Effectively lay a solid foundation for informatization
■Li Zhanliang
The report of the 20th National Congress of the Communist Party of China emphasized that we should adhere to the integrated development of mechanization, informatization and intelligence. From the perspective of the relationship between mechanization, informatization and intelligence, mechanization is the foundation of informatization, and intelligence is the sublimation of informatization. Without mechanization there is no informatization, and without adequate informatization, no major breakthrough in intelligence is possible. At present, to vigorously promote military intelligence, we must first effectively lay a solid foundation for informatization construction and strive to improve the level of informatization of our troops.
Solidifying the material base. “It’s hard for a clever woman to make a meal without rice”. In order to shorten the gap with powerful enemies “system gap”, information construction should closely follow the mission and tasks, keep up with cutting-edge technology, do a good job in top-level design, and promote peace and war in an integrated manner. First, upgrade and improve all types of information systems. It is necessary to “focus on the construction of the accusation center and use information infrastructure as a platform to coordinate the construction of sub-systems and the linkage construction of various systems, promote the construction of all elements and systems in areas such as command and control, and realize the integration of information networks in each sub-domain.” Real-time command and control. Secondly, we should build a good operational database. In accordance with the principles of “integration of peacetime and wartime, overall planning, and classified implementation”, we will build a comprehensive combat database to achieve information sharing, data support, and auxiliary decision-making, and support “command chain” with “information flow”. Again, a preset backup mobile command post. We should actively draw on the useful practices of foreign military forces and vigorously strengthen civil defence projects, so as to form a mobile command capability with a multi-point layout, complementary movements and static forces, and rapid configuration.
Build a “strong team”. To win local information wars with intelligent characteristics, building a strong information force is an important guarantee. On the whole, efforts should be made to train four types of talents: first, information command talents. Frontline mid – and senior-level commanders should study information and data like troops, the construction of information systems like battle breakthroughs, and the use of electromagnetic spectrum like ammunition performance. Second, information warfare talent. Cultivate a group of intelligent staff officers, operational planners, cognitive operations and other talents who are competent in information-based operations. Third, information security talents. With the “information assurance department and information assurance operation and maintenance professional technical team personnel” as the main targets, we will continue to increase professional training and improve network management, system use, inspection and maintenance capabilities. Fourthly, information research and development talents. Adopt methods such as “invite in, go out, etc., let go of burdens, and hand in tasks, cultivate a group of expert technical talents with strong system research and development capabilities, establish an information-based high-end talent mobile station, and form “not for me, but for me”” Use a virtuous cycle.
Change command philosophy. Modern warfare is about system, and joint combat command is a key part of it. In order to respond to real threats and challenges, it is necessary to establish a new concept of command that is compatible with future wars. First, the establishment of a solid integrated command concept. Overcoming the narrow concept of command of a single service and arms, comprehensively coordinating multi-dimensional battlefield operations such as land, sea, air, space, electricity, and networks, and integrating various combat elements to effectively improve the combat effectiveness of overall victory and joint victory. Second, establish a solid digital command concept. Transform from “extensive to precise command”, concretize and refine mission distinction, force use, time and space division, goal determination, etc., standardize the command procedures, command methods, command content and other processes of joint combat forces, and standardize reconnaissance intelligence, weapons The platform, command and control and other networked and real-time operations shorten the command process and improve the command timeliness. Third, we need to establish a solid and intelligent command concept. Actively explore the systematic application of artificial intelligence technology, accelerate the development and application of new technologies such as intelligent decision-making, digital twins, big data, and cloud computing, improve the level of complex information processing on the battlefield, and enable commanders to control combat units and various types of weapons with the support of intelligent cloud brains. Task-based command of the platform.
Advancing innovative practices. In order to adapt to changes in science and technology, changes in war, and changes in opponents, we should speed up the construction of “three systems” to win the information war. First, the system of innovative tactics. In-depth study of the real strategies of preventing enemy information attacks, resisting enemy information interference, and counterattacking enemy information in the case of all-round information strikes and firepower destruction by powerful enemy opponents, and strive to achieve precise enemy control. Secondly, the system of innovative training. Focusing on “strong enemy opponents and combat tasks, set up an information combat environment, conduct in-depth research and training on command coordination, tactical application, system construction, comprehensive support and other topics, and promote actual combat deployment and application”. Innovation management systems again. Adhere to the integration of peacetime and wartime management and the combination of virtual and real management, establish a demand-driven mechanism, a plan-led mechanism, and an inspection and evaluation mechanism led by war, create an independent and controllable industrial chain, supply chain, and guarantee chain, and ensure “peace management ”“wartime Use” seamless connection to help continuously improve information combat capabilities.
With the accelerated application of cutting-edge technology in the military field, intelligent unmanned systems have become an important part of modern warfare. The world’s major military powers attach great importance to the application of intelligent unmanned system technology in the military field. In the future, intelligent unmanned systems will have a profound impact on combat methods and subvert the rules of war. As a culmination of cutting-edge science and technology (such as artificial intelligence, intelligent robots, intelligent perception, intelligent computing, etc.), intelligent unmanned systems represent the highest level of development of a country’s scientific and technological strength. Therefore, research in the field of intelligent unmanned systems can greatly promote the development of existing military and livelihood fields. At present, unmanned system equipment has emerged in military conflicts. For example, in the conflict between Turkey and Syria, Turkey used the Anka-S long-flight drone and the Barakta TB-2 reconnaissance and strike drone equipped by the Air Force to attack the Syrian government forces; the Russian Ministry of Defense also announced that militants in Syria used drones carrying explosives to launch a cluster attack on its military bases; in 2020, the United States used an MQ-9 “Reaper” drone to attack a senior Iranian military commander and killed him on the spot. Unmanned combat is coming, and intelligent unmanned systems, as a key weapon on the future battlefield, will determine the victory of the entire war.
Image from the Internet
The development of intelligent unmanned systems will not only promote the upgrading and progress of existing military technology, but also drive the intelligent development of civilian technology, including intelligent transportation systems, smart home systems, intelligent manufacturing systems and intelligent medical systems. In order to develop intelligent unmanned systems more scientifically and rapidly, major scientific and technological powers have introduced a series of plans and routes for the development of intelligent unmanned systems, striving to seize the initiative and commanding heights in the development of intelligent unmanned systems. Related ones include the United States’ integrated roadmap for autonomous unmanned systems, Russia’s national weapons and equipment plan, the United Kingdom’s defense innovation technology framework, China’s new generation of artificial intelligence development plan, and Japan’s medium- and long-term technology plan. In recent years, from air to space, from land to sea, various types of intelligent unmanned systems have emerged in large numbers. The world’s major powers have gradually deployed intelligent unmanned systems into the military, and in some regional conflicts and anti-terrorism battlefields, the key role of intelligent unmanned systems is increasing. Therefore, this article will focus on the military needs of the future battlefield, based on the challenges of the actual complex environment faced by the future battlefield, analyze the key technologies required for the development and application of intelligent unmanned systems, and analyze the key technologies of individual enhancement and cluster enhancement from a military perspective, and explain the development trend of intelligent unmanned systems.
Current research status at home and abroad
The concept of intelligent unmanned system has only been proposed recently. At present, its research is still in its early stages, and there is no unified definition in the world. It is temporarily defined as: an organic whole composed of an unmanned platform and several auxiliary parts, with the ability to perceive, interact and learn, and capable of autonomous reasoning and decision-making based on knowledge to achieve the goal. Intelligent unmanned systems can be divided into three major parts: land unmanned systems, air unmanned systems and marine unmanned systems according to the spatial scope of their functions. Among them, land unmanned systems mainly include reconnaissance unmanned vehicles, transport unmanned vehicles, combat unmanned vehicles, obstacle removal unmanned vehicles, bomb disposal unmanned vehicles, unmanned vehicle formations and command systems, etc.; air unmanned systems mainly include reconnaissance drones, combat drones, logistics transport drones and drone formations, etc.; marine unmanned systems mainly include reconnaissance unmanned boats, combat unmanned boats, logistics transport unmanned boats, patrol search and rescue unmanned boats, reconnaissance unmanned submarines, combat unmanned submarines and shore-based support systems, etc. This section will explain the current research status of intelligent unmanned systems at home and abroad from the above three parts. ⒈ Current status of foreign intelligent unmanned system research ⑴ Land unmanned system Land unmanned systems are mainly used in intelligence collection, reconnaissance and patrol, mine clearance and obstacle removal, firepower strike, battlefield rescue, logistics transportation, communication relay and electronic interference. As the advantages of land unmanned systems in combat become more and more prominent, research on them has attracted more and more attention from various countries. The United States launched the “Joint Tactical Unmanned Vehicle” project in November 1993, which is the predecessor of the “Gladiator” unmanned combat platform project. In 2006, the United States completed the design of the entire system of the “Gladiator” unmanned combat platform and officially equipped the Marine Corps in 2007. The “Gladiator” tactical unmanned combat platform is the world’s first multi-purpose combat unmanned platform. It is equipped with sensor systems such as day/night cameras, GPS positioning systems, and acoustic and laser search systems. It is also equipped with machine guns, submachine guns, tear gas, sniper systems, biological and chemical weapons detection systems, etc. It can perform reconnaissance, nuclear and biological weapons detection, obstacle breakthrough, anti-sniper, firepower strike and direct shooting in different weather and terrain. The Gladiator unmanned combat platform is equipped with a highly mobile and survivable chassis. For this platform, a portable handheld control system has also been developed, and a series of development work has been completed around the technical issues of the control system’s anti-interference, network interoperability, miniaturization and ease of operation. However, due to the weak armor protection capability of the Gladiator unmanned combat platform and the poor concealment of its mission, its long-range reconnaissance and control system faces more interference. In addition, the US Army has also put some other land unmanned systems into service, such as the Scorpion robot and the Claw robot. In 2017, the US Army formulated the Robotics and Autonomous Systems (RAS) Strategy, which provides a top-level plan for the construction of unmanned combat capabilities. Figure 1 shows the US land unmanned system.
Figure 1 US land unmanned system Israel, Russia, the United Kingdom and Germany have also successively carried out the development of land unmanned systems and developed a series of advanced products. The product list is shown in Table 1. For example, the “Guardian” series of autonomous unmanned vehicles developed by Israel can combine the sensors and fusion algorithms on board to autonomously detect and identify dangerous obstacles, and perform patrol, surveillance and small-scale fire strike tasks; the MARSA-800 unmanned vehicle developed by Russia can perform tasks such as transportation and logistics support, tracking and surveillance, and can realize autonomous path planning and avoid obstacles during the execution of tasks. The unmanned vehicle has been deployed on the Syrian battlefield. The United Kingdom and Germany also started research on land unmanned systems earlier. The United Kingdom launched a trolley bomb disposal robot in the 1960s, and later launched the Harris T7 tactile feedback robot for performing dangerous tasks such as bomb disposal and bomb disposal; the “Mission Master” ground armed reconnaissance unmanned vehicle developed by Germany’s Rheinmetall is mainly used to perform tactical surveillance, dangerous object detection, medical evacuation, communication relay and fire support tasks.
Table 1 Land unmanned systems of various countries
⑵ Aerial unmanned systems Aerial unmanned systems are mainly based on single drone platforms and drone clusters. Due to their advantages such as wide field of view, freedom of flight, and good equipment carrying capacity, drones are widely used in the military field and have played a great role in military conflicts in recent years. The main functions of aerial unmanned systems include: intelligence gathering, reconnaissance and surveillance, decoy target aircraft, target tracking, tactical strikes and air rescue. In 2000, the U.S. Air Force Research Laboratory proposed the concept of autonomous combat for unmanned aerial vehicles, quantified the degree of autonomy of unmanned aerial vehicles, and formulated a development plan. The quantitative content and development stage of the degree of autonomy of unmanned aerial vehicles are shown in Figure 2.
Figure 2 Autonomous control level and the trend of autonomous
unmanned aerial vehicles In 2003, the United States merged the unmanned combat aircraft system projects of the Air Force and the Navy, launched the “Joint Unmanned Combat System” (J-UCAS) project, and began research on the unmanned combat aircraft X-47B. In 2006, the U.S. Navy proposed the “Navy Unmanned Combat Air System” (N-UCAS) project, which aims to introduce unmanned combat aircraft to the aircraft carrier-based aircraft wing and continue to conduct research on the X-47B. Between 2012 and 2014, the aircraft carrier catapult, landing, touch-and-go and other tests were completed many times, and the autonomous aerial refueling test was completed in 2015. The X-47B attack drone is an autonomously maneuverable, stealthy, and land-based and ship-based unmanned combat aircraft. It has the characteristics of high range and high flight time, and is equipped with advanced sensors such as illumination radar, optoelectronic guidance system, and aperture radar. Its main functions include intelligence reconnaissance, target tracking, electronic warfare interference, and firepower strikes. Other unmanned aerial systems developed by the United States, such as the Global Hawk, Predator, Hunter, and Raven, have also been in service in the military, as shown in Figure 3. The “Harpy” drone developed by Israel is equipped with anti-radar sensors, optoelectronic guidance systems and missiles, and can autonomously attack enemy radar systems, as shown in Figure 3.
Figure 3 Aerial Unmanned Systems of Various Countries
A single aerial unmanned system is easily interfered with and attacked when performing a mission, resulting in mission failure, while an aerial unmanned system cluster can make up for this defect and give full play to the advantages of aerial unmanned systems. The Defense Advanced Research Projects Agency (DARPA) of the United States has successively launched the “Gremlins” low-cost drone project, the low-cost drone cluster project, the “Perdix” micro-drone airborne high-speed launch demonstration project, and the offensive swarm enabling tactics (OFFSET) project for aerial unmanned system clusters. By developing and testing the architecture, communication system and distributed control algorithm for unmanned system clusters, an autonomous control system for drone clusters has been developed, and cutting-edge scientific and technological technologies such as artificial intelligence, situational awareness, virtual reality and augmented reality have been used to enhance the comprehensive combat capability of aerial unmanned system clusters on the battlefield.
⑶ Marine unmanned systems Marine unmanned systems include two types: surface unmanned systems and underwater unmanned systems. Among them, surface unmanned systems mainly refer to surface unmanned boats (hereinafter referred to as “unmanned boats”), which are mainly used to perform tasks such as maritime search and rescue, reconnaissance and surveillance, firepower strikes, patrol security, electronic interference, logistics support and decoy target ships; underwater unmanned systems mainly refer to unmanned submersibles. Compared with manned submarines, they have the advantages of no casualties, high concealment and high autonomy, and are mainly used to perform intelligence collection, target monitoring, combat deterrence and firepower strikes. In 2018, the US Navy released the “Navy Department Unmanned System Strategic Roadmap”, and in 2019, it released the “Navy Artificial Intelligence Framework”, which provides route planning and guidance for the development of naval operations and marine unmanned systems. In terms of surface unmanned systems, the United States proposed the “American Advanced Concept Technology Demonstration Project” (ACTD), one of whose important tasks is to carry out research on the “Spartan Scout” unmanned boat. The project was completed in 2007 and tested in the Iraqi theater. The “Spartan Scout” unmanned boat is equipped with an unmanned driving system and a line-of-sight/beyond-line-of-sight communication system, as well as advanced sensors such as electro-optical/infrared search turrets, high-definition cameras, navigation radars, surface search radars, and global positioning system receivers, as well as weapons such as naval guns, anti-ship missiles, and anti-submarine sensors. It is mainly used to perform intelligence collection, target monitoring, information reconnaissance, anti-mine and maritime security tasks, and has a certain degree of autonomy. The “Sea Hunter” unmanned boat developed by the United States is equipped with sonar and optoelectronic sensors, as well as short-range and long-range radar detection systems and expandable modular sonar systems. It is mainly used to perform tasks such as identifying and monitoring suspicious targets and guiding fire strikes. The US marine unmanned system is shown in Figure 4. The “Protector” unmanned boat developed by Israel is mainly used to perform intelligence reconnaissance, suspicious target identification, tactical interception, electronic interference and precision strikes (Figure 4). The unmanned surface reconnaissance boat developed by Russia can perform rapid patrol tasks under the command of the mother ship and inspect and monitor designated areas to search for intelligence.
Figure 4 Marine unmanned systems of various countries
In terms of underwater unmanned systems, the nuclear-powered unmanned submarine “Poseidon” developed by Russia can carry conventional and nuclear warheads to perform reconnaissance and strategic nuclear strike missions, as shown in Figure 4. The “Knifefish” unmanned submarine developed by the United States can scan suspicious objects and search for intelligence by emitting low-frequency electromagnetic waves; the “Tuna”-9 unmanned submarine developed by the United States can carry a variety of standard payloads and can be used to perform offshore exploration, anti-mine, surveillance and reconnaissance (ISR) and other tasks.
⒉ Current status of domestic intelligent unmanned system research In recent years, China’s military intelligent unmanned systems have developed rapidly. This article will explain the three aspects of land unmanned systems, air unmanned systems and marine unmanned systems. In terms of land unmanned systems, the National University of Defense Technology and Sany Heavy Industry Co., Ltd. jointly developed the “Desert Wolf” land unmanned light platform, which is powered by tracks and equipped with weapon systems such as grenade launchers and machine guns. It can be used to perform logistics transportation, wounded transportation, reconnaissance monitoring, firepower strikes and other tasks. The “Longma” series of unmanned vehicles developed by Sunward Intelligent Group have strong transportation and obstacle crossing capabilities. The “Shenxing-III” military ground intelligent robot system developed by Nanjing University of Science and Technology has strong autonomous navigation and intelligence reconnaissance capabilities. The unmanned nuclear reconnaissance vehicle jointly developed by the National University of Defense Technology and Harbin Institute of Technology has high mobility and armor protection capabilities. The weapon system it carries can perform fire strikes and has certain autonomous capabilities. In terms of aerial unmanned systems, the “Wing Loong” series of unmanned aerial vehicles developed by Chengdu Aircraft Industry Group has fully autonomous horizontal take-off and landing capabilities, cruise flight capabilities, air-to-ground coordination capabilities, and ground relay control capabilities. It is equipped with multiple types of optoelectronic/electronic reconnaissance equipment and small air-to-ground precision strike weapons, and can perform intelligence reconnaissance, target tracking, fire strikes and other tasks. The “Rainbow” series of unmanned aerial vehicles developed by China have medium-altitude and long-range navigation capabilities, can carry electronic jamming systems and a variety of weapon systems, and can perform fire strikes, intelligence reconnaissance, communication jamming, radio wave jamming and other tasks; the attack 11 type unmanned aerial vehicle developed has extremely strong stealth capabilities and can carry precision-guided missiles for ground attack missions. China’s aerial unmanned systems are shown in Figure 5.
Figure 5 China’s aerial unmanned systems
In terms of surface unmanned systems of marine unmanned systems, the “Tianxing No. 1” unmanned boat, developed by Harbin Engineering University, uses oil-electric hybrid power, with a maximum speed of more than 92.6km/h and a maximum range of 1,000km. It is currently the fastest unmanned boat in the world. The boat integrates technologies such as autonomous perception, intelligent control, and autonomous decision-making, and can achieve rapid situation information recognition and danger avoidance of the surrounding complex environment. It can be used to perform tasks such as meteorological information monitoring, landform mapping, alert patrol, intelligence reconnaissance, and firepower attack. The “Jinghai” series of unmanned boats developed by Shanghai University have semi-autonomous and fully autonomous operation capabilities, and can perform tasks such as target reconnaissance, ocean mapping, and water quality testing. The “Haiteng 01” intelligent high-speed unmanned boat developed by Shanghai Maritime University is equipped with sensors such as millimeter-wave radar, laser radar, and forward-looking sonar. It can perform suspicious target monitoring, underwater measurement, maritime search and rescue, and other tasks, and has fully autonomous and semi-autonomous navigation capabilities. The JARI intelligent unmanned combat boat developed by Jiangsu Automation Research Institute is equipped with detection equipment such as photoelectric detectors and four-sided phased arrays. At the same time, it is also equipped with weapon systems such as missiles and torpedoes, which can perform tasks such as intelligence collection, enemy reconnaissance, and precision firepower strikes. The “Lookout II” unmanned missile boat jointly developed by Zhuhai Yunzhou Intelligent Technology Co., Ltd. and other units is equipped with a fully autonomous unmanned driving system and missiles and other weapons, which can perform tasks such as enemy reconnaissance, intelligence collection, and precision firepower strikes. China’s marine unmanned system is shown in Figure 6.
Figure 6 China’s marine unmanned system
In terms of underwater unmanned systems of marine unmanned systems, the “Devil Fish” unmanned submersible developed by Northwestern Polytechnical University is a bionic manta ray unmanned submersible that has completed a deep-sea test of 1025m. The “Wukong” full-sea depth unmanned submersible developed by Harbin Engineering University has successfully completed a deep dive and autonomous operation test of 10,896m. Deep-sea submersibles such as “Qianlong No. 1” and “Seahorse” developed by China have successfully completed deep-sea exploration missions.
⒊ Summary of the current state of technology At present, intelligent unmanned systems have been gradually applied to various fields of military applications, and with the development of cutting-edge science and technology, the application of intelligent unmanned systems in the military field will increase day by day. However, in the use of intelligent unmanned systems, autonomy and intelligence have not yet been fully realized. At present, the application status of intelligent unmanned system technology in the military field can be mainly divided into the following three parts:
① From the perspective of combat missions: combat missions have developed from simple reconnaissance and surveillance to mainstream confrontation operations; battlefield confrontation has changed from human confrontation to human-machine confrontation, and then to machine-machine confrontation; the application environment has changed from structured environment and laboratory environment to real battlefield environment, and will gradually develop into an augmented reality environment combining real environment and virtual reality in the future. ② From the perspective of command and control: the control method has developed from simple remote control and program control of a single machine to intelligent fusion and interactive control of human-machine, but autonomous control has not yet been fully realized; the system architecture has developed from specialization and singularity to generalization, standardization, and interoperability. ③ From the perspective of perception and decision-making: the decision-making method has changed from relying solely on people to relying mainly on people and supplemented by human-machine intelligent interactive decision-making; the perception method has changed from relying solely on sensors to obtain feature information and people to judge target attributes to target recognition and feature information acquisition based on artificial intelligence.
Key technologies of intelligent unmanned systems
As a culmination of multidisciplinary fields, intelligent unmanned systems involve many technologies, perform diverse tasks, and have complex and changeable application scenarios. For example, the air environment is rainy and foggy, with low visibility, strong winds, and light interference; the land environment has complex terrain, obstacles, interference, and dangerous pollution areas; the sea environment has wind and wave interference, ship swaying, inconspicuous targets, and irregular coastlines. Different environments and uses pose huge challenges to the research and performance of intelligent unmanned system technology. In order to adapt to the restricted and changing environment, the key technologies of intelligent unmanned systems can be summarized as autonomous perception and understanding technology in complex environments, multi-scenario autonomous skill learning and intelligent control technology, multi-task cluster collaboration technology, human-computer interaction and human-computer fusion technology, decision-making planning technology and navigation and positioning technology. This section will mainly use marine unmanned systems as examples to elaborate on the key technologies of intelligent unmanned systems.
⒈ Autonomous perception and understanding technology in complex environments Autonomous perception and scene understanding of the environment in complex environments is a prerequisite for intelligent unmanned systems to operate autonomously and form combat capabilities, which will directly affect whether the mission can be successfully completed. In view of the complexity and variability of the actual environment, especially the difficulties of wind and wave interference and ship shaking in the sea environment, intelligent unmanned systems need to complete the goals of autonomous target selection perception, obtain multimodal information, and abstract and complete understanding of information. Therefore, the autonomous perception and understanding technology of the environment of intelligent unmanned systems in complex environments needs to break through the autonomous perception technology of multimodal sensor fusion, as well as the complex scene target recognition and understanding technology.
⑴ Multimodal sensor fusion autonomous perception technology At present, the information acquisition sensors carried by intelligent unmanned systems mainly include navigation radar, millimeter wave radar, laser radar, optoelectronic payload, etc. A single sensor cannot directly obtain high-precision, dense three-dimensional scene information. It is necessary to study the autonomous environmental perception technology of multi-sensor fusion to provide support for scene understanding. Multi-sensor fusion is to carry out multi-level and multi-space information complementation and optimization combination processing of various sensors, and finally produce a consistent interpretation of the observed environment. In this process, it is necessary to make full use of multi-source data for reasonable control and use, and the ultimate goal of information fusion is to derive more useful information based on the separated observation information obtained by each sensor through multi-level and multi-faceted combination of information. By taking advantage of the mutual cooperation of multiple sensors, the data of all information sources are comprehensively processed to improve the intelligence of the entire sensor system. The natural environment of the ocean is more complex than that of land and air. Faced with special challenges such as violent swaying of ships, wind and wave interference, uneven lighting, and inconspicuous targets, the marine intelligent unmanned system needs to perform multi-sensor information fusion processing on the designated target based on the unique attributes of each sensor, and then combine the electronic chart information of the internal navigation unit of the unmanned system and the shore-based support system to build a multi-dimensional three-dimensional situation map of the sea surface environment, perform tracking, detection, identification and cognition tasks for the designated target, and finally realize the autonomous perception and complete understanding of the sea surface environment by the marine intelligent unmanned system.
⑵ Complex scene target recognition and understanding technology The key to the operation autonomy of intelligent unmanned systems lies in the ability to effectively understand the scene and target information, and accurate understanding of scene information mainly includes the construction of target semantic information and the description of scene text information. Compared with land and air environments, the natural marine environment faces unique difficulties such as wind and wave interference and violent swaying of the hull, which brings challenges to the intelligent unmanned system to fully understand the environmental information and accurately identify the designated target. Using sensors such as laser radar and high-definition cameras carried by intelligent unmanned systems, the original point cloud information and image feature information of the marine environment scene can be obtained. Using three-dimensional target detection methods based on point clouds, point clouds and image fusion, and three-dimensional scene semantic segmentation methods, etc., the intelligent unmanned system can fully recognize the scene information and accurately identify the designated target. There are mainly two types of point cloud-based methods: grid-based or voxel-based methods, and point-based methods. The grid-based or voxel-based method uses voxels or bird’s-eye views to convert the irregular point cloud of the acquired sea surface into a regular representation method, and then extracts the point cloud features. The point-based method directly extracts target features from the acquired original point cloud of the sea surface. The three-dimensional target detection method based on point cloud and image fusion combines the precise coordinates of the target in the sea scene obtained by the laser radar with the environmental texture and color information provided by the sea surface image, which is more conducive to the intelligent unmanned system to accurately identify and accurately and completely understand the target of the ocean scene.
⒉ Behavior decision-making and trajectory planning technology In actual and complex war scenes, for the complex mission environment and multiple tasks faced by intelligent unmanned systems, it is necessary to break through the behavior decision-making technology in multi-source heterogeneous environments, trajectory planning technology in dynamic/static environments, and trajectory tracking technology in complex scenes.
⑴ Behavior decision-making technology in multi-source heterogeneous environments Behavior decision-making is the key to the realization of autonomous control of intelligent unmanned systems. In the complex environment of different speeds, different relative distances, and different data types of unmanned boats, it is necessary to accurately extract effective information to make safe and reliable control instructions for the next decision of the unmanned boat. First, extract representative environmental feature information and establish a sufficient number of accurately calibrated learning data sets; then, construct a decision maker based on a deep neural network and use the established database for learning; finally, use machine learning algorithms to optimize the constructed decision maker to further improve the decision accuracy. ⑵Trajectory planning technology in dynamic/static environment Trajectory change is the most basic behavior of unmanned boats and unmanned submarines. In a complex battlefield environment, planning a feasible and reliable trajectory according to different environmental conditions is the key to the intelligent driving of unmanned boats and unmanned submarines. This technology mainly includes trajectory planning technology based on polynomials, trajectory planning technology based on multi-objective constraints, and trajectory planning technology based on positive and negative trapezoidal lateral acceleration.
⑶Trajectory tracking technology in complex scenes Tracking the planned ideal trajectory is an important task for unmanned boats and unmanned submarines. The key lies in solving the problem of high-precision and high-stability control when unmanned boats or unmanned submarines track target trajectories. The main solution is: according to the kinematic and dynamic models of unmanned boats and unmanned submarines, the corresponding actuator control quantity is output to achieve real-time and accurate tracking of the specified target, and under the premise of ensuring tracking accuracy, the autonomous intelligent steering of unmanned boats and unmanned submarines and the coordinated control of multiple actuators of each drive module are realized.
⒊Autonomous navigation and positioning technology The navigation and positioning system is a key component of the intelligent unmanned system, which can provide accurate and reliable information about the speed and position of unmanned boats or unmanned submarines. The navigation system is generally composed of gyroscopes, accelerometers, satellite receivers, etc., some of which are supplemented by visual modules, or are equipped with prior spatial position maps and physical information sensors based on actual complex environmental conditions. In order to achieve accurate execution of tasks, intelligent unmanned systems must break through navigation and positioning technology based on inertial/satellite deep information fusion, navigation and positioning technology based on inertial/astronomical information fusion, navigation technology based on visual tracking, and geophysical assisted navigation technology.
⑴ Navigation and positioning technology based on inertial/satellite deep information fusion This technology introduces the inertial information of the unmanned boat into the satellite carrier/code loop, and then uses fully autonomous, short-term, and high-precision inertial information to assist the update of satellite receiver signals, thereby realizing the complementary advantages and optimal fusion of the inertial navigation and satellite navigation of the unmanned boat.
⑵ Navigation and positioning technology based on inertial/astronomical information fusion The astronomical-based navigation system has the advantages of high autonomy and low susceptibility to interference. By using the information output by astronomical navigation and the information provided by the initial position, the position of the unmanned boat can be calculated. The fusion of inertial navigation information and astronomical navigation information can improve the robustness of astronomical navigation positioning. Inertial/astronomical combined positioning technology based on astronomical navigation assistance has become a key part of the field of autonomous navigation of unmanned systems.
⑶ Navigation technology based on visual tracking Due to the complexity of the actual battlefield environment, unmanned boats will be in a complex working environment and are easily interfered by the outside world, resulting in GPS denial, which makes the navigation system unable to be in a combined state. A single inertial navigation system has low accuracy and is prone to accumulating errors. Long-term pure inertial navigation will make the unmanned boat lose the ability to perform tasks. However, the vision-based method does not have time error accumulation. It only needs to extract the key features of the image obtained by the high-definition camera to obtain the position information of the unmanned boat and the unmanned submersible through visual algorithms and prior knowledge. The vision-based navigation algorithm is not easily interfered with, has strong robustness, and can make up for the error accumulation caused by pure inertial navigation in a GPS denial environment, and is widely used.
⑷ Geophysical assisted navigation technology Due to the unique environment of the ocean, unmanned submersibles need to sail underwater for a long time, resulting in the inability to obtain real-time and accurate satellite signals and astronomical information. In addition, due to problems such as weak underwater light, vision-based navigation methods are also limited. Therefore, by obtaining a priori spatial position map inside the ocean and using the field scene information obtained by the physical sensors carried by the unmanned submersible and matching them, high-precision autonomous navigation of the unmanned submersible can be achieved. The temporal and spatial distribution characteristics of the inherent geophysical properties of the surveyed ocean can be used to produce a geophysical navigation spatial position map. By matching the physical feature information obtained by the physical property sensor carried by the unmanned submersible with the pre-carried spatial position map, the high-precision positioning of the unmanned submersible can be obtained, and the high-precision autonomous navigation of the unmanned submersible can be realized.
⒋ Multi-scenario autonomous skill learning and intelligent control technology Multi-scenario intelligent control technology is a key technology for intelligent unmanned systems to solve complex, changeable and unstable control objects. It is an effective tool for intelligent unmanned systems to adapt to complex task requirements. In a complex marine environment, if intelligent unmanned systems want to complete real-time and accurate regional monitoring, target tracking, information acquisition and precision strikes, they must break through the autonomous skill learning technology of tasks, autonomous operation interactive control technology, and unmanned system motion control technology of human-like intelligent control.
⑴ Autonomous skill learning technology of tasks Autonomous skill learning refers to the process of learning based on prior knowledge or rules to complete tasks in the process of interaction between unmanned systems and the outside world. The autonomous learning of unmanned system operation skills is essentially a partial process of simulating human learning cognition. Intelligent unmanned systems use deep reinforcement learning-based technology to combine the perception ability of deep learning with the decision-making ability of reinforcement learning, and can achieve direct control from high-latitude raw data information input to decision output in complex sea environments. The autonomous skill learning of intelligent unmanned systems mainly includes three aspects: first, describing the complex environment of the ocean surface and the interior of the ocean, and obtaining the initial state data information of the surrounding environment; second, based on the description of the intelligent unmanned system and the complex environment of the ocean surface and the interior, mathematical modeling of deep reinforcement learning is carried out to obtain key information such as the state value function and control strategy function of the autonomous skill learning process; third, using the data information obtained by the interaction between the intelligent unmanned system and the complex environment of the ocean surface and the interior, the state value function and the control strategy function are updated to enable the marine intelligent unmanned system to learn a better control strategy.
⑵ Autonomous operation interactive control technology In the process of autonomous learning and control of tasks, the intelligent unmanned system needs to contact with the ocean surface and the complex internal environment to form a good coupling system to ensure the real-time and accurate acquisition of information on the ocean surface and the complex internal environment, and correctly and quickly carry out navigation planning, autonomous navigation control and autonomous collision avoidance of unmanned boats and unmanned submersibles. The tasks of the interactive control technology of autonomous operation of intelligent unmanned systems mainly include: the design of interactive rules and control strategies of intelligent unmanned systems; modeling methods of complex environments on the surface and inside of the ocean; online modeling and correction of the dynamics of unmanned boats, unmanned submarines and operating objects; dynamic generation and shared control methods of virtual force constraints in complex environments on the surface and inside of the ocean.
⑶ Motion control technology of unmanned systems with humanoid intelligent control The motion control technology of unmanned systems with humanoid intelligent control combines artificial intelligence with traditional control methods to solve the problem of stable and precise control of unmanned boats and unmanned submarines in actual complex marine battlefield environments. It mainly includes two aspects: the design of intelligent control algorithms for unmanned systems and the design of intelligent control strategies for unmanned systems. The design of intelligent control algorithms for unmanned systems mainly includes: hierarchical information processing and decision-making mechanisms; online feature identification and feature memory; open/closed-loop control, positive/negative feedback control, and multi-modal control combining qualitative decision-making with quantitative control; the application of heuristic intuitive reasoning logic. The design of intelligent control strategies for unmanned systems is to design reasonable solutions for unmanned boats or unmanned submarines to meet actual mission requirements.
⒌ Unmanned cluster collaborative control technology In actual combat scenarios, due to the complexity of the battlefield environment and the diversity of tasks, a single unmanned boat or unmanned submarine usually cannot meet the needs of actual tasks. The number of equipment carried by a single unmanned boat or unmanned submarine is limited, and the perception perspective and regional range are not comprehensive enough, resulting in insufficient precision and thoroughness in performing complete intelligence detection, target tracking, battlefield environment perception and comprehensive firepower strike tasks. Therefore, it has become an inevitable trend for a cluster of intelligent unmanned systems composed of multiple unmanned boats and unmanned submarines to collaboratively perform tasks. To complete the control of the intelligent unmanned system cluster, it is necessary to break through the local rule control technology of the intelligent unmanned system cluster, the soft control technology of the intelligent unmanned system cluster, the pilot control technology of the intelligent unmanned system cluster, and the artificial potential field control technology of the intelligent unmanned system.
⑴ Local rule control technology of intelligent unmanned system cluster The control technology based on local rules is the basic method for intelligent unmanned systems to control unmanned boats and unmanned submarines. It mainly lies in the designation of individual local control rules within the cluster of unmanned boats and unmanned submarines. Local rule control technology has achieved intelligent control of marine unmanned system clusters to a certain extent, but a large number of experiments are needed to obtain the parameters between the behavior of marine unmanned system clusters and the cluster model, and the values of the parameters are also very sensitive. Therefore, to achieve complete intelligent control of intelligent unmanned systems, other technologies are needed.
⑵ Soft control technology of intelligent unmanned system clusters The soft control technology of intelligent unmanned system clusters is mainly based on two requirements: First, in the intelligent unmanned system cluster, the control rules between individuals are very important. For example, the control and internal function of each unmanned boat and unmanned submarine are necessary conditions for the group behavior of the entire marine intelligent unmanned system cluster; second, the intelligent unmanned system cluster adopts a local communication strategy. With the increase of unmanned boats and unmanned submarines in the cluster system, it will not affect the state of the entire intelligent unmanned system cluster.
The soft control method is to add one or more new unmanned boats or unmanned submarines without destroying the individual rules of unmanned boats and unmanned submarines in the intelligent unmanned system cluster. These unmanned boats or unmanned submarines participate in the actions of the entire intelligent unmanned system cluster according to the same local rules, but they are controllable and can receive external instructions. After receiving the command, these unmanned boats or unmanned submarines will independently complete the corresponding tasks. The soft control method of the intelligent unmanned system cluster is to add a controllable unmanned boat and unmanned submarine on the basis of the local control rules of the unmanned system, so that it can affect the entire unmanned system cluster, and finally complete the control of the entire intelligent unmanned system group.
⑶ Intelligent unmanned system cluster navigation control technology The basic content of the intelligent unmanned system cluster navigation control technology is: under the premise that the individuals of the entire marine intelligent unmanned system cluster maintain local rules, a small number of unmanned boats and unmanned submarines in the cluster have more information and stronger information processing capabilities, and interact with other unmanned boats and unmanned submarines through local information to play a leading role, so as to achieve the purpose of controlling the entire intelligent unmanned system cluster.
⑷ Artificial potential field control technology of intelligent unmanned system In the control of intelligent unmanned system clusters, control technology based only on local rules is difficult to achieve accurate and real-time perception of the battlefield, as well as the collection and acquisition of intelligence information, tracking and identification of suspicious targets, and precise strikes on enemy areas. Artificial potential field control technology introduces the concept of potential field in physics into the control of intelligent unmanned system clusters, and uses potential functions to simulate the internal and external effects that affect a single unmanned boat or unmanned submarine. The single unmanned boat or unmanned submarine in the system cluster acts under the action of the potential function, and finally realizes the control of the entire intelligent unmanned system through the potential function.
⒍Natural human-computer interaction technology In the actual battlefield environment, intelligent unmanned systems face problems such as complex operation tasks, low level of operation intelligence, high training risks and costs, and low equipment use and maintenance efficiency. In this case, it is necessary to improve the controllability and intelligence of intelligent unmanned system equipment, and it is necessary to break through the human-computer interaction technology of intelligent unmanned systems, augmented reality and mixed reality technology of intelligent unmanned systems, and brain-computer interface technology of intelligent unmanned systems.
⑴Human-computer interaction technology of intelligent unmanned systems Human-computer interaction technology of intelligent unmanned systems refers to the command platform obtaining the image and voice information of officers and soldiers through image and voice sensors, and then using algorithms such as image segmentation, edge detection, and image recognition to extract key information such as gestures and eye gestures of officers and soldiers, and then using algorithms based on deep learning to obtain the voice information of officers and soldiers and pass it to the command platform, so as to issue the officers and soldiers’ instructions to lower-level combat units. The human-computer interaction technology of intelligent unmanned systems can improve the intelligence of task operations and the fault tolerance and robustness of the operation process, so that the officers and soldiers’ instructions can be issued to combat units more stably and effectively.
⑵Augmented reality and mixed reality technology of intelligent unmanned systems Augmented reality technology of intelligent unmanned systems is to superimpose computer-generated images on real complex combat environments, and mixed reality technology of intelligent unmanned systems is to present information of virtual scenes in actual combat scenes, and set up an interactive feedback information loop between the virtual world and officers and soldiers in a real combat environment, thereby increasing the officers and soldiers’ sense of reality in the combat environment experience. As an important development direction of immersive human-computer interaction technology, virtual reality and augmented reality for intelligent unmanned systems have a variety of different real combat application scenarios, which can effectively reduce the cost and risk of training and improve the use and maintenance efficiency of equipment during combat.
⑶ Brain-computer interface technology for intelligent unmanned systems The main function of the brain-computer interface is to capture a series of brain wave signals generated by the human brain when thinking. In actual combat environments, the brain-computer interface technology of intelligent unmanned systems extracts features and classifies the brain wave signals of commanders and fighters, thereby identifying the intentions of commanders and fighters and making corresponding decisions to cope with complex combat tasks and emergencies. The brain-computer interface technology of intelligent unmanned systems can enhance the cognitive and decision-making capabilities of commanders and fighters, greatly improve brain-computer interaction and brain control technology, and give commanders and fighters the ability to control multiple unmanned boats, unmanned submarines and other unmanned combat equipment while relying on thinking.
Future development trend of intelligent unmanned systems
Due to its advantages of unmanned, autonomous, and intelligent, intelligent unmanned systems will appear in every corner of the future battlefield. As they undertake more battlefield tasks, they will participate in different war scenarios, which will lead to a number of key problems for intelligent unmanned systems, restricting their development. The key problems faced by intelligent unmanned systems are mainly:
① Highly complex environment. The specific application environment of intelligent unmanned systems will face more and more factors. The numerous shelters in unstructured environments, the limited perception viewpoints and ranges, etc., put forward higher requirements on the environmental perception ability of intelligent unmanned systems. ② High game confrontation. The battlefield game of intelligent unmanned systems is an important means to gain battlefield advantages. The fierce mobile confrontation between the two sides of the war, as well as the many interferences caused by the enemy and the battlefield environment, have put forward new challenges to the mobile decision-making ability of intelligent unmanned systems. ③ High real-time response. In the future battlefield, the combat situation will change dramatically, the combat mode will be more flexible and changeable, and it is necessary to respond to battlefield emergencies in a timely manner, which puts forward new requirements for the real-time response ability of intelligent unmanned systems. ④ Incomplete information. In the future battlefield, due to the limitations of the battlefield environment and the existence of enemy interference, the information acquisition ability of the intelligent unmanned system will be restricted, resulting in incomplete situational awareness, loss and attenuation of battlefield situation information data, and the inability to fully obtain information on both sides of the enemy. ⑤ Uncertain boundaries. The unmanned combat mode of the intelligent unmanned system has subverted the traditional combat mode. The integration of land, sea, air and space in the future unmanned combat, as well as the social public opinion brought about by the high degree of integration with society, will have an impact on the unmanned combat of the intelligent unmanned system, thus causing uncertainty in the combat boundary.
Based on the various difficulties that will be faced above, the development of intelligent unmanned systems in the future will focus on two aspects: individual capability enhancement and cluster capability enhancement. Individual capability enhancement is mainly reflected in individual cognitive intelligence, individual autonomous operation and algorithm chipization; cluster capability enhancement is mainly reflected in improving interoperability through a universal architecture, as well as cross-domain collaborative operations, network security and human-machine hybrid intelligence.
⒈ Cognitive intelligence adapts to complex task environments In order to improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to enhance the individual cognitive intelligence of intelligent unmanned systems. The enhancement of individual cognitive intelligence is mainly reflected in the transformation from individual perceptual intelligence to cognitive intelligence. The comprehensive acquisition of multi-source sensor information enables intelligent unmanned systems to have human semantic understanding, associative reasoning, judgment analysis, decision planning, emotional understanding and other capabilities. The development of individual cognitive intelligence of intelligent unmanned systems will be based on brain science and bionics, and will achieve intelligent understanding and accurate application of acquired information by combining knowledge graphs, artificial intelligence, knowledge reasoning, decision intelligence and other technologies, thereby improving the high real-time response capabilities of intelligent unmanned systems to emergencies.
⒉ Autonomous operation improves the task capability of single machines In order to solve the problem of highly complex tasks faced by intelligent unmanned systems in highly complex environments, it is necessary to improve the autonomous operation capabilities of single machines. This includes developing decision-making methods based on deep reinforcement learning, autonomous environmental perception and interaction methods based on multi-source information of vision and other sensors, autonomous motion planning methods for robots based on neurodynamics, and autonomous operation methods based on artificial intelligence, so as to improve the autonomous environmental modeling and positioning capabilities, autonomous decision-making capabilities, autonomous planning capabilities and autonomous control capabilities of individuals in intelligent unmanned systems, so that intelligent unmanned systems can adapt to complex environments and carry out autonomous operation tasks.
⒊ Algorithm chipization achieves high real-time response The complex environment faced by intelligent unmanned systems places high demands on algorithms and computing power. It is necessary to be able to accelerate computing in real time to achieve high real-time response to battlefield emergencies. To solve this problem, it is necessary to improve the chipization level of individual algorithms of intelligent unmanned systems, that is, to develop a new architecture of storage and computing integrated chips to improve the computing power of chips and the level of algorithm chipization. New chips based on artificial neural technology can be studied. By changing the binary computing method of digital chips and exchanging gradient signals or weight signals, the chips can work in a simulated neuron manner, simulating the parallel computing flow of the brain to effectively process large amounts of data, and obtaining the parallel computing capabilities of supercomputers, thereby greatly improving the computing power of chips and the level of algorithm chipization, and solving the problem of high real-time response of intelligent unmanned systems.
⒋ Universal architecture improves cluster interoperability In order to improve the adaptability of intelligent unmanned systems facing highly complex environments and the maintenance and support efficiency of intelligent unmanned systems, intelligent unmanned systems will continue to develop standardized command and control frameworks in the future, improve the intelligence of human-machine collaboration, and improve the modularity of the system. It is mainly reflected in:
① Developing a general artificial intelligence framework to support autonomous, precise, and real-time good coupling and collaboration between humans and machines; ② Improving the modularity and component interchangeability of intelligent unmanned systems to support rapid maintenance and configuration upgrades of intelligent unmanned systems and their members in future battlefields; ③ Improving the level of data transmission integration and the anti-interference capability of data transmission on future battlefields to reduce the rate of data interception.
⒌ Cross-domain collaboration breaks the boundaries of cluster applications
In order to improve the adaptability of intelligent unmanned systems in highly complex environments and solve the problem of uncertain boundaries during combat, it is necessary to improve the cross-domain collaborative combat capabilities of intelligent unmanned systems to make up for the lack of capabilities in a single combat domain. Through the cross-domain collaborative combat of intelligent unmanned systems, the advantages of various components can be complemented. That is, by utilizing the advantages of large search range and long communication distance of air unmanned systems, as well as long endurance and strong stability of land unmanned systems and marine unmanned systems, the advantages of different components are combined to increase the multi-dimensional spatial information perception capabilities of intelligent unmanned systems, and form a heterogeneous multi-autonomous collaborative system, thereby improving the ability of intelligent unmanned systems to complete complex tasks.
⒍ Secure network guarantees reliable application of clusters Intelligent unmanned systems face the problems of incomplete information and high game confrontation on future battlefields. Therefore, it is necessary to improve the network security protection capabilities of intelligent unmanned systems in high confrontation environments, improve flexibility in dealing with highly complex and highly variable tasks, and improve stability in the face of high-intensity network attacks. The improvement of network security protection capabilities in adversarial environments is mainly reflected in the following aspects:
① Plan reasonable data permissions to ensure data security and flexibility of task execution; ② Improve information protection capabilities, develop and upgrade information protection products for intelligent unmanned systems, and record response decisions for information explosion situations; ③ Increase the network’s deep defense capabilities, unify network security standards and levels, build network defense autonomy, and improve the network’s ability to resist attacks under network attacks.
⒎ Human-machine hybrid intelligence improves adversarial capabilities In order to solve the problem of high real-time response faced on future battlefields and improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to combine the advantages of humans and machines to form a new hybrid intelligent mode of human-machine collaboration, that is, to develop human-machine hybrid intelligence for intelligent unmanned systems. Human-machine hybrid intelligence of intelligent unmanned systems is a new intelligent scientific system that combines physics and biology in which human, machine, and environmental systems interact. In response to the problems of high-complexity environments and high real-time responses faced by intelligent unmanned systems on future battlefields, the development of human-machine hybrid intelligence in the future is mainly reflected in the following aspects: ① Information intelligence input. At the input end of information acquisition, the information data objectively collected by the sensors of the unmanned system equipment is combined with the subjective perception information of the combat commanders to form a multi-dimensional information acquisition and information input method. ② Intelligent information fusion. After obtaining multi-dimensional data information, a new data understanding method is constructed by integrating the computer’s calculation data with the information cognition of the combat commanders. ③ Intelligent information output. After the data information is fused and processed, the computer’s calculation results are matched with the value decisions of the combat commanders to form an organically combined probabilistic and regularized optimization judgment.
IV. Conclusion Due to its autonomy, intelligence and unmanned characteristics, intelligent unmanned systems will play an increasingly important role in the future battlefield. The development of intelligent unmanned systems will also drive the development of intelligent computing, intelligent transportation, intelligent manufacturing, smart medical care, brain-like science and other disciplines. In the future, we should be guided by the mission requirements of actual complex battlefield environments, combine advanced technologies in cutting-edge disciplines such as artificial intelligence, and make overall top-level planning for intelligent unmanned systems; verify reliable airborne intelligent perception and intelligent computing equipment on different unmanned system combat platforms in land, air and marine unmanned systems, and develop reliable and stable key technologies such as unmanned system autonomous control, intelligent perception, intelligent decision-making and intelligent interaction, overcome the key difficulties of intelligent unmanned systems, and continuously improve the autonomous control, intelligent perception and intelligent decision-making capabilities of intelligent unmanned systems.
The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.
The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.
At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.
Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.
Satellite navigation becomes a “standard” element of the intelligent battlefield
The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.
Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.
The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.
Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.
Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.
Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”
Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.
Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.
In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.
Intelligent battlefield requires satellite navigation to have new “responsibilities”
As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.
In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.
Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.
For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.
The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.
The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.
Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system
Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.
The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:
The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.
The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.
The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.
The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.
(The author is an academician of the Chinese Academy of Engineering)
Above: Schematic diagram of satellite navigation system supporting operations.
Friday, November 12, 2021 // China Military Network Ministry of National Defense Network
Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan
2022-04-22 06:42
Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.
Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.
Combat Management System: The Core of Modern Combat System
Schematic diagram of the combat management system
Past and present life
Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.
The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.
After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”
At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.
The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.
For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.
Features
The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).
The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.
For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.
Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.
The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.
Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.
With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”
The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.
Future Development
Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.
The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.
The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.
For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.
The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.
The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.
(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)
The opening of each combat domain will inevitably lead to a new round of changes in combat methods. Driven by the new round of scientific and technological revolution and industrial revolution characterized by intelligence, ubiquity and integration, emerging combat domains such as space, cyberspace, electromagnetic spectrum, and cognitive space have an increasing impact on future operations. The concept of “multi-domain combat” has emerged through cross-domain collaboration with traditional land, sea, and air combat domains to achieve complementary advantages and system efficiency, and is becoming a new combat theory that adapts to the evolution of war forms.
The concept of “multi-domain combat” was first proposed by the US military. Subsequently, the United Kingdom, France, and other NATO member states have developed the concept of “multi-domain combat” in different forms. Israel was the first to apply the concept of “multi-domain operations” in actual combat. The Russian army innovatively proposed its own “multi-domain operations” theory from the perspective of its opponents. At present, the concept of “multi-domain operations” has become an important concept that triggers a new round of changes and transformations in foreign military operations.
The concept of “multi-domain operations” is a new operational concept first proposed by the US Army and jointly promoted by other services based on the changes in operational methods in the information age.
The US military believes that the winning mechanism of the concept of “multi-domain operations” is to form multiple advantages in a specific time window through the rapid and continuous integration of all war domains (land, sea, air, space, and cyberspace) and force the enemy into a dilemma. The U.S. Army proposed to be guided by the idea of ”global integrated operations” and the concept of “cross-domain collaboration”, and strive to form an asymmetric advantage in future wars through “multi-domain operations”. The multi-domain task force (brigade level) will be the core combat force of the U.S. Army to implement multi-domain operations, integrating artillery, land-based tactical missiles, land aviation, cyberspace, electromagnetic spectrum, space and air defense forces, and forming multi-domain combat capabilities through cross-domain mixed formations. The U.S. Air Force actively responded to the concept of “multi-domain operations”, focused on building a joint combat command and control system, proposed the concept of multi-domain command and control, and focused on developing advanced combat management systems, sinking multi-domain operations to the tactical level to improve the agility and cross-domain collaboration capabilities of future operations. The U.S. Navy has absorbed the core idea of the “multi-domain combat” concept, proposed to build an “integrated global maritime military force”, focused on developing the “distributed lethality” combat concept, and proposed to strengthen the design and exercise of global combat.
The U.S. Department of Defense and the Joint Chiefs of Staff have gathered the ideas and mechanisms of the new combat concept of “multi-domain combat” of the military services, and proposed the top-level concept of “global combat”, aiming to form a new round of asymmetric advantages, lead the transformation of combat methods and military transformation. The global combat concept is centered on joint global command and control, aiming to integrate traditional combat domains with space, cyberspace, electromagnetic spectrum, air defense and anti-missile and cognitive domain capabilities, and compete with global competitors in a full-spectrum environment. It is reported that the concept is still in its infancy and is undergoing theoretical deepening, experimental verification, exercise evaluation and doctrine transformation, and is constantly enriching its conceptual core through multiple work lines. Among them, the US Joint Chiefs of Staff leads the transformation of concepts into policies, doctrines and requirements; the Air Force promotes the concept to maturity by developing advanced combat management systems, the Army by implementing the “Convergence Project”, and the Navy by launching the “Transcendence Project”. The US theater supports the development of multi-domain combat concepts and multi-domain combat modes through war games, project demonstrations and joint exercises.
Based on the perspective of reference and integration, NATO countries such as the United Kingdom actively participated in the development and testing of the US military’s “multi-domain operations” concept, and revised the operational concept in combination with actual conditions.
The British Ministry of Defense proposed the concept of “multi-domain integration”, which is consistent with the concept mechanism of the US military’s “multi-domain operations”, focusing on integrating operations in different domains and at different levels, preparing for the development of a joint force and maintaining competitive advantages in 2030 and beyond. The British Ministry of Defense pointed out that “integrating capabilities in different domains and at different levels through information systems, creating and utilizing synergies to gain relative advantages is the winning mechanism of the multi-domain integration concept.” The concept emphasizes gaining information advantages, shaping strategic postures, building a multi-domain combat environment, and creating and utilizing synergies. The concept raises four specific issues: how to provide an advantage over rivals by 2030 and beyond through “multi-domain integration”; how to achieve cross-domain integration of the Ministry of Defense in cooperation with allies, governments and civilian departments; how to solve the policy issues involved in the concept of “multi-domain integration”; how to promote research on defense concepts, capabilities and war development. With this as a starting point, the British Army has launched a multi-faceted, step-by-step, and systematic military transformation.
Other NATO countries are also jointly developing and innovatively applying the concept of “multi-domain operations” to varying degrees, and promoting the transformation and implementation of the concept of “multi-domain operations” in the form of joint exercises and allied cooperation. In 2019, the US Army led the “Joint Operational Assessment (2019)” exercise, which aimed to assess the combat capabilities of the Indo-Pacific Command’s multi-domain task force. Forces from France, Canada, Australia, New Zealand and other countries formed a multinational task force to participate in the exercise, which assessed the multi-domain combat concepts, formations and capabilities in the combat environment from 2025 to 2028. In October 2019, the NATO Joint Air Power Competition Center held a meeting on “Shaping NATO’s Future Multi-Domain Combat Posture”. In order to shape NATO’s future multi-domain combat posture, it explored and studied military thinking, multi-domain combat forces, multi-domain combat operations and training joint forces. In June 2020, the NATO Command and Control Center of Excellence released a white paper on the Multi-Domain Operations Command and Control Demonstration Platform, which aims to respond to threats and challenges in multiple operational domains with a decentralized, data-driven integrated environment by bridging the command and control gap between technology and operators, tactics and campaign levels, and academia and the military.
Based on the perspective of its opponents, the Russian army seeks a way to crack it on the one hand, and on the other hand, based on the winning mechanism of “cross-domain operations”, it combines its own characteristics to innovate combat theories
After the US military proposed the concept of “multi-domain operations”, the Russian army actively sought a way to crack it based on its own security interests. In December 2020, the Russian magazine “Air and Space Power Theory and Practice” published an article titled “Argument for the Use of Aviation Power to Break the Enemy’s Large-Scale Joint Air Strikes in Multi-Domain Operations”, which stated that large-scale joint air strikes are the initial stage for NATO countries to implement multi-domain operations. Large-scale coordinated operations will be carried out against Russia’s most important key facilities, creating conditions for subsequent decisive actions by NATO joint armed forces. The Russian army must comprehensively use the reconnaissance and strike system composed of the aviation forces of the theater forces to cause unbearable losses to the enemy, break its large-scale joint air strikes, and force NATO’s initial stage goals of multi-domain operations to fail to be achieved, causing NATO’s political and military leadership to abandon the attempt to continue to implement multi-domain operations.
On the other hand, the Russian army proposed the “military unified information space” theory for the new combat method of “cross-domain combat”. Its core idea is: to use modern information technology to establish a networked command and control system to achieve the deep integration of the army’s command, communication, reconnaissance, firepower, support and other elements, thereby improving the battlefield situation perception capability and combat command efficiency. The Russian military continues to promote theoretical development around the realization of cross-domain combat capabilities: first, relying on the unified information space of the army to establish a network-centric command model; second, introducing artificial intelligence into the command and control system to achieve the unification of the physical domain and the cognitive domain; third, developing network, space and underwater combat forces to gain advantages in emerging combat fields; fourth, establishing a unified military standard system to enhance the interoperability of forces and weapons. The Russian military has not completely absorbed the Western concept of “multi-domain combat”, nor has it completely denied the beneficial elements of the Western “multi-domain combat”, but has combined its own absorption of some advanced combat ideas of “multi-domain combat” to enrich its own unique combat theory.
Based on the perspective of combat needs, Israel took the lead in applying the concept of “multi-domain combat” on the Gaza battlefield, and used the multi-domain combat force “Ghost” as the main combat force.
The Israeli army believes that multi-domain joint combat is an inevitable trend in the development of future wars. For Israel, which mainly relies on ground combat, by integrating land, air, cyberspace, electromagnetic spectrum and sea elite forces, it can quickly identify, track and destroy enemy targets, and further improve the lethality of the Israeli army. This concept is in line with the concept of “multi-domain combat” proposed by the US Army. Under the guidance of this concept, the Israeli army formed the “Ghost” force and took the lead in actual combat testing on the Gaza battlefield. In the Israeli-Palestinian conflict in May 2021, Israel used the “Ghost” combat battalion for the first time to implement multi-domain operations in the code-named “Wall Guardian” operation against Hamas, which was called the world’s first “artificial intelligence war”. The Israeli army mainly relied on machine learning and data collection in this war, and artificial intelligence became a key component of combat and a force multiplier for the first time. In the operation to clear the Hamas tunnel network, the Israeli army used big data fusion technology to pre-identify and target, and then dispatched 160 fighter jets to carry out precise strikes, which greatly destroyed the Hamas tunnel network and achieved air control over the ground; in the attack on Hamas rocket launchers, the Israeli fighter pilots, ground intelligence forces and naval forces used command and control systems to quickly find targets and carry out real-time precise strikes, quickly shaping a favorable battle situation.
According to the Israeli army, the “Ghost” force is very different from traditional forces in terms of combat organization, weapon configuration and combat methods. The unit is temporarily organized under the 98th Paratrooper Division of Israel, including the brigade reconnaissance battalion, the ground forces of the Paratrooper Brigade, the armored brigade, the engineering corps, the special forces, the F-16 squadron and the Apache helicopter, as well as the “Heron” drone and other multi-domain combat forces. Through the use of multi-domain sensors and precision strike weapons, cross-domain maneuvers and strikes are achieved, “changing the battlefield situation in a very short time”. The battalion was established in July 2019. Although it is a ground force, it integrates multi-domain combat forces such as air strikes, network reconnaissance, precision firepower, electronic confrontation, intelligence interconnection and maritime assault. It is a battalion-level combat unit with division-level combat capabilities. After its establishment, the unit has continuously improved its multi-domain integration and cross-domain strike capabilities through exercises, and has quickly exerted two major functions with the support of the newly developed artificial intelligence technology platform: one is to serve as an elite weapon on the battlefield and fight in an asymmetric manner; the other is to serve as a test unit to continuously innovate and develop new combat concepts, combat theories and technical equipment, and to promote successful experiences to other units at any time.
Operational coordination is a key element in achieving systemic operations, releasing overall effectiveness, and achieving operational objectives in modern warfare. In recent years, with the breakthrough progress of military science and technology represented by artificial intelligence, the enabling and efficiency-enhancing role of science and technology has become more prominent. While profoundly changing the form of war and combat style, it has also spawned a new mode of operational coordination – autonomous coordination. At present, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development trend of autonomous coordination, and thus promote the accelerated transformation and upgrading of combat methods.
Transforming towards intelligent empowerment and autonomous collaboration
Future wars will be all-round confrontations between the two sides using “people + intelligent equipment”. Limited by military technology, system platforms, combat capabilities, etc., traditional combat coordination has been difficult to adapt to the modern battlefield where opportunities are fleeting due to limitations such as periodic solidification and low fault tolerance. With the strong support of advanced technical means such as artificial intelligence and big data, the autonomy and automation level of combat coordination will be greatly improved, and autonomous coordination under intelligent empowerment will also become the key to defeating the enemy.
Wide-area ubiquitous collaboration. In recent years, the in-depth development of communication technology and intelligent technology, the accumulation of data, algorithms, and computing power have promoted the interconnection and aggregation of people, machines, objects, and energy, and extended the military Internet of Things to many fields such as situational awareness, command and control, information and fire strikes, and after-sales support. While promoting the iterative upgrade of combat capabilities, it also provides more options for modern combat collaboration. It can be foreseen that the military Internet of Things will shine on future battlefields. It is not only a key infrastructure to support combat operations, but also a joint hub to maintain combat collaboration. With this as a basis, it will give rise to ubiquitous operations with wide-area dispersion of forces, organizational modules, and highly coordinated actions, which are omnipresent, ubiquitous, and uncontrolled and autonomous.
Deep collaboration between humans and machines. In the Nagorno-Karabakh conflict, the Azerbaijani army built a strong battlefield advantage with the advantage of drones, and to some extent, it also announced the debut of “robot war”. In future wars, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are accelerating from backstage support and guarantee to front-line combat, and are beginning to play the “protagonist” of the battlefield. Compared with traditional combat coordination, manned and unmanned intelligent coordination presents the characteristics of “decentralization” of combat command, “de-division of labor” in the combat process, high-end skill operation, and fuzzification of the front and rear, and emphasizes human-machine collaboration and algorithm victory. Especially in recent years, intelligent unmanned clusters have emerged and begun to strongly impact the modern battlefield. In the face of these new situations and changes, cluster formation algorithms, formation control algorithms, and complex scene optimization algorithms should be used in a coordinated manner to promote unmanned and manned networking communications and intelligent coordination, promote the integrated operation of intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerate the generation of precise enemy comprehensive combat capabilities.
Digital intelligence drives collaboration. The traditional combat coordination model under progressive command is no longer able to adapt to the multi-dimensional fast pace of modern warfare. In future wars, intelligence is the key and data is king. The deep integration of big data, cloud computing, and artificial intelligence has realized the storage, analysis, integration, and application of massive battlefield data, making command and control more scientific and combat coordination more efficient. With powerful resource integration, computing processing, and data analysis capabilities, battlefield intelligence can be quickly integrated, battlefield situation can be perceived in real time, coordination plans can be efficiently formulated, and threat levels can be instantly assessed. The prediction of combat operations, the dissection of typical scenarios, the deployment of combat forces, and the allocation of combat resources can be coordinated as a whole, thereby comprehensively improving the comprehensive quality and efficiency of command and control, firepower strikes, and comprehensive support, and promoting revolutionary changes in combat coordination.
Evolving towards multi-domain linkage and autonomous collaboration
In future wars, the participating forces will be complex and diverse, weapons and equipment will be matched at different levels, and combat methods will be used in a mixed manner, showing distinct characteristics such as intelligent dynamic dispersion of combat command, intelligent wide-area deployment of combat forces, and intelligent dynamic differentiation of combat tasks. It can be foreseen that multi-domain linkage and autonomous coordination will become an important component of combat coordination.
System self-reshapes coordination. In future wars, the multi-domain battlefield space will be a combination of virtual and real, various military operations will interact, and constraints and collaboration will be randomly transformed. Only by adopting an engineered and systematic organizational model can we adapt to the complex multi-domain coordination needs. The essence of this coordination model is to form a wide-area holographic support framework for system self-reshape coordination. Specifically, it is to highlight the concept of system combat, and to solve the practical contradictions such as organizational system construction, institutional mechanism establishment, and coordination rule formulation from an overall perspective; to pay more attention to the system integration effect, and to achieve beyond-visual-range combat and cross-domain coordinated combat of combat units from a wide area; to emphasize efficient and flexible command, to refine the command relationship from various dimensions, and to clarify the command responsibilities; to pay more attention to data precision drive, to integrate network system platforms at all levels, and to establish a dynamic optimization network for detection, control, attack, evaluation and protection tasks. Once this coordination model is formed, it will undoubtedly be able to study and predict typical confrontation scenarios, dynamically select action coordination links, and plan combat operations in various fields in an integrated manner according to the combat environment, combat opponents, and combat tasks.
Tactical adaptive coordination. Local wars and conflicts in recent years have repeatedly shown that the complexity and systemicity of combat coordination have increased exponentially due to the extension of combat data information to the tactical level. Only by achieving efficient processing, integration and sharing of combat data information can adaptive and autonomous coordination between combat users be guaranteed. This coordination model pays more attention to scientific planning and innovative means to form a universal battlefield situation map with full-dimensional coverage, support hierarchical, leapfrog and cross-domain sharing and collaboration among users of all levels and types deployed in a wide area, realize the common perception of battlefield situation by command elements and combat units, and ensure self-synchronous operations within the framework of unified strategic intent, campaign guidance and coordination plan. This coordination model emphasizes the vertical integration of strategy, campaign and tactics, and the horizontal integration of land, sea, air, space and electricity, provides strong information sharing services in detection, early warning and surveillance, and relies on information media to promote the extension of campaign-level joint to tactical-level joint. This coordination model highlights the standardized operation of command operation and force application, and promotes the connection of combat command levels, cross-domain linkage, element interaction and situation sharing with the help of cutting-edge technologies such as big data and cloud computing, realizes intelligent coordination between command systems, weapon platforms and sensors, and implements the key to winning by defeating slowness with speed.
Advantages and intelligence complement and synergy. In future wars, combat operations in space, network and other fields will be deeply integrated into the traditional battlefield space, requiring higher standards and higher requirements for planning and design of the overall combat situation. Only by clarifying the complementary relationship of advantages in various combat domains and the proportion of input and effectiveness, and then sorting out the operational relationship of cross-domain coordination, can we bridge the gap in field operations and achieve complementary advantages on the multi-dimensional battlefield. In essence, this is also a concentrated reflection of the view of war efficiency. From another perspective, in a war, when the local advantage of the battlefield is not obvious or there is a hidden crisis, by gaining local advantages in other fields to make up for it and achieve comprehensive advantages, the overall goal of winning can also be achieved. In the future information-based and intelligent wars, this point will be more prominent and more complex, requiring comprehensive measures in the fields of military, politics, public opinion, legal theory, psychology, diplomacy, etc., and leveraging each other to fully release the maximum combat effectiveness; requiring traditional forces and new forces to work closely together, relying on the network information system to build an integrated combat system, and maximizing overall effectiveness through advantage synergy.
Transition to Dynamically Coupled Autonomous Collaboration
In the era of artificial intelligence, along with the profound changes in information technology and weapons and equipment, combat operations place more emphasis on breaking up traditional force groupings, connecting traditional platform functions, breaking traditional offensive and defensive boundaries, and achieving full-time dynamic control of combat operations through dynamic coupling and autonomous coordination.
Dynamic focal point coordination. In future wars, the enemy-to-enemy confrontation will be more intense, and the battlefield situation will be more changeable. The previous static, extensive, and step-by-step coordination methods will be difficult to adapt. It is necessary to pay close attention to the key nodes of the operation. On the basis of keeping a close eye on the overall situation, anchoring the combat mission, and focusing on the combat objectives, we must assess the situation and seize the opportunity. According to the predetermined coordination rules, we can flexibly change the coordination objects, flexibly adjust the coordination strategies, and autonomously negotiate and coordinate actions. It should be noted that this coordination method based on key combat nodes particularly emphasizes that combat forces transcend structural barriers and organically aggregate combat effectiveness. Through the flexible structure of the collaborative organization, self-coupling and autonomous elimination of contradictions and conflicts, bridging combat gaps, and promoting the precise release of the combined forces of the combat system.
Dynamic control and coordination. The battlefield situation in future wars is changing rapidly, and the combat process is often difficult to advance according to the predetermined combat plan, and combat operations have great uncertainty. Invisibly, this also requires us to break through traditional combat thinking, keep a close eye on the changes in the battlefield situation, and implement immediate, flexible and autonomous coordination of the combat process. This collaborative method, through real-time assessment of battlefield situation changes, the degree of damage to enemy targets, and the scale and efficiency of combat operations, can achieve rapid command and control, precise coordination in force projection, fire support, and comprehensive support, and always grasp the initiative on the battlefield. This collaborative method requires relying on advanced intelligent auxiliary means to quickly divide the combat phase, predict the duration of combat operations, analyze the overall deployment of combat forces, calculate the allocation of combat operation resources, and accurately control the decision-making cycle and combat rhythm, and accurately coordinate the actions of troops and the combat process to ensure that various randomness and uncertainties in combat can be effectively dealt with.
Dynamic response coordination. The operational mechanism of future wars is unpredictable. The deep effects of asymmetric operations, hybrid games, and system emergence will inevitably lead to various emergencies in the implementation of the planned operational plans. To this end, dynamic coordination for emergencies is an effective strategy to resolve the above-mentioned contradictions. This coordination method emphasizes the dynamic adjustment of coordinated actions according to different situations. When an emergency occurs on a local battlefield or in a local action, which has little impact on the overall operation and has sufficient time, the combat system automatically responds, partially adjusts the combat deployment and combat operations, and ensures the achievement of the expected combat objectives. When multiple urgent and slow situations coexist on the battlefield and partially affect the battlefield situation, the combat actions are dynamically and immediately coordinated according to the principle of first urgent and then slow according to the specific situation, so as to promote the development of the war in a direction that is beneficial to me. When there are multiple major unexpected situations or unexpected changes in the overall development of the war situation, coordination is carried out according to the principle of first major direction and then minor direction, and new coordinated disposal measures are quickly generated to effectively respond to various emergencies on the battlefield.
Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan Feiyi
Editor-in-charge: Wang Feng
无命题8
2021-03-16 10:xx
●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.
●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.
President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.
Answering the question “What is it?” and understanding the laws of intelligent warfare
Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.
The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.
The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.
If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.
Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare
The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.
The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of intelligent warfare.”
Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.
The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.
Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance
As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.
You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.
Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.
Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.
Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.
In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.
(Author’s unit: Academy of Military Science, Institute of War Studies)
Adhering to the integrated development of mechanization, informationization and intelligence is an inherent requirement for national defense and military modernization, and is also an important means to accelerate the transformation and upgrading of military training. Promoting the integrated development of the “three transformations” of military training is a systematic project that requires both theoretical guidance and practical exploration; it is necessary to plan and design in line with the development of the times, and to boldly practice, dare to try and create, so as to realize the “three transformations” from sequential development to integrated progress, from point-line breakthroughs to system integration, and continuously improve the level and quality of military training.
Deepen theoretical research, guide practice and drive development by thoroughly understanding the mechanism, clarifying the principle and grasping the law. First, we must deepen the research on combat issues and thoroughly understand the future combat mechanism. In future wars, intelligent technology is an important factor in winning. We should explore the reason for winning and the way to win through the phenomenon. We can empower mechanized weapons, enhance the efficiency of informationized equipment and develop unmanned intelligent combat platforms through the power of intelligent technology, so that mechanization, informationization and intelligence coexist, the physical domain, information domain and cognitive domain are mixed, and power, will and land are seized in parallel. Second, we must deepen the research on technology-enhanced training and clarify the principle of technology empowerment and efficiency. Science and technology promote the development of military training, or indirectly affect the development of military training through technological progress to promote the reform of weapons and equipment, combat methods and organizational systems, or directly promote military training innovation through technology directly acting on training methods and management guarantees. In the process of iterative upgrading of mechanization, informationization and intelligence, the mechanized physical entity is the foundation and the “grafting” object of informationization and intelligence. The informationization and intelligence technology acts on mechanization, which is essentially the empowerment and efficiency enhancement of “virtual” control of “real”. Third, we must deepen the research on military training and grasp the law of combat effectiveness generation. The generation of combat effectiveness under mechanized conditions is to achieve a high degree of aggregation of material and energy flows through the superposition of combat platforms. Its generation mechanism is manifested in quantitative accumulation, hierarchical superposition, and linear growth. The generation of combat effectiveness under intelligent information conditions is to carry out a three-dimensional mesh integration of participating forces through the network information system and intelligent support. Its generation mechanism is manifested in information empowerment, network energy gathering, and intelligent energy enhancement. The integrated development of the “three transformations” of military training should shift from the linear step-by-step superposition of mechanized training to the criss-crossing and ascending of intelligent information training, and from simple training of people to training that emphasizes both human and machine learning.
Strengthen strategic management, set up a benchmark to guide development in clarifying the base point, planning and establishing rules and regulations. First, grasp the base point and recognize the coordinates of the times for the integrated development of the “three transformations” of military training. Since the 18th National Congress of the Communist Party of China, our army has adhered to actual combat training, joint combat training, science and technology training, and training in accordance with the law, and strengthened the training guiding ideology of reform and innovation, laying the foundation for the integrated development of the “three transformations”; the new round of national defense and military reform has established a joint training system, reconstructed the training leadership organs and special training institutions of the military services, and formulated military training laws and regulations, providing organizational and institutional guarantees for the integrated development of the “three transformations”; the exploration and practice of the mechanized and informationized compound development of military training has accumulated fresh experience for the integrated development of the “three transformations”; the construction of actual combat training, informationized training conditions and the implementation of the strategy of strengthening the army with science and technology have opened up new horizons for the integrated development of the “three transformations”. Second, top-level design, constructing a blueprint for the integrated development of the “three transformations” of military training. The top-level design of the integrated development of the “three transformations” of military training is an integrated plan of an open and complex system. It is constrained by many factors such as operational evolution and technological changes. At the same time, it is different from a single closed system design. It is difficult to achieve it in one go and make a final decision. We should grasp its characteristics of iterative updates and continuous adjustments and improvements. The integrated development of the “three transformations” of military training should formulate a plan that is compatible with the national defense and military construction development strategy, incorporate the integrated development plan of the “three transformations” of military training into the strategic plan for military construction, and focus on clarifying development goals, tasks, measures, etc. The third is to establish rules and regulations to standardize and guide the effective operation of the integrated development of the “three transformations” of military training. It is necessary to formulate the implementation measures for the integrated development of the “three transformations” of military training, unify the goals and tasks, division of responsibilities, content focus, methods and steps, and supporting measures, and ensure the implementation of regular order.
Focus on the transformation to intelligence, overcome difficulties and innovate in the optimization of content, innovation of methods and improvement of assessment. First, we must focus on “smart training” and optimize the content of military training. Research and practice machine deep learning, focusing on data screening, information input, confrontation game and iterative improvement training. Research and practice new domain and new quality combat forces, carry out new weapons and equipment training, new quality combat force formation and combat application training, new domain combat forces and traditional combat forces coordination training, and new domain and new quality forces into joint combat system training. Research and practice intelligent combat, carry out intelligent combat tactics research, command confrontation training based on intelligent network system, training to seize intellectual control and intelligent combat live-fire exercises. Second, we must focus on “intelligent training” and innovate military training methods. Develop intelligent simulation training methods, give full play to the virtual-real interaction, closed-loop feedback and parallel execution functions of intelligent simulation, upgrade existing electronic games and war game simulation systems, and support individual officers and soldiers or command organizations to carry out human-machine confrontation training based on intelligent simulation systems. On the basis of the existing real-life combat system, we should strengthen the material application of intelligent technology, and create an intelligent military exercise system that combines virtual and real, complements software and hardware, and is multi-domain linked as soon as possible to effectively support the development of real-life training. Third, we should focus on “intelligent testing” and improve precise assessment methods. Using virtual reality technology, relying on the three-dimensional virtual battlefield environment generated by computers, we can evaluate the operational skills and tactical application level of officers and soldiers immersed in it. Using augmented reality technology, human senses can directly obtain real-life experience in the augmented reality scene, which can be used to test and assess the technical training of officers and soldiers and the tactical training of squads. Using mixed reality technology, virtual digital objects are introduced into the real environment, which can support the construction of the environmental conditions of real-life test exercises and the inspection and evaluation of combat capabilities. Using the Internet of Things technology, sensors, data processing units and communication components are integrated into a sensor network to monitor the exercise situation in real time, and automatically collect, transmit, summarize and display exercise information data. Using big data technology to objectively evaluate combat capabilities and training quality, and realize automatic judgment of engagement results, statistical analysis of massive data, objective evaluation of combat capabilities and automatic evaluation of training results in data analysis and deep mining.
At present, the new military is exciting the rapid development of scientific and technological revolution and revolution. Revolutionary technologies represented by artificial intelligence promote the transformation of war forms to intelligent warfare with artificial intelligence. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. Military training, as a pre-practice of military warfare, should promptly mark new goals, realize the transformation to “intelligence”, accelerate “intelligence” training, continuously improve the military science and technology level and “intelligence content”, and comprehensively upgrade combat capabilities to accelerate generation.
Keep up with the changes in the form of war and upgrade the concept of transformation
As the scale of the military and the number of equipment are no longer the key to victory in war, upgrading war thinking and training concepts is imperative. We should take a more proactive attitude and a more open vision, keep up with the trend of focus development, and strive to create a new thinking for military victory.
Grasp the inherent cause and effect of intelligent manufacturing victory. The winning chart is a manifestation of the inherent laws of war. Driven by the intelligent revolution, driven by strategic competition, and driven by war practice, the advantages of information-generated intelligence and intelligence-enabled are increasingly evident, reflected in various links such as actuarial and joint systems. A certain flow chart, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, further training thinking remains at the mechanization level. We should use the courage of self-revolution to trigger a “headache storm”, upgrade standardized combat, strengthen the theoretical research of standardized training, and use “intelligence” soldiers to deal with mechanized, informationized, and standardized combat issues, organically connect with fighting, design wars with technology, and practice wars with intelligent means, so as to clarify the fog of war.
At present, the military implements training mobilization with a focus on transformation, trying to further widen the generation gap in combat power with other countries’ armies. Once the generation gap in the military is widened, it will be difficult to recover. If you can’t keep up with it, you may be completely controlled by others. Only by keeping an eye on the opponent can you surpass the opponent. We must stand out in military training, and improve the level of military transformation and non-target combat capabilities in training.
Strengthen the target positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat effectiveness has leaped from mechanical energy type and information energy type to type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and the cutting-edge competition in high-end and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological armament, it will only be at the forefront of low-level intelligence. Therefore, we should firmly establish the goal of winning by science and technology, firmly grasp the “life gate” and “key point” of winning future wars, greatly improve the connotation of military science and technology, increase the practical application of new means such as artificial intelligence, cloud computing, and big data, unveil the mysterious veil of focusing on war, and control the initiative of future wars.
Keep up with the changes in scientific and technological development and build strong conditions for automation transformation
Automation training conditions are the basic training support for organizing and implementing automation training, and are directly related to the quality and effectiveness of automation training. To build an automated training environment, we need to focus on the development of intelligent concepts, intelligent technology, and automated operations, and continue to work hard in building environments, innovating training methods, and cultivating new talents.
Construct a battlefield environment. Modified operations, training space is more convenient, the field is wider, and the methods are more diverse. The battlefield environment construction under easy mechanization and information conditions can no longer support the needs of modified training. We should highlight the elite confrontation, rapid confrontation, and linkage confrontation supported by the modification conditions, tap into the existing existing training equipment and field functions, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and network. For example, digital maps, virtual reality and other technologies are used to simulate and display visualized three-dimensional landforms, weather and complex combat scenes, and build rich and rich combat scenes.
Develop advanced training methods. Advanced training methods help improve training results. Transformation of military training should transform the key factor of “data-centric” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration to form a “pool” covering strategy, campaign, and tactics, and immediately command organizations to end individual soldiers; develop data intelligent analysis tools, use training cloud computing, artificial intelligence and other advanced technologies to integrate and mine data operations; develop intelligent training systems, increase the construction of simulation methods such as simulation, war game confrontation, network confrontation, and intelligent judgment, and overall promote the transformation and upgrading of military methods to “technology +” and “intelligence +”.
Cultivate new military talents. No matter how the war evolves, people are always the real controllers and final decision-makers of war. The quality of the standardization level of military personnel must determine the quality of customized training. To win the information-based local war with standardized characteristics, we should accurately meet the future military needs, strengthen the transformation of traditional combat talents, make good use of the power resources of “technology +”, “maker +” and “think tank +”, promote the integrated development of “commanders”, “combatants” and “scientists” and “technologists”, form a professional and standardized new military talent group, and realize the intelligent interaction between people and equipment, the deep integration of people and environment, and the extensive adaptation of people and environment.
At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream. On the one hand, they support standardized military training, and on the other hand, they are constantly tested and improved. To this end, we should make full use of the war-building and preparation strengthening mechanism, vigorously promote the “+ intelligence” of existing equipment and the “intelligence +” construction of the new generation of equipment, adhere to the research, construction, use and modification, break through the customization level of weapon upgrades and equipment through training practice, and finally make efforts to achieve a multiplier effect. The entire weapon equipment goes from “weak intelligence” to “strong intelligence” and then to “super intelligence” to better support standardized military training.
Keep up with the changes in war practice and innovate customized training models
The military style training model has been developed many times and has moved from theoretical exploration to battlefield practice. In recent local wars, standardized operations have begun to show their edge, and thus have shown the potential to change the “rules of the game” of war. The combat style has changed, and the training model must also change accordingly and actively change. We must keep a close eye on the characteristics of war, innovate military training models, and fully rehearse the next war in military training.
We must base ourselves on the basic point of fighting high-end wars with strong enemies, highlight the essence of breaking high-end wars, continue to deepen research on strong enemies, and use the development of new combat concepts and training theories as a starting point to clarify the laws of war development and key points for winning. Predict future wars and design combat styles from the perspective of intelligence and innovation to study the unique and wonderful ways to defeat the enemy. Emphasize key actions such as joint anti-missile defense, organize strategic and campaign training tactics to defeat the enemy with disadvantages, organize non-combat training to win, and organize training to fight against new domains such as the far sea and the far domain. Seize the high position of future wars in innovative training and form a combat capability of “superior intelligence” and “superior skills” against powerful enemies.
Emphasize the research and training of new quality forces. The transformation of war from winning by force and equipment to winning by intelligence has made new combat forces a new growth pole of combat effectiveness. According to information, the US military plans to standardize 60% of ground combat platforms by 2030, and the Russian army expects that more than 30% of key weapons and equipment will be used in the battlefield by 2025. As the army’s new equipment with intelligent attributes increases, it is necessary to take the path of actual combat training with new combat forces as the leading element, highlight the formation and combat use of new combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and victory, strengthen new styles of training such as unmanned combat, promote the combat system of new combat forces, and make new combat power resources move and come alive.
Highlight intelligent command research and training. How to change the form of war and command, ability is always the key ability to win the battle. As the degree of war continues to increase, planning and commanding based on experience and personal wisdom alone can no longer adapt to any rapidly changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, planning, command and control. Commanders and command organizations are the key to the system of operations. We need to make breakthroughs in the scientificity, accuracy and timeliness of command planning. We rely on new technologies such as “big data” and “artificial intelligence algorithms” and new means such as “engineering” and “one network” to promote the upgrade of command planning from “human intelligence” training to “human intelligence + intelligence” training. We can judge the enemy situation, establish plans and determine actions in the process of actuarial calculations, so as to achieve the goal of defeating the slow with the fast and taking the lead.
The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.
The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.
At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.
Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.
Satellite navigation becomes a “standard” element of the intelligent battlefield
The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.
Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.
The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.
Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.
Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.
Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”
Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.
Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.
In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.
Intelligent battlefield requires satellite navigation to have new “responsibilities”
As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.
In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.
Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.
For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.
The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.
The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.
Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system
Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.
The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:
The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.
The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.
The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.
The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.
(The author is an academician of the Chinese Academy of Engineering)
Above: Schematic diagram of satellite navigation system supporting operations.