Category Archives: #中國軍事人工智慧武器化

Chinese Military Research on Conceptual System-based Superior Warfare – How to Fight in Information Warfare System Operations? Analysis of Nine Typical Combat Styles

中國軍事體系優勢作戰概念研究-資訊化作戰體系如何作戰?九種典型作戰風格分析

現代英語:

System “Gathering Excellent War” It is “systematic warfare in information warfare. It does not necessarily refer to a certain combat style, but is composed of multiple combat styles and tactics” “combination boxing”, or combat style group . Emphasizes that, depending on the combat mission, combat opponent and the changing battlefield situation, any appropriate means and style of combat can be used flexibly to form combat advantages as long as it is conducive to forming comparative advantages and achieving system victory. In the specific implementation process of “system-based superior warfare”, these specific combat styles and operational tactics can not only be organized and implemented separately as part of joint all-domain operations, but also emphasize fighting “combination boxing”, using multiple strategies simultaneously, and winning as a whole. 


       In order to better understand its core connotation, this article lists Nine typical combat styles including overall deterrence warfare, electromagnetic disturbance warfare, network penetration warfare, and cognitive control disturbance warfare And analyze .

       System “Juyouzhan” ――combination boxing that flexibly uses multiple combat styles“
        1. Overall deterrence war: Emphasis on multi-domain joint deterrence; Three elements should be present in the implementation of an overall deterrent war ; Strong overall strength is central to achieving effective deterrence
        2. Electromagnetic Disturbance Warfare : The key to competing for information advantage; On the combined means approach, information empowerment is achieved through “connection + sharing” ; Crack down on effective tactics for unmanned cluster operations
       3. Cyber-sabotage: Soft “kill” is the main focus, combining soft and hard, focusing on breaking the net and reducing energy failure
       4. Cognitive scrambling: Control the cognitive power of situational awareness and compete for information advantage; control the decision-making power of command and compete for decision-making advantage; control “brain” power and seize the advantage of brain control
       5. Agile mobile warfare: High-efficiency and rapid decision-making; high-efficiency formation of a favorable combat situation; high-efficiency and instant gathering of combat forces; agile mobile warfare is an innovative development of traditional mobile warfare
       6. Swarm autonomous warfare: It is conducive to forming a system advantage to suppress the enemy; it is conducive to enhancing the combat effect; it is conducive to falling into the enemy’s combat dilemma
       7. Point-and-kill War: Achieving an efficient cost ratio for operations; targeting key nodes is an important option; large-scale system support is a basic condition; it is inseparable from precise intelligence support
       8. Supply-breaking: The supply guarantee chain has a huge impact on the overall combat situation; the center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain; the focus is on choosing the right time and making full use of tactics
       9. System “paralysis battle:” The objectives of the operation are to make the enemy combat system run out of order; to strike the key nodes of the combat system with heavy blows; and to carry out soft strikes against the enemy combat system

        For learning reference only, welcome to communicate and correct! Article views do not represent the position of this body
       The concept of combat was first proposed as a new combat style. Innovative combat styles are a core element in the development of combat concepts. It can be said that system-gathering battle is a general term for a series of specific tactics. The following nine typical combat styles constitute the tactical system of system-gathering and superior warfare. They are: One is Overall deterrence warfare, actively organize static power display and deterrence actions in system excellence battles, and strive to defeat others without fighting or small battles; Two is Electromagnetic disturbance warfare uses various combat methods and action styles such as electronic detection, attack and defense to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize the right to control information, and then win the initiative in combat; Three is In cyber attack warfare, various means such as soft strikes and hard destruction are used to defeat the enemy’s command network, intelligence network, communication network, logistics supply network, and disrupt the enemy’s command and support; Four is Cognitively Controlled Disturbance. Form a controlling advantage in the cognitive space through information attacks, public opinion attacks, and brain attacks; Five is Agile mobile warfare. Quickly adjust the deployment of troops and weapons, quickly gather capabilities on the battlefield, and seize combat opportunities; Six is Swarm autonomous warfare. Extensively use unmanned combat methods such as “bee swarms”, “wolf swarms”, and “fish swarms” to independently organize actions and distributed attacks to achieve joint human-machine victory; Seven is Pointkill. Accurately obtain intelligence, carry out multi-domain precision strikes, strive to shake the overall situation with one point, and maximize combat benefits; Eight is Supply-breaking. Organize an elite force to attack enemy logistics supplies and equipment supply supply chains, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle; Nine is System “paralysis battle”. A variety of means, such as breaking the net, exercising, and hitting nodes, are used to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken its functions.


       1. Overall deterrence
       Overall deterrence warfare refers to actively organizing static power display and deterrence actions in the system’s battle for excellence, and striving to defeat others without fighting or small battles. Sun Tzu said: “Subduing one’s troops without fighting is a good thing.” Deterrence and war are the two main forms of military activity. And “deterrence” is mainly the act of showing determination and will to potential opponents by showing strength or threatening to use strong strength to deter opponents from action. It can be said that the overall deterrence war in the system-based battle of excellence is an important means or tactic to achieve the goal of “stopping” human troops without fighting. Clausewitz emphasized that the first rule of strategy is to be as strong as possible, first in general, and then in key locations. Modern warfare is system-to-system confrontation. The overall deterrence war under informationized local warfare requires not only traditional deterrence methods and capabilities on land, sea, air and space, but also new deterrence methods and capabilities such as space deterrence, electromagnetic deterrence, and network deterrence. It also requires an overall deterrence that shows the overall strength of the country. Especially with the rapid development of advanced technologies such as information technology, the technological revolution, industrial revolution, and military revolution have accelerated their integration, and strategic competitiveness, social productivity, and military combat effectiveness have become more closely coupled. Winning the information war is to a greater extent a contest between the will of the country and the overall strength of the country. To contain the war, we must first act as a deterrent to our opponents in terms of overall strength.


       1.1 Emphasis on multi-domain joint deterrence
       Means of deterrence typically include both nuclear and conventional deterrence. In the “system-based battle for excellence”, the overall deterrence war is implemented, aiming to comprehensively use conventional deterrence methods across the land, sea, air and space power grids to achieve the purpose of deterrence. Especially with the application of information network technology and space and directed energy technology in the military, space, networks, electromagnetic weapons, etc. have become new means of deterrence. Space deterrence, It mainly uses equipment such as rapid response electromagnetic orbit weapons, space-to-ground networked anti-navigation and positioning service systems, large elliptical orbit laser weapons, and high-power microwave weapons to threaten and attack the opponent’s space targets and form a deterrent against enemy space information “interference blocking”. Cyber deterrence mainly uses cyberspace situational awareness and attack equipment to threaten and attack the opponent’s military network and other critical information infrastructure to achieve deterrence against the enemy. Electromagnetic deterrence mainly uses electromagnetic spectrum combat systems to threaten and attack enemy detection, navigation, communications and other information weapons and equipment systems to achieve deafening and blinding deterrence against the enemy.

1.2 The implementation of overall deterrence should have three major elements
       Implementing an overall deterrent war and achieving the desired effect of deterrence usually requires three main elements: One is strength. The deterrent must have the reliable ability or strength to frighten and fear the opponent; the second is determination and will. The deterrent party must dare to use this capability when necessary; third, to transmit information clearly. The deterring party must make the ability to act and the determination clearly known to the other party accurately and effectively.


       Historically, the criteria for judging deterrent strength have varied in three main ways: First, the active military force; second, the combined national strength or war potential; and third, the total number of main battle weapons and equipment. For quite a long period of history, the number of troops was deterrence, and the strength of military strength depended directly on the size of the active military, the amount of vital weapons and equipment, and non-material factors such as the morale of the army’s training organization. After the twentieth century, with the expansion of the scale of warfare, deterrence power has become less limited to the strength of the military and the quantity of vital weapons and equipment, but is determined by the nation’s war potential, which includes economic power, scientific and technological power, energy resources, and even population size, among others. The overall deterrence war in the system’s “gathering and excellence war”, the formation of its deterrence strength is mainly based on the network information system, as well as the joint global deterrence capability formed under the integration of the system.


       1.3 Strong overall strength is the core of achieving effective deterrence
       The development of information technology and its widespread penetration and application in the military sector provide favourable conditions for building overall strength and achieving overall deterrence. System “Juyouzhan” is supported by the network information system, making full use of the permeability and connectivity of information technology, not only integrating various combat forces, combat elements, and combat units into an organic whole, realizing the military system combat advantages, but also integrating Various fields related to war and national mobilization, such as national politics, economy, diplomacy, finance, transportation, and energy, are connected and integrated into the national war mobilization system Gather all forces and resources to form an overall synergy, realize the emergence effect of system capabilities, show the overall strength advantage, and form a powerful invisible deterrent of united efforts and sharing the same hatred Create a situation that makes the enemy “powerful but unable to act ”“able to act but ineffective”, and play a role in containing and winning the war.
       In the “overall deterrence war”, the scope of national war mobilization will be wider, not limited to a certain direction or region, but throughout the country and even the relevant regions of the world; mobilization time will be faster, and using networks and information systems, mobilization and action information can be quickly transmitted to everyone and every node at the first time; action coordination and synergy will be more consistent, and all forces distributed in various regions can be based on the same situation Under the same order, the operation is unified at almost the same time, which greatly improves the efficiency of operational synergy; resources are more fully utilized, and various war resources based on the Internet can quickly realize the conversion between peacetime and wartime, military-civilian conversion, and achieve integrated front and rear guarantees and precise guarantees.


       2. Electromagnetic Disturbance Warfare
       Electromagnetic disturbance warfare refers to the flexible use of electronic detection, attack and defense and other combat methods and action styles to disrupt, prevent and destroy the enemy’s electromagnetic capabilities, actively compete for the advantages of the electromagnetic spectrum, seize information control rights, and then win operational initiative.


       2.1 The key to competing for information advantage Informatization local warfare is highly dependent on the electromagnetic spectrum, the Control and counter-control of electromagnetic space have become the focus of competition for information rights. Organize and carry out electromagnetic obstruction warfare, mainly to destroy the enemy’s electromagnetic spectrum and protect one’s own side from destruction. The electromagnetic spectrum is the main carrier for transmitting information. The use of electromagnetic means to disrupt the enemy’s electromagnetic spectrum will effectively reduce the enemy’s information combat capabilities and enable our own side to ensure the rapid and effective flow of information in the scenario of ownership of information rights, driving command flow, action flow, and material flow through information flow, energy flow, and then have the dominance and initiative in combat.


       2.2 The basic focus is to implement electromagnetic disturbance warfare in the battle to deactivate the enemy’s combat system. It is mainly aimed at the enemy’s dependence on electromagnetic space. At the same time, in order to ensure its own effective use of electromagnetic space, it organizes various electronic reconnaissance and interference, attack, defense and support forces to attack enemy communication networks, radar networks, computer networks and command centers, communication hubs, radar stations, etc Computer network nodes, global navigation and positioning systems, space link systems such as the “Heaven and Earth Integrated Internet”, and various other frequency-using weapons and equipment carry out interference and attacks, block and destroy their communication and data transmission, and destroy the enemy’s combat system. “Connection” and “sharing” structural center of gravity provide support for seizing information control and electromagnetic control from the root, thereby weakening the enemy’s command and control capabilities Deactivating and disabling the enemy’s entire combat system.


       2.3 Crack effective tactics for unmanned cluster operations
     “Unmanned autonomous group operations such as swarms ”“wolves ”“fishes” are important features of information-based local warfare with intelligent characteristics. The various unmanned autonomous clusters are large in number, diverse in type, and complex in characteristics, and each individual can complement each other and play a role in replacing each other. It will be very difficult to intercept and damage the entire unmanned cluster. However, from a technical point of view, for unmanned combat clusters to achieve effective synergy, each individual must share and interact with each other. Once the communication coordination between unmanned clusters is interfered with, it will be impossible to share battlefield posture and information, and will not be able to coordinate actions with each other, making it difficult to achieve the combat effectiveness it deserves. This gives the other party an opportunity to implement interception of communications and electromagnetic interference. Therefore, the implementation of electromagnetic spectrum warfare, interference and attacks on the information and communication networks of unmanned clusters, and the destruction of their information sharing and interaction will make it impossible for each individual in the unmanned cluster to achieve effective synergy and thus lose its operational capabilities.


       3. Cyber-sabotage
       Cyber-blowout, It refers to military confrontation operations that comprehensively use technologies such as networks and computers and other effective means to control information and information networks. It is a major combat style of cyberspace operations and competition for network control. Its main combat operations are both soft-kill and hard-destroy, focusing on soft and combining soft and hard. Among them, soft kill is mainly a cyber attack, that is, it comprehensively uses blocking attacks, virus attacks and other means to block and attack enemy information networks, command systems, weapon platforms, etc., making it difficult for enemy networks, command information systems, etc. to operate effectively or even paralyze; hard destruction mainly uses precision fire strikes, high-energy microwaves, electromagnetic pulses, and anti-radiation attacks to paralyze and destroy enemy information network physical facilities Destroy enemy combat and weapons and equipment entities.
       The important thing is to “break the net and reduce energy failure”. Organizing a cyber attack in a “system-based battle of excellence” is to target the weaknesses of the combat opponent’s military information network, use the advantages of the system to organize various cyber attack forces, and conduct combat command networks, reconnaissance intelligence networks, communication networks and even logistics throughout the entire operation. Supply networks, etc., continue to carry out soft killing and hard destruction operations to destroy the enemy’s network system The overall function of the enemy’s combat system is reduced or even disabled. It mainly targets core targets such as the enemy’s basic information network, intelligence network, command network, and support network, and implements a series of combat operations such as network-to-electronics coordinated attacks, deception and confusion, link blocking, and takeover control, so that the enemy’s intelligent combat network system becomes incapacitated and ineffective, achieving a critical victory that paralyzes the enemy system.


      4. Cognitively Controlled Disturbance Warfare
      Cognitive interference control war refers to interfering with, destroying or controlling the enemy’s thinking and cognition through information attacks, public opinion attacks, and brain attacks in the system optimization war, so that the enemy cannot make correct judgments and decisions, thereby controlling the enemy in cognitive space. form a controlling advantage.
      Cognitive domains, That is, “human thinking space and consciousness space are areas that have a critical impact on combat decision-making and judgment”. The development of information technology, especially artificial intelligence technology, and its widespread application in the military field have expanded the battle of war from physical space and information space to cognitive space, making cognitive space a completely new combat domain. With the development of information and intelligent technology and its widespread and in-depth application in the military field, the Human-machine intelligence tends to converge This has made the status of cognition in intelligent warfare more prominent, and the cognitive field has gradually become an important battlefield. The right to control cognition has become a key element of future battlefield control. Fighting for cognitive control has become an important combat style for winning information-based local warfare operations with intelligent characteristics.


       4.1 Control the cognitive rights of situational awareness and compete for information advantages
       In the system’s “excellence battle”, information flow drives the flow of matter and energy, and information advantage determines decision-making advantage. Rapid and accurate knowledge of intelligence information and battlefield situations has an important impact on seizing command and decision-making advantages. Therefore, when organizing and implementing system-based battle gathering, we must make full use of intelligent technology and big data technology to conduct comprehensive analysis and judgment on massive intelligence information data, mine and extract the required intelligence information, and achieve more accurate and faster understanding of battlefield situations and combat environments. Cognition ensures that the enemy is discovered first and the enemy is recognized first from the source. While removing one’s own side “the fog of war”, create “the fog” for the opponent. Therefore, in order to compete for cognitive rights, we must not only control and process information before the enemy, but also take measures such as online public opinion attacks and high virtual reality chaos to actively create and spread false information, disrupt and disrupt the perception and cognition of hostile battlefield situations, maximize confusion and increase uncertainty, interfere with the opponent’s combat decisions, and delay its combat operations.


       4.2 Control and command decision-making power and compete for decision-making advantages
       Decision strengths determine action strengths. Quick decision-making by the commander is the key to shortening “the command cycle” and achieving quick wins. The organizational system focuses on excellent combat, and the success or failure of combat operations depends largely on the speed of the commander’s decision-making. It is necessary to “use intelligent auxiliary decision-making systems, select the best combat plans, scientifically and rationally allocate combat resources, and maximize combat effectiveness; use ubiquitous intelligent networks to access required combat nodes and combat platforms at any time to build and form an integrated combat system.” Achieve decentralized deployment of power, information, and capabilities, cross-domain linkage, form advantages at locations and times required for operations, gather energy to release energy, and gather advantages to win; Implementation “core attack”, Errors or deviations in the enemy’s command decisions are caused by hacking into the other party “chip”, tampering with its programs, and command and decision system algorithms.


       4.3 Control “brain” power and seize the advantage of brain control
       Cognitive interference control warfare in the system’s “gathering excellence war” emphasizes “attacking the heart and seizing the will”, that is, using network warfare, electromagnetic warfare and other methods to control the enemy’s human brain and consciousness cognition as well as the control system of the unmanned autonomous platform “attacking the heart Cognitive control warfare to control the brain and seize ambitions” Replace “destroy” with “control”, To achieve the goal of stopping and winning the war at the minimum cost. Attacking the heart and controlling the brain is different from traditional strategic deterrence. It places more emphasis on active attack. It is an active attack operation that mainly uses advanced information combat technology, brain control technology, etc. to attack the enemy’s decision-making leader, as well as intelligent unmanned autonomous combat platforms, auxiliary decision-making systems, etc., carry out controlled “brain” attacks, directly control and disrupt the opponent “brain”, influence and control the enemy’s decision-making, or disable it Enable stealth control of enemy combat operations. For example, “Targeting human cognitive thinking, using brain reading and brain control technology, and using mental guidance and control methods to directly carry out “inject ”“invasive” attacks on the brains of enemy personnel, interfering with, controlling or destroying the cognitive system of enemy commanders.”, deeply control it from the perspective of consciousness, thinking and psychology, seize “control intellectual power”, disrupt the enemy’s decision-making, destroy the enemy’s morale, and force the enemy to disarm.


      5. Agile Mobile Warfare
      Agile mobile warfare refers to the efficient decision-making, efficient adjustment of troop deployment and high-efficiency real-time gathering of combat forces in systematic battle, efficient gathering of capabilities on the existing battlefield, and seizing combat opportunities. Agility is the ability to respond quickly and timely to changes in the battlefield environment. It has the characteristics of responsiveness, robustness, flexibility, elasticity, innovation and adaptability.

Table 1 Connotation of the concept of agile warfare


      5.1 Efficient and fast decision-making
      To implement agile and mobile warfare, we must first make efficient and rapid decisions to win operational opportunities. Therefore, it is necessary to comprehensively use various means of reconnaissance, detection, perception and surveillance to obtain battlefield posture and target information in a timely manner, especially characteristic information, activity trajectories and real-time position information of time-sensitive targets, so as to ensure precise intelligence support for rapid decision-making. Efficient decision-making is also reflected in the speed of intelligence processing. It takes less time to screen effective intelligence information, formulate action plans at a faster speed according to changes in circumstances, and seize the initiative and seize the opportunity with one step ahead. High-efficiency decision-making focuses on shortening the decision-making cycle, taking the target time window as the central point, and integrating decision-making command with combat units and weapon platforms, rapid response, and overall linkage to improve combat efficiency.


      5.2 High efficiency forms a favorable combat situation
      It is necessary to “keep abreast of changes in the battlefield situation at any time, rely on the support of information networks, and achieve dynamic reorganization of combat forces and integration during movement through cross-domain, cross-dimensional, and diversified three-dimensional maneuvers. Combat resources flow efficiently throughout the region and gather during movement to achieve mobility and excellence.”, forming a favorable battlefield situation. Agile mobile warfare relies on data fusion processing, intelligent assisted decision-making and other means to quickly form combat plans, quickly project combat forces at a high frequency according to the case, organize troops to quickly form favorable combat deployments, and realize enemy discovery, enemy decision-making, and enemy fire, first enemy assessment, change the balance of power in the shortest time and fastest speed, form combat advantages, and improve the efficiency of combat operations.


      5.3 Efficient and instant gathering of combat power
      To organize agile mobile warfare, the key is to select the right combat force within a limited time, coordinate the entire battle situation, and form an overall synergy to ensure a fatal blow. Therefore, in response to changes in battlefield posture, especially target situations, it is necessary to draw up groups to form a joint mobile combat system formed by multi-domain combat forces, gather combat forces in real time, deploy quickly and mobilely to a favorable battlefield, and carry out real-time strikes against the enemy. For deep space, deep sea, etc. to become a new combat space, an intelligent unmanned autonomous combat platform can be organized Rapid mobility is deployed to lurk near key targets or important passages that are difficult for humans to reach due to physiological limitations, and ambush operations are carried out on standby, creating new cross-domain checks and balances.


      5.4 Agile mobile warfare is an innovative development of traditional mobile warfare
      In the history of both ancient and modern warfare at home and abroad, there have been numerous examples of successful battles that relied on rapid covert maneuvers to achieve combat objectives. However, the combat process of information-based local warfare has been greatly compressed, the combat rhythm has accelerated rapidly, and fighter aircraft are fleeting. It has put forward higher requirements for fast mobile capture fighters. It is difficult to meet the requirements of joint operations and all-area operations under information conditions alone “fast pace, high speed”. requirements, so agile mobility must be implemented.


       6. Unmanned cluster autonomous warfare
       Unmanned cluster autonomous warfare refers to the widespread use of unmanned combat methods such as “bees”“ wolves ”“fishes” in system optimization warfare to independently organize actions and distributed attacks to achieve joint human-machine victory. With unmanned autonomous equipment becoming the main combat force on the battlefield, defeating the enemy with unmanned autonomous equipment clusters and numerical superiority has become an important combat style in information warfare.


       6.1 It is conducive to forming a system advantage to suppress the enemy
       Unmanned cluster independent warfare gives full play to the special advantages of unmanned combat weapons such as all-weather, unlimited, difficult to defend, and low consumption, and builds and forms large-scale unmanned combat clusters or formations such as unmanned “bee swarms”“ wolves ”“fish swarms”, and organizes independently, mutual coordination, can implement close-range and full-coverage reconnaissance, or act as bait to interfere or deceive, or cooperate with main battle weapons to implement distributed coordinated attacks Enable overall mobility and joint control of the enemy.


       6.2 Conducive to enhancing combat effectiveness
       In “unmanned cluster autonomous operations”, different combat units within the unmanned cluster organization are responsible for different functions and different tasks, including those responsible for reconnaissance, those carrying out electromagnetic interference and fire strikes, and those playing “decoy” roles. Clusters transmit and share battlefield information through inter-group networks, perform their respective duties according to the division of labor, and collaborate in real-time, independently, and dynamically according to battlefield changes. They not only give full play to their advantages in quantity and scale, but also use information networks and intelligent integration technology to achieve integration effects, using cluster advantages to consume enemy defense detection, tracking and interception capabilities, rapidly saturating and paralyzing the enemy’s defense system.


       6.3 Conducive to getting into enemy combat difficulties
       Unmanned cluster autonomous warfare uses a large number of autonomous unmanned combat platforms with different functions to form an unmanned combat cluster integrating reconnaissance and detection, electronic interference, cyber attacks, and fire strikes. It can carry out multi-directional and multi-directional operations against the same target or target group. Multiple, continuous attacks will make it difficult for the enemy to make effective counterattacks.


       7. Pointkill Battle
       “Precise point-killing warfare” refers to accurately obtaining intelligence in system-based battles, implementing multi-domain precision strikes, striving to shake the overall situation with one point, and maximizing combat benefits. Informationized local warfare is an overall confrontation between systems. Implementing precise point-killing warfare and precise strikes on important nodes and key links of the enemy’s combat system will destroy the enemy’s combat system and reduce enemy combat capabilities, which will achieve twice the result with half the effort. Combat effect.


      7.1 Achieve efficient combat cost ratio
      Achieving maximum combat effectiveness at the minimum cost is a goal pursued by both sides of the war. With the widespread application of information technology in the military field and the advent of information warfare, precision-guided weapons, intelligent kinetic energy weapons, integrated surveillance and attack drones, and laser weapons are widely equipped with troops; through the use of big data, artificial intelligence and other technologies, it has become possible to accurately calculate the required troops and weapons. These all provide material and technical conditions for achieving precision point kill warfare, achieving operational objectives at a lesser cost, and achieving operationally efficient fee ratios.


       7.2 Targeting key nodes is an important option
       The key to precise point-killing battles is to hit the key points and nodes. If you don’t hit, it will be enough. If you hit, it will be painful. If you hit, you will win. If you hit a point, you will break the enemy’s system and shake the overall situation. The target of the strike is not limited to the enemy’s dispersed deployment of ships and aircraft, but should also be targeted at local, dynamic, time-sensitive targets or independent targets such as enemy command centers, important hubs, and even major generals and commanders, in pursuit of deterrence, shock and enemy-breaking system effects. It will also be an effective countermeasure to use precision strike fire to carry out “point-kill” strikes in response to the distributed tactic of decomposing expensive large-scale equipment functions into a large number of small platforms and implementing decentralized deployment of forces.


       7.3 Large-scale system support is the basic condition
       The implementation of precise point-kill warfare cannot be separated from the support of a large-scale system. Focusing on achieving combat goals, the required troops and weapons are transferred from each operational domain that is dispersed and deployed. With the support of the network information system, they are dynamically integrated to form a precision strike system to achieve overall linkage and system energy gathering. Through reasonable and sufficient firepower, the target is concentrated. Strike to achieve precise use of troops and precise release of energy. To implement precise point-and-kill operations to be precise, all links within the entire combat system need to be closely connected without any mistakes. The U.S. military’s killing of bin Laden in 2011 can be said to be a typical strategic precision killing operation supported by the strategic system.


       7.4 It is inseparable from precise intelligence support
       In precision point kill warfare, precise intelligence support is always the key to achieving operational goals. Therefore, before the war, various means should be used to collect various enemy intelligence information, especially accurate analysis and judgment of enemy targets. During combat operations, various sensors and intelligence reconnaissance methods should be used to accurately grasp enemy target changes and dynamic target situations in a timely manner, so as to provide powerful and effective intelligence support for the implementation of precise point-kill warfare. The U.S. military’s targeted killing operation against Soleimani was a typical precise point-killing battle supported by an efficient intelligence system.


       8. Supply-breaking
       Supply chain-breaking warfare refers to organizing elite forces in a system-gathering battle to attack the enemy’s logistics supplies and equipment supply supply chain, supply lines and supply bases, defeat the enemy and lose supplies and withdraw from the battle. In response to weaknesses such as the enemy’s long logistics supply line and large equipment support stalls, the organization of elite forces to build “chain-breaking warfare” combat systems, and to carry out sustained, precise and devastating strikes against enemy logistics supplies and equipment supply chains, supply lines and supply bases, will make it unsustainable due to the loss of supplies and will have to withdraw from the battle.


       8.1 The supply guarantee chain has a huge impact on the overall combat situation
       Logistics equipment support is an important basis for operations. The constant supply of logistical supplies and weapons and equipment ultimately determines the size of an army’s combat troops, whether they can fight, in what season, where they can fight, how far they can leave their rear bases, how long they can fight, how fast they can maneuver, and so on. In information warfare, the consumption of battlefield materials has increased exponentially. Not only has the dependence on logistics equipment support for operations not decreased, but it has become larger and larger. Moreover, the requirements for the specialization of support have also become higher and higher In particular, modern combat equipment is available in a wide variety of models and specifications, with huge volumes of mixed transport, more dispersed troop deployment and very high requirements for transport capacity, which makes bases, communication lines and transport more important than ever. The stable and efficient operation of the supply guarantee chain and continuous and uninterrupted supply guarantee are the key to operational victory and have a huge impact on the overall operational situation.


       8.2 The center of gravity of the attack is a key node in cutting off the enemy’s supply guarantee chain
       The operational center of gravity of supply chain-breaking warfare is a key link in attacking the enemy’s supply support chain, and its continuous support capability is lost through chain-breaking. Therefore, the organization of supply chain-breaking warfare should mainly target enemy ground railway and road transport lines, maritime supply convoys, military requisitioned merchant ships and combat support ships, large and medium-sized air transport aircraft, and rear supply bases. For example, striking the enemy’s maritime supply support chain and cutting off the enemy’s fuel, ammunition, fresh water, and food supplies will make the enemy aircraft carrier battle group lose its ability to continue fighting, which in turn will even affect the outcome of a battle.


       8.3 The key is to choose the right time and make full use of tactics
       It is crucial to organize the implementation of supply chain-breaking warfare and to choose a favorable time to strike. The timing of strikes in supply chain-breaking warfare should be organized and implemented when the enemy’s supply maneuvers are selected, so as to surprise and attack unprepared concealed tactics, carry out sudden strikes on enemy supply vehicles, ships and transport aircraft, and terminate their supply operations. Specific tactics usually include covert ambush warfare, organizing capable forces to ambush the routes and routes that enemy transportation must pass through, waiting for opportunities to carry out covert surprise attacks; stealth surprise warfare, using submarines, stealth fighters, etc. to covertly move forward to carry out attacks on enemy transportation targets, and win by surprise; long-range precision warfare, using long-range conventional surface-to-surface missile forces to attack enemy supply bases and airports Long-range precision strikes are carried out at the departure points of supplies such as docks.


       9. System “paralysis battle”
       System destruction and paralysis war refers to the comprehensive use of various means such as breaking the network, breaking the chain, and defeating nodes in the system optimization war to interfere with, delay, destroy, or even paralyze the effective operation of the enemy’s combat system and weaken the functions of the enemy’s combat system. The essence of system destruction and paralysis warfare is to weaken the correlation and structural power between the elements of the enemy’s combat system, degrade the functions of the system, and fail to play a role in doubling capabilities.


       9.1 The combat goal is to disorderly operate the enemy’s combat system
       In information warfare, the combat systems of both warring parties have their own internal order, and this order is the key to maintaining and supporting the operation of the combat system. The side that can maintain and navigate the internal order of the combat system will gain an advantage and, conversely, a disadvantage. Therefore, the goal of “disrupting the enemy’s winning mechanism and causing the enemy’s combat system to become disordered” should be established in system destruction and paralysis warfare. This requires that the system be fully utilized in the battle of paralysis Information technology in particular intelligent algorithms The “powerful enabling effect” can quickly adjust and reconstruct one’s own combat system, quickly generate and release powerful combat power, and implement agile and precise strikes on the enemy’s combat system, causing the enemy’s combat system to lose normal operating order and become disordered. The system functions are destroyed and the overall combat capabilities are significantly reduced.


       9.2 A key node in the heavy strike combat system
       Systematic confrontation is a major feature of information warfare. System is an important foundation and support for system confrontation, and is also the key to effectively exerting combat effectiveness by integrating various combat forces, weapon platforms and weapon systems on the battlefield. Whether the system can be kept robust and run smoothly has a decisive influence on the achievement of war and campaign victories. In the battle to destroy and paralyze the system, the key is to focus on the enemy’s integrated combat system of land, sea, air and space power grids, breaking the network, breaking the chain, and attacking nodes. By attacking key node targets, the operating mechanism of the enemy’s combat system will be out of order, and it may even be severely damaged or destroyed. Paralysis. Therefore, the basic direction of system destruction and paralysis warfare is to select key units, key nodes, and key elements of the enemy’s combat system to carry out strikes, attack one point, destroy one part, and paralyze the whole, so as to achieve the goal of defeating the enemy.


       9.3 Implement soft strikes against the enemy’s combat system
       When organizing and implementing system breaking and hard destruction, it simultaneously organizes soft-kill combat operations such as electronic warfare, cyber warfare, psychological warfare, and public opinion warfare, and carries out soft strikes on the information domain and cognitive domain of the enemy’s combat system. Electronic warfare uses the power of electronic warfare to carry out strong electromagnetic interference against the enemy, causing its information to malfunction and fall into the fog of war; cyber warfare uses the power of cyber attack to attack the enemy’s network information system, causing the enemy’s command and communication system and computer network to be severely damaged, causing its command to malfunction and fall into information islands or even war islands; psychological warfare and public opinion warfare, using psychological warfare and public opinion warfare methods It carries out psychological strikes and public opinion guidance against the enemy, severely damaging his will to fight and inducing his cognitive disorientation. Organizing “people’s livelihood wars” to attack the opponent’s major national economy and people’s livelihood facilities can also play a role in the enemy’s combat system “drawing fuel from the bottom of the cauldron”. In the 1999 Kosovo War, the US military did not attack the Yugoslav army, but attacked its war potential target system, causing the Yugoslav soldiers and civilians to lose their will to fight and lead to defeat. 

現代國語:

體系聚優戰是資訊化戰爭中的體係作戰,其不限定特指某一種作戰樣式,而是由多種作戰樣式和戰法組成的“組合拳”,或作戰樣式群。強調根據作戰任務、作戰對手和戰場情勢變化,只要有利於形成相對優勢、達成體系製勝,可以靈活運用任何適宜的作戰手段和样式,形成作戰優勢。在體系聚優戰具體實施過程中,這些具體作戰樣式和行動戰法既可以作為聯合全局作戰的一部分單獨組織實施,更強調打“組合拳”,多策並舉,整體制勝。
為更能理解其核心內涵,本文列舉了整體威懾戰、電磁擾阻戰、網路破擊戰、認知控擾戰等九大典型作戰樣式,並進行分析。

體系聚優戰――靈活運用多種作戰樣式的「組合拳」作者:學術plus高級觀察員 東週
本文主要內容及關鍵字
1.整體威懾戰:強調多域聯合威懾;實施整體威懾戰應具備三大要素;強大整體實力是實現有效威懾的核心
2.電磁擾阻戰:爭奪資訊優勢的關鍵;在組合手段方法上,透過「連結+共享」實現資訊賦能;破解無人集群作戰的有效戰法
3.網路破擊戰:軟殺傷為主,軟硬結合,重在破網降能失效
4.認知控擾:控制態勢感知認知權,爭奪資訊優勢;控制指揮決策權,爭奪決策優勢;控制「腦」權,奪取腦控優勢
5.敏捷機動戰:高效率快速決策;高效率形成有利作戰態勢;高效率即時聚合作戰力量;敏捷機動戰是對傳統機動作戰的創新發展
6.蜂群自主戰:有利於形成體系優勢壓制敵方;有利於增強作戰效果;有利於陷敵於作戰困境
7.精確點殺戰:實現作戰的高效費比;打關鍵節點目標是重要選項;大範圍體系支撐是基本條件;離不開精確情報保障
8.補給斷鍊戰:供應保障鏈對作戰全局影響巨大;打擊重心是斷敵供應保障鏈的關鍵節點;重在選準時機活用戰法
9.體系毀癱戰:作戰目標是使敵作戰體系運作失序;重拳打擊作戰體系的關鍵節點;對敵作戰體系實施軟打擊

僅供學習參考,歡迎交流指正!文章觀點不代表本機構立場
作戰概念首先是作為一種新的作戰樣式提出。創新作戰樣式是作戰概念開發的核心內容。可以說,體系聚優戰是一系列具體戰法的總稱。以下九大典型作戰樣式構成了體系聚優戰的戰法體系。分別為:一是整體威懾戰,在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵;二是電磁擾阻戰,運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制資訊權,進而贏得作戰主動;三是網路破擊戰,運用軟打擊和硬摧毀等多種手段,破敵指揮網、情報網、通信網、後勤補給網,亂敵指揮保障;四是認知控擾。透過資訊攻擊、輿論攻擊、腦攻擊,在認知空間形成控制優勢;五是敏捷機動戰。快速調整兵力兵器部署,在即設戰場快速聚集能力,搶奪作戰先機;六是蜂群自主戰。廣泛運用「蜂群」、「狼群」、「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝;七是精確點殺戰。精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化;八是補給斷鏈戰。組織精銳力量,打敵後勤物資裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥;九是體系毀癱戰。綜合採取破網、鍛鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰系統功能。
1.整體威懾戰
整體威懾戰是指在體系聚優戰中積極組織靜態威力展示和威懾行動,力爭不戰或小戰而屈人之兵。孫子曰:「不戰而屈人之兵,善之善者也。」威懾和戰爭是軍事活動的兩種主要形式。而威懾,主要是透過展現力量或威脅使用強大實力,向潛在對手錶明決心意志,以嚇阻對手行動的行為。可以說,體系聚優戰中的整體威懾戰是實現不戰而「止」人之兵的重要手段或戰法。克勞塞維茨強調,策略的第一條規則是盡可能強大,首先是整體的強大,然後是在關鍵部位的強大。現代戰爭是體系與體系的對抗。資訊化局部戰爭下的整體威懾戰,不僅要有陸海空天傳統威懾手段和能力,也需要太空威懾、電磁威懾、網路威懾等新型威懾手段和能力,更需要有顯示國家整體實力的整體威懾。特別是隨著資訊科技等先進科技的快速發展,科技革命、產業革命、軍事革命加速融合,戰略競爭力、社會生產力和軍隊戰鬥力耦合關聯更加緊密,打贏資訊化戰爭更大程度上是國家意志和國家整體實力的較量。若要遏止戰爭,首先要從整體實力上對對手形成嚇阻。
1.1 強調多域聯合威懾
威懾手段通常包括核威懾和常規威懾。在體系聚優戰中,實施整體威懾戰,旨在綜合運用陸海空天電網全域常規威懾手段,以達成威懾目的。特別是隨著資訊網路技術及太空、定向能技術在軍事上的應用,太空、網路、電磁武器等成為新型威懾手段。太空威懾,主要以快速回應電磁軌道武器、天地網路化反導航定位服務系統、大橢圓軌道雷射武器、高功率微波武器等裝備,威脅攻擊對手空間目標,形成對敵空間訊息「幹擾阻斷」威懾。網路威懾,主要是以網路空間態勢感知和攻擊裝備,威脅攻擊對手軍事網路及其它關鍵資訊基礎設施,實現對敵威懾。電磁威懾,主要以電磁頻譜作戰系統,威脅攻擊敵探測、導航、通訊等資訊化武器裝備系統,實現對敵致聾致盲威懾。 1.2 實施整體嚇阻戰應具備三大要素
實施整體威懾戰並達成嚇阻預期效果,通常必須具備三大要素:一是實力。威嚇方必須具備令對手感到忌憚畏懼的可靠能力或力量;二是決心意志。威懾方在必要時必須敢於使用這種能力;三是明確傳遞訊息。威懾方必須將行動能力與決心準確、有效地讓對方清楚知道。
從歷史上看,判斷威懾實力的標準主要有三個面向變化:一是現役軍事力量;二是綜合國力或戰爭潛力;三是主戰武器裝備總數。在相當長一段歷史時期內,軍隊數量就是威懾,軍事實力的強弱直接取決於現役軍隊的規模、重要武器裝備的數量,以及軍隊訓練組織士氣等非物質因素。二十世紀後,隨著戰爭規模的擴大,威懾實力已不再僅限於軍隊兵力和重要武器裝備的數量,而是由國家戰爭潛力所決定,其中包括經濟實力、科技實力、能源資源,甚至人口數量,等等。體系聚優戰中的整體威懾戰,其威懾實力的形成主要基於網路資訊體系,以及在該體系融合整合下形成的聯合全局威懾能力。
1.3 強大整體實力是實現有效威懾的核心綜合分析研判,挖掘提取所需情報訊息,實現對戰場態勢、作戰環境的更精準、更快速認知,從源頭確保先敵發現、先敵認知。在消除己方「戰爭迷霧」的同時,也要為對手製造「迷霧」。因此,爭奪認知權,不僅要先敵掌握、先敵處理信息,還要採取網絡輿論攻擊、高度虛擬現實亂真等措施,積極製造、散佈虛假信息,破壞、擾亂敵對戰場態勢的感知、認知,最大限度地製造混亂、增加不確定性,幹擾對手的作戰決策,遲滯其作戰行動。
4.2 控制指揮決策權,爭奪決策優勢
決策優勢決定行動優勢。指揮者的快速決策是縮短「指揮週期」、實現快速勝利的關鍵。組織體系聚優戰,作戰行動成敗很大程度取決於指揮的決策速度。要利用智慧輔助決策系統,優選最佳作戰方案,科學合理調配作戰體系,實現力量、資訊、能力分散部署、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施、跨域聯動,在作戰所需地點、時間形成優勢,集子聚釋能、聚變勝負實施法實作「攻芯」,透過反義程式定義、原則性反制勝;
4.3 控制「腦」權,奪取腦控優勢
體系聚優戰中的認知控擾戰,強調“攻心奪志”,即利用網絡戰、電磁戰等方式,對敵方人腦和意識認知以及無人自主平台的控制系統實施“攻心控腦奪志”的認知控制戰,以“控制”取代“摧毀”,以最小代價實現止戰、勝戰之目的。攻心控腦與傳統的謀略威懾不同,其更強調主動攻擊,是一種主動攻擊行動,主要運用先進信息作戰技術、控腦技術等,對敵決策首腦,以及智能化無人自主作戰平台、輔助決策系統等,實施控“腦”攻擊,直接控制、擾亂對手“大腦”,影響、控制敵對決策,或使其失能,實現隱形敵作戰。如以人的認知思維為目標,利用讀腦、腦控技術,運用心智導控手段,直接對敵方人員大腦實施“注入”“侵入”式攻擊,幹擾、控製或破壞敵指揮人員認知體系,從意識、思維和心理上對其深度控制,奪取“制智權”,以亂敵決策、破敵士氣,迫敵繳械。
5.敏捷機動戰
敏捷機動戰,指在體系聚優戰中高效率決策、高效率調整兵力兵器部署和高效率即時聚合作戰力量,在既設戰場高效率聚集能力,搶奪作戰先機。敏捷是一種快速及時應對戰場環境變化的能力,具有響應性、穩健性、柔性、彈性、創新性和適應性等特徵。
表1 敏捷作戰概念內涵

5.1 高效率快速決策
實施敏捷機動戰,首先要高效率快速決策,贏得作戰先機。因此,要綜合運用各種偵察探測感知與監視手段,及時獲取戰場態勢和目標信息,特別是時敏目標的特徵信息、活動軌跡以及實時位置信息,確保為快速決策提供精準情報支持。高效率決策也體現在情報處理速度上,要用更少的時間甄別有效情報訊息,根據情況變化,以更快的速度製定行動方案,快敵一步佔據主動,奪取先機。高效率決策重在縮短決策週期,要以目標時間窗口為中心點,決策指揮與作戰單元、武器平台一體協同、快速反應、整體連動,提高作戰效率。
5.2 高效率形成有利作戰態勢
要隨時掌握戰場態勢變化,依靠資訊網支撐,透過跨域、跨維、多樣化立體機動,達成作戰力量動態重組、動中融合,作戰資源全局高效流動、動中聚集,實現機動聚優,形成有利戰場態勢。敏捷機動戰依賴資料融合處理、智慧化輔助決策等手段,快速形成作戰方案,依案高頻率快速投送作戰力量,組織部隊快速形成有利作戰部署,實現先敵發現、先敵決策、先敵開火、先敵評估,以最短時間、最快速度改變力量對比,形成作戰優勢,提高作戰行動效率。
5.3 高效率即時聚合作戰力量
組織敏捷機動戰,關鍵在於有限時間內選準作戰力量,協調整個戰局,形成整體合力,確保一擊致命。因此,要針對戰場態勢特別是目標情況變化,抽組形成由多域作戰力量形成的聯合機動作戰系統,即時聚合作戰力量,快速機動部署至有利戰場,對敵實施即時打擊。針對深空、深海等成為新的作戰空間,可組織智慧化無人自主作戰平台,快速機動部署至人類因生理所限而難以到達的重點目標或重要通道附近潛伏,待機實施伏擊作戰,形成新的跨域制衡優勢。
5.4 敏捷機動戰是對傳統機動作戰的創新發展
古今中外戰爭史上,靠著快速隱密機動達成作戰目的的成功戰例比比皆是。但資訊化局部戰爭作戰進程大幅壓縮,作戰節奏極速加快,戰機稍縱即逝,對快速機動捕捉戰機提出更高要求,僅靠「快節奏、高速度」已難以滿足資訊化條件下聯合作戰、全局作戰的要求,因而必須實施敏捷機動。
6.無人集群自主戰
無人集群自主戰,指在體系聚優戰中廣泛運用「蜂群」「狼群」「魚群」等無人作戰手段,自主組織行動、分散式攻擊,實現人機聯合製勝。隨著無人自主裝備成為戰場上的主要作戰力量,以無人自主裝備集群和數量優勢戰勝敵人,已成為資訊化戰爭中的重要作戰風格。
6.1 有利於形成體系優勢壓制敵方
無人群聚自主戰充分發揮無人作戰兵器全天候、無極限、難防禦、低消耗等特殊優勢,建構組成無人「蜂群」「狼群」「魚群」等大規模無人作戰集群或編隊,自主組織、相互協同,可實施近距離、全覆蓋偵察,或充當誘敵實施幹擾、欺騙,或配合主戰兵器實施分佈式協同攻擊,實現整體分散式協同攻擊者。
6.2 有利於增強作戰效果
在無人群聚自主作戰中,無人群集編成內的不同作戰單元分別擔負不同功能、不同任務,既有負責偵察的,也有實施電磁幹擾、火力打擊的,還有扮演「誘餌」角色的。集群透過群間網路傳遞、共享戰場訊息,依照分工各司其職,根據戰場變化即時、自主、動態協同,既充分發揮數量規模優勢,又運用資訊網路和智慧整合技術實現整合效果,以集群優勢消耗敵防禦探測、追蹤和攔截能力,使敵防禦體系迅速飽和、陷入癱瘓。
6.3 有利於陷敵於作戰困境
無人集群自主戰以大量不同功能的自主無人作戰平台混合編組,形成集偵察探測、電子乾擾、網路攻擊、火力打擊於一體的無人作戰集群,對同一目標或目標群實施多方向、多波次、持續不斷的攻擊,將使敵難以作出有效反擊。
7.精確點殺戰
精確點殺戰,是指在體系聚優戰中精準獲取情報,實施多域精確打擊,力爭打一點撼全局,實現作戰效益最大化。資訊化局部戰爭是體系與體系之間的整體對抗,實施精確點殺戰,對敵方作戰體系重要節點與關鍵環節實施精確打擊,破壞敵作戰體系,降維敵作戰能力,將形成事半功倍的作戰效果。
7.1 實現作戰的高效費比
以最小代價實現最大作戰效益是作戰雙方都在追求的目標。隨著資訊科技在軍事領域的廣泛應用及資訊化戰爭來臨,精確導引武器、智慧化動能武器、察打一體無人機以及雷射武器等廣泛裝備部隊;透過運用大數據、人工智慧等技術,精確計算所需兵力兵器已成為可能。這些都為實現精確點殺戰,以較小代價達成作戰目標,實現作戰高效費比,提供了物質和技術條件。
7.2 打關鍵節點目標是重要選項
精確點殺戰重在打關鍵、打節點,不打則已,打則必痛、打則必勝,打一點破敵體系、撼動全局。打擊的目標不僅限於敵分散部署的艦機等,還應針對敵指揮中心、重要樞紐,甚至主要將領、指揮等局部、動態、時敏目標或獨立目標實施打擊,追求威懾震撼和破敵體系效果。針對將昂貴的大型裝備功能分解到大量小型平台、實施兵力分散部署這一分佈式戰術,運用精確打擊火力對其進行「點殺」式打擊,也將是一個有效對策。
7.3 大範圍體系支撐是基本條件
實施精確點殺戰,離不開大範圍體系支撐。圍繞著實現作戰目標,從分散部署的各作戰域抽調所需兵力兵器,在網路資訊體系支撐下,動態融合形成精確打擊體系,實現整體連動、體系聚能,透過合理夠用的火力集中對目標實施打擊,達成精確用兵、精確釋能。實施精確點殺戰要做到精確,需要整個作戰體系內各環節緊密銜接,不能有絲毫差錯。 2011年美軍擊斃賓拉登作戰行動,可以說是戰略體系支撐下的一次典型的戰略精確點殺作戰行動。
7.4 離不開精確情報保障
在精確點殺戰中,精確情報保障始終是達成作戰目標的關鍵。因此,戰前應動用各種手段蒐集敵方各種情報資料信息,特別要對敵方目標作出精準分析研判。作戰行動中,應動用各種感測器和情報偵察手段,適時精準掌握敵方目標變化及動態目標狀況,為實施精確點殺戰提供有力有效的情報保障。美軍對蘇萊曼尼的定點清除行動,就是一場典型的以高效情報體系支撐的精確點殺戰。
8.補給斷鍊戰
補給斷鏈戰,是指在體系聚優戰中組織精銳力量,打敵後勤物資和裝備供應補給鏈、補給線和補給基地,破敵失去補給而退出戰鬥。針對敵後勤補給線長、裝備保障攤子大等弱點,組織精銳力量建構「斷鍊戰」作戰體系,對敵後勤物資和裝備供應補給鏈、補給線和補給基地等,實施持續、精確、毀滅性打擊,將使其因失去補給而難以為繼,不得不退出戰鬥。
8.1 供應保障鏈對作戰全局影響巨大
後勤裝備保障是作戰的重要基礎。後勤物資和武器裝備持續不斷的供應補給,最後決定一支軍隊作戰部隊的規模、能否作戰、在什麼季節作戰、在哪裡作戰、能離開後方基地多遠、能作戰多長時間、機動的速度多快,等等。在資訊化戰爭中,戰場物資消耗呈指數級上升,作戰對後勤裝備保障的依賴程度不僅沒有減小,反而越來越大,而且保障的專業化程度要求也越來越高,特別是現代化作戰裝備器材型號規格紛繁多樣,混裝運輸體積巨大,部隊部署更加分散,對運力也提出非常高的要求,這使線路、通信和運輸比以往任何時候都更加重要。供應保障鏈的穩定高效運作和持續不間斷的供應保障,是作戰制勝的關鍵,對作戰全局產生巨大影響。
8.2 打擊重心是斷敵供應保障鏈的關鍵節點
補給斷鍊戰的作戰重心是打擊敵方供應保障鏈的關鍵環節,透過斷鍊使其喪失持續保障能力。因此,組織補給斷鍊戰應主要以敵方地面鐵路公路運輸線、海上補給船隊、軍事徵用的商船和戰鬥支援艦,空中大中型運輸機,以及後方補給基地等作為打擊目標。例如打擊敵方海上供應保障鏈,斷敵燃料、彈藥、淡水、食物補給,將使敵航母戰鬥群失去持續作戰能力,進而影響一場戰役的勝負。
8.3 重在選準時機活用戰法
組織實施補給斷鍊戰,選擇有利打擊時機至關重要。補給斷鍊戰的打擊時機,應選擇敵補給機動時組織實施,以出其不意攻其不備的隱蔽戰法,對敵補給車輛、艦船和運輸機實施突然打擊,終止其補給行動。具體戰法通常有隱蔽伏擊戰,組織精幹力量埋伏在敵運輸工具必經路線和航線上,伺機實施隱密性突然打擊;隱形奇襲戰,使用潛艦、隱形戰機等隱蔽前出,對敵運輸目標實施打擊,以奇制勝;遠程精確補給
9.體系毀癱戰
體系毀癱戰,指在體系聚優戰中,綜合採取破網、斷鍊、打節點等多種手段,幹擾、遲滯、破壞甚至癱瘓敵作戰體係有效運轉,削弱敵作戰體系功能。體系毀癱戰的本質,是透過削弱敵作戰體係要素間的關聯性與結構力,使體系功能退化,無法發揮能力倍增作用。
9.1 作戰目標是使敵作戰體系運作失序
在資訊化戰爭中,交戰雙方作戰體係都有其內在秩序,而這種秩序是維繫和支撐作戰體系運作的關鍵所在。能夠維護和駕馭作戰體系內在秩序的一方將獲得優勢,反之則處於劣勢。因此,體系毀癱戰應確立亂敵制勝機制、致敵作戰體系失序此目標。這就要求在體系毀癱戰中要充分利用資訊科技特別是智慧演算法的強大賦能作用,對己方作戰體系進行快速調整和重構,迅即生成並釋放強大的作戰威力,對敵方作戰體系實施敏捷精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰精準打擊,使敵作戰體系失去正常的運作秩序,在失序中使體系功能遭到破壞,整體作戰能力顯著下降。
9.2 重拳打擊作戰體系的關鍵節點
體系對抗是資訊化戰爭的一個主要特徵。體係是體系對抗的重要基礎與支撐,也是戰場上各種作戰部隊、武器平台和
資訊科技的發展及在軍事領域的廣泛滲透和應用,為建構整體實力、實現整體威懾提供了有利條件。體系聚優戰以網路資訊體系為支撐,充分利用資訊科技的滲透性和聯通性,不僅把各種作戰力量、作戰要素、作戰單元融合為一個有機整體,實現軍事上的體係作戰優勢,而且把國家政治、經濟、外交、金融、交通、能源等與戰爭和國家動員相關的各領域,都連接、匯入國家戰爭動員體系,凝聚各方面力量和資源形成整體合力,實現體系能力的湧現效應,從整體上顯示綜合實力優勢,形成眾志成城、同仇敵愾的強大無形威懾,塑造使敵「有力量但不能行動」「能行動但沒有效果」的態勢,起到遏制和打贏戰爭的作用。
在整體威懾戰中,國家戰爭動員的範圍將更加廣泛,不僅限於某一方向、區域,而是遍及全國各地,乃至世界有關地區;動員時間更加迅速,利用網絡和信息系統,動員和行動信息可在第一時間迅速傳達到每個人、每個節點;行動協調和協同更加一致,分佈在各域各地的各方力量可以基於同一態勢、根據同一命令幾乎在同一時間統一行動,極大提高行動協同效率;資源利用更加充分,基於網絡的各種戰爭資源,可以快速實現平戰轉換、軍民轉換,實現前方後方一體化保障、精確保障。
2.電磁擾阻戰
電磁擾動戰,指靈活運用電子偵攻防等多種作戰手段和行動樣式,擾亂、阻止、破壞敵電磁能力的發揮,積極爭奪電磁頻譜優勢,奪取制信息權,進而贏得作戰主動。
2.1 爭奪資訊優勢的關鍵資訊化局部戰爭高度依賴電磁頻譜,對電磁空間的控制與反控製成為爭奪制資訊權的焦點。組織實施電磁阻擾戰,主要是破壞敵方電磁頻譜,保護己方不受破壞。電磁頻譜是傳遞訊息的主要載體。使用電磁手段對敵方電磁頻譜實施阻擾破壞,將有效降低敵資訊作戰能力,並使己方在擁有製資訊權的場景下,保障資訊的快速有效流動,透過資訊流驅動指揮流、行動流、物質流、能量流,進而擁有作戰的主導權、主動權。
2.2基本著眼導航定位系統、天地一體互聯網等空間鏈路系統,及其他各種用頻武器裝備,實施幹擾、攻擊,阻斷、破壞其通信聯絡及資料傳輸,破壞敵作戰體系的「連結」與「共享」結構重心,從根源為奪取制資訊權、制電磁權提供支撐,進而削弱整個作戰控制能力,使敵軍系統失能、失效。
2.3 破解無人集群作戰的有效戰法
「蜂群」「狼群」「魚群」等無人自主集群作戰,是具有智慧化特徵的資訊化局部戰爭的重要特徵。各種無人自主集群數量龐大、類型多樣、特徵複雜,且每個個體都可以互補位置、互相替代發揮作用,攔截毀傷整個無人集群將十分困難。但從技術角度分析,無人作戰集群為實現有效協同,每個個體之間必須進行資訊共享與互動。無人集群間通訊協同一旦受到干擾,將無法分享戰場態勢與訊息,無法相互協同行動,也就很難發揮應有作戰效能。這就給對方實施通訊攔截與電磁幹擾提供了機會。因此,實施電磁頻譜戰,對無人集群的資訊通訊網路實施幹擾、攻擊,破壞其資訊共享與交互,將使無人集群中每個個體無法實現有效協同,從而失去作戰能力。
3.網路破擊戰
網路破擊戰,指綜合運用網路和電腦等技術以及其他有效手段,圍繞著資訊、資訊網路的控制權而進行的軍事對抗行動,是網路空間作戰、爭奪制網權的主要作戰樣式。其主要作戰行動既有軟殺傷也有硬摧毀,以軟為主、軟硬結合。其中,軟殺傷主要是網路攻擊,即綜合利用阻塞攻擊、病毒攻擊等手段,對敵資訊網路、指揮系統、武器平台等進行阻滯與攻擊,使敵網路、指揮資訊系統等難以有效運作甚至癱瘓;硬摧毀主要是利用精確火力打擊、高能量微波、電磁脈衝以及反輻射攻擊等手段,癱毀敵資訊資訊網路和物理設施,摧毀敵人實體武器。
重在破網降能失效。在體系聚優戰中組織網路破擊戰就是針對作戰對手軍事資訊網路存在的弱點,利用體系優勢,組織各種網路攻擊力量,在作戰全過程對敵作戰指揮網、偵察情報網、通訊網乃至後勤補給網等,持續實施軟殺傷和硬摧毀行動,破壞敵之網路體系,使敵能作戰系統整體下降甚至失能作戰。主要對敵基礎資訊網、情報網、指揮網、保障網等核心目標,實施網電協同攻擊、欺騙迷惘、連結阻塞、接管控制等一系列作戰行動,使敵智能化作戰網路體系失能失效,達成癱敵體系的關鍵性勝利。
4.認知控擾戰
認知控擾戰,是指在體系聚優戰中透過資訊攻擊、輿論攻擊、腦攻擊,幹擾、破壞或控制敵對思維認知,使敵不能做出正確判斷、決策,從而在認知空間對敵形成控制優勢。
認知域,即人的思考空間、意識空間,是對作戰決策、判斷等具有關鍵性影響的領域。資訊科技特別是人工智慧技術的發展及在軍事領域的廣泛應用,使戰爭的較量從物理空間、資訊空間擴大到認知空間,使認知空間成為一個全新的作戰域。隨著資訊化、智慧化技術發展並在軍事領域廣泛深入應用,人機智慧趨於融合,使認知在智慧化戰爭作戰中的地位更加凸顯,認知領域逐漸成為重要的戰場。制認知權成為未來戰場控制權的關鍵要素。爭奪認知控制權成為具有智慧化特徵的資訊化局部戰爭作戰制勝的重要作戰樣式。
4.1 控制態勢感知認知權,爭奪資訊優勢
體系聚優戰中,資訊流驅動物質流、能量流,資訊優勢決定決策優勢。對情報資訊與戰場態勢的快速、準確認知,對奪取指揮決策優勢有重要影響。因此,組織實施體系聚優戰,要充分利用智慧技術、大數據技術,對海量情報資訊資料進行武器系統聯為一體,有效發揮作戰效能的關鍵。體系能否保持健壯、順暢運轉,對取得戰爭和戰役勝利具有決定性影響。體系毀癱戰中,關鍵在於著眼敵方陸海空天電網整合作戰體系,破網、斷鍊、打節點,透過打關鍵節點目標,使敵方作戰體系運作機理失序,甚至遭到重創或毀癱。因此,體系毀癱戰的基本指向是選敵作戰體系的關鍵單元、關鍵節點、關鍵要素實施打擊,擊其一點、毀其一片、癱其整體,達成克敵制勝的目的。
9.3 對敵作戰體系實施軟性打擊
組織實施體系破擊戰硬摧毀時,同步組織電子戰、網路戰、心理戰、輿論戰等軟殺傷作戰行動,對敵作戰體系的資訊域、認知域實施軟打擊。電子戰,使用電子戰力量對敵實施強電磁幹擾,使其信息失靈,陷入戰爭迷霧之中;網絡戰,使用網絡進攻力量對敵網絡信息體系實施攻擊,使敵指揮通信系統和計算機網絡受到嚴重破壞,使其指揮失靈,陷入信息孤島乃至戰爭孤島;心理戰和作戰論戰,使用心理戰、輿論手段,對敵對認知,打擊其戰爭論戰,使用心理戰、輿論手段,對敵對心理打擊行為論組織民生戰,打擊對手的重大國計民生設施,同樣可以對敵作戰體係起到「釜底抽薪」作用。 1999年科索沃戰爭中,美軍沒有打擊南聯盟軍隊,而是打擊其戰爭潛力目標體系,使南聯盟軍民失去戰鬥意志走向失敗。

中國原創軍事資源:http://www.81it.com/2022/0901/13716888.html

Chinese Military’s Brief Analysis of Multi-dimensional Central Warfare

中國軍隊多維中心戰淺析

現代英語:

2023-09-27 11:58:xx

Source: Guangming Military

Since the 1990s, the concepts of multi-dimensional central warfare, such as network-centric warfare, personnel-centric warfare, action-centric warfare, and decision-centric warfare, have been proposed one after another. The evolution of the concept of multi-dimensional central warfare reflects the overall goal of seeking advantages such as platform effectiveness, information empowerment, and decision-making intelligence by relying on military science and technology advantages, and also reflects the contradictory and unified relationship between people and equipment, strategy and skills, and the strange and the normal. Dialectically understanding these contradictory and unified relationships with centralized structured thinking makes it easier to grasp the essential connotation of its tactics and its methodological significance.

Strengthen the integration of the “human” dimension in the combination of people and equipment

The concepts of personnel-centric warfare and platform-centric warfare largely reflect the relationship between people and weapons and equipment. Some have specially formulated human dimension strategies, emphasizing continuous investment in the human dimension of combat effectiveness, which is the most reliable guarantee for dealing with an uncertain future. Since the beginning of the 21st century, with the rapid development of intelligent weapons and equipment, unmanned combat has emerged, and voices questioning the status and role of people have arisen one after another. It is imperative to strengthen the integration of the human dimension and enhance the synergy of the human dimension.

First, we need to enhance spiritual cohesion. Marxism believes that consciousness is the reflection of objective matter in the human mind. Tactics are the expression and summary of combat experience, and they themselves have spiritual or conscious forms. When studying tactics, we naturally need to put spiritual factors first. Some scholars believe that war is still fundamentally a contest of human will. In the information age, people’s spirits are richer and more complex, and enhancing the spiritual cohesion of the human dimension is more challenging and difficult. To enhance people’s spiritual cohesion, we need to coordinate the cultivation of collective spirit and individual spirit, maximize the satisfaction of individual spiritual needs in leading the collective spirit, realize individual spiritual pursuits in shaping the value of collective spirit, and empower people’s spirit with all available and useful information; we need to coordinate the cultivation of critical spirit and innovative spirit, adhere to the tactical epistemology of dialectical materialism, resolutely oppose idealism and mechanism in tactical cognition, and constantly inherit and innovate in criticism; we need to coordinate the cultivation of fighting spirit and scientific spirit, and promote the revolutionary spirit of facing death with courage and winning, and promote the spirit of winning by science and technology.

The second is to enhance the organizational structure. Organizations are the organs of the military, and people are the cells of the organization. The settings of military organizations in different countries have their own characteristics and commonalities. For example, the Ministry of National Defense is generally set up to distinguish between the structure of military branches, hierarchical structures and regional structures, and to distinguish between peacetime and wartime organizations. Although the purpose of construction and war is the same, the requirements for the unity of construction and the flexibility of war are different. To enhance the organizational structure and promote the consistency of war and construction, it is necessary to smooth the vertical command chain, reasonably define the command power and leadership power, command power and control power, so that the government and orders complement each other, and enhance the vertical structural strength of the organization; it is necessary to open up horizontal coordination channels, explore the establishment of normalized cross-domain (organizations, institutions, departments) coordination channels, change the simple task-based coordination model, and enhance the horizontal structural strength of the organization; it is necessary to improve the peace-war conversion mechanism, focus on the organization connection, adjustment and improvement in the change of leadership or command power of the troops, and maintain the stability and reliability of the organizational structure network.

The third is to enhance material support. The spiritual strength of people in combat can be transformed into material strength, but spiritual strength cannot be separated from the support of material strength. To enhance material support and thus realize the organic unity of material and spirit, it is necessary to ensure combat equipment, bedding, food, and medical care, build good learning venues, training facilities, and re-education channels, provide good technical services in combat regulations, physiological medicine, etc., help design diversified and personalized capacity improvement plans and career development plans, and provide strong material and technical support for the development of people’s physical fitness, skills, and intelligence, and thus comprehensively improve people’s adaptability and combat effectiveness in the uncertain battlefield environment of the future.
             

Deepen the practice of the “skill” dimension in the combination of combat and skills

The combination of combat skills is an important principle of tactical application. The technology includes not only the technology at the practical operation level (such as shooting technology), but also the technology at the theoretical application level (such as information technology). It can be said that tactics, technology, art and procedures together constitute its “combat methodology”. Scientific and technological development and scientific technology are important characteristics of scientific and technological development. To deepen the combination of combat skills, it is necessary to correctly grasp the relationship between technology and tactics, art and procedures, and continuously deepen the practice of the “skill” dimension.

First, promote the tacticalization of advanced technology. Technology determines tactics, which is the basic view of dialectical materialism’s tactical theory. The evolution of the concept of multi-dimensional central warfare is also an example of technology driving the development and change of tactics. Engels once pointed out: “The entire organization and combat methods of the army and the related victory or defeat… depend on the quality and quantity of the population and on technology.” However, technology-driven tactics have a “lag effect”, especially in the absence of actual combat traction. This requires actively promoting the military transformation of advanced civilian technologies and the tactical application of advanced military technologies. On the one hand, we must actively introduce advanced civilian technologies, especially accelerate the introduction and absorption of cutting-edge technologies such as deep neural networks and quantum communication computing; on the other hand, we must strengthen tactical training of advanced technology equipment, closely combine technical training with tactical training, and promote the formation of new tactics and new combat capabilities with new equipment as soon as possible.

Second, promote the technicalization of command art. “Art” is a highly subjective concept. Some Chinese and foreign scholars believe that “the art of command is rooted in the commander’s ability to implement leadership to maximize performance”, while others believe that “the art of command is the way and method for commanders to implement flexible, clever and creative command”. Chinese and foreign scholars generally regard command as an art. The main reason is that although command has objective basis and support such as combat regulations, superior orders and technical support, the more critical factor lies in the commander’s subjective initiative and creativity, which is difficult to quantify by technical means. With the development of disciplines and technologies such as cognitive psychology and cognitive neuroscience, the cognitive structure and mechanism of command will become more explicit, the mysterious veil of “command art” will gradually fade, and the technicalization of command art will become an inevitable trend. This requires continuous strengthening of technical thinking, continuous deepening of the construction of artificial intelligence-assisted command decision-making means, continuous deepening of the application of human brain decision-making mechanisms, practical use of technology to deconstruct art, and continuous promotion of the technicalization of command art.

The third is to promote the regulation of combat technology. Many scholars place technology on a position that is almost as important as tactics. This insistence on the integrated development of tactical regulation and the regulation of specialized military technology and special combat technology is an important way to promote the systematic and standardized construction of combat regulations and further achieve the integration and unification of tactics and technology at the legal level.
              

Seeking the advantage of the “odd” dimension in combining the odd and the regular

The odd and the even are a basic contradictory structure of tactics, with inherent identity. Without the odd, there is no even, and without the even, there is no odd; either the odd or the even, ever-changing. The choice of the odd and the even is the category of decision-centered warfare, and the application of the odd and the even is the category of action-centered warfare. In the 1990s, the theories of asymmetric warfare, non-contact warfare, and non-linear warfare were proposed. If “symmetric warfare, contact warfare, and linear warfare” are even, then “asymmetric warfare, non-contact warfare, and non-linear warfare” can be called odd. From the perspective of natural science, “symmetry, contact, and linear” are general, and “asymmetry, non-contact, and non-linear” are detailed. It is an inevitable requirement to grasp the dimension of “odd” in the combination of odd, odd, and even, and to seek the advantages of the “three nons”.

First, seek “asymmetric” advantages. “Symmetry” and “asymmetry” originally refer to the morphological characteristics of things or space. Symmetrical warfare is a battle between two troops of the same type, and asymmetric warfare is a battle between two different types of troops. The theory of asymmetric warfare requires the scientific and reasonable organization of troops, combat forces and weapon systems of different military services, deployment in a wide area, and the concentration of superior forces to deal a fatal blow to the enemy at the best combat opportunity, and then quickly redeploy the forces. Due to the limited combat power, the troops have positive asymmetric advantages and negative asymmetric disadvantages. Seeking asymmetric advantages and avoiding asymmetric disadvantages is the common expectation of the warring parties, which will lead to such a situation that the warring parties cycle back and forth between symmetry and asymmetry. Therefore, to seek “asymmetric” advantages, it is necessary to seek asymmetry in combat power, combat capability, combat command and other aspects, adhere to and carry forward “avoid the strong and attack the weak, avoid the real and attack the virtual”, “you fight yours, I fight mine”, and effectively play advantages and avoid disadvantages in asymmetry. For example, when weapons and equipment are symmetrical, strive to gain an asymmetric advantage in personnel capabilities; when forces are symmetrical, strive to gain an asymmetric advantage in command art.

The second is to seek “non-contact” advantages. “Contact” and “non-contact” are a description of the distance between different things. Contact in the military field is usually defined by the projection distance of weapons. The concept of “non-contact combat” originated from World War II and was created during the Cold War. The connotation of contact combat and non-contact combat changes with the change of the striking distance of weapons and equipment. The warring parties always seek to attack each other at a farther distance or in a wider space without being threatened. Since the 1990s, the theory of “non-contact combat” has been used in many local wars. Non-contact combat is a combat action style that implements long-range precision strikes outside the defense zone while being far away from the opponent. Non-contact combat embodies the idea of winning by technology, flexible mobility, and center of gravity strikes. With the rapid development of military science and technology, the armies of major countries in the world will have the ability to perceive and strike globally, and the connotation of “non-contact” will be further compressed to space, cognitive domain and other space fields. To this end, on the one hand, we must base ourselves on the reality of “contact combat”, learn from each other’s strengths and overcome our weaknesses in contact, and continuously accumulate advantages; on the other hand, we must expand the space for “non-contact combat”, seize the initiative and seize the opportunity in non-contact, and continuously expand our advantages.

The third is to seek “nonlinear” advantages. “Linear” and “nonlinear” usually refer to people’s thinking or behavior patterns. The movement of all things in the universe is complex and mostly nonlinear, while human cognition always tends to be simple, abstract, and linear, and has invented concepts such as logic lines, time lines, and linear mathematics. In military science, the transition from linear operations to nonlinear operations reflects the development and progress of military technology theory. Since the second half of the 20th century, nonlinear operations have been on the historical stage. Some scholars have pointed out that in linear operations, each unit mainly acts in a coordinated manner along a clear front line of its own side. The key is to maintain the relative position between its own units to enhance the safety of the units; in nonlinear operations, each unit simultaneously carries out combat operations from multiple selected bases along multiple combat lines. The key is to create specific effects at multiple decision points against the target. Linear operations mainly reflect the action-centered warfare idea, while nonlinear operations mainly reflect the target-centered warfare idea. To this end, on the one hand, we must deepen the use of linear warfare and make full use of its practical value in facilitating command, coordination and support; on the other hand, we must boldly try non-linear warfare and maximize its potential advantages of extensive mobility and full-dimensional jointness. (Yin Tao, Deng Yunsheng, Sun Dongya)

現代國語:

2023-09-27 11:58:xx

來源:光明軍事
自1990年代以來,網路中心戰、人員中心戰、行動中心戰、決策中心戰等多維度的中心戰概念先後被提出。多維度中心戰概念的演變,反映了依靠軍事科技優勢尋求平台效能、資訊賦能、決策智能等優勢的總體目標,更反映了人與裝、謀與技、奇與正等方面的對立統一關係。以中心式結構化思維辯證地認識這些對立統一關係,更便於掌握其戰術的本質內涵及其方法論意義。
強化人裝結合中「人」維度融合
人員中心戰與平台中心戰概念很大程度上反映的是人與武器裝備的關係。有的專門制定人維度策略,強調在戰鬥力的人維度進行持續投入,對於應對不確定的未來是最可靠的保障。進入21世紀以來,隨著智慧化武器裝備的快速發展,無人作戰異軍突起,對人的地位作用的質疑聲音此起彼伏,強化人維度的融合、增強人維度的合力勢在必行。
一是增強精神凝聚力。馬克思主義認為,意識是客觀物質在人腦中的反映。戰術是戰鬥經驗的表現與概括,本身俱有精神或意識上的形態,研究戰術自然要把精神因素放在第一位。有學者認為,戰爭從根本上來說仍然是人類意志的較量。在資訊化時代,人的精神更加豐富複雜,增強人維度精神上的凝聚力,挑戰和難度更高。增強人的精神凝聚力,需要統籌培養集體精神與個體精神,在引領集體精神中最大限度滿足個體精神需求,在培塑集體精神價值中實現個體精神追求,用一切可用、有用的信息賦能人的精神;需要統籌培養批判精神與創新精神,堅持辯證唯物論的戰術知識論,堅決反對戰術認識上的唯心論和機械論,不斷在批判中繼承、在繼承中創新;需要統籌培養戰鬥精神與科學精神,既要弘揚視死如歸、敢打必勝的革命精神,又要發揚科學制勝、技術制勝的精神。


二是增強組織結構力。組織是軍隊的器官,人是組織的細胞。不同國家軍事組織的設置有其特性,也有其共通性。例如普遍設有國防部,區分軍種結構、層級結構與區域結構,區分平時編制與戰時編成。儘管建與戰在目的上是一致的,但是建的統一性與戰的彈性在要求上不盡相同。增強組織結構力進而促進戰建一致,需要暢通縱向指揮鏈路,合理界定指揮權與領導權、指揮權與控制權,做到政令相長,增強組織的縱向結構力;需要打通橫向協同管道,探索建立常態化的跨領域(組織、機構、部門)協同途徑,改變單純的任務式協同模式,增強組織的橫向結構力;需要健全平戰轉換機制,重點關注部隊領導權或指揮權變更中組織銜接、調整和健全等工作,保持組織結構網絡的穩定性、可靠性。
三是增強物質保障力。戰鬥中人的精神力量可以轉化為物質力量,但精神力量也離不開物質力量的支撐。增強物質保障力進而實現物質與精神的有機統一,需要像為決策保障情報、為槍砲保障彈藥、為車輛保障油料一樣,保障好戰鬥裝具、被裝、伙食、醫療,建設好學習場地、訓練設施和再教育渠道,提供好戰條令、生理醫學等方面技術服務,幫助設計多樣化個人化的能力提升計劃、職業發展規劃,為發展人的體能、技能和智能,進而全面提高人在未來不確定性戰場環境中的適應性和戰鬥力,提供堅強的物質和技術支撐。

深化戰技結合中「技」維度實踐
戰技結合是戰術運用的重要原則。其中的技術不僅包括實務操作層面的技術(如射擊技術),也包括理論應用層面的技術(如資訊科技)。可以認為,戰術、技術、藝術和程序共同構成了其「戰鬥方法論」。科學技術化和技術科學化是科學技術發展的重要特徵。深化戰技結合,需要正確掌握技術與戰術、藝術、程序的關係,不斷深化「技」維度實踐。


一是推動先進技術戰術化。技術決定戰術,是辯證唯物論戰術論的基本觀點。多維度中心戰概念的演變,也是技術推動戰術發展變革的例子。恩格斯曾指出:“軍隊的全部組織和作戰方式以及與之有關的勝負……,取決於居民的質與量和取決於技術。”然而,技術推動戰術具有“滯後效應”,尤其在缺少實戰牽引的情況下。這就需要主動推進先進民用技術的軍事轉化和先進軍事技術的戰術應用。一方面,要積極引進民用先進技術,尤其要加速推進深度神經網路、量子通訊運算等尖端技術的引進吸收;另一方面,要加強先進技術裝備戰術訓練,把練技術與練戰術緊密結合起來,推動新裝備盡快形成新戰術和新戰力。
二是推動指揮藝術技術化。 「藝術」是一個具有較強主體性的概念。中外學者有的認為“指揮藝術根植於指揮官實施領導以最大限度提高績效的能力”,有的認為“指揮藝術是指揮官實施靈活巧妙和富有創造性指揮的方式與方法”。中外學者普遍將指揮視為藝術,主要原因在於:指揮儘管有作戰條令、上級命令和技術保障等客觀方面的依據和支撐,但更關鍵的因素在於指揮員的主觀能動性和創造性,而這是比較難以用技術手段加以量化的。隨著認知心理學、認知神經科學等學科和技術的發展,指揮的認知結構和作用機制將更加顯性化,「指揮藝術」的神秘面紗將逐漸退去,指揮藝術技術化將會成為必然趨勢。這需要不斷強化技術思維,持續深化人工智慧輔助指揮決策手段建設,持續深化人類大腦決策機理運用,切實用技術解構藝術,不斷推動指揮藝術技術化。


三是推動戰鬥技術條令化。不少學者把技術置於與戰術近乎同等重要的地位。這種堅持戰術條令化與兵種專業技術和專門戰鬥技術條令化的融合發展,是推動戰鬥條令體系化規範化建設,進而實現戰術與技術在法規層面融合統一的重要途徑。

謀求奇正結合中「奇」維度優勢
奇與正是戰術的一種基本矛盾結構,具有內在同一性。無奇便無正,無正也無奇;或奇或正,千變萬化。奇與正的選擇是決策中心戰的範疇,奇與正的運用是行動中心戰的範疇。 1990年代,非對稱作戰、非接觸作戰、非線式作戰理論被提出。若稱「對稱作戰、接觸作戰、線式作戰」為正,則可稱「非對稱作戰、非接觸作戰、非線式作戰」為奇。從自然科學角度來看,「對稱、接觸、線式」是概述的,「非對稱、非接觸、非線式」是詳實的。把握好奇正結合中「奇」的維度,謀取「三非」優勢是必然要求。
一是謀取「非對稱」優勢。 「對稱」與「非對稱」本來是對事物或空間的形態特徵的指稱。對稱作戰是兩種相同類型部隊之間的交戰,非對稱作戰是兩種不同類型部隊之間的交戰。非對稱作戰理論要求對不同軍兵種部隊、作戰力量和武器系統進行科學合理編組,在寬廣的地域展開部署,在最佳的作戰時機集中優勢力量給敵人以致命的打擊,然後迅速重新部署力量。由於作戰力量的有限性,部隊有正面的非對稱優勢,就有負面的非對稱劣勢。謀取非對稱優勢、規避非對稱劣勢是交戰雙方的共同期望,進而造成這樣一種局面──交戰雙方在對稱與非對稱之間往復循環。因此,謀取“非對稱”優勢,要謀取作戰力量、作戰能力、作戰指揮等多方面上的非對稱,堅持和發揚“避強擊弱、避實擊虛”“你打你的,我打我的”,在非對稱中有效發揮優勢、規避劣勢。例如,在武器裝備對稱時爭取佔據人員能力上的非對稱優勢,在力量對稱時爭取佔據指揮藝術上的非對稱優勢。
二是謀取「非接觸」優勢。 「接觸」與「非接觸」是對不同事物之間距離狀態的一種描述。軍事領域的接觸通常是以武器的投射距離來界定的。 「非接觸作戰」的概念起源於二戰,產生於冷戰時期。接觸作戰與非接觸作戰的內涵是隨著武器裝備打擊距離的改變而改變的。交戰雙方也總是謀求在免受威脅的更遠距離或更廣空間攻擊對方。自1990年代以來,「非接觸作戰」理論在多場局部戰爭中被運用。非接觸作戰是在遠離對方的情況下實施防區外遠程精確打擊的作戰行動樣式。非接觸作戰體現了技術制勝、靈活機動、重心打擊的思想。隨著軍事科技的快速發展,世界主要國家軍隊將具備全球感知和全球打擊的能力,「非接觸」的內涵將進一步壓縮至太空、認知域等太空領域。為此,一方面要立足「接觸作戰」實際,在接觸中取長補短、固強補弱,不斷積蓄勝勢;另一方面要拓展「非接觸作戰」空間,在非接觸中搶抓先手、搶佔先機,不斷拓展優勢。
三是謀取「非線式」優勢。 「線式」與「非線式」通常是指人的思維或行為模式。宇宙萬物運動是複雜的,大抵是非線式的,而人類的認知總是傾向於簡單的、抽象的、線式的,並發明了邏輯線、時間線以及線性數學等概念。軍事學中,從線式作戰到非線式作戰,反映了軍事技術理論的發展進步。 20世紀下半葉起,非線作戰就登上歷史舞台。有學者指出,線式作戰中各部隊主要沿著明確的己方前沿協調一致行動,關鍵是保持己方部隊之間的相對位置,以增強部隊的安全性;非線式作戰中各部隊從選定的多個基地沿多條作戰線同時實施作戰行動,關鍵是針對目標在多個決定點製造特定效果。線式作戰體現的主要是行動中心戰思想,非線式作戰體現的主要是目標中心戰思想。為此,一方面要深化運用線式作戰,充分利用其便於指揮、協同和保障的實用價值;另一方面要大膽嘗試非線式作戰,最大限度地發揮其廣泛機動、全維聯合的潛在優勢。 (殷濤、鄧雲生、孫東亞)

中國原創軍事資源:http://www.81it.com/2023/0927/14581888.html

Chinese Military Laws Necessary for Winning Intelligent Warfare

中國軍事法規是贏得智慧化戰爭的必要條件

現代英語:

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12

現代國語:

认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。

●战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。

习主席指出,要认真研究军事、研究战争、研究打仗,把握现代战争规律和战争指导规律。今天,战争的智能化特征日益凸显,智能化战争已经展现出早期形态的样貌。要想掌握未来智能化战争主动权,就应积极跟踪现代战争发展,紧贴现实军事斗争准备,前瞻认识智能化战争规律,深刻把握其指导规律,着力回答“是什么”、解决 “怎么做”等问题,不断创新战争和战略指导。

回答“是什么”,前瞻认识智能化战争规律

毛泽东同志指出:“战争的规律——这是任何指导战争的人不能不研究和不能不解决的问题。”今天,在智能化战争初显端倪之际,应前瞻认识智能化战争“是什么”,否则就不能解决“怎么做”,更不可能驾驭未来战争。

智能化战争规律是战争知行体系的重建。智能化战争规律,和冷兵器战争、热兵器战争、机械化战争、信息化战争的规律一样,是战争诸要素间内在的、本质的联系,不同之处在于它有新质的要素和新的要素间的构成模式,本质上是基于智能化革命所引发的战争知行体系的重建。今天,认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。掌握这些规律,就能克服未来战争中的纷乱和不确定性,从中找出条理和确定性,这是应对智能化战争的客观要求。

智能化战争规律是战争指导规律的依据。毛泽东在《中国革命战争的战略问题》中,首先分析了中国革命战争的特点,揭示了战争规律,然后“由此产生我们的战略战术”,即战争指导规律;在《论持久战》中,他首先说明了“是什么”,再转到研究“怎么做”的问题上,体现了一种认识过程的逻辑顺序。今天,研究智能化战争仍应遵循这一顺序,既不能本末倒置,颠倒顺序;也不能增加、减少或更换环节。要在掌握智能自主这一根本规律的基础上,揭示自主感知、自主规划、自主实施、自主联动、自主评估等战争指导规律。

不懂得智能化战争规律,就不能指导战争。《孙膑兵法》指出:“知道,胜”“不知道,不胜”。道是战争规律,掌握它、行动符合它,就能取胜;反之,则败。毛泽东也强调:“不知道战争的规律,就不知道如何指导战争,就不能打胜仗。”同样,掌握智能化战争规律,是正确指导智能化战争的前提。否则,就难免要被智能化战争的表面现象所迷惑。今天,要通过分析智能化技术群对战争的基础性、长远性和颠覆性影响,研究智能化战争是个什么样子?有哪些规律?应该怎么打?这些都是智能化战争指导必须回答的重大课题。

解决“怎么做”,揭示掌握智能化战争指导规律

智能化战争指导规律是运用智能化战争规律指导实践的中介,起到“桥”和“船”的作用。应在回答“是什么”的基础上解决“怎么做”的问题,提出智能化战争的“游泳术”。

智能化战争指导规律是运用战争规律的规律。认识战争规律的目的在于应用。马克思指出:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”同样,智能化战争本身迫使指挥员不发现规律则已,一旦发现,就会结合能动性,利用规律为打赢战争服务,这就必然导致智能化战争指导规律的产生。今天,战争是政治的继续仍是智能化战争规律,由此得出智能化战争必须服从服务于政治的指导规律;兵民是胜利之本仍是智能化战争规律,由此得出最广泛地动员民众的指导规律,等等。这些智能化战争指导规律是战争规律派生出来的,是“智能化战争大海中的游泳术”。

充分发挥人在智能化战争中的能动作用。恩格斯说过:“赢得战斗胜利的是人而不是枪。”智能化战争指导规律是实践规律、使用规律。它不是对智能化战争规律的简单“移用”“照搬”,而是加上人的主观能动性,才能转化为战争指导规律。今天,掌握人工智能的军事人才,不仅是智能化武器的操控者,更是人工智能的创造者。人在智能化人机系统中仍处于主体地位,是智能化战争胜负的决定性因素。指挥员应在掌握智能化战争规律的基础上,充分发挥能动性,坚持“技术+谋略”的作战理论生成模式,才能由回答“是什么”向解决“怎么做”转变。

智能化战争指导规律是不断发展的。战争是一条“变色龙”。智能化战争本身也会经历萌芽、发展、成熟等不同阶段,这就必然带来智能化战争指导规律的发展。战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。要紧跟战争形态向智能化加速迈进的历史进程,把握智能化战争发展方向和时代脉搏,把对智能化战争指导规律的研究推向新境界,在未来战场占据战略主动和先机。

紧盯“主动权”,不断创新智能化战争和战略指导

兵无常势,水无常形。在智能化战争已然来临之际,要在遵循智能化战争规律和指导规律的基础上,紧贴现实军事斗争准备,加强对手研究、敌情研究,主动设计“在什么时间”“在什么地点”“和谁打仗”,创新战争和战略指导,牢牢掌握未来战争的战略主动权。

你打你的,我打我的。战争指导艺术的最高境界,就是你打你的、我打我的。“各打各的”要求指挥员在未来智能化战争中,无论处于怎样复杂、困难的环境,首先要立足自身实际,独立自主地使用自己的力量。特别是拥有高技术装备之敌,可能造成暂时的局部的敌之主动、我之被动的局面,这时要通过政治、经济、外交等综合手段,以总体有利态势弥补武器上的劣势,迅速扭转这一局面,恢复主动地位。如果被战略对手牵着鼻子走,就可能吃大亏。

把握时机,因时用兵。《六韬》指出:“用之在于机。”若米尼强调:“全部战争艺术就在于善于待机而动。”一方面,时不至,不可强动。要持重时机,时机未到,应有极大耐心,防止战略盲动。另一方面,时不再来,机不可失。要善于把握时机,一旦遇上有利时机,就要坚决利用,防止畏首畏尾。需要指出的是,要辩证地看待时机成熟问题。未来智能化战争瞬息万变,要求快速决策,而面对不确定性因素,又必须慎重决策。有时及早定下决心,比明天下达更完善的决心也许更有效。因此,要敢于冒一点风险,不然则会坐视成功机会的丧失。

各域有别,因地运筹。克劳塞维茨指出:“战争不像长满庄稼的田地,而像长满大树的土地。收割庄稼时不需要考虑每棵庄稼的形状,收割得好坏取决于镰刀的好坏;而用斧头砍伐大树时,就必须注意到每棵大树的形状和方向。”战略空间不同,战争就不同,战争指导也不一样。当前,战场空间不断由陆海空等传统空间向太空、网络等新型空间拓展,战争指导者应根据多域性、立体性、网络性等特点,探索新的智能化战争规律和指导规律。

瞄准对手,因敌制胜。《孙子兵法》指出:“践墨随敌,以决战事。”约米尼也说过:“不管是谁,如果不了解敌人,怎能知道自己应该如何行动呢?”着眼未来,聪明的战略家应根据轻重、缓急程度,把作战对象区分为主要作战对象和一般作战对象、现实作战对象和潜在作战对象,全面客观地了解不同作战对象的战略意图、兵力部署、作战构想等,提出能充分发挥己方战力优长的新的智能化战争指导规律,实施正确的战争行动。

总之,智能化战争规律是认识过程中的规律,解决“是什么”;指导规律是实践过程中的规律,解决“怎么做”。二者辩证统一,不可分割,构成了认识和指导智能化战争的完整链条。“战胜不复,而应形于无穷。”今天,战争和战略指导者应基于客观情况,深入探索和灵活运用智能化战争规律和战争指导规律,与时俱进创新战争和战略指导。

(作者单位:军事科学院战争研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f8888

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

Create a New Situation for China’s National Defense and Chinese Military Modernization

開創中國國防與軍隊現代化建設新局面

現代英語:

National Defense University Research Center for Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era

The Third Plenary Session of the 20th CPC Central Committee is a very important meeting held at a critical period of comprehensively promoting the great cause of building a strong country and national rejuvenation with Chinese-style modernization. It focuses on studying and deploying the issues of further comprehensively deepening reform and promoting Chinese-style modernization, and makes strategic deployments for continuously deepening national defense and military reforms, drawing a blueprint for the new journey of relaying reforms to strengthen the military and constantly creating a new situation in national defense and military modernization. All levels of the military should earnestly study and implement the spirit of the Third Plenary Session of the 20th CPC Central Committee, unify their thoughts, wills and actions, and thoroughly implement the strategy of reforming and strengthening the military, so as to provide strong guarantees for achieving the goal of building the army for 100 years as scheduled and basically realizing national defense and military modernization.

Reform is a key move in designing and shaping the future of the military

Reform and opening up are the most prominent features and the most magnificent aura of contemporary China. The military field is the field with the most intense competition and confrontation, and it is also the field with the most innovative vitality and the most need for reform and innovation. Whether a military can possess an unremitting spirit of reform and a pioneering and enterprising spirit of innovation is an important indicator of its ability to win. Deepening the reform of national defense and the military is the only way to strengthen the military. The driving force for strengthening the military lies in reform, the way out lies in reform, and the future also lies in reform.

The strength of the People’s Army comes from reform and innovation, and the victory of the People’s Army comes from reform and innovation. The history of the growth and development of the People’s Army is a history of reform and innovation. From the establishment of a complete set of principles and systems for building the army under the absolute leadership of the Party during the Agrarian Revolution, to the implementation of the policy of streamlining the military during the War of Resistance Against Japanese Aggression; from the establishment of five major field armies during the War of Liberation, to the repeated adjustments to the system and organization after the founding of New China, to the massive reduction of millions of troops in the new era of reform and opening up and socialist modernization… The People’s Army has been fighting and reforming, building and reforming, and has become stronger and stronger. From the “Sixteen-Character Formula” of the Red Army period, to the “Protracted War” of the Anti-Japanese War, from the “Ten Military Principles” of the Liberation War, to the “piecemeal” of the War to Resist U.S. Aggression and Aid Korea, to the continuous adjustment of military strategic policies after the founding of New China… The People’s Army learned war from war, explored laws from practice, and wrote a vivid chapter of continuous innovation in the art of war leadership in the history of world military. Along the way, reform and innovation have always been an important magic weapon for our army to grow from small to large, from weak to strong, and continuously from victory to victory. Deepening the reform of national defense and the military is the requirement of the times to realize the Chinese Dream and the dream of a strong military, the only way to strengthen the military, and a key move to determine the future of the military. At present, it is a period of hard struggle to achieve the goal of building the army for 100 years. In order to defend national sovereignty, security, and development interests with stronger capabilities and more reliable means, and to provide strategic support for comprehensively promoting the great rejuvenation of the Chinese nation with Chinese-style modernization, it is necessary to continue to deepen the reform of national defense and the military.

Only reformers can make progress, and only innovators can become strong. President Xi Jinping stressed that “the new military revolution has provided us with a golden opportunity. We must seize the opportunity and work hard to not only keep up with the trend and the times, but also strive to be at the forefront of the times.” In today’s world, the new military revolution is surging, the intelligent warfare form is gradually showing its true face in the practice of war, and the new military technology and weapons and equipment system are further affecting the rules of war. All these require us to maintain a keen sense of reform and cutting-edge innovative thinking, base ourselves on the actual development of our army, focus on the needs of preparing for war, think deeply about the new force structure and winning logic necessary to win modern wars, rely on reform to continuously optimize the military system, improve the effectiveness of military governance in line with actual combat requirements, and go all out to fight a tough battle to achieve the goal of building the army for the centenary.

Comprehensively deepening reform has achieved great changes in the People’s Army in the new era

Since the 18th CPC National Congress, the CPC Central Committee with Comrade Xi Jinping as its core has, with great political courage and wisdom, pushed forward the theory and practice of reform of socialism with Chinese characteristics to a new breadth and depth. In the new era and new journey, we must insist on deepening reform to gain creativity, cohesion and combat effectiveness, and insist on the unchanged direction, unswerving path and unreduced efforts, and continuously push forward the modernization of national defense and the army with better strategies, higher efficiency and faster speed, and resolutely complete the mission and tasks of the new era entrusted by the Party and the people.

Grasp the overall changes in deepening national defense and military reforms. Since the Third Plenary Session of the 18th CPC Central Committee, the People’s Army has adhered to the guidance of Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, thoroughly implemented Xi Jinping’s Thought on Strengthening the Army, and taken the Party’s goal of strengthening the army in the new era as its guide. It has comprehensively implemented the strategy of reform and strengthening the army, and has thoroughly resolved the institutional obstacles, structural contradictions, and policy issues that have long constrained national defense and army building, promoted the reform of the leadership and command system, the reform of the scale structure and force composition, and the reform of military policies and systems, and achieved historic achievements in deepening the reform of national defense and the army. The People’s Army has achieved an overall revolutionary reshaping; the new system, structure, pattern, and appearance have made our army’s winning advantage more prominent, its innovative vitality continuously released, and its morale more uplifting. Practice has fully proved that as long as we unswervingly continue to deepen the reform of national defense and the military, we will be able to create a new situation in the modernization of national defense and the military.

Adhere to the ideological guidance of deepening the reform of national defense and the military. President Xi’s series of important strategic thoughts on deepening the reform of national defense and the military, which are directional, fundamental, and overall, have profoundly clarified the contemporary significance, essential attributes, fundamental guidance, goals and tasks, core requirements, important directions, strategic measures, and scientific methods of deepening the reform of national defense and the military. To carry out the reform of national defense and the military to the end, we must adhere to Xi Jinping’s Thought on Strengthening the Military as the general guidance and general compliance, and consistently use Xi Jinping’s Thought on Strengthening the Military to arm the minds of officers and soldiers, further unify thoughts, deepen understanding, and use it to guide reform practice, further work on resolving deep-seated contradictions and problems, promote the implementation of reform arrangements, and realize the determination and intentions of the Party Central Committee, the Central Military Commission, and President Xi at a high standard.

Advancing national defense and military modernization requires continued reform

President Xi stressed: “On the road ahead, the People’s Army must be brave in reform and good at innovation, and never become rigid or stagnant at any time or under any circumstances.” The People’s Army is a strong backing for national security. The deeper the reform goes, the more it must take responsibility, move forward steadily and courageously, and there must be no slackness or rest. It is necessary to continue to deepen the reform of national defense and the army to provide security guarantees and strategic support for comprehensively promoting the construction of a strong country and the great cause of national rejuvenation with Chinese-style modernization.

The cause of strengthening the military is inspiring, and the goal of strengthening the military inspires fighting spirit. The Third Plenary Session of the 20th CPC Central Committee made strategic arrangements for deepening the implementation of the strategy of reform and strengthening the military. This is not only a call to action for continued reform and attack, but also a drumbeat for determination to strengthen the military. We must focus our efforts on implementing the strategy of reform and strengthening the military, and continuously push forward the cause of strengthening the military in the new era. The mission is imminent, and the goal calls. The goal of strengthening the military depicts the goal map, roadmap and development map for strengthening and revitalizing the military. It is the soul and main line that runs through the deepening of national defense and military reform. The promotion of reform must not deviate from the goal of strengthening the military for a moment or a single moment. The goal of strengthening the military must always be used to measure, regulate and correct, providing a strong impetus for advancing the modernization of national defense and the military.

A strong country must have a strong military, and a strong military must reform. National defense and military modernization are important components of China’s modernization. Further deepening reform and promoting China’s modernization will inevitably put forward new and higher requirements for deepening national defense and military reform. On the one hand, with the increase in the breadth and depth of the practice of China’s modernization, the new progress of comprehensively deepening reform requires our military construction to accelerate and build high quality in improving quality and efficiency. We must uphold the core position of innovation in our military construction and promote national defense and military modernization through reform and innovation. On the other hand, with the practice of modern warfare, especially the militarization of artificial intelligence, the profound changes in the internal mechanism of war and the mode of winning, etc., all require national defense and military reform to seize the opportunity and act in response to the times, and make greater efforts to enhance our military’s joint combat capability based on the network information system and the all-domain combat capability. The Third Plenary Session of the 20th CPC Central Committee made major strategic arrangements around the continued deepening of national defense and military reforms, and proposed a number of important reform measures involving the optimization and adjustment of systems, mechanisms, and institutions, which are highly contemporary, forward-looking, and targeted. All levels of the military must earnestly study and implement the spirit of the Third Plenary Session of the 20th CPC Central Committee, focus on improving the leadership and management system and mechanism of the People’s Army, deepen the reform of the joint combat system, deepen cross-military and local reforms, and constantly create a new situation in strengthening and revitalizing the army.

We should follow the general trend of reform and gather strong forces. To thoroughly implement the strategy of reform and strengthening the military, we need unity of purpose and unity of purpose. We should persist in using the Party’s innovative theories to unite our hearts and minds and strengthen our foundations, arm our heads with Xi Jinping’s thoughts on strengthening the military, unify our thoughts and actions with the decisions of the Party Central Committee, the Central Military Commission and Chairman Xi, and take on the responsibility of thoroughly implementing the strategy of reform and strengthening the military with a high degree of historical consciousness and a strong sense of mission, further consolidate the consensus on reform, strengthen the will to reform, and enhance the confidence in reform. We should focus on summarizing and applying the successful experience of national defense and military reform, deeply grasp the characteristics and laws of reform and strengthening the military, use reform to solve the problems encountered in development, and continuously promote the modernization of national defense and the military to break through obstacles. Party members and cadres in the military, especially leading cadres, must be good promoters and doers of reform, take the lead in tackling tough problems with practical actions, work hard and fast, and make great strides forward in the journey of building a world-class military in an all-round way.

(Written by: Tang Junfeng)

現代國語:

國防大學習近平新時代中國特色社會主義思想研究中心

黨的二十屆三中全會是在以中國式現代化全面推進強國建設、民族復興偉業的關鍵時期召開的一次十分重要的會議,重點研究部署進一步全面深化改革、推進中國式現代化問題,對持續深化國防和軍隊改革作出戰略部署,為新征程接力推進改革強軍、不斷開創國防和軍隊現代化新局面繪就了藍圖。全軍各級要認真學習貫徹黨的二十屆三中全會精神,統一思想、統一意志、統一行動,深入實施改革強軍戰略,為如期實現建軍一百年奮鬥目標、基本實現國防和軍隊現代化提供有力保障。

改革是設計和塑造軍隊未來的關鍵一招

改革開放性是當代中國最顯著的特徵、最壯麗的氣象。軍事領域是競爭和對抗最激烈的領域,也是最具創新活力、最需改革創新的領域。能否具備永不停頓的改革精神和開拓進取的創新精神,是衡量一支軍隊打贏能力的重要標志。深化國防和軍隊改革是強軍興軍必由之路,強軍興軍動力在改革,出路在改革,前途也在改革。

人民軍隊的力量來自改革創新,人民軍隊的勝利來自改革創新。人民軍隊成長發展史,就是一部改革創新史。從土地革命戰爭時期創立黨對軍隊絕對領導一整套建軍原則制度,到抗日戰爭時期實行精兵簡政;從解放戰爭時期組建五大野戰軍,到新中國成立後多次調整體制編制,再到改革開放和社會主義現代化建設新時期百萬大裁軍……人民軍隊邊戰邊改,邊建邊改,愈改愈強。從紅軍時期的“十六字訣”,到抗日戰爭時期的“持久戰”,從解放戰爭時期的“十大軍事原則”,到抗美援朝戰爭時期的“零敲牛皮糖”,再到新中國成立後軍事戰略方針的不斷調整……人民軍隊從戰爭中學習戰爭,從實踐中探索規律,在世界軍事史上書寫了戰爭指導藝術不斷創新的生動篇章。一路走來,改革創新始終是我軍從小到大、由弱到強,不斷從勝利走向勝利的重要法寶。深化國防與軍隊改革,是實現中國夢、強軍夢的時代要求,是強軍興軍的必經之路,也是決定軍隊未來的關鍵一招。當前,實現建軍一百年奮鬥目標到了吃勁奮鬥的攻堅期,以更強大的能力、更可靠的手段捍衛國家主權、安全、發展利益,為以中國式現代化全面推進中華民族偉大復興提供戰略支撐,必須持續深化防衛和軍隊改革。

惟改革者進,惟創新者強。習主席強調指出:「新軍事革命為我們提供了千載難逢的機遇,我們要抓住機遇、奮發有為,不僅要趕上潮流、趕上時代,還要力爭走在時代前列。」當今世界,新軍事革命風起雲湧,智慧化戰爭形態在戰爭實踐中漸顯真容,新的軍事技術和武器裝備體系進一步影響戰爭規則,這些都要求我們必須保持敏銳的改革意識、前沿的創新思維,立足我軍發展實際,聚焦備戰打仗需求,深入思考打贏現代戰爭所必需的全新力量結構、制勝邏輯,依靠改革持續優化軍事體系,對標實戰化要求提高軍事治理效能,全力以赴打好實現建軍一百年奮鬥目標攻堅戰。

全面深化改革成就新時代人民軍隊偉大變革

黨的十八大以來,以習近平同志為核心的黨中央以巨大的政治勇氣和智慧,把中國特色社會主義改革理論和改革實踐推進到新的廣度和深度。新時代新征程,必須堅持向深化改革要創造力、凝聚力、戰鬥力,堅持方向不變、道路不偏、力度不減,以更優策略、更高效益、更快速度把國防和軍隊現代化不斷推向前進,堅決完成黨和人民賦予的新時代使命任務。

把握深化國防和軍隊改革的整體性變革。黨的十八屆三中全會以來,人民軍隊堅持以習近平新時代中國特色社會主義思想為指導,深入貫徹習近平強軍思想,以黨在新時代的強軍目標為引領,全面實施改革強軍戰略,深入破解長期制約國防和軍隊建設的體制性障礙、結構性矛盾、政策性問題,推進領導指揮體制改革、規模結構和力量編成改革、軍事政策制度改革,深化國防和軍隊改革取得歷史性成就,人民軍隊實現整體性革命性重塑;體制一新、結構一新、格局一新、面貌一新,使我軍制勝優勢更加彰顯、創新活力不斷釋放、精神面貌更為昂揚。實踐充分證明,只要堅定不移持續深化國防和軍隊改革,就一定能開創國防和軍隊現代化新局面。

堅持深化國防和軍隊改革的思想引領。習主席關於深化國防和軍隊改革的一系列方向性、根本性、全局性的重要戰略思想,深刻闡明了深化國防和軍隊改革的時代意義、本質屬性、根本引領、目標任務、核心要求、重要指向、戰略舉措和科學方法。把國防和軍隊改革進行到底,必須堅持習近平強軍思想這個總指導總遵循,一以貫之地用習近平強軍思想武裝官兵頭腦,進一步統一思想、深化認識,用以指導改革實踐,進一步向破解深層次矛盾問題發力,推動改革部署落實,高標準實現黨中央、中央軍委會和習主席的決心意圖。

推進國防和軍隊現代化需要持續深化改革

習主席強調:「前進道路上,人民軍隊必須勇於改革、善於創新,任何時候任何情況下都永不僵化、永不停滯。」人民軍隊是國家安全的堅強後盾,改革越到深處,就越要擔當作為、蹄疾步穩、奮勇前進,不能有任何停一停、歇一歇的懈怠。必須持續深化國防和軍隊改革,為以中國式現代化全面推進強國建設、民族復興偉業提供安全保障和戰略支撐。

強軍事業催人奮進,強軍目標激勵鬥志。黨的二十屆三中全會對深入實施改革強軍戰略作出戰略部署,這既是繼續改革攻堅的動員號令,也是矢志強軍的催徵戰鼓。凝心聚力實施改革強軍戰略,把新時代強軍事業不斷推向前進。使命在即,目標召喚。強軍目標描繪了強軍興軍的目標圖、路線圖和展開圖,是貫穿深化國防和軍隊改革的靈魂和主線,推進改革一時一刻、一絲一毫都不能偏離強軍目標,必須始終用強軍目標來衡量、規範和校正,為推進國防和軍隊現代化提供強大動力。

強國必強軍,強軍必改革。國防和軍隊現代化是中國式現代化的重要組成部分。進一步全面深化改革、推進中國式現代化,必然對深化國防和軍隊改革提出新的更高要求。一方面,隨著中國式現代化的實踐廣度和深度的增加,全面深化改革的新進展需要我軍建設在提質增效中跑出加速度、建出高質量。要堅持創新在我軍建設中的核心地位,以改革創新推進國防和軍隊現代化。另一方面,隨著現代戰爭實踐特別是人工智慧的軍事化運用,戰爭內在機理、制勝模式的深刻轉變等,都要求國防和軍隊改革乘勢而為、應時而動,在提升我軍基於網絡資訊體系的聯合作戰能力、全域作戰能力等方面下更大功夫。黨的二十屆三中全會圍繞持續深化國防和軍隊改革作出重大戰略部署,提出多項重要改革舉措,涉及體制、機制、制度等方面的優化調整,具有很強的時代性、前瞻性、針對性。全軍各級要認真學習貫徹黨的二十屆三中全會精神,著力完善人民軍隊領導管理體制機制、深化聯合作戰體系改革、深化跨軍地改革,不斷開創強軍興軍新局面。

順應改革大勢,匯聚強大合力。深入實施改革強軍戰略,需要上下齊心、眾志成城。要堅持用黨的創新理論凝心鑄魂、強基固本,用習近平強軍思想武裝頭腦,把思想和行動統一到黨中央、中央軍委和習主席的決策上來,以高度的歷史自覺和強烈的使命擔當深入實施改革強軍戰略,進一步凝聚改革共識、堅定改革意志、增強改革信心。要注重總結運用國防和軍隊改革成功經驗,深入把握改革強軍的特點規律,用改革解決發展中遇到的問題,不斷推動國防和軍隊現代化破障前行。軍隊黨員幹部尤其領導幹部要當好改革的促進派和實干家,以實際行動帶頭攻堅、真抓實幹、緊張快幹,在全面建成世界一流軍隊的征程上闊步前行。

(執筆:湯俊峰)

來源:中國軍網-解放軍報 作者:湯俊峰 責任編輯:張碩 發布:2024-07-29 06:00

中國原創軍事資源:http://www.81.cn/ll_208543/16327611888.html

Chinese Military Combat Deception on the Intelligent Battlefield

中國軍隊在智慧戰場上進行作戰欺騙

現代英語:

It is easy to break the “fog” of the battlefield, but it is difficult to break the “obsession” in your heart——

Since ancient times, achieving surprise through combat deception has been an important way to win on the battlefield. Entering the era of intelligence, the in-depth application of artificial intelligence technology has not only clearly dispelled the original war “fog”, but also created a large amount of new war “fog”. If we only rely on improving deception techniques and means, and simply superimposing and strengthening the traditional deception paradigm, it will become increasingly difficult to achieve the deception goal. From “smart deception” to “smart victory”, there is an urgent need for an overall transformation of the objects of deception, means of deception, methods of deception, and focus of deception, so as to form a new deception paradigm that meets the requirements of the intelligent era.

The target of deception has shifted from humans to human-machine hybrid agents

Clausewitz believed that three-quarters of the factors on which war is based are more or less surrounded by the “fog” of uncertainty. Combat deception is essentially the use of uncertainty in war. The more “fog” there is in war, the more room there is for maneuvering. Traditional combat deception is carried out around the opponent’s decision-making level, and people are the only target of deception. However, with the increasingly prominent role of intelligent intelligence analysis and auxiliary decision-making systems in command activities, the use of deception to achieve strategic, campaign, and tactical surprises faces major challenges. How to deceive human-machine hybrid intelligent entities composed of humans and intelligent systems has become an important factor that needs to be considered when planning and implementing deception in the intelligent era. The competition surrounding intelligent deception and anti-deception is becoming increasingly fierce.

There is a world of difference between deceiving people and deceiving intelligent systems. In the past, the “calculations” that deceived people may be exposed when facing the “calculations” of intelligent systems. Intelligent systems can efficiently integrate and process massive amounts of sensor data and Internet open source information, making a qualitative leap in the speed, depth, breadth and accuracy of battlefield situation perception, realizing a profound transformation from “sensing” to “knowing”, from “state” to “momentum”, and playing an important role in dispelling the “fog” of war. For example, on the battlefield, although both sides try to hide the truth and cover up their intentions in various ways, they still cannot escape the “eyes” of the intelligent system: the tracks left by carefully disguised tanks and armored vehicles, after being detected by the opponent’s satellites, drones, etc., will also reveal their specific locations under the analysis of the intelligent system.

On the contrary, it is very easy to deceive intelligent systems with methods that target them, but it may not be able to deceive people. A foreign research team found that by changing a few key pixels in a picture of a cat, the intelligent system can identify the cat as a dog, while the human eye will not make any recognition errors due to this change. Similar incidents are common. Some studies have pointed out that sticking a piece of paper with a special pattern on a person’s forehead can deceive the strongest facial recognition system, and this method is highly portable and can deceive other facial recognition algorithms with a slight change.

It can be seen that deceiving people and deceiving intelligent systems are two different “deception methods”. After the deep application of artificial intelligence in the field of intelligence analysis and auxiliary decision-making, from the formulation of strategic deception plans to the design of battlefield camouflage patterns, how to deceive both the human brain and the computer and keep the human-machine hybrid intelligent body “in the dark” will be an important issue that needs to be focused on and solved in order to win the initiative in war.

The fraudulent methods have shifted from being mainly human-based to a combination of human and machine.

The organization and implementation of traditional combat deception is mainly manual, especially large-scale strategic deception, which requires a lot of manpower, material and financial resources. For example, in World War II, the Allies formulated a series of deception plans to ensure the success of the Normandy landing: setting up a fake radio network and a simulated landing fleet, and imagining that the US 1st Army Group with 50 divisions and 1 million people was actively preparing to cross the channel and land in the direction of Calais; using the air force to bomb Calais and Normandy, but the former was bombed more than 1 times more than the latter, etc. The application of artificial intelligence in deception can fundamentally change this situation. With humans as the main guide and intelligent means as the auxiliary, it can quickly generate massive amounts of false information, confusing the real with the fake, and create a thicker war “fog” for the opponent.

The use of intelligent means can improve the quality of deception. On the one hand, intelligent decision-making aids can be used to formulate deception plans, optimize the design of deception forces, deception deployment, deception processes, etc., to achieve systematic deception with the best overall effect; on the other hand, intelligent intelligence analysis systems can be used to pre-test the deception effect, “using one’s own spear to attack one’s own shield”, find out the loopholes and contradictions in the plan, and then improve the deception plan to make it logically self-consistent and seamless.

The use of intelligent means can expand the scale of deception. The increasingly mature deep fake technology can synthesize realistic fake pictures, handwriting, audio, video, etc. in large quantities, and has broad application prospects in strategic, campaign, and tactical deception. For example, in strategic campaign deception, corresponding technical means can be used to confuse opponents by forging fake radio stations and fake commanders, and even to fake an active command post in a certain battle direction; in tactical deception, battlefield camouflage can be used to attach special patterns to high-value equipment to make the opponent’s intelligent system recognize it incorrectly.

The use of intelligent means can reduce the cost of deception. With the support of technologies such as virtual reality and deep fakes, unexpected deception effects can often be achieved with the help of synthetic optics, acoustics and other means, and they are low-cost and low-investment, which is more cost-effective than traditional strategic deception methods. For example, setting up false targets such as bait unmanned combat platforms, using electronic feints and electronic camouflage to send false signals can effectively restrain the opponent’s power, produce high returns at low cost, and thus gain the upper hand.

The use of intelligent means can optimize the accuracy of deception. Traditional combat deception is usually stereotyped, with prominent characteristics of broadcast, extensive, and generalized. For this reason, in the era of intelligence, we should focus on collecting data on opponent decision makers in peacetime and use big data for precise analysis to “know the enemy” more deeply and specifically. On this basis, deep fake technology can be used in wartime to customize the content of deception, realizing precise deception from targeting groups to targeting individuals.

The method of deception has shifted from mainly deceiving to mainly confusing and seducing.

“Playing cards” and “playing chess” are two game modes with completely different battlefield transparency. In the “playing cards” mode, both sides only know the cards that the opponent has played, but do not know the cards in the opponent’s hand, let alone what cards the opponent will play next; while in the “playing chess” mode, the deployment of both sides’ forces on the chessboard is completely transparent, but the opponent’s intentions and the next move are unknown. It is not difficult to see that from cold weapon wars, hot weapon wars, mechanized wars, informationized wars, and then to intelligent wars, the form of war confrontation is increasingly changing from the “playing cards” mode to the “playing chess” mode.

In a war of “playing cards”, blind deception is very useful. Through strict disguise and strict confidentiality, the opponent’s channels of information can be blocked as much as possible, making it impossible for the opponent to detect one’s own intentions and actions, thereby achieving surprise. In the past, when the means of obtaining information were limited and information on the battlefield situation was scarce, there were many examples of wars that used “hiding the truth” and “showing falsehood” to achieve surprise. However, at present, with the help of advanced reconnaissance technology, full-dimensional and full-spectrum reconnaissance has been realized, and the battlefield is becoming more and more transparent. Complete concealment without any revealing features is difficult to achieve. Once the concealment state is switched to the action state, the probability of being discovered by the opponent will be greatly increased. Blind deception can only become an auxiliary deception method.

In the war of “chess”, the following two deception methods are usually used: one is confusing deception, that is, using intelligent means to send a large amount of true and false mixed and difficult to identify information, increasing the ambiguity of information and the difficulty of analysis, making it difficult for the opponent to judge or misjudge. The second is inducement deception, that is, by sending high-definition misleading information, the opponent is led into a preset trap. The combination of these two methods and the cooperation of blinding deception together constitute a hybrid deception that is difficult for the opponent to guard against.

The focus of deception shifts from human perception to human cognition

As the main subject of war, people are important variables that influence the war situation, which implies uncertainty and uncontrollability. From the perspective of psychology, cognitive neurology and other aspects, the “black box” of the mind still cannot be revealed. Deception by deception targets people’s eyes and ears, taking advantage of human sensory weaknesses, while deception by deception and temptation directly targets people’s minds, taking advantage of human weaknesses.

From past cases, even with the most advanced intelligence surveillance and reconnaissance technology and the most intelligent analysis methods, it is impossible to make up for and overcome human weaknesses. In many cases, it is not that the intelligence department failed to recognize the opponent’s deception, but that the decision-makers are unwilling to believe the facts. On the eve of the Soviet-German War in World War II, although more and more evidence showed that Germany was planning to invade the Soviet Union, the Soviet decision-makers believed that the war would not come for the time being. Therefore, when the war broke out, the Soviet army was not well prepared for the response, and the initial defensive actions were very passive.

War practice shows that in the era of intelligence, even if the opponent has obvious military technology advantages and can achieve one-way transparency on the battlefield through advanced intelligence surveillance and reconnaissance technology, the enemy can still take advantage of the cognitive weaknesses of the opponent’s decision-making layer to implement counter-intuitive deception and cover up the true intentions and actions. This also shows that the focus and center of deception in the era of intelligence should not be entirely on how to deliberately cover up the traces of military actions, but should focus more on targeting the opponent’s decision-making layer and inducing it to make decisions and actions that the enemy wants to see.

Yuan Yi Zhao Di

(Author’s unit: Institute of War Studies, Academy of Military Science)

現代國語:

破戰場“迷霧”易,破心中“執念”難——

袁 藝 趙 頔

自古以來,透過作戰欺騙達成突然性,是戰場制勝的重要途徑。進入智慧化時代,人工智慧技術的深度應用,在清晰撥開原有戰爭「迷霧」的同時,又製造出大量新的戰爭「迷霧」。如果只依賴改進欺騙技術和手段,在傳統欺騙範式上做簡單的疊加強化,就想達成欺騙目標的難度越來越大。由“智騙”到“智勝”,迫切需要欺騙對象、欺騙手段、欺騙方式、欺騙重心等各個方面的整體轉變,形成適應智能化時代要求的新型欺騙範式。

欺騙對象由人轉向人機混合智能體

克勞塞維茨認為,戰爭所依據的四分之三的因素或多或少被不確定性的「迷霧」包圍著。作戰欺騙本質上就是對戰爭中不確定性的利用,戰爭「迷霧」越多,施計用謀的空間就越大。傳統作戰欺騙都是圍繞著對方決策層而展開的,人是欺騙的唯一對象。但隨著智慧情報分析與輔助決策系統在指揮活動中的地位作用日益凸顯,以欺騙達成戰略、戰役、戰術突然性面臨重大挑戰。如何欺騙人與智慧系統共同組成的人機混合智能體,成為智能化時代籌劃實施欺騙需要考慮的重要因素,圍繞智能欺騙與反欺騙的較量日趨激烈。

欺騙人與欺騙智慧系統有著天壤之別,以往欺騙人的「算計」在面對智慧系統的「計算」時可能會被識破。智慧型系統可高效融合處理海量的傳感器數據和互聯網開源信息,使得戰場態勢感知的速度、深度、廣度和精度產生質的飛躍,實現由“感”到“知”、由“態”到“勢”的深刻轉變,在撥開戰爭「迷霧」方面發揮重要作用。例如,戰場上盡管交戰雙方都試圖用各種方法隱藏真相、掩蓋企圖,但仍逃不出智能係統的「慧眼」:精心偽裝的坦克、裝甲車等留下的車轍痕跡,被對方衛星、無人機等偵照後,在智慧型系統的分析下也會暴露出具體位置。

相反,針對智慧型系統的欺騙方式欺騙智慧系統非常容易,但可能又欺騙不了人。國外研究團隊發現,只要改變一隻貓的圖片中的少數幾個關鍵像素,就可以使智慧系統將貓識別為狗,而人眼則完全不會因這種變化而出現識別錯誤。類似的事件屢見不鮮,有研究指出,在人類前額上貼一張有特殊圖案的紙片,就能夠騙過最強的人臉識別系統,且這一方法具有很強的可移植性,稍加改變就可以欺騙其他的人臉識別演算法。

由此可見,欺騙人與欺騙智慧系統是兩種不同的「騙法」。人工智慧深度應用於情報分析與輔助決策領域後,大到戰略欺騙方案的製定,小到戰場迷彩圖案的設計,如何既騙過人腦又騙過電腦,把人機混合智能體「蒙在鼓裡”,將會是贏得戰爭主動權需要重點關注並加以解決的重要課題。

欺騙手段由人工為主轉向人機結合

傳統作戰欺騙的組織實施以人工為主,尤其是大規模的戰略欺騙,需要投入大量的人力物力財力。例如,二戰時盟軍為確保諾曼底登陸成功,制定了一系列疑兵計畫:建立假的無線電網和模擬登陸艦隊,虛構有50個師100萬人的美第1集團軍群,正在積極準備橫渡海峽向加萊方向登陸;使用空軍對加萊和諾曼底進行轟炸,但前者遭到的轟炸比後者多1倍以上等等。人工智慧運用於欺騙可從根本上改變這一局面,以人為主導輔以智能手段,可快速生成海量虛假信息,以假亂真,給對手製造更加濃厚的戰爭“迷霧”。

運用智慧手段可提升欺騙品質。一方面,可運用智慧輔助決策手段訂定欺騙計畫,優化設計欺騙力量、欺騙部署、欺騙流程等,實現全局效果最佳的體系化欺騙;另一方面,可運用智慧情報分析系統預先檢驗欺騙效果, “以己之矛攻己之盾”,找出計劃中的漏洞和矛盾點,進而完善欺騙計劃,使其邏輯自洽、嚴絲合縫。

運用智慧手段可擴大欺騙規模。日益成熟的深度偽造技術,可大量合成逼真的虛假圖片、筆跡、音頻、視頻等,在戰略、戰役、戰術欺騙中有著廣泛的應用前景。例如,在戰略戰役欺騙方面,可透過相應技術手段,偽造假電台、假指揮員等迷惑對手,甚至能夠在某一戰役方向偽造一個活躍的指揮所;在戰術欺騙方面,可通過戰場偽裝,給高價值裝備貼上特製圖案,使對手的智慧系統識別出錯。

運用智慧手段可降低欺騙成本。在虛擬現實、深度偽造等技術的支持下,借助合成光學、聲學等手段往往也能達到意想不到的欺騙效果,並且兼具低成本、小投入的特點,相比傳統戰略欺騙方式具有高效費比優勢。如設置誘餌無人作戰平台等假目標,運用電子佯動、電子偽裝等施放假信號,都能夠有效牽制對手力量,以低成本產出高回報,從而贏得制勝先機。

運用智慧手段可優化欺騙精度。傳統作戰欺騙通常千篇一律,廣播式、粗放式、概略化特點比較突出。為此,智能化時代,平時就應注重廣泛收集對手決策者數據,並運用大數據進行精確分析,以更加深刻更加具體地「知彼」。在此基礎上,戰時就可運用深度偽造技術個性化客製化欺騙內容,實現由針對群體到瞄準個體的精準欺騙。

欺騙方式由以蒙蔽為主轉向以迷惑、誘導為主

「打牌」和「下棋」是戰場透明度截然不同的兩種賽局模式。 「打牌」模式中,雙方都只知道對手已出的牌,但不知道對手手中的牌,更不知道下一步對手會出什麼牌;而「下棋」模式中,棋盤上雙方兵力部署完全透明,但不知道對手企圖和下一步棋怎麼走。不難看出,從冷兵器戰爭、熱兵器戰爭、機械化戰爭到資訊化戰爭,再到智慧化戰爭,戰爭對抗形式日益由「打牌」模式轉變為「下棋」模式。

在「打牌」模式的戰爭中,蒙蔽式欺騙非常管用,可通過嚴密偽裝和嚴格保密,盡可能地封鎖對手的獲情渠道,使其無法察覺己方企圖和行動,進而達成突然性。在過去資訊獲取手段有限、戰場態勢資訊匱乏的年代,主用「隱真」輔以「示假」達成突然性的戰例很多。但當前,憑借先進偵察技術,已經實現了全維全譜偵察,戰場透明化程度越來越高,無任何暴露特徵的完全隱蔽已難以實現,而一旦由隱蔽狀態轉入行動狀態,更會大大增加被對手發現的機率,蒙蔽式欺騙只能成為輔助欺騙手段。

在「下棋」模式的戰爭中,通常採用以下兩種欺騙方式:一是迷惑式欺騙,即藉助智能手段,發出大量真假混雜、難以辨認的信息,增大信息模糊度和分析難度,使對手難以判斷或判斷失誤。二是誘導式欺騙,即透過發出高清晰誤導訊息,將對手引入預設陷阱。兩種方式結合再加上蒙蔽式欺騙的配合,共同構成了對手難以防範的混合式欺騙。

欺騙重心由人的感知轉向人的認知

作為戰爭的主體,人是左右戰局的重要變量,蘊含著不確定性和不可控性。從心理學、認知神經學等層面來看,心智的「黑箱」仍然無法揭開。蒙蔽式欺騙針對的是人的耳目,利用的是人類感官弱點,而迷惑式和誘導式欺騙直指人的心智,利用的是人性弱點。

從以往案例來看,即使擁有最先進的情報監視偵察技術和最聰明化的分析手段,也無法彌補和克服人性弱點。很多情況下,不是情報部門沒有辨識出對手的欺騙,而是決策層不願意相信事實。在第二次世界大戰蘇德戰爭前夕,盡管當時越來越多的證據表明,德國正計劃入侵蘇聯,但蘇聯決策層認為戰爭暫時不會來臨,所以當戰爭爆發時,沒有做好應對準備的蘇軍,前期的防禦行動非常被動。

戰爭實踐表明,進入智能化時代,即使對手擁有明顯的軍事技術優勢,能夠通過先進的情報監視偵察技術達成戰場單向透明,但己方仍可利用對手決策層的認知弱點,實施反直覺欺騙,掩蓋真實意圖和行動。這也表明,智能化時代欺騙的發力點和重心,不應全部放在如何刻意掩蓋軍事行動痕跡上,而應更加註重針對對手決策層,誘導其作出己方希望看到的決策行動。

(作者單位:軍事科學院戰爭研究院)

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-08-13&paperNumber=07&articleid=937433

Aspects of Chinese intelligent warfare: Artificial intelligence will change the winning mechanism of future Chinese wars

中國智慧化戰爭看點:人工智慧將改變未來中國戰爭制勝機制

現代英語:

Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. It has developed rapidly in recent years and is widely used in the military field. It continues to generate new asymmetric advantages and profoundly changes the basic shape, combat methods and winning mechanisms of future wars. We should have a deep understanding of the revolutionary technological power of artificial intelligence, accurately identify changes, respond scientifically, and proactively seek changes, and strive to explore ways to win future wars, and win the initiative in the accelerating intelligent wars.

information mechanism

If you know your enemy and yourself, you can fight a hundred battles without danger. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situation, intelligent analysis of massive data, and intelligent processing of multiple information, and can form a “transparent” advantage on the battlefield.

Autonomous implementation of battlefield awareness. By embedding intelligent modules into wartime reconnaissance systems, various types of reconnaissance node units can achieve random networking, on-the-fly collaboration, and organic integration. They can independently capture battlefield information in all directions and dimensions, and build a relatively “transparent” digital battlefield environment and combat situation. It then clears the “fog” of war and presents combat scenes in a panoramic manner.

Accurate identification of massive data. Relying on intelligent technologies such as precise sensing technology and analysis and recognition technology, it can accurately interpret, analyze, compare and integrate diversified voice, text, pictures, videos and other data to obtain a faster, more complete, more accurate and deeper battlefield situation. The result is far faster and more accurate than human brain processing.

Respond efficiently to key information. Based on intelligent technology groups such as combat cloud, big data, and the Internet of Things, it can quickly excavate large quantities of non-standardized and heterogeneous intelligence data, independently discover symptoms, identify intentions, study trends, find patterns, and respond accurately in real time. Commander’s need for critical information.

Synchronize and share the integration situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air and space power grids, and play an important hub role in sharing information and unified cognition, building a system based on “one picture” and “one picture”. The “open network” and “one chain” situation enables all combat units to synchronously share the required information from different spaces, distances, and frequencies in all areas, all frequencies, and all the time, realizing wisdom sharing.

Decision-making mechanism

If the husband has not fought yet and the temple is considered the winner, he must be considered the winner. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can conduct dynamic battlefield simulations, quickly make feasible decisions, significantly shorten the operational planning and decision-making cycle, and form a decision-making advantage.

Intelligent analysis and judgment of strategic situations. The decision-making assistance system integrated with artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analysis capabilities, maximize the elimination of falsehoods and preserve truths, correlation verification, and link thinking, and automatically conduct analysis of the enemy’s situation, our situation, and our situation. Big data analysis such as battlefield environment can form comparative data on relevant troops, weapons, etc., which can effectively assist combat command and help commanders quickly make combat decisions.

Intelligent selection of combat plans. Relying on the intelligent combat simulation system, based on the pre-entered combat missions and target information, multiple sets of intuitive plans and plans are automatically generated, comprehensively evaluate their advantages, disadvantages and potential risks, and select the plan that is most conducive to realizing the commander’s intention. for the commander to make the final decision. After receiving combat missions and target requirements from superiors, each combat unit further screens and screens battlefield target information based on the tasks and requirements at this level, and independently formulates the optimal solutions and plans at this level to maximize combat effectiveness.

Intelligent prediction of decision-making effectiveness. The intelligent auxiliary decision-making system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system more advanced “brain-like” capabilities. It can think more rationally about unexpected situations on the battlefield and quickly draw relative conclusions. Objective results of the engagement.

power control mechanism

Powerful people control power because of profit. Seizing power is a key factor in gaining a winning edge in war. Artificial intelligence can “transplant” part of human intelligence into weapons, making the integration of humans and weapon systems closer and closer. In-depth human-machine integration has changed the traditional elements of power control and given new power control connotations, which can help to obtain new technologies. control advantage.

Territorial power expanded to high frontiers. In the future, highly intelligent unmanned systems will operate in extreme environments such as extreme heights, extreme distances, extreme depths, extremely low temperatures, extreme darkness, and extreme brightness, even under harsh conditions such as high temperature, extreme cold, high pressure, hypoxia, poison, and radiation. , a variety of combat missions can still be carried out, and the battle for control of the combat field and combat space extends to high frontiers, far frontiers, and deep frontiers.

Expand the right to control information to multiple means. The traditional way of seizing and controlling information power is to control the acquisition, processing, and distribution of information by attacking the enemy’s reconnaissance and early warning system and destroying its command and control system. However, information operations led by artificial intelligence use information itself as “ammunition”. ”, the means to seize the right to control information are more diverse.

Network control rights are expanded to distributed areas. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services. It can realize modular grouping and automatic reorganization of combat forces. Traditionally, it can achieve network outage and destruction by attacking key nodes. The purpose of the chain will be difficult to achieve, and the “decentralized” battlefield must be dealt with in an intelligent distributed attack mode.

Brain power expands to new dimensions. The gradual militarization of brain-inspired technology and simulation technology has formed a new field of games and confrontations. The focus has shifted from focusing on confrontation in the physical and information domains to more emphasis on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can confuse fakes with real ones. “Core attack warfare” can quietly change the enemy’s command and control system algorithm, and “brain control warfare” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, will, etc., it can achieve control at the minimum cost. The purpose of war and victory.

Mechanism of action

The passion of soldiers is the key to speed, taking advantage of others’ disadvantages. Taking actions that the enemy does not expect is the key to winning a war. Artificial intelligence can improve the intelligence of weapons and equipment, command and control systems, and operational decision-making, making maneuver response capabilities faster and joint strike capabilities more accurate, creating a super operational advantage.

The speed of action is “instantaneous”. The intelligent combat system can see, hear, learn, and think, effectively shortening the “OODA” cycle. Once an “opportunity is found,” it will use intelligently controlled hypersonic weapons, kinetic energy weapons, and lasers. Weapons, etc., can quickly “kill” targets from a long distance.

The action style is “unmanned”. “Unmanned + intelligence” is the future development direction of weapons and equipment. Low-cost unmanned autonomous equipment such as unmanned vehicles, drones, and unmanned underwater vehicles, with the support of the cluster autonomous decision-making system, can plan the task division of each unit according to the combat objectives, and accurately dock and autonomously combine the unmanned aerial vehicles. , covert penetration, and carry out cluster saturation attacks on the enemy.

The space for action “blurs”. In future wars, using interference means to carry out soft attacks on the enemy’s intelligent combat systems and smart weapons, and using smart weapons to delay or affect the decision-making and psychology of enemy personnel will become the key to victory. Most of these actions were completed unknowingly or silently, presenting a “blurred” state in which neither the enemy nor ourselves were visible, the boundaries between the front and the rear were unclear, and the visible and invisible were difficult to distinguish.

The operational layout is “invisible”. Intelligent command systems and weapons and equipment have bionic and stealth properties. As long as they are deployed in possible combat areas in advance during peacetime preparations or training exercises, they are lurking in advance, dormant and ready for battle. Once needed in wartime, they can be activated in a timely manner to launch a sudden attack on the enemy, which will help to quickly grasp the initiative in the war.

System mechanism

Five things and seven strategies to know the outcome. Future wars will be systematic confrontations in all fields, systems, elements, and processes. A stable and efficient combat system is the basic support for winning the war. As the application of artificial intelligence in the military field continues to expand, the combat system is becoming more and more intelligent, and a fully integrated combat system will produce powerful system advantages.

There are more means of “detection”. The intelligent combat cluster relies on the network information system to connect with various large-scale sensors, electronic warfare systems and other human-machine interaction platforms. It uses each combat unit’s own detection and sensing equipment to obtain battlefield data, leverages the self-organizing characteristics of the intelligent group, and strengthens joint operations. The real-time reconnaissance and surveillance support of the system and back-end intelligence analysis can realize full-area reconnaissance and search, joint early warning, and collaborative verification, forming a multi-dimensional integrated, full-area coverage large-area joint reconnaissance intelligence system.

The field of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of the senses, and the physical limits of existence, and replace humans into traditional restricted areas of life such as the deep sea, space, polar regions, and areas with strong radiation, and stay there for a long time. Implement “unconventional operations” to further expand the combat space and have the ability to continue to deter opponents in a wider area.

“Hit” is faster. With the support of the intelligent network information system, the intelligence chain, command chain, and kill chain are seamlessly connected. Information transmission speed, decision-making speed, and action speed are simultaneously accelerated. Intelligent combat units can be flexibly organized, autonomously coordinated, and struck quickly. All these make time utilization extremely efficient and battlefield reaction speed extremely fast.

The accuracy of “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavioral systems, the intelligent combat assessment system can independently collect, aggregate and classify multi-means action effect assessment information, accurately perceive battlefield actions based on big data and panoramic views, and dynamically identify Combat process and correct deficiencies, predict complex battlefield changes, comprehensively plan and respond flexibly.

“Guarantee” is more efficient. The widespread application of intelligent comprehensive support systems, represented by equipment maintenance expert systems and intelligent sensing equipment, can efficiently respond to support needs in various domains, intelligently plan support resources, ensure that the “cloud” aggregates various battlefield resources, and effectively enhances the networked battlefield Comprehensive support capabilities.

(Author’s unit: Henan Provincial Military Region)

現代國語:

人工智慧技術是提升新興領域策略能力的重要支持。近年來發展迅速,在軍事領域廣泛應用。它不斷生成新的不對稱優勢,深刻改變未來戰爭的基本形態、作戰方式和勝利機制。我們應該深刻認識人工智慧革命性技術力量,準確辨識變化、科學應對、主動求變,努力探索打贏未來戰爭的辦法,在加速推進的智慧化戰爭中奪取主動權。

資訊機制

知己知彼,百戰不殆。迅速有效地掌握全方位資訊是贏得戰爭的首要前提。人工智慧可以實現戰場態勢的智慧感知、大量數據的智慧分析、多種資訊的智慧處理,可以在戰場上形成「透明」優勢。

自主實施戰場感知。透過在戰時偵察系統中嵌入智慧模組,使各類偵察節點單元實現隨機組網、動態協同、有機融合。它們能夠自主獲取全方位、多維度的戰場訊息,建構相對「透明」的數位化戰場環境和作戰態勢。它撥開戰爭的“迷霧”,全景式地呈現戰鬥場景。

海量資料精準識別。依托精準感知技術、分析辨識技術等智慧技術,對多樣化的語音、文字、圖片、視訊等數據進行精準解讀、分析、比較與整合,獲得更快、更全、更準、更深層的戰場態勢。其結果比人腦處理的速度更快、更準確。

有效響應關鍵訊息。基於作戰雲、大數據、物聯網等智慧技術群,快速挖掘大量非標準化、異質情報數據,自主發現症狀、辨識意圖、研究趨勢、尋找模式、精準應對即時。指揮官需要關鍵資訊。

同步分享整合情況。智慧控制系統能夠優化整合陸、海、空、天電網等分佈在不同空間、不同頻域的各種偵察監視系統,發揮資訊共享、統一認知的重要樞紐作用,建構基於智慧感知的體系。一張圖」與「一張圖」。 「開網」「一條鏈」的局面,使各作戰單元能夠全地域、全頻率、全時間,同步分享不同空間、不同距離、不同頻率的所需信息,實現智慧共享。

決策機制

如果丈夫還沒有戰鬥,而寺廟被認為是勝利者,那麼他必須被視為勝利者。科學準確的決策是贏得戰爭的前提。人工智慧可以進行動態戰場模擬,快速做出可行決策,大幅縮短作戰規劃和決策週期,形成決策優勢。

智能分析判斷戰略情勢。融入人工智慧技術的決策輔助系統具有資訊收集、查詢管理、資料處理、關聯分析等功能。能有效突破人的分析能力限制,最大限度實現去偽存真、關聯驗證、連結思考,自動進行敵情、我情、我勢分析。戰場環境等大數據分析可以形成相關兵力、武器裝備等比較數據,可以有效輔助作戰指揮,幫助指揮官快速做出作戰決策。

智慧選擇作戰計畫。依托智能作戰模擬系統,根據預先輸入的作戰任務和目標訊息,自動產生多套直觀的作戰方案和計劃,綜合評估其優勢、劣勢及潛在風險,選取最有利於實現了指揮官的意圖。由指揮官作出最終決定。各作戰單元接到上級作戰任務和目標要求後,依據本級任務和要求,對戰場目標資訊進行進一步甄別篩選,自主制定本級最優解決方案和預案,最大限度提高戰鬥力。

智慧預測決策的有效性。智慧輔助決策系統依賴大數據、高效能運算、神經網路演算法等智慧技術,賦予指揮控制系統更先進的「類大腦」能力。能夠更理性地思考戰場上的突發狀況,並迅速得出相關結論。參與的客觀成果。

權力控制機制

有權勢的人因為利益而控制權力。奪取政權是戰爭中取得勝利的關鍵因素。人工智慧可以將人類部分智慧「移植」到武器中,使得人與武器系統的結合越來越緊密。人機深度融合改變了傳統的動力控制要素,賦予了動力控制新的內涵,有助於獲得新的技術。控制優勢。

領土權力擴展到高地邊境。未來高度智慧的無人系統將在極高、極遠、極深、極低溫、極暗、極亮等極端環境下,甚至在高溫、極寒、高壓、缺氧、中毒和輻射。 ,多種作戰任務仍可實施,戰場和作戰空間控制權的爭奪向高邊、遠邊、深邊延伸。

將資訊控制權拓展到多種手段。奪取和控制資訊權的傳統方式是透過攻擊敵方偵察預警系統、摧毀敵方指揮控制系統來控制資訊的取得、處理和發布。然而,人工智慧主導的資訊作戰,是以資訊本身作為「彈藥」的。 ”,奪取資訊控制權的手段更加多樣化。

網路控制權擴展至分散式區域。基於智慧技術建構的網路資訊體系,提供無所不在的網路“雲”,聚合各類終端的戰場資源並提供服務。可實現作戰力量模組化編組和自動重組。傳統上它透過攻擊關鍵節點來實現網路中斷和破壞。鏈上的目的將很難實現,必須以智慧分散式的攻擊方式來應對「去中心化」的戰場。

腦力拓展至新的維度。類腦技術、模擬技術逐漸軍事化,形成了新的博弈與對抗領域。從注重身體和資訊領域的對抗,轉向更加重視影響和控制對手的心理。虛擬實境、視聽合成等技術可以使真假混淆。 「核心攻擊戰」可以悄悄改變敵人的指揮控制系統演算法,「腦控戰」則可以直接控制敵人的決策。透過控制和影響敵人的心理、思維、意誌等,以最小的代價來實現控制。戰爭的目的和勝利。

作用機制

士兵的熱情是速度的關鍵,利用別人的劣勢。採取敵方意想不到的行動是贏得戰爭的關鍵。人工智慧可以提升武器裝備、指揮控制系統、作戰決策的智慧化,讓機動反應能力更快速、聯合打擊能力更精準,打造超級作戰優勢。

作用速度是「瞬時的」。智慧作戰系統能夠看、聽、學、想,有效縮短「OODA」週期。一旦“發現機會”,它就會使用智慧控制的高超音速武器、動能武器和雷射。武器等,可以從遠距離快速「殺死」目標。

行動方式為「無人化」。 「無人化+智能化」是未來武器裝備的發展方向。無人駕駛汽車、無人機、無人潛航器等低成本無人自主裝備,在集群自主決策系統支援下,可依作戰目標規劃各單元任務分工,精準對接、自主組合無人駕駛飛行器。 、隱蔽滲透,對敵方實施集群飽和攻擊。

行動空間「模糊」。未來戰爭中,利用乾擾手段對敵方智慧作戰系統和智慧武器實施軟攻擊,利用智慧武器延緩或影響敵方人員的決策和心理,將成為勝利的關鍵。這些動作大多是在不知不覺中或默默無聞地完成的,呈現出一種「模糊」的狀態,雙方都沒有意識到。無論是敵人還是自己,都是看不見的,前方與後方的界線不清,看得見與看不見的難以區分。

作戰佈局「隱形」。智慧指揮系統和武器裝備具有仿生、隱身性能。只要在平時準備或訓練演習中,提前部署到可能的作戰區域,就是提前潛伏,蟄伏,隨時準備戰鬥。一旦戰爭需要,可以及時投入使用,對敵人發動突襲,有利於迅速掌握戰爭主動權。

系統機制

五件事和七種策略可知結果。未來戰爭將是各領域、各體系、各要素、各過程的系統對抗。穩定、有效率的作戰體係是打贏戰爭的基礎支撐。隨著人工智慧在軍事領域應用範圍不斷拓展,作戰體系智慧化程度越來越高,全面整合的作戰體系將產生強大的體系優勢。

「檢測」的手段還有很多。智慧作戰集群依托網路資訊體系,連結各類大型感測器、電子戰系統及其他的人機互動平台。它利用各作戰單元本身的探測感測設備取得戰場數據,發揮智慧群體自組織特點,加強聯合作戰。透過系統性的即時偵察監視保障和後端情報分析,可實現全域偵察搜尋、聯合預警、協同核查,形成多維度一體化、全域覆蓋的大區域聯合偵察情報系統。

「控制」的領域更加廣泛。利用智慧無人作戰平台,可以突破人類思維的邏輯極限、感官的生理極限、生存的物理極限,取代人類進入深海、太空、極地等傳統生命禁區。實施“非常規作戰”,進一步拓展作戰空間,具備在更廣闊區域持續威懾對手的能力。

「打」得更快。在智慧化網路資訊系統支援下,情報鏈、指揮鏈、殺傷鏈無縫銜接。訊息傳遞速度、決策速度、行動速度同步加快。智慧作戰部隊能夠靈活組織、自主協同、快速出擊。這些使得時間利用率極高,戰場反應速度極快。

「評價」的準確性更加準確。智慧作戰評估系統利用體驗式互動學習、類腦行為系統等智慧技術,自主採集、聚合、分類多手段行動效果評估信息,基於大數據和全景視圖精準感知戰場行動,動態識別戰場態勢,實現戰場態勢感知與決策支撐。

「保」更有效率。以裝備維修專家系統、智慧感知裝備為代表的智慧化綜合保障系統的廣泛應用,能有效率地回應各領域保障需求,智慧規劃保障資源,確保「雲端」聚合各類戰場資源,有效提升保障水準。化戰場綜合保障能力。

(作者單位:河南省軍區)

中國原創軍事資源:

Comprehensive Review of Chinese Military Intelligent Warfare: Intelligent Combat Command

中國軍事智慧戰爭全面回顧:智慧作戰指揮

現代英語:

Liu Kui, Qin Fangfei

Tips

● Modern artificial intelligence is essentially like a “brain in a vat”. If it is allowed to carry out combat command, it will always face the problem of subjectivity loss, that is, “self” loss. This makes artificial intelligence have natural and fundamental defects. It must be based on human subjectivity and improve the effectiveness and level of combat command through human-machine hybrid.

● In intelligent combat command, the commander is mainly responsible for planning what to do and how to do it, while the intelligent model is responsible for planning how to do it specifically.

“Brain in a vat” is a famous scientific hypothesis. It means that if a person’s brain is taken out and placed in a nutrient solution, the nerve endings are connected to a computer, and the computer simulates various sensory signals. At this time, can the “brain in a vat” realize that “I am a brain in a vat”? The answer is no, because as a closed system, when a person lacks real interactive experience with the outside world, he cannot jump out of himself, observe himself from outside himself, and form self-awareness. Modern artificial intelligence is essentially like a “brain in a vat”. If it is allowed to implement combat command, it will always face the problem of subject loss, that is, “self” loss. This makes artificial intelligence have natural and fundamental defects, and it must be based on human subjectivity and improve the effectiveness and level of combat command through human-machine hybrid.

Based on “free choice”, build a “man-planned” command model

On the battlefield, the commander can choose which target to attack, and can choose to attack from the front, from the flank, from the back, or from the air; he can isolate but not attack, surround but not attack, talk but not attack… This is human autonomy, and he can freely choose what to do and how to do it. But machines can’t do that. The combat plans they give can only be the plans implied in the intelligent model. As far as the specific plan given each time is concerned, it is also the most likely plan in the sense of probability statistics. This makes the plans generated by artificial intelligence tend to be “templated”, which is equivalent to a “replica machine”. It gives similar answers to the same questions and similar combat plans for the same combat scenarios.

Compared with artificial intelligence, different commanders design completely different combat plans for the same combat scenario; the same commander designs different combat plans when facing similar combat scenarios at different times. “Attack when the enemy is unprepared and take them by surprise”, the most effective plan may seem to be the most dangerous and impossible plan. For commanders, facing combat scenarios, there are infinite possibilities in an instant, while for artificial intelligence, there is only the best-looking certainty in an instant, lacking creativity and strategy, and it is easy for the opponent to predict it. Therefore, in intelligent combat command, based on human autonomy, the commander is responsible for planning and calculation, innovating tactics and tactics, and designing basic strategies, and the machine is responsible for converting basic strategies into executable and operational combat plans, forming a “man-planned” command mode. More importantly, autonomy is the unique mark of human existence as human being. This power of free decision-making cannot and is not allowed to be transferred to machines, making people become vassals of machines.

Based on “self-criticism”, build a command model of “people against machine”

Human growth and progress are usually based on the real self, focus on the ideal self, and criticize the historical self in a negation-negation style. Artificial intelligence has no “self” and has lost its self-critical ability. This makes it only able to solve problems within the original cognitive framework. The combat ideas, combat principles, and tactics of the model are given when the training is completed. If you want to update and improve your knowledge and ideas, you must continuously train the model from the outside. Mapped to a specific combat scenario, the intelligent model can only provide the commander with a pre-given problem solution. It is impossible to dynamically adjust and update it continuously during a battle.

People with a self-critical spirit can jump out of the command decision-making thinking process and review, evaluate, and criticize the command decision. In the continuous self-criticism, the combat plan is constantly adjusted, and even the original plan is overturned to form a new plan. In the command organization group, other commanders may also express different opinions on the combat plan. The commander adjusts and improves the original plan on the basis of fully absorbing these opinions, and realizes the dynamic evolution of the combat plan. Therefore, combat command is essentially a dynamic process of continuous forward exploration, not a static process given in advance by the combat plan. When the machine generates a combat plan, the commander cannot accept it blindly without thinking, but should act as an “opponent” or “fault finder”, reflect on and criticize the combat plan, and raise objections. Based on the human’s objections, the machine assists the commander to continuously adjust and optimize the combat plan, forming a command mode of “human opposing and machine correcting”.

Based on “self-awareness and initiative”, we build a command model of “people lead and machines follow”

Comrade Mao Zedong once said that what we call “conscious initiative” is the characteristic that distinguishes humans from objects. Any complex practical activity to transform the world starts with a rough and abstract idea. To transform abstract concepts into concrete actions, it is necessary to overcome various risks and challenges, give full play to conscious initiative, and take the initiative to set goals, make suggestions, and think of ways. Artificial intelligence without conscious initiative, when people ask it questions, it only gives the answers implied in the model, without caring whether the answer can be used, targeted, or practical. In other words, when an abstract and empty question is raised, it gives an abstract and empty answer. This is also why the current popular large model unified operation mode is “people ask questions and machines answer”, rather than “machines ask questions”.

Relying on conscious initiative, even the most abstract and empty problems can be transformed step by step into specific action plans and specific action practices. Therefore, in intelligent combat command, the commander is mainly responsible for planning what to do and what ideas to follow, while the intelligent model is responsible for planning how to do it specifically. If the combat mission is too abstract and general, the commander should first break down the problem into details, and then the intelligent model should solve the detailed problem. Under the guidance of the commander, the problem is gradually solved in stages and fields, and the combat goal is finally achieved, forming a command mode of “people lead and machines follow”. It’s like writing a paper. First you make an outline and then you start writing. People are responsible for making the outline, and the specific writing is done by the machine. If the first-level outline is not specific enough, people can break it down into a second-level or even a third-level outline.

Based on “self-responsibility”, build a command model of “human decision-making and machine calculation”

Modern advanced ship-borne air defense and anti-missile systems usually have four operational modes: manual, semi-automatic, standard automatic, and special automatic. Once the special automatic mode is activated, the system will no longer require human authorization to launch missiles. However, this mode is rarely activated in actual combat or training. The reason is that humans, as the responsible subject, must be responsible for all their actions, while the behavior of machines is the absence of the responsible subject. When it comes to holding people accountable for major mistakes, machines cannot be held accountable. Therefore, life-and-death matters must not be decided by a machine without autonomous responsibility. Moreover, modern artificial intelligence is a “black box”. The intelligent behavior it exhibits is inexplicable, and the reasons for right and wrong are unknown, making it impossible for people to easily hand over important decision-making power to machines.

Because AI lacks “autonomous responsibility”, all problems in its eyes are “domesticated problems”, that is, the consequences of such problems have nothing to do with the respondent, and the success or failure of the problem solving is irrelevant to the respondent. Corresponding to this are “wild problems”, that is, the consequences of such problems are closely related to the respondent, and the respondent must be involved. Therefore, in the eyes of AI without self, there are no “wild problems”, all are “domesticated problems”, and it stays out of any problem. Therefore, in intelligent combat command, machines cannot replace commanders in making judgments and decisions. It can provide commanders with key knowledge, identify battlefield targets, organize battlefield intelligence, analyze battlefield conditions, predict battlefield situations, and even form combat plans, formulate combat plans, and draft combat orders. However, the plans, plans, and orders it gives can only be used as drafts and references. As for whether to adopt them and to what extent, it is up to the commander to decide. In short, both parties make decisions together, with artificial intelligence responsible for prediction and humans responsible for judgment, forming a command mode of “human decision-making and machine calculation”.

現代國語:

從「缸中之腦」看智慧化作戰指揮

■劉 奎 秦芳菲

要點提示

●現代人工智慧,本質上就如同“缸中之腦”,如果讓它實施作戰指揮,始終會面臨主體缺失即“自我”缺失的問題。這使得人工智慧存在天然的、根本的缺陷,必須基於人的主體性,透過人機混合來提升作戰指揮效能和水平

●智能化作戰指揮中,指揮員主要負責規劃做什麼、依什麼思路做,智能模型則負責規劃具體怎麼做

「缸中之腦」是一項著名科學假設。意思是,假如人的大腦被取出放在營養液中,神經末梢接上計算機,由計算機模擬出各種感知信號。這時候,「缸中之腦」能不能意識到「我是缸中之腦」?答案是不能,因為人作為一個封閉的系統,當與外界缺乏真實的互動體驗時,人是無法跳出自身、從自身之外觀察自身並形成自我意識的。而現代人工智慧,本質上就如同“缸中之腦”,如果讓它實施作戰指揮,始終會面臨主體缺失即“自我”缺失的問題。這使得人工智慧存在天然的、根本的缺陷,必須基於人的主體性,透過人機混合來提升作戰指揮效能和水準。

基於“自由選擇”,建構“人謀機劃”的指揮模式

戰場上,指揮員可以選擇打哪一個目標,可以選擇從正面打、從翼側打、從背後打、從空中打;可以隔而不打、圍而不打、談而不打……這就是人的自主性,可以自由選擇做什麼、怎麼做。但機器不行,它給出的作戰方案,只能是智慧模型中蘊含的方案。就每次給出的特定方案而言,也是機率統計意義上可能性最大的方案。這使得人工智慧生成的方案呈現“模板化”傾向,相當於一個“復刻機”,同樣的問題,它給出的是相似的回答,同樣的作戰場景,它給出的就是相似的作戰方案。

與人工智慧相比,同樣的作戰場景,不同的指揮員設計的作戰方案完全不同;同一指揮員在不同的時間面對相似的作戰場景,設計的作戰方案也不相同。 “攻其無備,出其不意”,最有效的方案很可能看上去是最危險、最不可能的方案。對於指揮員,面對作戰場景,一瞬間有無限可能,而對於人工智慧,一瞬間卻只有看上去最好的確定,缺乏創意、缺少謀略,很容易為對方所預料。所以,在智慧化作戰指揮中,要基於人的自主性,由指揮員負責籌謀算計、創新戰法打法、設計基本策略,由機器負責將基本策略轉化為可執行可操作的作戰方案,形成「人謀機劃」的指揮模式。更重要的是,自主性是人作為人而存在的獨特標志,這種自由作決定的權力不可能也不允許讓渡給機器,使人淪為機器的附庸。

基於“自我批判”,建構“人反機正”的指揮模式

人類的成長進步,通常是立足現實自我,著眼理想自我,對歷史自我進行否定之否定式的批判。人工智慧沒有“自我”,同時也喪失了自我批判能力。這使得它只能停留在原有認知框架內解決問題,模型擁有的作戰思想、作戰原則、戰法打法,是在訓練完成時所給予的。如果想獲得知識和想法的更新提升,就必須從外部對模型進行持續訓練。映射到特定作戰場景,智慧模型給指揮員提供的只能是事先給定的問題解決方案,要想在一次作戰中不斷地動態調整更新是做不到的。

具有自我批判精神的人類,可以跳脫指揮決策思考過程,對指揮決策進行審視、評價、批判。在持續地自我批判中不斷對作戰方案進行調整,甚至推翻原有方案,形成新的方案。在指揮機構群體中,其他指揮人員也可能對作戰方案提出不同意見,指揮員在充分吸納這些意見的基礎上,調整改進原有方案,實現作戰方案的動態進化。所以,作戰指揮本質上是一個不斷向前探索的動態過程,不是作戰方案事先給定的靜態過程。當機器生成作戰方案時,指揮員不能不加思考地盲目接受,而應充當“反對者”“找茬人”,對作戰方案展開反思批判,提出反對意見,機器根據人的反對意見,輔助指揮員不斷調整、優化作戰方案,形成「人反機正」的指揮模式。

基於“自覺能動”,建立“人引機隨”的指揮模式

毛澤東同志說過,我們名之曰“自覺的能動性”,是人之所以區別於物的特點。任何一項改造世界的複雜實踐活動,都是從粗糙的、抽象的想法開始的,要將抽象觀念轉化為具體行動,需要克服各種風險和挑戰,充分發揮自覺能動性,主動定目標、出主意、想辦法。沒有自覺能動性的人工智慧,人們向它提出問題,它給出的只是模型中蘊含的答案,而不會管這個答案能不能用、有沒有針對性、可不可以實際操作,即提出抽象、空洞的問題,它給出的就是抽象、空洞的回答。這也是為什麼時下流行的大模型統一的運行模式是“人問機答”,而不是“機器提出問題”。

依賴自覺能動性,再抽象、空洞的問題都能由人一步一步轉化為具體的行動方案、具體的行動實踐。因此,在智慧化作戰指揮中,指揮員主要負責規劃做什麼、依什麼思路做,智慧模型則負責規劃具體怎麼做。若作戰任務太過抽象籠統,應先由指揮員對問題進行分解細化,再由智慧模型對細化後的問題進行解算。在指揮引導下,分階段、分領域逐步解決問題,最終達成作戰目標,形成「人引機隨」的指揮模式。這就像寫一篇論文,先列出提綱,再進行寫作,列提綱由人負責,具體寫作由機器完成,如果感覺一級綱目不夠具體,可由人細化為二級乃至三級綱目。

基於“自主負責”,建立“人斷機算”的指揮模式

現代先進的艦載防空反導系統,通常有手動、半自動、標準自動、特殊自動四種作戰模式,一旦啟用特殊自動模式,系統發射導彈將不再需要人的授權幹預。但該模式無論在實戰還是在訓練中都很少啟用。究其原因,人作為責任主體要對自己的所有行為負責,而機器行為背後卻是責任主體的缺失,當要為重大失誤追責時,機器是無法負責的。所以,生死攸關的大事決不能讓一個沒有自主責任的機器決定。況且,現代人工智慧是一個“黑箱”,它所展現的智能行為具有不可解釋性,對與錯的原因無從知曉,讓人無法輕易將重大決定權完全交給機器。

由於人工智慧缺乏“自主責任”,會使它眼中的問題全是“馴化問題”,也就是該類問題產生的後果與回答者沒有關系,問題解決的成功也罷、失敗也罷,對回答者來說無所謂。與之相應的是“野生問題”,也就是該類問題產生的後果與回答者息息相關,回答者必須置身其中。所以,在缺失自我的人工智慧眼中沒有“野生問題”,都是“馴化問題”,它對任何問題都置身事外。因此,在智慧化作戰指揮中,機器不能取代指揮員做出判斷和決策。它可以為指揮員提供關鍵知識、識別戰場目標、整編戰場情報、分析戰場情況、預測戰場態勢,甚至可以形成作戰方案、制定作戰計劃、擬製作戰命令,但它給出的方案計劃命令,只能作為草稿和參考,至於採不採用、在多大程度上採用,還得指揮員說了算。簡單來說,就是雙方共同做出決策,人工智慧負責預測,人負責判斷,形成「人斷機算」的指揮模式。

中國原創軍事資源:http://www.81.cn/yw_208727/16361814.html

Chinese Weaponization of Digitalization, Networking, Intelligence, Grasping the Focus New Chinese Generation of Information Technology

數位化、網路化、智慧化的中國武器化,抓住中國新一代資訊科技的焦點

現代英語:

Digitalization, networking, and intelligence are the prominent features of the new round of scientific and technological revolution, and are also the core of the new generation of information technology. Digitalization lays the foundation for social informatization, and its development trend is the comprehensive dataization of society. Dataization emphasizes the collection, aggregation, analysis and application of data. Networking provides a physical carrier for information dissemination, and its development trend is the widespread adoption of information-physical systems (CPS). Information-physical systems will not only give birth to new industries, but will even reshape the existing industrial layout. Intelligence reflects the level and level of information application, and its development trend is the new generation of artificial intelligence. At present, the upsurge of the new generation of artificial intelligence has arrived.

  In his important speech at the 2018 General Assembly of Academicians of the Chinese Academy of Sciences and the Chinese Academy of Engineering, Comrade Xi Jinping pointed out: “The world is entering a period of economic development dominated by the information industry. We must seize the opportunity of the integrated development of digitalization, networking, and intelligence, and use informatization and intelligence as leverage to cultivate new momentum.” This important statement is an accurate grasp of the dominant role and development trend of information technology in today’s world, and an important deployment for using information technology to promote national innovation and development.

  Human society, the physical world, and information space constitute the three elements of today’s world. The connection and interaction between these three worlds determine the characteristics and degree of social informatization. The basic way to perceive human society and the physical world is digitization, the basic way to connect human society and the physical world (through information space) is networking, and the way information space acts on the physical world and human society is intelligence. Digitalization, networking, and intelligence are the prominent features of the new round of scientific and technological revolution, and are also the focus of the new generation of information technology. Digitalization lays the foundation for social informatization, and its development trend is the comprehensive dataization of society; networking provides a physical carrier for information dissemination, and its development trend is the widespread adoption of information-physical systems (CPS); intelligence reflects the level and level of information application, and its development trend is the new generation of artificial intelligence.

  Digitalization: From computerization to dataization

  Digitalization refers to the technical approach of storing, transmitting, processing, handling and applying information carriers (text, pictures, images, signals, etc.) in digital coding form (usually binary). Digitalization itself refers to the way of representing and processing information, but in essence it emphasizes the computerization and automation of information application. In addition to digitalization, dataization (data is an information carrier in coded form, and all data is digital) emphasizes the collection, aggregation, analysis and application of data, and strengthens the production factors and productivity functions of data. Digitalization is developing from computerization to dataization, which is one of the most important trends in the current social informatization.

  The core connotation of dataization is the deep understanding and deep use of big data generated by the integration of information technology revolution and economic and social activities. Big data is a fragmentary record of social economy, real world, management decision-making, etc., containing fragmented information. With the breakthrough of analytical technology and computing technology, it is possible to interpret this fragmented information, which makes big data a new high-tech, a new scientific research paradigm, and a new way of decision-making. Big data has profoundly changed the way people think and live and work, bringing unprecedented opportunities to management innovation, industrial development, scientific discovery and other fields.

  The value generation of big data has its inherent laws (obeying the big data principle). Only by deeply understanding and mastering these laws can we improve the awareness and ability to consciously and scientifically use big data (big data thinking). The value of big data is mainly realized through big data technology. Big data technology is an extension and development of statistical methods, computer technology, and artificial intelligence technology. It is a developing technology. The current hot directions include: blockchain technology, interoperability technology, storage and management technology of integrated storage and computing, big data operating system, big data programming language and execution environment, big data foundation and core algorithm, big data machine learning technology, big data intelligent technology, visualization and human-computer interaction analysis technology, authenticity judgment and security technology, etc. The development of big data technology depends on the solution of some major basic problems, including: the statistical basis and computational theoretical basis of big data, the hardware and software basis and computational methods of big data computing, and the authenticity judgment of big data inference.

  Implementing the national big data strategy is an important way to promote the digital revolution. Since my country proposed the implementation of the national big data strategy in 2015, the pattern of rapid development of big data in my country has been initially formed, but there are also some problems that need to be solved: data openness and sharing are lagging, and the dividends of data resources have not been fully released; the profit model of enterprises is unstable, and the integrity of the industrial chain is insufficient; core technologies have not yet made major breakthroughs, and the technical level of related applications is not high; there are still loopholes in security management and privacy protection, and the construction of relevant systems is still not perfect; etc. At present, effective measures should be taken to solve the bottleneck problems that restrict the development of big data in my country.

  Networking: From the Internet to Cyber-Physical Systems

  As an information-based public infrastructure, the Internet has become the main way for people to obtain, exchange and consume information. However, the Internet only focuses on the interconnection between people and the resulting interconnection between services.

  The Internet of Things is a natural extension and expansion of the Internet. It connects various objects to the Internet through information technology, helping people obtain relevant information about the objects they need. The Internet of Things uses information collection equipment such as radio frequency identification, sensors, infrared sensors, video surveillance, global positioning systems, laser scanners, etc., and connects objects to the Internet through wireless sensor networks and wireless communication networks, so as to achieve real-time information exchange and communication between objects and between people and objects, so as to achieve the purpose of intelligent identification, positioning, tracking, monitoring and management. The Internet realizes the interconnection between people and services, while the Internet of Things realizes the cross-connection between people, objects and services. The core technologies of the Internet of Things include: sensor technology, wireless transmission technology, massive data analysis and processing technology, upper-level business solutions, security technology, etc. The development of the Internet of Things will go through a relatively long period, but it may take the lead in achieving breakthroughs in applications in specific fields. Internet of Vehicles, Industrial Internet, unmanned systems, smart homes, etc. are all areas where the Internet of Things is currently showing its prowess.

  The Internet of Things mainly solves the problem of people’s perception of the physical world, while to solve the problem of manipulating physical objects, it is necessary to further develop the cyber-physical system (CPS). The cyber-physical system is a multi-dimensional complex system that integrates computing, networking and physical environment. It realizes real-time perception, dynamic control and information services of large engineering systems through the organic integration and deep collaboration of 3C (Computer, Communication, Control) technologies. Through the human-computer interaction interface, the cyber-physical system realizes the interaction between the computing process and the physical process, and uses the networked space to control a physical entity in a remote, reliable, real-time, secure and collaborative manner. In essence, the cyber-physical system is a network with control attributes.

  Unlike public infrastructure that provides information interaction and application, the focus of the development of cyber-physical systems is on the research and development of networked physical equipment systems that deeply integrate perception, computing, communication and control capabilities. From an industrial perspective, cyber-physical systems cover a range of applications from smart home networks to industrial control systems and even intelligent transportation systems, which are national and even world-class applications. More importantly, this coverage is not just about simply connecting existing devices together, but will give rise to a large number of devices with computing, communication, control, collaboration and autonomous capabilities. The next generation of industry will be built on cyber-physical systems. With the development and popularization of cyber-physical system technology, physical devices that use computers and networks to achieve functional expansion will be ubiquitous, and will promote the upgrading of industrial products and technologies, greatly improving the competitiveness of major industrial fields such as automobiles, aerospace, national defense, industrial automation, health and medical equipment, and major infrastructure. Cyber-physical systems will not only give birth to new industries, but will even reshape the existing industrial layout.

  Intelligence: From Expert Systems to Meta-Learning

  Intelligence reflects the quality attributes of information products. When we say that an information product is intelligent, we usually mean that the product can accomplish things that only intelligent people can accomplish, or has reached a level that only humans can achieve. Intelligence generally includes perception, memory and thinking, learning and adaptive, behavioral decision-making, etc. Therefore, intelligence can also be generally defined as: enabling an object to have sensitive and accurate perception functions, correct thinking and judgment functions, adaptive learning functions, and effective execution functions.

  Intelligence is the eternal pursuit of the development of information technology, and the main way to achieve this pursuit is to develop artificial intelligence technology. In the more than 60 years since the birth of artificial intelligence technology, although it has experienced three ups and two downs, it has still made great achievements. From 1959 to 1976, it was a stage based on artificial representation of knowledge and symbol processing, which produced expert systems with important application value in some fields; from 1976 to 2007, it was a stage based on statistical learning and knowledge self-representation, which produced various neural network systems; in recent years, research based on environmental adaptation, self-game, self-evolution, and self-learning is forming a new stage of artificial intelligence development – meta-learning or methodological learning stage, which constitutes a new generation of artificial intelligence. The new generation of artificial intelligence mainly includes big data intelligence, group intelligence, cross-media intelligence, human-machine hybrid enhanced intelligence, and brain-like intelligence.

  Deep learning is an outstanding representative of the new generation of artificial intelligence technology. Due to its performance that surpasses that of humans in many fields such as face recognition, machine translation, and chess competitions, deep learning has almost become synonymous with artificial intelligence today. However, deep learning has major challenges in terms of topological design, effect prediction, and mechanism explanation. There is no solid mathematical theory to support the solution of these three major problems. Solving these problems is the main focus of future research on deep learning. In addition, deep learning is a typical big data intelligence, and its applicability is based on the existence of a large number of training samples. Small sample learning will be the development trend of deep learning.

  Meta-learning is expected to become the next breakthrough in the development of artificial intelligence. Recently developed meta-learning methods such as learning to learn, learning to teach, learning to optimize, learning to search, and learning to reason, as well as the outstanding performance of “AlphaGo Zero” in Go, have demonstrated the attractive prospects of such new technologies. However, meta-learning research is only just beginning, and its development still faces a series of challenges.

  The new generation of artificial intelligence is already here, and the foreseeable development trend is based on big data, centered on model and algorithm innovation, and supported by powerful computing power. The breakthrough of the new generation of artificial intelligence technology depends on the comprehensive development of other types of information technology, as well as the substantial progress and development of brain science and cognitive science. (Xu Zongben, academician of the Chinese Academy of Sciences and professor of Xi’an Jiaotong University)

現代國語:

數位化、網路化、智慧化是新一輪科技革命的突出特徵,也是新一代資訊科技的核心。數位化為社會資訊化奠定基礎,其發展趨勢是社會的全面數據化。資料化強調對資料的收集、聚合、分析與應用。網路化為資訊傳播提供實體載體,其發展趨勢是資訊物理系統(CPS)的廣泛採用。資訊物理系統不僅會催生出新的工業,甚至會重塑現有產業佈局。智慧化體現資訊應用的層次與水平,其發展趨勢為新一代人工智慧。目前,新一代人工智慧的熱潮已經來臨。

習近平同志在2018年兩院院士大會上的重要演講指出:「世界正進入以資訊產業為主導的經濟發展時期。我們要把握數位化、網路化、智慧化融合發展的契機,以資訊化、智慧化為槓桿培育新動能。

人類社會、物理世界、資訊空間構成了當今世界的三元。這三元世界之間的關聯與交互,決定了社會資訊化的特徵與程度。感知人類社會和物理世界的基本方式是數位化,連結人類社會與物理世界(透過資訊空間)的基本方式是網路化,資訊空間作用於物理世界與人類社會的方式是智慧化。數位化、網路化、智慧化是新一輪科技革命的突出特徵,也是新一代資訊科技的聚焦點。數位化為社會資訊化奠定基礎,其發展趨勢是社會的全面資料化;網路化為資訊傳播提供物理載體,其發展趨勢是資訊物理系統(CPS)的廣泛採用;智慧化體現資訊應用的層次與水平,其發展趨勢是新一代人工智慧。

數位化:從電腦化到資料化

數位化是指將資訊載體(文字、圖片、影像、訊號等)以數位編碼形式(通常是二進位)進行儲存、傳輸、加工、處理和應用的技術途徑。數位化本身指的是資訊表示方式與處理方式,但本質上強調的是資訊應用的電腦化和自動化。資料化(資料是以編碼形式存在的資訊載體,所有資料都是數位化的)除包括數位化外,更強調對資料的收集、聚合、分析與應用,強化資料的生產要素與生產力功能。數位化正從電腦化朝向資料化發展,這是當前社會資訊化最重要的趨勢之一。

資料化的核心內涵是對資訊科技革命與經濟社會活動交融生成的大數據的深刻認識與深層利用。大數據是社會經濟、現實世界、管理決策等的片段記錄,蘊含著片段化資訊。隨著分析技術與運算技術的突破,解讀這些片段化資訊成為可能,這使得大數據成為一項新的高新技術、一類新的科學研究範式、一種新的決策方式。大數據深刻改變了人類的思考方式和生產生活方式,為管理創新、產業發展、科學發現等多個領域帶來前所未有的機會。

大數據的價值生成有其內在規律(服從大數據原理)。只有深刻認識並掌握這些規律,才能提高自覺運用、科學運用大數據的意識與能力(大數據思維)。大數據的價值主要透過大數據技術來實現。大數據技術是統計學方法、電腦技術、人工智慧技術的延伸與發展,是正在發展中的技術,目前的熱點方向包括:區塊鏈技術、互通技術、存算一體化儲存與管理技術、大數據作業系統、大數據程式語言與執行環境、大數據基礎與核心演算法、大數據機器學習技術、大數據智慧技術、視覺化與人機互動分析技術、真偽判定與安全技術等。大數據技術的發展依賴一些重大基礎問題的解決,這些重大基礎問題包括:大數據的統計基礎與計算理論基礎、大數據計算的軟硬體基礎與計算方法、大數據推斷的真偽性判定等。

實施國家大數據戰略是推動資料化革命的重要途徑。自2015年我國提出實施國家大數據戰略以來,我國大數據快速發展的格局已初步形成,但也存在一些亟待解決的問題:數據開放共享滯後,數據資源紅利仍未得到充分釋放;企業贏利模式不穩定,產業鏈完整性不足;核心技術尚未取得重大突破,相關應用的技術水準不高;安全管理與隱私保護還存在漏洞,相關制度建設仍不夠完善;等等。目前,應採取有效措施解決制約我國大數據發展的瓶頸問題。

網路化:從網際網路到資訊物理系統

作為資訊化的公共基礎設施,網路已成為人們獲取資訊、交換資訊、消費資訊的主要方式。但是,網路關注的只是人與人之間的互聯互通以及由此帶來的服務與服務的互聯。

物聯網是互聯網的自然延伸和拓展,它透過資訊科技將各種物體與網路相連,幫助人們獲取所需物體的相關資訊。物聯網透過使用射頻識別、感測器、紅外線感應器、視訊監控、全球定位系統、雷射掃描器等資訊擷取設備,透過無線感測網路、無線通訊網路把物體與網路連接起來,實現物與物、人與物之間的即時資訊交換和通信,以達到智慧化識別、定位、追蹤、監控和管理的目的。互聯網實現了人與人、服務與服務之間的互聯, 而物聯網實現了人、物、服務之間的交叉互聯。物聯網的核心技術包括:感測器技術、無線傳輸技術、大量資料分析處理技術、上層業務解決方案、安全技術等。物聯網的發展將經歷相對漫長的時期,但可能會在特定領域的應用中率先取得突破,車聯網、工業互聯網、無人系統、智慧家庭等都是當前物聯網大顯身手的領域。

物聯網主要解決人對物理世界的感知問題,而要解決對物理對象的操控問題則必須進一步發展資訊物理系統(CPS)。資訊物理系統是一個綜合運算、網路和物理環境的多維複雜系統,它透過3C(Computer、Communication、Control)技術的有機融合與深度協作,實現對大型工程系統的即時感知、動態控制和資訊服務。透過人機交互接口,資訊物理系統實現計算進程與實體進程的交互,利用網路化空間以遠端、可靠、即時、安全、協作的方式操控一個實體實體。從本質上來說,資訊物理系統是一個具有控制屬性的網路。

不同於提供資訊互動與應用的公用基礎設施,資訊物理系統發展的聚焦點在於研發深度融合感知、運算、通訊與控制能力的網路化實體設備系統。從產業角度來看,資訊物理系統的涵蓋範圍小到智慧家庭網路、大到工業控制系統乃至智慧交通系統等國家級甚至世界級的應用。更重要的是,這種涵蓋並不僅僅是將現有的設備簡單地連在一起,而是會催生出眾多具有計算、通訊、控制、協同和自治性能的設備,下一代工業將建立在在資訊物理系統之上。隨著資訊物理系統技術的發展和普及,使用電腦和網路實現功能擴展的實體設備將無所不在,並推動工業產品和技術的升級換代,大大提高汽車、航空航太、國防、工業自動化、健康醫療設備、重大基礎設施等主要工業領域的競爭力。資訊物理系統不僅會催生出新的工業,甚至會重塑現有產業佈局。

智能化:從專家系統到元學習

智能化反映資訊產品的品質屬性。我們說一個資訊產品是智慧的,通常是指這個產品能完成有智慧的人才能完成的事情,或是已經達到人類才能達到的程度。智能一般包括知覺能力、記憶與思考能力、學習與適應力、行為決策能力等。所以,智能化通常也可定義為:使對象具備靈敏準確的感知功能、正確的思考與判斷功能、自適應的學習功能、行之有效的執行功能等。

智能化是資訊科技發展的永恆追求,實現這項追求的主要途徑是發展人工智慧技術。人工智慧技術誕生60多年來,雖歷經三起兩落,但還是取得了巨大成就。 1959—1976年是基於人工表示知識和符號處理的階段,產生了在一些領域具有重要應用價值的專家系統;1976—2007年是基於統計學習和知識自表示的階段,產生了各種各樣的神經網路系統;近幾年開始的基於環境自適應、自博弈、自進化、自學習的研究,正在形成一個人工智慧發展的新階段——元學習或方法論學習階段,這構成新一代人工智慧。新一代人工智慧主要包括大數據智慧、群體智慧、跨媒體智慧、人機混合增強智慧和類腦智慧等。

深度學習是新一代人工智慧技術的卓越代表。由於在人臉辨識、機器翻譯、棋類競賽等眾多領域超越人類的表現,深度學習在今天幾乎已成為人工智慧的代名詞。然而,深度學習拓樸設計難、效果預期難、機理解釋難是重大挑戰,還沒有一套堅實的數學理論來支持解決這三大難題。解決這些難題是深度學習未來研究的主要關注點。此外,深度學習是典型的大數據智能,它的可應用性是以存在大量訓練樣本為基礎的。小樣本學習將是深度學習的發展趨勢。

元學習有望成為人工智慧發展的下一個突破口。學會學習、學會教學、學會優化、學會搜尋、學會推理等新近發展的元學習方法以及「AlphaGo Zero」在圍棋方面的出色表現,展現了這類新技術的誘人前景。然而,元學習研究僅是開始,其發展還面臨一系列挑戰。

新一代人工智慧的熱潮已經來臨,可以預見的發展趨勢是以大數據為基礎、以模型與演算法創新為核心、以強大的運算能力為支撐。新一代人工智慧技術的突破依賴其他各類資訊技術的綜合發展,也依賴腦科學與認知科學的實質進步與發展。 (中國科學院院士、西安交通大學教授 徐宗本)

中國原創軍事資源:https://www.cac.gov.cn/2019-03/01/c_1124178478.htm

China’s Position Paper : Regulating Military Applications of Artificial Intelligence

中國的立場文件:規範人工智慧的軍事應用

現代英語:

The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.

AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.

Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.

Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.

We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.

To this end, we call for:

– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.

– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.

– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values ​​of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.

– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.

– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.

– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.

——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.

– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.

現代國語:

人工智慧技術的快速發展及其廣泛應用,正深刻改變人類生產和生活方式,為世界帶來巨大機會的同時,也帶來難以預測的安全挑戰。特別值得關注的是,人工智慧技術的軍事應用,在戰略安全、治理規則、道德倫理等方面可能產生深遠影響和潛在風險。

人工智慧安全治理是人類面臨的共同課題。隨著人工智慧技術在各領域的廣泛應用,各方普遍對人工智慧軍事應用甚至武器化風險感到擔憂。

在世界和平與發展面臨多元挑戰的背景下,各國應秉持共同、綜合、合作、永續的全球安全觀,透過對話與合作,就如何規範人工智慧軍事應用尋求共識,建構有效的治理機制,避免人工智慧軍事應用為人類帶來重大損害甚至災難。

加強對人工智慧軍事應用的規範,預防和管控可能引發的風險,有利於增進國家間互信、維護全球戰略穩定、防止軍備競賽、緩解人道主義關切,有助於打造包容性和建設性的安全夥伴關係,在人工智慧領域實踐建構人類命運共同體理念。

我們歡迎各國政府、國際組織、技術企業、科研院校、民間機構和公民個人等各主體秉持共商共建共享的理念,協力共同促進人工智慧安全治理。

為此,我們呼籲:

——戰略安全上,各國尤其是大國應本著慎重負責的態度在軍事領域研發和使用人工智慧技術,不謀求絕對軍事優勢,防止加劇戰略誤判、破壞戰略互信、引發衝突升級、損害全球戰略平衡與穩定。

——在軍事政策上,各國在發展先進武器裝備、提高正當國防能力的同時,應銘記人工智慧的軍事應用不應成為發動戰爭和追求霸權的工具,反對利用人工智慧技術優勢危害他國主權和領土安全的行為。

——法律倫理上,各國研發、部署和使用相關武器系統應遵循人類共同價值觀,堅持以人為本,秉持「智能向善」的原則,遵守國家或地區倫理道德準則。各國應確保新武器及其作戰手段符合國際人道法和其他適用的國際法,努力減少附帶傷亡、降低人員財產損失,避免相關武器系統的誤用惡用,以及由此引發的濫殺。

——在技術安全上,各國應不斷提昇人工智慧技術的安全性、可靠性和可控性,增強對人工智慧技術的安全評估和管控能力,確保相關武器系統永遠處於人類控制之下,保障人類可隨時中止其運作。人工智慧資料的安全必須得到保證,應限制人工智慧資料的軍事化使用。

——研發作業上,各國應加強對人工智慧研發活動的自我約束,在綜合考慮作戰環境和武器特性的基礎上,在武器全生命週期實施必要的人機互動。各國應時常堅持人類是最終責任主體,建立人工智慧問責機制,對操作人員進行必要的訓練。

——風險管控上,各國應加強對人工智慧軍事應用的監管,特別是實施分級、分類管理,避免使用可能產生嚴重負面後果的不成熟技術。各國應加強對人工智慧潛在風險的研判,包括採取必要措施,降低人工智慧軍事應用的擴散風險。

——規則制定上,各國應堅持多邊主義、開放包容的原則。為追蹤科技發展趨勢,防範潛在安全風險,各國應進行政策對話,加強與國際組織、科技企業、技術社群、民間機構等各主體交流,增進理解與協作,致力於共同規範人工智慧軍事應用並建立普遍參與的國際機制,推動形成具有廣泛共識的人工智慧治理框架和標準規範。

——國際合作上,已開發國家應協助發展中國家提升治理水平,考慮到人工智慧技術的軍民兩用性質,在加強監管和治理的同時,避免採取以意識形態劃線、泛化國家安全概念的做法,消除人為製造的科技壁壘,確保各國充分享有技術發展與和平利用的權利。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjb_673085/zzjg_673183/jks_674633/zclc_674645/rgzn/202206/t20220614_10702838.shtml