Tag Archives: #China’s Intelligentization

Research on Chinese Military Affairs, Studying War丨Brief Analysis of China’s Winning Mechanisms of Intelligent Warfare

研究中國軍事,研究戰爭丨中國智慧化戰爭制勝機制淺析

現代英語:

President Xi pointed out that the core of studying combat issues is to clarify the characteristic rules and winning mechanisms of modern warfare. In today’s world, major changes unseen in a century are accelerating. Disruptive technologies represented by artificial intelligence are developing rapidly and widely used in the military field, accelerating the evolution of war forms towards intelligence. The corresponding war winning mechanism is also changing. “ Victory tends to smile at those who can foresee changes in the characteristics of war, rather than at those who wait for changes to occur before adapting”. Only by discovering changes in a timely manner, proactively responding to changes, and actively adapting to changes can we better grasp the initiative in future wars and remain invincible in future wars.

Outwitted

In the “intelligent warfare confrontation”, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. Global multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build combat systems according to mission requirements, and independently implement coordinated operations, the mission ends and quickly returns to a state of readiness for war, showing a trend of intelligent autonomy. Whoever possesses the empowerment and gain advantage of intelligent technology in the combat system can design wars, lead the development of the battlefield, master battlefield initiative, and achieve “using wisdom to defeat clumsiness”. First, algorithms, computing power, and data determine system operational capabilities. Relying on intelligent algorithms and powerful computing power, it can quickly and efficiently analyze targets and match resource means, solve high-frequency cross-domain collaboration problems, achieve coordinated planning, parallel actions, and real-time evaluation, and greatly improve system operating speed and strike efficiency. Second, intelligent networks support cross-domain all-in-one action. The intelligent network information system provides basic support and link links for the combat system. Combat units and combat elements in different combat domains can be integrated into the entire combat system at any time “plug and play” to achieve rapid information transmission and sharing. Again, an intelligent weapon platform enables autonomous and flexible strikes. Intelligent technology achieves the organic combination of human strategy and machine’s autonomous perception, autonomous decision-making, and autonomous action by empowering weapon platforms, elements, and forces. Through “software defines the combat system structure and functions, and uses software to empower weapon platforms and ammunition, the platform can independently select and attack targets, and flexibly build a kill chain”.

Gathering is better than scattering

With the support of the “intelligent network information system”, the combat system has become an organic whole with a high degree of autonomous coordination, allowing the overall linkage of combat operations and the operational effectiveness index to be magnified, relying on the overall power of the system to win. First, the multiple elements of information, firepower, military power and cognition are linked together to release energy. With the injection of intelligent factors into the combat system, information, firepower, force and cognition will be given new quality capabilities, and based on the support of intelligent network information systems, software and hardware capabilities will be organically combined and physical and intangible means will be closely integrated to achieve combat effectiveness. maximize. Secondly, the multi-spatial multi-directional linkage of land, sea, air, space, network, electricity and other forces gathers forces to release energy. The seizure and control of battlefield control will rely more on the integrated linkage and cross-domain coordination of multi-domain space operations. By dispersing various combat forces deployed in a vast space, they will immediately gather advantages, forming a multi-domain, multi-directional energy release advantage for dimensionality reduction attacks in one domain, thereby taking control of battlefield initiative. Again, the multi-link linkage of detection, control, and evaluation gathers strength to release energy. Through the “ubiquitous Internet network”, cross-domain response to combat operations, cross-domain sharing of combat information, and cross-domain complementation of combat functions can be realized, and anti-virus networks can be dynamically adjusted or constructed according to the enemy’s circumstances and circumstances to achieve rapid system operation and concentrated energy release.

“Exquisite” is better than coarse

Intelligent warfare must be reasonably invested, effectively regulate combat forces, and be used as a means of warfare to achieve the goal of “refining the rough” and winning at the lowest cost. First, a precise target-information-driven system operates efficiently. Relying on various intelligent sensing platforms covering multi-dimensional and wide-area deployment, it detects and locates obstacles or targets in the battlefield environment. Precisely control the flow, flow, and velocity of information to achieve rational allocation of combat resources, coordinated and orderly combat operations, and precise release of combat energy. Second, precise breaching operations achieve a rapid transition between good and bad. The application of big data, big model analysis algorithms and other technologies can accurately analyze and judge combat systems “weak spots ”“ Achilles’ heel”, accurately guide the use of weapons and high-energy weapons such as lasers and hypersonic speeds, make the choice of precise strike methods more diverse, and can make the enemy Combat systems are instantly disabled. Again, precise strike evaluation supports the optimal superposition of combat effects. The target damage effect is accurately obtained through intelligent channels and means, and the conclusion is revised based on the human-computer interaction evaluation system. The commander can compare, interact, feedback, and correct the damage effect assessment conclusions with the information stored in the system knowledge base and his or her own professional knowledge to achieve the purpose of accurately assessing the impact effect of the target.

Faster than Slow

“The main speed of military intelligence”, the rapid development of military intelligence has greatly improved the speed of information transmission and the accuracy of weapon strikes, greatly reduced the time for reconnaissance and early warning, intelligence processing, command and decision-making, fire strike, and damage assessment, and accelerated “OODA” kill chain Cycle, new rapid-fire weapons such as hypersonic missiles, laser weapons, microwave weapons, and electromagnetic pulse weapons further push the rhythm of war to “instant kill”. Hybrid human-machine decision-making becomes the key to enemy action first. On the one hand, the new model of human-machine hybrid cloud-brain decision-making is based on the intelligent “network, cloud, terminal” system and integrates intelligent battlefield perception, decision-making and weapon control systems to quickly select combat plans and achieve instant decision-making advantages. On the other hand, the speed at which the kill chain is constructed becomes the basic yardstick for system confrontation. Under the empowerment of “intelligent technology”, the acquisition, processing and transmission time of battlefield information is greatly shortened. The intelligent platform uses algorithms to analyze battlefield spatial situations and target information in real time, and the time of the kill chain is shortened to seconds, thus achieving “destroy upon discovery”.

Toughness is better than crispness

War is not only a military contest, but also a competition between the country’s human, material and financial resources. Maintaining the lasting resilience of the combat system has become a key factor affecting the outcome of the operation. First, the large-scale use of low-cost unmanned intelligence platforms has become a completely new way of fighting. Unmanned intelligence platforms, micro-intelligent robot autonomous combat clusters, etc., dispersed to more small and low-cost combat platforms, can enhance the recovery speed and overall penetration of the combat system after damage, and achieve maximum combat benefits at a smaller cost. Secondly, the continued guarantee of intelligent resources becomes the key to the operation of the combat system. Various new weapons and new means such as unmanned combat platforms, intelligent algorithms, and cyber attacks are constantly emerging. Powerful computing power, advanced algorithms, and accurate data support have become the guarantee for the continued and stable operation of the system, and intelligent resources “timely, appropriately, applicable, and appropriately” continue to be effective. Guarantee has become an important influencing factor in the victory of intelligent warfare. Again, the operational system’s requirements for balance of offensive and defensive capabilities are getting higher and higher. The local area network, wide area network and even brain network behind the network and digitalization of the combat system leave room for opponents to launch attacks; the “cloud— network —end” structure of the combat system intelligent network information system, its data center, supercomputing center and other network infrastructure It will also be an important hub for opponents to focus on attacking and destroying.

Heart is better than things

Intelligent warfare is different from traditional warfare in which the main purpose is to eliminate the enemy’s effective power. It will pay more attention to weakening the enemy’s morale, disintegrating the enemy’s will, and destroying the enemy’s psychology. Smart technology has become a new way to influence the minds of all employees at all times. First of all, intelligent new media, new technologies and new means have created new ways for the psychological influence of public opinion. Enhanced consciousness and the development of information editing and other technologies have made the methods of conscious attack and defense more diverse, the methods of confrontation more varied, and the technological content higher. Use “intelligent weapons, intelligent technology and intelligent information struggle methods to carry out information attacks on the enemy, thereby forming psychological deterrence”. Secondly, intelligent and deep interaction makes obtaining data richer and more complete. Technologies such as AI face-changing, holographic projection, and audio-visual synthesis provide new means to implement intelligent manufacturing and confuse facts. Again, smart models, massive amounts of data, and high-performance servers provide new tools for quickly concocting information ammunition. Mental guidance and control can be closely coordinated with military, economic, and diplomatic forces to amplify the deterrent effect, constantly create pressure from public opinion to force the enemy to compromise, form psychological deterrence and make them hesitate to give in, change the enemy’s cognition through differentiation of value identity, and achieve subjugation without fighting.

More than single

The rapid development of science and technology has opened up new space for activities and interests for human society, but new security threats and challenges have followed suit, promoting the corresponding expansion of battlefield space and confrontation fields. Currently, wars are constrained and influenced by many factors such as politics, economy, diplomacy, military, technology, geography, and psychology. Unconventional mixed wars supported by military capabilities have become more intense. The competition space for hybrid warfare has extended to various fields such as politics, economy, diplomacy, culture, and military. It emphasizes the comprehensive use of national strategic resources and strategic tools to achieve traditional war goals and transcend traditional war methods. It has a special status and role. As intelligent technology matures, the threshold for intelligent warfare will show a downward trend. Participating parties may adopt an undeclared war approach to launch a variety of integrated economic warfare, diplomatic warfare, cyber warfare, public opinion warfare, psychological warfare, legal warfare, etc. Mixed warfare, mixed victory means giving priority to politics, economy, diplomacy, etc. on the basis of comparing the advantages and disadvantages of the opponent and one’s own side in all aspects Public opinion and other non-military tools and means that can use strengths and avoid weaknesses, use four taels to move a thousand pounds, pursue “no war” or “less war ”“small war” and subjugate others. As long as we deeply understand and accurately grasp the characteristic rules and operating mechanisms of future hybrid warfare, and creatively use clever and efficient strategic techniques, we can fully achieve the expected strategic results.

現代國語:

羅振華 鑫 言

引 言

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。當今世界,百年未有之大變局加速演進,以人工智能為代表的顛覆性技術迅猛發展,並廣泛應用於軍事領域,使戰爭形態向智能化加速演變,與之相應的戰爭制勝機理也正在發生嬗變。“勝利往往向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生後才去適應的人微笑”。及時發現變化,主動應對變化,積極適應變化,才能夠更好地把握未來戰爭主動權,在未來戰爭中立於不敗之地。

智勝於拙

在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,全域多維、各種類型的智能化作戰平台能夠快速耦合作戰力量,根據任務需求構建作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智能自主趨勢。誰佔有智能技術對作戰體系的賦能增益優勢,誰就能據此設計戰爭、主導戰局發展,掌握戰場主動,實現“以智制拙”。首先,算法、算力和數據決定體系作戰能力。依托智能算法和強大算力,可以快速高效地分析目標、匹配資源手段,解決高頻次跨域協同難題,實現協調規劃、並行行動、即時評估,大幅提高體系運行速度和打擊效能。其次,智能網絡支撐跨域一體行動。智能網絡信息系統為作戰體系提供基礎支撐和鏈接紐帶,不同作戰域的作戰單元、作戰要素,隨時可“即插即用”融入整個作戰體系,實現信息快速傳遞共享。再次,智能化武器平台實現自主靈活打擊。智能技術通過賦能武器平台、要素和力量,達到人的謀略與機器的自主感知、自主決策、自主行動有機結合。通過軟件定義作戰體系結構和功能,用軟件賦能武器平台和彈藥,可實現平台自主選擇和打擊目標,靈活構建殺傷鏈。

聚勝於散

在智能化網絡信息系統支撐下,作戰體系成為具有高度自主協調力的有機整體,使得作戰行動整體聯動、作戰效能指數級放大,靠系統湧現的整體威力制勝。首先,信息、火力、兵力和認知等多要素聯動聚力釋能。隨著作戰體系注入智能因素,信息、火力、兵力和認知都將賦予新質能力,並基於智能化網絡信息系統的支撐,實現軟硬能力有機復合、有形無形手段緊密融合,達成作戰效能最大化。其次,陸海空天網電等多空間多方向聯動聚力釋能。戰場制權的奪控,將更加依賴多域空間行動的一體聯動和跨域協同,通過分散部署在廣闊空間的各種作戰力量即時聚優,形成多域多向對一域降維打擊的釋能優勢,從而掌握戰場主動。再次,偵控打評等多環節聯動聚力釋能。通過泛在互聯網絡,實現作戰行動跨域響應、作戰信息跨域共享、作戰功能跨域互補,因敵因情因勢動態調整或構建殺傷網,實現體系快速運轉和聚力釋能。

精勝於粗

智能化戰爭必須合理投入、有效調控作戰力量,恰當選用作戰手段,達成“以精制粗”,以最小代價取勝的目的。首先,精准的目標信息驅動體系高效運行。依托覆蓋全域多維、廣域部署的各種智能感知平台,探測、定位戰場環境中的障礙或目標。精確控制信息的流向、流量、流速,實現作戰資源的合理分配、作戰行動的協調有序和作戰能量的精確釋放。其次,精准的破擊行動實現快速優劣轉化。大數據、大模型分析算法等技術的運用,可精確分析判斷作戰體系“軟肋”“死穴”,精確制導武器和激光、高超聲速等高能武器的使用,讓精確打擊的手段選擇更加多樣,可使敵作戰體系瞬時失能。再次,精准的打擊評估支撐作戰效果最優疊加。通過智能化途徑和手段准確獲取目標毀傷效果,依托人機交互評估系統對結論進行修正。指揮員可將毀傷效果評估結論與系統知識庫儲存的信息以及自身專業知識進行比對、交互、反饋、修正,達到精准評估目標打擊效果的目的。

快勝於慢

“兵之情主速”,軍事智能化的飛速發展大大提升了信息傳遞速度和武器打擊精度,大幅縮減了偵察預警、情報處理、指揮決策、火力打擊、毀傷評估的時間,加速“OODA”殺傷鏈循環,高超聲速導彈、激光武器、微波武器、電磁脈沖武器等新型快速殺傷武器進一步將戰爭節奏推向“秒殺”。人機混合決策成為先敵行動的關鍵。一方面,人機混合的雲腦決策的全新模式,以智能“網、雲、端”體系為依托,集智能化戰場感知、決策和武器控制系統於一體,可快速優選作戰方案,實現即時決策優勢。另一方面,殺傷鏈構建速度成為體系對抗的基本衡量標准。在智能技術賦能作用下,戰場信息的獲取、處理和傳輸時間極大縮短,智能平台利用算法可對戰場空間態勢和目標信息實時分析,殺傷鏈的時間縮短至秒級,從而實現“發現即摧毀”。

韌勝於脆

戰爭不但是軍事的較量,更是國家人力物力財力的比拼。保持作戰體系持久韌性,成為影響作戰勝負的關鍵因素。首先,低成本無人智能平台的規模化運用成為全新作戰方式。無人智能平台、微型智能機器人自主作戰集群等,分散到更多小型廉價作戰平台的做法,可增強作戰體系受損後的恢復速度和整體突防力,以較小代價取得最大作戰效益。其次,智能資源的持續保障成為作戰體系運行的關鍵。無人作戰平台、智能算法、網絡攻擊等各種新武器、新手段不斷湧現,強大算力、先進算法和精准數據支撐成為體系持續穩定運行的保證,“適時、適地、適用、適量”的智能資源持續有效保障,成為智能化戰爭制勝的重要影響因素。再次,作戰體系的攻防一體能力平衡性要求越來越高。作戰體系網絡化、數字化背後的局域網、廣域網甚至腦聯網,給對手發起攻擊留下空間;作戰體系的“雲—網—端”結構智能網信系統,其數據中心、超算中心等網絡基礎設施也將是對手重點攻擊破壞的重要樞紐。

心勝於物

智能化戰爭與傳統戰爭中以消滅敵人有生力量為主要目的不同,將更加注重削弱敵方的士氣,瓦解敵方的意志,摧毀敵方的心理。智能科技已成為全時全域影響全員心智的全新方式。首先,智能化的新媒體、新技術和新手段,為輿論心理影響開創了新方式。意識增強、信息編輯等技術的發展,使得意識攻防手段更加多樣、對抗方式更加多變、科技含量更高。運用智能武器、智能技術和智能信息斗爭的方法,對敵實施信息打擊,從而形成心理威懾。其次,智能化的深度互動,使得獲取數據更為豐富,要素更加齊全。AI換臉、全息投影、影音合成等技術,為實施智能制造、混淆事實真相提供了新手段。再次,智能模型、海量數據和高性能服務器,為快速炮制信息彈藥提供了新工具。心智導控可與軍事、經濟、外交密切配合,放大震懾效應,不斷制造輿論壓力迫敵妥協,形成心理震懾使其遲疑退讓,通過價值認同分化改變敵認知,實現不戰而屈人之兵。

多勝於單

科學技術的迅猛發展,為人類社會打開了新的活動空間和利益空間,但新的安全威脅和挑戰也隨之而來,推動了戰場空間和對抗場域的相應拓展。當前,戰爭受到政治、經濟、外交、軍事、技術、地理、心理等諸多因素的制約和影響,以軍事能力為支撐的非常規的混合戰爭反而更加激烈。混合戰爭的角逐空間已經延伸至政治、經濟、外交、文化、軍事等各領域,強調綜合運用國家戰略資源和戰略工具聚合發力,既能夠實現傳統戰爭目標,又能夠超越傳統戰爭手段,地位作用特殊。隨著智能技術的發展成熟,智能化戰爭的門檻將呈現下降趨勢,參戰方可能采取不宣而戰的方式發起融合經濟戰、外交戰、網絡戰、輿論戰、心理戰、法律戰等多種樣式的混合戰爭,混合制勝就是要在對比敵手和己方各方面優勢劣勢的基礎之上,優先選擇政治、經濟、外交、輿論等能揚長避短的非軍事類工具和手段,以四兩撥千斤,追求“不戰”或“少戰”“小戰”而屈人之兵。只要深刻認識和准確把握未來混合戰爭的特點規律、運行機理,創造性地運用巧妙、高效的策略手法,完全能夠達到預期戰略效果。

中國原創軍事資源:http://www.81.cn/yw_208727/16393427.html

Chinese Military Higher Education During an Era of Intelligent Warfare

智慧戰爭時代的中國軍事高等教育

現代英語:

“Military academies were born and built for war”. At the opening ceremony of the 2019 military academy principals training camp, President Xi proposed a new era of military education policy, pointing out the direction for the military academies to cultivate high-quality, professional new military talents. At present, the form of war is accelerating towards informatization and intelligence. What kind of soldiers are needed to win future intelligent wars, and how military higher education can cultivate talents to adapt to intelligent wars are major issues before us.

The war form is accelerating towards intelligence

The form of war is a staged expression and state of war history that is mainly marked by the technical attributes of main battle weapons. So far, after experiencing cold weapon wars, hot weapon wars, and mechanized wars, war forms are accelerating their development towards information-based and intelligent wars. The increasingly widespread application of advanced technologies such as big data, the Internet of Things, artificial intelligence, biotechnology, and brain science in the military field is becoming an important driver of the new military revolution, giving birth to new unmanned, autonomous, and intelligent warfare forms, and changing the traditional The winning mechanism of war. In 2014, a foreign military think tank released a research report titled “War in the 20YY∶ Robot Era”, believing that a storm of military change marked by intelligent armies, autonomous equipment, and unmanned warfare is coming, and it will develop intelligent combat platforms, information systems and decision-making support systems, as well as new weapons such as directional energy, hypersonic speed, bionic, genetic, and nanometer By 2035, an intelligent combat system will be initially built, and by 2050, it will develop to an advanced stage, fully realizing intelligent or even unmanned combat platforms, information systems, and command and control. New weapons such as bionics, genes, and nanometers will enter the battlefield, and combat space will be further expanded. Expand to biological space, nanospatial space, and intelligent space.

In recent years, as people’s research on the human brain continues to deepen, brain-computer interface technology is becoming increasingly mature. In the future, the exchange of information between humans and the external world will no longer be limited to the senses. Direct information exchange between the brain and the outside world can also be achieved through chips. People and people, people and things are fully interconnected, and humans may transcend the Internet and the Internet of Things and enter the intelligent era supported by the Internet of Things. In the era of brain networking, soldiers’ brains are directly connected to combat platforms, information systems, and decision-making support systems. With the assistance of technologies such as quantum computing and cloud platforms, decisions will be made. The targets of attack will expand to human thoughts and actions, matter, energy, information and The mind is integrated. Some domestic experts believe that under the influence of artificial intelligence technology, the winning mechanism of future wars will shift from information-based warfare “information-led, system confrontation, precise strike, joint victory” to intelligent warfare “intelligent-led, autonomous confrontation, traceability Strike, cloud brain victory” transformation, following matter, energy, and information, cloud intelligence that integrates humans and machines becomes the key to determining the outcome of a war. The transformation of this “intelligent war form” is accelerating, and any hesitation may have unimaginable consequences.

However, it should be noted that man is always the most fundamental element, no matter how the war develops. The intelligent war form will promote changes in the functional role of military personnel, and will put forward higher requirements for military personnel’s ability quality. Cognitive ability may surpass knowledge and skills and become the core ability of military personnel.

Intelligent warfare requires military personnel to upgrade and reconstruct their comprehensive quality

According to the “talent growth cycle”, soldiers who are currently receiving higher education will become the main force in military combat training in more than 10 years, and will also become the first main force to meet the challenges of intelligent warfare. At present, our military’s higher education still has some shortcomings in the design of talent training goals. It does not pay enough attention to the ability to adapt to future changes in the intelligent battlefield. There is still a certain gap between talent training goals and the demand for intelligent warfare. On July 23, 2020, when President Xi inspected the Air Force Aviation University, he emphasized the need to adhere to cultivating people with moral integrity, educating people for war, strengthening military spirit education, strengthening the fighting spirit, and comprehensively laying a solid foundation for the ideological and political, military professional, scientific and cultural, and physical and psychological qualities of pilot students. Base. Implementing President Xi’s important instructions and benchmarking against the needs of future intelligent warfare, there is an urgent need to build a higher-level military talent training goal with thinking as the core, and accelerate the upgrading and reconstruction of the comprehensive quality of military personnel.

Intelligent warfare is a complex giant system that integrates multiple fields. Its intelligence-based characteristics and iterative and changeable development trends are changing the role of soldiers in war. Soldiers may gradually move from the front desk of the war to the backstage, from direct face-to-face combat to human-machine coordinated combat, and from front-line charging to back-end planning and design of the war. To be competent in functional roles such as human-machine collaboration, planning and designing wars, in addition to ideological, political and physical psychology requirements, in terms of military profession and science and culture, soldiers should focus on improving their knowledge and ability in the following five aspects: First, multi-disciplinary Integrate the knowledge structure, master the core principles of multiple intelligent war-related disciplines such as nature, military, cognitive psychology, and network intelligence, and be able to integrate knowledge across disciplines Guide military practice; the second is strong cognitive ability, with logical thinking, critical thinking, and systematic thinking abilities, and the ability to use scientific methods to analyze and infer combat problems; the third is human-machine collaboration ability, deeply grasp the characteristics and rules of intelligent warfare, and be proficient in operating Combat platforms, command and control systems, and decision-making support systems can control a variety of intelligent weapons and equipment to achieve efficient human-machine collaboration; fourth, innovative capabilities Have keen scientific and technological perception and strong creativity, and be able to grasp the forefront of science and technology, innovate combat styles, and master the laws of war development; fifth, self-growth ability, be able to accurately recognize oneself, reasonably plan military career, and freely use information means to acquire new knowledge, new technologies, new methods, constantly improve the knowledge structure, improve cognitive abilities, and better adapt to the complex and ever-changing development of military revolutions.

Find the focus of “paramilitary higher education reform”

At present, the superimposed advancement of informatization and intelligence has brought greater complexity to the talent training work of military academies. It is necessary to not only meet the needs of real-life information operations, but also lay the foundation for adapting to intelligent warfare. The following should be focused on Work.

Reconstructing the curriculum system. The curriculum system supports the formation of the talent knowledge structure. In order to “cultivate military talents that meet the needs of intelligent warfare and achieve the training goals of military major, science and culture, we should break the practice of designing curriculum systems with a single major as the background and establish a “general + direction” curriculum system”. General courses are based on existing natural science and public courses, adding courses such as mathematical logic, mathematical modeling, critical thinking, network basics, artificial intelligence, cognitive neuroscience, systems engineering, etc., and establishing a cross-field and cross-disciplinary horizontal course system, expand students’ knowledge, build the knowledge structure urgently needed for intelligent warfare, and lay a broad knowledge foundation for their lifelong growth. Direction courses are to establish a subject professional direction, set up a vertical course system of mathematical science, professional foundation, and professional positions, build a solid professional background, and cultivate students’ ability to use professional theories to solve complex combat training problems.“ The general knowledge +direction” curriculum system helps build a “T”-shaped knowledge structure to meet the needs of military talents to adapt to diverse and intelligent warfare.

Deepen classroom reform. Educational neuroscience believes that education is the reshaping of students’ brains, and classrooms are the main position for reshaping students’ neural networks. They play an irreplaceable role in the formation of high-level cognitive abilities required for intelligent warfare. Continuously deepening classroom reform is The current key task of military higher education. You have to see that a classroom with only knowledge understanding is far from a good classroom. All human behaviors, thoughts and emotions are controlled by the brain, and every knowledge, thought and emotion corresponds to the specific neural network of the brain. Therefore, classroom reform should focus on students’ learning and follow the cognitive laws of the human brain to attract and maintain attention as the starting point, establish a scientific thinking framework, and mobilize students to think proactively. Usually, the teaching method pointing to higher-order abilities has a general model —— problem-driven inspired teaching. Commonly used problem teaching methods, project teaching methods, and inquiry teaching methods all belong to this model. Therefore, the main way to promote classroom reform is to develop unknown, novel and questions and stories that students are interested in, design a thinking framework that points to logical reasoning, critical thinking, reflective ability, creative ability and learning ability, and inspire students to be guided by the framework. Actively think, supplemented by the output process of speaking and writing, and finally achieve the goal of internalizing knowledge understanding and forming high-level abilities.

Promoting comprehensive education. Modern educational theory not only regards the classroom as an important position in education, but also regards all time and space outside the classroom as an important resource for cultivating students. The time and space outside these classes not only support classroom teaching and promote the formation of intellectual abilities, but are also important places for cultivating non-intellectual abilities. Colleges and universities should make full use of these times and spaces, clarify specific training goals, and scientifically design education and training plans with a focus on going deep into the army, being close to actual combat, and highlighting practicality and creativity. Pay attention to giving full play to the management and education advantages of military academies, explore the establishment of student management models, and promote the cultivation of students’ leadership and management capabilities; continuously enrich the second classroom, build an innovation platform, create more independent practice opportunities, and enhance students’ innovative abilities; make full use of various large-scale activities, cultivate students’ competitive awareness and team collaboration capabilities; strengthen the construction of management cadre teams, improve scientific management and training capabilities, and be able to effectively guide students in time management and goal management Emotional management, psychological adjustment, habit development, etc., help students improve their self-management and independent learning abilities.

In short, education is a systematic project. The above are only three aspects that break through the shortcomings of talent training in the intelligent era. To truly solve the problem, military academies need to carry out systematic reforms in strategic planning, quality management, personnel quality, and teaching conditions. It can effectively support the achievement of talent training goals in all aspects, and this requires us to continue to explore and innovate, and continuously improve the level of running schools and educating people Efforts have been made to create a new situation in the construction and development of military academies.

(Author’s unit: Air Force Aviation University)

現代國語:

“軍隊院校因打仗而生、為打仗而建”。在2019年全軍院校長集訓開班式上,習主席提出新時代軍事教育方針,為全軍院校培養高素質、專業化新型軍事人才指明了方向。當前,戰爭形態正加速向信息化、智能化發展,打贏未來智能化戰爭需要什麼樣的軍人,軍事高等教育如何培養適應智能化戰爭的人才等,是擺在我們面前的重大課題。

戰爭形態加速向智能化發展

戰爭形態是以主戰兵器技術屬性為主要標志的、戰爭歷史階段性的表現形式和狀態。迄今為止,戰爭形態在經歷了冷兵器戰爭、熱兵器戰爭、機械化戰爭之後,正加速向信息化、智能化戰爭發展。大數據、物聯網、人工智能、生物技術、腦科學等先進科技在軍事領域日益廣泛的應用,正成為新軍事革命的重要推手,催生新的無人化、自主化、智能化戰爭形態,改變著傳統戰爭制勝機理。2014年,外軍智庫發布名為《20YY∶機器人時代的戰爭》的研究報告,認為以智能化軍隊、自主化裝備和無人化戰爭為標志的軍事變革風暴正在來臨,其將通過發展智能化作戰平台、信息系統與決策支持系統,以及定向能、高超聲速、仿生、基因、納米等新型武器,到2035年初步建成智能化作戰體系,到2050年將發展到高級階段,全面實現作戰平台、信息系統、指揮控制智能化甚至無人化,仿生、基因、納米等新型武器走上戰場,作戰空間進一步向生物空間、納米空間、智能空間拓展。

近年來,隨著人們對人腦研究的不斷深入,腦機接口技術正日趨成熟,未來人類與外部世界的信息交換將不再局限於感官,還可以通過芯片實現大腦與外界直接的信息交流,人與人、人與物充分互聯互通,人類或將超越互聯網、物聯網,進入腦聯網支持的智能時代。腦聯網時代,軍人的大腦與作戰平台、信息系統、決策支持系統直接相聯,在量子計算和雲平台等技術輔助下開展決策,打擊的對象將拓展到人的思想和行動,物質、能量、信息與心智融為一體。國內有專家認為,在人工智能技術的作用下,未來戰爭的制勝機理將由信息化戰爭的“信息主導、體系對抗、精確打擊、聯合制勝”,向智能化戰爭的“智能主導、自主對抗、溯源打擊、雲腦制勝”轉變,繼物質、能量、信息之後,人機融合的雲智能成為決定戰爭勝負的關鍵。這一智能化戰爭形態的轉變正在加速到來,任何遲疑都可能帶來難以想象的後果。

但應該看到,無論戰爭如何發展,人始終是最根本的要素。智能化戰爭形態將促使軍人的職能作用發生變化,對軍人的能力素質將提出更高的要求,認知能力或將超越知識、技能成為軍人的核心能力。

智能化戰爭要求軍人綜合素質升級重構

根據人才成長周期,目前正在接受高等教育的軍人,10多年後將成為部隊作戰訓練主體力量,也將成為迎接智能化戰爭挑戰的第一批主力軍。當前,我軍高等教育在人才培養目標設計上尚存在一些不足,對適應未來多變的智能化戰場能力關注不夠,人才培養目標與智能化戰爭需求還有一定差距。2020年7月23日,習主席視察空軍航空大學時,強調要堅持立德樹人、為戰育人,加強軍魂教育,強化戰斗精神,全面打牢飛行學員思想政治、軍事專業、科學文化、身體心理等素質基礎。貫徹習主席重要指示,對標未來智能化戰爭需求,迫切需要構建以思維力為核心的更加高階的軍事人才培養目標,加快軍人綜合素質升級重構。

智能化戰爭是整合多個領域的復雜巨系統,其智力為本的特點和迭代多變的發展趨勢,正在改變軍人在戰爭中的角色。軍人或將逐步由戰爭前台走向幕後,由直接面對面作戰轉變為人機協同作戰,由前線沖鋒陷陣轉變為後端籌劃設計戰爭。要勝任人機協同、籌劃設計戰爭等職能作用,除思想政治和身體心理必須達到要求外,在軍事專業和科學文化方面,軍人應重點提升以下五個方面的知識能力素質:一是多學科融合的知識結構,掌握自然、軍事、認知心理、網絡智能等多個智能化戰爭相關學科領域的核心原理,能夠跨學科整合知識,指導軍事實踐;二是強大的認知能力,具有邏輯思維、審辨思維、系統思維能力,能夠運用科學方法分析推理解決作戰問題;三是人機協作能力,深刻把握智能化戰爭特點規律,熟練運用作戰平台、指揮控制系統、決策支持系統,能夠操控多樣化智能武器裝備,實現人機高效協同;四是創新能力,具有敏銳的科技感知力和強大的創造力,能夠把握科技前沿,創新作戰樣式,掌握戰爭發展規律;五是自我成長能力,能夠准確認知自我,合理規劃軍事職業生涯,自如運用信息手段獲取新知識、新技術、新方法,不斷完善知識結構,提升認知能力,較好地適應復雜多變的軍事革命發展。

找准軍事高等教育改革著力點

當前,信息化與智能化的疊加推進,給軍隊院校人才培養工作帶來更大復雜性,既要滿足現實的信息化作戰需要,同時又要為適應智能化戰爭奠定基礎,應著重抓好以下幾項工作。

重構課程體系。課程體系支撐著人才知識結構的形成。為培養滿足智能化戰爭需要的軍事人才,達成軍事專業、科學文化兩個方面的培養目標,應打破以單一專業為背景設計課程體系的做法,建立“通識+方向”的課程體系。通識課程是在現有自然科學和公共類課程基礎上,增加數理邏輯、數學建模、批判性思維、網絡基礎、人工智能、認知神經科學、系統工程等課程,建立跨領域跨學科的橫向課程體系,拓展學員的知識面,搭建智能化戰爭急需的知識結構,為其終身成長奠定廣博的知識基礎。方向課程是確立一個學科專業方向,設置數理科學、專業基礎、專業崗位的縱向課程體系,構建厚實的專業背景,培養學員運用專業理論解決復雜作戰訓練問題的能力。“通識+方向”的課程體系,有助於構建“T”形知識結構,滿足軍事人才適應多樣多變智能化戰爭的需要。

深化課堂改革。教育神經科學認為,教育是對學生大腦的重塑,而課堂是重塑學生神經網絡的主陣地,特別對於智能化戰爭所需要的高階認知能力形成具有不可替代的作用,持續深化課堂改革是軍事高等教育當前的關鍵任務。要看到,只有知識理解的課堂遠遠不是一個好課堂。人的一切行為、思想和情感全部由大腦控制,每個知識、思維和情緒都與大腦的特定神經網絡相對應,因此,課堂改革要以學生的學習為中心,遵循人腦的認知規律,以吸引和保持注意力為起點,建立科學的思維框架,調動學員主動思考。通常,指向高階能力的教學方法具有一個通用模式——問題驅動的啟發式教學,常用的問題式教學法、項目式教學法、探究式教學法都屬於這一模式。所以,推進課堂改革的主要路徑是開發未知、新奇和學生感興趣的問題和故事,設計指向邏輯推理、審辨思維、反思能力、創造能力以及學習能力的思維框架,啟發學員在框架的指引下主動思考,再輔以講出來、寫出來的輸出過程,最後達成知識理解內化和高階能力形成的目標。

推動全面育人。現代教育理論不僅把課堂作為教育的重要陣地,還把課堂之外的所有時間和空間都視作培養學生的重要資源。這些課堂以外的時間和空間不僅支撐課堂教學、促進知識能力形成,還是培育非智力能力的重要場所。院校應充分利用這些時間和空間,明確具體的培養目標,以深入部隊、貼近實戰、突出實踐性和創造性為重點,科學設計教育訓練計劃。注重發揮軍隊院校管理育人優勢,探索建立學員管理模式,促進學員領導管理能力的培養;不斷豐富第二課堂,搭建創新平台,創造更多自主實踐機會,提升學員的創新能力;充分利用各種大型活動,培養學員競爭意識和團隊協作能力;加強管理干部隊伍建設,提高科學管訓能力,能夠有效輔導學員開展時間管理、目標管理、情緒管理、心理調節、習慣養成等,幫助學員提升自我管理和自主學習能力。

總而言之,教育是一個系統工程,以上僅是突破智能化時代人才培養短板的三個方面,真正解決問題還需要軍隊院校進行系統化改革,在戰略規劃、質量管理、人員素質、教學條件等諸方面都能夠有效支撐人才培養目標的達成,而這需要我們持續不斷地探索與創新,不斷提高辦學育人水平,努力開創軍事院校建設發展新局面。

(作者單位:空軍航空大學)

來源:解放軍報 作者:唐維忠 責任編輯:王鳳 2021-05-13 10:24:xx

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jsyxgfs/4885203888.html?big=fan

Chinese Military Adhering to Integrated Development of Mechanization, Informatization & Intelligence

中國軍隊堅持機械化、資訊化、智慧化融合發展

現代英語:

Adhere to the integrated development of mechanized informatization and intelligence

——Seriously study, publicize and implement the spirit of the 20th National Congress of the Communist Party of China

The report to the 20th CPC National Congress emphasized “upholding the integrated development of mechanization, informatization, and intelligence,” elevating the requirement for the integrated development of mechanization, informatization, and intelligence (hereinafter referred to as the “three modernizations”) to a new strategic level. To thoroughly study, publicize, and implement the spirit of the 20th CPC National Congress and strive to achieve the goals of the PLA’s centenary, we must focus on understanding and grasping the primary characteristics, profound mechanisms, basic principles, and strategic measures of the integrated development of the “three modernizations,” and effectively promote their implementation.

Recognize the main characteristics of the integrated development of the “three transformations”

Mechanization, informatization, and intelligence are progressive and interdependent. From a chronological perspective, the three transformations did not originate simultaneously. Without the prerequisites and foundations of the previous transformations, the subsequent transformations could not occur and develop. For example, without mechanization, there would be no informatization. Informatization requires the physical substance provided by mechanization. Without mechanized combat platforms and ammunition as carriers of information nodes, the “connectivity” of informatization would be lost. Informatization is the nucleus of intelligence. Without the sufficient computing power and data provided by advanced informatization, the next generation of artificial intelligence cannot achieve the chain breakthroughs it promises. Without a solid foundation of mechanization, a military cannot advance informatization, and without a solid foundation of mechanization and informatization, it cannot effectively advance intelligence.

Based on this understanding, it’s difficult to leapfrog mechanization and informatization to embrace intelligence. Generally speaking, the latter can only replace the former in specific areas, not completely replace or surpass it. If the foundation of the former’s core technologies, foundational areas, and key stages is not solid, bottlenecks and shortcomings will be difficult to address quickly. Not only will these bottlenecks be difficult to address with the latter, but their weak foundation will also hinder the latter’s development, hindering overall development. If we skip mechanization and informatization and shift our focus entirely to intelligence, haste may lead to failure.

Mechanization, informatization, and intelligence will overlap and coexist for a long time. The term “basic mechanization” generally refers to the fact that mechanization has reached a late stage of development, with its contribution to combat effectiveness having already experienced diminishing returns. Further investment in mechanization will significantly reduce the cost-effectiveness. This does not mean that there will be no more mechanization construction tasks; it simply means that the proportion of investment in informatization and intelligence will gradually decrease compared to informatization and intelligence. Informatization is not the end of mechanization; a certain degree of mechanization will continue during the informatization process. Similarly, intelligence is not the end of mechanization and informatization; a certain degree of informatization and mechanization will continue during the intelligence process. Each of the “three transformations” is only a construction focus for a specific historical period; no one “transformation” is exclusive to any given period.

Based on this understanding, we cannot pursue a “starting from scratch” approach, overthrowing mechanization and informatization in favor of intelligentization. The “three transformations” cannot be viewed in isolation. They are meant to be inclusive, integrated, and mutually exclusive, not selective. The subsequent transformation does not negate or terminate the previous one, nor does it mean discarding the achievements of the previous one and starting over with a new one. We must ensure a smooth transition and gradual upgrade of the combat system from mechanization to informatization and then to intelligentization. Taking intelligentization as an example, intelligentization does not mean completely overthrowing the existing informatized combat system and establishing a completely new, independent intelligent combat system.

Intelligent informationization uses the virtual to control the real, empowering and increasing efficiency in mechanization. The “real” here primarily refers to “hardware,” represented by physical entities such as combat platforms and ammunition, while the “virtual” primarily refers to “software,” centered around combat data and algorithms. While mechanization primarily relies on hardware development, informationization and intelligentization primarily rely on software development, optimizing and upgrading hardware and increasing its efficiency through software. In terms of development priorities, payloads surpass platforms, software surpasses payloads, and algorithms surpass software. Software costs in informationization and intelligentization far exceed hardware costs.

Based on this understanding, we must not pursue development that prioritizes hardware over software or creates a disconnect between the virtual and the real. In the era of intelligence, if the supporting software and core algorithms that serve as the “brains” of weapons and equipment lag behind, even the highest hardware performance indicators will be merely “inflated,” and it will be difficult to realize its combat potential in actual combat. Military combat practice demonstrates that in the era of intelligence, we should prioritize the development of general-purpose chips and core algorithms for military intelligence technology from the outset to avoid being caught in a passive position.

Clarify the profound mechanism of the integrated development of the “three transformations”

The integrated development of the “three transformations” is not a simple mixing, combination, or compounding of the “three transformations,” but rather a process of mutual inclusion, mutual penetration, and mutual promotion. From “you are you, I am me” to “you are in me, I am in you,” and then to “you are me, I am you,” achieving a seamless blend and unity, generating cumulative, aggregate, and multiplier effects, and achieving a qualitative leap in overall combat effectiveness. The integrated development of the “three transformations” primarily follows the following mechanisms:

Advantage-overlaying mechanism. Whether mechanization, informatization, or intelligentization, the supporting technology clusters for each “transformation” will give rise to a series of new weaponry and equipment, generate new combat forces, and ultimately form new combat capabilities with different operational mechanisms. The combined advantages of these new combat capabilities with existing combat capabilities can produce a systemic emergence effect, greatly enhancing the overall combat capability of the military; it can enrich one’s own combat means, methods, and approaches, and put the enemy in a dilemma of multiple difficulties.

Upgrade and expansion mechanism. Informatization, through the digital transformation and networking of various mechanized combat platforms, aggregates and upgrades mechanized combat systems into informationized combat systems, resulting in a qualitative leap in combat effectiveness. Intelligence can also be integrated with mechanization and informatization through upgrades and expansions. On the one hand, intelligent technologies are used to upgrade the control systems of mechanized combat platforms, continuously enhancing the autonomous combat capabilities of individual weapons and equipment. On the other hand, intelligent technologies are used to optimize and upgrade informationized combat systems, significantly enhancing their capabilities in information acquisition, transmission, processing, sharing, and security, and comprehensively improving the combat capabilities of the system.

A mechanism for addressing shortcomings and replacing them. The history of military development shows that as a particular “industry” develops, it often encounters bottlenecks that are difficult to resolve with its own technological system alone. This necessitates the urgent need for innovative solutions using the technical means and development strategies of other “industries.” Currently, machinery is becoming increasingly sophisticated and complex, making its design and control increasingly difficult. Informatization has led to an “information explosion,” making it increasingly difficult to quickly translate this information into decision-making information. These problems are difficult to effectively address within the technological systems of mechanization and informatization alone. However, the application of intelligent technology can effectively overcome bottlenecks in mechanical control and information processing capabilities. Furthermore, technological breakthroughs in the first “industry” can offset the shortcomings of the second. For example, hypersonic missiles can outpace the response capabilities of networked and informationized defense systems, enabling rapid penetration, which to some extent offsets an adversary’s information advantage.

Grasp the basic principles of the integrated development of the “three transformations”

In promoting the integrated development of the “three transformations”, we should focus on the following basic principles:

The principle of mutual promotion and symbiosis. Each “transformation” differs fundamentally in its combat effectiveness generation mechanisms and development goals. The simultaneous and parallel development of the three transformations presents both favorable conditions for mutual enhancement, mutual promotion, and mutual support, but also unfavorable factors such as competition over development areas, resource allocation, and investment volume. We must ensure that the three transformations form a healthy symbiotic relationship within the overall development process, avoiding conflicts, frictions, and constraints that could lead to a situation where 1+1+1 is less than 3, and strive to achieve systemic emergence and synergistic effects.

The principle of overall coordination. The importance of the “three transformations” is not ranked in order of importance. We should not emphasize one at the expense of the others. Instead, the three transformations should be considered as a system, coordinated and advanced as a whole. While informatization and intelligentization appear more advanced and complex, we should not assume that mechanization is low-end, simple, and easy to implement, or that the importance of mechanization can be ignored with the advent of informatization and intelligentization. On the one hand, if mechanization is not fully implemented, it will hinder progress and become a bottleneck restricting overall development. Similarly, without the sufficient computing power and data provided by full informatization, the next generation of artificial intelligence cannot achieve a series of breakthroughs. On the other hand, mechanization also has high-end cutting-edge fields such as hypersonic aircraft and deep-sea submersibles that can have a disruptive effect.

The principle of prioritizing key areas. Total investment in national defense and military development is limited. Given a relatively fixed overall budget, investing more in one area will inevitably result in less investment in others. We should accurately assess the contribution of each area to combat effectiveness over the coming period, identify the area that will most significantly increase combat effectiveness as the priority for development, rationally allocate resources in a prioritized manner, and scientifically determine the direction and amount of investment. Failure to prioritize the development of the “three areas” and applying a “sprinkle pepper” approach to each area can easily result in a low input-output ratio and may even cause military development to stray from its correct trajectory.

Strengthening strategic measures for the integrated development of “three transformations”

In practice, we should strive to change the inertial thinking of relying on latecomer advantages and unconsciously falling into the habit of following development, strive to get out of the passive catch-up development model, and turn to the pursuit of concurrent advantages and first-mover advantages. We should develop intelligence on the basis of existing mechanization and informatization, and at the same time use intelligence to drive mechanization and informatization to a higher level. We should use the integrated development of the “three transformations” as a powerful engine to promote the transformation and development of the military and achieve a comprehensive leap in the overall construction level.

We must effectively strengthen top-level design and overall coordination for the integrated development of the “three transformations.” We must fully recognize the long-term, complex, and arduous nature of the integrated development of the “three transformations,” adhere to the unity of technological and conceptual integration, and avoid simply applying the existing mechanization and informatization construction model to the integrated development of the “three transformations.” We must also avoid generalization and labeling of the “three transformations.” We must strengthen top-level design and overall coordination with strong organizational leadership, streamline multiple relationships, pool the strengths of all parties, and create a positive synergy.

Proactively plan key areas for the integrated development of the three transformations. First, address areas where one transformation affects and constrains the development of others. Quickly identify technical bottlenecks within each transformation, compile a list of these bottlenecks, and increase investment in focused research to address these shortcomings as quickly as possible. Second, address areas where one transformation could potentially offset the achievements of others. During the integrated development of the three transformations, even after one has become dominant, we should still prioritize developing new operational mechanisms within the others, potentially disrupting the strategic balance and generating disruptive impacts, potentially even offsetting the achievements of the others. Third, address areas where the three transformations intersect and intersect. The “edge zones, intersections, and junctions” of the three transformations are also crucial for rapidly generating new qualitative combat capabilities. Currently, we should particularly proactively plan for areas such as “ubiquitous network plus” and “artificial intelligence plus.”

(Author’s unit: Academy of Military Science, Institute of War Studies)

中國軍網 國防部網
2022年11月10日 星期四

現代國語:

黨的二十大報告強調“堅持機械化信息化智能化融合發展”,把機械化信息化智能化(以下簡稱“三化”)融合發展要求提升到新的戰略高度。深入學習宣傳貫徹黨的二十大精神,奮力實現建軍一百年奮鬥目標,應著力認清把握「三化」融合發展的主要特徵、深刻機理、基本原則和戰略舉措,切實推動「三化」融合發展落地落實。

認清「三化」融合發展的主要特徵

機械化資訊化智能化逐次遞進有序依存。從時序來看,「三化」不是同時起源的,沒有前一「化」作為前提和基礎,就沒有後一「化」的發生和發展。例如,沒有機械化就沒有資訊化。資訊化建設需要機械化建設提供物理實體,沒有機械化作戰平台和彈藥作為資訊節點的載體,資訊化的「聯」就失去了物件。資訊化是智慧化的孕育母體。沒有高度資訊化提供足夠的算力和數據,新一代人工智慧也不可能產生鍊式突破。一支軍隊沒有一定的機械化基礎,就無法推進資訊化,沒有一定的機械化資訊化基礎,也無法很好地推進智慧化。

基於這個認識,我們難以跨越機械化資訊化直接擁抱智慧化。通常說來,後一「化」對前一「化」只有在個別領域可以替代,而不可能全局替代或全面跨越。如果前一「化」的核心技術、基礎領域和關鍵階段的「底子」打得不牢,出現瓶頸和短板時將無法在短時間內彌補,不但難以被後一「化」解決,反而會因基礎不牢影響後一「化」發展,進而拖累整體發展。如果跳過機械化、資訊化,把建設重點全面轉向智慧化,可能欲速則不達。

機械化資訊化智能化相互​​交疊長期並存。通常所說的基本實現機械化,意思是機械化發展到後期,其戰鬥力貢獻已經產生了邊際遞減效應,繼續加大機械化投入,效費比將大大降低。但這並不意味著此後就沒有任何機械化建設任務了,只是與資訊化、智慧化相比對其投入比重將逐步降低。資訊化不是機械化的終結,資訊化過程中還有一定的機械化,智能化也不是機械化、資訊化的終結,智能化過程中還有一定的資訊化、機械化。 「三化」中的每一「化」都只是某一歷史時期的建設重點,不存在某一時期被某一「化」排他性獨佔的情況。

基於這個認識,我們不能搞推翻機械化資訊化,專搞智慧化的「另起爐灶」式發展。不能以割裂的觀點看待“三化”,“三化”是“三合一”式的兼容並蓄,不是“三選一”式的互斥排他。後一「化」不是對前一「化」的否定和終結,不是摒棄前一「化」所取得的發展成果推倒重來另搞一套,必須確保作戰體係由機械化到資訊化再到智能化的平滑過渡和漸進升級。以智慧化為例,智慧化絕不是顛覆性地推倒原有資訊化作戰體系,另建一個全新的獨立的智慧化作戰體系。

智慧化資訊化對機械化以虛控實、賦能增效。這裡所說的“實”主要是指以作戰平台、彈藥等物理實體為代表的“硬體”,“虛”主要是指以作戰數據、演算法等為核心的“軟體”。機械化以硬體建置為主,資訊化和智慧化則以軟體建置為主,透過軟體對硬體進行最佳化升級和賦能增效。在建置優先順序上,載重超越平台、軟體超越載重、演算法超越軟體,資訊化和智慧化建設中的軟體成本遠超硬體成本。

基於這個認識,我們不能搞「重硬輕軟」或「虛實脫節」式發展。進入智能化時代,如果作為武器裝備“大腦”的配套軟體和核心演算法落後,其硬體性能指標再高都只是“虛高”,實戰中很難發揮出作戰潛能。軍事鬥爭實踐表明,進入智慧化時代,應在一開始就注重軍事智慧技術的通用晶片和核心演算法研發,避免陷入被動。

明晰「三化」融合發展的深刻機理

「三化」融合發展,不是「三化」簡單的混合、化合或複合,而是相互包容、相互滲透、相互促進。從“你是你、我是我”變成“你中有我、我中有你”,進而變成“你就是我、我就是你”,達到水乳交融、合而為一的程度,並產生疊加效應、聚合效應和倍增效應,實現整體戰鬥力質的躍升。 「三化」融合發展主要遵循以下機制:

優勢疊加機理。不管是機械化、資訊化或智慧化,每一「化」的支援技術群都會催生出一系列新型武器裝備,產生新型作戰力量,最終形成具有不同作戰機理的新質作戰能力。這些新質作戰能力與原有作戰能力綜合運用優勢疊加,能夠產生系統湧現效應,大大提升軍隊整體作戰能力;能夠豐富己方作戰手段、作戰方式和方法,使敵方陷入顧此失彼的多重困境。

升級拓展機理。資訊化透過對各類機械化作戰平台進行數位化改造和網路化鏈接,將機械化作戰體系聚合升級為資訊化作戰體系,催生戰鬥力產生質的飛躍。智慧化也可透過升級拓展方式,與機械化、資訊化融為一體。一方面,運用智慧技術升級機械化作戰平台的操控系統,不斷提升其單件武器裝備的自主作戰能力。另一方面,運用智慧技術優化升級資訊化作戰體系,使其資訊取得、傳輸、處理、共享、安全等能力均大幅增強,體係作戰能力全面提升。

補短替代機理。從軍隊建設歷史來看,某一「化」在深化發展過程中,往往會出現僅靠自身技術體系難以解決的瓶頸問題,迫切需要其他「化」的技術手段和發展思路另闢蹊徑來解決。目前,機械越來越精密複雜,設計和控制難度越來越大;資訊化導致“資訊爆炸”,快速轉化為決策資訊的難度越來越大,這些問題在機械化、資訊化自身技術體系內難以得到有效解決,而運用智慧技術可有效突破機械操控能力、資訊處理能力的瓶頸。此外,前一「化」所產生的技術突破也可能抵消後一「化」的不​​足。如高超音波飛彈速度可以超出網路化資訊化防禦體系的反應能力實現快速突防,這在一定程度上抵消了對手的資訊優勢。

掌握「三化」融合發展的基本原則

在推動「三化」融合發展過程中,應著重於以下基本原則:

互促共生原則。各「化」在戰鬥力生成機制、建設發展目標等方面有著本質不同,「三化」同時並行發展,既存在著相互提升、相互促進、相互支撐的有利條件,也可能存在著發展領域方向、資源投向投量之爭等不利因素。應確保「三化」在建設全局形成良性共生關係,避免相互衝突、摩擦、掣肘造成1+1+1<3的不良後果,力求產生系統湧現及協同效應。

整體協調原則。 “三化”的重要性並不分高下,不能只強調某一“化”,而忽視其他“化”,應把“三化”視為一個體系整體協調推進。雖然資訊化、智慧化似乎更為高級和複雜,但不能認為機械化就是低端、簡單和易於實現的,或者說有了資訊化和智慧化,機械化的重要性就可以忽略。一方面,如果機械化完成度不高,就會拖後腿,成為限制整體發展的瓶頸。同樣,沒有充分資訊化後提供的足夠算力和數據,新一代人工智慧也不可能產生鍊式突破。另一方面,機械化也存在高超音波速飛行器、深海潛水器等可產生顛覆性效果的高端前緣領域。

突出重點原則。國防和軍隊建設的總投入是有限的,在「大盤子」相對固定的情況下,在某一「化」上投入得多,必然在其他「化」上投入得少。應準確評估今後一段時期每一「化」對戰力的貢獻率,把最能提升戰鬥力增量的一「化」確定為建設重點,有主有次地合理分配資源,科學確定投向投量。 「三化」建設重點不突出,對各「化」建設採取「撒胡椒麵」式平均用力,容易造成投入產出比不高,甚至可能導致軍隊建設偏離正確的發展方向。

強化「三化」融合發展的策略性舉措

實踐中,應努力轉變依賴後發優勢、不自覺陷入跟隨發展的慣性思維,努力走出被動追趕的發展模式,轉向追求並發優勢、先發優勢,在現有機械化和信息化基礎上來發展智能化,同時用智能化牽引機械化和信息化向更高層次發展,把“三化”集成發展作為軍隊發展的強躍水平,實現整體建設的整體水平的全面建設。

切實加強「三化」融合發展的頂層設計和統籌協調。應充分認識「三化」融合發展的長期性複雜性艱鉅性,堅持技術融合與理念融合相統一,防止簡單套用機械化資訊化原有建設模式抓「三化」融合發展,避免「三化」融合被「泛化」和「貼標籤」。應以強而有力的組織領導加強頂層設計和統籌協調,理順多重關係,匯聚各方力量,形成正向合力。

前瞻佈局「三化」融合發展重點領域。一是某一「化」影響限制其他「化」發展的短板弱項領域。盡快整理各「化」中的技術瓶頸,拉出「卡脖子」技術清單,並加大投入集中攻關,盡快補齊短板。二是某一「化」可能抵銷其他「化」建設成果的質變顛覆領域。在「三化」融合發展過程中,當某一「化」成為主導後,仍應高度注重發展其他「化」中採用新的作戰機理,可能打破戰略平衡並產生顛覆性影響,甚至可能在一定程度上抵消其他「化」建設成果的技術領域。三是「三化」相互交叉鄰接領域。 「三化」的「邊緣帶、交叉點、接合部”,同樣也是快速催生新質戰鬥力的重要領域,當前尤其應前瞻佈局「泛在網路+」和「人工智慧+」等領域。

(作者單位:軍事科學學院戰爭研究院)

中國軍網 國防部網
2022年11月10日 星期四

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4926673.html

Chinese Military Dissipation Warfare: China’s Successful Method of Intelligent Warfare

中國軍事分散戰:中國智慧化戰爭的成功之道

現代英語:

With the rapid development of intelligent technology and its widespread military application, intelligent warfare is becoming a new form of warfare after information warfare, while dissipative warfare has become a typical way of intelligent warfare. The so-called “dissipative warfare” refers to the combat method in which an intelligent warfare system achieves a comprehensive combat capability that integrates material consumption, energy release and information diffusion by enriching and integrating internally and suddenly emerging externally. Strengthening research on dissipative warfare will help us deeply reveal the winning mechanism of intelligent warfare and win the initiative in future war games.

Dissipation warfare is the inevitable result of the development of the times

Dissipative warfare is manifested in the comprehensive confrontation of physical domain, information domain and cognitive domain in the intelligent era. It is reflected in the high degree of unity in the form of political competition, economic competition, military offense and defense, cultural conflict and diplomatic checks and balances, reflecting the intelligent warfare system. The openness, complexity and emergence of.

Adapting to the requirements of the security situation in the intelligent era. Entering the era of intelligence, technologies such as wide networks, big data, large models, cloud computing, and deep learning are developing rapidly, and the connections between political groups, countries, and ethnic groups are even broader. Under the influence of multiple factors such as political pluralism, economic integration, social openness, and technological revolution, non-traditional security has emerged and become intertwined with traditional threats. Intelligent war subjects and categories have continued to expand, war time and space have continued to extend, and war and peace have followed each other like a shadow. And intertwined, the war system will further transcend local geographical restrictions, move from relatively closed to more open, and form a higher-level and larger-scale confrontation. Dissipative warfare emphasizes the comprehensive efforts of intelligent warfare systems in the physical domain, information domain and cognitive domain, and highly unifies and incorporates political competitions, economic competitions, military offensive and defensive, cultural conflicts and diplomatic checks and balances into the category of confrontation between ourselves and the enemy, adapting to the world. The requirements of the times as the security situation develops.

In line with the objective laws of the evolution of the war forms. The dissipation phenomenon of the war system has always existed since the emergence of war. However, before the emergence of intelligent war forms, due to technological constraints, it was always in a relatively low-level and simple state. War confrontation can only manifest itself in material consumption and energy. A certain form of dispersion and information diffusion. During the agricultural era, the forms of warfare were mainly represented by cold weapon warfare dominated by material elements and centered on the human body. During the industrialization era, the forms of warfare were mainly represented by thermonuclear weapons and mechanized warfare dominated by energy elements and centered on platforms. In the age of informatization, the forms of warfare are mainly characterized by information warfare dominated by information elements and centered on the network information system. Entering the era of intelligence, intelligent technology highly unifies the cognitive advantages, decision-making advantages and action advantages in the confrontation between ourselves and the enemy. In essence, it highly unifies matter, energy and information. Through intelligent empowerment, intelligent energy gathering, and Intelligent energy release has formed an intelligent war form dominated by intelligent elements and centered on intelligent algorithms The main form of expression is dissipative warfare that reflects the confrontation of complex systems of intelligent warfare.

With solid support of philosophical theoretical foundation. Social form is the matrix of war form. To explore and understand intelligent war, we must comprehensively examine the evolution of war form and the social form in which intelligent war is located based on the basic principles of historical materialism and dialectical materialism, and build a new concept of war. and contextual system. From a philosophical point of view, matter, energy and information are the three elements that make up the world. Matter embodies the existence of origin, energy embodies the existence of movement, and information embodies the existence of connection. The progressive alternation of the three dominates the evolution and operation of social forms and war forms. According to the negative principle of the negation of dialectical materialism, in the intelligent era after the information age, the elements that dominate society will take the turn of matter again after matter, energy, and information. However, this matter is formed after a highly informatized spiral. The main feature of new substances is that they have intelligent technical attributes. Thus, in essence, dissipative warfare is the highly unified nature of the intelligent element in terms of the characteristic advantages of matter, energy, and information in previous low-order war forms, and the highly unified nature of forms such as material consumption, energy release, and information diffusion prevalent in warfare, reflecting the typical characteristics of intelligent warfare.

Deeply grasp the inner essence of dissipative warfare

Dissipative warfare is based on the real world and covers the virtual world. It adapts to the rapid development of intelligent technology, the rise of non-traditional security threats, and the continuous expansion of the main body and scope of warfare, and presents many new features.

Antisynthetic game. As the intelligent war form accelerates to a higher depth and breadth, and the political, economic, cultural, diplomatic and other fields become more interconnected and influence more widely, the focus of war begins to shift from the military system to the social system, and the war stakeholders Confrontation will be reflected in various forms of comprehensive games such as political competition, economic competition, military offensive and defensive, cultural conflicts, and diplomatic checks and balances The war superiority pursued is no longer limited to the field of military confrontation. The winner of the war must adapt to the requirements of openness, complexity and emergence of the war system, and shift from the extensive consumption and use of a single substance, energy and information to the dissipation of the war system dominated by intelligent advantages, striving to win initiative and advantage in a multi-field comprehensive game.

Subjects cross-domain multivariate. The subjects of intelligent warfare are becoming increasingly general, and the potential forces of war that traditional warfare needs to mobilize will be in a state of normalized confrontation. Political forces, institutions and personnel of all kinds, together with troops and servicemen fighting on the battlefield in the traditional sense, constitute the main body of the war. Diversified war subjects will span the real and virtual domains and appear in multiple spatial domains such as land, sea, air, sky, electricity, and psychology, covering physical domains, information domains, cognitive domains, etc., and covering political, economic, cultural, diplomatic and other social domains. For example, “civilians in society can use smartphones to collect information on the military battlefield and transmit it to war stakeholders, causing the proliferation of key information about war, thereby affecting war decisions or the victory or defeat of a battle and battle”.

Enrichment. The virtual and real forces are one. Around the purpose of war, all possible real and virtual forces will be integrated with the support of intelligent technology, performing duties and acting according to regulations on parallel battlefields; with or without force. Unmanned combat forces will achieve a high degree of autonomy after going through the stages of manual operation, manual authorization, and human supervision, and can be deployed and combined with various types of manned forces on demand, effectively synergizing and coexisting in parallel under the constraints of common war rules; multi-party forces are integrated. Based on the broad contacts in various fields and the common purpose of the war system, all parties, including the party, government, military, police and civilians, closely cooperate and act in a unified manner between military operations and political, economic, diplomatic, public opinion and legal struggles to form a comprehensive combat force. In short, under the integrated planning of countries or political groups, the diverse participating forces in intelligent warfare, although physically dispersed, can focus on common war purposes to achieve logical concentration, instant enrichment, complementary advantages, and integration.

Efficacy cumulative emergence. The high-order war forms, while having new qualitative technical characteristics, still include the characteristic advantages of the low-order war forms. Dissipation warfare emphasizes continuous comprehensive confrontation in multiple domains, which includes both the consumption of ammunition, supplies, equipment and even combatants at the material level, as well as the continuous collection and release of energy levels, including through data, knowledge, algorithms at the information level. The diffusion and fusion of etc. have an unlimited impact on people’s thinking and cognition, value pursuit, moral concepts, emotional will, behavior patterns, etc. Under the normal deterrence of nuclear weapons, intelligent warfare has shown a downward trend of bleeding, but political isolation, economic blockade, cultural conflicts, diplomatic strangulation, etc. will become more severe and intense. When the role of various systems such as military, political, economic, cultural, and diplomatic systems continues to play, and the accumulation of effectiveness reaches a certain level, the war system will increase negative entropy, thereby achieving sudden changes in combat power and the emergence of system effectiveness, thereby gaining war advantages.

Fight a good dissipative war in the “select the right combat focus”

The intelligent warfare system maximizes the combat effectiveness of the system by enriching and integrating internally, suddenly emerging externally, increasing efficiency across domains, and dissipating intelligence. This is the winning mechanism contained in dissipative warfare. To win the victory in intelligent warfare, it is necessary to clarify the combat focus of dissipative warfare, identify the focus of war preparations based on the shortcomings and weaknesses of the opponent’s system.

Focusing on the openness of the system, closing off and isolating the opponent’s war system. Interrupting the exchange of material, energy and information between the adversary’s war system and the external battlefield environment, so that it lacks channels for the source of material, energy and information, and gradually moves towards isolation, closure and weakness. For example, “At the strategic level, political isolation is used to isolate the opponent’s war system, causing the system entropy to increase”. At the “campaign level”, methods such as cutting off data sources, destroying data backups, falsifying data, and tampering with information can be used to comprehensively use soft and hard means to force the war system to transform into a closed state, thereby reducing the effectiveness of the opponent’s system.

Focusing on the complexity of the system, it breaks down the adversary’s war system in different domains. The more and more closely connected the elements of an intelligent warfare system are, the less reliable the architecture will be. Using the principle that each layer in a complex system is relatively independent, strategic overall, campaign local and tactical action strategies can be formulated to achieve hierarchical and domain-based attack on the enemy’s war system. For example, “At the strategic level, the use of economic blockade greatly weakens the opponent’s war strength and development potential”. At the “campaign level”, we take advantage of the vulnerability of the combat system communication network, use network-to-electric composite attacks as the basic path and means, and use methods such as “destroying terminals, attacking elements, isolated groups, disconnecting networks, and breaking clouds” to break through the opponent’s combat system structure and promote The opponent’s war system “collapse”.

Focus on “system emergence and dismantle the system of evacuation of opponents”. Only when there are sudden changes and emergent effects in the intelligent warfare system can the system’s effectiveness be quickly formed and exerted, and the advantage of dissipative warfare be gained. It is not possible to form an emergence of advantages if only individual components or elements come into play. It is foreseeable that the current emerging technologies such as ChatGPT and more advanced intelligent technologies in the future will provide new ways of thinking to understand and discover the operating behaviors, states and laws of complex systems of war, as well as new means to explore objective laws and transform nature and society, the superior party in war confrontation will reduce the coupling degree of the opponent’s war system through a parallel confrontation method that combines virtuality and reality Achieving the purpose of dismantling the system of evacuation of enemy warfare.

現代國語:

王荣辉

2023-05-09 11:48:00

来源:中国军网-解放军报

隨著智慧化技術快速發展及在軍事上的廣泛應用,智慧化戰爭正成為資訊化戰爭後的新戰爭形態,而耗散戰則成為智慧化戰爭的典型方式。所謂耗散戰,是指智慧化戰爭體系透過對內富聚融合,對外突變湧現,達成集物質消耗、能量釋散和資訊擴散於一體的綜合戰力的作戰方式。加強耗散戰研究,有利於我們深入揭示智慧化戰爭制勝機理,贏得未來戰爭賽局主動權。
耗散戰是時代發展的必然結果
耗散戰表現在智慧化時代中物理域、資訊域和認知域的綜合對抗,體現為政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等形式的高度統一,反映了智能化戰爭體系所具有的開放性、複雜性和湧現性。
適應智慧化時代的安全情勢要求。進入智慧化時代,寬網路、大數據、大模型、雲端運算、深度學習等技術快速發展,各政治集團、國家、民族之間的聯繫更加廣泛。在政治多元、經濟交織、社會開放、技術革命等多重因素作用下,非傳統安全興起並與傳統威脅交織,智能化戰爭主體和範疇不斷拓展,戰爭時間與空間不斷外延,戰爭與和平如影相隨並交織一體,戰爭體系將進一步超越局部地域限制,從相對封閉走向更加開放,形成更高層次和更大範圍的對抗。耗散戰強調智慧化戰爭體系在物理域、資訊域和認知域的綜合發力,把政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等形式高度統一併納入敵我對抗範疇,適應了世界安全形勢發展的時代要求。
符合戰爭形態演變的客觀法則。戰爭體系的耗散現象自戰爭產生以來便始終存在,只不過在智能化戰爭形態出現之前,由於技術的製約,一直處於較為低級的、簡單的狀態,戰爭對抗僅能表現為物質消耗、能量釋散和信息擴散中的某一種形式。農業時代,戰爭形態主要表現為以物質要素為主導的、以人體為中心的冷兵器戰爭。工業化時代,戰爭形態主要表現為以能量要素為主導的、以平台為中心的熱核兵器和機械化戰爭。在資訊化時代,戰爭形態主要表現為以資訊要素為主導的、以網信體系為中心的資訊化戰爭。進入智能化時代,智能化技術將敵我對抗中的認知優勢、決策優勢和行動優勢高度統一起來,實質是將物質、能量和資訊三者高度統一,透過以智賦能、以智聚能、以智釋能,形成了以智能要素為主導的、以智能算法為中心的智能化戰爭形態,主要表現為反映智能化戰爭體系即為反映智能化複雜體系的耗散戰。
具有堅實的哲學理論基礎支撐。社會形態是戰爭形態的母體,探索和認識智能化戰爭,必須基於歷史唯物主義和辯證唯物主義的基本原理,綜合考察戰爭形態的演進和智能化戰爭所處的社會形態,構建新的戰爭概念和語境體系。從哲學角度來看,物質、能量和資訊是構成世界的三大要素,物質體現本源的存在,能量體現運動的存在,訊息則體現連結的存在,三者遞進交替主導著社會形態和戰爭形態的演進和運作。依照辯證唯物論的否定之否定原理,在資訊時代之後的智慧時代,主導社會的要素將繼物質、能量、資訊後再次輪到物質,只不過這個物質是高度資訊化後螺旋式上升後形成的新型物質,其主要特徵就是具有了智慧化技術屬性。因此,從本質上講,耗散戰是智慧要素將以前低階戰爭形態中物質、能量和資訊的特性優勢高度統一起來,將戰爭中普遍存在的物質消耗、能量釋散和資訊擴散等形式高度統一起來,反映了智能化戰爭的典型特徵。
深刻把握耗散戰的內在要義
耗散戰基於現實世界、涵蓋虛擬世界,適應了智慧化技術快速發展、非傳統安全威脅興起、戰爭主體和範疇不斷拓展的趨勢,呈現出許多新特性。
對抗綜合博弈。隨著智慧化戰爭形態加速向更高深度和廣度發展,政治、經濟、文化、外交等領域相互聯繫和影響更具廣泛性,戰爭重心開始從軍事系統向社會系統偏移,戰爭利益攸關方的對抗將體現為政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等多種形式的綜合博弈,追求的軍事優勢不再僅限於戰爭優勢。戰爭制勝方必須適應戰爭體系的開放性、複雜性和湧現性要求,從單一物質、能量和資訊的粗放式消耗和運用轉變到以智能優勢主導戰爭體系的耗散,力爭在多領域的綜合博弈中贏得主動和優勢。
主體跨域多元。智慧化戰爭的主體日益泛化,傳統戰爭需要動員的戰爭潛在力量將處於常態化對抗狀態。政治力量、各類機構和人員與傳統意義上在戰場廝殺的部隊和軍人一起構成戰爭的主體。多元化戰爭主體將跨越現實域和虛擬域,出現在陸、海、空、天、電、心理等多個空間域,涵蓋物理域、資訊域、認知域等,涵蓋政治、經濟、文化、外交等多類社會域。如社會平民可以用智慧型手機收集軍事戰場上的信息並傳遞給戰爭利益攸關方,造成對戰爭關鍵訊息的擴散,進而影響戰爭決策或一場戰役和戰鬥的勝敗。
力量一體富聚。虛實力量一體。圍繞著戰爭目的,一切可能運用的現實力量和虛擬力量將在智能化技術支撐下實現一體化,在平行戰場上按職履責、按規行動;有無力量一體。無人作戰力量將在經歷人工操作、人工授權、人為監督階段後,實現高度的自主性,並可與各類有人力量按需部署、按需組合,在共同的戰爭規則約束下有效協同、並行共生;多方力量一體。基於各領域的廣泛聯繫和戰爭體系的共同目的,黨政軍警民等各方力量將軍事行動與政治、經濟、外交、輿論、法理鬥爭密切配合、統一行動,形成綜合戰力。總之,在國家或政治集團的一體籌劃下,智慧化戰爭的多元參戰力量雖然物理分散,但能夠圍繞共同的戰爭目的,實現邏輯集中、即時富聚,優勢互補、一體聚優。
效能累積湧現。高階戰爭形態在具有新質技術特徵的同時,仍涵括低階戰爭形態的特徵優勢。耗散戰強調在多域持續進行綜合對抗,這既包括物質層面的彈藥、物資、器材甚至作戰人員的消耗,也包括能量層面的不斷匯集和釋放,更包括透過資訊層面的數據、知識、演算法等的擴散與融合,對人的思維認知、價值追求、道德觀念、情感意志、行為模式等產生不可限量的影響。在核武的常態嚇阻下,智慧化戰爭呈現出血腥味下降,但政治孤立、經濟封鎖、文化衝突、外交扼殺等將更加嚴峻激烈的局面。當軍事、政治、經濟、文化、外交等各系統角色持續發揮,效能累積達到某一程度,戰爭體係就會增加負熵,進而實現戰力突變和體系效能湧現,從而獲得戰爭優勢。
在選準作戰重心中打好耗散戰
智慧化戰爭體系透過對內富聚融合,對外突變湧現,跨域增效、以智耗散,達成體係作戰效能最大化,這是耗散戰蘊含的製勝機理。要在智慧化戰爭中贏得勝勢,必須明確耗散戰的作戰重心,針對對手體系短板弱點,找準戰爭準備的發力點。
著眼體系開放性,封閉孤立對手戰爭體系。截斷對手戰爭體系與外在戰場環境的物質、能量和資訊交流,使之缺乏物質、能量和資訊來源管道,逐漸走向孤立、封閉和虛弱狀態。如在戰略層面,採取政治孤立的方式,使對手戰爭體系處於孤立狀態,造成體系熵增。在戰役層面,可利用切斷資料來源、毀滅資料備份、資料作假、竄改資訊等方法,綜合採用軟硬手段,迫其戰爭體係向封閉狀態轉化,進而降低對方體系效能。
著眼體系複雜性,分域破擊對手戰爭體系。智慧化戰爭體係要素間連結越多、連結程度越緊密,體系結構可靠性就越低。運用複雜系統中各分層相對獨立的原理,可製訂戰略全局、戰役局部和戰術行動策略,實現對敵戰爭體系的分層分域破擊。如在戰略層面,採用經濟封鎖的方式,大大削弱對手的戰爭實力和發展潛力。在戰役層面,利用作戰系統通訊網路的脆弱性,以網電複合攻擊為基本路徑與手段,採用「毀端、擊元、孤群、斷網、破雲」等方式,破擊對方作戰系統結構,促使對方戰爭體系「坍塌」。
著眼體系湧現性,拆解疏散對手戰爭體系。智慧化戰爭體系只有出現突變和湧現效應,才能快速形成發揮體系效能,獲得耗散戰優勢。如果只是單一組分或要素發揮作用,不可能形成優勢湧現。可以預見,當前興起的ChatGPT等技術以及未來更高級的智能化技術,將提供理解和發現戰爭複雜體系運行行為、狀態和規律的全新思維方式,以及探知客觀規律、改造自然和社會的新手段,戰爭對抗優勢方將透過虛實結合、平行一體的對抗方式,降低對手戰爭體系的耦合度,達成拆解敵方戰爭體系的目的。

中國原創軍事資源:http://www.81it.com/2023/0509/14260888.html

[Chinese National Defense] Establishing Correct Awareness to Contain China and Conduct Cognitive Warfare Operations

[中國國防]建立正確的意識,以遏制中國並進行認知戰爭行動

現代英語:

As the world continued to actively combat the COVID-19 pandemic, the British newspaper The Guardian reported in late May 2021 that Fazze, a public relations and marketing agency with close ties to Russian officials, was accused of providing funding to influential YouTubers, bloggers, and other opinion leaders in France, Germany, and other European countries to spread false information claiming that vaccines like Pfizer (BNT) and AstraZeneca (AZ) had caused hundreds of deaths. The false information also criticized the EU vaccine procurement system for harming public health in European countries, with the goal of sowing public distrust of Western vaccines and shifting public acceptance toward Russia’s Sputnik V vaccine. This is the most significant example of “perception warfare” in recent international history.

 In fact, human society has always adhered to the principle of “conquering the enemy without fighting” as the guiding principle for optimal military operations. While traditional warfare still primarily takes place in physical space, victory requires the physical capture of cities and territories, as well as the destruction of enemy forces. However, as humanity’s understanding of the nature of war deepens, the use of information technology has become a new trend in warfare, enabling the achievement of traditional combat effectiveness without the need for physical engagement. Given the increasing attention paid to “information warfare” and “hybrid warfare,” this article discusses the closely related concept of “cognitive warfare,” exploring the emerging threats facing our country and our national defense response strategy.

 Whether it’s what the US calls “hybrid warfare” or what Russia calls “information warfare,” the implications are quite similar: centered on the cognitive realm, the use of information to influence and manipulate targets, encompassing both peacetime public opinion and wartime decision-making. The rise of Nazi Germany after World War I was arguably the first modern regime to master the use of information to shape perceptions within its own country and even abroad. Its successful use of propaganda and lies, delivered through various communication technologies, was highly successful. Principles such as “repetition is power” and “negative information is more easily accepted and remembered than positive information” would later profoundly influence authoritarian governments, including Russia.

 Using information capabilities to subvert national regimes

 At the beginning of the 21st century, Russia began to pay attention to the situation where international discourse power was completely controlled by Western countries. It successively put forward theories such as “Information Warfare Theory” and “Sixth Generation Warfare Theory”, arguing that the sixth generation of warfare is a non-contact war that uses precision weapons and information warfare to traverse the battlefield. The purpose of war is no longer a devastating global war, but to achieve effects that cannot be achieved through traditional warfare by exploiting the enemy’s information capabilities to exploit its weaknesses, including changing social and cultural orientations and values, and thus subverting national regimes.

 In 2005, Russia established the international news channel “Russia Today.” Initially focused on soft power propaganda, it shifted its focus after the 2008 Georgian War to attacking negative aspects of Western society and fostering conspiracy theories. The 2014 Ukraine crisis became a training ground for Russian information warfare forces. Using electronic jamming and cyber theft, they intercepted Ukrainian communications, inferring subsequent Ukrainian actions and releasing damaging information at critical moments. They also targeted sensitive issues in eastern Ukraine, including the status of ethnic Russians and economic downturn, distributing a large amount of carefully selected, targeted information to resonate with the public, influencing their perceptions and behavior and gaining control of media opinion. In terms of “cognitive warfare,” Russia’s approach has been successful, and has become a model for the Chinese Communist Party.

 Manipulating “brain control” to control the public

 In 2014, the Chinese Communist Party (CCP) proposed the cognitive operational concept of “brain control,” building on its past “three warfares” of psychological warfare, legal warfare, and public opinion warfare, as well as Russia’s theoretical framework of “information warfare.” It states that a nation’s cognitive space is composed of the superposition of countless individuals, and that “brain control” uses national languages, propaganda media, and cultural products as weapons to comprehensively infiltrate and control the cognition, emotions, and consciousness of the general public and national elites, ultimately distorting, disintegrating, and reshaping their national spirit, values, ideology, history, and culture, thereby achieving the strategic goal of winning without fighting.

 Therefore, the CCP’s “cognitive operations” fall under the broad category of psychological warfare. In the era of information globalization, it integrates information warfare, psychological warfare, and public opinion warfare, becoming the core of the CCP’s overall strategy. Since the 2016 military reform, it has been led by the newly formed “Strategic Support Force” and implemented at all political and military levels. On the one hand, the PLA has adopted American operational thinking in the field of “cognitive operations,” using units such as the 311 Base, the National University of Defense Technology, and the Academy of Military Sciences to develop tactics such as “psychological operations,” “ideological operations,” “consciousness manipulation,” and “strategic communication” to strengthen the “cognitive operations” capabilities jointly constructed by military-civilian integration and joint combat systems. On the other hand, it uses professional personnel to operate media platforms, shape the public opinion environment, and introduce “cognitive operations” into the actual combat application stage.

 The CCP’s recent “cognitive warfare” offensive against Taiwan reveals its methods and tactics. First, the CCP primarily uses the internet to collect personal data from Taiwanese citizens, using big data databases to categorize information by target group, based on political leanings, age, occupation, and other factors. Second, it leverages intelligence gathering to launch targeted cognitive attacks on specific social media platforms, influencing the psychology of the targeted groups, particularly by releasing disinformation to weaken and distract Taiwanese society. Third, it employs online virtual organizations to set up fake social media accounts, infiltrate online communities, and disguise themselves as whistleblowers, deliberately spreading fabricated information to create confusion. Cybertroopers then massively repost and discuss this information, manipulating audience perceptions and creating a cycle of disrupting information retention, manipulating cognitive psychology, and altering thinking patterns.

 Identify fake news and fight back together

 At this stage, the CCP’s campaign for “brain control” over Taiwan aims to influence Taiwanese society’s cognition, distorting public opinion, devaluing democratic values, intensifying opposition, disrupting political conditions, and undermining public trust in the government. The following preventive measures can be taken within the national defense system:

 1. Strengthening educational functions

 Through national defense education in schools, institutions, and society, we will raise the public’s awareness of the threat posed by the CCP’s “cognitive warfare” and their ability to identify false information, and cultivate the habit of rationality, verification, and calmness.

 2. Follow the constraints

 Although there are currently no internationally accepted legal rules that can clearly define the extent to which cognitive warfare constitutes an act of war, making it even more difficult to hold people accountable, media platforms can still strengthen the review of their own reporting content in accordance with existing regulations, and the public can also refrain from spreading suspicious information and following the trend of tennis melee, so as to facilitate the establishment of information verification measures and mechanisms.

 3. Combining Military and Civilian Strength

 Incorporate information and communication-related institutions and industries into the national defense mobilization mechanism, coordinate in peacetime the review, analysis, and disposal of fake news, strengthen talent training and research cooperation, and enhance the capabilities of professional units of the government and the national army; in wartime, cooperate with the overall national actions and carry out countermeasures.

 Currently, Taiwan already has the National Security Bureau’s National Security Operations Center responsible for responding to controversial information from hostile foreign forces. There’s also the non-profit Taiwan Fact-Checking Center. Facing the challenges of cognitive warfare, we must continue to integrate various sectors, strive for international intelligence exchange and experience sharing, optimize the media environment, collaborate across multiple channels, and instantly identify the authenticity and source of information, jointly building our offensive capacity to respond to cognitive warfare.

 Conclusion

 In reality, all countries around the world face threats related to cognitive warfare and information-based psychological warfare. However, democratic and free societies are by no means vulnerable to cognitive warfare attacks and must instead rely on diverse strategies and methods to protect them. We aim to establish a more comprehensive and substantive framework, build a powerful counterforce, and enhance the quality and discernment of our citizens, thereby gaining immunity from the CCP’s cognitive warfare campaign to seize control of our minds.

(The author is a PhD candidate at the Institute of Strategic Studies, Tamkang University)

現代國語:

在全球持續積極對抗新冠疫情之際,英國《衛報》2021年5月下旬報道,與俄羅斯官員關係密切的公關和營銷機構Fazze被指控向法國、德國和其他歐洲國家頗具影響力的YouTube用戶、博主和其他意見領袖提供資金,用於傳播虛假信息,聲稱輝瑞(BNTAZ)和阿斯特利康(BNTAZ)和阿斯特疫苗已導致數百人死亡。這些假訊息也批評歐盟疫苗採購體系損害了歐洲國家的公共衛生,目的是挑起大眾對西方疫苗的不信任,並促使大眾接受俄羅斯的Sputnik V疫苗。這是近代國際史上最顯著的「感知戰」案例。

事實上,人類社會自古以來,均以「不戰而屈人之兵」作為最佳軍事行動指導原則,儘管傳統戰爭主要仍在物理空間進行,需透過實際攻城掠地、消滅敵有生力量,才能獲得勝利。然隨人類對戰爭本質認知深化,利用資訊科技,於不需實體短兵相接的情況下,卻能達到傳統戰爭效果,已成為新型態戰爭趨勢。鑑於「資訊戰」、「混合戰」日益受重視,謹就與其密切相關的「認知作戰」概念進行論述,並探討我國所面臨的新型威脅及全民國防因應策略。

無論是美國所稱的「混合戰」,或俄國所說的「資訊戰」,其實指涉意涵很相似,即以認知領域為核心,利用訊息影響、操控對象目標涵蓋承平時期輿論及戰時決策的認知功能。一戰後,逐漸興起的納粹德國,可謂當代首個擅長運用資訊形塑本國,甚至外國民眾認知的政權,其透過各種傳播技術的政治宣傳與謊言包裝,相當成功;而所謂「重複是一種力量」、「負面訊息總是比正面訊息,更容易讓人接受和印象深刻」等實踐原則,日後更深刻影響專制極權政府與現在的俄羅斯。

藉資訊能力 顛覆國家政權

俄國於進入21世紀初,開始注意國際話語權遭西方國家完全掌控的情形,陸續提出「資訊戰理論」、「第6代戰爭理論」等論述,主張第6代戰爭是以精確武器及資訊戰,縱橫戰場的非接觸式戰爭,戰爭目的不再是毀滅性的全球大戰,而是藉利用敵方弱點的資訊能力,達成傳統戰爭無法實現的效果,包括改變社會文化取向、價值觀,進而顛覆國家政權等。

2005年,俄國成立國際新聞頻道「Russia Today」,起初主要是軟實力宣傳,2008年「喬治亞戰爭」後,轉為攻擊西方社會負面問題與製造陰謀論;2014年「烏克蘭危機」,成為俄軍資訊戰部隊的練兵場,透過電子干擾、網路竊密等手段,截收烏國對外通聯訊息,依此推判烏方後續舉動,並選擇在關鍵時機,釋放對烏國政府不利消息;另選定烏東地區敏感議題,包括俄裔民族地位、經濟不振等,投放大量經篩選的特定資訊,引發民眾共鳴,從而影響烏東人民認知與行為,取得媒體輿論主動權。就「認知作戰」言,俄國作法是成功的,更成為中共的效法對象。

操弄「制腦權」 控制社會大眾

中共2014年於過去心理戰、法律戰、輿論戰等「三戰」基礎,以及俄國「資訊戰」理論架構上,提出「制腦權」認知操作概念,指國家認知空間係由無數個體疊加而成,「制腦」是以民族語言、宣傳媒體、文化產品為武器,全面滲透、控制社會大眾與國家精英之認知、情感與意識,最終扭曲、瓦解、重塑其民族精神、價值觀念、意識形態、歷史文化等,達致不戰而勝的戰略目標。

是以,中共「認知作戰」屬於廣義心理戰範疇,是資訊全球化時代,融合資訊戰、心理戰及輿論戰的戰法,成為中共整體戰略主軸,並自2016年「軍改」後,由新組建的「戰略支援部隊」操盤,在各政略、軍事層次開展執行。一方面,共軍擷取美國在「認知作戰」領域的操作思維,以311基地、國防科技大學、軍事科學院等單位研提「心理作戰」、「思想作戰」、「意識操縱」、「戰略傳播」等戰法,以加強軍民融合及聯戰體系共同建構的「認知作戰」能力;另一方面,則以專業人員操作媒體平臺,形塑輿論環境,將「認知作戰」導入實戰運用階段。

從近年中共對臺進行的「認知作戰」攻勢,可拆解其途徑與手段。首先,中共主要係以網路蒐集國人個資,透過大數據資料庫,劃分政治傾向、年齡、職業等不同目標族群資訊;其次,配合情報偵蒐,針對個別社群媒體展開認知精準打擊,影響目標群眾心理,尤其釋放假訊息,以削弱、分散臺灣社會注意力;再次,則運用網路虛擬組織設置社群媒體假帳號,打入網路族群,偽裝成揭密者、吹哨者,刻意傳散變造資訊,製造混亂,再由網軍大量轉傳、討論,操弄受眾認知,進入阻斷資訊記憶、操縱認知心理、改變思考模式的運作循環。

識別假訊息 全民齊反制

基於現階段,中共對臺「制腦權」作戰,影響臺灣社會認知的目的,在於扭曲輿論、貶低民主價值、激化對立、擾亂政情、減損民眾對政府信任等,於全民國防體系可採取的防制辦法包括:

一、強化教育功能

分別透過全民國防之學校教育、機關教育、社會教育途徑,提高公眾對中共「認知作戰」威脅的認識,與對假訊息識別能力,養成理性、查證、冷靜習慣。

二、遵循約束規範

儘管目前尚無國際通用的法律規則,可明確定義何種程度的認知作戰已構成戰爭行為,更難以究責;然各媒體平臺仍可按既有規範,對自身報導內容加強審查,民眾也可做到不傳播可疑訊息、不跟風網壇混戰,俾利訊息查證措施與機制建立。

三、結合軍民力量

將資訊與傳播相關機構、產業,納入全民防衛動員機制,平時協調因應假訊息審查、分析、處置,加強人才培訓、研究合作,提升政府、國軍專業單位能力;戰時則配合國家整體作為,執行反制任務。

目前我國已有國安局「國家安全作業中心」執行對境外敵對勢力爭議訊息應處有關工作,民間亦有非營利組織成立的「臺灣事實查核中心」。面對「認知作戰」挑戰,仍應持續整合各界力量,爭取國際情報交流與經驗共享,優化媒體環境,多管道合作,即時辨識訊息真偽與來源,共同建設應處「認知作戰」攻勢能量。

結語

事實上,世界各國都同樣面臨「認知作戰」、「資訊心理戰」等相關威脅,然民主自由的社會環境,絕非易受「認知作戰」攻擊的溫床,更需仰賴多元策略與方式守護。期以更完善周全的實質架構,建構強而有力的反制力量,並提升我國公民素質及識別能力,於中共奪取「制腦權」的認知作戰中,獲得免疫。

(作者為淡江大學戰略研究所博士)

中國原創軍事資源:https://www.ydn.com.tw/news/newsInsidePage?chapterID=1431550

Comprehensive Look at Chinese Military Intelligent Warfare: AI War brought about by AGI

縱覽中國軍事智慧化戰爭:AGI帶來的人工智慧戰爭

現代英語:

Technology and war are always intertwined. While technological innovation is constantly changing the face of war, it has not changed the violent nature and coercive purpose of war. In recent years, with the rapid development and application of artificial intelligence technology, people have never stopped debating the impact of artificial intelligence on war. Compared with artificial intelligence (AI), general artificial intelligence (AGI) has a higher level of intelligence and is considered to be a form of intelligence equivalent to human intelligence. How will the emergence of AGI affect war? Will it change the violence and coercive nature of war? This article will discuss this issue with you with a series of thoughts.

  Is AGI just an enabling technology?

  Many people believe that although large models and generative artificial intelligence show the strong military application potential of AGI in the future, they are only an enabling technology after all, that is, they can only enable and optimize weapons and equipment, make existing equipment more intelligent, and improve combat efficiency, and it is difficult to bring about a real military revolution. Just like “cyber warfare weapons” were also highly expected by many countries when they first appeared, but now it seems a bit exaggerated.

  The disruptive nature of AGI is actually completely different. It brings huge changes to the battlefield with a reaction speed and knowledge breadth far exceeding that of humans. More importantly, it has brought about huge disruptive results by promoting the rapid advancement of science and technology. On the battlefield of the future, autonomous weapons will be endowed with advanced intelligence by AGI, their performance will be generally enhanced, and they will become “strong at attack and difficult to defend” with their speed and cluster advantages. By then, the highly intelligent autonomous weapons that some scientists have predicted will become a reality, and AGI will play a key role in this. At present, the military application areas of artificial intelligence include autonomous weapons, intelligence analysis, intelligent decision-making, intelligent training, intelligent support, etc. These applications are difficult to simply summarize as “empowerment”. Moreover, AGI has a fast development speed and a short iteration cycle, and is in a state of continuous evolution. In future operations, AGI needs to be a priority, and special attention should be paid to the possible changes it brings.

  Will AGI make war disappear?

  Historian Geoffrey Blainey believes that “wars always occur because of misjudgments of each other’s strength or will”, and with the application of AGI in the military field, misjudgments will become less and less. Therefore, some scholars speculate that wars will decrease or disappear. In fact, relying on AGI can indeed reduce a large number of misjudgments, but even so, it is impossible to eliminate all uncertainties, because one of the characteristics of war is uncertainty. Moreover, not all wars are caused by misjudgments. Moreover, the inherent unpredictability and inexplicability of AGI, as well as people’s lack of experience in using AGI, will bring new uncertainties, making people fall into a thicker “fog of artificial intelligence”.

  There are also rational problems with AGI algorithms. Some scholars believe that AGI’s mining and accurate prediction of important intelligence will have a dual impact. In actual operation, AGI does make fewer mistakes than humans, which can improve the accuracy of intelligence and help reduce misjudgments; but sometimes it may also make humans blindly confident and stimulate them to take risks. The offensive advantage brought by AGI leads to the best defense strategy being “preemptive strike”, which breaks the balance between offense and defense, triggers a new security dilemma, and increases the risk of war.

  AGI has the characteristics of strong versatility and can be easily combined with weapons and equipment. Unlike nuclear, biological and chemical technologies, it has a low threshold for use and is particularly easy to spread. Due to the technological gap between countries, people are likely to use immature AGI weapons on the battlefield, which brings huge risks. For example, the application of drones in the latest local war practices has stimulated many small and medium-sized countries to start purchasing drones in large quantities. The low-cost equipment and technology brought by AGI are very likely to stimulate the occurrence of a new arms race.

  Will AGI be the ultimate deterrent?

  Deterrence is the ability to maintain a certain capability to intimidate an adversary from taking actions that go beyond its own interests. When deterrence is too strong to be used, it is the ultimate deterrence, such as the nuclear deterrence of mutually assured destruction. But what ultimately determines the outcome is “human nature,” which is the key that will never be missing in war.

  Without the various trade-offs of “humanity”, will AGI become a formidable deterrent? AGI is fast but lacks empathy, is resolute in execution, and has an extremely compressed gaming space. AGI is a key factor on future battlefields, but it is difficult to accurately evaluate due to lack of practical experience, and it is easy to overestimate the opponent’s capabilities. In addition, in terms of autonomous weapon control, whether humans are in the loop and supervise the entire process, or are humans outside the loop and completely let go, this undoubtedly requires deep thought. Can the firing control of intelligent weapons be handed over to AGI? If not, the deterrent effect will be greatly reduced; if so, can the life and death of humans really be decided by machines that have nothing to do with them? In research at Cornell University, large war game simulation models often “suddenly use nuclear attacks” to escalate wars, even if they are in a neutral state.

  Perhaps one day in the future, AGI will surpass humans in capabilities. Will we be unable to supervise and control it? Geoffrey Hinton, who proposed the concept of deep learning, said that he has never seen a case where something with a higher level of intelligence was controlled by something with a lower level of intelligence. Some research teams believe that humans may not be able to supervise super artificial intelligence. In the face of powerful AGI in the future, can we really control them? This is a question worth pondering.

  Will AGI change the nature of war?

  With the widespread use of AGI, will battlefields filled with violence and blood disappear? Some people say that AI warfare is far beyond the capabilities of humans and will push humans out of the battlefield. When AI turns war into a war fought entirely by autonomous robots, is it still a “violent and bloody war”? When opponents of unequal capabilities confront each other, the weak may not have the opportunity to act at all. Can wars be ended before the war through war games? Will AGI change the nature of war? Is an “unmanned” “war” still a war?

  Yuval Noah Harari, author of Sapiens: A Brief History of Humankind, said that all human behavior is mediated by language and affects our history. The Big Language Model is a typical AGI. The biggest difference between it and other inventions is that it can create new ideas and culture. “Artificial intelligence that can tell stories will change the course of human history.” When AGI touches the control of language, the entire civilization system built by humans may be subverted, and it does not even need to generate consciousness in this process. Like Plato’s “Allegory of the Cave”, will humans worship AGI as a new “god”?

  AGI establishes a close relationship with humans through human language and changes human perceptions, making it difficult for humans to distinguish and discern, thus posing the danger of the will to war being controlled by people with ulterior motives. Harari said that computers do not need to send out killer robots. If necessary, they will let humans pull the trigger themselves. AGI accurately creates and polishes situation information and controls battlefield cognition through deep fakes. It can use drones to fake battlefield situations and build public opinion before the war. This has been seen in recent local wars. The cost of war will be greatly reduced, leading to the emergence of a new form of war. Will small and weak countries still have a chance? Can the will to war be changed without bloodshed? Is “force” no longer a necessary condition for defining war?

  The form of war may be changed, but the essence remains. Whether war is “bloody” or not, it will still force the enemy to obey its will and bring a lot of “collateral damage”, but the way of confrontation may be completely different. The essence of war lies in the “human nature” deep in the heart, and “human nature” is determined by culture, history, behavior and values, etc. It is difficult to completely replicate it with some artificial intelligence technology, so we cannot outsource all ethical, political and decision-making issues to artificial intelligence, and we cannot expect artificial intelligence to automatically generate “human nature”. Artificial intelligence technology may be abused due to passionate impulses, so it must be under human control. Since artificial intelligence is trained by humans, it will not always be free of bias, so they cannot be completely separated from human supervision. In the future, artificial intelligence can become a creative tool or partner to enhance “tactical imagination”, but it must be “aligned” with human values. These issues need to be constantly thought about and understood in practice.

  Will AGI revolutionize the theory of war?

  Most subject knowledge is expressed in natural language. The large language model, which is a collection of human writings, can connect language writings that are difficult to be compatible with scientific research. For example, some people input classical masterpieces and even philosophy, history, politics, economics, etc. into the large language model for analysis and reconstruction. It is found that it can not only conduct a comprehensive analysis of all scholars’ views, but also put forward its “own views” without losing originality. Therefore, some people say that it is also possible to re-analyze and interpret war theories through AGI, stimulate human innovation, and drive major evolution and reconstruction of war theories and systems? Perhaps there will be certain improvements and developments in theory, but war science is not only theoretical, but also practical, but practicality and reality are what AGI cannot do at all. Can the classic war theory really be reinterpreted? If so, what is the meaning of the theory?

  In short, AGI’s subversion of the concept of war will far exceed “mechanization” and “informatization”. People should boldly embrace the arrival of AGI, but also be cautious. Understand the concept so as not to be ignorant; conduct in-depth research so as not to fall behind; strengthen supervision so as not to be negligent. How to learn to cooperate with AGI and guard against AGI technology raids by opponents is what we need to pay attention to first in the future. (Rong Ming and Hu Xiaofeng)

 Afterword

  Looking to the future with an open mind

  Futurist Roy Amara has a famous assertion that people tend to overestimate the short-term benefits of a technology but underestimate its long-term impact, which is later called “Amara’s Law”. This law emphasizes the nonlinear characteristics of technological development, that is, the actual impact of technology often takes a longer time scale to fully manifest, reflecting the pulse and trend of technological development and embodying human acceptance and longing for technology.

  At present, in the process of the development of artificial intelligence from weak artificial intelligence to strong artificial intelligence, and from special artificial intelligence to general artificial intelligence, every time people think that they have completed 90% of the journey, looking back, they may have only completed less than 10% of the journey. The driving role of the scientific and technological revolution in the military revolution is becoming more and more prominent, especially the multi-faceted penetration of high-tech represented by artificial intelligence technology into the military field, which has led to profound changes in the mechanism, elements and methods of winning wars.

  In the foreseeable future, intelligent technologies such as AGI will not stop iterating, and the cross-evolution of intelligent technologies and their enabling applications in the military field will become more diversified, perhaps going beyond the boundaries of human cognition of existing war forms. The development of science and technology is unstoppable and unstoppable. Whoever can see the trend and future of science and technology, the potential and power of science and technology with a keen eye and a clear mind, and see through the “fog of war”, will be more likely to seize the initiative to win.

  This reminds us that we should have a broader perspective and thinking when exploring the development of future war forms, so that we can get closer to the underestimated reality. Where is AGI going? Where is intelligent warfare going? This is a test of human wisdom.

[Editor: Wang Jinzhi]

現代國語:

AGI帶來的戰爭思考

編者按

科技與戰爭總是交織在一起,科技創新在不斷改變戰爭面貌的同時,並沒有改變戰爭的暴力性質和強迫性目的。近年來,隨著人工智慧技術的快速發展應用,人們關於人工智慧對戰爭影響的爭論從未停止。與人工智慧(AI)相比,通用人工智慧(AGI)的智慧程度更高,被認為是與人類智慧相當的智慧形式。 AGI的出現將如何影響戰爭,會不會改變戰爭的暴力性和強迫性?本文將帶著一系列思考與大家共同探討這個問題。

AGI只是賦能技術嗎

很多人認為,雖然大模型以及生成式人工智慧展現出未來AGI強大的軍事應用潛力,但它們畢竟只是一種賦能技術,即只能對武器裝備賦能優化,使現有裝備更加智能,提高作戰效率,難以帶來真正的軍事革命。就如同「網路戰武器」在剛出現時也曾被許多國家寄予厚望,但現在看來確實有點誇大。

AGI的顛覆性其實完全不同。它以遠超人類的反應速度和知識廣度為戰場帶來巨大改變。更重要的是,它透過促進科技的快速進步,湧現出巨大的顛覆性結果。未來戰場上,自主武器將被AGI賦予高級智能,性能得到普遍增強,並且憑藉其速度和集群優勢變得「攻強守難」。屆時,一些科學家曾預言的高智慧自主武器將成為現實,而AGI在其中扮演了關鍵性角色。目前,人工智慧的軍事化應用領域包括自主武器、情報分析、智慧決策、智慧訓練、智慧保障等,這些應用很難用「賦能」來簡單概括。而且,AGI發展速度快、迭代周期短,處於不斷進化的狀態。未來作戰,需要將AGI作為優先事項,格外注意其帶來的可能改變。

AGI會讓戰爭消失嗎

歷史學家杰弗裡·布萊尼認為“戰爭總是因為對各自力量或意願錯誤的判斷而發生”,而隨著AGI在軍事領域的應用,誤判將變得越來越少。因此,有學者推測,戰爭將隨之減少或消失。其實,依托AGI確實可以減少大量誤判,但即便如此,也不可能消除所有不確定性,因為戰爭的特徵之一就是不確定性。何況並非所有戰爭都因誤判而產生,而且,AGI固有的不可預測性、不可解釋性,以及人們對AGI使用經驗的缺乏,都會帶來新的不確定性,使人們陷入更加濃重的「人工智慧迷霧」之中。

AGI演算法還存在理性難題。有學者認為,AGI對重大情報的挖掘和精確預測,會帶來雙重影響。 AGI在實際操作層面,確實比人類犯錯少,能夠提高情報準確性,有利於減少誤判;但有時也可能會使人類盲目自信,刺激其鋌而走險。 AGI帶來的進攻優勢,導致最佳防禦戰略就是“先發制人”,打破了進攻與防禦的平衡,引發了新型安全困境,反而增加了戰爭爆發的風險。

AGI具有通用性強的特點,容易與武器裝備結合。與核子、生化等技術不同,它使用門檻低,特別容易擴散。由於各國之間存在技術差距,導致人們很可能將不成熟的AGI武器運用於戰場,帶來巨大風險。例如,無人機在最新局部戰爭實務的應用,就刺激許多中小國家開始大量採購無人機。 AGI帶來的低成本裝備和技術,極有可能刺激新型軍備競賽的發生。

AGI會是終極威懾嗎

威懾是維持某種能力以恐嚇對手使其不採取超越自身利益的行動。當威懾強大到無法使用時就是終極威懾,例如確保相互摧毀的核威懾。但最終決定結果的卻是“人性”,這是戰爭永遠不會缺少的關鍵。

如果沒有了「人性」的各種權衡,AGI是否會成為令人生畏的威懾? AGI速度很快但缺乏同理心,執行堅決,博弈空間被極度壓縮。 AGI是未來戰場的關鍵性因素,但因缺乏實務經驗很難進行準確評估,很容易高估對手能力。此外,在自主武器控制方面,是人在環內、全程監督,還是人在環外、完全放手,這無疑需要深思。智慧化武器的開火控制權能交給AGI嗎?如果不能,威懾效果將大打折扣;如果能,人類的生死就真的可以交由與其無關的機器來決定?在康乃爾大學的研究中,兵棋推演大模型經常「突然使用核攻擊」升級戰爭,即使處於中立狀態。

或許未來某一天,AGI會在能力上超過人類,我們是不是就無法對其進行監管控制了?提出深度學習概念的傑弗裡·辛頓說,從沒見過更高智能水平的東西被更低智能水平的東西控制的案例。有研究團隊認為,人類可能無法監督超級人工智慧。未來面對強大的AGI,我們真的能夠控制住它們嗎?這是一個值得人們深思的問題。

AGI會改變戰爭本質嗎

隨著AGI的大量運用,充滿暴力和血腥的戰場會不會消失?有人說,人工智慧戰爭遠超過人類能力範圍,反而會將人類推到戰場之外。當人工智慧將戰爭變成全部由自主機器人對抗時,那它還是「暴力和血腥的戰爭」嗎?當能力不對等的對手對抗時,弱者可能根本沒有行動的機會,戰爭是不是透過兵棋推演就可以在戰前被結束? AGI會因此改變戰爭的本質嗎? 「無人」的「戰爭」還是戰爭嗎?

《人類簡史》作者尤瓦爾·赫拉利說,人類的一切行為都透過語言作為中介並影響我們的歷史。大語言模型是一種典型的AGI,它與其他發明最大的不同在於可以創造全新的想法和文化,「會說故事的人工智慧將改變人類歷史的進程」。當AGI觸及對語言的掌控時,人類所建構的整個文明體係就可能被顛覆,在這個過程中甚至不需要其產生意識。如同柏拉圖的“洞穴寓言”,人類會不會將AGI當成新的“神明”加以膜拜?

AGI透過人類語言和人類建立親密關係,並改變人類的看法,使人類難以區分和辨別,從而存在戰爭意志被別有用心之人控制的危險。赫拉利說,電腦不需要派出殺手機器人,如果真的需要,它會讓人類自己扣下板機。 AGI精準製造和打磨態勢訊息,透過深度偽造控制戰場認知,既可用無人機對戰場態勢進行偽造,也可以在戰前進行輿論造勢,在近幾場局部戰爭中已初見端倪。戰爭成本會因此大幅下降,導致新的戰爭形態產生,小國弱國還會有機會嗎?戰爭意志是否可以不用流血就可改變,「武力」是否不再是戰爭定義的必要條件?

戰爭形態或被改變,但本質仍在。無論戰爭是否“血腥”,其仍會強迫敵人服從自己的意志並帶有大量“附帶損傷”,只不過對抗方式可能會完全不同。戰爭本質在於內心深處的“人性”,而“人性”是由文化、歷史、行為和價值觀等決定的,是很難用某種人工智能技術完全復刻出來的,所以不能將倫理、政治和決策問題全部外包給人工智能,更不能期望人工智能會自動產生“人性”。人工智慧技術可能會因激情衝動而被濫用,所以必須在人類掌控之中。既然人工智慧是人類訓練的,它就不會永遠都沒有偏見,所以它們就無法完全脫離人類的監督。在未來,人工智慧可以成為有創意的工具或夥伴,增強“戰術想像力”,但必須“對齊”人類的價值觀。這些問題需要在實踐中不斷地去思考和理解。

AGI會顛覆戰爭理論嗎

大多數的學科知識是用自然語言表達的。集人類著述之大成的大語言模型,可以將很難相容的語言著述與科學研究連結起來。例如,有人將古典名著甚至哲學、歷史、政治、經濟學等輸入大語言模型,進行分析重構。發現它既可以對所有學者觀點進行全面分析,也可以提出它“自己的見解”,而且不失創見。因此有人說,是否也可以透過AGI對戰爭理論重新加以分析解釋,激發人類創新,以驅使戰爭理論及體系發生重大演化與重構?也許從理論上確實會有一定的改進和發展,但戰爭科學不僅具有理論性,而且還具有實踐性,但實踐性、現實性卻是AGI根本做不到的。經典戰爭理論真的可以重新詮釋嗎?若是,則理論的意義何在?

總之,AGI對戰爭概念的顛覆將遠超越「機械化」與「資訊化」。對於AGI的到來,人們既要大膽擁抱,也要心存謹慎。理解概念,不至於無知;深入研究,不致於落伍;強化監管,不致於失察。如何學習與AGI合作,防範對手AGI技術突襲,是我們未來首先需要關注的事情。 (榮明 胡曉峰)

編 後

以開闊思維前瞻未來

未來學家羅伊·阿瑪拉有一個著名論斷,人們總是傾向於高估一項技術帶來的短期效益,卻又低估了它的長期影響,後被稱作“阿瑪拉定律”。這個定律,強調了科技發展的非線性特徵,即科技的實際影響往往需要在更長的時間尺度上才能完全顯現,反映了科技發展的脈動與趨勢,體現人類對科技的接納與憧憬。

目前,人工智慧由弱人工智慧到強人工智慧、由專用人工智慧到通用人工智慧的發展過程中,每次人們認為已走完全程的90%時,回首一看,可能才剛到全程的10%。科技革命對軍事革命驅動作用愈發凸顯,尤其是以人工智慧技術為代表的高新技術多方位向軍事領域滲透,使得戰爭制勝機理、制勝要素、制勝方式正在發生深刻演變。

在可以預見的未來,AGI等智慧化技術不會停止迭代的步伐,而智慧化技術交叉演化以及在軍事領域的賦能應用等都將趨於多元化,或許會跳脫出人類對現有戰爭形態認知的邊界。科技的發展已勢不可擋、也無人能擋,誰能以敏銳的眼光、清醒的頭腦,看清科技的趨勢和未來、看到科技的潛質和威力,洞穿“戰爭迷霧”,誰就更有可能搶佔制勝先機。

這提醒著人們,對於未來戰爭形態發展的探索應持更開闊的視野和思維,才可能更接近被低估的現實。 AGI向何處去?智能化戰爭往何處去?這考驗著人類的智慧。 (野鈔洋)

【責任編輯:王金志】

中國原創軍事資源:http://www.news.cn/milpro/20250121/1eb771b26d264926b0c2d23d12084f0f888/c.html

Artificial Intelligence Unlocks New Areas of Smart Defense for China’s Ministry of Defense

人工智慧協助中國國防部開啟智慧防禦新領域

現代英語:

As one of the important representatives of the new round of scientific and technological revolution, artificial intelligence is the most cutting-edge topic in today’s scientific and technological field. AlphaGo Zero crushed its “AI predecessor” AlphaGo through self-learning, Baidu’s driverless car hit the road, and Apple’s mobile phone launched a new face recognition method… In recent years, the practical application of artificial intelligence has shown its huge driving force.

With the continuous advancement of artificial intelligence technology, how is artificial intelligence currently developing in the field of national defense? What role can artificial intelligence play in the field of national defense? How should artificial intelligence be developed in the future to better serve the field of national defense? Around these questions, the reporter interviewed Zhu Qichao, a researcher at the National University of Defense Technology.

Artificial intelligence has become a new focus of international competition——

Military powers are rushing to deploy

“From the perspective of the world situation, countries around the world, especially military powers, are rushing to deploy artificial intelligence. Government departments of the United States, Russia and other countries have all issued artificial intelligence-related strategies or plans, demonstrating that the country attaches great importance to artificial intelligence,” said Zhu Qichao.

Data shows that Russia’s “New Look Reform” that began in 2008 has made artificial intelligence a key investment area. In addition, Russia has also issued the “Concept of Developing a Military Science Complex by 2025”, emphasizing that artificial intelligence systems will become a key factor in determining the success or failure of future wars. In 2013, the European Union proposed a 10-year “Human Brain Project” to invest 1.2 billion euros in human brain research. In October 2016, the White House of the United States issued the “National Artificial Intelligence Research and Development Strategic Plan” to build an implementation framework for the development of artificial intelligence in the United States.

In Zhu Qichao’s view, many countries are promoting the development and application of artificial intelligence in the field of national defense. From the initial drones to intelligent information processing systems, bionic robots, etc., artificial intelligence has gradually penetrated into various fields of national defense and the military.

In recent years, the United States has used a large number of drones and logistics robots in the wars in Afghanistan and Iraq. Since 2014, the U.S. military has focused on investing in intelligent unmanned systems as a disruptive technology field of the “Third Offset Strategy”. In April last year, the U.S. Department of Defense announced the establishment of an algorithmic warfare cross-functional team to apply artificial intelligence to defense intelligence collection and analysis. According to reports, the U.S. Department of Defense recently officially ordered the establishment of a new artificial intelligence research center to integrate all artificial intelligence-related work of the Department of Defense.

Other countries are also accelerating their pace in this field and promoting the intelligentization of their armies. The Russian Military Industrial Committee plans to achieve 30% robotization of Russian military equipment by 2025, and its army’s wheeled and tracked ground combat robots have been deployed in the Syrian battlefield. South Korea and Israel have developed and used border patrol machines with automatic surveillance and autonomous firing capabilities. Israel has deployed highly autonomous “Harpy” drones in its territory. The South Korean Ministry of Defense also recently stated that it will invest 7.5 billion won by 2020 to promote the use of artificial intelligence in intelligence reconnaissance, command and control and other fields.

“It can be foreseen that various types of intelligent unmanned systems and combat platforms will be increasingly used on the ground, in the air, on the surface, underwater, in space, in cyberspace, and in human cognitive space, profoundly changing the technical proportion of artificial intelligence in future wars,” said Zhu Qichao.

The application of artificial intelligence in the field of national defense is an inevitable trend——

The demand for national defense applications has broad prospects

Judging from the historical development trend and the needs of future wars, artificial intelligence is increasingly becoming the core driving force for a new round of military revolution, and the needs of future wars are increasingly calling for the military application of artificial intelligence. Gregory Allen, a researcher at the Center for a New American Security, emphasized in a report titled “Artificial Intelligence and National Security” that “the impact of artificial intelligence on the field of national security will be revolutionary, not just unique. Governments around the world will consider formulating extraordinary policies, perhaps as radical as when nuclear weapons first appeared.”

Throughout history, the world’s military changes have gone through the development process from the cold weapon era, the hot weapon era, the mechanization era to the information era. From smelting technology to gunpowder technology, mechanization technology, atomic energy technology, and then to information technology, the occurrence of the four military revolutions has been permeated with the core role of technological revolution. “Artificial intelligence is gradually moving towards the battlefield, which is bound to cause significant updates in weapons and equipment, combat styles, troop system organization and combat power generation mode, and thus trigger a profound military revolution.” Facing the development trend of artificial intelligence in the field of national defense, Zhu Qichao said.

In Zhu Qichao’s view, the demand for the use of artificial intelligence in national defense is very broad. At present, the trend of war transformation from mechanization and informatization to intelligence is becoming more and more obvious. The victory of future wars depends more and more on the information advantage, intellectual resources and decision-making speed of the army. Artificial intelligence has great potential in reducing the number of battlefield personnel, obtaining and analyzing intelligence information, and making quick decisions and responses. In 2016, the artificial intelligence program “Alpha” developed by the University of Cincinnati in the United States defeated senior US military pilots in a simulated air battle. The subversive significance of artificial intelligence technology for the military revolution has initially emerged.

“Artificial intelligence is increasingly becoming an important driving force for promoting the informatization of national defense and the military, and is constantly improving the information processing capabilities, command and control efficiency, precision strike capabilities, and precise management and support capabilities in the defense field.” Zhu Qichao is very much looking forward to the use of artificial intelligence to enhance the intelligent application of national defense. He said that with the implementation of the military-civilian integration development strategy, new-generation information technologies such as artificial intelligence technology, big data technology, and cloud computing technology will play an increasingly important role in the defense field, promoting the continuous improvement of the level of national defense and military intelligence.

Beware of artificial intelligence becoming a “war poison”——

Humans are the leaders in the human-machine relationship

In recent years, with the development of artificial intelligence technology, various artificial intelligence-related combat concepts and equipment technology projects have emerged in the military field. However, Zhu Qichao believes that artificial intelligence-related technologies and applications are still in the early stages of rapid development, and the limitations of artificial intelligence military applications should not be ignored.

“First of all, artificial intelligence cannot replace human intelligence. When solving war problems outside the scope of programming, artificial intelligence requires human rational analysis ability, flexible adaptability, moral discernment, etc. Therefore, artificial intelligence research should be carried out under the premise of following the mechanism of winning wars.” He analyzed.

Zhu Qichao further explained that in the long run, we still need to be vigilant about the many security, legal, ethical and other issues that artificial intelligence may bring.

In terms of security, in a military confrontation environment, once the artificial intelligence system or weapons and equipment are attacked by the opponent through malicious code, virus implantation, command tampering and other means, it will lead to tactical failure or even catastrophic consequences; factors such as human error, machine failure, and environmental disturbances may also cause the system to lose its combat effectiveness.

In terms of law, the core principles of international armed conflict law – necessity, distinction, proportionality and humanity – will all face the problem of how to apply and adjust them. For example, battlefield robots cannot distinguish between soldiers and civilians, resulting in indiscriminate killing of innocent people, which poses a challenge to the principle of distinction.

In terms of ethics, due to the application of intelligent assessment and decision-making technology, drones, robots, etc., life and dignity, which are regarded as the highest value by humans, may be ignored or even trampled upon, while the commanders of wars are far away from the battlefield to enjoy the fruits of victory. Wars may become “video games” on the battlefield, which will impact the bottom line of human morality. Should human moral standards be embedded in increasingly intelligent machines, what kind of moral standards should be embedded, and how to embed them? These issues require extensive research and discussion by countries around the world.

In response to the security, legal, ethical and other issues that may arise in the application of artificial intelligence in the field of national defense, Zhu Qichao suggested that social security supervision and control should be strengthened to form a social governance model that adapts to the era of artificial intelligence; actively participate in international arms control discussions and negotiations on artificial intelligence, and contribute Chinese wisdom and solutions to address the security, legal and ethical issues brought about by artificial intelligence; firmly establish the idea that humans are the dominant force in the relationship between man and machine, achieve safe and effective control of artificial intelligence, and let it serve the peace and well-being of mankind, rather than making artificial intelligence an “accomplice of the devil.”

Related links

Unmanned underwater vehicle

Unmanned submersibles, also known as unmanned underwater vehicles and unmanned underwater vehicles, are devices that travel underwater without a human operator and rely on remote control or automatic control. With the development of unmanned submersibles and related technologies, unmanned submersibles have been used to perform tasks such as minesweeping, reconnaissance, intelligence gathering, and ocean exploration. In future naval battles, they can also be used as underwater weapon platforms, logistics support platforms, and other equipment.

Advantages: Compared with submarines, unmanned underwater vehicles are unmanned combat platforms, so they can greatly reduce casualties in wars; they are small in size, and the application of other stealth high technologies makes their stealth performance higher than that of submarines; they are multifunctional and multi-purpose.

Limitations: Poor endurance limits the use of unmanned underwater vehicles; the lithium batteries used have technical defects such as easy catching fire; the navigation function still needs to be improved.

It can be foreseen that in the near future, underwater unmanned submersibles will play a huge role in future wars and will change the specific mode of future ocean warfare.

Battle Robot

Military combat robots are an emerging force on the battlefield, and they are used to assist human soldiers in combat. According to the different combat fields of military robots, they are mainly divided into underwater military robots, ground military robots, aerial military robots, and space military robots.

Advantages: Combat robots can greatly reduce the burden and casualties of human soldiers when performing low-intensity combat and dangerous tasks. In addition, they also have advantages such as high intelligence, all-round combat capabilities, strong battlefield survivability, and absolute obedience to orders.

Limitations: Combat robots do not have the ability to fight under complex conditions; today’s combat robots’ intelligence and environmental adaptability have not yet reached the level of being able to fight alone, and they rely heavily on the operation and command of human soldiers.

In the long run, as intelligence drives mechanization and informatization to a higher level and a higher level, combat robots have great development potential. They will be more intelligent, their weapon platforms will be more complex, their environmental adaptability and survivability will be stronger, and they will be able to participate in a variety of warfare modes.

Drone swarm

A drone swarm consists of a number of low-cost small drones equipped with multiple mission payloads. They follow the collective action patterns of insects such as bees and work together to complete specific combat missions under human command or supervision.

Advantages: During combat, drone swarms can be specialized and divided into different tasks, so they can perform a variety of tasks; each drone has a relatively single function, which can greatly reduce R&D and procurement costs; drone swarms can increase the number of battlefield sensors and attack weapons, allowing the army to have an advantage in the number of air equipment on local battlefields; a large number of drones can paralyze enemy air defense radars and consume the enemy’s limited number of high-cost air defense ammunition.

Limitations: As drone swarms have higher requirements for coordination and autonomy, a new command and control model needs to be established to manage large-scale swarms. Therefore, it faces the challenges of mastering key technologies such as collaborative combat algorithms, communication between swarm individuals, and remote command and control.

In the future, drone swarms will drive future air combat equipment to present characteristics such as cheaper airframes, autonomous platforms, and smaller payloads, which may have a revolutionary impact on the development ideas of future aviation equipment systems.

現代國語:

作為新一輪科技革命的重要代表之一,人工智慧是當今科技領域最前線的課題。 AlphaGo Zero透過自我學習碾壓「AI前輩」AlphaGo、百度無人汽車上路、蘋果手機開啟新的刷臉認證方式…近年來,人工智慧的實際應用顯示其技術巨大的驅動力。

在人工智慧技術不斷進步的背景下,人工智慧在國防領域目前發展如何?人工智慧在國防領域能發揮什麼作用?未來應如何發展人工智慧使其更好地服務國防領域?圍繞著這些問題,記者採訪了國防科技大學研究員朱啟超。

人工智慧成為國際競爭新焦點——

軍事強國紛紛搶灘部署

「從世界局勢來看,世界各國尤其是軍事強國都在搶先佈局人工智慧,美、俄等國家政府部門均發布了人工智慧相關戰略或規劃,彰顯國家層面對人工智慧的高度重視。」朱啟超表示。

資料顯示,俄羅斯始於2008年的「新面貌改革」將人工智慧作為重點投資領域。此外,俄羅斯也發布《2025年前發展軍事科學綜合體構想》,強調人工智慧系統將成為決定未來戰爭成敗的關鍵要素。歐盟在2013年提出為​​期10年的“人腦計畫”,擬斥資12億歐元進行人類大腦研究。 2016年10月,美國白宮發布《國家人工智慧研究與發展策略規劃》,建構美國人工智慧發展的實施架構。

在朱啟超看來,不少國家都在推動人工智慧在國防領域的發展運用,從最初的無人機到智慧化資訊處理系統、仿生機器人等,人工智慧逐步滲透到國防和軍隊各個領域。

近年來,美國曾在阿富汗戰爭、伊拉克戰爭中大量運用無人機和後勤作業機器人。自2014年以來,美軍已將智慧化無人系統作為「第三次抵銷戰略」的顛覆性技術領域給予重點投資。去年4月,美國國防部宣布成立演算法戰跨職能小組,旨在將人工智慧用於國防情報蒐集和分析領域。據報道,日前美國國防部正式下令成立一個新的人工智慧研究中心,整合國防部所有的人工智慧相關工作。

其他國家也在這個領域加快步伐,推動軍隊智慧化建設。俄羅斯軍事工業委員會計畫在2025年之前實現俄軍裝備30%的機器人化,其軍隊輪式和履帶式地面作戰機器人已經投入敘利亞戰場。韓國和以色列開發和使用具有自動監視和自主決定開火能力的邊境巡邏機器,以色列已在其境內部署自主性很高的「哈比」無人機,韓國國防部也在近期表示將在2020年之前投入75億韓元用於推動人工智慧在情報偵察、指揮控制等領域的運用。

「可以預見,各類智慧化無人系統與作戰平台將在地面、空中、水面、水下、太空、網路空間以及人的認知空間獲得越來越多的應用,深刻改變著未來戰爭人工智慧的技術比重。」朱啟超說。

人工智慧運用於國防領域是大勢所趨——

國防運用需求前景廣闊

從歷史發展趨勢和未來戰爭需求來看,人工智慧越來越成為推動新一輪軍事革命的核心驅動力,未來戰爭需求也越來越呼喚人工智慧的軍事應用。新美國安全中心研究員格雷戈里·艾倫在其主筆的一份題為《人工智能與國家安全》的報告中強調:“人工智能對國家安全領域帶來的影響將是革命性的,而不僅僅是與眾不同的。世界各國政府將會考慮制定非凡的政策,可能會像核武器剛出現時一樣徹底。”

縱觀歷史,世界歷次軍事變革經歷了從冷兵器時代、熱兵器時代、機械化時代到資訊化時代的發展歷程,從冶煉技術到火藥技術、機械化技術、原子能技術,再到資訊技術,四次軍事革命的發生都貫穿著技術革命的核心作用。 「人工智慧逐步走向戰場,勢必會引起武器裝備、作戰樣式、部隊體制編制和戰鬥力生成模式顯著更新,進而引發一場深刻的軍事革命。」面對人工智慧在國防領域的發展態勢,朱啟超表示。

在朱啟超看來,人工智慧的國防運用需求非常廣闊。當下,戰爭形態由機械化、資訊化轉型為智慧化的趨勢愈發明顯,奪取未來戰爭的勝利越來越取決於軍隊的資訊優勢、智力資源和決策速度。而人工智慧在減少戰場人員數量、獲取和分析情報資訊、快速決策和反應等方面具有巨大的潛力。 2016年,美國辛辛那提大學研發的人工智慧程式「阿爾法」在模擬空戰中擊敗了美軍資深飛行員,人工智慧技術對於軍事革命的顛覆性意義已初步顯現。

「人工智慧越來越成為推動國防和軍事資訊化建設的重要驅動力,不斷提升國防領域的資訊處理能力、指揮控制效率、精確打擊能力和精準管理保障能力。」朱啟超對人工智慧提升國防領域智慧化運用非常期待,他表示,隨著軍民融合發展戰略的實施推進,人工智慧技術、大企業數據將不斷提昇軍事化數據等新一代資訊技術將越來越重要在國防領域推動國防和電力提升。

警惕人工智慧成為「戰爭毒藥」——

人類是人機關係主導者

近年來,隨著人工智慧技術的發展,軍事領域湧現出各種人工智慧相關作戰概念和裝備技術項目,但朱啟超認為,目前人工智慧相關技術與應用還處於快速發展的初級階段,不應忽視人工智慧軍事應用的限制。

「首先,人工智慧並不能取代人類智慧。人工智慧在解決可程式範圍外的戰爭問題時,需要人類的理性分析能力、靈活應變能力、道德分辨能力等,因此,要在遵循戰爭制勝機理的前提下進行人工智慧研究。」他分析道。

朱啟超進一步說明,長期來看,還需要警惕人工智慧可能帶來的安全、法律、倫理等諸多問題。

安全方面,軍事對抗環境下,人工智慧系統或武器裝備一旦被對手透過惡意程式碼、病毒植入、指令篡改等手段攻擊,將帶來戰術失利甚至災難性後果;人為錯誤、機器故障、環境擾動等因素也可能使得系統失去戰鬥效力。

在法律方面,國際武裝衝突法中的核心原則——必要性、區別性、相稱性和人道性都將面臨如何適用和調整的問題。例如,戰場機器人無法區分軍人與平民而造成濫殺無辜給區別性原則構成挑戰。

倫理方面,由於智能化評估決策技術、無人機、機器人等的應用,人類奉為最高價值的生命和尊嚴可能受到漠視甚至踐踏,而戰爭的指揮者卻遠離戰場享受戰爭勝利的果實,戰爭或將成為搬上戰場的“電子遊戲”,這將衝擊人類的道德底線。是否應該將人類的道德標準嵌入日益智慧化的機器、嵌入什麼樣的道德標準、如何嵌入?這些問題需要世界各國的廣泛研究與探討。

針對人工智慧在國防領域運用過程中可能出現的安全、法律、倫理等問題,朱啟超建議,應加強社會安全監督管控,形成適應人工智能時代的社會治理模式;積極參與人工智能國際軍備控制討論與談判,為應對人工智能帶來的安全、法律與倫理問題貢獻中國智能和中國;牢固幫助

相關連結

無人潛航器

無人潛航器,也可稱為無人水下航行器和無人水下運載器等,是沒有人駕駛、靠遙控或自動控制在水下航行的器具。隨著無人潛航器及相關技術的發展,無人潛航器已被用於執行掃雷、偵察、情報蒐集及海洋探測等任務,在未來海戰中還可作為水下武器平台、後勤支援平台等裝備使用。

優點:與潛水艇相比,無人潛航器是無人作戰平台,因此可以大大降低戰爭的傷亡;體形小,加上其他隱身高科技的應用使其隱身性能高於潛艇;多功能,多用途。

限制:續航性差限制無人潛航器使用範圍;所用鋰電池有易著火等技術缺陷;目前導航功能尚需完善。

可以預見,在不久的將來,水下無人潛航器必將在未來戰爭中發揮巨大作用,並將改變未來海洋作戰的具體模式。

戰鬥機器人

軍用戰鬥機器人作為戰場上的新興力量,是配合人類士兵作戰的角色。依軍用機器人作戰領域不同主要分為水下軍用機器人、地面軍用機器人、空中軍用機器人和太空軍用機器人等。

優點:戰鬥機器人在執行低強度作戰和危險任務時可以大大減輕人類士兵的負擔和傷亡。此外,其還具有較高智能、全方位作戰能力、較強戰場生存能力、絕對服從命令等優勢。

限制:戰鬥機器人不具備複雜條件下的作戰能力;如今戰鬥機器人的智慧化和環境適應能力還未達到單獨作戰程度,很大程度依賴人類士兵的操作和指揮。

從長遠來看,隨著智慧化牽引機械化和資訊化向更高層次、更高層次發展,戰鬥機器人發展潛力巨大,其智慧化程度將更高、武器平台將更複雜、環境適應和生存能力也將更強,能夠參與的戰爭模式也將多種多樣。

無人機蜂群

無人機蜂群由若干配備多種任務負荷的低成本小型無人機組成,它們參考蜜蜂等昆蟲的集體行動模式,在人類指揮或監管下共同完成特定作戰任務。

優點:作戰時無人機蜂群可專業化分工,因此能執行多種任務;每架無人機功能相對單一,可大幅降低研發和採購成本;無人機蜂群可增加戰場感測器和攻擊武器數量,使軍隊在局部戰場擁有空中裝備數量優勢;大量無人機可癱瘓敵人防空雷達,消耗敵人有限數量的高成本防空彈藥。

限制:由於無人機蜂群對協同和自主的要求更高,需要建立管理大規模蜂群的全新指揮控制模式,因此面臨攻克協同作戰演算法、群集個體間通訊、遠端指揮控制等關鍵技術的挑戰。

未來,無人機蜂群將牽引未來空中作戰裝備呈現機體廉價化、平台自主化、載重小型化等特點,可能對未來航空裝備體系的發展思維產生變革性影響。

中國國防報記者 潘 娣 通訊員 孫 清 高旭堯

中國軍網 國防部網
2018年7月11日 星期三

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-07/11/content_210708888.htm

Viewing Chinese Military Intelligent Warfare from a Multi-dimensional Perspective

多維視角檢視中國軍事智能化戰爭

現代英語:

Intelligent warfare is an advanced stage in the development of human warfare. The increasing maturity of artificial intelligence technology is driving human society from an information society to an intelligent society, and intelligent warfare has emerged. In comparison, mechanized warfare enhances the functions of “hands and feet” based on mass-energy exchange, information warfare enhances the functions of “ears and eyes” based on electromagnetic induction, and intelligent warfare extends and develops the functions of “brain” based on brain-computer interaction, which will also be presented to the world in a brand new style.

Intelligent warfare involves both military affairs and mixed games in the fields of economy, diplomacy, public opinion, culture, etc. In the military field, intelligent warfare has gradually subverted the traditional form, presenting the characteristics of algorithmic combat command, unmanned combat forces, and diversified combat styles with the core of seizing “intelligence control”. However, at the war level, the scope of intelligent warfare has been further expanded, and the violence of war has been greatly reduced. The war process is the process of using intelligent algorithms to gradually replace the competitive games in various fields of human beings and gain advantages. On the one hand, the competitive games in various fields of national security gradually realize the auxiliary decision-making of artificial intelligence. Intelligent political warfare, diplomatic warfare, legal warfare, public opinion warfare, psychological warfare, financial warfare, and even more resource warfare, energy warfare, ecological warfare, etc. with intelligent characteristics will gradually step onto the stage of human warfare. For example, once artificial intelligence technology is applied to the financial field, the subsequent intelligent financial game will appear on the list of intelligent warfare. On the other hand, the advanced stage of information warfare has already presented the form of hybrid warfare. The military boundaries of war have been broken, and the hybrid nature will become increasingly prominent, becoming a kind of all-domain linkage confrontation involving national security. With the assistance of intelligent systems, one of the two hostile parties can easily create and use “accidental” events in the opponent’s society, triggering the “butterfly effect” in various fields such as ideology, diplomacy, economy, culture and technology, and then use intelligent military means when necessary to accelerate the process of destroying the enemy country. The high complexity of the future hybrid warfare environment, the strong confrontation of the game, the incompleteness of information and the uncertainty of boundaries provide a broader space for the application of artificial intelligence technology.

Virtual space has become an important battlefield in intelligent warfare, and the proportion of violent confrontation in physical space has declined. Intelligent warfare is carried out in the entire domain around the competition for intelligence advantage. Intelligence, as an abstract concept, mainly exists in the cognitive space of the human brain and computer chips. Whoever can win the intelligence advantage in virtual space can win the intelligent warfare. This advantage can surpass and subvert the information and energy advantages in traditional information and mechanized warfare. Some people even compare it to “in the face of intelligent warfare, information warfare is like a group of clumsy earthworms facing intelligent humans, and they will definitely lose.” This is just like what Comrade Mao Zedong once said about turning enemy commanders into “blind, deaf, and crazy people.” To win the intelligent war, we must turn our opponents into “fools.” It is not difficult to predict that with the trend of the increasing prosperity of human virtual space in the future, the intelligent confrontation in virtual space will determine the outcome of intelligent warfare to a certain extent. For example, the virtual war with intelligent characteristics between the enemy and us in the metaverse can even partially replace the violent and bloody war in the physical space, and the results of virtual combat can also be used as the basis for judging victory or defeat. The intelligent warfare system can “learn without a teacher”, “play against itself” and “learn by itself” in the metaverse, becoming a “strategist” and “good general” for people to conquer the virtual cognitive space.

The victory or defeat of intelligent warfare depends on the active shaping and full control of potential fighters, and the collapse of the combat process can even be ignored. Intelligent warfare is an opportunistic game between the intelligent systems of both sides in the process of dynamic evolution. Both sides are constantly analyzing and looking for each other’s weak links. Once a fighter appears, they will not give the opponent any chance to turn the tables. Controlling the fighter means winning, and the moment the fighter appears is the decisive moment for both sides. This is just like the battle between martial arts masters. The victory or defeat is often only a moment. The local defeat caused by the instantaneous confrontation may be seized by the opponent to drive the overall situation into a passive state, which will lead to a complete loss. Therefore, both sides of the intelligent war are doing two things around the fighter: one is to actively evolve a more complete war system to avoid omissions and mistakes, especially in order to prevent the opponent from discovering potential fighters, and even not to take the initiative to reveal flaws and use static braking. For example, artificial intelligence reinforcement learning can be used to repeatedly conduct virtual confrontations based on basic combat game rules, automatically generate war experience and lessons, self-innovate and optimize and upgrade its own security defense system; second, do everything possible to recognize and identify the weaknesses of the opponent’s system, find the immediate advantage window of war, so as to expand local advantages and create opportunities. In particular, in order to tap into potential opportunities, it will even actively shape the situation and induce the opponent to enter an unfavorable situation or process. For example, with the help of intelligent war games “fighting left and right, confrontation evolution”, “future fighters” can be discovered in virtual wars, so as to simultaneously guide the current physical space combat preparations. Therefore, the process of intelligent warfare is shorter. If the informationized war is planned before action, then the process of intelligent warfare is planned before victory. The hostile parties have long-term games in the high-dimensional strategic cognitive domain around the appearance of fighters. After the fighters appear and the victory is deduced, they immediately enter the low-dimensional tangible space physical domain to implement joint operations. The time process of the war shows the characteristics of long preparation time and short combat time.

現代國語:

智能化战争是人类战争形态发展的高级阶段。人工智能技术的日益成熟,正推动人类社会由信息化社会逐步进入智能化社会,智能化战争随之产生。相比较而言,机械化战争基于质能互换增强了“手足”功能,信息化战争基于电磁感应提升了“耳目”功能,智能化战争基于脑机交互延伸发展了“大脑”功能,也将以全新的样式呈现在世人眼前。

智能化战争既涉及军事,又更多体现在经济、外交、舆论、文化等领域的混合博弈上。在军事领域中,智能化作战已逐步颠覆了传统形态,呈现出以夺取“制智权”为核心的作战指挥算法化、作战力量无人化、作战样式多样化等特点。但是在战争层面,智能化战争的领域更加拓展,战争的暴力性大幅降低,战争过程就是运用智能算法逐步代替人类各个领域的竞争博弈并赢得优势的过程。一方面,国家安全各个领域中的竞争博弈逐步实现人工智能的辅助决策,智能化政治战、外交战、法律战、舆论战、心理战、金融战,甚至更多具有智能化特征的资源战、能源战、生态战等,都将逐步迈上人类战争的舞台。例如,人工智能技术一经运用于金融领域当中,随之而来的智能化金融博弈就将出现在智能化战争的清单之上。另一方面,信息化战争的高级阶段已经呈现出了混合战争的形态,战争的军事界限被打破,混合性将日益凸显,成为一种涉及国家安全的全领域联动对抗。在智能化系统的辅助决策下,敌对双方中的一方很容易制造和利用对手社会“偶发”事件,在意识形态、外交经济、文化科技等各个领域触发“蝴蝶效应”,必要时再借助智能化军事手段,以加速敌国毁瘫进程。未来混合战争环境的高复杂性、博弈的强对抗性、信息的不完备性和边界的不确定性等特点,为人工智能技术的应用提供了更加广阔空间。

虚拟空间成为智能化战争的重要战场,实体空间的暴力对抗比例有所下降。智能化战争围绕着智能优势的争夺而在全域展开,作为抽象概念的智能,则主要存在于人类大脑和计算机芯片的认知空间中。谁能在虚拟空间中赢得智能优势,谁就能取得智能化战争的胜势。这种优势可以超越并颠覆传统信息化、机械化战争中的信息与能量优势,甚至有人将其比喻成“在智能化战争面前,信息化战争就像一群笨拙的蚯蚓面对智慧的人类一样必败无疑”。这就如同毛泽东同志曾谈到的我们要将敌方指挥员变成“瞎子、聋子、疯子”一样,打赢智能化战争就要把对手变成“傻子”。不难预测,在未来人类虚拟空间日渐繁盛的趋势下,虚拟空间中的智能对抗将一定程度上决定智能化战争胜负。例如,敌我双方在元宇宙当中进行带有智能化特征的虚拟战争,甚至可以部分取代实体空间的暴力和流血战争,虚拟交战成果也可以作为胜负的判定依据。而智能化战争系统可以“无师自通”,在元宇宙中“自我对弈”“自学成才”,成为人们征服虚拟认知空间的“谋臣”“良将”。

智能化战争的胜负取决于对潜在战机的主动塑造和充分把控,作战进程坍缩甚至可以忽略不计。智能化战争是双方智能化体系在动态演化过程中的伺机博弈,双方都在时时刻刻分析并寻找着对方的薄弱环节,一旦出现战机将不会给对手任何翻盘的机会。把控战机即获胜,战机出现之时即双方决胜时刻。这就如同武侠高手间过招,胜负往往只在一瞬之间,瞬间的争锋所产生的局部失利,就有可能被对手抓住机会带动全局落入被动,进而导致满盘皆输。因此,智能化战争双方都在围绕战机做好两方面工作:一是积极进化出更加完备的战争体系,避免出现缺漏与过失,尤其是为了不让对手发现潜在战机,甚至不会主动出招露出破绽而以静制动。例如,可运用人工智能的强化学习,反复进行基于基本交战博弈规则的虚拟对抗,自动产生战争经验教训,自我创新并优化升级自身安全防御体系;二是千方百计地认知与识别对手体系弱点,找到战争的即时优势窗口,以此扩大局部优势并创造战机。尤其是为了挖掘潜在战机,甚至会积极主动塑局并诱导对手进入不利境地或进程。例如,可借助智能化兵棋“左右互搏、对抗演化”,在虚拟战争中发现“未来战机”,以此同步指导当下实体空间作战准备。因此,智能化作战的进程更加短暂,如果说信息化战争是谋定而后动的话,那么智能化战争的进程则是谋胜而后定。敌对双方围绕战机的出现,在高维的谋略认知域长期博弈,待战机出现并推演决胜后,随即就进入低维有形空间物理域实施联动作战,战争时间进程呈现准备时间长而作战时间短的特点。

智 韬

中国军网 国防部网

2022年7月7日 星期四

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-07/07/content_319277888.htm

Chinese Military Research of International Intelligent Unmanned System Technology Application and Development Trends

軍研究國際智慧無人系統技術應用及發展趨勢

現代英語:

With the accelerated application of cutting-edge technology in the military field, intelligent unmanned systems have become an important part of modern warfare. The world’s major military powers attach great importance to the application of intelligent unmanned system technology in the military field. In the future, intelligent unmanned systems will have a profound impact on combat methods and subvert the rules of war. As a culmination of cutting-edge science and technology (such as artificial intelligence, intelligent robots, intelligent perception, intelligent computing, etc.), intelligent unmanned systems represent the highest level of development of a country’s scientific and technological strength. Therefore, research in the field of intelligent unmanned systems can greatly promote the development of existing military and livelihood fields.
At present, unmanned system equipment has emerged in military conflicts. For example, in the conflict between Turkey and Syria, Turkey used the Anka-S long-flight drone and the Barakta TB-2 reconnaissance and strike drone equipped by the Air Force to attack the Syrian government forces; the Russian Ministry of Defense also announced that militants in Syria used drones carrying explosives to launch a cluster attack on its military bases; in 2020, the United States used an MQ-9 “Reaper” drone to attack a senior Iranian military commander and killed him on the spot. Unmanned combat is coming, and intelligent unmanned systems, as a key weapon on the future battlefield, will determine the victory of the entire war.

Image from the Internet

The development of intelligent unmanned systems will not only promote the upgrading and progress of existing military technology, but also drive the intelligent development of civilian technology, including intelligent transportation systems, smart home systems, intelligent manufacturing systems and intelligent medical systems. In order to develop intelligent unmanned systems more scientifically and rapidly, major scientific and technological powers have introduced a series of plans and routes for the development of intelligent unmanned systems, striving to seize the initiative and commanding heights in the development of intelligent unmanned systems. Related ones include the United States’ integrated roadmap for autonomous unmanned systems, Russia’s national weapons and equipment plan, the United Kingdom’s defense innovation technology framework, China’s new generation of artificial intelligence development plan, and Japan’s medium- and long-term technology plan.
In recent years, from air to space, from land to sea, various types of intelligent unmanned systems have emerged in large numbers. The world’s major powers have gradually deployed intelligent unmanned systems into the military, and in some regional conflicts and anti-terrorism battlefields, the key role of intelligent unmanned systems is increasing. Therefore, this article will focus on the military needs of the future battlefield, based on the challenges of the actual complex environment faced by the future battlefield, analyze the key technologies required for the development and application of intelligent unmanned systems, and analyze the key technologies of individual enhancement and cluster enhancement from a military perspective, and explain the development trend of intelligent unmanned systems.

  1. Current research status at home and abroad

The concept of intelligent unmanned system has only been proposed recently. At present, its research is still in its early stages, and there is no unified definition in the world. It is temporarily defined as: an organic whole composed of an unmanned platform and several auxiliary parts, with the ability to perceive, interact and learn, and capable of autonomous reasoning and decision-making based on knowledge to achieve the goal. Intelligent unmanned systems can be divided into three major parts: land unmanned systems, air unmanned systems and marine unmanned systems according to the spatial scope of their functions. Among them, land unmanned systems mainly include reconnaissance unmanned vehicles, transport unmanned vehicles, combat unmanned vehicles, obstacle removal unmanned vehicles, bomb disposal unmanned vehicles, unmanned vehicle formations and command systems, etc.; air unmanned systems mainly include reconnaissance drones, combat drones, logistics transport drones and drone formations, etc.; marine unmanned systems mainly include reconnaissance unmanned boats, combat unmanned boats, logistics transport unmanned boats, patrol search and rescue unmanned boats, reconnaissance unmanned submarines, combat unmanned submarines and shore-based support systems, etc. This section will explain the current research status of intelligent unmanned systems at home and abroad from the above three parts.
⒈ Current status of foreign intelligent unmanned system research
⑴ Land unmanned system
Land unmanned systems are mainly used in intelligence collection, reconnaissance and patrol, mine clearance and obstacle removal, firepower strike, battlefield rescue, logistics transportation, communication relay and electronic interference. As the advantages of land unmanned systems in combat become more and more prominent, research on them has attracted more and more attention from various countries.
The United States launched the “Joint Tactical Unmanned Vehicle” project in November 1993, which is the predecessor of the “Gladiator” unmanned combat platform project. In 2006, the United States completed the design of the entire system of the “Gladiator” unmanned combat platform and officially equipped the Marine Corps in 2007. The “Gladiator” tactical unmanned combat platform is the world’s first multi-purpose combat unmanned platform. It is equipped with sensor systems such as day/night cameras, GPS positioning systems, and acoustic and laser search systems. It is also equipped with machine guns, submachine guns, tear gas, sniper systems, biological and chemical weapons detection systems, etc. It can perform reconnaissance, nuclear and biological weapons detection, obstacle breakthrough, anti-sniper, firepower strike and direct shooting in different weather and terrain.
The Gladiator unmanned combat platform is equipped with a highly mobile and survivable chassis. For this platform, a portable handheld control system has also been developed, and a series of development work has been completed around the technical issues of the control system’s anti-interference, network interoperability, miniaturization and ease of operation. However, due to the weak armor protection capability of the Gladiator unmanned combat platform and the poor concealment of its mission, its long-range reconnaissance and control system faces more interference. In addition, the US Army has also put some other land unmanned systems into service, such as the Scorpion robot and the Claw robot. In 2017, the US Army formulated the Robotics and Autonomous Systems (RAS) Strategy, which provides a top-level plan for the construction of unmanned combat capabilities. Figure 1 shows the US land unmanned system.

Figure 1 US land unmanned system
Israel, Russia, the United Kingdom and Germany have also successively carried out the development of land unmanned systems and developed a series of advanced products. The product list is shown in Table 1. For example, the “Guardian” series of autonomous unmanned vehicles developed by Israel can combine the sensors and fusion algorithms on board to autonomously detect and identify dangerous obstacles, and perform patrol, surveillance and small-scale fire strike tasks; the MARSA-800 unmanned vehicle developed by Russia can perform tasks such as transportation and logistics support, tracking and surveillance, and can realize autonomous path planning and avoid obstacles during the execution of tasks. The unmanned vehicle has been deployed on the Syrian battlefield. The United Kingdom and Germany also started research on land unmanned systems earlier. The United Kingdom launched a trolley bomb disposal robot in the 1960s, and later launched the Harris T7 tactile feedback robot for performing dangerous tasks such as bomb disposal and bomb disposal; the “Mission Master” ground armed reconnaissance unmanned vehicle developed by Germany’s Rheinmetall is mainly used to perform tactical surveillance, dangerous object detection, medical evacuation, communication relay and fire support tasks.


Table 1 Land unmanned systems of various countries

⑵ Aerial unmanned systems
Aerial unmanned systems are mainly based on single drone platforms and drone clusters. Due to their advantages such as wide field of view, freedom of flight, and good equipment carrying capacity, drones are widely used in the military field and have played a great role in military conflicts in recent years. The main functions of aerial unmanned systems include: intelligence gathering, reconnaissance and surveillance, decoy target aircraft, target tracking, tactical strikes and air rescue.
In 2000, the U.S. Air Force Research Laboratory proposed the concept of autonomous combat for unmanned aerial vehicles, quantified the degree of autonomy of unmanned aerial vehicles, and formulated a development plan. The quantitative content and development stage of the degree of autonomy of unmanned aerial vehicles are shown in Figure 2.

Figure 2 Autonomous control level and the trend of autonomous


unmanned aerial vehicles In 2003, the United States merged the unmanned combat aircraft system projects of the Air Force and the Navy, launched the “Joint Unmanned Combat System” (J-UCAS) project, and began research on the unmanned combat aircraft X-47B. In 2006, the U.S. Navy proposed the “Navy Unmanned Combat Air System” (N-UCAS) project, which aims to introduce unmanned combat aircraft to the aircraft carrier-based aircraft wing and continue to conduct research on the X-47B. Between 2012 and 2014, the aircraft carrier catapult, landing, touch-and-go and other tests were completed many times, and the autonomous aerial refueling test was completed in 2015. The X-47B attack drone is an autonomously maneuverable, stealthy, and land-based and ship-based unmanned combat aircraft. It has the characteristics of high range and high flight time, and is equipped with advanced sensors such as illumination radar, optoelectronic guidance system, and aperture radar. Its main functions include intelligence reconnaissance, target tracking, electronic warfare interference, and firepower strikes. Other unmanned aerial systems developed by the United States, such as the Global Hawk, Predator, Hunter, and Raven, have also been in service in the military, as shown in Figure 3.
The “Harpy” drone developed by Israel is equipped with anti-radar sensors, optoelectronic guidance systems and missiles, and can autonomously attack enemy radar systems, as shown in Figure 3.

Figure 3 Aerial Unmanned Systems of Various Countries


A single aerial unmanned system is easily interfered with and attacked when performing a mission, resulting in mission failure, while an aerial unmanned system cluster can make up for this defect and give full play to the advantages of aerial unmanned systems. The Defense Advanced Research Projects Agency (DARPA) of the United States has successively launched the “Gremlins” low-cost drone project, the low-cost drone cluster project, the “Perdix” micro-drone airborne high-speed launch demonstration project, and the offensive swarm enabling tactics (OFFSET) project for aerial unmanned system clusters. By developing and testing the architecture, communication system and distributed control algorithm for unmanned system clusters, an autonomous control system for drone clusters has been developed, and cutting-edge scientific and technological technologies such as artificial intelligence, situational awareness, virtual reality and augmented reality have been used to enhance the comprehensive combat capability of aerial unmanned system clusters on the battlefield.


⑶ Marine unmanned systems
Marine unmanned systems include two types: surface unmanned systems and underwater unmanned systems. Among them, surface unmanned systems mainly refer to surface unmanned boats (hereinafter referred to as “unmanned boats”), which are mainly used to perform tasks such as maritime search and rescue, reconnaissance and surveillance, firepower strikes, patrol security, electronic interference, logistics support and decoy target ships; underwater unmanned systems mainly refer to unmanned submersibles. Compared with manned submarines, they have the advantages of no casualties, high concealment and high autonomy, and are mainly used to perform intelligence collection, target monitoring, combat deterrence and firepower strikes. In 2018, the US Navy released the “Navy Department Unmanned System Strategic Roadmap”, and in 2019, it released the “Navy Artificial Intelligence Framework”, which provides route planning and guidance for the development of naval operations and marine unmanned systems.
In terms of surface unmanned systems, the United States proposed the “American Advanced Concept Technology Demonstration Project” (ACTD), one of whose important tasks is to carry out research on the “Spartan Scout” unmanned boat. The project was completed in 2007 and tested in the Iraqi theater. The “Spartan Scout” unmanned boat is equipped with an unmanned driving system and a line-of-sight/beyond-line-of-sight communication system, as well as advanced sensors such as electro-optical/infrared search turrets, high-definition cameras, navigation radars, surface search radars, and global positioning system receivers, as well as weapons such as naval guns, anti-ship missiles, and anti-submarine sensors. It is mainly used to perform intelligence collection, target monitoring, information reconnaissance, anti-mine and maritime security tasks, and has a certain degree of autonomy. The “Sea Hunter” unmanned boat developed by the United States is equipped with sonar and optoelectronic sensors, as well as short-range and long-range radar detection systems and expandable modular sonar systems. It is mainly used to perform tasks such as identifying and monitoring suspicious targets and guiding fire strikes. The US marine unmanned system is shown in Figure 4. The “Protector” unmanned boat developed by Israel is mainly used to perform intelligence reconnaissance, suspicious target identification, tactical interception, electronic interference and precision strikes (Figure 4). The unmanned surface reconnaissance boat developed by Russia can perform rapid patrol tasks under the command of the mother ship and inspect and monitor designated areas to search for intelligence.

Figure 4 Marine unmanned systems of various countries


In terms of underwater unmanned systems, the nuclear-powered unmanned submarine “Poseidon” developed by Russia can carry conventional and nuclear warheads to perform reconnaissance and strategic nuclear strike missions, as shown in Figure 4. The “Knifefish” unmanned submarine developed by the United States can scan suspicious objects and search for intelligence by emitting low-frequency electromagnetic waves; the “Tuna”-9 unmanned submarine developed by the United States can carry a variety of standard payloads and can be used to perform offshore exploration, anti-mine, surveillance and reconnaissance (ISR) and other tasks.


⒉ Current status of domestic intelligent unmanned system research
In recent years, China’s military intelligent unmanned systems have developed rapidly. This article will explain the three aspects of land unmanned systems, air unmanned systems and marine unmanned systems.
In terms of land unmanned systems, the National University of Defense Technology and Sany Heavy Industry Co., Ltd. jointly developed the “Desert Wolf” land unmanned light platform, which is powered by tracks and equipped with weapon systems such as grenade launchers and machine guns. It can be used to perform logistics transportation, wounded transportation, reconnaissance monitoring, firepower strikes and other tasks. The “Longma” series of unmanned vehicles developed by Sunward Intelligent Group have strong transportation and obstacle crossing capabilities. The “Shenxing-III” military ground intelligent robot system developed by Nanjing University of Science and Technology has strong autonomous navigation and intelligence reconnaissance capabilities. The unmanned nuclear reconnaissance vehicle jointly developed by the National University of Defense Technology and Harbin Institute of Technology has high mobility and armor protection capabilities. The weapon system it carries can perform fire strikes and has certain autonomous capabilities.
In terms of aerial unmanned systems, the “Wing Loong” series of unmanned aerial vehicles developed by Chengdu Aircraft Industry Group has fully autonomous horizontal take-off and landing capabilities, cruise flight capabilities, air-to-ground coordination capabilities, and ground relay control capabilities. It is equipped with multiple types of optoelectronic/electronic reconnaissance equipment and small air-to-ground precision strike weapons, and can perform intelligence reconnaissance, target tracking, fire strikes and other tasks. The “Rainbow” series of unmanned aerial vehicles developed by China have medium-altitude and long-range navigation capabilities, can carry electronic jamming systems and a variety of weapon systems, and can perform fire strikes, intelligence reconnaissance, communication jamming, radio wave jamming and other tasks; the attack 11 type unmanned aerial vehicle developed has extremely strong stealth capabilities and can carry precision-guided missiles for ground attack missions. China’s aerial unmanned systems are shown in Figure 5.

Figure 5 China’s aerial unmanned systems


In terms of surface unmanned systems of marine unmanned systems, the “Tianxing No. 1” unmanned boat, developed by Harbin Engineering University, uses oil-electric hybrid power, with a maximum speed of more than 92.6km/h and a maximum range of 1,000km. It is currently the fastest unmanned boat in the world. The boat integrates technologies such as autonomous perception, intelligent control, and autonomous decision-making, and can achieve rapid situation information recognition and danger avoidance of the surrounding complex environment. It can be used to perform tasks such as meteorological information monitoring, landform mapping, alert patrol, intelligence reconnaissance, and firepower attack. The “Jinghai” series of unmanned boats developed by Shanghai University have semi-autonomous and fully autonomous operation capabilities, and can perform tasks such as target reconnaissance, ocean mapping, and water quality testing. The “Haiteng 01” intelligent high-speed unmanned boat developed by Shanghai Maritime University is equipped with sensors such as millimeter-wave radar, laser radar, and forward-looking sonar. It can perform suspicious target monitoring, underwater measurement, maritime search and rescue, and other tasks, and has fully autonomous and semi-autonomous navigation capabilities. The JARI intelligent unmanned combat boat developed by Jiangsu Automation Research Institute is equipped with detection equipment such as photoelectric detectors and four-sided phased arrays. At the same time, it is also equipped with weapon systems such as missiles and torpedoes, which can perform tasks such as intelligence collection, enemy reconnaissance, and precision firepower strikes. The “Lookout II” unmanned missile boat jointly developed by Zhuhai Yunzhou Intelligent Technology Co., Ltd. and other units is equipped with a fully autonomous unmanned driving system and missiles and other weapons, which can perform tasks such as enemy reconnaissance, intelligence collection, and precision firepower strikes. China’s marine unmanned system is shown in Figure 6.

Figure 6 China’s marine unmanned system


In terms of underwater unmanned systems of marine unmanned systems, the “Devil Fish” unmanned submersible developed by Northwestern Polytechnical University is a bionic manta ray unmanned submersible that has completed a deep-sea test of 1025m. The “Wukong” full-sea depth unmanned submersible developed by Harbin Engineering University has successfully completed a deep dive and autonomous operation test of 10,896m. Deep-sea submersibles such as “Qianlong No. 1” and “Seahorse” developed by China have successfully completed deep-sea exploration missions.


⒊ Summary of the current state of technology
At present, intelligent unmanned systems have been gradually applied to various fields of military applications, and with the development of cutting-edge science and technology, the application of intelligent unmanned systems in the military field will increase day by day. However, in the use of intelligent unmanned systems, autonomy and intelligence have not yet been fully realized. At present, the application status of intelligent unmanned system technology in the military field can be mainly divided into the following three parts:


① From the perspective of combat missions: combat missions have developed from simple reconnaissance and surveillance to mainstream confrontation operations; battlefield confrontation has changed from human confrontation to human-machine confrontation, and then to machine-machine confrontation; the application environment has changed from structured environment and laboratory environment to real battlefield environment, and will gradually develop into an augmented reality environment combining real environment and virtual reality in the future.
② From the perspective of command and control: the control method has developed from simple remote control and program control of a single machine to intelligent fusion and interactive control of human-machine, but autonomous control has not yet been fully realized; the system architecture has developed from specialization and singularity to generalization, standardization, and interoperability.
③ From the perspective of perception and decision-making: the decision-making method has changed from relying solely on people to relying mainly on people and supplemented by human-machine intelligent interactive decision-making; the perception method has changed from relying solely on sensors to obtain feature information and people to judge target attributes to target recognition and feature information acquisition based on artificial intelligence.

  1. Key technologies of intelligent unmanned systems

As a culmination of multidisciplinary fields, intelligent unmanned systems involve many technologies, perform diverse tasks, and have complex and changeable application scenarios. For example, the air environment is rainy and foggy, with low visibility, strong winds, and light interference; the land environment has complex terrain, obstacles, interference, and dangerous pollution areas; the sea environment has wind and wave interference, ship swaying, inconspicuous targets, and irregular coastlines. Different environments and uses pose huge challenges to the research and performance of intelligent unmanned system technology. In order to adapt to the restricted and changing environment, the key technologies of intelligent unmanned systems can be summarized as autonomous perception and understanding technology in complex environments, multi-scenario autonomous skill learning and intelligent control technology, multi-task cluster collaboration technology, human-computer interaction and human-computer fusion technology, decision-making planning technology and navigation and positioning technology. This section will mainly use marine unmanned systems as examples to elaborate on the key technologies of intelligent unmanned systems.


⒈ Autonomous perception and understanding technology in complex environments
Autonomous perception and scene understanding of the environment in complex environments is a prerequisite for intelligent unmanned systems to operate autonomously and form combat capabilities, which will directly affect whether the mission can be successfully completed. In view of the complexity and variability of the actual environment, especially the difficulties of wind and wave interference and ship shaking in the sea environment, intelligent unmanned systems need to complete the goals of autonomous target selection perception, obtain multimodal information, and abstract and complete understanding of information. Therefore, the autonomous perception and understanding technology of the environment of intelligent unmanned systems in complex environments needs to break through the autonomous perception technology of multimodal sensor fusion, as well as the complex scene target recognition and understanding technology.


⑴ Multimodal sensor fusion autonomous perception technology
At present, the information acquisition sensors carried by intelligent unmanned systems mainly include navigation radar, millimeter wave radar, laser radar, optoelectronic payload, etc. A single sensor cannot directly obtain high-precision, dense three-dimensional scene information. It is necessary to study the autonomous environmental perception technology of multi-sensor fusion to provide support for scene understanding. Multi-sensor fusion is to carry out multi-level and multi-space information complementation and optimization combination processing of various sensors, and finally produce a consistent interpretation of the observed environment. In this process, it is necessary to make full use of multi-source data for reasonable control and use, and the ultimate goal of information fusion is to derive more useful information based on the separated observation information obtained by each sensor through multi-level and multi-faceted combination of information. By taking advantage of the mutual cooperation of multiple sensors, the data of all information sources are comprehensively processed to improve the intelligence of the entire sensor system. The natural environment of the ocean is more complex than that of land and air. Faced with special challenges such as violent swaying of ships, wind and wave interference, uneven lighting, and inconspicuous targets, the marine intelligent unmanned system needs to perform multi-sensor information fusion processing on the designated target based on the unique attributes of each sensor, and then combine the electronic chart information of the internal navigation unit of the unmanned system and the shore-based support system to build a multi-dimensional three-dimensional situation map of the sea surface environment, perform tracking, detection, identification and cognition tasks for the designated target, and finally realize the autonomous perception and complete understanding of the sea surface environment by the marine intelligent unmanned system.


⑵ Complex scene target recognition and understanding technology
The key to the operation autonomy of intelligent unmanned systems lies in the ability to effectively understand the scene and target information, and accurate understanding of scene information mainly includes the construction of target semantic information and the description of scene text information. Compared with land and air environments, the natural marine environment faces unique difficulties such as wind and wave interference and violent swaying of the hull, which brings challenges to the intelligent unmanned system to fully understand the environmental information and accurately identify the designated target. Using sensors such as laser radar and high-definition cameras carried by intelligent unmanned systems, the original point cloud information and image feature information of the marine environment scene can be obtained. Using three-dimensional target detection methods based on point clouds, point clouds and image fusion, and three-dimensional scene semantic segmentation methods, etc., the intelligent unmanned system can fully recognize the scene information and accurately identify the designated target.
There are mainly two types of point cloud-based methods: grid-based or voxel-based methods, and point-based methods. The grid-based or voxel-based method uses voxels or bird’s-eye views to convert the irregular point cloud of the acquired sea surface into a regular representation method, and then extracts the point cloud features. The point-based method directly extracts target features from the acquired original point cloud of the sea surface. The three-dimensional target detection method based on point cloud and image fusion combines the precise coordinates of the target in the sea scene obtained by the laser radar with the environmental texture and color information provided by the sea surface image, which is more conducive to the intelligent unmanned system to accurately identify and accurately and completely understand the target of the ocean scene.


⒉ Behavior decision-making and trajectory planning technology
In actual and complex war scenes, for the complex mission environment and multiple tasks faced by intelligent unmanned systems, it is necessary to break through the behavior decision-making technology in multi-source heterogeneous environments, trajectory planning technology in dynamic/static environments, and trajectory tracking technology in complex scenes.


⑴ Behavior decision-making technology in multi-source heterogeneous environments
Behavior decision-making is the key to the realization of autonomous control of intelligent unmanned systems. In the complex environment of different speeds, different relative distances, and different data types of unmanned boats, it is necessary to accurately extract effective information to make safe and reliable control instructions for the next decision of the unmanned boat. First, extract representative environmental feature information and establish a sufficient number of accurately calibrated learning data sets; then, construct a decision maker based on a deep neural network and use the established database for learning; finally, use machine learning algorithms to optimize the constructed decision maker to further improve the decision accuracy.
⑵Trajectory planning technology in dynamic/static environment
Trajectory change is the most basic behavior of unmanned boats and unmanned submarines. In a complex battlefield environment, planning a feasible and reliable trajectory according to different environmental conditions is the key to the intelligent driving of unmanned boats and unmanned submarines. This technology mainly includes trajectory planning technology based on polynomials, trajectory planning technology based on multi-objective constraints, and trajectory planning technology based on positive and negative trapezoidal lateral acceleration.


⑶Trajectory tracking technology in complex scenes
Tracking the planned ideal trajectory is an important task for unmanned boats and unmanned submarines. The key lies in solving the problem of high-precision and high-stability control when unmanned boats or unmanned submarines track target trajectories. The main solution is: according to the kinematic and dynamic models of unmanned boats and unmanned submarines, the corresponding actuator control quantity is output to achieve real-time and accurate tracking of the specified target, and under the premise of ensuring tracking accuracy, the autonomous intelligent steering of unmanned boats and unmanned submarines and the coordinated control of multiple actuators of each drive module are realized.


⒊Autonomous navigation and positioning technology
The navigation and positioning system is a key component of the intelligent unmanned system, which can provide accurate and reliable information about the speed and position of unmanned boats or unmanned submarines. The navigation system is generally composed of gyroscopes, accelerometers, satellite receivers, etc., some of which are supplemented by visual modules, or are equipped with prior spatial position maps and physical information sensors based on actual complex environmental conditions. In order to achieve accurate execution of tasks, intelligent unmanned systems must break through navigation and positioning technology based on inertial/satellite deep information fusion, navigation and positioning technology based on inertial/astronomical information fusion, navigation technology based on visual tracking, and geophysical assisted navigation technology.


⑴ Navigation and positioning technology based on inertial/satellite deep information fusion
This technology introduces the inertial information of the unmanned boat into the satellite carrier/code loop, and then uses fully autonomous, short-term, and high-precision inertial information to assist the update of satellite receiver signals, thereby realizing the complementary advantages and optimal fusion of the inertial navigation and satellite navigation of the unmanned boat.


⑵ Navigation and positioning technology based on inertial/astronomical information fusion
The astronomical-based navigation system has the advantages of high autonomy and low susceptibility to interference. By using the information output by astronomical navigation and the information provided by the initial position, the position of the unmanned boat can be calculated. The fusion of inertial navigation information and astronomical navigation information can improve the robustness of astronomical navigation positioning. Inertial/astronomical combined positioning technology based on astronomical navigation assistance has become a key part of the field of autonomous navigation of unmanned systems.


⑶ Navigation technology based on visual tracking
Due to the complexity of the actual battlefield environment, unmanned boats will be in a complex working environment and are easily interfered by the outside world, resulting in GPS denial, which makes the navigation system unable to be in a combined state. A single inertial navigation system has low accuracy and is prone to accumulating errors. Long-term pure inertial navigation will make the unmanned boat lose the ability to perform tasks. However, the vision-based method does not have time error accumulation. It only needs to extract the key features of the image obtained by the high-definition camera to obtain the position information of the unmanned boat and the unmanned submersible through visual algorithms and prior knowledge. The vision-based navigation algorithm is not easily interfered with, has strong robustness, and can make up for the error accumulation caused by pure inertial navigation in a GPS denial environment, and is widely used.


⑷ Geophysical assisted navigation technology
Due to the unique environment of the ocean, unmanned submersibles need to sail underwater for a long time, resulting in the inability to obtain real-time and accurate satellite signals and astronomical information. In addition, due to problems such as weak underwater light, vision-based navigation methods are also limited. Therefore, by obtaining a priori spatial position map inside the ocean and using the field scene information obtained by the physical sensors carried by the unmanned submersible and matching them, high-precision autonomous navigation of the unmanned submersible can be achieved.
The temporal and spatial distribution characteristics of the inherent geophysical properties of the surveyed ocean can be used to produce a geophysical navigation spatial position map. By matching the physical feature information obtained by the physical property sensor carried by the unmanned submersible with the pre-carried spatial position map, the high-precision positioning of the unmanned submersible can be obtained, and the high-precision autonomous navigation of the unmanned submersible can be realized.


⒋ Multi-scenario autonomous skill learning and intelligent control technology
Multi-scenario intelligent control technology is a key technology for intelligent unmanned systems to solve complex, changeable and unstable control objects. It is an effective tool for intelligent unmanned systems to adapt to complex task requirements. In a complex marine environment, if intelligent unmanned systems want to complete real-time and accurate regional monitoring, target tracking, information acquisition and precision strikes, they must break through the autonomous skill learning technology of tasks, autonomous operation interactive control technology, and unmanned system motion control technology of human-like intelligent control.


⑴ Autonomous skill learning technology of tasks Autonomous
skill learning refers to the process of learning based on prior knowledge or rules to complete tasks in the process of interaction between unmanned systems and the outside world. The autonomous learning of unmanned system operation skills is essentially a partial process of simulating human learning cognition. Intelligent unmanned systems use deep reinforcement learning-based technology to combine the perception ability of deep learning with the decision-making ability of reinforcement learning, and can achieve direct control from high-latitude raw data information input to decision output in complex sea environments. The autonomous skill learning of intelligent unmanned systems mainly includes three aspects: first, describing the complex environment of the ocean surface and the interior of the ocean, and obtaining the initial state data information of the surrounding environment; second, based on the description of the intelligent unmanned system and the complex environment of the ocean surface and the interior, mathematical modeling of deep reinforcement learning is carried out to obtain key information such as the state value function and control strategy function of the autonomous skill learning process; third, using the data information obtained by the interaction between the intelligent unmanned system and the complex environment of the ocean surface and the interior, the state value function and the control strategy function are updated to enable the marine intelligent unmanned system to learn a better control strategy.


⑵ Autonomous operation interactive control technology
In the process of autonomous learning and control of tasks, the intelligent unmanned system needs to contact with the ocean surface and the complex internal environment to form a good coupling system to ensure the real-time and accurate acquisition of information on the ocean surface and the complex internal environment, and correctly and quickly carry out navigation planning, autonomous navigation control and autonomous collision avoidance of unmanned boats and unmanned submersibles. The tasks of the interactive control technology of autonomous operation of intelligent unmanned systems mainly include: the design of interactive rules and control strategies of intelligent unmanned systems; modeling methods of complex environments on the surface and inside of the ocean; online modeling and correction of the dynamics of unmanned boats, unmanned submarines and operating objects; dynamic generation and shared control methods of virtual force constraints in complex environments on the surface and inside of the ocean.


⑶ Motion control technology of unmanned systems with humanoid intelligent
control The motion control technology of unmanned systems with humanoid intelligent control combines artificial intelligence with traditional control methods to solve the problem of stable and precise control of unmanned boats and unmanned submarines in actual complex marine battlefield environments. It mainly includes two aspects: the design of intelligent control algorithms for unmanned systems and the design of intelligent control strategies for unmanned systems. The design of intelligent control algorithms for unmanned systems mainly includes: hierarchical information processing and decision-making mechanisms; online feature identification and feature memory; open/closed-loop control, positive/negative feedback control, and multi-modal control combining qualitative decision-making with quantitative control; the application of heuristic intuitive reasoning logic. The design of intelligent control strategies for unmanned systems is to design reasonable solutions for unmanned boats or unmanned submarines to meet actual mission requirements.


⒌ Unmanned cluster collaborative control technology
In actual combat scenarios, due to the complexity of the battlefield environment and the diversity of tasks, a single unmanned boat or unmanned submarine usually cannot meet the needs of actual tasks. The number of equipment carried by a single unmanned boat or unmanned submarine is limited, and the perception perspective and regional range are not comprehensive enough, resulting in insufficient precision and thoroughness in performing complete intelligence detection, target tracking, battlefield environment perception and comprehensive firepower strike tasks. Therefore, it has become an inevitable trend for a cluster of intelligent unmanned systems composed of multiple unmanned boats and unmanned submarines to collaboratively perform tasks. To complete the control of the intelligent unmanned system cluster, it is necessary to break through the local rule control technology of the intelligent unmanned system cluster, the soft control technology of the intelligent unmanned system cluster, the pilot control technology of the intelligent unmanned system cluster, and the artificial potential field control technology of the intelligent unmanned system.


⑴ Local rule control technology of intelligent unmanned system cluster
The control technology based on local rules is the basic method for intelligent unmanned systems to control unmanned boats and unmanned submarines. It mainly lies in the designation of individual local control rules within the cluster of unmanned boats and unmanned submarines. Local rule control technology has achieved intelligent control of marine unmanned system clusters to a certain extent, but a large number of experiments are needed to obtain the parameters between the behavior of marine unmanned system clusters and the cluster model, and the values ​​of the parameters are also very sensitive. Therefore, to achieve complete intelligent control of intelligent unmanned systems, other technologies are needed.


⑵ Soft control technology of intelligent unmanned system clusters The
soft control technology of intelligent unmanned system clusters is mainly based on two requirements: First, in the intelligent unmanned system cluster, the control rules between individuals are very important. For example, the control and internal function of each unmanned boat and unmanned submarine are necessary conditions for the group behavior of the entire marine intelligent unmanned system cluster; second, the intelligent unmanned system cluster adopts a local communication strategy. With the increase of unmanned boats and unmanned submarines in the cluster system, it will not affect the state of the entire intelligent unmanned system cluster.


The soft control method is to add one or more new unmanned boats or unmanned submarines without destroying the individual rules of unmanned boats and unmanned submarines in the intelligent unmanned system cluster. These unmanned boats or unmanned submarines participate in the actions of the entire intelligent unmanned system cluster according to the same local rules, but they are controllable and can receive external instructions. After receiving the command, these unmanned boats or unmanned submarines will independently complete the corresponding tasks. The soft control method of the intelligent unmanned system cluster is to add a controllable unmanned boat and unmanned submarine on the basis of the local control rules of the unmanned system, so that it can affect the entire unmanned system cluster, and finally complete the control of the entire intelligent unmanned system group.


⑶ Intelligent unmanned system cluster navigation control technology
The basic content of the intelligent unmanned system cluster navigation control technology is: under the premise that the individuals of the entire marine intelligent unmanned system cluster maintain local rules, a small number of unmanned boats and unmanned submarines in the cluster have more information and stronger information processing capabilities, and interact with other unmanned boats and unmanned submarines through local information to play a leading role, so as to achieve the purpose of controlling the entire intelligent unmanned system cluster.


⑷ Artificial potential field control technology of intelligent unmanned system
In the control of intelligent unmanned system clusters, control technology based only on local rules is difficult to achieve accurate and real-time perception of the battlefield, as well as the collection and acquisition of intelligence information, tracking and identification of suspicious targets, and precise strikes on enemy areas. Artificial potential field control technology introduces the concept of potential field in physics into the control of intelligent unmanned system clusters, and uses potential functions to simulate the internal and external effects that affect a single unmanned boat or unmanned submarine. The single unmanned boat or unmanned submarine in the system cluster acts under the action of the potential function, and finally realizes the control of the entire intelligent unmanned system through the potential function.


⒍Natural human-computer interaction technology
In the actual battlefield environment, intelligent unmanned systems face problems such as complex operation tasks, low level of operation intelligence, high training risks and costs, and low equipment use and maintenance efficiency. In this case, it is necessary to improve the controllability and intelligence of intelligent unmanned system equipment, and it is necessary to break through the human-computer interaction technology of intelligent unmanned systems, augmented reality and mixed reality technology of intelligent unmanned systems, and brain-computer interface technology of intelligent unmanned systems.


⑴Human-computer interaction technology of intelligent unmanned systems
Human-computer interaction technology of intelligent unmanned systems refers to the command platform obtaining the image and voice information of officers and soldiers through image and voice sensors, and then using algorithms such as image segmentation, edge detection, and image recognition to extract key information such as gestures and eye gestures of officers and soldiers, and then using algorithms based on deep learning to obtain the voice information of officers and soldiers and pass it to the command platform, so as to issue the officers and soldiers’ instructions to lower-level combat units. The human-computer interaction technology of intelligent unmanned systems can improve the intelligence of task operations and the fault tolerance and robustness of the operation process, so that the officers and soldiers’ instructions can be issued to combat units more stably and effectively.


⑵Augmented reality and mixed reality technology of intelligent unmanned systems
Augmented reality technology of intelligent unmanned systems is to superimpose computer-generated images on real complex combat environments, and mixed reality technology of intelligent unmanned systems is to present information of virtual scenes in actual combat scenes, and set up an interactive feedback information loop between the virtual world and officers and soldiers in a real combat environment, thereby increasing the officers and soldiers’ sense of reality in the combat environment experience. As an important development direction of immersive human-computer interaction technology, virtual reality and augmented reality for intelligent unmanned systems have a variety of different real combat application scenarios, which can effectively reduce the cost and risk of training and improve the use and maintenance efficiency of equipment during combat.


⑶ Brain-computer interface technology for intelligent unmanned systems
The main function of the brain-computer interface is to capture a series of brain wave signals generated by the human brain when thinking. In actual combat environments, the brain-computer interface technology of intelligent unmanned systems extracts features and classifies the brain wave signals of commanders and fighters, thereby identifying the intentions of commanders and fighters and making corresponding decisions to cope with complex combat tasks and emergencies. The brain-computer interface technology of intelligent unmanned systems can enhance the cognitive and decision-making capabilities of commanders and fighters, greatly improve brain-computer interaction and brain control technology, and give commanders and fighters the ability to control multiple unmanned boats, unmanned submarines and other unmanned combat equipment while relying on thinking.

  1. Future development trend of intelligent unmanned systems

Due to its advantages of unmanned, autonomous, and intelligent, intelligent unmanned systems will appear in every corner of the future battlefield. As they undertake more battlefield tasks, they will participate in different war scenarios, which will lead to a number of key problems for intelligent unmanned systems, restricting their development. The key problems faced by intelligent unmanned systems are mainly:


① Highly complex environment. The specific application environment of intelligent unmanned systems will face more and more factors. The numerous shelters in unstructured environments, the limited perception viewpoints and ranges, etc., put forward higher requirements on the environmental perception ability of intelligent unmanned systems.
② High game confrontation. The battlefield game of intelligent unmanned systems is an important means to gain battlefield advantages. The fierce mobile confrontation between the two sides of the war, as well as the many interferences caused by the enemy and the battlefield environment, have put forward new challenges to the mobile decision-making ability of intelligent unmanned systems.
③ High real-time response. In the future battlefield, the combat situation will change dramatically, the combat mode will be more flexible and changeable, and it is necessary to respond to battlefield emergencies in a timely manner, which puts forward new requirements for the real-time response ability of intelligent unmanned systems.
④ Incomplete information. In the future battlefield, due to the limitations of the battlefield environment and the existence of enemy interference, the information acquisition ability of the intelligent unmanned system will be restricted, resulting in incomplete situational awareness, loss and attenuation of battlefield situation information data, and the inability to fully obtain information on both sides of the enemy.
⑤ Uncertain boundaries. The unmanned combat mode of the intelligent unmanned system has subverted the traditional combat mode. The integration of land, sea, air and space in the future unmanned combat, as well as the social public opinion brought about by the high degree of integration with society, will have an impact on the unmanned combat of the intelligent unmanned system, thus causing uncertainty in the combat boundary.


Based on the various difficulties that will be faced above, the development of intelligent unmanned systems in the future will focus on two aspects: individual capability enhancement and cluster capability enhancement. Individual capability enhancement is mainly reflected in individual cognitive intelligence, individual autonomous operation and algorithm chipization; cluster capability enhancement is mainly reflected in improving interoperability through a universal architecture, as well as cross-domain collaborative operations, network security and human-machine hybrid intelligence.

⒈ Cognitive intelligence adapts to complex task environments
In order to improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to enhance the individual cognitive intelligence of intelligent unmanned systems. The enhancement of individual cognitive intelligence is mainly reflected in the transformation from individual perceptual intelligence to cognitive intelligence. The comprehensive acquisition of multi-source sensor information enables intelligent unmanned systems to have human semantic understanding, associative reasoning, judgment analysis, decision planning, emotional understanding and other capabilities. The development of individual cognitive intelligence of intelligent unmanned systems will be based on brain science and bionics, and will achieve intelligent understanding and accurate application of acquired information by combining knowledge graphs, artificial intelligence, knowledge reasoning, decision intelligence and other technologies, thereby improving the high real-time response capabilities of intelligent unmanned systems to emergencies.


⒉ Autonomous operation improves the task capability of single machines
In order to solve the problem of highly complex tasks faced by intelligent unmanned systems in highly complex environments, it is necessary to improve the autonomous operation capabilities of single machines. This includes developing decision-making methods based on deep reinforcement learning, autonomous environmental perception and interaction methods based on multi-source information of vision and other sensors, autonomous motion planning methods for robots based on neurodynamics, and autonomous operation methods based on artificial intelligence, so as to improve the autonomous environmental modeling and positioning capabilities, autonomous decision-making capabilities, autonomous planning capabilities and autonomous control capabilities of individuals in intelligent unmanned systems, so that intelligent unmanned systems can adapt to complex environments and carry out autonomous operation tasks.


⒊ Algorithm chipization achieves high real-time response
The complex environment faced by intelligent unmanned systems places high demands on algorithms and computing power. It is necessary to be able to accelerate computing in real time to achieve high real-time response to battlefield emergencies. To solve this problem, it is necessary to improve the chipization level of individual algorithms of intelligent unmanned systems, that is, to develop a new architecture of storage and computing integrated chips to improve the computing power of chips and the level of algorithm chipization. New chips based on artificial neural technology can be studied. By changing the binary computing method of digital chips and exchanging gradient signals or weight signals, the chips can work in a simulated neuron manner, simulating the parallel computing flow of the brain to effectively process large amounts of data, and obtaining the parallel computing capabilities of supercomputers, thereby greatly improving the computing power of chips and the level of algorithm chipization, and solving the problem of high real-time response of intelligent unmanned systems.


⒋ Universal architecture improves cluster interoperability
In order to improve the adaptability of intelligent unmanned systems facing highly complex environments and the maintenance and support efficiency of intelligent unmanned systems, intelligent unmanned systems will continue to develop standardized command and control frameworks in the future, improve the intelligence of human-machine collaboration, and improve the modularity of the system. It is mainly reflected in:


① Developing a general artificial intelligence framework to support autonomous, precise, and real-time good coupling and collaboration between humans and machines;
② Improving the modularity and component interchangeability of intelligent unmanned systems to support rapid maintenance and configuration upgrades of intelligent unmanned systems and their members in future battlefields;
③ Improving the level of data transmission integration and the anti-interference capability of data transmission on future battlefields to reduce the rate of data interception.


⒌ Cross-domain collaboration breaks the boundaries of cluster applications


In order to improve the adaptability of intelligent unmanned systems in highly complex environments and solve the problem of uncertain boundaries during combat, it is necessary to improve the cross-domain collaborative combat capabilities of intelligent unmanned systems to make up for the lack of capabilities in a single combat domain. Through the cross-domain collaborative combat of intelligent unmanned systems, the advantages of various components can be complemented. That is, by utilizing the advantages of large search range and long communication distance of air unmanned systems, as well as long endurance and strong stability of land unmanned systems and marine unmanned systems, the advantages of different components are combined to increase the multi-dimensional spatial information perception capabilities of intelligent unmanned systems, and form a heterogeneous multi-autonomous collaborative system, thereby improving the ability of intelligent unmanned systems to complete complex tasks.


⒍ Secure network guarantees reliable application of clusters
Intelligent unmanned systems face the problems of incomplete information and high game confrontation on future battlefields. Therefore, it is necessary to improve the network security protection capabilities of intelligent unmanned systems in high confrontation environments, improve flexibility in dealing with highly complex and highly variable tasks, and improve stability in the face of high-intensity network attacks. The improvement of network security protection capabilities in adversarial environments is mainly reflected in the following aspects:


① Plan reasonable data permissions to ensure data security and flexibility of task execution;
② Improve information protection capabilities, develop and upgrade information protection products for intelligent unmanned systems, and record response decisions for information explosion situations;
③ Increase the network’s deep defense capabilities, unify network security standards and levels, build network defense autonomy, and improve the network’s ability to resist attacks under network attacks.


⒎ Human-machine hybrid intelligence improves adversarial capabilities
In order to solve the problem of high real-time response faced on future battlefields and improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to combine the advantages of humans and machines to form a new hybrid intelligent mode of human-machine collaboration, that is, to develop human-machine hybrid intelligence for intelligent unmanned systems. Human-machine hybrid intelligence of intelligent unmanned systems is a new intelligent scientific system that combines physics and biology in which human, machine, and environmental systems interact. In response to the problems of high-complexity environments and high real-time responses faced by intelligent unmanned systems on future battlefields, the development of human-machine hybrid intelligence in the future is mainly reflected in the following aspects:
① Information intelligence input. At the input end of information acquisition, the information data objectively collected by the sensors of the unmanned system equipment is combined with the subjective perception information of the combat commanders to form a multi-dimensional information acquisition and information input method.
② Intelligent information fusion. After obtaining multi-dimensional data information, a new data understanding method is constructed by integrating the computer’s calculation data with the information cognition of the combat commanders.
③ Intelligent information output. After the data information is fused and processed, the computer’s calculation results are matched with the value decisions of the combat commanders to form an organically combined probabilistic and regularized optimization judgment.

IV. Conclusion
Due to its autonomy, intelligence and unmanned characteristics, intelligent unmanned systems will play an increasingly important role in the future battlefield. The development of intelligent unmanned systems will also drive the development of intelligent computing, intelligent transportation, intelligent manufacturing, smart medical care, brain-like science and other disciplines. In the future, we should be guided by the mission requirements of actual complex battlefield environments, combine advanced technologies in cutting-edge disciplines such as artificial intelligence, and make overall top-level planning for intelligent unmanned systems; verify reliable airborne intelligent perception and intelligent computing equipment on different unmanned system combat platforms in land, air and marine unmanned systems, and develop reliable and stable key technologies such as unmanned system autonomous control, intelligent perception, intelligent decision-making and intelligent interaction, overcome the key difficulties of intelligent unmanned systems, and continuously improve the autonomous control, intelligent perception and intelligent decision-making capabilities of intelligent unmanned systems.

現代國語:

目前,無人系統裝備已在軍事衝突中嶄露頭角,例如,在土耳其與敘利亞的衝突中,土耳其利用空軍裝備的安卡-S型長航時無人機和巴拉克塔TB-2察打一體式無人機,對敘利亞政府軍進行了打擊;俄羅斯國防部也曾公佈敘利亞境內的武裝分子利用載有爆炸物的無人機對其軍事基地展開了集群式攻擊;2020年,美國利用一架MQ-9「收割者」無人機襲擊了伊朗高級軍事指揮官並使其當場斃命。無人作戰正在到來,智慧無人系統作為未來戰場的關鍵利器,將決定整個戰爭的勝利歸屬。

圖片來自網路

發展智慧無人系統不僅會推動現有軍事科技的升級與進步,還將帶動民用科技的智慧性發展,包括智慧交通系統、智慧家庭系統、智慧製造系統與智慧醫療系統等。為了更科學、快速地發展智慧無人系統,各科技大國紛紛推出了一系列有關智慧無人系統發展的規劃與路線,力求在智慧無人系統領域的發展中搶得先機,奪取制高點。相關的有美國的自主無人系統綜合路線圖、俄羅斯的國家武器裝備計畫、英國的國防創新技術框架、中國的新一代人工智慧發展計畫以及日本的中長期技術規劃等。
近年來,從空中到空間、從陸地到海洋,各種類型的智慧無人系統大量湧現,世界各國已經逐步將智慧無人系統部署到軍隊中,並且在一些地區衝突、反恐戰場中,智慧無人系統的關鍵作用日益增加。因此,本文將重點從未來戰場的軍事需求出發,基於未來戰場面臨的實際複雜環境的挑戰,分析智慧無人系統發展與應用所需的關鍵技術,並從軍事角度分析個體增強與集群增強關鍵技術,闡述智慧無人系統的發展趨勢。

一、國內外研究現狀

智慧無人系統概念才提出不久,目前其研究尚處於初級階段,國際上也未形成統一的定義,暫且將其定義為:由無人平台及若干輔助部分組成,具有感知、交互和學習能力,並且能夠基於知識進行自主推理、自主決策,從而達成目標的有機整體。智慧無人系統依據其作用的空間範圍,可劃分為陸地無人系統、空中無人系統和海洋無人系統三大部分。其中,陸地無人系統主要包括偵察無人車、運輸無人車、作戰無人車、破障無人車、排爆無人車、無人車編隊與指揮系統等;空中無人系統主要包括偵察無人機、作戰無人機、後勤運輸無人機以及無人機編隊等;海洋無人系統主要包括偵察無人艇、作戰無人艇、後勤運輸無人艇、巡邏搜救無人艇、偵察無人潛航器、作戰無人潛航器、岸基支援系統等。本節將從以上3個部分來對國內外智慧無人系統的研究現況進行闡述。
⒈國外智慧無人系統研究現狀
⑴陸地無人系統
陸地無人系統主要用於情報蒐集、偵察巡邏、掃雷除障、火力打擊、戰場救援、後勤運輸、通信中繼以及電子乾擾等領域,隨著陸地無人系統在戰鬥中的優勢愈發凸顯,針對其的研究愈發受到各國的廣泛關注。
美國曾於1993年11月啟動「聯合戰術無人車」項目,亦即「角鬥士」無人作戰平台項目的前身。 2006年,美國完成了「角鬥士」無人作戰平台全系統的設計,並於2007年正式裝備海軍陸戰隊。 「角鬥士」戰術無人作戰平台是世界上第1款多用途作戰無人平台,搭載的感測器系統有日/夜攝影機、GPS定位系統以及聲學與雷射搜尋系統等,並裝備有機槍、衝鋒槍、催淚彈、狙擊手系統、生化武器探測系統等,可以在不同的天氣和地形下執行偵察、催淚彈、狙擊手電擊
「角鬥士」無人作戰平台搭載有高機動與高生存底盤,針對該平台,還開發了便攜式手持控制系統,並圍繞該控制系統的抗干擾性、網絡互操作性、小型化與操縱簡便化等技術問題完成了一系列開發工作。但因「角鬥士」無人作戰平台的裝甲防護能力較弱,執行任務的隱蔽性差,導致其遠程偵察與控制系統面臨的干擾較多。除此之外,美國陸軍還服役了一些其他的陸地無人系統,如「蝎子」機器人、「魔爪」機器人等。 2017年,美國陸軍制定了《機器人與自主系統(RAS)戰略》,為進行無人作戰能力建構提供了頂層規劃。圖1所示為美國陸地無人系統。

圖1 美國陸地無人系統
以色列、俄羅斯、英國和德國也相繼進行了陸地無人系統的研發工作,並研發出了一系列先進的產品,產品清單如表1所示。例如,以色列研發的「守護者」系列自主無人車可以結合搭載的傳感器與融合演算法,自主偵察與識別危險障礙,執行巡邏、監視與小規模的火力打擊任務;俄羅斯研製的MARSA-800無人車可以執行運輸和後勤保障障礙以及跟踪監視等任務,並可以在執行任務的過程中實現自主路徑規劃,規避障礙,該程序已部署。英國和德國對陸地無人系統的研究也開展得較早,英國於上世紀60年代就推出了手推車排爆機器人,後來又推出HarrisT7觸覺反饋機器人,用於執行拆彈、排爆等危險任務;德國萊茵金屬公司開發的「任務大師」地面武裝偵察無人車主要用於執行戰術監視、危險物品;德國萊茵金屬公司開發的「任務大師」地面武裝偵察無人車輛主要用於執行戰術監視、危險物品檢測、醫療後送機、消防系統
表1 各國陸地無人系統

⑵空中無人系統
空中無人系統主要以單一無人機平台和無人機集群為主。無人機由於具有視野開闊、飛行自由、設備搭載性好等優點,被廣泛應用於軍事領域,並在近年來的軍事衝突中發揮了極大的作用。空中無人系統的主要功能包括:情報蒐集、偵察監視、誘餌靶機、目標追蹤、戰術打擊與空中救援等。
美國空軍研究實驗室於2000年提出了針對無人機自主作戰的概念,並對無人機的自主程度進行了量化定義,並制定了發展計畫。無人機自主程度量化內容與發展階段如圖2所示。

圖2 自主控制水準與無人機自主化趨勢
2003年,美國將空軍和海軍的無人作戰飛機系統項目合併,啟動了「聯合無人作戰系統」(J-UCAS)項目,開始了對無人作戰飛機X-47B的研究。 2006年,美海軍提出了「海軍無人作戰航空系統」(N-UCAS)項目,旨在為航空母艦載機聯隊引入無人作戰飛機,並繼續對X-47B開展研究。在2012—2014年間,又多次完成了航母彈射、著艦、觸艦復飛等試驗,並於2015年完成了自主空中加油試驗。 X-47B攻擊型無人機是一款可以自主操縱、隱身性能好且適用於陸基和艦載的無人作戰飛機,具備高航程和高航時的特點,裝備有照射雷達、光電導引系統和孔徑雷達等先進的感測器,主要功能包括情報偵察、目標追蹤、電子戰幹擾、火力打擊等。美國研發的其他空中無人系統,如「全球鷹」、「掠食者」、「獵人」和「大烏鴉」等也已在軍隊服役,如圖3所示。
以色列研發的「哈比」無人機配備反雷達感應器、光電導引系統和飛彈,可自主攻擊敵方雷達系統,如圖3所示。

圖3 各國空中無人系統
單一空中無人系統在執行任務時容易被幹擾和打擊從而導致任務失敗,而空中無人系統集群則可以彌補這一缺陷,更大程度地發揮空中無人系統的優勢。美國國防先進研究計畫局(DARPA)針對空中無人系統集群先後啟動了「小精靈」低成本無人機計畫、低成本無人機集群計畫、「山銻」(Perdix)微型無人機機載高速發射展示項目、進攻性蜂群使能戰術(OFFSET)項目等,透過開發和測試用於無人系統集群的體系架構、通訊系統以及分散式控制演算法,發展了無人機集群自主控制系統,並利用人工智慧、態勢感知、虛擬實境和擴增實境等前沿科學技術,提升了空中無人系統集群在戰場上的綜合作戰能力。
⑶海洋無人系統
海洋無人系統包括水面無人系統及水下無人系統2類。其中,水面無人系統主要指水面無人艇(以下簡稱「無人艇」),主要用於執行海上搜救、偵察監視、火力打擊、巡邏安防、電子乾擾、後勤保障及誘餌靶船等任務;水下無人系統主要指無人潛航器,與執行人潛艦相比,其具無性戰力戰、高防震力與高威力控制權。 2018年,美海軍發布了《海軍部無人系統戰略路線圖》,2019年,又發布了《海軍人工智慧框架》,為海軍作戰與海洋無人系統的發展提供了路線規劃與指南。
在水面無人系統方面,美國提出了「美國先進概念技術演示計畫」(ACTD),其重要任務之一便是開展「斯巴達偵察兵」無人艇的研究。該計畫已於2007年完成,並在伊拉克戰區進行了試驗。 「斯巴達偵察兵」無人艇搭載有無人駕駛系統與視距/超視距通訊系統,並搭載有電光/紅外線搜尋轉塔、高畫質攝影機、導航雷達、水面搜索雷達、全球定位系統接收機等先進感測器,以及艦砲、反艦飛彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦飛彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦導彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦導彈及反潛感美國研發的「海上獵人」無人艇搭載有聲吶與光電感測器,以及近距、遠程雷達偵測系統與可擴展模組化聲吶系統,主要用於執行辨識、監測可疑目標,引導火力打擊等任務。美國海洋無人系統如圖4所示。以色列研發的「保護者」無人艇主要用於執行情報偵察、可疑目標辨別、戰術攔截、電子乾擾和精確打擊等任務(圖4)。俄羅斯研發的無人水面偵察艇可以在母艦的指揮下執行快速巡邏任務並檢查、監視指定區域,搜尋情報。

圖4 各國海洋無人系統
在水下無人系統方面,俄羅斯開發的核動力無人潛航器“波塞冬”,可攜帶常規以及核彈頭,執行偵察與戰略核打擊任務,如圖4所示。美國研發的「刀魚」無人潛航器,可透過發出低頻電磁波來掃描可疑物體,搜尋情報;研發的「鮪魚」-9無人潛航器可攜帶多種標準載重,可用於執行近海勘探、反水雷、監視和偵察(ISR)等任務。
⒉國​​內智慧無人系統研究現狀
近年來,我國軍用智慧無人系統發展迅速,本文將從陸地無人系統、空中無人系統和海洋無人系統3個面向進行闡述。
在陸地無人系統方面,國防科技大學與三一重工股份有限公司共同開發了「沙漠蒼狼」陸地無人輕型平台,其以履帶為動力,搭載榴彈發射器和機槍等武器系統,可以用來執行後勤運輸、傷員運送、偵察監測、火力打擊等任務。山河智慧集團開發的「龍馬」系列無人車,具有強大的運輸與越障能力。南京理工大學研發的「神行-III」軍用地面智慧機器人系統,具有較強的自主導航與情報偵察能力。國防科技大學與哈爾濱工業大學等單位聯合研發的無人駕駛核化偵察車,具有較高的機動能力與裝甲防護能力,搭載的武器系統可以執行火力打擊並具備一定的自主能力。
在空中無人系統方面,成都飛機工業集團開發的「翼龍」系列無人機具有全自主水平起降能力、巡航飛行能力、空地協同能力與地面接力控制能力等,搭載有多型光電/電子偵察設備以及小型空地精確打擊武器,可以執行情報偵察、目標跟踪、火力打擊等任務。我國研發的「彩虹」系列無人機具有中空長航時的航行能力,可搭載電子乾擾系統與多種武器系統,能執行火力打擊、情報偵察、通訊幹擾、電波幹擾等任務;研發的攻擊11型無人機具有極強的隱身能力,可搭載精確的導引飛彈,用於執行對地導攻擊任務。我國空中無人系統如圖5所示。

圖5 我國空中無人系統
在海洋無人系統的水面無人系統方面,由哈爾濱工程大學主導開發的「天行一號」無人艇,採用油電混合動力,最高航速超過92.6km/h,最大航程1000km,為目前世界上最快的無人艇。該艇融合了自主感知、智慧控制、自主決策等技術,可實現對周圍複雜環境的快速態勢資訊認知與危險規避,可用於執行氣象資訊監控、地形測繪、警戒巡邏、情報偵察、火力攻擊等任務。由上海大學研發的「精海」系列無人艇具有半自主與全自主的作業能力,可執行目標偵察、海洋測繪、水質檢測等任務。由上海海事大學研發的「海騰01」號智慧高速無人艇,搭載有毫米波雷達、雷射雷達、前視聲吶等感測器,可執行可疑目標監視、水下測量、海上搜救等任務,具備全自主與半自主航行能力。江蘇自動化研究所研發的JARI智慧無人作戰艇,搭載有光電偵測器、四面相控陣等偵測設備,同時,也搭載有飛彈魚雷等武器系統,可以執行情報蒐集、敵情偵察、精準火力打擊等任務。由珠海雲洲智慧科技有限公司等單位聯合研發的「瞭望者Ⅱ」無人飛彈艇,搭載全自主無人駕駛系統及飛彈等武器,可執行敵情偵察、情報蒐集、精準火力打擊等任務。我國海洋無人系統如圖6所示。

圖6 我國海洋無人系統
在海洋無人系統的水下無人系統方面,西北工業大學開發的「魔鬼魚」無人潛航器為仿生蝠鱝無人潛水器,已完成了1025m的深海測試。由哈爾濱工程大學研發的「悟空號」全海深無人潛航器,成功完成了10896m的深潛和自主作業試驗。我國研發的「潛龍一號」、「海馬號」等深海潛水器都已成功完成深海探測任務。
⒊技術現況總結
目前,智慧無人系統已逐步應用於軍事應用的各個領域,隨著前沿科學技術的發展,智慧無人系統在軍事領域的應用將日益增加。但在智慧無人系統的使用方面,尚未完全實現自主化與智慧化。目前,智慧無人系統技術在軍事領域的應用現況主要分為以下3個部分:
①從作戰任務的角度:作戰任務從執行簡單的偵察監視向主流對抗作戰方向發展;戰場對抗由人人對抗向人機對抗,再向機機對抗方式轉變;應用環境由結構化環境、實驗室環境向真實戰場環境轉變,並在未來逐步發展成真實環境與虛擬現實相結合的增強現實環境。
②從指揮控制的角度:控制方式從單機簡單遙控、程控方式向人機智慧融合互動控制方向發展,不過尚未完全實現自主控制;體系結構由專用化、單一化向通用化、標準化、互通性方向發展。
③從感知決策的角度:決策方式由單一依靠人來決策向以人為主,人機智能交互決策為輔的方式轉變;感知方式由單一依靠傳感器獲取特徵信息,由人來判斷目標屬性向基於人工智能的目標識別、特徵信息獲取的方式轉變。

二、智慧無人系統關鍵技術

智慧無人系統作為多學科領域的集大成者,涉及的技術眾多,執行的任務多樣,且應用場景複雜多變。例如,空中環境多雨、多霧,能見度低,有大風、光照幹擾等;陸地環境地形複雜,有障礙物遮擋幹擾和危險污染區域等;海上環境有風浪幹擾、船舶搖擺、目標不顯著、海岸線不規則等。不同的環境及用途給智慧無人系統技術研究和性能的發揮提出了巨大挑戰。為適應受限的多變環境,可將智慧無人系統關鍵技術歸納為複雜環境下自主感知與理解技術、多場景自主技能學習與智慧控制技術、多任務集群協同技術、人機互動與人機融合技術、決策規劃技術與導航定位技術,本節將主要以海洋無人系統為案例對智慧無人系統關鍵技術進行詳細闡述。
⒈複雜環境下自主感知與理解技術
在複雜環境下對環境進行自主感知與場景理解是智慧無人系統能夠自主作業並形成作戰能力的前提,將直接影響任務能否成功完成。針對實際環境的複雜多變,尤其是海面環境的風浪幹擾及船舶搖晃等困難,智慧無人系統需要完成目標自主選擇感知,獲取多模態訊息,並對資訊抽象完整理解等目標。因此,複雜環境下的智慧無人系統環境自主感知與理解技術需突破多模態感測器融合自主感知技術,以及複雜場景目標辨識與理解技術。
⑴多模態感測融合自主感知技術
目前,智慧無人系統搭載的資訊取得感測器主要包括導航雷達、毫米波雷達、光達、光電載重等。單一感測器無法直接獲取高精度、稠密的場景三維訊息,需研究多感測器融合的環境自主感知技術,從而為場景理解提供支撐。多感測器融合是將各種感測器進行多層次、多空間的資訊互補和最佳化組合處理,最終產生對觀測環境的一致性解釋。在此過程中,要充分利用多源數據進行合理的支配與使用,而信息融合的最終目標則是基於各傳感器獲得的分離觀測信息,通過對信息多級別、多方面組合導出更多有用的信息。透過利用多個感測器相互協同操作的優勢,綜合處理所有資訊來源的數據,從而提高整個感測器系統的智慧化。海洋自然環境相比陸地與空中環境更為複雜,面臨船舶的劇烈搖擺、風浪幹擾、光照不均、目標不顯著等特殊的挑戰,海洋智慧無人系統需要依據每種感測器的獨特屬性來對指定目標進行多感測器資訊融合處理,接著結合無人系統內部導航單元與岸基支援系統的電子海圖訊息,建構海面環境多維立體態勢圖,執行對指定目標的追蹤、偵測、辨識與認知任務,最終實現海洋智慧無人系統對海面環境的自主感知與完整理解。
⑵複雜場景目標辨識與理解技術
智慧無人系統具備作業自主性的關鍵在於能有效理解場景與目標訊息,而準確理解場景資訊主要包括目標語意訊息建構與場景文字訊息描述。相較於陸地與空中環境,海洋自然環境面臨風浪幹擾、船體劇烈搖擺等獨特的困難,這為智慧無人系統完整地理解環境資訊與準確識別指定目標帶來了挑戰。利用智慧無人系統搭載的雷射雷達與高清攝影機等感測器,可以獲得海洋環境場景的原始點雲信息及影像特徵信息,利用基於點雲、點雲與影像融合的三維目標檢測方法與三維場景語義分割方法等,可以實現智慧無人系統對場景資訊的完整認知及對指定目標的準確識別。
基於點雲的方法主要包括2種:基於網格或體素的方法,以及基於點的方法。基於網格或體素的方法是利用體素或鳥瞰圖來將所獲得的海面不規則的點雲轉換成規則的表徵方式,然後提取點雲特徵。基於點的方法則是直接在所獲取的海面原始點雲中提取目標特徵。基於點雲與影像融合的三維目標檢測方法,是將雷射雷達獲得的海面場景中目標的精確座標與海面影像提供的環境紋理和色彩資訊相結合,這樣更加有助於智慧無人系統對海洋場景目標的精確識別與準確、完整的理解。
⒉行為決策與軌跡規劃技術
在實際的、複雜的戰爭場景中,對於智慧無人系統面臨的複雜任務環境與多重任務,必須突破多源異質環境下的行為決策技術、動/靜環境下的軌跡規劃技術與複雜場景下的軌跡追蹤技術。
⑴多源異質環境下的行為決策技術
行為決策是智慧無人系統實現自主控制的關鍵。在無人艇不同速度、不同相對距離、不同資料類型的複雜環境下,需要準確提取有效資訊來為無人艇下一刻的決策做出安全可靠的控制指令。首先,提取出具有代表性的環境特徵信息,建立足夠數量與精確標定的學習數據集;然後,構建基於深度神經網絡的決策器,並利用建立的數據庫進行學習;最後,利用機器學習算法對構建的決策器進行優化,進一步提高決策精度。
⑵動/靜環境下的軌跡規劃技術
軌跡變換是無人艇與無人潛航器最基本的行為。在複雜的戰場環境下,根據不同的環境狀況規劃一條可行、可靠的軌跡是無人艇與無人潛航器實現智慧行駛的關鍵。此技術主要包括基於多項式的軌跡規劃技術、基於多目標限制的軌跡規劃技術與基於正、反梯形側向加速度的軌跡規劃技術。
⑶複雜場景下的軌跡追蹤技術
對規劃出的理想軌跡進行追蹤是無人艇與無人潛航器的重要任務,其關鍵在於解決無人艇或無人潛航器進行目標軌跡追蹤時的高精度與高穩定性控制難題。主要解決方法為:根據無人艇與無人潛航器的運動學與動力學模型,輸出對應的執行器控制量來實現對指定目標的即時、準確跟隨,在保證追蹤精度的前提下,實現無人艇與無人潛航器的自主智慧轉向與各個驅動模組多執行器之間的協調控制。
⒊自主導航定位技術
導航定位系統是智慧無人系統的關鍵組成部分,其可提供精準、可靠的有關無人艇或無人潛航器的速度與位置等資訊。導航系統一般由陀螺儀、加速計、衛星接收器等組成,部分輔以視覺模組,或基於實際複雜的環境狀況搭載先驗空間位置圖與實體資訊感測器等。智慧無人系統要實現任務的精準執行,必須突破基於慣性/衛星深度資訊融合導航定位技術、基於慣性/天文資訊融合導航定位技術、基於視覺追蹤的導航技術與地球物理輔助導航技術。
⑴基於慣性/衛星深度資訊融合的導航定位技術
該技術是將無人艇的慣性資訊引入衛星載波/碼環路,然後利用全自主、短時、高精度的慣性資訊輔助衛星接收機訊號的更新,從而實現無人艇的慣性導航與衛星導航的優勢互補及最適融合。
⑵基於慣性/天文學資訊融合的導航定位技術
基於天文的導航系統具有高自主性與不易受干擾的優勢,透過利用天文導航輸出的信息與初始位置提供的信息,可以推算出無人艇的位置。將慣性導航資訊與天文導航資訊融合,可以提高天文導航定位的穩健性。基於天文導航輔助的慣性/天文組合定位技術已成為無人系統自主導航領域的關鍵部分。
⑶基於視覺追蹤的導航技術
由於實際戰場環境的複雜性,無人艇會處於複雜的工作環境中,容易受到外界幹擾而出現GPS拒止​​的情況,使導航系統無法處於組合狀態。單獨的慣性導航系統精度較低,容易累積誤差,長時間的純慣性導航會使無人艇失去執行任務的能力。而基於視覺的方法卻沒有時間的誤差積累,只需提取到高清相機所獲得影像的關鍵特徵,即可透過視覺演算法與先驗知識獲得無人艇與無人潛航器的位置資訊。基於視覺的導航演算法不易受到干擾,魯棒性較強,且能彌補在GPS拒止​​環境下由純慣性導航帶來的誤差積累,被廣泛應用。
⑷地球物理輔助導航技術
由於海洋獨特的環境,無人潛航器需長時間在水下航行,導致無法取得即時、準確的衛星訊號與天文資訊。另外,由於水下光照弱等問題,基於視覺的導航方法也受到限制。因此,透過獲得海洋內部的先驗空間位置圖,並利用無人潛航器搭載的物理感測器所獲得的實地場景資訊並進行匹配,可以實現無人潛航器的高精度自主導航。
可以利用勘測的海洋固有的地球物理屬性的時空分佈特徵,來製作地球物理導航空間位置圖,透過將無人潛航器所搭載的物理屬性感測器實地獲取的物理特徵資訊與預先搭載的空間位置圖相匹配,可以獲得無人潛航器的高精度定位,實現無人潛航器的高精度自主導航。
⒋多場景自主技能學習與智慧控制技術
多場景智慧控制技術是智慧無人系統解決複雜、多變和控制物件不穩定等問題的關鍵技術,是智慧無人系統適應複雜任務需求的有效工具。在複雜的海洋環境下,智慧無人系統要完成即時、準確的區域監控、目標追蹤、資訊取得與精準打擊,就必須突破任務的自主技能學習技術、自主作業互動控制技術,以及類人智慧控制的無人系統運動控制技術。
⑴任務的自主技能學習技術
自主技能學習是指在無人系統與外界互動的過程中,基於先驗知識或規則進行學習以完成任務的過程。無人系統作業技能的自主學習本質是模擬人學習認知的部分過程。智慧無人系統利用基於深度強化學習的技術,將深度學習的感知能力與強化學習的決策能力相結合,可實現在海面複雜環境下從高緯度的原始資料資訊輸入到決策輸出的直接控制。智慧無人系統自主技能學習主要包括3個面向:一是對海洋表面與海洋內部的複雜環境進行描述,並獲得周圍環境的初始狀態資料資訊;二是基於智慧無人系統與海洋表面和內部複雜環境的描述方式,進行深度強化學習的數學建模,獲得自主技能學習過程的狀態價值函數與控制策略函數等關鍵信息;三是利用智能無人系統與海洋表面和內部複雜環境交互所獲得的數據信息,對狀態價值函數及控制策略函數進行更新,以使海洋智能無人系統學習出更優的控制策略。
⑵自主作業互動控制技術
智慧無人系統在任務的自主學習與控制過程中,需要與海洋表面和內部複雜環境接觸形成良好的耦合系統,以確保對海洋表面與內部複雜環境資訊的即時、準確獲取,並正確、快速進行無人艇、無人潛航器的航行規劃、自主航行控制與自主規避碰撞等。智慧無人系統自主作業互動控制技術的任務主要包括:智慧無人系統互動規則與控制策略的設計;海洋表面與內部複雜環境的建模方法;無人艇、無人潛航器與作業物件的動力學線上建模及修正;海洋表面與內部複雜環境中虛擬力約束的動態生成及共享控制方法。
⑶類人智慧控制的無人系統運動控制技術
類人智慧控制的無人系統運動控制技術是將人工智慧與傳統控制方法結合,以解決在實際複雜的海洋戰場環境下,無人艇與無人潛航器的穩定精確控制問題,主要包括無人系統智慧控制演算法的設計與無人系統智慧控制策略的設計2個面向。無人系統智慧控制演算法設計主要包括:分層的資訊處理和決策機構;線上的特徵辨識與特徵記憶;開/閉環控制、正/負回饋控制以及定性決策與定量控制相結合的多模態控制;啟發式直覺推理邏輯的運用。無人系統智慧控制策略設計則是設計合理的無人艇或是無人潛航器的方案,以滿足實際的任務需求。
⒌無人群聚協同控制技術
在實際的作戰場景中,由於戰場環境的複雜性與任務的多樣性,單艘無人艇或是無人潛航器通常都無法滿足實際任務的需求。單艘無人艇或無人潛航器搭載的設備數量有限,感知視角與區域範圍不夠全面,導致在執行完整的情報探測、目標跟踪、戰場環境感知與全面火力打擊任務時不夠精確與徹底,因此,由多艘無人艇與無人潛航器組成的智能無人系統集群協同執行任務就成為必然的趨勢。要完成對智慧無人系統集群的控制,需要突破智慧無人系統集群局部規則控制技術、智慧無人系統集群軟控制技術、智慧無人系統集群領航控制技術以及智慧無人系統人工勢場控制技術。
⑴智慧無人系統叢集局部規則控制技術
基於局部規則的控制技術是智慧無人系統針對無人艇、無人潛航器集群控制的基本方法,主要在於對無人艇、無人潛航器集群內部個體局部控制規則的指定。局部規則控制技術在一定程度上實現了對海洋無人系統集群的智慧控制,但是對於海洋無人系統集群行為與集群模型之間的參數,需要進行大量的實驗來獲得,並且對參數的取值也非常敏感。所以,要實現對智慧無人系統完全的智慧控制,還需輔助以其他技術。
⑵智慧無人系統叢集軟控制技術
智慧無人系統集群的軟控制技術主要基於2點需求:一是在智慧無人系統集群中,個體之間的控制規則很重要,例如每艘無人艇、無人潛航器的控制與內部作用是整個海洋智慧無人系統集群出現群體行為的必要條件;二是智慧無人能動工具的控制與內部作用是整個海洋智慧無人系統集群出現群體行為的必要條件;二是智慧無人能動系統採用的是局部通訊策略,隨著智慧客系統集群出現群體行為的必要條件)
軟控制方法是在不破壞智慧無人系統集群內部無人艇、無人潛航器個體規則的前提下,加入一個或多個新的無人艇或是無人潛航器,這些無人艇或無人潛航器按照同樣的局部規則來參與整個智能無人系統集群的行動,但本身可控,可以接收外部指令。在接收指令後,這些無人艇或無人潛航器將獨立完成相應的任務。智慧無人系統集群的軟控制方法是在無人系統局部控制規則的基礎上,加入一個可以控制的無人艇與無人潛航器,使其對整個無人系統集群產生影響,最終完成對整個智慧無人系統群體的控制。
⑶智慧無人系統叢集領航控制技術
智慧無人系統集群領航控制技術的基本內容是:在整個海洋智慧無人系統集群個體保持局部規則的前提下,令集群中少數無人艇與無人潛航器擁有更多的信息量和更強的信息處理能力,並與其他無人艇和無人潛航器通過局部信息交互來起到領導者的作用,從而達到控制整個智能沒有集群的目的。
⑷智慧無人系統人工勢場控制技術
在智慧無人系統集群控制中,只基於局部規則的控制技術難以完成對戰場準確、即時的感知,以及對情報資訊的蒐集獲取、對可疑目標的追蹤識別和對敵方區域的精準打擊。人工勢場控制技術是將物理學中的位能場概念引入智慧無人系統集群的控制中,利用位勢函數來模擬影響單艘無人艇或無人潛航器的內、外作用,而係統集群中的單艘無人艇或無人潛航器則在勢函數的作用下行動,最終透過勢函數來實現對整個智慧無人能動系統的控制。
⒍自然人機互動技術
在實際的戰場環境中,智慧無人系統面臨著操作任務複雜、操作智慧化程度低、訓練風險大且成本高、設備使用與維修效率低等問題,在這種情況下,就需要提高智慧無人系統設備的可操控性與智慧化,需要突破智慧無人系統人機互動技術、智慧無人系統擴增實境與混合實境技術以及智慧無人系統介面技術。
⑴智慧無人系統人機互動技術
智慧無人系統人機互動技術是指指揮平台透過影像和語音感應器獲取指戰員的影像與語音訊息,然後利用影像分割、邊緣偵測、影像辨識等演算法擷取出指戰員的手勢與眼勢等關鍵訊息,接著利用基於深度學習的演算法獲得指戰員的語音訊息並傳遞給指揮平台,從而將指作戰員的指令下發給下級的指令。智慧無人系統的人機互動技術可以提高任務操作的智慧化以及操作過程的容錯率與魯棒性,從而使指戰員的指令能夠更加穩定、有效地下發給作戰單位。
⑵智慧無人系統擴增實境與混合實境技術
智慧無人系統擴增實境技術是將電腦生成的影像疊加在真實的複雜作戰環境中,智慧無人系統混合實境技術則是透過在實際作戰場景中呈現虛擬場景的訊息,在真實的作戰環境下在虛擬世界與指戰員之間搭起一個互動回饋的資訊迴路,從而增加指戰員對作戰環境體驗的真實感。智慧無人系統虛擬實境與擴增實境作為沉浸式人機互動技術的重要發展方向,已有多種不同的真實作戰應用場景,可有效降低訓練時的成本與風險,提高作戰時設備的使用與維修效率。
⑶智慧無人系統腦機介面技術
腦機介面的主要功能是捕捉人腦在進行思考活動時產生的一系列腦波訊號。在實際作戰環境中,智慧無人系統腦機介面技術透過對指戰員的腦波訊號進行特徵提取、功能分類,從而辨別出指戰員的意圖而做出相應的決策,以此應對複雜的作戰任務與突發情況。智慧無人系統腦機介面技術可以增強指戰員的認知與決策能力,大幅提升腦機互動與腦控技術,賦予指戰員在藉助思維的同時具有能操控多艘無人艇與無人潛航器等無人作戰設備的能力。

三、智慧無人系統未來的發展趨勢

智慧無人系統由於其無人化、自主性、智慧性等優點,將出現在未來戰場的各個角落,而隨著其承擔戰場任務的增多,將會參與不同的戰爭場景,導致智慧無人系統將面臨多項關鍵性的難題,使其發展受到限制。智慧無人系統面臨的關鍵性難題主要有:
①環境高度複雜。智慧無人系統具體的應用環境將面臨越來越多的要素,非結構化環境下遮蔽物眾多、感知視點及範圍受限等對智慧無人系統的環境感知能力提出了更高的要求。
②博弈高對抗。智慧無人系統的戰場博弈是取得戰場優勢的重要手段,作戰雙方激烈的機動對抗,以及因敵方和戰場環境帶來的諸多幹擾對智慧無人系統的機動決策能力提出了新的挑戰。
③響應高實時。在未來戰場中,戰鬥態勢變化劇烈,交戰方式將更加靈活多變,需及時應對戰場突發事件,這就對智​​慧無人系統的即時響應能力提出了新的要求。
④資訊不完整。在未來戰場中,受戰場環境的限制以及敵方幹擾的存在,智慧無人系統的資訊取得能力將會受到製約,從而造成態勢感知不完備、戰場態勢資訊資料遺失與衰減,導致無法完整取得敵我雙方的資訊。
⑤邊界不確定。智慧無人系統的無人作戰方式顛覆了傳統作戰模式,未來無人作戰的陸海空天一體化,以及透過與社會高度交融帶來的社會輿情,都將對智慧無人系統的無人作戰產生影響,從而造成作戰邊界的不確定性。
基於以上將面臨的各種難題,未來智慧無人系統的發展將集中在個體能力增強與群聚能力增強2個面向。個體能力增強主要體現在個體認知智能、個體自主作業與演算法晶片化等方面;集群能力增強則主要體現在透過通用化架構提升互通性,以及跨域協同作戰、網路安全與人機混合智能等。
⒈認知智能適應複雜任務環境
為提高智慧無人系統在高度複雜環境下的適應能力,需要增強智慧無人系統的個別認知智能。個體認知智能增強主要體現在從個體感知智能轉變為認知智能的轉變方面,綜合獲取的多源感測資訊使得智能無人系統具備人類的語意理解、聯想推理、判斷分析、決策規劃、情感理解等能力。智慧無人系統個體認知智能的發展將以腦科學和仿生學等為基礎,透過結合知識圖譜、人工智慧、知識推理、決策智慧等技術來實現獲取資訊的智慧理解與準確運用,從而提升智慧無人系統對突發事件的高即時響應能力。
⒉自主作業提升單機任務能力
為解決智慧無人系統在高度複雜環境下所面臨的高度複雜任務的難題,需要提升單機的自主作業能力。包括開發基於深度強化學習的決策方法、基於視覺及其他感測器多源資訊的自主環境感知與交互方法、基於神經動力學的機器人自主運動規劃方法,以及基於人工智慧的自主作業方法等,以提升智能無人系統個體的自主環境建模與定位能力、自主決策能力、自主規劃能力及自主控制能力,使智能無人系統能夠適應複雜的環境建模與定位能力、自主決策能力、自主規劃能力及自主控制能力,使智能無人系統能夠適應複雜的環境建模並開展自主作業。
⒊演算法晶片化實現高即時響應
智慧無人系統面臨的複雜環境對演算法、算力提出了較高要求,需要能即時加速運算,實現對戰場突發事件的高即時回應。為解決此問題,需要提高智慧無人系統個體演算法的晶片化水平,即開發新型架構的存算一體晶片,以提高晶片的算力與演算法晶片化水平。可研究基於人工神經技術的新型晶片,透過改變數位晶片的二進制計算方式,交換梯度訊號或權重訊號來使晶片以模擬神經元的方式進行工作,模擬大腦有效處理大數據量的並行運算流,獲得超級電腦的並行運算能力,從而極大地提升晶片的計算力與晶片化水平,解決智慧系統的高即時演算法響應。
⒋通用化的架構提升集群互通性
為提高智慧無人系統面臨高度複雜環境的適應能力,以及智慧無人系統的維修保障效率,未來智慧無人系統將繼續發展標準化的指控框架,提高人機協作的智慧性並提高系統的模組化程度。主要體現在:
①開發通用式的人工智慧框架,支援人與機器之間自主、精確、即時的良好耦合與協作關係;
②提高智慧無人系統的模組化與零件互換性,以支援在未來戰場中對智慧無人系統及其成員進行的快速維修與配置升級;
③提高資料傳輸一體化水平,以及在未來戰場上資料傳輸的抗干擾能力,降低資料的被截獲率。
⒌跨域協同打破群集應用邊界
為提高智慧無人系統在高度複雜環境下的適應能力,解決作戰時的邊界不確定難題,需要提高智慧無人系統的跨域協同作戰能力,以彌補單一作戰域能力的不足。可透過智慧無人系統的跨域協同作戰,將各個組件進行優勢互補。即利用空中無人系統的搜尋範圍大、通訊距離遠等優點,以及陸地無人系統與海洋無人系統續航時間長、穩定性強等優點,將不同組件的優勢進行組合,以增加智能無人系統的多維空間資訊感知能力,構成異質多自主體協同系統,從而提高智能無人系統完成複雜任務的能力。
⒍安全網路保障集群可靠應用
智慧無人系統在未來戰場上面臨著資訊不完整與博弈高對抗的難題,因此需要提高智慧無人系統在高對抗環境下的網路安全保障能力,提高在應對高複雜、高變化任務時的靈活性與面臨高強度網路攻擊時的穩定性。對抗環境下網路安全保障能力的提升主要體現在以下幾個方面:
①規劃合理的資料權限,以確保資料的安全性與任務執行的彈性;
②提升資訊保障能力,開發並升級智慧無人系統的資訊保障產品,備案資訊爆炸狀況的因應決策;
③增加網路的深度防禦能力,統一網路安全的標準與等級,建構網路防禦的自主性,提升網路攻擊下網路的抗打擊能力。
⒎人機混合智能提升對抗能力
為解決在未來戰場上面臨的高即時回應的難題,提高智慧無人系統在高度複雜環境下的適應能力,需要將人類與機器的優點結合,構成一種新的人機協作的混合智慧方式,即發展智慧無人系統的人機混合智慧。智慧無人系統人機混合智慧是一種由人、機、環境系統相互作用的新的物理與生物結合的智慧科學系統。針對智慧無人系統在未來戰場上所面臨的高複雜環境與高即時反應的難題,未來人機混合智慧的發展主要體現在以下幾個方面:
①資訊智能輸入。在獲取資訊的輸入端,將無人系統設備感測器客觀收集的資訊資料與作戰指揮人員的主觀感知資訊結合,構成一種多維的資訊獲取與資訊輸入方式。
②資訊智能融合。在取得多維的資料資訊後,透過將電腦的運算資料與作戰指揮人員的資訊認知融合,建構一種新的資料理解途徑。
③資訊智慧輸出。將資料資訊進行融合處理之後,將電腦的計算結果與作戰指揮人員的價值決策相互匹配,從而形成有機結合的機率化與規則化的最佳化判斷。

四、結語
智慧無人系統由於其自主性、智慧性與無人化的特點,在未來戰場上將起著日益重要的作用,智慧無人系統的發展也將帶動智慧運算、智慧交通、智慧製造、智慧醫療、類腦科學等學科領域的發展。今後,應以實際複雜環境戰場的任務需求為導向,結合人工智慧等前沿學科的先進技術,對智慧無人系統進行總體頂層規劃;在陸地、空中以及海洋無人系統中不同的無人系統作戰平台上,驗證可靠的機載智能感知與智慧運算設備,並發展可靠、穩定的無人系統自主控制、智慧感知、智慧決策與智慧互動等關鍵技術,攻克智慧無人系統的關鍵難題,不斷提升智慧無人系統的自主控制、智慧感知與智慧決策能力。

中國原創軍事資源:http://www.81it.com/2022/1031/13846888.html

Analyzing Chinese Military’s New Trend of Intelligent Warfare

解析中國軍隊智能化戰爭新趨勢

現代英語:

Modern warfare practice has proved that high-tech has become the core combat power and has promoted the rapid advancement of warfare towards intelligence. Especially under the guidance of new technologies such as big data, the Internet of Things, and artificial intelligence, and supported by algorithms and computing power technologies, the degree of military intelligence is gradually deepening, and the characteristics of intelligent battlefield warfare are becoming more and more apparent.

The combat space is developing towards full-domain multi-dimensional integration

The widespread application of artificial intelligence technology in the military field will integrate combat units distributed in different battlefield spaces, accelerate the expansion of combat space, cross-domain linkage, and simultaneously exert efforts in multi-dimensional battlefield space and focus on multiple combat capabilities at the same time, so as to achieve precise energy concentration and release in the entire domain.

The pan-connection of data cloud networks has expanded the combat space in the information domain. With the development of new-generation information technologies such as big data and cloud computing, information domain operations will penetrate various combat spaces, and modular combat units dispersed in space will be connected into a decentralized distributed combat system. When combat missions change or certain nodes are damaged, by adding new nodes or upgrading other nodes, the original combat functions can be maintained or new combat functions can be formed. Relying on information infrastructure, the combat system presents the characteristics of distribution, self-organization, and self-synchronization, which greatly improves the reliability, anti-destruction, and flexibility of the combat system. The combat system has developed from a task-based, static-oriented direction to a capability-based, dynamic-oriented direction.

Intelligent weapons and equipment expand the physical domain combat space. With the development and application of advanced technologies such as artificial intelligence, big data, autonomous control, and the Internet of Things, weapons and equipment are becoming more and more intelligent, more powerful, and more widely used. The battlefield of intelligent combat has expanded from traditional land, sea, and air to near-space, polar regions, deep space, deep sea, and underground.

The human brain and computer complement each other to expand the cognitive domain space. With the integrated development of artificial intelligence and cognitive science, human brain intelligence and artificial intelligence promote each other, which can realize the complementary advantages of human brain logical thinking and computer high-speed computing. In intelligent warfare, the cognitive domain combat space will become the main battlefield, and “brain control” and “brain control” will become the focus of future wars.

Combat forces are developing towards mixed human-machine formations

In intelligent warfare, new types of unmanned combat forces will become the main combat force and a new growth point for the military’s combat effectiveness. New types of unmanned combat forces such as space, network, electromagnetic and intelligent ammunition will directly participate in combat, achieving a seamless link from strategy to tactics, and forming a multi-dimensional, all-domain attack and defense, and rapid assault overall force.

Combat force formations are organized in a variety of styles. Human-machine mixed formations. According to different tasks, combined with unmanned combat forces with different functions, reasonable human-machine formations are carried out to give full play to human subjective initiative on the one hand, and the special functions of unmanned combat forces on the other hand, so as to achieve the best combination to achieve combat objectives. Autonomous formation of unmanned forces. In intelligent warfare, unmanned tactical units, as the smallest combat units, can autonomously form combat groups or teams according to combat mission requirements to attack or defend targets. They can also automatically coordinate and cooperate according to changes in battlefield environment and tasks to ensure the achievement of unified combat objectives.

Combat command develops towards autonomous intelligence

In intelligent warfare, the application of high-tech in the military field with artificial intelligence as the core has had a profound impact on combat command and even triggered disruptive changes.

Command information acquisition is more autonomous. The sensor platform of the intelligent battlefield can implement intelligent fusion processing of multi-source intelligence with “large volume, multiple types, fast transmission speed and low value density”, obtain valuable data from massive data, and automatically transmit it to the command and control center to provide information support for commanders’ decision-making.

Human-machine collaboration in command and decision-making. In intelligent warfare, the use of intelligent robot systems to assist in decision-making has greatly reduced the burden on commanders, freeing them from heavy tasks and allowing them to concentrate on studying operations and command. They can hand over some tedious intelligence information judgment, identification and disposal work to artificial intelligence-assisted decision-making systems, giving full play to the role of human-machine integration, reasonable division of labor and mutual complementation, greatly improving the commanders’ command efficiency.

Dynamic planning. An intelligent system based on artificial intelligence technology and intelligent human-machine interface technology can speed up the pace of updating battlefield dynamic information and quickly propose suggestions for adjusting and improving plans, which will help commanders update mission plans in a timely manner and improve the troops’ ability to act quickly.

Agile control response. With the support of artificial intelligence technology and sensor technology, the ability of intelligent control of troops will be further improved in the future. Specifically, intelligent weapons and equipment can use sensors similar to human vision and hearing to track and detect targets, and process the information obtained and provided by the command information system through computers similar to the human brain, so as to achieve autonomous analysis, identification, judgment, and make corresponding decisions, thereby regulating the attack on the target.

Combat equipment is becoming more intelligent

With the widespread use of artificial intelligence technology in the field of military equipment, intelligent combat platforms and systems, intelligent ammunition and intelligent weapons and equipment have been successively equipped in the army. Combat equipment will develop from manned equipment as the main and unmanned equipment as the auxiliary to manned/unmanned equipment coordination and unmanned equipment as the main direction. UAVs, unmanned combat vehicles, unmanned ships, unmanned spacecraft, military robots and intelligent individual systems will become the main force of intelligent combat. They have good combat performance, fast response speed, strong mobility and high combat accuracy, which plays a key role in seizing the initiative in war and even affects the entire war process.

The entire process of technological infiltration war

Intelligent warfare in modern warfare is supported by Internet technology, unmanned technology, data processing and prediction technology, target recognition and search technology, and artificial intelligence technology. Various high-tech platforms and systems are increasingly likely to replace human actions in various combat links such as intelligence reconnaissance, efficient command, precise action, and comprehensive support in war. These intelligent combat platforms or systems also have super computing, recognition, and autonomous control capabilities, especially the ability to complete urgent, difficult, and dangerous tasks under harsh conditions that are difficult for humans to complete. This trend is attracting more and more interest and investment from military powers.

Yue Guiyun Cheng Cimin Li Qinan

現代國語:

中國軍網 國防部網
2022年6月7日 星期二

現代戰爭實踐證明,高新科技已成為核心戰鬥力,並推動戰爭形態向智慧化快速邁進。尤其在大數據、物聯網、人工智慧等新技術的牽引下,在演算法和算力技術的支撐下,軍事智慧化程度正逐漸加深,戰場智慧化作戰特徵越發顯現。

作戰空間朝向全局多維融合發展

人工智慧技術在軍事領域的廣泛應用,將分佈在不同戰場空間的作戰單元融為一體,促使作戰空間加速拓展、跨域聯動,多維戰場空間同時發力,多種作戰能力同時聚焦,可達成全局精確聚能釋能。

資料雲網路泛聯拓展了資訊域作戰空間。隨著大數據、雲端運算等新一代資訊技術的發展,資訊域作戰將滲透各個作戰空間,空間上分散的模組化作戰單元將連結為無中心的分散式作戰體系,在作戰任務變化或某些節點受損的情況下,透過加入新節點或升級其他節點,可實現維持原作戰功能或形成新的作戰功能。依托資訊基礎設施,作戰體系呈現分散式、自組織、自同步的特徵,大大提高了作戰體系的可靠性、抗毀性、靈活性,作戰體系從基於任務、面向靜態向基於能力、面向動態的方向發展。

智慧化武器裝備拓展物理域作戰空間。隨著人工智慧、大數據、自主控制、物聯網等先進技術的發展及轉換應用,武器裝備的智慧化程度越來越高,功能越來越強,應用範圍越來越廣,智慧化作戰戰場由傳統的陸、海、空等向臨近空間、極地、深空、深海、地下等領域拓展。

人腦與電腦互補拓展認知域空間。隨著人工智慧與認知科學的融合發展,人腦智慧與人工智慧相互促進,可實現人腦邏輯思維與電腦高速運算的優勢互補,在智慧化戰爭中,認知域作戰空間將成為主戰場,「腦控」與「控腦」將成為未來戰爭爭奪焦點。

作戰力量向人機混合編組方向發展

在智慧化戰爭中,新質無人作戰力量將成為主戰力量,是軍隊戰鬥力新的成長點。太空、網路、電磁和智慧彈藥等新質無人作戰力量直接參與作戰,將實現從戰略到戰術的無縫鏈接,形成多維一體、全局攻防、快速突擊的整體合力。

作戰力量編成呈多種樣式。人機混合編組。根據不同的任務,結合不同功能的無人作戰力量,合理進行人機編組,一方面充分發揮人的主觀能動性,另一方面發揮無人作戰力量的特殊功能,以實現最佳組合達成作戰目的。無人力量自主編組。在智慧化戰爭中,無人戰術單元作為最小作戰單元,能夠根據作戰任務需求自主編成作戰群或隊,對目標進行攻擊或防禦,也可根據戰場環境和任務的變化,自動協同配合,確保達成統一的作戰目的。

作戰指揮向自主智能發展

在智慧化戰爭中,以人工智慧為核心的高新技術在軍事領域的應用,對作戰指揮造成了深刻影響,甚至引發顛覆性變化。

指揮資訊獲取更加自主。智慧化戰場的感測器平台可以對「體量大、類型多、傳輸速度快、價值密度低」的多源情報實施智慧化融合處理,從海量數據中獲取有價值數據,並自動傳輸到指揮控制中心,為指揮官決策提供資訊支援。

指揮決策人機協同。在智能化戰爭中,智能機器人系統輔助決策功能的運用,大大減輕了指揮員的負擔,使指揮員從繁重的事務中解脫出來,集中精力研究作戰、研究指揮,把一些繁瑣的情報信息判斷、甄別與處置工作,交給人工智能輔助決策系統來處理,充分發揮人機結合、合理分工、相互補充的作用,大大提高了指揮員的指揮效率。

規劃動態生成。基於人工智慧技術、智慧人機介面技術的智慧化系統,能加速戰場動態資訊更新節奏,快速提出對計畫進行調整完善的建議,有助於指揮官及時更新任務規劃,提升部隊快速行動能力。

控制響應敏捷。在人工智慧技術、感測器技術支援下,未來智慧化調控部隊的能力將進一步提升。具體體現在:智慧化武器裝備能夠利用類似人的視覺、聽覺等的感測器,對目標進行追蹤探測,將獲取資訊與指揮資訊系統提供的資訊透過類似人腦的電腦進行處理,實現自主分析、辨識、判斷,並做出相應的決策,進而調控對目標的攻擊行動。

作戰裝備智能化程度加深

隨著人工智慧技術在軍事裝備領域廣泛運用,智慧化作戰平台和系統、智慧彈藥和智慧化武器裝備等陸續列裝部隊,作戰裝備將由有人裝備為主、無人裝備為輔,向有人/無人裝備協同和以無人裝備為主方向發展,無人機、無人戰車、無人客艦力量、無人太空船、軍用機器人和機器系統將成為主要力量的主要力量。它們具有良好的作戰性能,反應速度快、機動能力強、作戰精度高,對奪取戰爭主動權起著關鍵作用,甚至影響整個戰爭進程。

科技滲透戰爭全過程

現代戰爭智能化作戰在互聯網技術、無人技術、資料處理與預測技術、目標識別與搜索技術以及人工智能技術支撐下,各類高科技平台和系統越來越可能代替人在戰爭中情報偵察、高效指揮、精確行動和綜合保障等各個作戰環節中的行動。這些智慧化作戰平台或系統同時具有超強的運算、辨識與自主控制能力,特別是能完成人難以完成的惡劣條件下的急難險重任務,這一趨勢正引起各軍事強國越來越多的興趣與投入。

岳贵云 成次敏 李奇男

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-06/07/content_317172888.htm