In recent days, the entire army and armed police forces have organized officers and soldiers in various forms to seriously study and discuss the important speech delivered by President Xi at the National Conference on Cybersecurity and Informatization. The officers and soldiers firmly expressed that they must earnestly study and implement the spirit of President Xi’s important speech, keenly seize the historical opportunity of informatization development, strengthen military-civilian integration in the field of cybersecurity and informatization, independently innovate and promote the construction of a cyber power, and make new contributions to winning the decisive battle to build a moderately prosperous society in all respects, winning the great victory of socialism with Chinese characteristics in the new era, and realizing the Chinese dream of the great rejuvenation of the Chinese nation.
From April 20 to 21, the National Cybersecurity and Informatization Work Conference was held in Beijing. Xi Jinping, General Secretary of the CPC Central Committee, President of the State, Chairman of the Central Military Commission, and Director of the Central Cybersecurity and Informatization Commission, attended the meeting and delivered an important speech. Photo by Xinhua News Agency reporter Li Tao
Seize the historical opportunity to build a strong cyber power
——Officers and soldiers of the entire army and armed police force earnestly studied and implemented President Xi’s important speech at the National Conference on Cybersecurity and Informatization
Beijing, April 23 (People’s Liberation Army Daily) – In recent days, the entire army and armed police forces have organized officers and soldiers in various forms to seriously study and discuss the important speech delivered by President Xi at the National Conference on Cybersecurity and Informatization. The officers and soldiers firmly expressed that they must earnestly study and implement the spirit of President Xi’s important speech, keenly seize the historical opportunity of informatization development, strengthen military-civilian integration in the field of cybersecurity and informatization, independently innovate and promote the construction of a cyber power, and make new contributions to winning the decisive battle to build a moderately prosperous society in all respects, winning the great victory of socialism with Chinese characteristics in the new era, and realizing the Chinese dream of the great rejuvenation of the Chinese nation.
“Informatization has brought a golden opportunity to the Chinese nation.” After studying President Xi’s important speech, the cadres of various departments of the CMC and the theater of operations were full of confidence. Many cadres mentioned in the discussion that President Xi’s important speech, starting from the overall situation of the party and the country, systematically explained the rich connotation of the strategic thinking of building a cyber power, scientifically answered a series of directional, overall, fundamental and strategic issues related to the long-term development of the cyber and information industry, pointed out the direction for grasping the historical opportunities of the information revolution, strengthening network security and informatization, and accelerating the construction of a cyber power, and provided a fundamental guideline, which is of great and far-reaching significance.
On December 25, 2015, when President Xi inspected the PLA Daily, he typed on the Weibo and WeChat publishing platforms of the PLA Daily and sent a Weibo to congratulate all officers and soldiers on the New Year; on the eve of the 2017 Spring Festival, when President Xi inspected the “Great Merit Third Company” of a certain army unit, he stopped in front of an electronic screen and listened to the officers and soldiers’ report on their study and education through the “Learning Barracks” mobile phone APP… President Xi’s concern for the military’s cybersecurity work has inspired the officers and soldiers. Everyone said that the Party Central Committee and President Xi attach great importance to the Internet, the development of the Internet, and the governance of the Internet, and have coordinated major issues involving informatization and cybersecurity in the political, economic, cultural, social, and military fields, made a series of major decisions, and put forward a series of major measures to promote the historic achievements of the cybersecurity cause. Officers and soldiers of a certain brigade of the Rocket Force said that the achievements made in the network construction of our country and the army fully demonstrate that the decisions of the Party Central Committee on strengthening the centralized and unified leadership of the Party over cybersecurity work and the series of strategic deployments made for cybersecurity work since the 18th National Congress of the Communist Party of China are completely correct.
In recent years, a certain brigade of the 74th Group Army has closely followed the characteristics of young officers and soldiers and actively explored new models of online political work, which has been welcomed by young officers and soldiers. During the discussion, Luo Yingli, an officer of the Propaganda Section of the brigade, said that we must actively promote innovations in online propaganda concepts, content, forms, methods, and means, grasp the timing and effectiveness, and unite and gather the officers and soldiers with Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era and the spirit of the 19th National Congress of the Communist Party of China, and work tirelessly to achieve the goal of strengthening the army.
During the study and discussion, Li Kangjun, instructor of the second missile company of the air defense battalion of a brigade of the 75th Group Army, said with deep feeling that the newly revised “Internal Affairs Regulations (Trial)” revised the regulations on the use of mobile phones and the Internet, and added new behavioral norms for military personnel such as online shopping and the use of new media. As soldiers, we must firmly establish a correct view of network security and strictly abide by the relevant regulations of the state and the military. Fan Jianli, political commissar of a brigade of the 80th Group Army, said that we must strengthen the network security protection of information infrastructure, strengthen the construction of network security information coordination mechanisms, means, and platforms, strengthen the construction of emergency command capabilities for network security incidents, and actively develop the network security industry to move the checkpoints forward and prevent problems before they occur.
Whoever masters the Internet will seize the initiative of the times; whoever occupies the commanding heights in informatization will be able to seize the initiative, gain advantages, win security, and win the future. Experts from the Academy of Military Sciences, the National Defense University, and the National University of Defense Technology believe that the integration of military and civilian networks is a key and frontier area of military and civilian integration, and is also the most dynamic and potential area of military and civilian integration. We must seize the historical opportunities of the current information technology revolution and the new military revolution, deeply understand the inherent relationship between productivity and combat effectiveness, the market and the battlefield, grasp the working mechanism and laws of the integration of military and civilian networks, and promote the formation of a pattern of deep integration and development of military and civilian networks with full factors, multiple fields, and high efficiency.
Studying President Xi’s important speech has given leaders at all levels a strong sense of mission and urgency. Leaders of a certain air force brigade of the Eastern Theater Command, a certain armed police unit, and the Shenyang Joint Logistics Support Center said that they should actively adapt to the requirements of informatization, strengthen Internet thinking, and continuously improve their ability to grasp the laws of the Internet, guide online public opinion, control the development of informatization, and ensure network security. The Party Committee of a Red Army Corps of the Xinjiang Military Region has decided to include Internet information work in the Party Committee’s key work plan and important agenda, and use the Internet to solve the problems of “difficult, slow, and complicated work” that officers and soldiers strongly reflect.
Talent is the key to promoting the construction of a cyber power. A scientific and technological personnel of a unit of the Strategic Support Force said that in today’s world, network information technology is developing rapidly and has become a competitive highland for global technological innovation. We must continuously improve our own capabilities and qualities, focus on cutting-edge technologies and key core technologies, and work hard to overcome difficulties. A group of people from the Party Committee of a combat support ship detachment of the South China Sea Fleet said that it is necessary to study and formulate an overall plan for the development of talents in the field of cyber security, promote the reform of the talent development system and mechanism, and let the creative vitality of talents compete and burst out, and their wisdom and talents fully flow.
Informatization brings new opportunities for strengthening the military in the new era. During the study and discussion, the officers and soldiers said that they should firmly establish the idea of information-led and system construction, take positive and proactive actions, unswervingly take informatization as the development direction of the modernization of the military, take the network information system as a starting point, promote the leapfrog development of our military’s informatization construction, and comprehensively improve our military’s system combat capabilities.
(Reporter Zhang Kejin of the PLA Daily, special correspondent Wang Xuechao, correspondents Zheng Guangbin, Li Hengjian, Chen Hongjia, Wan Yongkang, Zhang Qiang, Yu Wenbin, Li Yunfeng, Meng Zhuolin, Li Jiahao, Tan Wenwei, Wang Yuting, Cao Zhiguo, Xu Fengfang, Hou Wei, Chen Zhi, Luo Kunkang, Li Guolin, Ma Yixun, Zhao Lei, Yang Guiliang)
現代英語:Editor’s Note: In recent years, in local wars such as the Syrian War and the Nagorno-Karabakh conflict, a large number of unmanned weapons and equipment have been deployed on the battlefield, announcing to the world that unmanned warfare “has arrived in the future”. New weapon platforms dominated by unmanned technology, such as drones, robots, and unmanned submarines, are influencing the future direction of combat development, and are likely to shake the status of human beings as the protagonists of wars for thousands of years. Will humans be marginalized in future wars? How to explore the winning mechanism of intelligent warfare? Looking forward to your participation in the discussion.
Square
Unmanned combat is the trend
■ Liang Song
Looking ahead to future wars, unmanned battlefields will inevitably evolve to a higher level, the traditional combat system built with humans as the main body will likely be subverted, and future battlefield confrontations will be dominated by unmanned combat systems.
The evolution of war tools determines
In order to achieve superiority over the enemy on the battlefield and to kill people instead of being killed by people, humans always take the lead in applying emerging technologies to the military field, and spare no effort to promote the upgrading and evolution of various war tools and even subversive changes. At present, a new round of scientific and technological revolution has once again triggered changes in war tools. Its outstanding feature is that human intelligence is constantly embedded in weapon systems in the form of programs, algorithms, rules, etc., and the combination of people and weapons has ushered in a historic change. People and weapon platforms are gradually physically separated, and the autonomy of weapons and equipment has been significantly improved. They have begun to have a series of intelligent features such as calculation, analysis, planning, decision-making, command, and control, thus gradually getting rid of their dependence on human control. In 2016, the Russian army used robot troops in an organized manner on the battlefield in Syria, and captured high ground that was difficult for human soldiers to capture in 20 minutes, becoming the world’s first battle example in which robots were put into the battlefield in an organized manner. Driven by the development of science and technology, human work such as thinking, making decisions, and clicking buttons is also being rapidly replaced by intelligent war tools, and unmanned combat is coming to us in big strides.
Global and multi-dimensional battlefield confrontation traction
Based on the constant pursuit of strategic advantages and interests, human beings continue to expand new fields and explore new spaces, from shallow to deep, from tangible to intangible, from macro to micro, polar regions, deep sea, space… all have been set foot by human beings one by one. At the same time, human beings have also rapidly led wars to new spaces, pushing wars from plane to three-dimensional, from reality to virtuality. Modern wars are increasingly showing the distinctive characteristics of full-domain multi-dimensional integrated confrontation. Compared with traditional spaces such as land, sea, and sky, emerging spaces often exceed the range that human beings can bear physiologically and psychologically. Tangible spaces such as space, polar regions, deep sea, high altitude, and ultra-micro are difficult for humans to reach or even if they reach them, they cannot survive for a long time, and it is even more difficult to carry out operations; virtual spaces such as networks, information, and psychology are everywhere but elusive. Faced with the ever-changing information network world, humans are not only unable to control it by their own abilities, but will also be drowned in the ocean of information. The great expansion of battlefield space and the complex confrontation in all domains and dimensions have put forward urgent requirements for the acquisition and processing of massive information, real-time and accurate command and control, unimpeded access to virtual and real space, and accurate and efficient combat release. Modern warfare has to rely heavily on intelligent unmanned combat systems in all aspects such as reconnaissance, control, attack, and evaluation. Driven by battlefield confrontation and technological development, unmanned combat forces have gradually integrated reconnaissance, attack, and defense functions, covering the entire domains of land, sea, air, space, and the Internet. Clustered, intelligent, and autonomous highly mature robot legions will enter the war stage. The original combat system built with humans as the main body will be gradually deconstructed, and unmanned combat systems will become the main confrontation parties on future battlefields.
Intrinsic drive to reduce casualties
No matter how war develops, its violence cannot be changed. As long as humans are involved in war and on the battlefield, they will inevitably be hurt or even lose their precious lives. Faced with the extremely high risk of war, the nature of seeking benefits and avoiding harm drives humans to find their own “substitutes”. From simple stones and sticks to replace hands and feet, to robots to replace human soldiers, this process continues to spiral and will continue until the “beast” of war disappears from human society. In the context of peace and development becoming the theme of the current era, liberating soldiers from dangerous and boring combat tasks and reducing casualties in war has become an issue that powerful countries attach great importance to. At present, the world’s military powers are making every effort to promote the development and use of intelligent unmanned weapon systems. Various types of drones, unmanned vehicles, unmanned boats, etc. are equipped in large numbers in the army, and some have even formed special unmanned combat units. In recent local wars and armed conflicts, unmanned equipment has frequently appeared and shined. Just as a product will become a hot seller once it is recognized by the market, the outstanding performance of unmanned equipment and unmanned combat on the battlefield will also strongly promote their further expansion and iteration. Ultimately, the accumulation of quantity will bring about a qualitative leap, and unmanned combat will be the general trend.
Opposing Side
Unmanned combat still relies on humans
■ Hong Huajie
On future battlefields, although unmanned systems will be ubiquitous, wars originate from people, serve people, and are subordinate to people. People will still be the core of future wars, and unmanned combat will still be dominated by people.
War planning is designed by people
In information-based and intelligent warfare, the role of unmanned weapons and equipment is becoming increasingly prominent, but this does not mean that the role of humans in war is weakening. War is the embodiment of national will and the continuation of politics. No matter how the scale and style change, war is a contest of national will and national spirit dominated by people, and has the essential attributes of serving and being subordinate to politics. The military intelligence of the core key technologies of unmanned combat is essentially intelligence designed by humans. From intelligent environmental perception and target detection represented by deep learning to mission planning, autonomous control and collaborative control, the intelligent system is full of models and algorithms designed by humans. The emergence and development of unmanned weapons and equipment have given weapons the “subjective initiative” given by humans, but this “subjective initiative” can never be compared with human subjective initiative. People are good at thinking, reasoning and other “wisdom” abilities, which play a key role in high-level task planning, complex scenarios and situation analysis. In many cases, people are still irreplaceable, especially as scientific and technological development promotes the expansion of struggle methods to cross-domain and multi-means. Wars need to combine political, economic, diplomatic and other factors to effectively control and adjust the scale, intensity and process of operations. People are needed to carefully grasp the timing of stopping, the scale and intensity of war. With the development of artificial intelligence technology in the future, human intelligence will further extend to intelligent unmanned weapons and equipment, but the situation that weapons and equipment are dependent on and obey people will not change fundamentally.
Battle coordination is led by people
Humans are the initiators of war and the coordinators of the war situation. Unmanned weapons and equipment are essentially “unmanned platforms and manned systems”, with the people on the platform moved to the remote control end. Unmanned weapons and equipment will not set combat objectives and combat methods on their own. They are more like puppets, and humans are behind them controlling the puppets with thin strings. Therefore, unmanned warfare is largely a competition between unmanned weapons and equipment fighting on the front line and command decision-makers relying on intelligent technology to make command decisions at the back end. It is a competition between unmanned equipment systems supported by high technology and a new combat mode. Intelligent systems can make binary judgments on known situations to a certain extent, but the judgment of unknown situations cannot be separated from humans. Although future intelligent weapons can be operated without human on-site control, when intelligent weapons and equipment are put into battle, when to change the direction of attack, how to control the rhythm of war, when to withdraw from the battle, etc., can only be decided by humans in the end. People are always the controllers of equipment and the active factors to give full play to the advantages of equipment. The smarter the weapons and equipment, the more high-level commanders are needed. Therefore, battlefield confrontations can be unmanned, but war control must be human.
War ethics requires people to be the priority
War ethics is the moral cornerstone supporting modern war law. With the large-scale use of unmanned systems in war, human intelligence has begun to be transferred or materialized more to weapons and equipment. The long-range and beyond-visual-range strikes have gradually weakened human resistance to mutual killing. People can carry out combat operations off-site, non-intuitive, and non-contact, which has lowered the threshold for war decision-making and weakened battlefield moral constraints. In 2010, the US military stationed in Afghanistan used drones to track, monitor and analyze a transport convoy for 3 and a half hours, and finally determined that the convoy was providing support to the Taliban and carried out an attack. However, it was later confirmed that the people in the car were not militants, but civilians including women and children. According to estimates by the Brookings Institution in the United States, the ratio of civilian deaths to militants in the US military’s use of drones to combat terrorists in northwestern Pakistan was as high as 10:1. This scenario that may lead to large-scale civilian casualties is something that humans do not want to see. With the continuous advancement of unmanned combat technology, unmanned weapons and equipment need to be constrained by corresponding laws and regulations. The core of the ethical relationship between man and machine in intelligent warfare should be “people-oriented.” Only when humans always truly control the “right to fire” of intelligent weapons and make unmanned weapons and equipment operate according to human ideas can we ensure the correct implementation of human-machine ethical standards.
Reviews
In his book The Inevitable, Kevin Kelly called the changes in the digital field a kinetic energy, which not only emphasized the power of internal evolution, but also indicated the general trend of human social development.
Regarding many issues such as the changes in the war form brought about by military intelligence, especially the intelligent warfare based on unmanned weapons and equipment, it is still difficult to come up with a clear answer based on current combat practices and technical conditions. Facing the rolling wave of intelligence, we do not need to sigh, let alone stand still. Only by focusing on actual combat, letting go of thinking, and gathering wisdom can we strangle the throat of the god of war.
“Military academies are born for war and built for war.” At the opening ceremony of the 2019 military academy presidents’ training, President Xi Jinping proposed the military education policy for the new era, which pointed out the direction for the training of high-quality and professional new military talents in military academies. At present, the war situation is accelerating towards informatization and intelligence. What kind of soldiers are needed to win the future intelligent war and how military higher education can cultivate talents adapted to intelligent warfare are major issues facing us.
Warfare is accelerating towards intelligence
The war form is a stage-by-stage manifestation and state of war history, marked by the technical attributes of the main combat weapons. So far, after experiencing cold weapon war, hot weapon war, and mechanized war, the war form is accelerating towards information-based and intelligent warfare. The increasingly widespread application of advanced technologies such as big data, the Internet of Things, artificial intelligence, biotechnology, and brain science in the military field is becoming an important driving force for the new military revolution, giving rise to new unmanned, autonomous, and intelligent war forms, and changing the traditional war winning mechanism. In 2014, a foreign military think tank released a research report titled “20YY: War in the Age of Robots”, which believes that a storm of military reform marked by intelligent armies, autonomous equipment and unmanned warfare is coming. It will develop intelligent combat platforms, information systems and decision support systems, as well as new weapons such as directed energy, hypersonic, bionics, genetics, and nanotechnology. By 2035, an intelligent combat system will be initially established, and by 2050 it will develop to an advanced stage, fully realizing the intelligence and even unmanned nature of combat platforms, information systems, and command and control, and new weapons such as bionics, genetics, and nanotechnology will enter the battlefield, and the combat space will be further expanded to biological space, nano space, and intelligent space.
In recent years, with the continuous deepening of research on the human brain, brain-computer interface technology is becoming more mature. In the future, information exchange between humans and the outside world will no longer be limited to the senses. Chips can also be used to achieve direct information exchange between the brain and the outside world. People and things are fully interconnected. Humans may surpass the Internet and the Internet of Things and enter the intelligent era supported by brain networking. In the era of brain networking, the brain of soldiers is directly connected to combat platforms, information systems, and decision support systems. With the assistance of technologies such as quantum computing and cloud platforms, decisions are made. The targets of attack will be expanded to human thoughts and actions, and matter, energy, information and mind will be integrated. Some domestic experts believe that with the help of artificial intelligence technology, the winning mechanism of future wars will change from “information-led, system confrontation, precise strikes, and joint victory” in information warfare to “intelligence-led, autonomous confrontation, traceability strikes, and cloud brain victory” in intelligent warfare. After matter, energy, and information, cloud intelligence that integrates man and machine will become the key to determining the outcome of wars. This transformation of the form of intelligent warfare is accelerating, and any hesitation may bring unimaginable consequences.
However, it should be noted that no matter how the war develops, people are always the most fundamental factor. The intelligent warfare will change the functions and roles of soldiers, and will place higher demands on the ability and quality of soldiers. Cognitive ability may surpass knowledge and skills to become the core ability of soldiers.
Intelligent warfare requires the comprehensive quality of soldiers to be upgraded and restructured
According to the talent growth cycle, the military personnel currently receiving higher education will become the main force of combat training in more than 10 years, and will also become the first batch of main forces to meet the challenges of intelligent warfare. At present, there are still some deficiencies in the design of talent training goals in our military higher education, and insufficient attention is paid to the ability to adapt to the changing intelligent battlefield in the future. There is still a certain gap between the talent training goals and the needs of intelligent warfare. On July 23, 2020, when President Xi visited the Air Force Aviation University, he emphasized the need to persist in cultivating people with morality and educating people for war, strengthen military soul education, strengthen fighting spirit, and comprehensively lay a solid foundation for the ideological and political, military professional, scientific and cultural, physical and psychological qualities of pilot trainees. In order to implement President Xi’s important instructions and meet the needs of future intelligent warfare, it is urgent to build a higher-level military talent training goal with thinking ability as the core and accelerate the upgrading and reconstruction of the comprehensive quality of the military.
Intelligent warfare is a complex system that integrates multiple fields. Its intelligence-based characteristics and iterative and changing development trend are changing the role of soldiers in war. Soldiers may gradually move from the front stage of war to the backstage, from direct face-to-face combat to human-machine collaborative combat, and from charging and trapping on the front line to planning and designing wars at the back end. To be competent in human-machine collaboration, war planning and design, and other functional roles, in addition to ideological and political and physical and psychological requirements, in terms of military professionalism and scientific culture, soldiers should focus on improving the following five aspects of knowledge and ability: First, a multidisciplinary knowledge structure, mastering the core principles of multiple intelligent warfare-related disciplines such as nature, military, cognitive psychology, and network intelligence, and being able to integrate knowledge across disciplines to guide military practice; second, strong cognitive ability, with logical thinking, critical thinking, and systematic thinking capabilities, and the ability to use scientific methods to analyze, infer, and solve operational problems; third, human-machine collaboration capabilities , deeply grasp the characteristics and laws of intelligent warfare, skillfully use combat platforms, command and control systems, and decision support systems, be able to control a variety of intelligent weapons and equipment, and realize efficient human-machine collaboration; fourth, innovation ability, with keen scientific and technological perception and strong creativity, be able to grasp the forefront of science and technology, innovate combat methods, and master the laws of war development; fifth, self-growth ability, be able to accurately recognize oneself, rationally plan military careers, freely use information means to acquire new knowledge, new technologies, and new methods, constantly improve knowledge structure, enhance cognitive ability, and better adapt to the complex and changeable development of the military revolution.
Finding the Focus of Military Higher Education Reform
At present, the overlapping advancement of informatization and intelligence has brought greater complexity to the talent training work of military academies. It is necessary to meet the actual needs of informationized warfare and lay the foundation for adapting to intelligent warfare. The following tasks should be focused on.
Reconstruct the curriculum system. The curriculum system supports the formation of the knowledge structure of talents. In order to cultivate military talents that meet the needs of intelligent warfare and achieve the training goals of military expertise and scientific culture, we should break the practice of designing a curriculum system based on a single major and establish a “general knowledge + direction” curriculum system. General knowledge courses are based on existing natural science and public courses, and add courses such as mathematical logic, mathematical modeling, critical thinking, network foundations, artificial intelligence, cognitive neuroscience, and system engineering to establish a cross-domain and cross-disciplinary horizontal curriculum system, expand the knowledge of students, build a knowledge structure urgently needed for intelligent warfare, and lay a broad knowledge foundation for their lifelong growth. Direction courses are to establish a discipline and professional direction, set up a vertical course system of mathematics and science, professional foundation, and professional positions, build a solid professional background, and cultivate students’ ability to use professional theories to solve complex combat training problems. The “general knowledge + direction” course system helps to build a “T”-shaped knowledge structure and meet the needs of military talents to adapt to the diverse and changing intelligent warfare.
Deepen classroom reform. Educational neuroscience believes that education is the reshaping of students’ brains, and the classroom is the main battlefield for reshaping students’ neural networks. It plays an irreplaceable role in the formation of high-level cognitive abilities required for intelligent warfare. Continuously deepening classroom reform is the current key task of military higher education. It should be noted that a classroom with only knowledge understanding is far from being a good classroom. All human behaviors, thoughts, and emotions are controlled by the brain. Every piece of knowledge, thinking, and emotion corresponds to a specific neural network of the brain. Therefore, classroom reform should focus on students’ learning, follow the cognitive laws of the human brain, start with attracting and maintaining attention, establish a scientific thinking framework, and mobilize students to think actively. Generally, the teaching methods that aim at high-level abilities have a common model – problem-driven heuristic teaching. Commonly used problem-based teaching methods, project-based teaching methods, and inquiry-based teaching methods all belong to this model. Therefore, the main path to promote classroom reform is to develop unknown, novel, and interesting questions and stories for students, design a thinking framework that aims at logical reasoning, critical thinking, reflective ability, creative ability, and learning ability, inspire students to think actively under the guidance of the framework, and then supplement it with the output process of speaking and writing, and finally achieve the goal of internalizing knowledge understanding and forming high-level abilities.
Promote all-round education. Modern educational theory not only regards the classroom as an important battlefield for education, but also regards all time and space outside the classroom as important resources for cultivating students. These time and space outside the classroom not only support classroom teaching and promote the formation of knowledge and ability, but are also important places for cultivating non-intellectual abilities. Colleges and universities should make full use of these time and space, clarify specific training goals, focus on going deep into the troops, getting close to actual combat, and highlighting practicality and creativity, and scientifically design education and training plans. Focus on giving full play to the management and education advantages of military academies, explore and establish a student management model, and promote the cultivation of students’ leadership and management capabilities; continuously enrich the second classroom, build an innovation platform, create more opportunities for independent practice, and enhance students’ innovation capabilities; make full use of various large-scale activities to cultivate students’ competitive awareness and teamwork capabilities; strengthen the construction of management cadres, improve scientific management capabilities, and be able to effectively guide students to carry out time management, goal management, emotional management, psychological adjustment, habit formation, etc., to help students improve their self-management and independent learning capabilities.
In short, education is a systematic project. The above are only three aspects to break through the shortcomings of talent training in the intelligent era. To truly solve the problem, military academies need to carry out systematic reforms to effectively support the achievement of talent training goals in strategic planning, quality management, personnel quality, teaching conditions and other aspects. This requires us to continue to explore and innovate, continuously improve the level of school management and education, and strive to open up a new situation in the construction and development of military academies.
In the picture of human history, war and military development are particularly eye-catching. When we cast our eyes on the long river of history of war, it is not difficult to find that in the magnificent world changes, the strength of the army has always been accompanied by the prosperity of the country, and every era has ushered in a first-class army. Exploring and studying the era trajectory of the construction and development of these armies and finding things with regularity will undoubtedly provide us with important inspiration and reference for achieving the goal of the 100th anniversary of the founding of the army as scheduled and accelerating the construction of the people’s army into a world-class army.
Driven by military needs, strengthening capabilities is a top priority
Military capability has always been the most critical part of the national security system. From the development of the military construction in major countries in the world, it can be found that military construction has always taken strengthening military capability as an urgent task. Military capability has been generally regarded as the ultimate standard for measuring military strength and the primary task of war preparation. In recent years, some military powers have continuously issued forward-looking military capability assessment and forecast reports, emphasizing the vigorous development of military deterrence and combat capabilities. It can be said that strengthening military capability is at a critical period of competition, which is a rare opportunity for latecomer countries. History and practice tell us that the construction of first-class military capability needs to seize the window period of transformation from quantitative accumulation to qualitative leap, take the historical mission of the army as the starting point, and take deterring and winning the war as the standard. At present, major military powers have focused on the needs of strategic application, continuously expanded into space, far sea, deep earth, network, electromagnetic and other spaces, planned ahead of time, stepped up efforts to fill the “gap” of new combat forces, and developed new domains and new qualities with decisive influence on military technology and equipment means, aiming to seize the “new commanding heights” of future military competition and build a lasting military advantage, which also reflects that the military capability structure will undergo a fundamental mutation and leap. For example, the US military has accelerated the development of military capabilities in the direction of “integration, both offensive and defensive, doubling advantages, rapid and precise”, attempting to achieve the deep integration of information, firepower, defense, guarantee and control, and form a system combat capability of one-time combat, multi-domain joint and rapid support.
Taking military training as the starting point and military training as the central task
Only when a soldier is familiar with the skills can he be good at fighting; being prepared for the unexpected is the way to keep the country safe. Training and preparation for war are the central tasks and normal manifestations of a first-class army. Only by real training and real preparation in peacetime can we be deployed, deployed and win in wartime. If a country does not make great efforts to improve the army’s ability to win and be ready to deal with possible military conflicts and potential war threats at any time, it will fall into a passive situation of being beaten once a war breaks out, and its national security and development interests will be greatly damaged. The practice of military construction in some countries in the world today has proved that first-class training and preparation for war must always be based on missions and tasks, insist on using the leading role of military struggle to control combat preparation and continuously exert efforts to actual training and preparation, use the integration of training and combat to control actual combat training to leap forward to high intensity, normalization and systematization, and use the ability to win battles to control the combat effectiveness standards to advance to high, deep and practical levels, so as to truly focus on preparing for war and invest various resources in preparing for war. In recent years, the development of the Russian army has benefited greatly from the consistent adherence to training to shape momentum, strengthen preparations, and promote combat, especially the high attention paid to carrying out a series of targeted pre-war training to enhance the cluster deterrence capabilities in various strategic directions, thus changing the army’s earlier image. It is worth noting that major military powers are taking the promotion of military intelligent means as an important part of training and preparation for war, focusing on liberating and developing combat effectiveness, integrating key technologies such as artificial intelligence and autonomous technologies of unmanned combat systems into preparation for war, guiding the implementation of the modernization tasks of combat theory, military personnel, and weapons and equipment, so as to accelerate the formation of a new pattern of modernization of the system of combat readiness and combat capability, and presenting distinctive contemporary characteristics of training and preparation for war.
Focus on integration and energy gathering, and make system deployment the key point
The joint operations of land, sea, air, space and power grids and the multi-domain integrated system operations characterized by cross-domain interaction urgently need to plan and construct an integrated combat system layout with deep integration of “detection, attack, control, defense and protection” from the “long term” to form a system victory. This has become the focus of major military powers in promoting the construction of first-class armies. In recent years, the concepts of “air-sea integrated warfare”, “joint all-domain operations” and “multi-domain operations” proposed by the US military are actually the systematization products of organically combining sea, air and space-based forces, land-based strike forces and network and power forces, which means that the US military is fully committed to optimizing the global layout of military forces through cutting-edge technological advantages in order to welcome the arrival of a new form of war. Today, the era of winning by relying solely on the advantages of combat units has ended. Instead, a combat force system that combines long, medium and short distances and integrates soft and hard forces has been built to ensure that key areas are controlled by the offensive and defensive advantages of the system. Therefore, the key to the systematic layout of joint operations is to gather the combat energy advantages of different domains and quickly integrate each combat module into the system operations to achieve a composite offensive and defensive situation layout with system efficiency increase, overall linkage, precise energy release and mutual coordination. In recent local wars and armed conflicts, the role of information networks as “hinge” and “enabling” in system layout has been revealed, enabling multiple combat forces to be autonomous, adaptive, interactive, and intelligently make decisions and control. In future operations, we should strengthen the intelligent advantage layout of “cloud” and “network” aggregation, skillfully combine tangible forces with intangible “cloud” and “network” deployment, and accelerate the formation of a combat layout that combines virtual and real forces and disperses form and gathers force, which will become a new model and trend of system deployment, integration and aggregation.
The main purpose is to gain an advantage, and to prioritize joint control.
Modern warfare begins with and is highly dependent on the comprehensive seizure and maintenance of battlefield control, which reflects the special significance of the struggle for control over the battlefield to the dominance of war. Planning key joint operations for control over the battlefield plays a crucial and decisive role in the struggle for control over key domains. Among them, gaining information advantage is the key to joint control over the battlefield. Military powers such as the United States and Russia generally believe that various combat forces in the era of informatization and intelligence must take the control advantage of multi-domain space as the basis for carrying out multiple tasks. The Russian military emphasizes improving the timeliness and anti-interference of joint combat force projection, and defeating opponents through cross-domain coordination and concentration. This shows that when fighting for control over the battlefield, we must first maintain the initiative strategically, that is, strategically establish the direction, goals and paths for obtaining joint control over the battlefield, stipulate the means and methods for creating and using overall advantages, and form an advantageous position in intelligent technology and weapon systems, information acquisition and utilization, and control capabilities. At present, some military powers use “big data intelligent technology and super network technology” as the “key catalyst” for seizing control over the battlefield, intending to form a decisive military advantage. This is a major strategic shift for military powers since the informatization of military affairs. In the future struggle for power, only by building intelligent efficiency chains and control relationships with parallel flow of material information and high aggregation can we promote the emergence of joint power-control efficiency through the linkage and energy-gathering effect.
Focusing on battlefield confrontation, improving efficiency is the key factor
Military activities and combat forces are inseparable from the physical and virtual battlefields of multi-dimensional space confrontation, and the rapid integration of multiple domains to form an integrated battlefield system makes the pursuit of maximizing the effectiveness of confrontation the key to battlefield confrontation and a topic that needs to be highly valued in building a first-class army. In recent years, major military powers have accelerated the construction of comprehensive information systems covering the full-dimensional space of the battlefield to pursue the overall benefits of battlefield confrontation. At present, the US military already has nearly 10,000 intelligent unmanned information network systems in the air and on the ground, and they are still being upgraded. With a view to solving bottlenecks such as the difficulty of responding to command and control in the informationized battlefield and the easy paralysis of the combat system, the future focus of battlefield system construction will be to rely on intelligent systems with rapid and autonomous decision-making, efficient information processing, precise coordinated operations and automatic control of weapons and equipment, establish a more complete and flexible control system and operation mechanism, and focus on doubling the effectiveness of battlefield cognition, command and control, precision strikes and information attack and defense confrontation. In addition, around the control of battlefield space, future battlefield confrontations will present a “flash” in terms of power, highlighting the joint deterrence of multiple forces, quickly accumulating power, and suddenly exerting force to form a soft and hard containment trend; “fast integration” in terms of means, effectively integrating and using multiple means, gathering combat energy in different domains, and forming a multi-dimensional linkage and precision attack to assist defense; “fast attack” in terms of action, real-time scenarios, efficient decision-making, seizing favorable opportunities, and forming a local battlefield advantage of rapid and high-intensity suppression in the entire domain. This is the focus of the current major military powers in studying and applying battlefield confrontation, and it will also become a new scenario and new content of combat that both sides of the confrontation will pay attention to.
Taking foresight and prediction as the first step and taking scientific and technological innovation as the strategic support
With the rapid development of a new round of scientific and technological revolution, industrial revolution and military revolution, the leading role of artificial intelligence, big data, cloud computing and other technical fields has become prominent. Major military powers pay more attention to placing continuous promotion of innovation in an important position, and advance systematic planning and construction in terms of innovation concepts, models, standards, systems and applications, providing important strategic support for building a first-class army. After World War II, some countries became military powers. One of the most important fulcrums was the extensive use of the latest science and technology, which produced new domains and new qualities of combat forces and promoted the leapfrog development of military combat effectiveness. At present, major military powers insist on using cutting-edge technologies to make innovative breakthroughs, step up the research and development of faster, more intelligent information and more destructive combat platforms, in an attempt to maintain an absolute leading position. It should be noted that the world’s century-old changes are accelerating, and the new military revolution is in the ascendant. This makes it more important to judge the direction of scientific and technological innovation. The role of scientific and technological innovation as an accelerator for promoting the construction and development of a first-class army is more obvious, especially scientific and technological innovation is shifting to key areas and key means, implementing key breakthroughs, promoting a leap in the combat capability of the multi-dimensional attack and defense system, and accelerating the overall transformation of the military field. This requires accurately predicting the new forms and characteristics of future wars, continuously applying advanced technological achievements, and striving to promote a fundamental change in the combat power generation model, accelerating the formation of a strong asymmetric victory and strategic balance of power. This is the first move and strong support for the construction of a first-class military. (Xu Jun)
Recently, the Russian Ministry of Defense announced the establishment of the “Era Military Innovation Technology Park”, which focuses on scientific research, testing and simulation of advanced weapons, military and special equipment. Coincidentally, the US military is also stepping up the development of the “Soldiers Build Intelligence System Military Training Support” project, hoping to better assist officers and soldiers in conducting military intelligence training by providing equipment, simulators and simulation modeling services. The frequently mentioned military simulation technology has attracted attention from all parties. With the rapid development of cloud computing, big data, artificial intelligence and other technologies, military simulation technology has made significant progress in equipment construction, military exercises, combat training and logistics support. At present, major military powers have recognized the huge application prospects of simulation technology in the military field and regard it as an “advanced intelligence contest” in modern warfare.
The “virtual battlefield” can also deploy troops
Once upon a time, we all “learned about war from war”. The emergence of military simulation technology has allowed us to learn about future wars from the “virtual battlefield”.
Simulation technology mainly relies on computer and other equipment platforms, and uses mathematical models to conduct scientific research, analysis, evaluation and decision-making on issues that need to be studied. Military simulation systems are simulation systems built specifically for military applications. They can conduct quantitative analysis of combat elements such as land, sea, air, space, electricity, and the Internet, the performance of weapons and equipment, and combat operations, and then accurately simulate the battlefield environment, present relevant battlefield situations, and achieve effectiveness evaluation of the combat system and command decision-making assistance.
At present, military simulation systems have become an effective means of studying future wars, designing weapons and equipment, and supporting the evaluation of tactics, and they run through the entire process of weapons and equipment development and testing. In recent years, military simulation technology has been increasingly regarded as a multiplier for improving combat effectiveness and one of the key technologies for national defense security and troop construction and development.
The United States has always listed modeling and simulation as an important key defense technology. As early as 1992, the United States announced the “Defense Modeling and Simulation Initiative” and established a special Defense Modeling and Simulation Office. The United States also specifically listed the “integrated simulation environment” as one of the seven driving technologies to maintain the US military advantage. At the same time, European countries attach great importance to the development of military simulation technology, and strive to continuously improve simulation methods in the process of developing a new generation of weapon systems, thereby improving the comprehensive effectiveness of weapon equipment construction and development.
In fact, military simulation technology has allowed people to fully learn about future wars in experiments. Before the outbreak of the Gulf War, the US Department of Defense used military simulation technology to analyze and determine the direct consequences of Iraq igniting all oil wells in Kuwait, which had a profound impact on the US military’s formulation of the Gulf War combat plan. In the integrated ballistic missile defense system project carried out by the US military, modeling and simulation methods are specifically used to conduct a preliminary assessment of the ballistic missile defense system. At the end of 2017, the US Department of Defense’s Advanced Research Projects Agency invested 12.8 million US dollars specifically for the construction of virtual simulation space battlefields. The US Army also spent 57 million US dollars to develop the Army Infantry Training System – this immersive military virtual simulation training system can provide soldiers with a more realistic battlefield combat simulation environment.
A brainstorming session to plan operations
From artillery simulation, aircraft simulation, missile simulation to today’s various types of weapon system equipment simulation and combat simulation, while simulation technology continues to meet the needs of military applications, it is also rapidly developing in the direction of virtualization, networking, intelligence, collaboration and universalization. In order to continuously improve military simulation calculation methods and improve simulation technology, people are constantly launching a “brainstorming” to plan operations.
Mathematical modeling algorithm. Mathematical model is the basis of simulation. To carry out simulation, we must first build a mathematical model of the object to be simulated. At the same time, the correctness and accuracy of the mathematical model directly affect the credibility of the simulation calculation results. In recent years, the rapid development of artificial intelligence technology has provided new ideas for mathematical modeling. Introducing artificial intelligence to build mathematical models can not only effectively improve the realism, reliability and accuracy of simulation models, but also further improve the efficiency of modeling and simulation.
Virtual reality technology. With virtual reality technology, people can interact with objects in a virtual simulation environment through related equipment, thereby creating an effect of “immersion” in the real environment. The augmented reality technology that has emerged in recent years has further increased the user’s perception of the virtual simulation system, and can superimpose virtual objects, scenes, and information generated by the military simulation system onto the real scene. The U.S. Army is currently relying on virtual reality and augmented reality technologies to develop the future overall training environment to achieve seamless, mixed immersive combat training.
Network grid technology. The realization of military simulation is inseparable from the strong support of computers, local area networks, software engineering and other technologies. The distributed interactive simulation that integrates simulation equipment or systems of different types in different locations into a whole provides a more realistic application environment for military simulation. In recent years, grid technology that can realize the rapid transmission of various types of information and resource sharing has become a research hotspot for military simulation. The US Department of Defense has begun to use the “Global Information Grid” plan to establish a military grid that communicates various information elements on the battlefield and realizes the dynamic sharing and collaborative application of various military network resources.
Winning the war before it starts
The future information warfare is an integrated war that is carried out simultaneously in multiple dimensions such as land, sea, air, space, electricity, and the Internet. Not only is the battle structure complex and the weapons and equipment diverse, but it also places higher demands on the combatants and the use of tactics. Only by building a “virtual battlefield” for future wars with the help of military simulation technology and realizing the scientific coordination of factors such as the scale of war, the course of war, war investment, the number of combatants and weapons and equipment, the targets of attack and the intensity of attack, can we be sure of victory before the war begins.
In the field of combat experiments, the U.S. military has fully reduced the losses caused by improper combat plans and action plans through a large number of computer simulation evaluations and iterative optimizations. The Russian military’s combat regulations and tactics are also “optimal battlefield solutions” obtained through scientific deduction and simulation calculation using mathematical models. Through military simulation analysis and evaluation, battlefield commanders and fighters can quickly understand the trend of war simulations and carry out effective responses according to various changes in the “virtual battlefield”, thereby effectively improving the effectiveness of combat experiments.
In the field of military training, individual soldier training can be carried out through an immersive virtual simulation training environment, which can be as close to the battlefield environment as possible and effectively improve the training effect. In recent years, the US Army has specially opened a “simulated immersion” training course in the “Advanced Course for Officers”. Through the implementation of virtual simulation military training, the organization and implementation of training are not restricted by time and weather conditions. The distributed training simulation system can even enable trainees in different locations to participate in the training together. By modeling and simulating the specific battlefield environment, tactical background and enemy forces, the military training system can also provide trainees with a more realistic battlefield perception.
In the field of equipment demonstration, the technical support of simulation systems is required throughout the life cycle of weapons and equipment development. At present, the United States has extensively adopted simulation technology in new weapon system development projects to fully support the development and testing, live-fire evaluation and combat testing of weapons and equipment. The U.S. Missile Defense Agency has further explored effective measures to deal with incoming missile threats through missile threat target modeling and simulation. The U.S. Navy simulates the operation of ship systems and crew members through mission analysis simulation software, and obtains simulation results for determining and optimizing the number of crew members. In the future, military simulation technology may become a new technological highland for the world’s major military powers to compete.
At the beginning of 2017, Master, known as the evolved version of “AlphaGo”, swept Ke Jie, Park Tinghuan, Iyama Yuta and other top Go players on the Go online platform, winning 60 consecutive games, setting off a “Master storm” and causing many people to worry. What humans are worried about is not that Go, known as the “last bastion of human wisdom”, will be conquered by artificial intelligence, but that artificial intelligence has subverted Go today, what will it subvert tomorrow? This is the concern that hangs in people’s minds.
Master’s consecutive victories over human masters are similar to the nature of computers proving the four-color theorem. They are all victories of computing power and algorithms. There is no need to worry too much that they will dominate and enslave humans. However, artificial intelligence is developing rapidly, and it is generally believed that strong artificial intelligence will come sooner or later. Nowadays, artificial intelligence has penetrated into every corner of life. It is not uncommon to use artificial intelligence in war. Since the arrival of the artificial intelligence era is inevitable, how we use it in future wars will become the key to victory. Whether artificial intelligence brings threats or development to mankind depends on how to use it. “The fake horse is not good at running, but it can reach a thousand miles; the fake boat is not good at sailing, but it can cross the river.” The integration of war technology and artificial intelligence may be the way of the future.
Development History of Artificial Intelligence
Artificial Intelligence Opens the Door to Intelligent Warfare
Master’s 60-game winning streak makes us think about how artificial intelligence will change our lives. Perhaps the following life scenarios will gradually become a reality:
When driving, you tell the location and the autopilot system takes you to your destination;
In hospitals, you see tug-trailer robots from the United States transporting medical equipment and “Big White” robots caring for patients;
After get off work, you press the “Go Home Mode” on your phone, and when you open the door, you find that the curtains are closed, the temperature is right, the lights are soft, the water is hot, and there is a cute home robot greeting you.
In fact, you can also use an unmanned aerial vehicle to carry a diamond ring and propose to your beloved…
We have been looking forward to this day for a long time.
The era of great development of artificial intelligence is here!
As early as shortly after the first computer came out, scientists predicted that the era of artificial intelligence would come. In 1997, when Deep Blue defeated Kasparov, this beautiful scene seemed just around the corner. However, in the second half of the 20th century, artificial intelligence research fell into a cold winter due to the failure of several attempts at technological innovation. The most recent cold winter, from the end of the 20th century to the first decade of the 21st century, was caused by the bottleneck encountered in the research of neural networks.
In recent years, everyone can clearly feel that the theoretical research and perceptible products of artificial intelligence seem to have suddenly “exploded” in a blowout manner: wearable devices have appeared in large numbers, intelligent robots have appeared frequently, the accuracy of machine face recognition exceeds that of the naked eye, companies such as Apple and BMW have worked together to develop driverless cars, and the United States and Europe have successively established projects to tackle the human brain…
The explosion of artificial intelligence projects is not a coincidence, but a leap forward after more than 10 years of silence. Ray Kurzweil, an American scientist who successfully predicted that robots will defeat human chess players, has predicted that the wonderful intersection point when artificial intelligence surpasses the sum of human wisdom will be in 2045.
So, how big an impact will this wave of artificial intelligence explosion have, how long will the impact last, and to what extent will it change human life?
From weak artificial intelligence to strong artificial intelligence. After Deep Blue dominated the chess field in 1997, artificial intelligence did not change the world as expected, and Deep Blue disappeared after more than 10 years of silence. Artificial intelligence has also remained at the stage of weak artificial intelligence and has not made any breakthroughs. This period of nearly 20 years has become the longest artificial intelligence winter to date. Some people joked that the greatest achievement in the field of artificial intelligence in the past 20 years is that Spielberg made the science fiction movie “Artificial Intelligence” that has captivated the world. Spielberg put all the rich fantasies of human beings about the future world into the movie world he created. Subsequently, a series of movies about artificial intelligence such as “Robot Butler”, “Super Hacker” and “Ex Machina” came into being. Artificial intelligence has begun to enter all aspects of human life. The use of artificial intelligence in industries such as medicine, education, services, manufacturing, and even in the military field has become common, which makes many military enthusiasts think about what artificial intelligence means to the military field and where it will go in the future?
“AlphaGo” only represents the latest achievements of artificial intelligence in the fields of deep learning of machines based on neural networks, high-performance computing and big data technology, and is a weak artificial intelligence. However, some military experts predict that the application of strong artificial intelligence in the future will bring about huge changes, just like the entry of big data five years ago. In the military field where competition and game are more intense, artificial intelligence has been increasingly moving towards the battlefield since the emergence of computers in the last century, promoting the advent of the era of intelligent warfare.
Artificial intelligence is taking big steps onto the battlefield
Artificial intelligence is an important branch of modern information technology. The world’s first programmable “Giant” computer was born in Britain during World War II. Its purpose was to help the British army decipher German codes. In recent years, artificial intelligence has been increasingly used on the battlefield, profoundly changing the face of war. In summary, the application of artificial intelligence in the military field is mainly reflected in the following five aspects:
Intelligent perception and information processing. The rapid development of micro-electromechanical systems, wireless sensor network technology, and cloud computing technology has further developed battlefield perception methods in the direction of intelligent perception and information fusion processing. The U.S. military, Russian military, French military, German military, etc. are all equipped with digital soldier systems with intelligent information perception and processing capabilities, such as the U.S. military’s “Night Warrior” and the Russian military’s “Warrior”. In fiscal year 2015, the U.S. Department of Defense’s Advanced Research Projects Agency added research and development projects such as the “cerebral cortex processor”. This processor simulates the structure of the human cerebral cortex to solve problems such as real-time control of high-speed moving objects. In the future, its application will greatly improve the autonomous action capabilities of robots and drones.
Intelligent command and control assists decision-making. The military of various countries develops various military information systems in order to build a powerful grid network information system and improve intelligent evaluation and decision-making assistance capabilities. The command and control automation systems of major military powers are constantly developing, pursuing stronger information and decision-making advantages than their opponents. In recent years, the US military has established a cyber command to vigorously strengthen its network attack and defense capabilities, focusing on the development of intelligent diagnostic information systems for network intrusions based on cloud computing, big data analysis and other technologies, which can automatically diagnose the source of network intrusions, the degree of damage to one’s own network and data recovery capabilities.
Unmanned military platforms. Western countries began to attach importance to the research and development and application of small drones, remote-controlled unmanned vehicles and unmanned boats during World War I. At present, the armies of more than 70 countries in the world are developing unmanned system platforms. The US military has equipped more than 7,000 drones, and more than 12,000 ground wheeled (or tracked) robots have been put into use on the battlefields of Iraq and Afghanistan. In the near future, the US military will achieve that ground robots account for one-third of its ground forces, and the carrier-based X-47B drone will account for one-third of the total number of carrier-based aircraft, further promoting the coordinated training and exercise between manned and unmanned platforms.
Bionic robots. Since the 21st century, robot technology has developed rapidly. Various bionic robots such as humanoid robots, robot fish, and robot insects have been continuously introduced and have been increasingly used in the military field. For example, the US military once tested a “big dog” robot on the battlefield in Afghanistan to help soldiers with accompanying support. The US Department of Defense upgraded it in 2013, increasing its load capacity to 200 kilograms, running speed to 12 kilometers per hour, bulletproof and silent. The Russian army recently plans to step up the development of humanoid robots that can drive vehicles and form a robot unit that can fight side by side with human soldiers.
Expanding people’s physical skills and intelligence. The cross-integration of information technology, new material technology and biotechnology will further expand people’s physical strength, skills and intelligence. For example, foreign militaries are developing mechanical exoskeletons to create “mech warriors” with doubled physical strength; and by implanting bioinformatics chips to improve people’s memory and reaction ability, so that human soldiers can better adapt to the highly informationized combat environment in the future.
Artificial intelligence will drive a new round of military reforms
When new military technologies, operational concepts, and organizational structures interact to significantly enhance military combat capabilities, it will trigger new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, giving rise to new war styles and changing the internal mechanism of winning wars.
It brings a new impact on the concept of war. The history of human warfare has gone through the era of cold weapons, the era of hot weapons, the era of mechanization, and the era of informatization. The development of artificial intelligence has accelerated the arrival of the intelligent era. Can intelligence be divided into high-level intelligence and low-level intelligence? Do armies with high-level intelligence have an overwhelming advantage over low-level intelligence armies? If the “mechanization” of people and the “humanization” of machines are two inevitable development trends, does it go against the traditional ethics of war for robots that can think to fight instead of humans? Artificial intelligence has unprecedentedly improved battlefield perception and information processing capabilities. Does the “fog” of war still exist on the high-tech battlefield? To understand these issues, the military field must have a brainstorming session.
It brings new inspiration to theoretical innovation. The material and technological basis of war is constantly updated, opening up new space for innovation in strategic theories and operational concepts, and constantly giving birth to new disruptive technologies in the field of artificial intelligence; the combined application of precision strike ammunition, unmanned equipment and network information systems has given birth to new intelligent combat theories such as “distributed lethality”, “mothership theory”, “combat cloud” and “swarm tactics”; relying on one’s own information advantage and decision-making advantage, how to cut off and delay the opponent’s information and decision-making loop in a decentralized battlefield network has become a core issue that must be solved to win in intelligent warfare.
Future Trends in Military Applications of Artificial Intelligence
With the development and application of strategic frontier technology fields such as information technology, nanotechnology, biotechnology, new materials technology, and new energy technology, artificial intelligence-related technologies will continue to mature and play an increasingly important role in the military field.
Artificial intelligence technology and equipment continue to make breakthroughs. Major countries have elevated artificial intelligence to the level of national strategy. The Office of the Chief Scientist of the U.S. Air Force has issued the “Unmanned Systems Horizon” technology assessment and forecast report for 2035, which believes that the automation, autonomy and remote control performance of various unmanned systems and combat platforms in the future will continue to make breakthroughs with the advancement of technology. In particular, with the advancement of technologies such as super-large-scale computing, quantum computing, cloud computing, big data, and brain-like chips, artificial intelligence information processing and control technology will be greatly developed, profoundly changing the proportion of artificial intelligence technology in modern warfare.
Artificial intelligence has given rise to the vigorous development of new combat forces. The widespread application of artificial intelligence systems and combat platforms will make artificial intelligence, as an important combat element, permeate the entire process of war and combat preparation, and further enrich the connotation of new combat forces. With the application of drone formations, unmanned submarine formations, battlefield robot soldier formations, and coordinated formations of unmanned and manned combat units on the battlefield, various types of “mixed” new combat forces will continue to emerge. With the construction and application of military Internet of Things, military big data, and cloud computing technology in the military field, artificial intelligence combat forces such as “cloud brain”, “digital staff”, and “virtual warehousing” for information support, command and control, effect evaluation, and logistics support will play an increasingly important role in future wars.
Artificial intelligence is constantly evolving and upgrading through actual combat applications. Artificial intelligence systems and combat platforms, which are supported by information technology, are different from the research and development model of traditional mechanized weapons and equipment. Mechanized weapons and equipment are generally put into use after the technology matures until they are scrapped and eliminated, and have a certain service life; artificial intelligence systems are developed in the mode of system prototype-practical training-evolutionary upgrade. Artificial intelligence systems often use continuous evolution to improve their intelligence level according to different versions. The evolution direction of artificial intelligence is always towards high-level intelligence. This law of development of artificial intelligence systems and combat platforms has revolutionary significance for military training and combat capability improvement. In recent years, the United States and its allies have continued to organize activities such as the “Schriever” space (network) exercise and the “Lockton” cybersecurity exercise, which are repeated tests and upgrades of their artificial intelligence information systems. In the future, upgrading training of artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will be an important way to improve combat effectiveness.
Artificial Intelligence Helps Build Smart National Defense
Data is called a strategic resource in the information age. The emergence of artificial intelligence provides methods and means for humans to deeply mine the wisdom resources of data information, and is leading and reshaping the development trend of the world’s new military transformation. Facing the booming wave of artificial intelligence, how to meet challenges, seize opportunities, accelerate the construction of military informatization, and enhance the core military capabilities to win modern wars are the contemporary issues that our army must answer to achieve the goal of strengthening the army. On the one hand, our army must keep a clear mind and make prudent judgments. We must not be frightened by the seemingly powerful and mysterious appearance of artificial intelligence, nor blindly applaud it, nor be indifferent and lose the opportunity for development, and be attacked by opponents due to lack of technical cognition. Breakthroughs in individual technical fields of artificial intelligence are nothing more than an extension of human intelligence, but they cannot replace the dominant position of human intelligence. People are still the core element of all elements of combat effectiveness, and people’s subjective initiative is still the key to determining the outcome of intelligent warfare. On the other hand, our army should implement the military-civilian integration development strategy and the innovation-driven development strategy, grasp the trend of the times, highlight the characteristics of our army, keep a close eye on the opponent’s layout, boldly absorb and apply the relevant technological achievements of artificial intelligence to promote the information construction of the army, and try to apply artificial intelligence technology to achieve transformation and upgrading in platform construction, logistics support, military training, national defense mobilization and other fields. Actively develop countermeasures against the opponent’s military application of artificial intelligence, and explore the winning mechanism of the game with strong enemies in the field of artificial intelligence in practice.
Related links
The military application of artificial intelligence in the United States, Russia and other countries
United States: In July 2016, the U.S. Marine Corps tested the Modular Advanced Armed Robotic System (MAARS), which uses sensors and cameras to control gun-wielding robots based on artificial intelligence. The “Army Global Military Command and Control System” developed by the U.S. Army has been equipped with Army Aviation Force transport helicopters, allowing helicopter pilots to maintain contact with frontline soldiers and command ground forces.
Russia: The “Wolf-2” mobile robot system being developed by the Russian Strategic Missile Forces uses a tracked chassis and can be controlled via radio channels within a range of 5 kilometers. The shooting accuracy is guaranteed by a thermal imager, ballistic computer, laser rangefinder and gyro stabilizer, and it can hit the target at a speed of 35 kilometers per hour.
Israel: The robot “Dogo” developed by the company is an automatically armed tactical combat robot, which comes with a standard Glock 26 9mm caliber pistol. It can be said to be a little devil.
The arrival of the “Master” makes the combat style develop towards unmanned
The Go account Master has challenged the world’s top players on two major Go platforms, Yicheng Go and Tencent Go, and won 60 consecutive games, which has attracted great attention from the world on artificial intelligence. Few people thought that in the field of Go, machines did not experience a period of “stalemate” with humans, but directly left in the dust.
Engels once said that the application of cutting-edge technology began in the military field. Military struggle is a comprehensive contest covering multiple dimensions, multiple fields, full time domain and high intensity, and the addition of artificial intelligence will accelerate the pace of military reform in various countries like a catalyst. Looking at the entire process of the two industrial revolutions and the two world wars, we will find that there is an inevitable connection between “technology” and “war”. Technology will trigger war, and war in turn will promote the development of technology. At this stage, all countries have made great progress in the development of information and intelligent weapons and equipment, and various precise positioning, precise strike, and precise evaluation weapon systems have emerged in an endless stream. However, humans have not yet been separated from the weapon system, and a large part of the operations still need to be completed manually. The combination of artificial intelligence and weapons and equipment means that in the future, from searching and discovering targets, to threat assessment, to locking and destroying, and then to effect evaluation, this series of processes does not require human participation at all. Machines can help us make decisions and achieve unmanned development of combat styles.
Master quietly disappeared after winning 60 games in a row, but discussions about the future of artificial intelligence are still endless: Will it take away human jobs, or will it be an extension of human functions? Will it eventually surpass human intelligence, or will it merge with humans? The answers to these questions are not as simple as either one or the other. Solving them will accompany the future development of artificial intelligence. In 1997, “Deep Blue” defeated Kasparov, making more use of computer computing expertise such as hardware acceleration and brute force computing. AlphaGo uses new artificial intelligence technologies such as neural networks, deep learning, and Monte Carlo tree search, and its strength has already made a substantial leap. These new technologies make artificial intelligence more competent for tasks such as voice and image recognition and evaluation and analysis, and are therefore an important development direction.
Although the dust has settled on this round of the Go “man-machine battle”, the thoughts it has triggered in various fields are very worthy of study. Among them, “‘man-machine battle’ is the best pre-practice of war” is particularly worthy of serious study in the military field. Whether in the era of cold weapons or the mechanized era, fighting on the front line relies on “human wave tactics”, and solving problems requires “concentrating superior forces”. Informatized warfare no longer uses “human wave tactics”, and the scene of large-scale fighting is difficult to reproduce, but as far as the entire war is concerned, the use of troops is not necessarily less, on the contrary, it may be more, but the number of troops used at the forefront has been greatly reduced, and the position of the troops has undergone a major shift. In the unmanned, networked and non-contact combat mode of future wars, there will be more participants, and sometimes you cannot know who the opponent is or where he is hiding.
Although the competition field and the battlefield have different operating rules, many of the winning mechanisms are the same. In the past, we could only learn about war in war, but now we can learn about war in a computer-simulated, near-actual combat environment, and deduce the offensive and defensive modes and development trends of future wars. “AlphaGo” can easily collect the chess games of many Go masters, but in the military field, it is extremely difficult to obtain relevant data on your opponent’s training, exercises, and even combat! Future wars are carried out with the support of information systems. Only by solving the core problem of human-machine integration can we take the initiative on the battlefield and win the final victory in modern warfare. (Zhu Qichao, Wang Jingling, Li Daguang)
An analysis of the use of strategies in intelligent warfare
■Chen Dongheng, Zhong Ya
Reading Tips: “Warfare is the art of deception”. War is a competition of comprehensive strength. Ancient Chinese military strategists have always attached great importance to “strategizing in the tent and winning thousands of miles away”, and all of them regard strategy as the way to victory. War practice shows that as long as war is a confrontation between humans, smart strategies will not withdraw from the battlefield. Today’s battlefield competition is about intelligent skills, and what is fought is smart strategies.
“The best military is to attack the enemy’s strategy, the next best is to attack the enemy’s alliance, the next best is to attack the enemy’s soldiers, and the worst is to attack the city.” Strategy, as a component of combat power and a weapon to win the war, runs through ancient and modern times and transcends national boundaries, and has an important function of influencing and determining the outcome of the war. Although the role of science and technology is more prominent in intelligent warfare, it does not exclude the use of strategy. With the support and guidance of strategy, the combat system is more efficient. In-depth research and mastery of the use of strategy in intelligent warfare will be more conducive to winning the initiative in intelligent warfare.
The status and role of the use of strategy in intelligent warfare
The essence of strategy lies in the intelligent release of power. Scientific strategy application can often defeat the majority with the minority, the big with the small, and the strong with the weak. The battlefield of intelligent warfare presents more transparency, more extended combat space, more diverse means of confrontation, and more complex winning mechanism. This provides a solid material foundation and technical support for the implementation of strategy, and the status and role of strategy are becoming more and more important.
The internal driving force of the army construction and development planning. Demand is the order of the army, and use is the commander of the weapon. How science and technology are innovated, how weapons and equipment are developed, and how the national defense forces are built are often driven by demand and forward-looking planning. For example, in order to make up for the gap between Russia and the United States in terms of overall air defense and anti-missile strength, Russia used “asymmetric” strategies to focus on penetration technology and developed the “Zircon” and “Dagger” hypersonic missiles before the United States. Facts show that the application of strategies mainly focuses on “Tao” and “Fa”. The more reasonable the design and the more scientific the application, the more it can stimulate the motivation, vitality and potential of innovation and creation, and trigger a revolution in science and technology, weapons and equipment, and military construction and combat methods. Only when intelligent warfare, scientific and technological innovation and weapons and equipment development are closely connected with the needs of scientific war strategies can they adhere to the correct direction and be better transformed into actual combat power.
A multiplier of the actual combat effectiveness of the combat system. In the combat power spectrum, strategy, as an important soft power, has the value and significance of providing scientific methodological guidance, appropriate time and opportunity selection and correct path support for the use of military hard power. For example, Iran once used the “dislocation” tactics to launch a large-scale retaliatory air strike against Israel, first using hundreds of cheap drones to attract the consumption of Israel’s expensive air defense system, and then using more advanced high-value ballistic missiles to penetrate, which improved the hit rate to a certain extent. Facts show that when facing an opponent with superior hard power, if the strategy is used properly, it can also achieve miraculous results; and the same hard power may have very different combat effectiveness when using different strategies and tactics. In intelligent warfare, although the “blade” of military hard power is faster, in order to make it more effective, it still needs to rely on more sophisticated strategic “sword skills”.
Dependent variables of hybrid warfare operations. Strategy can not only empower military hard power, but also has a strong direct combat function, and can even defeat the enemy without fighting by “soft killing”. For example, the United States once spent a lot of money to capture the leader of al-Qaeda, Osama bin Laden, but he seemed to have disappeared from the world, and technical means could not determine his exact hiding place. He was finally tracked down by targeting his messenger through strategic use. The United States’ “live broadcast” “Spear of Poseidon” operation attempted to show the strength of the US military by killing Bin Laden to shock the international community. Intelligent warfare is a hybrid warfare, which has entered a new era of global live broadcast, universal participation, and full coverage. More and more countries are adopting strategic methods to enhance their own confidence and strike the opponent’s will to resist, and the strategic “soft kill” combat function is becoming more and more apparent.
Basic mechanism of intelligent warfare strategy application
Intelligent warfare, high-level development of artificial intelligence, rapid iteration, full spectrum penetration, and high-efficiency release, make the application of strategy have more dimensional support and stronger drive, showing a unique operation mechanism.
Cluster operation of strategy application. The application of strategy is based on the underlying logic of war operation and follows the law of evolution of the subject from individual to team and then to system. From a historical perspective, the application of strategy warfare in the cold weapon era relied more on the wisdom and experience accumulation of generals. Natural factors such as geography and weather are the main grasps of strategy operation. The burning of Red Cliff and borrowing arrows from straw boats are vivid footnotes. In the mechanized era, in order to adapt to the increasingly complex composition of military branches and the needs of fast-paced operations, the “General Staff” of senior military institutions dedicated to war planning services came into being. The “General Staff” in the two world wars is a typical representative. In the information age, the use of war strategies mainly relies on the control of information, and information power has become the main support behind strategic planning. In intelligent warfare, the comprehensiveness of technology application, the systematic nature of force planning, and the platform characteristics of game confrontation are more prominent, and the internal requirements are that the subject of strategy implementation should shift to a more powerful systematic platform.
Algorithm-driven strategy application. Strategy is based on strategy. The essence of planning is calculation, calculation of the world situation, calculation of military situation, calculation of development trend, calculation of strength and weakness, calculation of winning advantage… Whether it is calculation by human brain or machine, calculation by generals or calculation by teams, calculation is always the most critical supporting factor. Generally speaking, whoever has stronger computing power, more precise algorithms, and faster calculations can grab the “calculation” machine and win the victory. In the era of intelligent calculation, artificial intelligence participates in strategic decision-making with human-machine hybrid algorithms or machine algorithms, which greatly enhances the efficiency of calculation. It is based on this that major countries have focused on breakthroughs in artificial intelligence to win the future competition. These artificial intelligences, characterized by strong computing power, have great application potential in simulating battlefield situations, simulating war processes, and assisting decision-making and command. Only by guarding against the opponent’s technical aggression, vigorously improving our computing power, and adding the wings of algorithms to traditional strategies can we be invincible in the strategic game confrontation.
Intelligent support for the use of strategies. In intelligent warfare, strategies are based on the rapid development of artificial intelligence and its extensive military applications. It is a two-way “rush” of human strategic wisdom and “technical” wisdom. Now, the generals’ ingenuity and traditional staff work have become increasingly difficult to adapt to the needs of intelligent warfare. Comprehensive intelligent command and decision-making platforms have become an important support for the implementation of strategies. The command and decision-making system of the US military has developed into a large platform that integrates four-layer structural functions, including “intelligence support, information fusion, mission coordination, autonomous decision-making, action deployment, force allocation, situation adjustment, and real-time tracking”, and has become the brain of its “decision-making center warfare”. The Russian Federation Armed Forces Combat Command Center can dispatch and monitor the training and exercises of the entire army in real time, and undertake combat command tasks in low-intensity small-scale conflicts. It can be seen that intelligent support for strategic planning and strategy implementation has gradually taken shape. Intelligent strategic confrontation has put forward higher requirements for the professional integration of strategic subjects, and promoted the deep integration of human biological intelligence and artificial intelligence, which is “human-like intelligence”.
Main ways to use strategies in intelligent warfare
In intelligent warfare, the era background, supporting conditions, and action mechanisms of strategy application have undergone profound changes. The way of implementing strategies must keep pace with the times, strive to combine traditional strategic advantages with new technologies and new forms of warfare, innovate and expand scientific paths to effectively release strategic energy, and strive to plan quickly, plan carefully, and integrate strategy and attack.
Intelligent technology integration releases energy. That is, make full use of intelligent technology to empower and release energy for strategies. Generally speaking, the effective implementation of strategies is inseparable from accurate information perception, rapid personnel mobilization, and efficient force strikes. The innovative application of artificial intelligence enables people to see farther, hear more closely, know more, and calculate faster, making the army gather and disperse more quickly, move more covertly, and release power more rapidly, which is more conducive to the generation of strategies and the achievement of effectiveness. On the one hand, with the help of the rapidity and autonomy of artificial intelligence, the enemy situation can be quickly grasped through intelligent reconnaissance, the decision-making time can be greatly shortened by using machine algorithms, and the optimal strategy can be selected with the help of simulation deduction; on the other hand, relying on artificial intelligence to release and enhance the efficiency of strategies, modern brain control technology, deep fake technology, information confusion technology, public opinion guidance technology, etc., have greatly expanded the space and means of implementing strategies.
Human-machine complementation releases energy. That is, the strengths and weaknesses of human intelligence and machine intelligence complement each other and enhance efficiency and release energy. The biggest advantage of machine intelligence over human intelligence is that it can fight continuously without being affected by biological factors such as will, emotion, psychology, and physical strength. However, the “meta-intelligence” of human intelligence and its ability to adapt to changes are not possessed by machine intelligence. The two intelligence advantages complement each other and aggregate to form a powerful hybrid intelligence, which strongly supports the use of strategies in war. On the one hand, the “machine brain” safely and efficiently makes up for the shortcomings of the human brain; on the other hand, the human brain responds to special situations on the spot. Facts show that the biggest advantage of human intelligence over machine intelligence is that it can make decisions and deal with different situations on the spot, which just makes up for the shortcomings of machine intelligence. Only by combining the two can we form the optimal solution for intelligent calculation and gather the strongest strategic application.
The platform releases energy as a whole. It is to create a modular intelligent system, an integrated intelligent decision-making command action platform that integrates strategy generation and release. Intelligent warfare, every second counts, improves the time sensitivity of target strikes. The intelligent platform comprehensively uses intelligent computing and command automation technology to efficiently process massive data and complex battlefield situations, creating a “super brain” for commanders. It has significant advantages of good functional connection, high stability, fast operation speed, and high combat efficiency. It is a new quality combat force for strategic planning. Relying on the intelligent command and control system, it can make real-time decisions, form a list of time-sensitive targets, and independently solve the combat units and strike platforms that can be summoned and struck the fastest and best. The hardware and software can accurately strike the targets, and accurate strikes on time-sensitive targets can be achieved in real-time decisions, providing more options for assisting war decision-making and command.
At present, the widespread use of unmanned equipment in the military field is accelerating the evolution of war forms towards intelligence, and unmanned combat has also developed into an important combat style of intelligent warfare. However, it should be clearly seen that unmanned combat, from technical development to combat application, cannot be separated from the role of people, and people are still the “master switch” of the entire chain of unmanned combat. Therefore, unmanned combat is essentially still manned, and more attention should be paid to the construction of manned combat in unmanned combat.
From the perspective of operational design, the mission task is assigned by the mission tasker.
Equipment is the material basis of war, but people are the initiators and controllers of war. The role of any equipment in war is given by commanders and fighters at all levels. From the overall perspective of combat design, war involves multiple fields such as politics, economy, diplomacy, culture, and multiple levels such as strategy, campaign, and tactics. Winning a war requires the support of advanced equipment and technology, and more importantly, it requires all-round control of the war situation. Unmanned equipment is suitable for undertaking persistent and high-risk tasks because of its characteristics such as long-lasting endurance, concealed action, high mobility, low cost, and its advantages such as adaptability to extreme environments and flexible use. However, when encountering extremely complex combat environments, extremely fierce confrontations, and rapid changes in fighters that require real-time comprehensive weighing and decision-making, unmanned systems still need to be human-led, implement complex command and control, and control unmanned equipment to complete designated combat tasks. Therefore, although unmanned equipment has become a development trend in modern warfare, its dependence on and obedience to people will not change. It is necessary to accurately grasp the advantages and disadvantages of unmanned equipment, increase research in unmanned command and control theory, unmanned combat knowledge system, etc., to form a rich and complete combat theory system, drive the development of unmanned equipment, promote the formation of unmanned combat systems, and play a greater role in limited combat scenarios, thereby playing a good role as a “multiplier” of combat capabilities.
From the perspective of equipment research and development, unmanned systems are designed by humans.
Humans are the designers of unmanned equipment, especially in the intelligent software that empowers unmanned equipment. It is the core of unmanned equipment’s ability to perform various tasks, and it is also the embodiment of the designer’s wisdom. Although the artificial intelligence algorithms used in many core software have a certain self-learning ability and improve the autonomy of unmanned equipment, the choice of such self-learning strategies is still set by humans according to task requirements and specific scenarios. At present, various types of drones, unmanned ships, unmanned submarines, etc. have a certain ability to “think like humans”, but they are subject to the limitations of artificial intelligence algorithms, big data, and existing computer architectures. They cannot be separated from human thinking and input points set by humans. For a long time, the role of humans will still be the decisive factor in the development of unmanned equipment and warfare. Therefore, no matter to what extent informatization and intelligence develop, intelligent systems cannot completely replace humans, and the development of unmanned equipment is still dominated by humans. Manned/unmanned collaboration, human-machine coexistence, and intelligent integration are inevitable and feasible stages in the development of intelligent warfare. We must give full play to the “machine”‘s fast speed, high precision, fatigue resistance, and structured “computing” advantages, and give full play to the “human”‘s creativity, flexibility, initiative, and unstructured “calculation” advantages, integrate machine intelligence with human intelligence, learn from each other’s strengths and weaknesses, complement each other, and produce collective wisdom.
From the perspective of combat use, there are people everywhere in the circuit
The intelligent system of unmanned equipment can fully support command and control, combat operations, combat support and other aspects, so that the combat system capabilities can be rapidly improved. However, if we look deeply into the entire unmanned system operation process, it completes the “man-unmanned platform-man” loop, and achieves the combat purpose through the complementary advantages of man and machine. Any advanced unmanned equipment requires combatants to plan tasks in advance, and operators to monitor and control online to ensure that its technical characteristics are brought into play. In other words, the beginning of the loop comes from human program design and thinking introduction. The task process requires human decision-making, control, monitoring and intervention. The completion of the task requires people to evaluate the applicability and combat effectiveness of unmanned equipment and constantly adapt to new combat needs. Therefore, people are still the dominant players in the entire combat use process. If the effectiveness of unmanned equipment is to be maximized, it is necessary to implement systematic professional training for the pioneers of manned/unmanned integrated operation-people. For new combat force talents, especially unmanned combat personnel, we should set up professional training institutions, integrate teaching resources, improve supporting teaching equipment, increase artificial intelligence courses, and improve talent retention mechanisms in accordance with the concept of diversified channels, integrated design, multi-functionality, and hierarchical training. At the same time, we will draw on advanced training concepts and methods from foreign militaries, and comprehensively use simulation, computer networks, virtual reality and other technologies to carry out practical military training to cultivate compound unmanned combat talents with solid theoretical foundation, high equipment technology level, and excellent practical operation skills.
From the perspective of innovation in tactics, capability improvement depends on people.
The development of technologies such as artificial intelligence, quantum computing, unmanned and anti-unmanned systems, and hypersonic weapons has led to new characteristics of modern warfare, such as great depth, long distance, and non-contact. Unmanned, invisible, and silent warfare have begun to emerge, and the future combat concepts and combat styles will undergo profound changes. The maturity of unmanned equipment has accelerated the development of new combat concepts such as wide-area distributed combat, cross-domain collaborative combat, and unmanned cluster combat into actual combat. The advantage of unmanned equipment is that there is no one on the front-end platform, but the limitation is that there is no one, and it is impossible to independently design and summarize new combat concepts and tactics. In fact, it is all done by people to study the essence and laws of a certain type of combat problem, extract common characteristics and abstractly summarize them, and then guide the solution of such combat problems. Specifically, the new combat concept is based on the research and judgment of combat conditions such as historical, current and future technological development, threat judgment, geopolitical situation, combat opponents, battlefield environment, etc., and all of these are the condensation and crystallization of human wisdom. Therefore, in the face of the complex and changeable future battlefield environment, in order to make unmanned equipment play the best combat effectiveness, it is inseparable from the innovation of combat concepts and tactics. Based on changes in the battlefield environment and targeting different combat styles, we should conduct forward-looking designs on force deployment, timing of use, methods of action, and support methods, scientifically predict the development trend of unmanned combat, promote the mutual development of equipment technology and changes in combat methods, and explore and form a combat capability construction path that is mutually verified, closed-feedback, and rollingly developed through “conceptual design-combat experiment-equipment research and development.”
From the perspective of technological development, unmanned technology is controlled by humans.
At present, people generally believe that unmanned and intelligent applications can be competent for various tasks as long as the technology is mature, but in fact, the operating rules of computers are still limited to the von Neumann serial computing architecture, and there has not yet been a revolutionary product combining biotechnology and artificial intelligence. For example, “AlphaGo” with deep learning capabilities can quickly generate astronomical numbers of various response plans in the game with human Go masters, and is almost invincible, but its intelligent foundation is Go with relatively simple rules; the US Department of Defense’s ground-based simulated air combat project, the air combat intelligent agent it developed defeated human ace pilots in human-machine confrontation, but it can only be achieved in the simple battlefield environment of the simulator. It can be seen that the current development of the intelligent field is to be able to perform tasks purposefully in terms of selection and decision-making, while war is a dynamic game process. The intelligent solutions used by unmanned equipment are only in the background assumption situation, and the “water has no constant shape” war mode requires soldiers to respond more flexibly. Therefore, we must attach great importance to the decisive role of people in scientific and technological progress, scientifically grasp the development trend of informationized and intelligentized warfare, clarify the ideas of technological development, and actively explore and form an unmanned equipment technology research and development system and development path suitable for the characteristics of the military in accordance with the methods and steps of overall demonstration, key research, pilot verification and promotion and application.
From the perspective of war law, war is dominated by people.
With the continuous updating and iteration of unmanned equipment technology, unmanned combat has become more and more intelligent, which has led to the relative blurring of the boundaries between peacetime and wartime, front and rear, soldiers and civilians. In the Libyan conflict, drones relied on algorithms to select targets, automatically tracked and attacked armed personnel without the control of operators. It can be predicted that if unmanned equipment develops to a certain extent in autonomous calculation, autonomous decision-making, and autonomous action, and completely autonomously selects, identifies, and attacks targets, and humans do not restrain it, it will have a profound impact on morality, law, and war ethics. In fact, there are “reasons”, “laws”, and “people” behind unmanned combat. No matter what stage unmanned combat develops to, it still belongs to the category of war and is still subject to the rules of war. Whether it is international law or humanitarian law, the focus has always been on human issues, such as restrictions on combat methods and means, treatment of prisoners of war, protection of civilians, etc. All principles, rules and systems are based on the perspective of people and are solved through people. Therefore, in order to avoid humanitarian and war ethics issues caused by unmanned combat, from a technical perspective, humans need to supervise and manage the operation of unmanned systems, guide arbitration, and handle emergencies, grant them limited “right to fire”, reserve “start-stop” intervention interfaces, and be able to take over unmanned systems at any time; from a legal perspective, establish war rules between humans and weapons, enhance humans’ ability to apply the rules of war, and always play a leading role in war.
(Author’s unit: Naval Research Institute)(Editors: Dai Xiaoling, Wan Peng)
With the rise of the global Internet and the development of emerging media, the world’s major military powers are now paying great attention to the strategic issue of cognitive space security. The recently published monograph “Brain Control: The Laws of War and National Security Strategy in the Global Media Age” focuses on the future development trend of war and the issue of national cognitive space security in the global media era. It puts forward the concept of “brain control” in cognitive space, which has attracted the attention of the military academic community. On this topic, the reporter interviewed the main author of the book, Professor Zeng Huafeng, Dean of the School of Humanities and Social Sciences of the National University of Defense Technology.
“Subjugating the enemy without fighting” is the highest realm of information warfare
Reporter: The concept of brain control is inseparable from the understanding of cognitive space. What is cognitive space and what is brain control?
Zeng Huafeng: Information warfare is the unity of material and spirit, concept and reality. It is not only the manifestation of the development of material form, but also the inevitable result of the action of spiritual factors. Information warfare has enabled human warfare to truly have three combat spaces for the first time: one is the natural space composed of land, sea, air, and space; the second is the network electromagnetic space based on physical principles, which is essentially a technical space; the third is the cognitive space composed of human spiritual and psychological activities. To win the future information warfare, we must grasp the initiative of the war, obtain the control of the war domain, and dominate the discourse of the war. Seizing the control of the brain in the cognitive space and “defeating the enemy without fighting” is the highest realm of information warfare.
Cognitive space refers to the scope and field of human cognitive activities. It is an invisible space that reflects people’s emotions, will, beliefs and values, and exists in the minds of participants in the struggle. The national cognitive space exists in the subjective world of each individual, and is composed of the superposition of the cognitive spaces of countless individuals in the whole society. National interests exist not only in physical form in natural space and technological space, but also invisibly in cognitive space. “Brain control” is to use the spiritual information carried by propaganda media, national languages, cultural products, etc. as weapons, to infiltrate, influence and even dominate the cognition, emotions and consciousness of the general public and national elites, and ultimately manipulate a country’s values, national spirit, ideology, cultural traditions, historical beliefs, etc., to prompt it to abandon its own theoretical understanding, social system and development path, and achieve the strategic goal of winning without fighting.
Reporter: At present, with the advent of the global media age, especially the development of emerging social media, the political game between major powers continues to intensify, and “cognitive domain symptoms” such as human psychological confusion, moral crisis, and loss of faith continue to emerge. What do you think are the characteristics of cognitive space confrontation?
Zeng Huafeng: I think there are three main characteristics: First, the security boundary of the national cognitive space is ambiguous. The national cognitive space is a boundless, invisible, shadowless, but not negligible space of interests and confrontation. Social public opinion and ideology are the main areas of competition in the cognitive space, and spiritual information is the main weapon. Wherever spiritual information can be spread, it can become a battlefield for cognitive space competition. Second, the information attack and defense of the national cognitive space is manipulable. The reception, processing and feedback of spiritual information are not only closely related to the function of the human brain, but also have distinct national and ethnic characteristics. At the same time, spiritual information is prone to distortion in the process of dissemination and diffusion. In the era of global media, individuals are both recipients and publishers of information. Theoretically, any individual or group can instantly spread the specific information they process and produce in the world and have an impact on specific target objects. Third, the strategic confrontation in the national cognitive space is persistent. The role of spiritual information needs to be carried out step by step, and we cannot expect to produce immediate results. For example, during the Cold War, Western countries led by the United States gradually infiltrated Western values into socialist countries such as the Soviet Union and Eastern Europe through cultural exchanges and other activities, achieving the goal of peaceful evolution. Today, Western hostile forces seek to instill and infiltrate Western “democratic” and “free” ideas and values through various academic exchanges in politics, economy, science, culture, etc., in normal information interaction activities.
The main way the West seizes national cognitive space and competes for “brain control”
Reporter: What are the main ways the West seizes national cognitive space and competes for “brain control”?
Zeng Huafeng: I think there are four main ways. The first is perception manipulation. Perception manipulation is also called consciousness manipulation. It aims to manipulate the behavior of others by influencing their psychology and spirit. It can be directed at individuals, groups, a country, or even the whole world. In his book “War and Anti-War”, Toffler summarized the tools of perception manipulation into six aspects: one is “accusation of atrocities”, including condemnation of real and false atrocities; the second is “exaggerating the interests of a battle or a war”; the third is “demonizing or dehumanizing the enemy”; the fourth is “polarization”, that is, if you don’t support us, you are against us; the fifth is “claiming to obey God’s will”, which has a strong religious color; the sixth is “super propaganda-propaganda that is enough to discredit the propaganda of the other party.”
The second is to cut off historical memory. Human thought and social ideology are always closely linked to historical memory. Whether it is the spiritual world of an individual or the cultural traditions of a country or nation, figuratively speaking, they are all concentrated pasts and treasures worth cherishing. Once the historical memory of an individual or group is cleverly cut off through some means, making them lose their spiritual home, the obstacles to the infiltration of their values and ideologies are removed, opening the door for the invasion of various erroneous and chaotic ideas.
The third is to change the thinking paradigm. A country and a nation have their own specific thinking paradigm, which is the premise for people to understand the world. Especially for the social elite, their thinking paradigm and ideological cognition play a leading role in the thoughts, values and ideological identity of the whole society. However, people’s rational thinking has weaknesses. Through manipulation, “virus programs” can be instilled into it, prompting people to deviate from obvious facts and accept fallacies and sometimes even absurd conclusions. Once this set of practices seizes the social elite group, most people will lose their ability to resist manipulation. At the end of the Cold War, the Western ideological attack on the Soviet Union was to influence the rational thinking of some Soviet economists, let them make a series of public speeches in the Soviet Union that catered to Western intentions, and covertly “persuaded” the Soviet people to abandon their own country’s social system and national culture, and to welcome the so-called “new era” of Western civilization with a “thorough”, “unconditional” and “bold” attitude.
Fourth, deconstruct symbols. Symbols are born in the historical evolution of national culture. Different nations have formed their own specific symbols in the course of their respective cultural development, such as clothing, anniversaries, monuments, rituals, and characters. With the help of empathy, a nation has some great symbols, which gives it an emotional bond that unites the society. It can arouse people’s sense of belonging, so that people can unite for a common dream and create and continue a new civilization. If someone deliberately repaints and attacks the symbols in the history of a country and nation, by reversing right and wrong, publicly mocking and making fun of the glorious achievements, great figures and noble culture in history, the consequences will be very serious, and it will lead to people gradually losing their sense of identity with the country, nation and self.
Providing strong support for maintaining national cognitive space security
Reporter: Faced with fierce competition in the field of national cognitive space security, how should we maintain national cognitive space security?
Zeng Huafeng: We must fully understand and grasp the characteristics and laws of national cognitive space security, firmly occupy the ideological position, and take the initiative in the field of public opinion and ideology.
First, we must strengthen our ideals and beliefs and build a strong spiritual pillar. History and reality have repeatedly proved that the collapse of a regime often begins in the ideological field. Once the ideological defense line is breached, it will be difficult to defend other defense lines. Whether we can hold on to the ideological position and do a good job in ideological work is related to national cohesion and centripetal force. In this regard, we must always hold high the banner of ideals and beliefs and unswervingly adhere to and develop socialism with Chinese characteristics.
Second, we must be vigilant against the emergence of historical nihilism. Historical nihilism originated with the denial of the “Cultural Revolution” and reform and opening up, and then gradually moved towards the denial of the historical view of historical materialism and the denial of the cultural traditions of the Chinese nation. We must be highly vigilant against its harm, and clearly oppose historical nihilism, oppose all pseudo-historical narratives that glorify aggression and oppression and vilify revolution and resistance, face history sincerely, cherish the subjectivity established by the Chinese nation in the long course of the Chinese revolution, and enhance the self-esteem and self-confidence of the Chinese nation, so as to lay a solid cultural foundation for the great rejuvenation of the Chinese nation.
Third, we should seek national cultural identity in the collision between Chinese and Western cultures. While promoting military and economic hegemony, the United States actively promotes cultural hegemony. Under the banner of “economic integration”, it strongly impacts the heterogeneous cultures of various countries and tries to influence other countries’ cultures with American culture. In this context, in the process of cultural exchanges with other countries and nations in the world, we should not only continue to absorb and integrate the essence of the cultures of all nations in the world, but also enhance our national cultural consciousness and confidence, and improve the creativity and vitality of national culture in the process of continuous inheritance.
Fourth, we should actively participate in the global governance of cyberspace security. In the Internet era, the United States, with its high-tech monopoly advantage, not only controls the management of the cyber world, but is also the first country in the world to propose the concept of cyber warfare and apply it in actual combat. From the current perspective, the United States’ control over the Internet will not change in the short term. We should pay close attention to cyberspace security, actively participate in the global governance of cyberspace security, and build a cybersecurity system that conforms to the trend of globalization and meets the requirements of my country’s informatization, so as to provide strong support for maintaining the security of the national cognitive space.
We must promote the information construction of our army with a broader vision. Indulging in reflection on the characteristics, patterns and experiences of the last war is a chronic disease and common disease in human military history. From the time when information warfare was proposed to the present, people have been conducting research on its characteristics, laws and tactics, but have overlooked a problem: that is, with the development of modern science and technology, is the so-called information warfare what people are talking about today? In fact, we should have a broader vision for understanding information warfare, and include physical information, biological information and spiritual information into the framework of information warfare. From the aspects of basic research, applied research, combat theory, technology development, equipment development and organizational leadership, we should build a system of cognitive space attack and defense confrontation. Innovate the ways, methods and means of ideological and political work in the global media era. Cultivate and create a team of high-quality talents who can grasp the frontiers of cognitive science, psychology and military needs, and seize the “brain control” of future information warfare. (
The winning mechanism of war refers to the main factors for winning a war, the way they play a role, and the internal mechanisms, laws and principles of their mutual connection and interaction. With the advent of the intelligent era, the increasingly widespread application of artificial intelligence in the military field has promoted the transformation of the war form to intelligent warfare, and the winning mechanism of war has also changed accordingly.
Having data advantage is the basis for success
In the era of intelligence, the core foundation of many “disruptive technologies” is data, and war will also be “no data, no war”. In intelligent warfare, both sides will fight a “data war” around understanding data, relying on data, competing for data, and using data. Whoever owns the “data right” will have the initiative in the war. Fighting for data, mastering data, analyzing data, and applying data in war are the keys to winning intelligent warfare.
Data resources are combat effectiveness. In intelligent warfare, data comes first before troops move. Whoever controls the data controls the resources to win the war, and controls the initiative and the chips for victory. The ability to understand and use data is an important indicator for measuring combat capability and directly affects the outcome of the war. Obtaining data, analyzing data, and using data are not only the yardsticks for measuring the combat capability of troops, but also the new engine for improving the combat effectiveness of troops. Data is the most direct record of the objective world. It appears in the form of numbers and is raw data, such as the performance parameters of weapons and equipment, the size of troops, the number of guarantees, target parameters, etc. These data can be processed to become the information and intelligence needed for combat. In the information age led by data, data has become the blood of intelligent warfare.
Big data has given rise to a data-based battlefield. To some extent, whoever controls the data resources controls the “winning space” of the war. Data has changed the logical cognition of war. In the past, people inferred the whole from the individual and inferred the inevitability from the small probability events, but now they deduce individual characteristics from the high probability and find the internal laws of specific things from the correlation. Only by understanding the relevant data can we grasp the overall situation, only by gathering similar data can we grasp the trend, and only by integrating all-source data can we understand the connection. All of this is attributed to the control of the data-based battlefield.
Big data changes the way of fighting. As the most important strategic resource, how to distinguish the authenticity and quality of data, how to fight and counter-fight, deceive and counter-deceive, attack and counter-attack around massive data, has become a key issue in winning intelligent wars. When data becomes the focus of war, it will inevitably lead to competition and gaming around data, thereby promoting changes in the style of fighting. At present, the competition for data collection is intensifying, and major countries have launched research on national defense big data projects to provide more intelligence with practical value for military decision-making. The “asymmetry” of data forms the “asymmetry” of algorithms, and then achieves the “asymmetry” of tactics.
Data has given rise to intelligent equipment systems. Data technology has upgraded combat platforms to highly intelligent and autonomous systems. Data has enabled command and control systems, air combat platforms, precision-guided munitions, etc. to complete the transition from informatization to intelligence. For example, modern “swarm technology” is the application of artificial intelligence supported by big data. Data has become a “telescope”, “microscope” and “perspective lens” for analyzing wars. To win intelligent wars, one must have a data mind, data awareness and data thinking.
Mastering algorithm advantages is the key to success
One of the characteristics of intelligent warfare is that all battle plans, campaign plans and war plans need to be generated by computers, and its essence is algorithm-generated tactics. Having an algorithm advantage means having an intelligent advantage, which can achieve a high degree of unity of information advantage, cognitive advantage, decision-making advantage and action advantage.
Algorithm advantage dominates information advantage. Algorithm is a systematic method to describe the strategic mechanism for solving problems, and is the key and prerequisite for improving intelligence advantage. Algorithm technology mainly includes deep learning, supercomputing, brain-like intelligence and other technologies. The use of intelligent sensing and networking technology can widely and quickly deploy various types of intelligent perception nodes, and can implement active collaborative detection for tasks, thereby building a transparent and visible digital combat environment. Judging from the current development trend, the advantage of war algorithms dominates information advantage, which contains great potential to rewrite the rules of the modern war game. This pair of “invisible hands” will shape the new landscape of future intelligent warfare.
Algorithmic advantage dominates cognitive advantage. In intelligent warfare, big data can quickly convert massive amounts of data into useful intelligence after being processed by high-performance and efficient algorithms, thereby gaining cognitive advantage. Algorithms, as the “brain” of artificial intelligence, have become the key to intelligently sensing the battlefield and using it for decision-making, command, and coordination. The party with algorithmic advantage can dispel the “battlefield fog” and “information fog” caused by the failure to process data in a timely manner, making cognition more profound and thus seizing the initiative in the war. In the future, whoever has algorithmic advantage will have stronger cognitive ability, faster learning speed, and better quality results.
Algorithm advantage dominates decision-making advantage. With its high-speed and precise calculation, the algorithm can replace people’s hard thinking and repeated exploration, thereby accelerating knowledge iteration. With the support of massive data and supercomputing capabilities, the judgment and prediction results of artificial intelligence will be more accurate. By constructing combat model rules through algorithms, commanders can be assisted in making rapid decisions in multi-level planning and ad hoc handling of strategies, campaigns, tactics, etc. through actuarial, detailed, deep and expert reasoning. With the development of disruptive technologies such as big data, cloud computing, and quantum computing and their application in the military field, the future combat decision-making cycle will become near real-time. In intelligent warfare, the party that masters super algorithms can quickly propose flexible and diverse combat plans and countermeasures in response to changes in combat opponents, constantly disrupting the opponent’s established intentions and deployments, and thus seize the dominance of the war.
Algorithmic advantage leads to operational advantage. In the era of intelligent warfare, algorithms determine tactics, and algorithmic advantage leads to war advantage. Supported by superior algorithms, the reaction speed of artificial intelligence is thousands of times that of humans. “Algorithmic warfare” foreshadows the transformation of future wars. Whoever can seize the commanding heights of intelligent algorithms can seize the initiative and win before the battle. On the intelligent battlefield, algorithms are far more important than artillery shells. War algorithms have become the key factor in winning intelligent warfare and are the strategic commanding heights that future intelligent armies must seize. Intelligent warfare calculations are ubiquitous. The party that has the algorithmic advantage can quickly and accurately predict the battlefield situation, innovate combat methods, and achieve the advantage of “winning before the battle.”
Multi-domain integration is the key to success
Multi-domain integration is based on the cloud-based combat system. With the support of the cloud-based battlefield situation, various combat personnel, equipment, facilities, and environmental elements have expanded the battlefield space from the traditional three-dimensional space to the polar regions, deep sea, space, and cyberspace, and even to multi-dimensional domains such as cognitive domain and information domain. Multi-domain integration has formed a giant, complex, and adaptive confrontation system. The integration of “cloud gathering” and “network gathering” has become a new mechanism for intelligent combat.
Cross-domain integration and integrated energy release. Under the conditions of intelligent warfare, the emergence of a large number of new long-range combat platforms and intelligent new concept weapons has made the future combat landscape present the characteristics of air-ground-sea-sky integration, global instant strikes, and cross-domain strategic deterrence and control. Supported by the cross-domain, distributed, and networked “cloud killing” collaborative combat system, through the cross-domain aggregation of multiple combat capabilities, cross-domain interoperability of combat command, cross-domain sharing of combat information, cross-domain movement of combat weapons, cross-domain response of combat actions, and cross-domain complementarity of combat functions are achieved. Cross-domain integration is the close coordination of main domain control and cross-domain support to implement cross-domain collaborative support. Integrated energy release is the transition of joint operations from integrated joint operations to cross-domain joint operations, realizing the cross-domain aggregation and overall energy release of multiple combat capabilities.
Human-machine integration, using speed to defeat slowness. If weapons are an extension of the human body, intelligence is an extension of the human brain. In the era of intelligent warfare, there will be a mode of giving human intelligence to machines to implement combat. People will further withdraw from the front-line confrontation and combat, and the combination of people and weapons will appear in a new form. Unmanned combat weapons and human intelligence are deeply integrated into an organic symbiosis, perfectly combining human creativity, thinking and the precision and speed of machines. Therefore, in future intelligent warfare, the mode of engagement will gradually change from the mutual killing of “human-machine integration” to the unmanned system cluster confrontation of “human-machine integration”. Relying on the intelligent combat system, commanders adaptively adjust and select the mode of action according to changes in the battlefield environment. Unmanned combat develops from single-platform remote control combat to multi-platform cluster autonomy, forming a simple command chain of “commander-combat cluster”, highlighting the rapid, flexible and autonomous characteristics of human-machine collaboration.
Brain-intelligence fusion and efficient control. The combat system of intelligent warfare will be characterized by a highly intelligent “human + network + machine”. The intelligent command and control system will operate in a collaborative manner of “human brain + intelligent system”. The intelligent system will assist or even partially replace the role of humans in command and control. The intelligent command and control system will have relatively strong autonomous command and control capabilities, and can relatively independently obtain information, judge situations, make decisions, and deal with situations. Relying on the battlefield situation awareness system, with the help of big data, cloud computing, artificial intelligence, and modeling and simulation technology, it is possible to accurately analyze and judge massive battlefield information, realize the transformation of combat command from “human experience-centered” to “data and model-centered” intelligent decision-making methods, and make combat planning more scientific and efficient. In the future, the super self-evolution and strategic decision-making capabilities of deep neural networks will realize the combat cycle of “human out of the loop”.
Integration of intelligence and mind, attacking the mind and winning the will. With the development of artificial intelligence technology, the boundaries between the biologicalization and humanization of intelligent weapons will be blurred in the future, and the control of people themselves will become the focus. “Attacking the mind and winning the will” is still the highest combat purpose of intelligent warfare. “Cognitive control warfare” based on the control of human brain and consciousness cognition may evolve into an important combat style. With human cognitive thinking as the target, various means are used to stimulate, influence and control the cognitive system to achieve the effect of disrupting the enemy’s command and decision-making system, inducing the enemy’s combat power, and disintegrating the enemy’s morale. For example, based on brain reading and brain control technology, using mental guidance and control means, the strategic intentions, combat intentions, and combat methods of the enemy commander can be grasped in real time, and even directly act on the brain of the enemy personnel, or the consciousness of the party can be “injected” in the form of EEG coding to interfere with or control their consciousness, thinking and psychology, and finally seize the “right to control intelligence” and achieve deep control over combat personnel. With the large-scale application of intelligent combat platforms on the battlefield, information systems assisting humans will gradually transform into intelligent systems partially replacing humans. The focus of the power struggle will shift from “information rights” to “intelligence rights”, and using elite troops to gain control of key domains will become the dominant approach.