分散在解放軍各部隊的許多「戰略」職能和能力,包括太空、網絡、資訊與心理戰等。如今,戰略支援部隊由兩個部門組成,涵蓋了這些職能:太空系統部門,負責所有與太空有關的任務;網路系統部門,承擔解放軍廣義的資訊戰活動。

戰略支援部隊最終目標是獲得資訊優勢,實現決策優勢,從而取得最終勝利。分析家最近得出結論,其任務很可能是支援追求資訊優勢,並可分為兩類:為解放軍最高層領導提供戰略資訊優勢和支援能力,包括反太空行動和攻擊性網絡戰,以及向戰區軍事指揮部提供資訊支援服務。

戰略支援部隊設計似乎旨在提升解放軍的「聯合作戰性」,或其進行聯合作戰的能力。歷史上,因新的指揮掌控與情報、監視和偵察能力的創新和實施方面實存在困難性,解放軍在整合聯合作戰方面面臨挑戰。因戰略支援部隊提供的資訊支援很可能包含「情報、監視和偵察,以實現作戰和戰略目標」,一些專家認為戰略支援部隊在提高解放軍整體聯合作戰性方面起到了關鍵作用。

為了有效遂行任務,戰略支援部隊似乎還擁有若干機制來開發或取得技術。雖然戰略支援部隊並非解放軍內唯一承擔此功能的機構,戰略支援部隊負責與人工智能相關的裝備合約比解放軍的任何一個服務都要多。例如戰略支援部隊在人工智慧創新方面進行了大量投資,利用公民合作夥伴關係來獲取情報、監視和偵察、自主車輛、資訊與電子戰、模擬與訓練、以及目標識別等新技術。

2015年12月31日,中國人民解放軍陸軍領導機構、中國人民解放軍火箭軍、中國人民解放軍戰略支援部隊成立大會在北京八一大樓隆重舉行。習近平授予陸軍、火箭軍、戰略支援部隊軍旗並致訓詞。 圖/新華社
2015年12月31日,中國人民解放軍陸軍領導機構、中國人民解放軍火箭軍、中國人民解放軍戰略支援部隊成立大會在北京八一大樓隆重舉行。習近平授予陸軍、火箭軍、戰略支援部隊軍旗並致訓詞。 圖/新華社

解放軍人工智慧創新

美國國家安全委員會於2022年最終報告中指出,「雖然人工智能將在所有領域普遍應用,但與空間、網絡和信息作戰領域相關的大數據量,使得這些領域的應用案例特別適合優先整合AI技術應用於戰爭模擬、演習和實驗。」而這正是戰略支援部隊所運營的領域。

戰略支援部隊許多功能涉及處理各種多樣、大量和快速變化之信息流,處理速度超過人類容量,都是應用人工智能的絕佳候選領域。例如,人工智慧可以幫助創建和維持態勢感知,透過收集、整合和分析信息,也可用於預測;另人工智能還可於分析潛在行動的後果與規劃、進行戰爭模擬。

然而實際指揮決策則由戰區軍事指揮部或聯合參謀部負責。同時,用於決策支援應用的人工智慧的開發可能由其他解放軍組成部分,如中國國防科技大學和軍事科學院,並非由戰略支援部隊負責。儘管如此,在為這些決策者提供資訊支援方面,戰略支援部隊很可能在與此類人工智慧係統進行人機界面互動發揮重要作用,並進而有效支援決策制定。

與此同時,解放軍刻正開發的十二個主要軍事應用中,至少五個與戰略支援部隊的任務密切相關,分別是智慧衛星、情報、監視和偵察軟件、自動化網絡攻擊軟件、認知電子軟件以及可能的自動化車輛,包含:

太空戰
對於太空戰,解放軍可能探索應用人工智能,內含用於管理大規模衛星;與在地球觀測資料集分析(處理和目標識別衛星圖像);認知無線電技術,一種「智慧」無線電技術,旨在藉由自主切換頻道來避免干擾和擁擠,從而使空間通訊更加高效;自主衛星操作,以彌補有限的帶寬和延遲與減輕地面衛星操作員的工作負荷。

網路戰
網路戰,即為網路安全和電子戰都依賴於即時處理大量資料以識別威脅並更新防禦措施。如藉由人工智能引導對敵對網絡的指引,亦可同時支援技術偵察和網絡攻擊。此任務處於戰略支援部隊的職責範圍內,此部隊的創立旨在鞏固解放軍在網路安全和電子戰方面的聯繫。自動化還可以提高網絡防禦的速度和規模,減輕先前解放軍面臨的限制。

電子戰
人工智能亦可協助電子戰,增強電子戰系統的自主性。如人工智能可以識別和分類雷達或通訊系統的信號,檢測和分類幹擾器,提高幹擾信號的到達方向估計,開發高效的抗干擾協議與即時更新防禦措施(認知電子戰)。


示意圖。圖為2018年中國北京舉行的「安全中國」(Security China)上展示的人臉辨識技術。 圖/美聯社

雖然目前可確定戰略支援單位任務範圍內許多人工智能的應用,但最重要的長期影響可能難以預測。此外,中共國家白皮書中提出的人工智慧計劃並非與實際的創新進展一致。

實際上,中共於人工智能大部分重要投資似乎與商業相關,與軍事任務關係不大。一些評估先前關於中國當前人工智能能力的估計可能過於誇大。意謂不可能立即看到人工智能有效整合於解放軍的任務領域,但戰略支援部隊確實賦予提取信息優勢以實現決策優勢和最終勝利的任務。

至於人工智能方面,意謂戰略支援部隊必然整合人工智能應用,以彌補解放軍在確保和利用資訊優勢方面之弱點。但這不意謂戰略支援部隊將成為解放軍整體人工智慧創新的焦點。

儘管戰略支援部隊的許多任務均適用於人工智能,而且在任務之間可能存在應用人工智能的協同效應,但目前尚不清楚戰略支援部隊將使用哪些應用,這些協同效應是否具有可行性,與戰略支援部隊是否有能力執行。對於在不同任務中具有差異的特定人工智慧應用,創新中必然會存在一定程度的優先考慮。

中國決心成為全球人工智慧領域領導者,並將其技術應用於軍事任務,以壓制美國在印太地區的優勢。在許多方面,戰略支援部隊都具備説明實現這些目標的優勢,包括寬鬆的政策環境促進創新、戰略支援部隊明確的創新職責以及高層領導對「智慧化」的支持。戰略支援部隊也與中國的高科技商業部門和學術界建立合作關係。這些努力與中國的軍民融合協議一致,旨在克服妨礙解決中國人民解放軍從商業部門獲取資源屏障。

戰略支援部隊執行解放軍創新計畫的障礙

不過戰略支援部隊在執行中國人民解放軍創新驅動計畫時,亦面臨巨大障礙。戰略支援部隊和解放軍總體上將在人工智能應用面臨一些挑戰,包括吸引和留住高素質高科技人才,與中國大陸無法於國內研發和製造對開發尖端人工智能至關重要的先進邏輯和存儲芯片——這是目前美國已中斷對高端半導體的供應所導致的明顯弱點。此外,美國和其他西方國家的研究機構現在對與具有重大軍事潛力的人工智能等領域的中國研究人員進行合作越來越謹慎。

根據解放軍有限的戰鬥經驗,導致了相關「實踐實證」資料匱乏,可能妨礙發展決策支援人工智慧系統。更重要的是,除非解放軍專注於可理解、值得信賴的人工智能,否則使用具有不透明操作、不確定有效區域和不確定故障模式的人工智能係統可能會造成嚴重損害。

對於國軍而言,儘管人工智能於軍事應用可能存在一些限制和不確定性,但隨著人工智能技術的不斷發展和成熟,其在軍事領域的應用潛力仍然巨大。隨著技術的進步,我們有望看到更多人工智慧係統被引入軍用應用中,提高作戰效率和戰鬥力。

然而,要確保人工智能技術能夠穩健地應用於軍事任務中,需要加強技術研發和測試,確保系統的安全性和可靠性,以及合理規劃和管理人工智能技術的使用。只有這樣,我們才能更好地利用人工智慧技術來提升國軍資訊化戰鬥力,並實現更強大、更穩健的作戰能力。

中國原創軍事資源:https://opinion.udn.com/opinion/story/123525/7360758884

Uncertainty – Fog of War and the Way to Win in Modern Warfare for China’s Military

不確定性-戰爭迷霧與中國軍隊在現代戰爭中的勝利之道

現代英語:

Wars in different eras have different characteristics, and the “fog of war” that accompanies them is constantly changing. Often when people feel that they have basically seen the way to win through multi-faceted exploration, the next war presents new uncertainties. Local wars such as the Syrian War and the India-Azerbaijan conflict have demonstrated the multifaceted and complex nature of modern warfare from different perspectives. It can be seen that although traditional firepower warfare is still on the stage, the characteristics of intelligence have already emerged; although the combat type is still an offensive and defensive struggle, the combat guidance, environmental conditions, and specific methods of play have undergone profound changes. Wars are accelerating their evolution towards intelligence. The battlefield space has expanded from land, sea, air, space, electricity, and the Internet to space, polar regions, deep sea, and cognitive confrontations. The game competition has changed from military confrontation to multi-dimensional competitions such as politics, economy, science and technology, and public opinion. The participating forces have developed from the two warring parties to global attention and multi-dimensional intervention. Information intelligence has moved from auxiliary support to comprehensive dominance, full penetration, and full coverage. The combat unit has evolved from scale optimization to small, micro, and sophisticated, and the form is scattered and capable. Intelligence and hybrid have become basic trends. In the face of evolving wars and new uncertainties, we need to be sensitive to change and respond proactively, accumulate momentum and forge ahead in the midst of change, so as to achieve leadership and surpass others and seize the opportunity to win.

Enhance the hybrid nature of war based on the “pan-variability”. War is the continuation of politics and has never been a simple military confrontation. In the era of intelligence, visible struggles and invisible struggles coexist, battlefields with gunpowder smoke and silent battles coexist, and gray areas, hybrid warfare, and marginal conflicts coexist. In the face of fierce and complex competitive game situations, it is necessary to accelerate the construction of a hybrid warfare system with military as the cornerstone. First, enrich strategic options. Closely follow the characteristics of the times, strengthen the exploration of the characteristics and laws of non-military confrontation and the construction of power means, implement relevant preparations, and form comprehensive advantages. Secondly, enhance invisible strength. Attach importance to geopolitical, cultural, psychological and other aspects of research, and form an effective discourse system through think tank exchanges, academic promotion, cultural integration, legal construction, media propaganda and other means to influence the other party’s cognition in a silent way. Thirdly, unite the forces of peace. Take the construction of a united front in the new era as an important means of hybrid confrontation, unite all forces that can be united, and enhance international influence and appeal.

Enhance the flexibility of tactics based on the “smart change” of the battlefield. Looking at recent local wars and conflicts, due to factors such as the regional dimension and the strength of both sides, the traces of traditional warfare are still relatively obvious, but intelligent and unmanned warfare has irreversibly come to the fore. It can be foreseen that comprehensive intelligent warfare is not far away, the extension range of weapons and equipment will be farther and wider, the combat perspectives of the opposing sides will be larger and wider, and the degree of hinge fusion between the physical domain, network domain, and cognitive domain will be deeper. The battlefield with deep “smart change” calls for concepts and tactics that are adapted to it. We should accelerate the promotion of intelligent thinking, intelligent technology, and intelligent network aggregation and empowerment to form a flexible closed link with fast perception, fast decision-making, fast judgment, fast action, and fast feedback, based on “OODA” and the kill chain to beat the slow with the fast and change with change. Relying on intelligent computing power and intelligent algorithms, we design wars in advance, build various models, and innovate tactics and training methods in peacetime. In wartime, we analyze the battle situation in real time, keenly seize opportunities, and make precise decisions and actions. We use “military + technology”, “theory + experiment”, and “algorithm + tactics” to integrate the art of strategy with intelligent technology to achieve a combination of the strange and the orthodox, take the lead in rapid changes, and win by intelligence.

Enhance the plasticity of forces based on the “micro-change” of units. One of the important characteristics of modern warfare is that large systems support elite combat, and combat units are becoming increasingly miniaturized, integrated, and modular. We must focus on the combat unit, the end of combat effectiveness, and forge a “sharp knife” and “sharp blade” that is small, fine, micro, and strong to adapt to intelligent warfare. On the one hand, strengthen its ability to integrate into the system and connect all parties, rely on ubiquitous access to information networks, and achieve decentralized combat and energy concentration through flexible matching and rapid reorganization; on the other hand, strengthen its independent decision-making and improvisation capabilities, improve robustness and self-recovery, and be able to survive, respond to emergencies, and fight in extreme situations. It is possible to explore the formation of a “micro-unit” concept force, implement a flexible organization, do not fix the number of personnel, and do not restrict the field. Advanced combat theories, new combat formations, and new weapons and equipment can be tested and verified in advance, so as to explore ways to achieve cloud combat, cloud joint, cloud energy gathering, and self-combination at the end of the strike chain.

Enhance strategic bottom line based on deterrence “evolution”. Deterrence has a long history like war. With the in-depth application of intelligent technology and weapons and equipment, the connotation and extension, force means, form and effect of deterrence are changing. Although traditional nuclear deterrence is still the cornerstone of bottom line, new deterrence capabilities have been quietly formed, requiring higher determination, strength, wisdom, and strategy. Focusing on the role of deterrence in blocking the enemy invisibly in peacetime, controlling the situation at the key in times of crisis, and winning the final victory in wartime, we should focus on strengthening the strong and making up for the weak, opening up new areas, and long-term strategy to maximize the strategic value of deterrence. First, we should give equal importance to conventional and unconventional, accelerate the development of new weapons and new forces, and achieve the predetermined deterrence intention through actual combat training and actual combat deployment, supplemented by the expression and transmission of strategic will. Secondly, we should continue to study new combat concepts and new combat theories, and promote the transformation of theories from “soft” to “hard” through academic exchanges, think tank collisions, and multi-track and multi-layer confrontations, and transform them into real deterrence. Thirdly, accelerate the transformation of science and technology into the military field, increase research efforts in cloud computing, blockchain, quantum technology, etc., and strive to form a potential deterrent to opponents.

現代國語:

郭呈淵 趙中其

不同時代的戰爭有不同的特點,而與之相伴的「戰爭迷霧」也在不斷變幻。往往當人們透過多方探索、感覺已經基本看清其中的勝利之道時,下一場戰爭又呈現出新的不確定性。敘利亞戰爭、亞阿衝突等局部戰爭,從不同側面展示了現代戰爭的多面性、複雜性。可以看到,傳統火力戰雖仍在舞台之中,但智慧化特徵已然顯現;作戰類型雖仍為攻防爭奪,但作戰指導、環境條件、具體打法已深刻變化。戰爭正加速向智慧化演進,戰場空間由陸、海、空、天、電、網向太空、極地、深海、認知等全域對抗拓展,博弈比拼由軍事對決向政治、經濟、科技、輿論等多維較量轉變,參與力量由交戰雙向全球關注、多元介入方向發展,資訊智能由輔助支撐向全面主導、全程貫穿、全域覆蓋邁進,作戰單元由規模集優向小微精尖、形散能聚演化,智能、混合成為基本趨勢。面對嬗變中的戰爭和新的不確定性,需要敏銳知變、積極應變,於變中蓄勢、變中進取,實現領先超越、搶得制勝先機。

基於戰爭「泛變」增強超限混合性。戰爭是政治的延續,從來不是單純的軍事對抗。智能化時代,看得見的爭鬥和看不見的鬥爭並存,有硝煙的戰場和無聲息的爭戰同在,灰色地帶、混合戰爭、邊緣衝突相伴而生。面對激烈複雜的競爭賽局態勢,需要加速建構以軍事為基石的混合戰爭體系。首先,豐富戰略選項。緊貼時代特點,加強非軍事抗衡特點規律探究和力量手段建設,實化相關準備,形成綜合優勢。其次,提升隱形實力。重視做好地緣、文化、心理等面向研究,透過智庫交流、學術推廣、文化交融、法律建構、媒介宣傳等方式,形成有效話語體系,在潤物無聲中影響對方認知。再次,團結和平力量。把建構新時代統一戰線作為混合對抗的重要手段,團結一切可以團結的力量,增強國際影響力和感召力。

基於戰場「智變」增強戰法彈性。縱觀近幾場局部戰爭與衝突,囿於地域維度、雙方實力等因素,傳統作戰痕跡仍較為明顯,但智能化、無人化已不可逆轉地走向前台。可以預見,全面智慧化戰爭並不遙遠,武器裝備的延伸範圍將更遠更廣,對抗雙方的交戰視角將更大更寬,物理域、網絡域、認知域鉸鏈融合程度更深。深度「智變」的戰場,呼喚與之相適應的理念、戰法,應加快推進智能化思維、智能化技術、智能化網絡聚合增能,形成快感知、快決策、快判斷、快行動、快反饋的彈性閉合鏈路,基於「OODA」和殺傷鏈以快打慢、以變制變。依托智能算力、智能演算法,平時超前設計戰爭、建構多種模型、創新戰法訓法,戰時即時研判戰情、敏銳捕捉戰機、精準決策行動,運用“軍事+科技”“理論+試驗” “演算法+打法”,融合謀略藝術與智慧技術,實現奇正結合、搶先快變、以智制勝。

基於單元「微變」增強力量可塑性。大體系支撐精兵作戰是現代戰爭的重要特色之一,作戰單元變得日益微型化、整合化、模組化。要扭住作戰單元這一戰鬥力末端,鍛造適應智慧化戰爭、小而精、微而強的「尖刀」「利刃」。一方面,強化其融入體系、連結各方的能力,依托泛在接取的資訊網絡,透過靈活搭配、快速重組,實現分散作戰、集效聚能;另一方面,強化其自主決策、臨機應變能力,提高魯棒性和自恢復性,在極端情況下能生存、能應急、能作戰。可探索組成「微單元」概念部隊,實行彈性編制,不固定員額、不限制領域,超前試驗論證先進作戰理論、新式作戰編組、新型武器裝備,為實現打擊鏈條末端雲作戰、雲聯合、雲聚能、自組合運用摸索路子。

基於威懾「衍變」增強戰略保底性。威懾與戰爭一樣歷史悠久。隨著智慧化技術和武器裝備的深入運用,威懾的內涵外延、力量手段、形式效果等都在改變。雖然傳統的核威懾仍是保底基石,但新的威懾能力已在悄悄形成,對決心、實力、智慧、謀略等要求更高。著眼發揮威懾平時阻敵於無形、危時控勢於關鍵、戰時決勝於最後的作用,應注重固強補弱、開拓新域、長期經略,實現威懾戰略價值最大化。首先,堅持常規與非常規並重,加速發展新型武器、新質力量,透過實戰化演訓、實戰化部署,輔以謀略意志表達傳遞,達成預定威懾企圖。其次,持續研究新作戰概念、新作戰理論,透過學術交流、智庫碰撞和多軌多層對抗,推動理論由“軟”變“硬”,轉化為現實威懾力。再次,加速科技向軍事領域轉化進程,在雲端運算、區塊鏈、量子科技等方面加強研究力度,努力形成對對手的潛在嚇阻。

中国军网 国防部网

2022年9月16日 星期五

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/16/content_324164888.htm

China’s Military Accelerating Integrated Development of Mechanization, Informatization and Intelligentization

我軍加速機械化、資訊化、智慧化融合發展

中国军网 国防部网

2020年11月25日 星期三

現代英語:

The Fifth Plenary Session of the 19th CPC Central Committee made new and comprehensive arrangements for national defense and military construction, aimed at achieving the goal of the centenary of the founding of the army, and clearly put forward the contemporary requirements and strategic measures for accelerating the integrated development of mechanization, informatization and intelligence. Forging ahead on a new journey, focusing on accelerating the integrated development of mechanization, informatization and intelligence, seizing opportunities, responding to challenges, and taking advantage of the situation are of great significance for accelerating the modernization of national defense and the army and comprehensively improving the ability to prepare for war in the new era.

Recognize the necessity of accelerating the integration of mechanization, informatization and intelligence

Those who follow the trend will win, and those who control the trend will prevail. At present, the new round of scientific and technological revolution is showing a strong trend of intelligent technology leading the way, pushing the world’s new military revolution to develop in depth. The trend of intelligent weapons and equipment is obvious, and the superposition and aggregation effect with mechanization and informatization is prominent. The war form is accelerating from mechanization to informatization, entering the stage of giving birth to intelligent warfare. It is the development and change of the times that has made the acceleration of the integrated development of mechanization, informatization and intelligence become the general trend and powerful driving force for promoting the in-depth development of military transformation, and the inevitable choice to ensure winning the initiative, winning advantages and winning the future.

Comply with the trend of the world’s military revolution. At present, the rapid development of artificial intelligence technology is increasingly having a subversive impact on the field of war and combat. Seizing the strategic commanding heights of artificial intelligence and accelerating the development of artificial intelligence militarization and practical combat have become the strategic frontiers of military competition among major countries in the world. Increasing the intensity of military application of artificial intelligence technology, realizing the deep transformation and comprehensive upgrading of mechanized and informationized combat equipment, embedding artificial intelligence systems into the informationized combat command chain and action chain, and making the combat force organization more modular and integrated through intelligent transformation are the common practices of the world’s military powers in seeking new military advantages. Whether it is possible to accelerate the integrated development of mechanization, informatization and intelligence, especially to fully release the efficiency expansion of intelligence on mechanization and informatization, so that platform operations, system operations and precision operations can obtain higher quality and efficient intelligent support, is undoubtedly a key to whether the strategic initiative of military competition can be firmly grasped.

The need to comprehensively improve the level of modernization. Modernization has a distinct timeliness, and the requirements of the times are the key measure to measure the degree of modernization of a country and an army. Today, we are entering a stage where intelligence is the core driving force of change. The integrated development of mechanization, informatization and intelligence is not only an important symbol of the level of modernization of the country and the army, but also a fundamental measure to promote the modernization of national defense and the army. To accelerate the modernization of military theory, military organizational form, military personnel and weapons and equipment, we need to obtain a powerful engine and support for reform and innovation, transformation and upgrading, quality improvement and efficiency increase from the integrated development of mechanization, informatization and intelligence, and in a certain sense, it plays an important role in determining the direction, mode and path of modernization. Only by accelerating the integrated development of mechanization, informatization and intelligence, and making it run through all aspects of the whole process of promoting modernization, and promoting quality change, efficiency change and power change from a high starting point, can we comprehensively improve the level of national defense and military modernization.

The need to accelerate the transformation of combat effectiveness generation mode. The generation of combat effectiveness, from the combination of people and weapons to the element structure and the way of force release, has its mandatory era orientation and positioning. With the advent of the era of intelligent warfare, unmanned intelligent warfare has become a key factor affecting the direction of the war and even the outcome of the war. Intelligent technology and equipment have become a multiplier of mechanized and informationized combat effectiveness. Accelerating the development of military intelligence has become the strategic focus of improving the combat capability of the system and building new domains and new qualities of combat forces, making the generation and improvement of combat effectiveness increasingly dependent on the level of integrated development of mechanization, informatization and intelligence. Only by incorporating the transformation of combat effectiveness generation mode into the track of integrated development of mechanization, informatization and intelligence, building an intelligent and networked combat command platform, forming a human-machine efficient collaborative combat force use method, and making “smart victory” the core direction of combat theory innovation and combat method transformation, can combat effectiveness construction achieve substantial breakthroughs and overall leaps.

Grasp the requirements of the times to accelerate the integrated development of mechanization, informatization and intelligence

Accelerating the integrated development of mechanization, informatization and intelligence is a new proposition of the times. Grasping its requirements of the times from the perspective of its essential connotation, mode of action and basic laws is an important prerequisite for ensuring that the integrated development has a clear direction, accurate positioning, clear ideas and practical measures.

Grasp the essential connotation of integrated development. Mechanization, informatization and intelligentization are integrated and developed, with mechanization as the foundation, informatization as the leading factor and intelligence as the direction. The so-called integrated development is to form an integrated and unified promotion pattern, build an integrated design, and gather the best and release the energy operation mode, and produce an overall effect of superposition aggregation and quality and efficiency doubling. This deep integrated development is mainly reflected in: taking cognitive integration as the guide, having a scientific understanding of the advantages of firepower, mobility, information power and intellectual value, and establishing the operational concept of comprehensive control, comprehensive integration and comprehensive victory; relying on platform integration, building a combat platform integrating main combat equipment, information network and artificial intelligence, and improving the comprehensive combat capability of full-domain, precise and unmanned; taking system integration as the core, through the embedded transformation of weapon equipment system and information network system by artificial intelligence system, the overall potential of combat force and combat elements is demonstrated with higher quality and level of system integration; with system integration as the support, coordinating the construction of mechanization, informatization and intelligence, coordinating the construction of combat force and support guarantee force, and creating an integrated joint combat system that adapts to the needs of actual combat.

Grasp the role of integrated development. The integrated development of mechanization, informatization and intelligence is a process of showing their strengths, interacting with each other and promoting each other. It is a process of aggregating equipment advantages, information advantages and intelligence advantages. Its role is mainly reflected in: strengthening the leading role of intelligence, focusing on accelerating the development of military intelligence, insisting on using intelligence to drive the leapfrog development of mechanization and informatization, taking intelligence as the core direction of the development of weapons and equipment and information network construction, increasing the research and development of unmanned and autonomous weapons and equipment, and improving the intelligent application, intelligent management and control, and intelligent operation level of information networks, and giving full play to the maximum effect of controlling energy with intelligence, gathering excellence with intelligence, and winning with intelligence; strengthening the leading role of informatization, grasping the information network system as a handle, accelerating the construction of command information systems and information combat systems, using the advantages of information technology to upgrade and transform existing weapons and equipment, and developing precise, intelligent, integrated, and efficient informationized weapons and equipment, and maximizing the adhesion and integration of information networks on combat systems and effectiveness; strengthening the basic role of mechanization, insisting on taking the mechanization of weapons and equipment as the material basis and carrier for the development of intelligence and informatization, strengthening the construction of weapons and equipment systems, and working hard to fill the gaps in the system and make up for the shortcomings and weaknesses, greatly improving the application level of information technology and intelligent technology in weapons and equipment, and enhancing the scientificity, pertinence, and cutting-edge nature of equipment construction and development.

Grasp the basic laws of integrated development. Mechanization, informatization and intelligence are inevitably closely linked, and together they constitute the key support for the generation and improvement of combat effectiveness. The basic laws of integrated development are mainly manifested in: the progressive nature of development and change, which reflects the different historical stages of the evolution of war forms, changes in combat methods, and the development of weapons and equipment in the time sequence; in terms of interaction, the former is the premise and foundation of the latter (for example, mechanization is the foundation and premise of informatization, and informatization is the foundation and premise of intelligence), and the latter is the development trend and higher potential of the former. With the long-term nature of overlapping and coexisting, the former will produce a marginal diminishing effect when it develops to a certain stage, and the latter needs to inject new momentum and vitality into it, but the latter is not a negation or end of the former, but a repositioning and orientation of the former. What needs to be achieved is the “three-in-one” inclusiveness, rather than the “three-choice” mutual exclusion. It has inclusive complementarity. Mechanization focuses on entities, informatization focuses on data, and intelligence focuses on algorithms. The stronger the foundation of the former, the greater the degree of realization of the latter; the stronger the traction of the latter, the faster the upgrading of the former. It has the empowerment of improving quality and efficiency. Weapon platforms need information networks to empower them, and weapon platforms and information networks need artificial intelligence to empower them. This is a process of optimization and upgrading, improving quality and efficiency, and achieving a new leap in combat effectiveness, quality and efficiency.

Tighten the strategic grasp to accelerate the integrated development of mechanization, informatization and intelligence

To accelerate the integrated development of mechanization, informatization and intelligence, we should plan, act and follow the trend, focus on combat effectiveness as the only fundamental standard, continuously promote the modernization of national defense and the armed forces, and realize the party’s goal of building a strong military in the new era.

We should focus on preparing for war. Wars change with the times, and victory changes with the times. We should take accelerating the integrated development of mechanization, informatization and intelligence as an important mission topic to comprehensively improve the ability to prepare for war in the new era. Focus on mission tasks, focus on the new requirements for winning modern wars, conduct in-depth research on the winning mechanism and changes in combat methods brought about by the evolution of war forms, grasp the new characteristics of the informationized and intelligent battlefield, actively explore new tactics for using and responding to intelligent weapons, and improve the informationized and intelligent combat capabilities; focus on transformation and construction, accelerate the transformation of combat effectiveness generation to informatization and intelligence, take military intelligent construction and combat as the main line, accelerate the construction of new domains and new types of combat forces, increase the training of informationized and intelligent talents, and strive to achieve the overall reshaping of combat forces and combat systems; focus on training with war, actively explore new ways of informationized and intelligent training, examine future battlefields and combat opponents from the perspective of “smart war” and “smart victory”, enhance the pertinence of mission topics and emergency response training, use intelligent technology to improve the level of science and technology training, and promote practical training to a higher quality level.

We must focus on deepening reform. Reform is a key move to strengthen the army and win the future. We must accelerate the integrated development of mechanization, informationization, and intelligence as an important focus of deepening national defense and military reform. We must insist on seeking combat effectiveness from reform, focus on the prominent characteristics of the army’s lean, integrated, miniaturized, modular, and multi-functional nature in the intelligent era, design reforms with a forward-looking, innovative, and open mind, establish a smooth and efficient leadership, command, and support mechanism, further integrate force resources, streamline the construction and management mechanism, and optimize the organizational structure. Adapting to the requirements of being able to fight and win battles, we must build a strategic and campaign command system that is integrated in peacetime and wartime, operates normally, specializes in the main business, is lean and efficient, and build a joint combat force system with elite combat forces as the main body, promote the development of the force organization in the direction of enrichment, synthesis, multi-functionality, and flexibility, implement modular organization, building block combination, and task-based joint, build a force with multiple capabilities and broad adaptability, and promote the overall leap in combat effectiveness through system structure optimization and reconstruction.

We should stick to the support point of innovation-driven development. Innovation is the core support for the development of combat effectiveness. We should accelerate the integrated development of mechanization, informatization and intelligence as the focus of implementing the innovation-driven development strategy. We should seek breakthroughs in the innovation of combat theory, closely follow the development trend of military revolution and the recent wars in the world, study the development and application of high-tech, especially intelligent technology and its impact on war, study the new characteristics, new styles and new mechanisms of intelligent warfare, study the winning strategies of intelligent warfare and combat, and accelerate the construction of a combat theory system with the characteristics of our army and in line with the laws of modern warfare. We should seek breakthroughs in scientific and technological innovation, focus on independent innovation and original innovation in national defense science and technology, take the military application of high-tech, especially artificial intelligence technology, as the main direction, accelerate the implementation of major strategic projects in national defense science and technology and weapons and equipment, accelerate the development of strategic, cutting-edge and disruptive technologies, accelerate the upgrading and replacement of weapons and equipment and the development of intelligent weapons and equipment, strive to achieve the transformation from following and running side by side to running side by side and leading, and provide stronger scientific and technological support for the transformation and construction of our army’s combat effectiveness.

(Author’s unit: Joint Operations College of National Defense University)

現代國語:

黨的十九屆五中全會對國防和軍隊建設作出新的全面部署,著眼實現建軍百年奮鬥目標,明確提出加快機械化資訊化智能化融合發展的時代要求和戰略舉措。奮進新征程,聚力加快機械化資訊化智能化融合發展,搶抓機遇,應對挑戰,乘勢而上,對於加速國防和軍隊現代化、全面提高新時代備戰打仗能力具有極其重要的意義。

認清加速機械化資訊化智能化融合發展的時代必然性

順勢者贏,駕馭者勝。目前,新一輪科技革命呈現智慧化技術強勁引領的態勢,推動世界新軍事革命向縱深發展,武器裝備智慧化趨勢明顯、與機械化資訊化的疊加聚合效應凸顯,戰爭形態在加速由機械化向訊息化演變中,進入到催生智慧化戰爭階段。正是時代發展與變革,使加速機械化資訊化智慧化融合發展,成為推動軍事變革深入發展的大勢所趨和強大動力,成為確保贏得主動、贏得優勢、贏得未來的必然選擇。

順應世界軍事革命潮流之需。目前,人工智慧技術正在高速發展,正日益對戰爭和作戰領域產生顛覆性影響。搶佔人工智慧戰略制高點,加速人工智慧軍事化實戰化發展,成為世界主要國家軍事競爭的戰略前線。加大人工智慧技術軍事應用的力度,實現對機械化、資訊化作戰裝備的深度改造、全面升級,把人工智慧系統嵌入資訊化作戰指揮鏈、行動鏈,透過智慧化改造使作戰力量編成更加模組化、一體化,是世界軍事大國謀求新的軍事優勢的通行做法。能否加速機械化資訊化智慧化融合發展,特別是充分釋放智慧化對機械化、資訊化的效能拓展,讓平台作戰、體係作戰、精準作戰獲得更高質高效的智慧化支撐,無疑是能否牢牢把握軍事競爭戰略主動權的一個關鍵。

全面提升現代化建設水準之需。現代化有著鮮明的時代性,時代要求是衡量一個國家、一支軍隊現代化程度的關鍵尺度。當今時代,正進入到以智慧化為核心變革動力的階段,機械化資訊化智能化的融合發展,既是國家和軍隊現代化水平的重要標誌,也是推進國防和軍隊現代化的根本性舉措。加速軍事理論、軍隊組織形態、軍事人員和武器裝備現代化,都需從機械化資訊化智慧化融合發展中,獲得變革創新、轉型升級、提質增效的強力引擎和支撐,並在一定意義上起著決定現代化建設發展方向、發展方式、發展路徑的重要角色。只有加速機械化資訊化智慧化融合發展,使之貫穿到推動現代化建設的全過程各環節,在高起點上推動品質變革、效率變革、動力變革,才能全面提升國防與軍事現代化建設水準。

加快轉變戰鬥力生成模式之需。戰鬥力的生成,從人與武器的結合到要素結構、力量釋放方式,都有其強制性的時代定向、定位。智慧化戰爭時代的到來,無人智慧化作戰成為影響戰局走向乃至戰爭勝負的關鍵要素,智慧化技術裝備成為機械化、資訊化作戰效能的倍增器,加速軍事智慧化發展成為提升體係作戰能力、打造新域新質作戰力量的戰略重心,使戰鬥力的生成與提升愈來愈取決於機械化資訊化智慧化的融合發展水準。只有把轉變戰鬥力生成模式納入機械化資訊化智慧化融合發展的軌道,建構智慧化網路化的作戰指揮平台,形成人機高效協同的作戰力量運用方式,讓「智勝」成為作戰理論創新、作戰方式變革的核心指向,才能使戰鬥力建設取得實質突破、實現整體性躍升。

掌握加速機械化資訊化智慧化融合發展的時代要求

加速機械化資訊化智慧化融合發展是一個全新的時代命題,從本質內涵、作用方式、基本規律上把握其時代要求,是確保融合發展方向明、定位準、思路清、舉措實的重要前提。

掌握融合發展本質內涵。機械化資訊化智能化融合發展,機械化是基礎,資訊化是主導,智能化是方向。所謂融合發展,就是形成融為一體、合而為一的推進格局,建構一體設計、聚優釋能的運作模式,產生疊加聚合、質效倍增的整體效應。這種深度融合發展主要體現在:以認知融合為先導,具有對火力、機動力、資訊力和智力價值優勢的科學認知,確立綜合製權、綜合整合、綜合製勝的作戰理念;以平台融合為依托,建構主戰裝備、資訊網路、人工智慧融為一體的作戰平台,提升全域化、精確化、無人化的綜合作戰能力;以系統融合為內核,透過人工智慧系統對武器裝備系統、資訊網路系統的嵌入式改造,以更高品質和水平的系統整合展現作戰力量、作戰要素的整體勢能;以體系融合為支撐,統籌機械化資訊化智能化建設,統籌作戰力量、支援保障力量建設,打造適應實戰需求的一體化聯合作戰體系。

把握融合發展作用方式。機械化資訊化智能化融合發展,是各展其長、互為作用、相互促進的過程,是聚合裝備優勢、資訊優勢、智能優勢的過程。其作用方式集中體現在:強化智能化的引領作用,聚焦加速軍事智能化發展,堅持以智能化牽引機械化、信息化跨越式發展,把智能化作為武器裝備和信息網絡建設發展的核心指向,加大研發無人化、自主化武器裝備的力度,提升資訊網路的智慧應用、智慧管控、智慧運作水平,發揮以智駕馭能、以智聚優、以智取勝的最大效應;強化資訊化的主導作用,扭住資訊網路體系這個抓手,加快指揮資訊系統、資訊作戰系統建設,運用資訊科技優勢升級改造現有武器裝備,開發精確、智慧、融通、高效的資訊化武器裝備,最大限度地發揮資訊網路對作戰體系與效能的黏合力、整合力;強化機械化的基礎作用,堅持將武器裝備機械化作為智慧化、資訊化發展的物質基礎與載體,加強武器裝備體系建設,在填補體系空白、補齊短板弱項上下功夫,大幅提升武器裝備的資訊科技、智慧技術應用水平,增強裝備建設發展的科學性、針對性、前沿性。

把握融合發展基本法則。機械化資訊化智能化之間有著必然的內在的緊密聯繫,共同構成戰鬥力生成和提升的關鍵支撐。其融合發展的基本法則主要表現在:具有發展變革的遞進性,在展開時序上,反映了戰爭形態演進、作戰方式變革、武器裝備發展的不同歷史階段;在相互作用上,前者是後者的前提和基礎(例如機械化是資訊化的基礎和前提,資訊化是智慧化的基礎和前提),後者是前者的發展趨向和更高位能。具有交疊並存的長期性,前者發展到某一階段會產生邊際遞減效應,需要後者為其註入新動能、新活力,但後者不是對前者的否定和終結,而是對前者的重新定位和定向,所要達成的是「三合一」式的兼容並蓄,而不是「三選一」式的互斥排他。具有相容且蓄的互補性,機械化以實體為重心,資訊化以數據為重心,智能化以演算法為重心,前者的基礎越牢,後者的實現程度就越大;後者的牽引作用越強,前者的升級換代就越快。具有提質增效的賦能性,武器平台需要資訊網路為其賦能,武器平台、資訊網路需要人工智慧為其賦能,這是優化升級、提質增效的過程,是實現戰鬥力品質效能新躍升的過程。

緊扭加快機械化資訊化智慧化融合發展的策略性抓手

加速機械化資訊化智能化融合發展,應因勢而謀、應勢而動、順勢而為,緊緊圍繞以戰鬥力這個唯一的根本標準,不斷推進國防和軍隊現代化建設,實現黨在新時代的強軍目標。

扭住備戰打仗這個聚焦點。戰爭因時而化,勝戰據時而變。要把加速機械化資訊化智能化融合發展,作為全面提升新時代備戰打仗能力的重要使命課題。聚焦使命任務,著眼打贏現代化戰爭的新要求,深入研究戰爭形態演變帶來的致勝機理、作戰方式之變,掌握資訊化智能化戰場的新特點,積極探索運用與應對智慧武器的新戰法,提升資訊化智慧化作戰能力;聚焦轉型建設,加速推進戰鬥力生成向資訊化、智慧化轉型,以軍事智慧化建設與作戰為主線,加速新域新質作戰力量建設,加大資訊化智慧化人才的培養力度,著力實現作戰力量、作戰體系的整體重塑;聚焦以戰領訓,積極探索資訊化智慧化訓練的新路子,從「智戰」「智勝」視角審視未來戰場、作戰對手,增強使命課題、應急應戰訓練的針對性,運用智能技術提昇科技興訓水平,推動實戰化訓練向更高質量水平發展。

扭住深化改革這個著力點。改革是強軍興軍、制勝未來的關鍵一招。要把加速機械化資訊化智慧化融合發展,作為深化國防和軍事改革的重要著力點。堅持向改革要戰力,著眼智慧時代軍隊精幹化、一體化、小型化、模組化、多能化的突出特徵,以前瞻、創新、開放的思路設計改革,建立順暢高效的領導、指揮、保障機制,進一步整合力量資源、理順建管機制、優化編成結構。適應能打仗、打勝仗的要求,建構平戰一體、常態運作、專司主營、精幹高效的戰略戰役指揮體系,建構以精銳作戰力量為主體的聯合作戰力量體系,推動部隊編成向充實、合成、多能、靈活方向發展,實行模組化編組、積木式組合、任務式聯合,打造具備多種能力和廣泛適應性的部隊,透過體系結構優化再造促進戰鬥力整體躍升。

扭住創新驅動這個支撐點。創新是戰鬥力建設發展的核心支撐力。要把加速機械化資訊化智慧化融合發展,作為實施創新驅動發展策略的重心。在作戰理論創新上求突破,密切追蹤軍事革命發展趨勢和近期世界發生的戰爭,研究高新技術特別是智慧化技術發展運用及對戰爭的影響,研究智能化作戰的新特徵、新樣式、新機理,研究智慧化戰爭與作戰的致勝方略,加速建構具有我軍特色、符合現代戰爭規律的作戰理論體系。在科技創新上求突破,聚力國防科技自主創新、原始創新,把高新技術特別是人工智慧技術的軍事應用作為主攻方向,加速實施國防科技與武器裝備重大戰略工程,加速戰略性前沿性顛覆性技術發展,加速武器裝備升級換代和智慧化武器裝備發展,奮力實現由跟跑並跑向並跑領跑的轉變,為我軍戰鬥力轉型建設提供更強勁的科技支撐。

(作者單位:國防大學聯合作戰學院)

中國原創軍事資源:http://www.81.cn/gfbmap/content/2020-11/25/content_276619888.htm

Artificial Intelligence Will Change Chinese Military Winning Mechanism of Future Wars

人工智慧將改變中國軍隊未來戰爭制勝機制

現代英語:

2024-05-02 09:xx | Source:  Peopke’s Liberation Army Daily

Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. In recent years, it has developed rapidly and has been widely used in the military field, constantly giving rise to new asymmetric advantages, and profoundly changing the basic form, combat methods and winning mechanisms of future wars. We should have a deep understanding of artificial intelligence as a revolutionary technological driving force, accurately identify changes, respond scientifically, and actively seek changes, strive to explore ways to win future wars, and gain the initiative in the accelerating intelligent war.

Information Mechanism

Knowing yourself and the enemy will ensure victory in every battle. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situation, intelligent analysis of massive data, and intelligent processing of multiple information, which can form a “transparent” advantage on the battlefield.

Autonomous implementation of battlefield perception. By embedding intelligent modules into the wartime reconnaissance system, various reconnaissance node units can achieve random networking, on-the-spot coordination, and organic integration, and can autonomously capture battlefield information in all directions and dimensions, build a relatively “transparent” digital battlefield environment and combat situation, and then dispel the “fog” of war and present a panoramic view of the combat scene.

Accurately identify massive amounts of data. Relying on intelligent technologies such as precise sensing technology and analytical recognition technology, it accurately interprets, analyzes, compares, and integrates diversified voice, text, pictures, videos, and other data to obtain faster, more complete, more accurate, and deeper battlefield situation results, far exceeding the speed and accuracy of human brain processing.

Efficient response to key information. Based on intelligent technologies such as combat cloud, big data, and the Internet of Things, it is able to quickly discover large quantities of non-standardized, heterogeneous intelligence data, autonomously discover symptoms, identify intentions, analyze trends, find patterns, and respond to commanders’ needs for key information in real time and accurately.

Synchronous sharing of integrated situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air, space, and power grids, and play an important hub role in sharing information and unified cognition, building a situation based on “one picture”, “one network”, and “one chain”, so that all combat units can synchronously share the required information from different spaces, distances, and frequencies in all domains and at all times, and realize intelligent sharing.

Decision-making mechanism

Those who win before the battle have made more calculations. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can simulate and deduce dynamic battlefields, quickly make feasible decisions, greatly shorten the operational planning and decision-making cycle, and form a decision-making advantage.

Intelligent strategic situation analysis. The decision-making support system that incorporates artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analytical capabilities, maximize the separation of false and true, correlation verification, and link thinking, automatically conduct big data analysis such as enemy situation, our situation, and battlefield environment, and form comparative data on related forces and weapons. It can efficiently assist combat command and help commanders quickly make combat decisions.

Intelligent optimization of combat plans. Relying on the intelligent combat simulation system, according to the pre-input combat missions and strike target information, it automatically generates multiple sets of intuitive plans and programs, comprehensively evaluates their advantages and disadvantages and potential risks, and selects the plan that is most conducive to achieving the commander’s intention for the commander to make the final decision. After receiving the combat missions and target requirements from the superior, each combat unit further screens the battlefield target information in combination with the tasks and requirements of this level, and independently formulates the best plan and program at this level to maximize combat effectiveness.

Intelligent prediction of decision-making effectiveness. The intelligent decision-making support system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system more advanced “brain-like” capabilities, allowing it to think more rationally about unexpected situations on the battlefield and quickly come to relatively objective results of the engagement.

Power control mechanism

Power is the right to control based on benefits. Seizing control is the key factor in winning a war. Artificial intelligence can “transplant” part of human intelligence to weapons, making the combination of humans and weapon systems closer and closer. The deep interaction between man and machine has changed the traditional elements of control, endowed it with new connotations, and can help gain new control advantages.

The right to control the domain is expanding to the high frontier. In the future, highly intelligent unmanned systems will be able to carry out a variety of combat missions even under harsh conditions such as high temperature, extreme cold, high pressure, lack of oxygen, toxicity, radiation, and in extreme environments such as extremely high, extremely far, extremely deep, extremely microscopic, extremely dark, and extremely bright. The competition for control of the combat domain and combat space will extend to the high frontier, the far frontier, and the deep frontier.

The right to control information is expanding to multiple means. Traditionally, the right to control information is achieved by attacking the enemy’s reconnaissance and early warning system, destroying its command and control system, and other means to control the acquisition, processing, and distribution of information. However, information warfare dominated by artificial intelligence uses information itself as “ammunition”, and the means to seize the right to control information are more diverse.

The network control power is expanding to distributed. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services, which can realize modular organization and automated reorganization of combat forces. The traditional purpose of breaking the network and destroying the chain by attacking key nodes will no longer be achieved. It is inevitable to respond to the “decentralized” battlefield with an intelligent distributed attack mode.

The power to control the brain is expanding to new domains. Brain-like technology and simulation technology are gradually militarized, forming new areas of competition and confrontation. The focus has shifted from focusing on confrontation in the physical and information domains to focusing more on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can be indistinguishable from the real thing. “Core attack” can quietly change the enemy’s command and control system algorithm. “Brain control” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, will, etc., the goal of stopping and winning the war can be achieved at the lowest cost.

Mechanism of action

The key to victory in war is to take advantage of the enemy’s unpreparedness and to take actions that the enemy does not expect. Artificial intelligence can improve the intelligence of weapons and equipment, command and control systems, and action decision-making, making the mobile response capability faster and the joint strike capability more accurate, creating a super action advantage.

The speed of action is “instant kill”. The intelligent combat system can see, understand, learn and think, effectively shortening the “OODA” cycle. Once an “opportunity” is found, it will use intelligently controlled hypersonic weapons, kinetic weapons, laser weapons, etc. to quickly “instant kill” the target at a long distance.

Action style is “unmanned”. “Unmanned + intelligent” is the future development direction of weapons and equipment. Low-cost unmanned vehicles, drones, unmanned submarines and other unmanned autonomous equipment, with the support of cluster autonomous decision-making systems, can plan the task division of each unit according to combat objectives, accurately dock with each other, autonomously combine, covertly penetrate, and carry out cluster saturation attacks on the enemy.

“Blurred” action space. In future wars, using interference to carry out soft strikes on the enemy’s intelligent combat systems and intelligent weapons, and using intelligent weapons to delay or influence the enemy’s decision-making and psychology will become the key to victory. Most of these actions are completed unconsciously or silently, presenting a “blurred” state where the enemy and us are invisible, the boundaries between the front and the rear are unclear, and the visible and invisible are difficult to distinguish.

The action deployment is “stealth”. The intelligent command system and weapon equipment have bionic and stealth properties. As long as they are deployed in advance in possible combat areas during peacetime preparations or training exercises, they can be pre-positioned and dormant in preparation for war. Once they are activated in time during wartime, they can launch a sudden attack on the enemy, which will help to quickly seize the initiative in the war.

System Mechanism

Five factors and seven strategies determine victory or defeat. Future wars will be full-domain, full-system, full-element, full-process system confrontations, and a stable and efficient combat system is the basic support for winning the war. As the application of artificial intelligence in the military field continues to expand, the combat system is becoming more and more intelligent, and the full-domain integrated combat system will produce a strong system advantage.

There are more means of “reconnaissance”. Intelligent combat clusters rely on network information systems to connect with various large sensors, electronic warfare systems and other human-machine interaction platforms, use the detection and perception equipment of each combat unit to obtain battlefield data, give full play to the self-organizing characteristics of intelligent groups, strengthen real-time reconnaissance and monitoring support for joint combat systems and back-end intelligence analysis, and achieve full-domain reconnaissance, joint early warning, and coordinated verification, forming a multi-dimensional, full-domain coverage of large-area joint reconnaissance intelligence system.

The scope of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of senses and the physical limits of existence, and replace humans to enter traditional life-forbidden areas such as the deep sea, space, polar regions, and areas with strong radiation, and stay there for a long time to carry out “unconventional warfare”, thereby further expanding the combat space and having the ability to continuously deter opponents in a wider range of fields.

The speed of “fighting” is faster. Supported by the intelligent network information system, the intelligence chain, command chain, and kill chain are seamlessly connected, the speed of information transmission, decision-making speed, and action speed are simultaneously accelerated, and the intelligent combat units can be flexibly organized, autonomously coordinated, and quickly strike. All of these make the time utilization efficiency extremely high and the battlefield response speed extremely fast.

The “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavior systems, the intelligent combat evaluation system can independently complete the collection, aggregation, and classification of multi-means action effect evaluation information, accurately perceive battlefield actions based on big data and panoramic images, dynamically identify combat progress and correct defects, predict complex battlefield changes, and make comprehensive plans and respond flexibly.

The “maintenance” is more efficient. The widespread application of intelligent comprehensive support systems represented by equipment maintenance expert systems and intelligent sensing equipment can efficiently respond to the support needs of various domains, intelligently plan support resources, ensure that the “cloud” aggregates various battlefield resources, and effectively improve the comprehensive support capabilities of the networked battlefield.

(Zeng Haiqing’s unit: Henan Provincial Military Region)

現代國語:

人工智慧技術是提升新興領域戰略能力的重要支撐,近年來獲得快速發展並廣泛運用於軍事領域,不斷催生新的非對稱優勢,深刻改變未來戰爭的基本形態、作戰方式和致勝機理。應該深刻認識人工智慧這項革命性技術動力,準確識變、科學應變、主動求變,努力探索制勝未來戰爭之道,在加速來臨的智慧化戰爭中贏得主動。

資訊機理

知彼知己,百戰不殆。快速有效地掌握全方位資訊是戰爭制勝的首要前提。人工智慧可實現戰場態勢智慧感知、大量資料智慧分析、多元資訊智慧處理,能夠形成戰場「透明」優勢。

戰場感知自主實施。將智慧模組嵌入戰時偵察系統,各類偵察節點單元可實現隨機組網、臨機協同、有機整合,能夠全方位、多維度自主捕獲戰場信息,構建相對「透明」的數位化戰場環境和戰態勢,進而撥開戰爭“迷霧”,全景式呈現作戰場景。

海量資料精準識別。依托精準感知技術及分析辨識技術等智慧化科技,精準判讀、分析、比對、融合多元化的語音、文字、圖片、視訊等數據,從而獲取更快、更全、更準、更深的戰場態勢結果,遠超人腦處理的速度和精確度。

關鍵資訊高效響應。基於作戰雲、大數據、物聯網等智慧化技術群,能夠從大批量、非標準化、異構化的情報數據中快速發掘,自主發現徵候、識別意圖、研判趨勢、找到規律,即時精準地響應指揮官對關鍵資訊的需求。

融合態勢同步共享。智慧化控制系統能夠將分佈在陸海空天電網等不同空間、不同頻域的各種偵察監視系統優化整合,並發揮共享信息和統一認知的重要樞紐作用,構建形成基於“一幅圖”“一張網」「一條鏈」的態勢,使各作戰單元全局全頻全時從不同空間、不同距離、不同頻率同步共享所需信息,實現智慧共享。

決策機理

夫未戰而廟算勝者,得算多也。科學準確決策是戰爭制勝的先決條件。人工智慧可進行動態戰場模擬推演,快速給予可行決策,大幅縮短作戰規劃決策週期,能夠形成決策優勢。

戰略形勢智能研判。融入人工智慧技術的決策輔助系統,具備資訊收集、查詢管理、資料處理、關聯分析等功能,可有效突破人類分析能力的限制,最大限度去偽存真、關聯印證、連結思考,自動進行敵情、我情和戰場環境等大數據分析,形成相關兵力、兵器等對比數據,能夠有效率地輔助作戰指揮,幫助指揮家快速定下作戰決心。

作戰方案智能優選。依托智能化作戰模擬系統,根據預先輸入的作戰任務和打擊目標訊息,自動產生多套形象直觀的方案和計劃,綜合評估其優缺點及潛在風險,優選出最有利於實現指揮官意圖的方案,供指揮官作出最後決斷。各作戰單元接到上級作戰任務和目標需求後,結合本級任務和要求,進一步對戰場目標資訊進行甄別篩選,自主制訂本級最優方案和計劃,實現作戰效能最大化。

決策效能智能預測。智慧化輔助決策系統依賴大數據、高效能運算、神經網路演算法等智慧化技術,賦予指揮控制系統更高階的「類腦」能力,可以更理性地思考戰場上出現的意外情況,快速得出相對客觀的交戰結果。

制權機理

勢者,因利而製權也。奪取制權是贏得戰爭制勝優勢的關鍵因素。人工智慧可將人的部分智慧「移植」到武器上,使得人與武器系統結合越來越緊密,人機一體深度互動改變了傳統的製權要素,賦予新的製權內涵,能夠助力獲得新的製權優勢。

制域權向高邊疆拓展。未來高度智慧化的無人系統,即使在高溫、極寒、高壓、缺氧、有毒、輻射等惡劣條件下,在極高、極遠、極深、極微、極黑、極亮等極端環境中,仍可遂行多種作戰任務,作戰領域和作戰空間的製權之爭向高邊疆、遠邊疆、深邊疆延伸。

制資訊權向多手段拓展。傳統的奪取制資訊權,是透過打擊敵偵察預警體系、破壞其指揮控制系統等手段實現對資訊取得、處理、分發等途徑的控制,而人工智慧主導下的資訊作戰則是將資訊本身作為「彈藥”,奪取制資訊權的手段更加多元。

制網權向分散式拓展。基於智慧科技建構的網路資訊體系,提供泛在網路「雲」以聚合各類終端的戰場資源並提供服務,能夠實現作戰力量模組化編組、自動化重組,傳統的透過打擊關鍵節點,達成斷網毀鏈的目的將很難再實現,必然是以智慧化分散式打擊模式來應對「去中心化」的戰場。

制腦權向新維度拓展。類腦技術、模擬技術等逐步軍事化,形成了新的博弈和對抗領域,重心由注重物理域、資訊域對抗向更加註重影響和控制對手心理轉變,虛擬實境、聲像合成等技術能夠以假亂真, 「攻芯戰」能夠悄無聲息地改變敵方指揮控制系統演算法,「控腦戰」能夠直接控制敵方決策,透過控制和影響敵方的心理、思維、意誌等,能夠以最小代價實現止戰、勝戰之目的。

行動機理

兵之情主速,乘人之不及。採取敵方意料不到的行動是戰爭制勝的關鍵要害。人工智慧可提高武器裝備、指控系統、行動決策等方面的智慧化程度,使機動反應能力更快、聯合打擊能力更準,創造出超強的行動優勢。

行動速度「秒殺化」。智慧化作戰系統看得見、聽得懂、能學習、會思考,有效縮短了“OODA”循環週期,一旦發現“有機可乘”,便運用智能化控制的超高聲速武器、動能武器、激光武器等,對目標進行遠距離快速「秒殺」。

行動樣式「無人化」。 「無人+智慧」是未來武器裝備發展方向。低成本的無人車、無人機、無人潛航器等無人自主裝備,在集群自主決策系統支援下,可針對作戰目標規劃各單元的任務分工,無人器之間精準對接、自主組合、隱蔽突防,對敵進行群集飽和攻擊。

行動空間「模糊化」。未來戰爭中,利用乾擾手段對敵方的智慧化作戰系統和智慧武器實施軟打擊,利用智慧武器遲滯或影響敵方人員的決策和心理將成為致勝關鍵。這些行動大都是在不知不覺或無聲無息中完成的,呈現敵我雙方不見人影、前方後方界限不清、有形無形難以辨別的「模糊」狀態。

行動布勢「隱身化」。智慧化指揮系統和武器裝備具有生物仿生和隱身性能。只要在平時備戰或訓練演習時提前佈設在可能交戰地域,潛伏預置、休眠待戰,戰時一旦需要適時激活,對敵實施猝然打擊,有助於快速掌握戰爭主動權。

體系機理

五事七計知勝負。未來戰爭是全領域、全系統、全要素、全流程的體系對抗,穩定且有效率的作戰體係是戰爭制勝的基礎支撐。隨著人工智慧在軍事領域應用不斷拓展,作戰體系智慧化程度越來越高,全域融合的作戰體系將產生強大的體系優勢。

「偵」的手段更多。智慧化作戰集群依托網路資訊體系與各類大型感測器、電子戰系統及其他人機互動平台連接,運用各作戰單元本身偵測感知設備取得戰場數據,發揮智慧群體自組織特性,強化對聯合作戰體系及後端情報分析的即時偵監支持,能夠實現全局偵搜、聯合預警、協同印證,形成多維一體、全域覆蓋的大區域聯合偵察情報體系。

「控」的領域更廣。運用智慧化無人作戰平台,能夠突破人類思維的邏輯極限、感官的生理極限和存在的物理極限,並取代人類進入深海、太空、極地、強輻射地域等傳統的生命禁區,並長時間置身其中實施“非常規作戰”,從而使作戰空間進一步拓展,具備在更廣的領域持續懾拒對手的實力。

「打」的速度更快。在智慧化網路資訊體系支撐下,情報鏈、指揮鏈、殺傷鏈無縫連接,資訊傳輸速度、決策速度與行動速度同步加快,智慧化作戰單元能夠靈活編組、自主協同、快速打擊。這些都使得時間利用效率極高、戰場反應速度極快。

「評」的精準度更準。運用經驗互動學習、類腦行為體係等智慧化科技,智慧化作戰評估系統能夠自主完成多手段行動效果評估資訊的擷取匯聚、分級分類,基於大數據和全景圖精準感知戰場行動,動態識別作戰進程並修正缺陷問題,預判複雜戰場變化,綜合規劃、靈活應對。

「保」的效率更高。以裝備維修專家系統、智慧化感知設備為代表的智慧化綜合保障系統的廣泛應用,能夠高效響應各域保障需求,智慧規劃保障資源,保障「雲」聚合各類戰場資源,有效提升網路化戰場綜合保障能力。

(曾海清 作者單位:河南省軍區)

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-05-02&paperNumber=03&articleid=93088338

Artificial Intelligence Will Profoundly Change the Face of Warfare for China

人工智慧將深刻改變中國的戰爭面貌

現代英語:

Defeating dozens of top Go players in a man-machine battle, defeating a retired US Air Force pilot in a simulated air combat… In recent years, artificial intelligence has been like an omnipotent “magician”, creating endless miracles, shocking many people and constantly refreshing people’s imagination.

As a technical science dedicated to simulating, extending and expanding human intelligence, artificial intelligence has long surpassed scientists’ initial imagination and entered a “booming period” of rapid development. It is profoundly changing the way humans produce and live, and promoting the social form to accelerate from digitalization and networking to intelligence. At the same time, the widespread use of artificial intelligence technology in the military field will fundamentally change the winning mechanism and combat methods of modern warfare, give birth to new combat means and combat ideas, and promote the war form to accelerate into the intelligent era.

In intelligent warfare, intelligent equipment, intelligent command, intelligent maintenance, and intelligent combat methods are all conceivable – “fake news” created by artificial intelligence is everywhere in the entire process of war preparation, conduct and conclusion, and it is “false and true”; the role of inanimate intelligent entities and robot fighters in intelligent warfare is prominent, and artificial intelligence combat forces such as “cloud brain”, “digital staff” and “virtual warehouse” used for information support, command and control, effect evaluation and logistics support will play an increasingly important role in future wars. Intelligent machines and intelligent weapons will become the main force on future battlefields; remote and precise Specific, miniaturized, and large-scale unmanned attacks will become the main form of attack. “Man-to-man” warfare will expand to “machine autonomous warfare” warfare; intelligent swarm attrition warfare, cross-domain mobile warfare, and cognitive control warfare will become basic combat types; decentralized deployment of humans and machines, autonomous coordination, and concentrated energy offensive and defensive operations will become the basic principles of cross-domain integration and global operations; the “observation-judgment-decision-action” link will be greatly shortened, the combat rhythm will be faster, the actions will be more precise, and the efficiency will be higher; upgrading and training artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will become an important way to enhance combat effectiveness. Intelligence will surpass firepower, mobility, and information power and become the most critical factor in determining the outcome of a war. As a result, the meaning of battlefield control will need to be redefined, new topics will be added to international arms negotiations, and textbooks on intimidation theory will need to be rewritten.

The world’s military powers, represented by the United States, have foreseen the broad application prospects of artificial intelligence technology in the military field. They believe that future wars will be intelligent wars and future arms competitions will be intelligent competitions. They have also laid out a series of research plans in advance, hoping to seize the initiative in the military application of artificial intelligence and strive to open up a “generation gap” with potential opponents. In recent years, NASA, the Department of Defense and various military services have deployed a series of artificial intelligence technology research projects in the military field. The U.S. Department of Defense has also proposed the establishment of a “Joint Artificial Intelligence Center” to jointly promote artificial intelligence projects with the U.S. military and 17 intelligence agencies, and coordinate the planning and construction of an intelligent military system supported by military technology and military applications. Russia also sees artificial intelligence as the commanding heights of future military competition. The Russian military is stepping up the development of humanoid robots that can drive vehicles and build robot troops that can fight side by side with human soldiers. Russian President Vladimir Putin said: “Artificial intelligence is not only the future of Russia, but also the future of all mankind. It contains huge opportunities and threats that are difficult to predict today.” Countries such as the United Kingdom, Japan, Australia, South Korea, and India are also increasingly paying attention to the development and application of artificial intelligence in the military field.

Today, the pace of military application of artificial intelligence may be difficult to stop. Faced with the new situation, we need to firmly grasp the major historical opportunities for the development of artificial intelligence, judge the general trend, take the initiative to plan, grasp the direction, seize the initiative, and effectively safeguard national security. At the same time, from the perspective of the future and destiny of mankind, the international community should establish a mechanism to prevent the excessive military application of artificial intelligence as soon as possible. After all, the power of human beings to create civilization should not become a tool to destroy civilization, and scientific and technological progress should be a blessing for the benefit of mankind, rather than a death knell that threatens human survival and development.

(Author’s unit: Academy of Military Science)

現代國語:

■遊光榮

在人機大戰中擊敗數十名頂級圍棋高手、在模擬空戰中擊敗美國空軍退役飛行員……近年來,人工智能猶如萬能的“魔法師”,創造了層出不窮的奇跡,在驚掉不少人下巴的同時,也不斷刷新著人們的想像。

作為一門致力於模擬、延伸和擴展人的智慧的技術科學,人工智慧早已超越了科學家最初的想像,進入了一個高速發展的“井噴期”,正在深刻改變人類的生產生活方式,推動社會形態從數位化、網絡化向智慧化加速躍升。同時,人工智慧技術在軍事領域的廣泛運用,將從根本上改變現代戰爭制勝機理和作戰方式,催生新的作戰手段和作戰思想,推動戰爭形態加速邁入智能化時代。

在智慧化戰爭中,智慧化裝備、智慧化指揮、智慧化維修、智慧化作戰方式都是可以想像的——人工智慧製造的「虛假新聞」在戰爭準備、進行和結束的全過程中無處不在,而且“以假亂真”;無生命智能體、機器人戰鬥員在智能化戰爭中的作用凸顯,用於信息支援、指揮控制、效果評估、後勤保障的“雲大腦”“數字參謀”“虛擬倉儲”等人工智慧作戰力量將在未來戰爭中發揮越來越重要的作用,智慧機器和智慧武器將成為未來戰場的主力;遠程化、精確化、小型化、大規模無人攻擊將成為主要進攻形式,「人對人」的戰爭將向「機器自主作戰」的戰爭拓展;智慧化的蜂群消耗戰、跨域機動戰、認知控制戰將成為基本作戰類型;人機分散部署、自主協同、集中能量攻防作戰,成為跨域融合、全局作戰的基本準則;「觀察-判斷-決策-行動」連結大大縮短,作戰節奏更加快速、行動更加精準、效率更高;透過持續的對抗演習對人工智慧系統和各類無人化作戰平台的升級訓練,將成為戰鬥力提升的重要方式。智能將超越火力、機動性和資訊力,成為決定戰爭勝負的最關鍵因素。隨之而來的是,戰場控制權的內涵將需要重新界定,國際軍備談判將增加新主題,威懾理論的教科書也將改寫。

以美國為代表的世界軍事強國,預見到人工智慧技術在軍事領域的廣闊應用前景,認為未來的戰爭將是智慧化戰爭、未來的軍備競賽將是智慧化競賽,並已提前佈局了一系列研究計劃,希望搶佔人工智慧軍事化應用先機,力求與潛在對手拉開「代差」。近年來,美國國家航空暨太空總署、國防部和各軍種在軍事領域部署了一系列人工智慧技術研究項目,美國國防部還提出建立“聯合人工智慧中心”,計劃聯合美軍和17家情報機構共同推進人工智慧項目,統籌規劃建設以軍事技術和軍事應用為支撐的智慧軍事體系。俄羅斯也視人工智慧為未來軍事競爭的製高點,俄軍正加緊研發可以駕駛車輛的類人機器人、組建可與人類戰士並肩戰鬥的機器人部隊。俄總統普丁提出:「人工智慧不僅僅是俄羅斯的未來,也是全人類的未來。這包含著巨大的機會和當今難以預測的威脅。」英國、日本、澳洲、韓國、印度等國家也日益重視人工智能在軍事領域的發展與應用。

現今,人工智慧軍事化應用步伐或許難以阻止,面對新形勢,我們需要牢牢掌握人工智慧發展的重大歷史機遇,研判大勢、主動謀劃、把握方向、搶佔先機,有效維護國家安全。與此同時,從人類自身前途命運出發,國際社會應該早日建立防止人工智慧在軍事上過度應用的機制。畢竟,人類創造文明的力量不應該成為毀滅文明的工具,科技進步應該成為造福人類的福音,而不是成為威脅人類生存與發展的喪鐘。

(作者單位:軍事科學院)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4826892.html?big=fan

Militarization of Artificial Intelligence Competition Accelerating, China Must Adapt to Win

人工智慧軍事化競爭加速,中國必須適應才能取勝

現代英語:

Adapt to the general trend of technological development and seize the commanding heights of future wars——

Artificial intelligence is a general term for cutting-edge technologies such as big data, automated decision-making, machine learning, image recognition, and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption, and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future form of war, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.

With the rapid development of technology and the accelerating competition, major countries have launched their own artificial intelligence development plans, and accelerated the reform of organizational mechanisms, scientific and technological research and development, and innovation of tactics and strategies, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.

Accelerate organizational innovation

Promoting technology transformation and application

Unlike traditional technologies, the development and transformation of artificial intelligence has its own characteristics. The institutional setup and operation mode of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, removed the institutional barriers in the process of artificial intelligence technology development, and accelerated the transformation and application of related technologies.

Emphasis on “connecting the near and the far”. The UK, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Futures Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative use of existing platforms in a “potential tapping and efficiency increasing” manner, while buying time for the Defense Advanced Research Projects Agency’s medium- and long-term technological innovation, thereby effectively balancing actual needs and long-term development.

Attach importance to “research-use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat method selection, etc. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements. The transformation promotes the widespread application of artificial intelligence in the US Department of Defense and various services.

Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Board”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of National Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.

Highlight the “integration of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department. According to the specific effects of the organic integration of various systems into various military services, new technologies, new theories, and new concepts are fully demonstrated to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of defense technology innovation and application by re-establishing positions such as the Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, new concepts, and new methods, so as to select various technology research and development focuses and strategic and tactical research directions, and achieve a virtuous interaction between technological development and theoretical innovation.

Project establishment for military needs

Seize the opportunity for future development

In recent years, various military powers have targeted the research and development of cutting-edge artificial intelligence technologies, and have launched extensive projects in the fields of situational awareness, data analysis, intelligence reconnaissance, unmanned combat, etc., with the intention of seizing the initiative in future development.

Situational awareness. In the traditional sense, situational awareness refers to the collection and acquisition of battlefield information through satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” where peacetime and wartime are blurred, soldiers and civilians are integrated, internal and external links are linked, and the entire domain is integrated, the role of situational awareness in non-traditional domains such as the human domain, social domain, and cognitive domain has received unprecedented attention. The U.S. “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use an intelligent information analysis and data sharing platform to enhance the firepower support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.

Data analysis. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and decision-making support capabilities can transform information advantages into cognitive and action advantages. Russia’s “Battle Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, etc., and improving commanders’ ability to control complex battlefields and command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, the use of artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, root causes of events, and relationships between various factors behind the war; the “Marvin” project uses machine learning algorithms, face recognition technology, etc. to screen and arrange various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.

Unmanned combat field. In some technologically advanced countries, the unmanned combat system is becoming more mature and the spectrum of equipment types is becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and the transportation and recovery of drones under all-terrain and all-time conditions. The Russian military’s “Sentinel-R” drone system, which has the ability to detect, track, and strike military targets in real time, also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s ability to perform reconnaissance and surveillance, auxiliary aiming, battle damage assessment, and communication relay missions.

Adapting to future battlefield changes

Constantly exploring new tactics

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the efficiency of artificial intelligence’s participation in key military decisions and operations.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, gives full play to the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side is always ahead of the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the US Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the US military’s algorithmic warfare further moving towards actual combat.

Unmanned warfare is guided by low-cost attrition warfare with saturated quantity attacks and system offensive and defensive operations, and strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat modes. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”, respectively.

Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses special forces and other shallow-footprint, low-signature, fast-paced forces to form small groups of multi-group mobile formations, infiltrating the combat area in a multi-directional and multi-domain manner, continuously breaking the enemy’s system weaknesses and chain dependence, and increasing the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.

Fusion warfare relies on network quantum communications and other means to build an anti-interference, high-speed “combat cloud” to eliminate technical barriers to data link intercommunication, interconnection and interoperability among military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break down data barriers and significantly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information from various services, improving the integration between services and enhancing the effectiveness of joint command and control.

(Author’s unit: National University of Defense Technology)

現代國語:

適應科技發展大趨勢,搶佔未來戰爭制高點——

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以“戰略能力辦公室”和“首席數位和人工智慧官”為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以“挖潛增效”方式加強現有平台的創新運用,同時為國防高級研究計畫局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新觀念、新觀念、新方法進行實務檢驗,以選定各類技術研發焦點與策略戰術攻關方向,實現技術發展與理論創新的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源訊息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發制人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力及全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增加其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

(作者單位:國防科技大學)

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_323888.htm