Tag Archives: #dissapative @warfare

Chinese Military Dissipative Warfare : Analysis of New Changes in Intelligent Warfare Winning Methods

中國軍事耗散戰:智慧化戰爭制勝手段新變遷分析

現代英語:

●From war of attrition to war of dissipation——

An analysis of new changes in the way of winning intelligent warfare

President Xi pointed out that the core of studying combat issues is to clarify the characteristics, laws and winning mechanisms of modern warfare. From the collision of a bronze sword to the roar of a tank’s engine to the saturation attack of no one “the swarm”, every leap in the shape of war profoundly changes the way it is won. In the long era of cold, hot and mechanized warfare, attrition warfare depletes the opponent’s will to resist by offsetting the hedging of the country’s wealth and resources. However, the new military revolution, spearheaded by the information technology revolution and accelerating towards the intelligent era, is pushing the method of winning war to a whole new dimension —— dissipative warfare, that is, the traditional method of focusing on material and energy consumption is transformed into a comprehensive war method that integrates material versus consumption, energy hedging and information confrontation.

War of attrition is the iron law of traditional forms of warfare

In the industrial age and the long years before it, warfare was based mainly on the confrontation of material and energy elements, and the balance of victory and defeat tended to tilt towards the side that could withstand greater material and energy depletion.

War of attrition is the main winning method for traditional forms of warfare. In cold weapons warfare, the focus of confrontation lies in the number of soldiers, physical endurance, and the competition between metal weapons and grain reserves. The outcome of the war often depends on whose number and scale of soldiers are large and whose logistics chain is stronger. For example, “The essence of siege warfare that was relatively common in ancient times was a war of attrition between the defenders’ material reserves and the siege’s troops and equipment; in a war of hot weapons, the use of gunpowder did not weaken the war consumption, but pushed it to a new height”. The intensive charging of line infantry in the Napoleonic Wars, the brutal strangulation in the trench confrontations at Verdun and the Battle of the Somme in the First World War all reflect the nature of war of attrition “exchanging steel and flesh for space”; mechanized warfare, tanks, aircraft, aircraft carriers and other platforms have appeared, pushing the scale of material and energy consumption to its peak. In World War II, the Battle of the Kursk Tanks on the Soviet-German battlefield and the brutal Battle of Iwo Jima on the Pacific battlefield were the ultimate collision between the country’s industrial capacity and the army’s ability to bear casualties.

The essence of the war of attrition is based on the competition between material and energy elements. The war of attrition competes with volume and stock, which are static or slowly accumulating factors such as population base, resource reserves, industrial production capacity, and force size. The main goal is to destroy the enemy’s effective forces, war materials, and deprive it of its territory and resources. In essence, it is a competition between material and energy elements of both sides. Clausewitz’s “war is a violent act that forces the enemy to obey our will” assertion, the underlying logic is precisely the consumption of violence. The winning mechanism of the war of attrition is: victory belongs to the party that can convert material resources into battlefield lethality more sustainably and can withstand greater losses.

The war of attrition has revealed significant historical limitations in practice. From the long-standing practice of traditional warfare, the fundamental limitations of attrition warfare are reflected in the huge loss of life and material wealth, the unbearable high cost to society, and the large amounts of energy and resources being wasted on non-critical targets or blind shelling, large-scale but inefficient charges and other ineffective confrontations. When the opposing sides are close in strength and determined, the winner is indistinguishable, seesawing repeatedly, and can easily fall into a quagmire of long-term attrition like the battlefields of the Western Front in World War I. In the face of an increasingly networked and information-based modern combat system, relying on a consumption pattern of large-scale fire coverage, it is difficult to accurately attack the opponent’s key nodes and functional connections, achieving twice the result with half the effort.

The information technology revolution gave rise to the prototype of dissipative warfare

The information technology revolution in the second half of the 20th century injected subversive variables into the form of war. Information began to transcend matter and energy and became the core winning factor. The form of information-based war entered the stage of history.

The centre of gravity of the information war shifted. The Gulf War is regarded as a milestone in information warfare, and the Multinational Force has achieved battlefield “one-way transparency” with the help of reconnaissance aircraft, early warning aircraft, electronic warfare systems, precision-guided weapons and C4ISR systems to form an overwhelming information advantage. Instead of completely annihilating the opponent’s massive ground forces, the focus of this war shifted to the systematic destruction of its command and control systems, air defense systems, communication hubs, and logistics supply lines, resulting in the rapid disintegration of the opponent’s overall combat capabilities and a state of disorganization and command failure. This marked the beginning of the shift in the center of gravity of the war from “hard destruction” in the physical domain, to “system breaking” and functional paralysis in the information domain.

Changes in how information warfare is won. Information warfare changes the ways and objectives of the use of matter and energy through information superiority. The way to win is no longer to simply pursue “consume” the opponent’s materials and energy, but to guide the material flow and energy flow through efficient information flow, accurately acting on the “key chain” of the enemy’s combat system, and with minimal material and energy investment, Achieve the greatest degree of chaos and disorder, functional disintegration and overall effectiveness collapse of the enemy system. Thus, it can be seen that information warfare begins to pursue the “entropy increase” of the enemy’s combat system, that is, the increase of chaos, which moves it from order to disorder, indicating that dissipative warfare reflecting the confrontation of complex systems of intelligent warfare has begun to take shape.

Dissipation warfare is a typical way of intelligent warfare

With the rapid development of intelligent technology and its widespread military application, intelligent warfare is becoming a new form of warfare after information warfare, while dissipative warfare has become a typical way of intelligent warfare.

Dissipation warfare has adapted to the requirements of the times of the world security situation. Entering the era of intelligence, intelligent technologies and their applications such as wide networks, big data, cloud computing, brain-computer connections, smart chips, and deep learning are developing rapidly, and the connections between countries and ethnic groups are becoming more extensive. Non-traditional security threats are emerging and Intertwined with traditional security threats, the main body and scope of intelligent warfare continue to expand, war time and space continue to extend, and the war system moves from relatively closed to more open Forming higher-level and larger-scale confrontations, dissipative warfare, the winning method of warfare in the intelligent era, has become increasingly prominent.

Dissipation warfare reflects the historical development of the way in which war was won. Dissipative warfare actually always exists, but before the emergence of intelligent warfare forms, due to technological constraints, it was always in a relatively low-level form and simple state. War confrontation can only be highlighted as a confrontation between certain elements of matter, energy and information. Cold weapon warfare is mainly manifested as human body-centered confrontation led by material elements, hot weapon and mechanized warfare is mainly manifested as platform-centered confrontation led by energy elements, and information warfare is mainly manifested as information element-led confrontation. Network information system-centered confrontation. Entering the intelligent era, intelligent technology highly unifies the cognitive advantages, decision-making advantages and action advantages in the confrontation between ourselves and the enemy. In essence, it highly unifies matter, energy and information. Through intelligent empowerment, intelligent energy gathering, Intelligent energy is driven by intelligence and released by intelligence, forming an intelligent war form dominated by intelligent elements and centered on intelligent algorithms Its typical method is dissipative warfare that reflects the confrontation of complex systems of intelligent warfare.

Dissipative warfare exemplifies the resilience competition of the complex systems of warfare. From the perspective of the “winning mechanism”, in order to obtain a confrontation advantage, we must use “negative entropy perfusion, threshold determination, phase change triggering, victory control” as the basic principle to build our own fast “perception, decision-making, action, evaluation” dissipative warfare closed loop, in the dynamic hybrid game Continuously increase the enemy’s entropy value, causing the enemy to lose its overall combat capability. From the perspective of “winning path”, dissipation warfare emphasizes the comprehensive use of material consumption, energy hedging, information confrontation and other forms, internally “sequence”, to achieve logical concentration, instant enrichment, complementary advantages, integration and excellence, and form comprehensive combat capabilities; externally “To entropy”, it continues to play a role through military, political, economic, scientific and technological, cultural, diplomatic and other component systems, until the accumulation of efficiency reaches a certain level “up and down” Achieve sudden change in combat power and emergence of system effectiveness. From the perspective of basic characteristics, dissipative warfare manifests itself as a comprehensive game of confrontation, diverse subjects across domains, complex and diverse forms, rich integration of forces, and cumulative emergence of performance. The core of confrontation jumps from the destruction of the physical domain and the control of the information domain to the control of intelligence. A game of destruction and maintenance of the inherent “orderliness” of a complex system of warfare.

Dissipation warfare encompasses many forms of intelligent warfare. In addition to the war and confrontation between the two sides in traditional land, sea, air, space, Internet, electricity and other spaces, dissipative warfare also includes the political isolation and siege adopted by one country or multiple countries against combat opponents in various social areas, economic, trade and financial blockade, technology industry chain interruption, cultural strategy export, authoritative media building momentum to seize discourse initiative, creating hot events to guide public awareness, AI helps social media weave information cocoons and use agents to open multilateral battlefields and other forms of struggle. The diverse presentation forms of dissipative warfare make it possible to conduct it in wartime and peacetime. What “Sun Tzu’s Art of War” talks about “the victorious soldier wins first and then seeks war” has been given a new meaning in war preparation in the intelligent era.

The change in winning methods from attrition to dissipation

Dissipative warfare is manifested in the comprehensive confrontation of multiple domains such as physical domain and information domain in the intelligent era. It reflects the high degree of unity in the form of political competition, economic competition, military attack and defense, cultural conflict and diplomatic checks and balances, and reflects the characteristics of intelligent warfare systems. Openness, complexity and emergence.

The evolution from war of attrition to war of dissipation is an all-round and deep-seated transformation. The basis for winning has shifted from relying on the competition of resource stocks such as population, mineral deposits, and industrial base to relying on information advantages, intelligent algorithm advantages, network structure advantages, and the ability to dynamically regulate energy flow and information flow; the target of action has shifted from focusing on destroying soldiers, tanks, Factories and other material entities have shifted to focus on the “function” and “orderliness” of disintegrating the war system; the pursuit of effectiveness has shifted from the absolute destruction and annihilation of living forces Shift to the pursuit of high-efficiency “asymmetric paralysis”, that is, to trigger the greatest chaos and incapacitation of the enemy’s combat system at one’s own minimum cost, and pursue “paralysis” rather than “messing”; the focus of the war has shifted from the main focus on land, sea, The confrontation in physical domains such as the sky has shifted to a comprehensive game in multiple domains such as the physical domain and the information domain. Confrontations of physical domains, though still present, are often dictated by the advantages of higher-dimensional domains.

The evolution from attrition to dissipation warfare reflects the changing advantage of winning. In the era of intelligent warfare, victory will no longer simply belong to the party with the largest torrent of steel, but will inevitably belong to the party that can “order” and “entropy” more efficiently ——that is, it can maintain the highly orderly and efficient operation of its own war system, while accurately and intelligently disintegrating the orderliness of the enemy’s system The party that forces it into irreversibility “entropy increase” and chaos. To win the advantage of winning a war, we must adapt to the openness, complexity and emergence requirements of an intelligent war system, transform from the extensive consumption and use of a single substance, energy and information to the dissipation of a war system dominated by intelligent advantages, and strive to win the initiative and advantage in a comprehensive game in multiple fields.

The evolution from a war of attrition to a war of dissipation is an inevitable trend under the influence of the torrent of the technological revolution. Science and technology are the core combat force and the most active and revolutionary factor in military development. At present, intelligent technology is developing rapidly. Only by actively embracing the wave of intelligence and firmly grasping the key to victory in the precise knowledge, intelligent regulation and efficient dissipation of the orderliness of complex war systems can we achieve the future world game. We are invincible in the ever-changing situation and profound changes in the way of war.

現代國語:

●從消耗戰到耗散戰——

試析智慧化戰爭制勝方式新變革

■王榮輝

閱讀提示

習主席指出,研究作戰問題,核心是要把現代戰爭的特徵法則和致勝機理搞清楚。從青銅劍的碰撞到戰車引擎的轟鳴再到無人「蜂群」的飽和攻擊,戰爭形態的每一次躍遷都深刻改變著戰爭制勝方式。在漫長的冷兵器、熱兵器和機械化戰爭時代,消耗戰以國家財富資源的對沖抵消來耗盡對手的抵抗意志。然而,以資訊科技革命為先導,並加速向智慧化時代邁進的新軍事革命,正將戰爭制勝方式推向全新的維度——耗散戰,即將傳統的以物質、能量消耗為主,轉變為集物質對耗、能量對沖和信息對抗綜合一體的戰爭方式。

消耗戰是傳統戰爭型態的鐵律

在工業時代及其之前的漫長歲月裡,戰爭主要是基於物質與能量要素的對抗,勝負的天平往往向能夠承受更大物質與能量損耗的一方傾斜。

消耗戰是傳統戰爭形態的主要勝利方式。冷兵器戰爭,對抗重心在於兵員數量、體能耐力、金屬兵器與糧秣儲備的比拼,戰爭勝負往往取決於誰的兵員數量規模大,誰的後勤鏈條更牢固。如古代比較多見的圍城戰本質就是守城方物資儲備與攻城方兵力器械的消耗戰;熱兵器戰爭,火藥的運用並未削弱戰爭消耗,反而將其推至新高度。拿破崙戰爭線列步兵的密集衝鋒,第一次世界大戰的凡爾登、索姆河戰役戰壕對峙的殘酷絞殺,無不體現著「以鋼鐵和血肉換取空間」的消耗戰本質;機械化戰爭,坦克、飛機、航母等平台的登場,將物質與能量的消耗規模推向巔峰。第二次世界大戰中,蘇德戰場的庫爾斯克坦克大會戰、太平洋戰場慘烈的硫磺島爭奪戰,都是國家工業產能與軍隊承受傷亡能力的終極對撞。

消耗戰實質是基於物質與能量要素的比拼。消耗戰比拼的是體量和存量,是人口基數、資源儲備、工業產能、兵力規模等靜態或可緩慢累積的要素,主要目標是摧毀敵方有生力量、戰爭物資、剝奪其領土和資源,實質上是對抗雙方物質與能量要素的比拼。克勞塞維茨「戰爭是一種迫使敵人服從我們意志的一種暴力行為」的論斷,底層邏輯正是暴力消耗。消耗戰的致勝機制是:勝利屬於能更持久地將物質資源轉化為戰場殺傷力,並能承受更大損失的一方。

消耗戰在實踐中暴露出重大歷史限制。從傳統戰爭的長期實踐來看,消耗戰的根本限制體現為巨大的生命、物質財富損失,社會難以承受的高昂成本,以及大量能量與資源被浪費在非關鍵目標或盲目砲擊、大規模但低效的衝鋒等無效對抗上。當對抗雙方實力接近且意志堅定時,勝負難分,反覆拉鋸,極易陷入如第一次世界大戰西線戰場般的長期消耗泥潭。面對日益網路化、資訊化的現代作戰體系,依賴大規模火力覆蓋的消耗模式,難以精準打擊對手關鍵節點與功能連接,效果事倍功半。

資訊科技革命催生耗散戰雛形

20世紀下半葉的資訊科技革命,為戰爭形態注入了顛覆性變量,訊息開始超越物質與能量,成為核心製勝要素,資訊化戰爭形態登上歷史舞台。

資訊化戰爭的重心發生轉移。海灣戰爭被視為資訊化戰爭的里程碑,多國部隊憑藉偵察機、預警機、電子戰系統、精確制導武器和C4ISR系統,形成壓倒性資訊優勢,實現了戰場「單向透明」。這場戰爭的重點不再是徹底殲滅對手龐大的地面部隊,而是轉向系統性地摧毀其指揮控制系統、防空體系、通訊樞紐和後勤補給線,導致對手整體作戰能力迅速瓦解,陷入各自為戰、指揮失靈的混亂狀態。這標誌著戰爭重心開始從物理域的“硬摧毀”,向資訊域的“系統破擊”和功能癱瘓轉移。

資訊化戰爭的勝利方式改變。資訊化戰爭透過資訊優勢改變物質、能量運用的方式與目標。制勝方式不再是單純追求“消耗”對手的物質與能量,而是透過高效的信息流引導物質流與能量流,精確作用於敵作戰體系的“關鍵鏈”,以最小的物質與能量投入,達成敵方體系最大程度的混亂失序、功能瓦解和整體效能塌縮。由此可見,資訊化戰爭開始追求敵方作戰體系的「熵增」即混亂度增加,使其從有序走向無序,顯示反映智慧化戰爭複雜體系對抗的耗散戰已經初露端倪。

耗散戰是智慧化戰爭的典型方式

隨著智慧化技術快速發展及其在軍事上的廣泛應用,智慧化戰爭正成為資訊化戰爭後的新戰爭形態,而耗散戰則成為智慧化戰爭的典型方式。

耗散戰適應了世界安全情勢的時代要求。進入智慧化時代,寬網路、大數據、雲端運算、腦機連接、智慧晶片、深度學習等智慧科技及其應用快速發展,各國家、民族之間的連結更為廣泛,非傳統安全威脅興起並與傳統安全威脅交織,智慧化戰爭主體和範疇不斷拓展,戰爭時間與空間不斷外延,戰爭體系從相對封閉層次走向更大空間

耗散戰反映了戰爭制勝方式的歷史發展。耗散戰其實始終存在,只不過在智慧化戰爭形態出現之前,由於技術的製約,一直處於較為低級的形式和簡單狀態,戰爭對抗只能突出體現為物質、能量和資訊某一種要素間的對抗。冷兵器戰爭主要表現為以物質要素為主導的以人體為中心的對抗,熱兵器和機械化戰爭主要表現為以能量要素為主導的以平台為中心的對抗,資訊化戰爭主要表現為以資訊要素為主導的以網路資訊體系為中心的對抗。進入智慧時代,智慧化科技將敵我對抗中的認知優勢、決策優勢和行動優勢高度統一起來,實質是將物質、能量和資訊三者高度統一,透過以智賦能、以智聚能、以智驅能、以智釋能,形成了以智能要素為主導的、以智能要素為中心的智能化戰爭形態,其典型方式為反映智能化戰爭體系即為反映智能化戰爭體系的複雜方式。

耗散戰體現了戰爭複雜體系的韌性比拼。從制勝機理來看,要取得對抗優勢,必須以「負熵灌注、閾值認定、相變觸發、勝勢控制」為基本原理,建構自身快速「感知、決策、行動、評估」耗散戰閉環,在動態混合賽局中持續增加敵方熵值,致敵喪失整體作戰能力。從制勝路徑看,耗散戰強調綜合運用物質對耗、能量對沖、信息對抗等形式,對內“制序”,達成邏輯集中、即時富聚,優勢互補、一體聚優,形成綜合戰力;對外“致熵”,透過軍事、政治、經濟、科技、文化、外交等組分系統發揮作用,至效能累積達到某程度突變體現在達到某程度一體不正常」。從基本特徵來看,耗散戰表現為對抗綜合博弈、主體跨域多元、形式複雜多樣、力量一體富聚、效能累積湧現,對抗的核心從物理域的摧毀、資訊域的掌控,躍升為對智能化戰爭複雜體系內在「有序性」的破壞與維持的博弈。

耗散戰涵蓋了智慧化戰爭的多種形式。除了戰爭對抗雙方在傳統的陸、海、空、天、網、電等空間的消耗對抗,耗散戰更包括了一國或者多國對作戰對手在多類社會域所採取的政治孤立圍困、經貿金融封鎖、科技產業鎖鏈、文化戰略輸出、權威媒體造勢搶繭主動、製造熱點事件導控大眾認知、科技產業助力、社交戰略輸出、權威媒體造勢搶地論者主動、製造熱點等運動導控大眾認知、AI企業、文化戰略輸出、權威媒體造勢搶地論者主動、製造熱點等運動導控大眾認知、AI企業、文化戰略輸出、權威媒體造勢搶地論者主動、製造熱點等方體控制大眾認知、AI企業、社會化資訊。耗散戰的多樣化呈現形式使其在戰時和平時均可進行,《孫子兵法》講的“勝兵先勝而後求戰”,在智能化時代的戰爭準備中被賦予新的涵義。

從消耗戰到耗散戰的致勝方式變化

耗散戰表現在智慧時代中物理域、資訊域等多域的綜合對抗,體現出政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等形式的高度統一,反映了智慧化戰爭體系所具有的開放性、複雜性和湧現性。

從消耗戰到耗散戰的演進是全方位深層的變革。制勝基礎從依賴人口、礦藏、工業基礎等資源存量的比拼,轉向依賴資訊優勢、智慧演算法優勢、網路結構優勢以及對能量流、資訊流的動態調控能力;作用對象從聚焦摧毀士兵、戰車、工廠等物質實體,轉向聚焦瓦解戰爭體系的「功能」與「有序性」;效能追求從對有生力量的絕對摧毀與殲滅,轉向追求高效的“非對稱癱瘓”,即以己方最小代價,引發敵方作戰體系的最大混亂與失能,追求“打癱”而非“打爛”;戰爭重心從主要在陸地、海洋、天空等物理域的對抗,轉向物理域、信息域等多域的綜合博弈。物理域的對抗雖然依舊存在,但往往由更高維域的優勢決定。

從消耗戰到耗散戰的演進反映了致勝優勢的變化。智慧化戰爭時代,勝利將不再簡單歸屬於擁有最龐大鋼鐵洪流的一方,而必然歸屬於能更有效率地「制序」與「致熵」的一方──即能夠維繫己方戰爭體系高度有序、高效運轉,同時精準智能地瓦解敵方體係有序性,迫使其陷入不可逆「熵增」且混亂的一方。要贏得戰爭制勝優勢,必須適應智慧化戰爭體系的開放性、複雜性和湧現性要求,從單一物質、能量和資訊的粗放式消耗和運用轉變到以智慧優勢主導戰爭體系的耗散,力爭在多領域的綜合博弈中贏得主動和優勢。

從消耗戰向耗散戰的演進是科技革命洪流裹挾下的必然趨勢。科技是核心戰鬥力,是軍事發展中最活躍、最具革命性的因素。目前,智慧化科技快速發展,只有主動擁抱智慧化浪潮,將制勝之鑰牢牢掌握在對戰爭複雜體係有序性的精確認知、智慧調控與高效耗散之中,才能在未來世界博弈的風雲變幻與戰爭方式的深刻變革中立於不敗之地。

来源:解放军报 作者:王荣辉 责任编辑:王韵 2025-09-10 06:30

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/16408721.html

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

Chinese Military Dissipative Warfare: a Typical Form of Intelligent Warfare

中國軍事耗散戰:智慧戰爭的典型形式

現代英語:

With the rapid development of intelligent technology and its widespread application in the military, intelligent warfare is becoming a new form of warfare after information warfare, and dissipative warfare has become a typical form of intelligent warfare. The so-called dissipative warfare refers to the combat method in which the intelligent warfare system achieves comprehensive combat power by integrating material consumption, energy release and information diffusion through internal enrichment and integration and external mutation emergence. Strengthening the research on dissipative warfare will help us to deeply reveal the winning mechanism of intelligent warfare and win the initiative in future war games.

Dissipative warfare is the inevitable result of the development of the times

Dissipative warfare is manifested in the comprehensive confrontation of the physical, information and cognitive domains in the intelligent era. It is embodied in the highly unified forms of political contest, economic competition, military offense and defense, cultural conflict and diplomatic checks and balances, reflecting the openness, complexity and emergence of the intelligent warfare system.

Adapt to the security situation requirements of the intelligent era. Entering the intelligent era, technologies such as broadband networks, big data, big models, cloud computing, and deep learning are developing rapidly, and the connections between political groups, countries, and nations are becoming more extensive. Under the influence of multiple factors such as political pluralism, economic integration, social openness, and technological revolution, non-traditional security has emerged and intertwined with traditional threats. The subjects and scope of intelligent warfare are constantly expanding, the time and space of war are constantly extending, and war and peace are inseparable and intertwined. The war system will further transcend local regional restrictions, from relative closure to greater openness, forming a higher level and larger range of confrontation. Dissipative warfare emphasizes the comprehensive efforts of the intelligent warfare system in the physical domain, information domain, and cognitive domain, and highly unifies the forms of political competition, economic competition, military offense and defense, cultural conflict, and diplomatic checks and balances and incorporates them into the category of enemy-us confrontation, adapting to the requirements of the times for the development of the world security situation.

This is in line with the objective law of the evolution of war forms. The dissipation phenomenon of the war system has always existed since the emergence of war. However, before the emergence of intelligent war forms, due to technological constraints, it has always been in a relatively low-level and simple state. War confrontation can only be manifested in one of the forms of material consumption, energy dissipation and information diffusion. In the agricultural era, the form of war was mainly manifested as a cold weapon war dominated by material elements and centered on the human body. In the industrial era, the form of war was mainly manifested as thermonuclear weapons and mechanized war dominated by energy elements and centered on platforms. In the information age, the form of war is mainly manifested as an information war dominated by information elements and centered on the network security system. Entering the intelligent era, intelligent technology highly unifies the cognitive advantages, decision-making advantages and action advantages in the confrontation between the enemy and us. In essence, it highly unifies the three elements of matter, energy and information. Through empowering, gathering and releasing energy with intelligence, an intelligent war form dominated by intelligent elements and centered on intelligent algorithms has been formed. The main form of expression is the dissipative war that reflects the confrontation of the complex system of intelligent warfare.

It has a solid philosophical theoretical foundation. The social form is the mother of the war form. To explore and understand intelligent warfare, we must base ourselves on the basic principles of historical materialism and dialectical materialism, comprehensively examine the evolution of the war form and the social form in which intelligent warfare is located, and construct a new war concept and context system. From a philosophical perspective, matter, energy and information are the three major elements that constitute the world. Matter embodies the existence of the origin, energy embodies the existence of movement, and information embodies the existence of connection. The three progressively and alternately dominate the evolution and operation of social and war forms. According to the principle of negation of negation of dialectical materialism, in the intelligent age after the information age, the dominant element of society will be matter again after matter, energy and information. However, this material is a new type of material formed after a spiral rise after high informatization, and its main feature is that it has intelligent technology attributes. Therefore, in essence, dissipative warfare is the intelligent element that highly unifies the characteristics and advantages of matter, energy and information in the previous low-level war form, and highly unifies the forms of material consumption, energy release and information diffusion that are prevalent in war, reflecting the typical characteristics of intelligent warfare.

Deeply grasp the inherent meaning of dissipative warfare

Dissipative warfare is based on the real world and covers the virtual world. It adapts to the rapid development of intelligent technology, the rise of non-traditional security threats, and the continuous expansion of the subjects and scope of war, and presents many new characteristics.

Comprehensive game of confrontation. As the intelligent war form accelerates to a higher depth and breadth, the interconnection and influence of political, economic, cultural, diplomatic and other fields are more extensive, and the focus of war begins to shift from the military system to the social system. The confrontation of war stakeholders will be reflected in various forms of comprehensive games such as political competition, economic competition, military offense and defense, cultural conflict and diplomatic checks and balances. The war advantage pursued is no longer limited to the field of military confrontation. The winner of the war must adapt to the openness, complexity and emergence requirements of the war system, and transform from the extensive consumption and use of single materials, energy and information to the dissipation of the war system dominated by intelligent advantages, and strive to gain initiative and advantage in the comprehensive game in multiple fields.

The subjects are cross-domain and diversified. The subjects of intelligent warfare are becoming more and more generalized, and the potential forces of war that need to be mobilized in traditional warfare will be in a state of normalized confrontation. Political forces, various institutions and personnel, together with the troops and soldiers fighting on the battlefield in the traditional sense, constitute the subjects of war. Diversified war subjects will cross the real domain and the virtual domain, appear in multiple spatial domains such as land, sea, air, space, electricity, and psychology, covering the physical domain, information domain, cognitive domain, etc., covering multiple social domains such as politics, economy, culture, and diplomacy. For example, civilians can use smartphones to collect information on the military battlefield and pass it on to war stakeholders, resulting in the spread of key information about the war, which in turn affects war decisions or the victory or defeat of a campaign or battle.

Forces are integrated and enriched. Virtual forces are integrated. Focusing on the purpose of war, all possible real forces and virtual forces will be integrated with the support of intelligent technology, and perform their duties and act according to regulations on parallel battlefields; unmanned forces are integrated. After going through the stages of manual operation, manual authorization, and manual supervision, unmanned combat forces will achieve a high degree of autonomy, and can be deployed and combined with various manned forces on demand, and effectively coordinate and coexist in parallel under the constraints of common war rules; multiple forces are integrated. Based on the extensive connections in various fields and the common purpose of the war system, the forces of the party, government, military, police, and civilians will closely coordinate military operations with political, economic, diplomatic, public opinion, and legal struggles, and unify their actions to form comprehensive combat power. In short, under the integrated planning of the country or political group, although the multiple participating forces of intelligent warfare are physically dispersed, they can achieve logical concentration, immediate enrichment, complementary advantages, and integrated excellence around the common purpose of war.

Effectiveness accumulates and emerges. While the high-level war form has new technical characteristics, it still includes the characteristic advantages of the low-level war form. Dissipative warfare emphasizes continuous comprehensive confrontation in multiple domains, which includes the consumption of ammunition, supplies, equipment and even combatants at the material level, as well as the continuous collection and release of energy, and the diffusion and integration of data, knowledge, algorithms, etc. at the information level, which has an unlimited impact on people’s thinking cognition, value pursuit, moral concepts, emotional will, and behavior patterns. Under the normal deterrence of nuclear weapons, intelligent warfare shows a decrease in bloodiness, but political isolation, economic blockade, cultural conflict, diplomatic strangulation, etc. will become more severe and intense. When the military, political, economic, cultural, diplomatic and other systems continue to play their roles and the effectiveness accumulation reaches a certain level, the war system will increase negative entropy, thereby achieving a sudden change in combat power and the emergence of system effectiveness, thereby gaining a war advantage.

Fighting a Dissipative War by Choosing the Right Combat Focus

The intelligent warfare system achieves maximum system combat effectiveness through internal enrichment and integration, external mutation, cross-domain efficiency enhancement, and intelligent dissipation, which is the winning mechanism contained in dissipative warfare. To win in intelligent warfare, it is necessary to clarify the operational focus of dissipative warfare, target the shortcomings and weaknesses of the opponent’s system, and find the focus of war preparation.

Focus on the openness of the system and isolate the opponent’s war system. Cut off the material, energy and information exchange between the opponent’s war system and the external battlefield environment, so that it lacks material, energy and information sources, and gradually moves towards an isolated, closed and weak state. For example, at the strategic level, political isolation is used to isolate the opponent’s war system, causing the system’s entropy to increase. At the campaign level, methods such as cutting off data sources, destroying data backups, falsifying data, and tampering with information can be used to force its war system to transform into a closed state, thereby reducing the effectiveness of the opponent’s system.

Focusing on the complexity of the system, the opponent’s war system is destroyed in different domains. The more connections and the closer the degree of connection between the elements of the intelligent war system, the lower the reliability of the system structure. By using the principle of relative independence of each layer in a complex system, we can formulate strategic overall, local and tactical action strategies to achieve layered and domain-based destruction of the enemy’s war system. For example, at the strategic level, the economic blockade is adopted to greatly weaken the opponent’s war strength and development potential. At the campaign level, the vulnerability of the combat system communication network is utilized, and the network-electric composite attack is used as the basic path and means. The methods of “destroying the end, attacking the element, isolating the group, disconnecting the network, and breaking the cloud” are adopted to destroy the opponent’s combat system structure and cause the opponent’s war system to “collapse”.

Focus on system emergence and dismantle and disperse the opponent’s war system. Only when the intelligent war system has mutation and emergence effects can it quickly form and exert system effectiveness and gain dissipative warfare advantages. If only a single component or element plays a role, it is impossible to form an advantage. It can be foreseen that the currently emerging technologies such as ChatGPT and more advanced intelligent technologies in the future will provide a new way of thinking to understand and discover the operating behavior, state and laws of complex war systems, as well as new means to explore objective laws and transform nature and society. The party with the advantage in war confrontation will reduce the coupling degree of the opponent’s war system through a combination of virtual and real, parallel and integrated confrontation methods, and achieve the purpose of dismantling and dismantling the enemy’s war system.

國語中文:

耗散戰:智慧化戰爭典型方式
王榮輝
引 言
隨著智慧化技術快速發展及在軍事上的廣泛應用,智慧化戰爭正成為資訊化戰爭後的新戰爭形態,而耗散戰則成為智慧化戰爭的典型方式。所謂耗散戰,是指智慧化戰爭體系透過對內富聚融合,對外突變湧現,達成集物質消耗、能量釋散和資訊擴散於一體的綜合戰力的作戰方式。加強耗散戰研究,有利於我們深入揭示智慧化戰爭制勝機理,贏得未來戰爭賽局主動權。
耗散戰是時代發展的必然結果
耗散戰表現在智慧化時代中物理域、資訊域和認知域的綜合對抗,體現為政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等形式的高度統一,反映了智慧化戰爭體系所具有的開放性、複雜性和湧現性。
適應智慧化時代的安全情勢要求。進入智慧化時代,寬網路、大數據、大模型、雲端運算、深度學習等技術快速發展,各政治集團、國家、民族之間的聯繫更加廣泛。在政治多元、經濟交融、社會開放、科技革命等多重因素作用下,非傳統安全興起並與傳統威脅交織,智慧化戰爭主體與範疇不斷拓展,戰爭時間與空間不斷外延,戰爭與和平如影相隨並交織一體,戰爭體系將進一步超越局部地域限制,從相對封閉走向更開放,形成更高層次和更大範圍的對抗。耗散戰強調智慧化戰爭體系在物理域、資訊域和認知域的綜合發力,把政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等形式高度統一併納入敵我對抗範疇,適應了世界安全情勢發展的時代要求。
符合戰爭形態演變的客觀法則。戰爭體系的耗散現象自戰爭產生以來便始終存在,只不過在智能化戰爭形態出現之前,由於技術的製約,一直處於較為低級的、簡單的狀態,戰爭對抗僅能表現為物質消耗、能量釋散和訊息擴散中的某一種形式。農業時代,戰爭形態主要表現為以物質要素為主導的、以人體為中心的冷兵器戰爭。工業化時代,戰爭形態主要表現為以能量要素為主導的、以平台為中心的熱核兵器和機械化戰爭。在資訊化時代,戰爭形態主要表現為以資訊要素為主導的、以網信體系為中心的資訊化戰爭。進入智慧化時代,智慧化科技將敵我對抗中的認知優勢、決策優勢和行動優勢高度統一起來,實質是將物質、能量和資訊三者高度統一,透過以智賦能、以智聚能、以智釋能,形成了以智慧要素為主導的、以智慧演算法為中心的智慧化戰爭形態,主要表現形式即為反映智慧化戰爭複雜體系對抗的耗散戰。
具有堅實的哲學理論基礎支撐。社會形態是戰爭形態的母體,探索和認識智能化戰爭,必須基於歷史唯物主義和辯證唯物主義的基本原理,綜合考察戰爭形態的演進和智能化戰爭所處的社會形態,構建新的戰爭概念和語境體系。從哲學角度看,物質、能量和資訊是構成世界的三大要素,物質體現本源的存在,能量體現運動的存在,訊息則體現聯繫的存在,三者遞進交替主導著社會形態和戰爭形態的演進和運行。依照辯證唯物論的否定之否定原理,在資訊時代之後的智慧時代,主導社會的要素將繼物質、能量、資訊後再次輪到物質,只不過這個物質是高度資訊化後螺旋式上升後形成的新型物質,其主要特徵就是具有了智慧化技術屬性。因此,從本質上講,耗散戰是智慧要素將以前低階戰爭形態中物質、能量和資訊的特性優勢高度統一起來,將戰爭中普遍存在的物質消耗、能量釋散和資訊擴散等形式高度統一起來,反映了智慧化戰爭的典型特徵。
深刻把握耗散戰的內在要義
耗散戰基於現實世界、涵蓋虛擬世界,適應了智慧化技術快速發展、非傳統安全威脅興起、戰爭主體和範疇不斷拓展的趨勢,呈現出許多新特性。
對抗綜合博弈。隨著智慧化戰爭形態加速向更高深度和廣度發展,政治、經濟、文化、外交等領域相互聯繫和影響更具廣泛性,戰爭重心開始從軍事系統向社會系統偏移,戰爭利益攸關方的對抗將體現為政治較量、經濟比拼、軍事攻防、文化衝突和外交制衡等多種形式的綜合博弈,追求的戰爭優勢不再只限於軍事對抗領域。戰爭制勝方必須適應戰爭體系的開放性、複雜性和湧現性要求,從單一物質、能量和資訊的粗放式消耗和運用轉變到以智慧優勢主導戰爭體系的耗散,力爭在多領域的綜合博弈中贏得主動和優勢。
主體跨域多元。智慧化戰爭的主體日益泛化,傳統戰爭需要動員的戰爭潛在力量將處於常態化對抗狀態。政治力量、各類機構和人員與傳統意義上在戰場廝殺的部隊和軍人一起構成戰爭的主體。多元化戰爭主體將跨越現實域和虛擬域,出現在陸、海、空、天、電、心理等多個空間域,涵蓋物理域、資訊域、認知域等,涵蓋政治、經濟、文化、外交等多類社會域。如社會平民可以用智慧型手機收集軍事戰場上的信息並傳遞給戰爭利益攸關方,造成對戰爭關鍵訊息的擴散,進而影響戰爭決策或一場戰役和戰鬥的勝敗。
力量一體富聚。虛實力量一體。圍繞著戰爭目的,一切可能運用的現實力量和虛擬力量將在智能化技術支撐下實現一體化,在平行戰場上按職履責、按規行動;有無力量一體。無人作戰力量將在經歷人工操作、人工授權、人為監督階段後,實現高度的自主性,並可與各類有人力量按需部署、按需組合,在共同的戰爭規則約束下有效協同、並行共生;多方力量一體。基於各領域的廣泛聯繫和戰爭體系的共同目的,黨政軍警民等各方力量將軍事行動與政治、經濟、外交、輿論、法理鬥爭密切配合、統一行動,形成綜合戰力。總之,在國家或政治集團的一體籌劃下,智慧化戰爭的多元參戰力量雖然物理分散,但能夠圍繞共同的戰爭目的,實現邏輯集中、即時富聚,優勢互補、一體聚優。
效能累積湧現。高階戰爭形態在具有新質技術特徵的同時,仍涵括低階戰爭形態的特徵優勢。耗散戰強調在多域持續進行綜合對抗,這既包括物質層面的彈藥、物資、器材甚至作戰人員的消耗,也包括能量層面的不斷匯集和釋放,更包括透過資訊層面的數據、知識、演算法等的擴散與融合,對人的思考認知、價值追求、道德觀念、情感意志、行為模式等產生不可限制的影響。在核武的常態嚇阻下,智慧化戰爭呈現出血腥味下降,但政治孤立、經濟封鎖、文化衝突、外交扼殺等將更加嚴峻激烈的局面。當軍事、政治、經濟、文化、外交等各系統角色持續發揮,效能累積達到某一程度,戰爭體係就會增加負熵,進而實現戰力突變和體系效能湧現,從而獲得戰爭優勢。
在選準作戰重心中打好耗散戰
智慧化戰爭體系透過對內富聚融合,對外突變湧現,跨域增效、以智耗散,達成體係作戰效能最大化,這是耗散戰蘊含的製勝機理。要在智慧化戰爭中贏得勝勢,必須明確耗散戰的作戰重心,針對對手體系短板弱點,找準戰爭準備的發力點。
著眼體系開放性,封閉孤立對手戰爭體系。截斷對手戰爭體系與外在戰場環境的物質、能量和資訊交流,使之缺乏物質、能量和資訊來源管道,逐漸走向孤立、封閉和虛弱狀態。如在戰略層面,採取政治孤立的方式,使對手戰爭體系處於孤立狀態,造成體系熵增。在戰役層面,可利用切斷資料來源、毀滅資料備份、資料作假、竄改資訊等方法,綜合採用軟硬手段,迫其戰爭體係向封閉狀態轉化,進而降低對方體系效能。
著眼體系複雜性,分域破擊對手戰爭體系。智慧化戰爭體係要素間連結越多、連結程度越緊密,體系結構可靠性就越低。運用複雜系統中各分層相對獨立的原理,可製訂戰略全局、戰役局部和戰術行動策略,實現對敵戰爭體系的分層分域破擊。如在戰略層面,採用經濟封鎖的方式,大大削弱對手的戰爭實力和發展潛力。在戰役層面,利用作戰系統通訊網路的脆弱性,以網電複合攻擊為基本路徑與手段,採用「毀端、擊元、孤群、斷網、破雲」等方式,破擊對方作戰系統結構,促使對方戰爭體系「坍塌」。
著眼體系湧現性,拆解疏散對手戰爭體系。智慧化戰爭體系只有出現突變和湧現效應,才能快速形成發揮體系效能,獲得耗散戰優勢。如果只是單一組分或要素發揮作用,不可能形成優勢湧現。可以預見,當前興起的ChatGPT等技術以及未來更高級的智慧化技術,將提供理解和發現戰爭複雜體系運作行為、狀態和規律的全新思維方式,以及探知客觀規律、改造自然和社會的新手段,戰爭對抗優勢方將透過虛實結合、平行一體的對抗方式,降低對手戰爭體系的耦合度,達成拆解疏散敵戰爭體系的目的。

中國軍事資源:https//www.81it.com/2023/0509/14288.html

2023-05-09 11:48:56來源:中國軍網-解放軍報