Category Archives: #intellligentization

Artificial Intelligence is Driving Profound Changes in Chinese Warfare

人工智慧正在推動中國戰爭發生深刻變化

現代英語:

In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.

Reshaping the combat force

These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.

From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.

From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.

From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.

Enhance combat system effectiveness

Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.

At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.

During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.

Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.

Improving combat command effectiveness

At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.

Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.

With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.

Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.

Improve the quality of combat coordination

As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.

Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.

China Military Network Ministry of National Defense Network

Tuesday , February 11, 2025

現代國語:

黃永剛

近年來,隨著人工智能技術的迅猛發展及其在軍事領域的廣泛運用,戰爭形態和作戰樣式不斷發生嬗變。國外一些學術文章認為,人工智能正在重塑作戰力量形態、增強作戰體系效能、提升作戰指揮實效、提高作戰協同質量,推動作戰活動發生深刻變化。

重塑作戰力量形態

這些學術文章指出,作戰力量主要由作戰人員、武器裝備及編組方式等整體構成,受人工智能技術影響,正發生著巨大變化。

從人員結構上看,隨著人工智能技術及相關裝備系統在軍事領域的廣泛應用,對具備人工智能技術研發、管理、使用和維護能力的專業人才需求大幅上升,技術人員在作戰力量中的佔比將不斷提高。一線作戰人員不再只是武器的直接操作者,而是逐漸向戰場監控者、系統指揮員和人機協同作戰中的關鍵決策者轉變,對其科技素養和信息處理能力的要求大大提高。

從裝備體系上看,無人機、無人戰車、智能導彈等智能武器裝備將大量出現,並成為裝備體系的重要組成部分。這些裝備具有高度的精確性和靈活性,自主作戰能力更強,能夠獨立完成偵察、打擊等任務,極大地改變了傳統的裝備結構和作戰模式。此外,傳統武器裝備也將通過加裝智能傳感器、通信模塊和自動控制系統等,加速進行智能化改造,以具備與人工智能系統互聯互通和協同作戰的能力。如老式坦克通過升級改造,可以實現自動駕駛、自動瞄准和智能彈藥裝填等功能,提升整體作戰效能。

從作戰單元編成上看,無人作戰系統憑借其在高風險、高強度作戰環境中的獨特優勢,將逐漸從輔助作戰力量發展為獨立的作戰單元並進行編組。西方國家一些智庫的研究報告認為,無人機集群作戰部隊、無人戰車營等將成為常見的作戰編制,它們可以完成偵察監視、情報分析、火力打擊等多種任務。為了充分發揮人工智能與人類戰士的各自優勢,人機混合編隊也將成為未來作戰力量的主要編成形式。在這種編隊中,人類戰士與智能武器裝備緊密配合,共同完成作戰任務。

增強作戰體系效能

從演進趨勢看,智能化技術跨域集成無人裝備、賦能傳統作戰平台,將成為未來體系作戰的“賦能器”。

目前,西方國家很多軍事專家認為,人工智能可以對作戰體系的各個要素進行全面分析和評估,找出體系中的薄弱環節和優化空間,為作戰體系的建設和調整提供科學依據。通過優化作戰體系的結構和功能,可以提高作戰體系的整體效能和穩定性,使其在面對多變戰場環境和強大作戰體系時更具競爭力。

在作戰過程中,人工智能可實時分析作戰雙方的作戰體系,預測對方的可能行動和薄弱點,提出針對性的體系對抗策略,並根據作戰過程中的實際情況不斷調整和優化,以實現己方作戰體系的高效運行,提升作戰體系對抗質效。

西方國家軍隊認為,基於人工智能賦能優勢,可以大大增強安全風險防御能力,通過自動預測、識別、發現、處置復雜安全風險,自主化保護人員、裝備、物資免受各類攻擊,能夠提升全領域、全方位防衛能力,確保作戰體系的安全性和穩定性。

提升作戰指揮實效

當前,人工智能已深度融入作戰指揮的各個環節,影響著作戰指揮的外在表現形式及主要活動方式。人工智能技術支撐下的人機智聯融合控制,將成為作戰行動控制的基本形態。

國外一些研究機構發現,人工智能系統可以根據實時戰場態勢和大量歷史數據,快速分析態勢,生成多種作戰方案,並及時推演評估方案、調整優化行動,為指揮員提供更科學合理的決策建議,高效指導計劃執行,讓作戰籌劃跟上快速變化的戰場節奏。尤其是在面對瞬息萬變的戰場情況時,能夠幫助指揮員更快地作出准確判斷。

隨著人工智能技術的不斷發展,一些智能作戰系統具備了一定的自主決策能力。在特定情況下,如面對突發的威脅或臨時出現的戰機,基於人工智能輔助的作戰指揮系統可以在預設的規則和權限范圍內,自主作出決策並采取行動,縮短決策鏈路,提高作戰的反應速度和靈活性。當作戰末端具備更強智能自主能力時,甚至可以實現作戰方案自生成、自評估、自調整,突破人的反應能力局限,形成更具適應性的作戰指揮。

很多實驗證明,基於海量作戰數據的積累和大數據分析技術的增強,人工智能技術可在模擬條件下對作戰籌劃全程進行精確計算,助力指揮員預先精准分析態勢、綜合研判趨勢、合理規劃走勢,進而通過作戰仿真、模擬推演等方式,虛擬開展參戰力量需求計算、戰法行動優化優選等活動,進而在籌劃過程中科學動態調整作戰方案策略,形成最佳選項,為作戰指揮提供更可靠的參考依據,提升指揮控制精確性。

提高作戰協同質量

隨著人工智能技術深度融入作戰體系,各作戰要素在戰場上的反應能力不斷提高,響應時間逐步縮短,適應水平日漸增強,作戰協同質量不斷提升。

西方國家一些軍事專家認為,未來戰場將呈現跨域、網絡化、非線性等特點,人工智能可以通過高效的算法,打破各作戰域、各作戰要素之間的界限,使不同作戰力量之間的協同更加緊密和高效。基於人工智能技術,可實現有人無人作戰力量編組之間的自主協同配合,使得有人無人作戰力量相互補充、相得益彰,顯著提升作戰效能。而且,無人作戰系統的應用越來越廣泛,人工智能技術可以對大量無人作戰平台進行集群控制和協同管理,實現它們之間的高效配合和任務分配,提高無人作戰的整體效能和安全性。

中國軍網 國防部網

2025年2月11日,星期二

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2025-02-11&paperNumber=07&articleid=949008889

Advanced Military Satellite Navigation for China’s Intelligent Battlefield

先進軍用衛星導航協助中國智慧戰場

現代英語:

The satellite navigation system, also known as the global satellite navigation system, is an air-based radio navigation and positioning system that can provide users with all-weather three-dimensional coordinates, speed and time information at any location on the earth’s surface or in near-Earth space.

The satellite navigation system is an important space infrastructure for mankind. It is an indispensable tool for a country’s national security and economic and social development. It has a profound impact on the form of war, combat style, and people’s production and lifestyle.

At present, there are four major global satellite navigation systems in the world, namely, the United States’ GPS, Russia’s GLONASS, Europe’s Galileo and China’s Beidou. Global competition in satellite navigation technology is becoming increasingly fierce.

Standing at a new starting point of profound changes in the world’s military, and looking at the future battlefield with a high degree of integration of informatization and intelligence, intelligent navigation systems will come into being and play an important role.

Satellite navigation becomes a “standard” element of the intelligent battlefield

The future intelligent battlefield will present the characteristics of high-tech warfare, which will comprehensively use intelligent weapons and means under information conditions, realize efficient command and control, and implement precise and flexible strikes. Satellite navigation technology can provide high-precision, all-weather, large-scale and multi-purpose positioning, navigation and timing services for various objects on land, sea, air and space.

Provide a unified time and space benchmark for systematic operations. For the intelligent battlefield, there are many linked elements and the situation changes rapidly, which requires accurate positioning of combat units to achieve intelligence reconnaissance, command and control, battlefield maneuvers, offensive and defensive operations, and support and guarantee under a unified time and space benchmark, ensuring that all elements of the entire battlefield form a coordinated organic whole.

The basic function of satellite navigation is to provide accurate time and space references for various combat elements. Without an accurate and unified time and space reference, the precise command of joint operations may be out of balance, combat operations may be out of control, and intelligence fusion and target identification cannot be achieved. If the time error is one hundredth of a second, a target locked by more than a dozen radars will become more than a dozen targets, and accurate defense and counterattack will not be possible.

Under a unified standard time and geographic coordinate system, satellite navigation provides precision guidance for various weapon platforms, fine frequency calibration for electronic warfare weapons, and all-weather positioning and navigation for individual combatants, significantly improving the coordination and strike effectiveness of joint firepower strikes.

Provide synchronous situation cognition for combat command and control. Accurately grasping the battlefield situation is the premise and basis for commanders to flexibly and accurately implement command and control. The satellite navigation system provides strong support for battlefield situation awareness.

Since the 1990s, the U.S. military has developed a “Blue Force Tracking” system based on GPS and satellite communications to build a precise command and control system. The “Blue Force Tracking” system has effectively supported the U.S. military in forming a networked information advantage on the ground battlefield and effectively solved the problem of “where are we, our friends, and our enemies?”

Relying on the two major services of navigation positioning and position reporting of the global satellite network, the military has realized battlefield situation monitoring and sharing, which has become an important means for the military to “know itself”. At the same time, it has optimized the combat operation process, realized the issuance of combat orders at the minute level, and accelerated the development of the military’s command and control mode towards “integration” and “flattening”.

Providing a tool to enhance the precision strike of weapons and ammunition. In the intelligent battlefield, precision-guided weapons have become the “trump card” that determines victory or defeat. Using the satellite navigation system, the flight process of the missile can be corrected throughout to ensure the accuracy of the hit. It can be said that the satellite navigation system is a tool to enhance the precision strike of weapon platforms.

In recent local wars, the proportion of GPS precision-guided weapons of the US military has continued to rise: 7.6% in the Gulf War in 1991, 35% in the Kosovo War in 1999, 60% in the Afghanistan War in 2001, 68.3% in the Iraq War in 2003, and 100% in the Syrian War in 2018.

Intelligent battlefield requires satellite navigation to have new “responsibilities”

As the core and cornerstone of the precise and unified space-time system, the modern satellite navigation system must take on new responsibilities in response to the development needs of future intelligent battlefields.

In the era of intelligence, new combat elements represented by “AI, cloud, network, group, and terminal” will reconstruct the battlefield ecology and completely change the winning mechanism of war. Satellite navigation services need to adapt to the characteristics of the intelligent battlefield with wider dimensions, higher precision, and stronger system.

Navigation positioning and timing have a wider range and higher accuracy. The current satellite navigation system has achieved coverage of the earth’s surface. However, on the intelligent battlefield, it needs to extend to deep space and under the sea. The combat time domain and air domain are wider, requiring the construction of a comprehensive service system covering land, sea, air and space, with unified standards, high efficiency and intelligence, to form time and space information coverage at all times and everywhere, and to achieve more powerful, safer and more reliable time and space service capabilities.

For example, in the intelligent battlefield, unmanned combat has become the basic form. Autonomous driving of unmanned vehicles, precision approach of drones, and measurement of intelligent missile positions all urgently need to be improved by an order of magnitude on the basis of existing navigation accuracy to ensure higher navigation integrity, faster first positioning time, and stronger cross-domain capabilities of land, sea, air, and space.

The military navigation confrontation system is more complete and more powerful. The means of navigation confrontation in the information age is a simple confrontation form based on signal energy enhancement and interference attack. Navigation in the intelligent era is intertwined with detection, perception, communication, command, and decision-making. It requires a navigation capability level with higher power and faster effectiveness in any region of the world, the ability to intelligently adjust navigation signals, and the development of multiple navigation means such as quantum navigation, pulsar navigation, and deep-sea navigation. It is necessary to integrate navigation methods with different principles, methods, and carriers to achieve navigation confrontation capabilities at the system level and system level.

The bandwidth of navigation information interaction is larger and the access is wider. In the intelligent era, the role of cyberspace in the combat system is gradually increasing, and it is integrated with the navigation space-time system. The navigation information and cyberspace system that provide space-time position will connect the scattered combat forces and combat elements into a whole, forming a networked and systematic combat capability. This requires support for ubiquitous perception, left-right collaboration, and reliable and reconfigurable navigation capabilities, support for highly reliable, highly anti-interference, and readily accessible signaling channels, and timely acquisition of required navigation auxiliary information such as geography, maps, and images. On this basis, the real integration of communication and navigation is realized, achieving the effect of “one domain combat, multi-domain support”.

Adapting to the needs of military intelligence development and promoting the construction of intelligent navigation system

Judging from the development trend of the world’s military powers, facing the future intelligent battlefield, intelligent navigation systems are gradually building a space-time reference network and navigation information service network that integrates the earth and the sky, with space-based, systematized, on-demand and cloud-based as the main characteristics, forming a comprehensive navigation, positioning and timing system with unified reference, seamless coverage, security and reliability, high efficiency and convenience, and strong practicality.

The core of the transformation from a basic navigation system to an intelligent navigation system is to upgrade from “positioning navigation service” to “intelligent navigation service”, and the focus is on achieving the following four aspects of transformation:

The space-time benchmark is shifting from relying on ground systems to autonomous space-time benchmark maintenance. The space-time benchmark maintenance equipment of the ground system will gradually be transferred to the satellite, and the satellite will be equipped with higher-precision optical clocks and astronomical measurement equipment to form a more stable and reliable space-based space benchmark through high-precision anchoring and laser intersatellite measurement. The use of intelligent navigation systems can make ordinary navigation positioning accuracy reach sub-meter level, the timing accuracy will be increased by about 5 times, and the precision positioning service can achieve fast convergence of centimeter-level accuracy. Intelligent navigation can fully support the cross-domain integration of combat platforms, the doubling of the effectiveness of distributed lethal weapons, and the precise navigation of the entire process of air-space integrated drones from cruising to precision approach.

The satellite power confrontation mode is transformed into a navigation system confrontation. In terms of navigation confrontation services, the traditional satellite power confrontation mode will no longer meet the needs of the intelligent battlefield. Navigation system confrontation is the only way for the development of intelligent equipment in order to enhance the ability of troops to quickly adapt to the battlefield environment. Specifically, it includes precise release of navigation performance, heterogeneous backup of constellations, and global hotspot mobility. The main features are intelligent navigation signals and flexible theater reinforcements. Based on controllable point beam energy enhancement technology, energy delivery in hotspot areas, enhanced area expansion, deception or blocking interference, and digital transmission service guarantee are realized. In a high-interference and blocking environment, ensure service continuity and accuracy, and gradually release strength as the war progresses.

The simple integration of communication and navigation will be transformed into integrated on-demand services. It will provide deeper and broader navigation information services, deeply integrate into the military information network, and provide high, medium and low-speed classified and hierarchical navigation information services to users on land, sea, air and space. Reuse the favorable conditions of global multiple continuous coverage of navigation satellites to meet users’ communication and navigation needs in a global range and in any posture, and realize high reliability and strong interference-resistant search and rescue, position reporting, and signaling transmission. The navigation satellite space-based network interacts with the ground network information to build inter-satellite and satellite-to-ground high-speed backbone networks. Through miniaturized laser terminals and enhanced space routers, a stable and reliable space network is formed, equipped with a complete and standardized protocol system to support the autonomous and intelligent operation of hybrid constellation networks.

The computing resources of payload modules are separated and transformed into cloud computing resources of constellation. It will provide more intelligent space-based cloud computing services and reliable space-based intelligent support for intelligent weapon platforms. The main features are virtualization of onboard hardware resources and balancing of task loads. Through the configuration of public onboard computing modules, large-capacity storage units, and high-speed bus networks on navigation satellites, a ubiquitous space network shared resource pool is formed. The powerful data processing capability can support the autonomous establishment and maintenance of space-based space-time benchmarks, intelligent maintenance of navigation signal quality, and autonomous management of space networks. At the same time, it can provide computing, push, and storage services for complex information such as spatial position for various high-end users in the sky, air, land, and sea.

(The author is an academician of the Chinese Academy of Engineering)

Above: Schematic diagram of satellite navigation system supporting operations.

Friday, November 12, 2021 // China Military Network Ministry of National Defense Network

現代國語:

衛星導航系統,即全球衛星導航系統,是能在地球表面或近地空間任何地點,為使用者提供全天候三維座標和速度以及時間資訊的空基無線電導航定位系統。

衛星導航系統是人類重要的太空基礎設施,堪稱一個國家安全和經濟社會發展不可或缺的重器,對戰爭形態、作戰樣式和人們生產生活方式有深遠影響。

目前,全球有四大全球衛星導航系統,分別是美國的GPS、俄羅斯的格洛納斯、歐洲的伽利略和中國的北斗,衛星導航技術全球競爭日益激烈。

站在世界軍事深刻變革的新起點,瞭望資訊化智能化高度融合的未來戰場,智慧導航體系將應運而生,並發揮重要作用。

衛星導航成為智慧化戰場的「標配」要素

未來智慧化戰場,將呈現資訊化條件下綜合運用智慧化武器和手段、實現高效指揮控制及實施精確靈巧打擊的高技術作戰特性。衛星導航技術,能高精度、全天候、大範圍、多用途地為陸、海、空、天各種物件提供定位、導航、授時服務。

為體系化作戰提供統一時空基準。對於智慧化戰場來說,連結要素多、情況瞬息萬變,要求對作戰單元進行準確定位,實現統一時空基準下的情報偵察、指揮控制、戰場機動、攻防行動、支援保障,確保整個戰場各類要素形成統籌協調的有機整體。

衛星導航的基本功能是,為各個作戰要素提供精確的時空基準。如果沒有精確統一的時空基準,聯合作戰精準指揮可能失調,作戰行動就可能失控,情報融合、目標辨識就無法實現。時間誤差百分之一秒,十幾部雷達鎖定的一個目標就會變成十幾個目標,精準防禦反擊將無法實現。

在統一標準時間與地理座標系下,衛星導航提供各類武器平台精確導引,給予電子戰武器精細校頻,給予作戰單兵全天候定位導航,顯著提升聯合火力打擊的協同程度、打擊效能。

為作戰指揮控制提供態勢同步認知。準確掌握戰場態勢,是指揮官靈活準確實施指揮控制的前提與基礎。衛星導航系統為戰場態勢感知提供了強大支撐。

美軍從1990年代開始,研發以GPS和衛星通訊為基礎的「藍軍追蹤」系統,用來建構精確化指揮控制系統。 「藍軍追蹤」系統有力支撐著美軍形成地面戰場網路化資訊優勢,有效解決了「我、友、敵在哪裡」的難題。

軍隊依托全球衛星網路的導航定位和位置報告兩大服務,實現了戰場態勢監視共享,成為軍隊「知己」的重要手段。同時,優化了作戰行動流程,實現了作戰指令分秒下達,加速了軍隊指揮控制方式向「一體化」「扁平化」方向發展。

為武器彈藥精準打擊提供增效利器。在智慧化戰場上,精確導引武器已成為關乎勝負的「撒手鐧」。使用衛星導航系統,能對飛彈的飛行過程進行全程修正,確保命中精度。可以說,衛星導航系統是武器平台精準打擊的增效利器。

在近幾場局部戰爭中,美軍GPS精確導引武器比例不斷攀升:1991年海灣戰爭為7.6%,1999年科索沃戰爭為35%,2001年阿富汗戰爭為60%,2003年伊拉克戰爭為68.3%,2018年敘利亞戰爭達100%。

智慧化戰場需要衛星導航有新的“擔當”

現代衛星導航系統作為精確統一時空體系的核心與基石,面向未來智慧化戰場的發展需求,要有新的「擔當」。

智能化時代,以「AI、雲、網、群、端」為代表的全新作戰要素,將重建戰場生態,完全改變戰爭的勝利機制。衛星導航服務,需要適應智慧化戰場維度更廣、精準度更高、系統更強的特性。

導航定位授時範圍更廣精度更高。目前的衛星導航系統,實現了地球表面覆蓋。但在智慧化戰場上,需要向深空、海下延伸。作戰時域空域更廣,要求建構覆蓋陸海空天、基準統一、高效智慧的綜合服務體系,形成無時不有、無所不在的時空資訊覆蓋,實現更強大、更安全、更可靠的時空服務能力。

如智慧化戰場上,無人化作戰成為基本形態。無人車自動駕駛、無人機精密進場、智慧飛彈陣地測量等,都迫切需要在現有導航精度基礎上再提升一個量級,確保導航完好性更高、首次定位時間更快、陸海空天跨域能力更強。

軍事導航對抗體系更全更給力。資訊時代的導航對抗手段,是以訊號能量增強與幹擾攻擊為主的簡單對抗形態。智慧時代的導航與探測、感知、通訊、指揮、決策相互交織影響,需要全球任意區域、功率更高、生效更快的導航能力水平,需要導航訊號智慧調整能力,需要發展量子導航、脈衝星導航、深海導航等多元導航手段,把不同原理、不同方式、不同載體的導航方法融合在一起,實現體系級、系統級的導航對抗能力。

導航資訊互動頻寬更大存取更廣。智慧時代的網路空間,在作戰體系中地位作用逐步上升,並與導航時空體系合為一體。提供時空位置的導航資訊與網路空間系統,將把分散的作戰力量、作戰要素連結為一個整體,形成網路化體系化作戰能力。這就需要支援泛在感知、左右協作、可信賴的導航能力,支援高可靠、強抗干擾、隨遇接取的訊號通道,及時取得所需的地理、地圖和影像等導航輔助資訊。在此基礎上,實現真正意義上的通訊導航一體化,達到「一域作戰、多域支援」效果。

適應軍事智慧化發展需要推動智慧導航體系建設

從世界軍事強國發展趨勢來看,面向未來智慧化戰場,智慧導航系統在逐步建構天地一體化的時空基準網和導航資訊服務網,以天基化、體系化、按需化、雲端化為主要特徵,形成基準統一、覆蓋無縫、安全可信、高效便捷、實戰性強的綜合導航定位授時體系。

從基本導航系統轉變為智慧導航系統,其核心是從“定位導航服務”升級為“智慧導航服務”,並專注於以下4個面向轉變:

時空基準依賴地面系統維持轉變為時空基準天基自主維持。地面系統時空基準維持設備將逐步向星上轉移,衛星將配置更高精度的光鐘、天文測量設備,透過高精度錨固和雷射星間測量,形成更穩定可靠的天基空間基準。智慧導航系統的使用,可使一般導航定位精度達到亞米級,授時精度將提升5倍左右,精密定位服務達到快速收斂的公分精度。智慧導航可完整支撐作戰平台跨域融合、分散式殺傷武器效能倍增、空天一體無人機從巡航到精密進場的全過程精準導航。

衛星功率對抗模式向導航體系化對抗轉變。在導航對抗服務方面,傳統的衛星功率對抗模式將不再滿足智慧化戰場需求,導航體系化對抗是智慧裝備發展的必經之路,以便提升部隊快速適應戰場環境能力。具體包括導航性能精準釋放、星座異構備份、全球熱點機動,主要特徵是導航訊號智能化、戰區增援靈活化。基於可控制點波束能量增強技術,實現熱點區域能量傳遞、增強區域擴展、欺騙或阻塞幹擾、數傳服務保障。在高幹擾阻塞環境下,確保服務連續性和精確度,並隨著戰事進程逐步釋放實力。

通訊導航簡單整合向通導一體按需服務轉變。將提供更深更廣的導航資訊服務,深度融入軍事資訊網絡,向陸、海、空、天用戶的高、中、低速分類分層次導航資訊服務。重複利用導航衛星全球多重連續覆蓋的有利條件,滿足用戶在全球範圍、任意姿態的通導需求,實現高可靠性、抗強幹擾的搜救、位置報告、信令傳輸。導航衛星天基網路與地面網路資訊交互,建構星間、星地高速骨幹網路。透過小型化雷射終端和增強型空間路由器,形成穩定可靠的空間網絡,裝載完備、標準統一的協議體系,支援混合星座網絡自主智慧運作。

載重模組運算資源分離向星座運算資源雲端化轉變。將提供更智慧的天基雲端運算服務,為智慧武器平台提供可信賴的天基智慧支撐。主要特徵是,星載硬體資源虛擬化、任務負載平衡化。透過導航衛星配置公用的星載運算模組、大容量儲存單元、高速匯流排網絡,形成泛在的空間網路共享資源池。強大的資料處理能力,在支撐天基時空基準自主建立與維持、導航訊號品質智慧維持、空間網路自主管理等任務功能的同時,可為天、空、地、海各類高階用戶,提供空間位置等複雜資訊的運算、推播與儲存服務。

(作者係中國工程院院士)

上圖:衛星導航系統支援作戰示意圖。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2021-11/12/content_302917888.htm

Chinese Military Combat Management System: Core of Modern Combat Command & Control

中國軍事作戰管理系統:現代作戰指揮控制的核心

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan

2022-04-22 06:42

Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.

Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.

Combat Management System: The Core of Modern Combat System

Schematic diagram of the combat management system

Past and present life

Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.

The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.

After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”

At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.

The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.

For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.

Features

The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).

The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.

For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.

Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.

The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.

Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.

With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”

The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.

Future Development

Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.

The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.

The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.

For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.

The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.

The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.

(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)

現代國語:

作戰管理,是打贏現代化戰爭的基礎,是現代化作戰體系的核心,也是作戰過程中對人員、裝備、資訊、資源和時空等要素進行的規劃、組織、協調與控制活動。

作戰管理系統,指用來支撐作戰管理活動的指揮資訊系統,包括情報採集、資訊傳輸、目標識別、威脅判斷、分配武器、任務規劃等。其隨戰爭演化、技術進步而逐步發展。

作戰管理系統:現代化作戰體系核心

■楊蓮珍

作戰管理系統示意圖

前世今生

對作戰行動實施適時精確的指揮控制和作出及時果斷的作戰決策,是不同戰爭時期指揮員始終追求的目標與夢想。在科學管理產生前,戰爭中並無作戰管理這一概念,自然談不上作戰管理系統。但樸素的作戰管理活動和系統一直與戰爭相伴、融合發展。

作戰管理的核心是保證指揮員與部隊能順暢地交換資訊和指示。在古代作戰指揮號令系統中,金、鼓、旗號稱為“三官”,“言不相聞,故為之金鼓;視不相見,故為之旌旗”,目視耳聽是原始的指揮控製手段。

電報、電話、無線電發明後,作戰命令和戰鬥訊息的遠距離快速傳輸成為現實,作戰管理範圍由平面走向立體,「運籌帷幄、決勝千裡」的戰爭決策不再是神話。當然,傳統的戰場管理手段並非完全失去作用,例如在抗美援朝戰場上,我軍因通信條件受限,連以下分隊仍在通過軍號傳遞作戰命令,與作戰相關的號聲就有20餘種。 “四面邊聲連角起”,朝鮮戰場上的軍號曾讓美軍聞風喪膽。李奇微在回憶錄裡寫道:“只要它一響,中共軍隊就如著了魔法一般,全部不要命地撲向聯軍。這時,聯軍總被打得如潮水般潰退。”

20世紀初,科學管理的概念逐漸升溫,軍隊迅速將其應用於作戰。 「作戰管理」一詞,最早出現在美國空軍,其編成內的作戰管理員,基於雷達探測情況向戰機進行遠程目標指示和話音引導。作戰核心組織則稱為BM/C3系統,即作戰管理(Battle Management)和指揮、控制、通訊(Command,Control,Communication)。 1946年,第一台電子計算機「埃尼阿克」研製成功,軍隊開始使用計算機存儲和處理有關作戰的各種數據。 1958年,美軍建成世界上第一個半自動化作戰管理系統-「賽其」防空指揮控制系統,使用電腦首次實現了資訊擷取、處理、傳輸和指揮決策過程部分作業的自動化。同年,蘇軍建成「天空1號」半自動化防空指揮控制系統。作戰管理系統開始登上戰爭舞台,人機協作決策逐漸成為指揮主要的作戰決策形式。越戰中的「滾雷」戰役,美軍指揮5,000多架飛機出動129萬架次,投彈775萬噸,如果單靠人工指揮是不可能實現的。

作戰管理系統經歷了以武器為中心、以平台為中心、以網絡為中心和以體係為中心的建設階段,逐步能夠接收、處理來自多域的傳感器和其他來源信息,實時感知並生成作戰態勢圖,自動對兵力及裝備實施指揮控制,智能輔助指揮員決策,涉及陸、海、空等軍兵種。

如以色列陸軍的「統治者」作戰管理系統,單兵數字化裝置連接通道狀態資訊設備,用於為執行戰術作戰、火力支援等部隊提供即時態勢感知和指揮控制資訊。美國海軍的「宙斯盾」作戰系統,採用多任務訊號處理器整合防空與反導能力,實現艦載相控陣雷達、指揮決策、武器控制等一體化整合。北約空軍的ACCSLOC1系統,基於網路分散部署,整合40種型號的雷達和3000多個物理接口,承擔任務規劃、作戰指揮和戰鬥監督等空中行動。從發動第一次海灣戰爭到利比亞戰爭,美軍從傳感器獲取資訊到開火,時間由24小時縮短至2.5分鐘。

功能特徵

作戰管理系統是一個迅速發展並不斷完善的分散式操作系統,主要通過收集、處理傳感器數據,暢通各類信息傳輸和融合,進行態勢識別和預測,生成作戰方案,完成行動評估與選擇,下發作戰指令給武器平台和射手。其本質是實現高效率的作戰「觀察-判斷-決策-行動」循環(OODA環)。

作戰管理系統廣泛使用態勢評估與預測、作戰時空分析、線上即時規劃、作戰資源管控和作戰管理引擎技術等,採用基於資訊技術的「雲+網+端」的技術架構。

如美軍率先運用資訊技術,建構了集指揮、控制、計算機、通訊、情報、監視和偵察於一體的C4ISR系統,為作戰管理系統打下了基礎。阿富汗戰爭中,C4ISR系統首次實現作戰資訊近實時傳輸到作戰平台。隨著傳感器、網絡和人工智慧的不斷成熟,智能態勢理解和預測、智慧資訊推送、智慧任務規劃、智慧協同控制、智慧快速重構和智慧平行指控等技術,正在對作戰管理系統產生越來越重大的影響。

作戰管理系統通常支援態勢感知、任務規劃、交戰管理、通訊、建模及模擬與分析、試驗訓練等功能。如導彈防禦作戰管理系統,主要包括指揮控制、交戰管理及通訊等功能構成。指揮控制功能,實現對戰前的作戰規劃及對戰場態勢的感知;交戰管理功能,實現輔助作戰決策和分配反導武器並完成打擊任務;通信功能,實現系統各反導單元情報、數據的傳輸和共享。

作戰管理系統是一個開放的複雜系統。結構決定功能,不同的系統結構,決定不同系統的功能拓展:艦艇自防禦作戰管理系統通過自動化武器控制條令、協同交戰管理系統和戰術數據鍊等,使艦艇具備了強大的自防禦能力;電磁作戰管理系統通過融合並顯示戰場電磁頻譜數據,提高電磁戰兵器規劃能力、共享電磁力和單兵作戰力量;

作戰管理系統普遍具有一體化、自動化、最優化、即時化等特徵。現代戰爭作戰模式複雜、戰場規模擴大,對力量管控、資源整合和任務調度要求的提高,必須實現系統一體化整合。法國陸軍的「蝎子」系統,就將坦克、裝甲車、步兵戰車、無人地面車輛、無人機與攻擊直升機完整整合到同一個作戰群,並連結任務群中的所有平台和作戰單元。

現代戰爭作戰要素增加、戰場感知空間擴大,對人依賴較高的指揮自動化系統已無法完全適應,必須實現系統自動化運作。巴基斯坦作戰管理火砲控制系統所有操作功能全部自動化,「為準備、協調、傳遞、執行和修改火力支援計畫與射擊方案提供了自動化解決方案」。

現代戰爭作戰節奏加快、戰場數據海量,需要快速掌握狀況、有效率定下決心,必須實現系統最優化決策。各軍事強國正將人工智慧、雲端運算、物聯網與大數據技術結合起來,以利在多域作戰中更快決策。

未來發展

傳統作戰管理系統,更強調基於事先制定的交戰序列、作戰規則。但未來戰爭更突出體係與體系之間的對抗,不可能預先窮盡各種情況,需要掌握的戰場資訊也更趨複雜、海量。為此,各國軍隊開始摒棄傳統上為各作戰域單獨開發作戰管理系統的方法,以網絡為中心、以人工智能為支撐,力圖幫助指揮員更迅速作出作戰決策,實現各作戰域的傳感器與任意射手的實時連接。

作戰管理系統將推動作戰概念落地。美國空軍開發的“先進作戰管理系統”,規劃將各軍種及其武器平台實時連接在一個軍事物聯網中,其核心是將各類情報偵察平台、指揮控制平台、打擊平台和作戰管理平台與各種跨域能力無縫鏈接,把情報和目標指示數據轉化為及時、可用的信息,縮短“發現-定位-跟踪-瞄準-打擊-評估”速度,以執行對手的速度執行。俄羅斯軍隊提出“軍隊統一資訊空間”理論,組織開發陸海空網絡一體化聯合作戰“自動控制系統”,通過建立網絡中心指揮模式,試圖將全軍指揮、通信、偵察、火力、保障等進行融合,實現真正意義上的跨域作戰,提升戰場態勢感知能力與作戰指揮效率。

作戰管理系統將依賴人工智慧技術。人工智慧的應用不僅引起武器系統能力的倍增,也將從根本上改變OODA環的實現。未來的作戰管理系統,人工智慧技術將成為核心支撐和驅動引擎,關鍵因素是演算法的品質。系統將內置可升級的人工智慧,人們將處於監督或協同狀態的位置,最大限度地減少人工輸入,對作戰環境中的威脅目標進行自發識別分類、自主評估權衡和自動分配武器,從而提供自適應的作戰優勢和決策可選性。

如2021年7月美海軍發布的“智能自主系統戰略”,旨在通過高度分佈式的指揮和控制架構,加速智能平台的開發和部署,綜合無人系統、人工智能和自動駕駛等技術,實現由智能自主系統促成的未來作戰決策。俄軍在研的人工智慧項目超過150個,其重點之一是將人工智慧引入指揮控制系統,為不同武器平台適配智慧軟件,實現物理域與認知域的統一,以智慧賦能的方式實現戰鬥力倍增。

作戰管理系統將實現跨域能力突破。軍隊作戰管理能力正向陸、海、空、天、電、網和認知域、社會域等全域協同轉變。適應全局環境,作戰管理系統需要具備以下功能:有彈性和冗餘的通信系統,靈活安全的數據運行;人工智能和機器學習直接從傳感器中提取、處理數據,並進行去中心化集成、共享;根據保密級別分段訪問,滿足感知、理解和行動需要。在此基礎上,還需具備向部隊提供偵察監視、戰術通訊、數據處理、網路指控等能力。

未來的作戰管理系統,將聚焦安全處理、連通性、數據管理、應用、傳感器整合和效果整合等能力,優化全作戰域的數據共享、協同作戰和指揮控制,支援從戰術級到戰略級的決策優勢。其目的只有一個:賦予指揮員超越對手的能力。

(作者係武警指揮學院訓練管理系副主任、教授)

中國原創軍事資源:http://www.81.cn/yw_208727/10149663888.html

Understanding Phased Characteristics of Chinese Military Evolution of Intelligent Warfare

認識中國軍事智能化戰爭演進的階段性特徵

現代英語:

Source: China Military Network – People’s Liberation Army Daily 

Author: Xu Yatao Liu Jingyi Editor: Shang Xiaomin 

Release: 2024-08-20 06:xx:xx

Military technological innovation and the development of weapons and equipment that materialize it are the internal driving force and determining factor of the evolution of war forms. Revolutionary military technology usually promotes the transformation of war forms from quantitative change to qualitative change according to the logical chain of “military technology-weapons and equipment-operating methods-organizational forms-war forms”. At present, technological self-drive, operational traction and strategic investment respectively form an iterative and mutually reinforcing cycle with intelligent technological innovation. The superposition of the three cycles forms a continuous acceleration effect, which is accelerating the innovation of military technology and the evolution of war forms. The great development and application of intelligent technology are driving the evolution of intelligent warfare to present three-stage characteristics.

Near term: The third wave of AI is approaching its peak, shallowly empowered unmanned platforms are being used extensively as weapons, and human-led primary intelligent warfare is gradually maturing

Combat applications accelerate the third wave to its peak. A new round of artificial intelligence technology represented by deep learning and intelligent big models is developing at a high speed, and is constantly empowering unmanned platforms. It has been initially and widely used in the military in the fields of target recognition, situation analysis, information processing, and decision support, forming an intelligent technology innovation cycle based on combat applications, namely “unmanned platform application-military intelligence needs-intelligent technology innovation-unmanned intelligent application”. Thanks to the acceleration of this innovation cycle, but also subject to the unexplainable nature of statistical learning, the unreliability of emergent generation, and the high energy consumption “capping” of required resources, referring to the development process and rise and fall cycle of artificial intelligence, the third wave of artificial intelligence is expected to reach its peak within ten years.

Artificial intelligence has superficially empowered unmanned platforms. Machines process massive amounts of data, automatically identify and analyze multimodal information such as text, voice, and images, and individual intelligence has gradually matured. Expert intelligence for specific fields has achieved breakthroughs, mainly applied to weapons and equipment and tactical operations. The “OODA” loop is mainly based on the “man in the loop, man in the lead” mode. Artificial intelligence mainly participates in a certain implementation stage or a specific action of combat tasks such as reconnaissance and surveillance, situational awareness, information processing, auxiliary decision-making, and killing and striking in the form of single equipment and single elements. The focus is to enhance the combat capability of existing weapons and equipment through the embedding, upgrading and transformation of unmanned intelligent technology, and to use intelligent technology for combat mission planning to improve the quality and efficiency of command and decision-making.

Intelligent warfare in the initial stage is developing rapidly. As an important tool of manned forces, unmanned platforms play a role in expanding the role of humans in combat operations. Their large-scale use at the tactical level has formed a certain scale, and their proportion has gradually increased, and a mixed combat formation mode of man and machine has emerged. However, the intelligent warfare at this stage is a mechanized information warfare with intelligent components, and the intelligent content is relatively low. It is basically a summary and extension of past war experience. It still uses command-based combat as the main command mode. It belongs to unmanned augmented manned combat, which can realize remote control, stealth penetration reconnaissance and surveillance, unmanned front and manned close-range remote control combat, system support, remote control of air-to-ground precision strikes and other combat styles.

Mid-term: Qualitative AI emerges and rapidly iterates, deeply empowered unmanned platforms play a leading role in combat, and intelligent-led “three-in-one” integrated warfare accelerates evolution

The game between great powers is accelerating the arrival of strong artificial intelligence. Human beings mainly rely on logical reasoning and intuition to understand the world. The advantage of artificial intelligence lies in logical reasoning, but it will take at least one or two rounds of disruptive breakthroughs to produce reliable intuition. Possible technical routes include constructing electronic neural systems close to biological neural networks, that is, brain-like computing, and quantum computing that breaks through the limitations of classical computers. These are gradually moving from theoretical research to practical applications. This stage is the accumulation period of quantitative change from specialized to general artificial intelligence. Unmanned intelligence has become a key variable in the game between major powers. The enhanced strategic investment of various countries will quickly promote the innovation of unmanned intelligent technology and transmit it to combat operations. The significantly improved combat effectiveness will stimulate further strategic investment, forming an intelligent technology innovation cycle based on strategic investment, that is, “strategic investment-technical innovation-combat operation-strategic investment”. This cycle will inevitably accelerate the arrival of strong artificial intelligence.

Artificial intelligence deeply empowers the combat system. With platform autonomy, unmanned battlefield, force integration, and human-machine collaboration as the main signs, highly self-organized collaborative operations between various unmanned platforms (systems) and efficient collaborative operations between manned and unmanned systems are realized. The “OODA” loop is mainly based on the “man in the loop, man-machine collaboration” mode. The artificial intelligence technology group is embedded in a certain combat process in an independent small-scale organization, or directly undertakes the specific tasks of a certain combat module. Artificial intelligence begins to be fully integrated into all aspects of the combat system, and the war situation is accelerating its evolution towards intelligence. The autonomy of the platform is greatly enhanced, and autonomous perception, judgment, decision-making, adjustment, and action, group intelligent collaboration has gradually matured, and front-line autonomous collaboration has become the norm. The scope of application has been expanded to include firepower strikes, logistics support, combat planning, and combat management, playing an important role in combat command.

The integration of the “three transformations” is moving towards intelligence-led warfare. From the emergence of iconic innovative technologies to the formation of a new form of warfare, a transmission cycle is required, including technology transformation, equipment deployment, force building, organizational formation, and tactics research. The primary intelligent warfare that integrates the “three transformations” will continue for a historical stage, and its gradual development is reflected in the increasing scale of unmanned platform use, the deepening of artificial intelligence empowerment, and the increasing coordination between manned and unmanned. The content of intelligence continues to increase, intelligent unmanned equipment begins to dominate, manned and unmanned coordination becomes the basic way to generate combat power, and intelligent empowerment gradually goes from shallow to deep. Unmanned intelligence plays a major combat role and becomes the “center” of a war.

A large number of specialized unmanned intelligent forces have emerged. In this stage of intelligent warfare, intelligent unmanned platforms have surpassed manned platforms at the battle level and occupied a dominant position, and the human-machine collaborative combat formation mode has become the main body. Possible typical combat styles: First, the first battle assault, the unmanned intelligent system that integrates reconnaissance, interference, deception, and strikes is used on a large scale in the first round of assaults, replacing the current style of long-range precision strike weapons as the main first round of assaults. The second is concealed deployment, in peacetime, a large number of unmanned intelligent devices are secretly deployed, and in wartime, they are triggered to wake up and strike the enemy with one strike, replacing the current style of using mobile forces to quickly deploy into the combat area. The third is unmanned swarm combat, autonomous coordination replaces planned coordination, and implements swarm-type destructive operations through “swarm” saturation attack to consume high value at low cost. The fourth is real-time human-machine collaborative combat, where manned and unmanned mixed forces realize multi-domain operations and collaborative operations in complex battlefield environments.

Long-term stage: “Intelligence explosion singularity” gives birth to super artificial intelligence, super-powerful unmanned platforms replace humans in all fields, and super-intelligent unmanned war finally arrives

Technology self-drive accelerates the iteration of strong artificial intelligence. The “technological singularity” theory holds that whenever humans invent a technology, they will invent new technology based on that technology. The higher the current technological level, the faster the next generation of new technology will come. The general trend is to first go through a period of slow growth, then achieve exponential progress, and finally enter a stable period under the constraints of objective resource conditions, and breed the seeds of the next epoch-making technology. For intelligent technology, the development from strong artificial intelligence to super artificial intelligence is at a high level of exponential growth. Supported by the intelligent technology innovation cycle based on technology self-drive, once strong artificial intelligence is realized, the “intelligence explosion singularity” will soon come, that is, super artificial intelligence that surpasses human intelligence will appear, and humans will usher in a truly intelligent unmanned war.

The style and characteristics of super-intelligent unmanned warfare. In this stage, super artificial intelligence and unmanned platforms are fully integrated, and the embodied intelligence with it as the brain is highly developed. Super-powered unmanned platforms become the absolute main force on the battlefield. In the stage of super-intelligent unmanned warfare, the main combat equipment, combat organization, combat space, etc. will undergo subversive changes. Its main characteristics are super-powered unmanned platforms, almost completely unmanned, and global space combat. Unmanned platforms with super-intelligent, super-mobile, and super-firepower performance will autonomously carry out combat missions under human authorization and simulate human thinking to implement actions. Fast, compact, and dense intelligent weapons will autonomously construct a giant, complex, and adaptive combat system to create an extremely complex battlefield environment. The main combat space has expanded and even shifted from the traditional land, sea and air battlefields to the deep sea, space, cyberspace and other fields, with the latter becoming the main battlefields that determine the outcome of wars. Intelligent “bee swarms”, “wolf packs” and “shark swarms” have completely replaced manned and unmanned collaboration, realizing true “man outside the loop” autonomous decision-making.

In summary, corresponding to the peak of the third wave and the realization of strong artificial intelligence and super artificial intelligence, the evolution of intelligent warfare can be divided into three stages: near-term, mid-term and long-term. In line with the trend requirements of the three stages of the evolution of intelligent warfare, the short-term stage focuses on solving the urgent need for combat power generation. It should be based on a bottom-up concept, fight what kind of battle with what equipment, make good use of the existing and near-term unmanned intelligent equipment, integrate it into the joint combat system, and maximize its efficiency gains; the top priority is the mid-term stage, which requires close tracking and sharp insight into the development trend of intelligent technology, and forward-looking design of unmanned intelligent warfare from top to bottom. Construction should be carried out in accordance with the concept of developing what kind of equipment to fight what kind of battle, and in-depth research should be carried out to coordinate and connect with the unmanned construction in the short-term stage; the long-term stage requires sufficient patience and strategic determination to welcome the arrival of the “intelligent explosion singularity” through solid accumulation and unremitting exploration.

現代國語:

來源:中國軍網-解放軍報 作者:徐亞濤 劉靜怡 責任編輯:尚曉敏 發布:2024-08-20

徐亞濤  劉靜怡

軍事科技創新及其物化的武器裝備發展是戰爭形態演變的內在動力和決定因素。革命性的軍事技術,通常依照「軍事技術—武器裝備—作戰方式—組織形態—戰爭形態」的邏輯鏈條,推動戰爭形態由量變到質變。當前,技術自驅、作戰牽引和戰略投入分別與智慧科技創新構成迭代互促循環,三個循環疊加形成持續加速效應,正加速推動軍事科技創新和戰爭形態演變。智慧科技的大發展與運用,正推動智慧化戰爭演進呈現三個階段特色。

近景階段:人工智慧第三波趨近頂峰,淺層賦能的無人平台作為武器大量運用,有人主導的初級智慧化戰爭逐步成熟

作戰運用加速第三波達峰。以深度學習和智能大模型為代表的新一輪人工智慧技術正高速迭代發展,並不斷賦能無人平台,在目標識別、態勢研判、資訊處理、輔助決策等領域得到初步而廣泛的軍事運用,構成了基於作戰運用的智能科技創新循環,即「無人平台運用—軍事智能需求—智能科技創新—無人智能運用」。得益於這一創新循環加速,也受制於統計學習的不可解釋性、湧現生成的不可靠性以及所需資源的高能耗性“封頂”,參照人工智能發展歷程和興衰週期,第三次人工智能浪潮有望在十年內達到頂峰。

人工智慧對無人平台淺層賦能。機器處理海量數據,自動識別分析文本、語音、圖像等多模態訊息,單體智能逐步成熟,面向特定領域的專家式智能取得突破,主要應用於武器裝備和戰術行動層面。 「OODA」環以「人在環中、有人主導」模式為主,人工智慧主要以單裝單要素形式,適度參與到偵察監視、態勢感知、資訊處理、輔助決策、殺傷打擊等作戰任務的某一實施階段或某一具體行動。重點在於透過無人智慧技術嵌入升級改造,提升現有武器裝備作戰能力,以及採用智慧技術進行作戰任務規劃,提升指揮決策質效。

初級階段的智慧化戰爭快速發展。無人平台作為有人力量的重要工具,在作戰運用中扮演拓展者的角色。其大量運用在戰術層面形成一定規模,且佔比逐步加大,人機混合作戰編組模式出現。但該階段的智能化戰爭是含有智能化成分的機械化信息化戰爭,且智能化含量較低,基本是對過去戰爭經驗的總結和延伸,仍以指令式作戰為主要指控模式,屬於無人增強的有人作戰,可以實現遠程操控、隱身穿透的偵察監視,無人在前、有人在後的近距遙控作戰,體系支撐、遠程操控樣式的空地精確等。

中景階段:質變性人工智慧出現並高速迭代,深度賦能的無人平台發揮主戰作用,智慧化主導的「三化」融合戰爭加速演進

大國博弈加速強人工智慧到來。人類認識世界主要依賴邏輯推理和直覺,人工智慧優勢在於邏輯推理,但要產生可靠直覺,至少要1至2輪顛覆性突破。可能的技術路線包括構造接近生物神經網絡的電子神經系統,即類腦計算,以及突破經典計算機限制的量子計算等,都正逐步從理論研究走向實際應用。這個階段是人工智慧由專用走向通用的量變積蓄期,無人智能成為大國博弈關鍵變量,各國強化戰略投入將快速推動無人智能科技創新並傳導到作戰運用中,顯著提升的作戰效能又會刺激進一步的戰略投入,構成基於戰略投入的智能科技創新循環,即「戰略投入—技術創新—作戰運用—戰略投入」。這一循環勢必加速強人工智慧到來。

人工智慧對作戰體系深度賦能。以平台自主化、戰場無人化、力量融合化、人機協同化為主要標志,實現多種無人平台(系統)之間的高度自組織協同作戰,以及有人與無人系統之間的高效協同作戰。 「OODA」環以「人在環上、人機協同」模式為主,人工智慧技術群以獨立小規模編組嵌入某一作戰進程,或直接擔負某一作戰模塊的具體任務。人工智慧開始全面融入作戰體系各環節,戰爭形態加速向智慧化演變。平台自主性大為增強,自主感知、判斷、決策、調整、行動,群體智慧協同逐步成熟,一線自主協同成為常態。運用範圍拓展至火力打擊、後勤保障、作戰規劃、作戰管理,對戰役指揮發揮重要作用。

「三化」融合戰爭走向智慧化主導。從標志性的革新技術出現到新的戰爭形態形成,需要經歷一個傳導週期,包括技術轉化、裝備、力量建設、編制編成、戰法研究等。 「三化」融合的初級智慧化戰爭將持續一個歷史階段,其漸進發展表現為無人平台運用規模越來越大、人工智慧賦能越來越深、有人無人協同越來越緊。智慧化含量持續增多,智慧無人裝備開始佔據主導,有人無人協同成為戰鬥力生成的基本方式,智能賦能由淺層逐漸走深,無人智能發揮主戰作用,成為一場戰爭的「中心」。

專業化無人智慧部隊大量出現。這階段的智慧化戰爭,智慧無人平台在戰役層次超越有人平台,佔據主導地位,人機協同作戰編組模式成為主體。可能的典型作戰樣式:一是首戰突擊,集偵察、幹擾、誘騙、打擊於一體的無人智能係統在首輪突擊中大規模使用,取代當前遠程精確打擊武器首輪突擊為主的樣式。二是隱蔽布勢,在平時隱蔽部署大量無人智慧裝置,戰時觸發喚醒、一擊制敵,取代當前運用機動力量快速投入作戰區域為主的樣式。第三是無人集群作戰,自主協同替代計畫協同,透過「蜂群」飽和攻擊以低成本消耗高價值,實施集群式破擊作戰。四是人機即時協同作戰,有人無人混編部隊在復雜戰場環境下實現多域作戰和協同作戰。

遠景階段:「智慧爆炸奇點」催生超級人工智慧,超能無人平台全域取代有人,超級智慧無人戰爭最終到來

技術自驅加速強人工智慧迭代。 「技術奇點」理論認為,人類每當發明一項技術,就會在該技術基礎上發明新技術,當前的技術水平越高,下一代新技術就來得越快。總的趨勢是先經過一段緩慢增長,而後實現指數進步,最終在客觀資源條件限制下進入平緩期,並醞釀下一次劃時代技術的萌芽。對於智慧科技,從強人工智慧到超級人工智慧的發展,處在指數成長的高點。在基於技術自驅的智慧科技創新循環支撐下,強人工智慧一旦實現,「智慧爆炸奇點」很快就會到來,也就是出現超越人類智慧的超級人工智慧,人類就此迎來真正意義上的智慧無人戰爭。

超級智慧無人戰爭的樣式特徵。這一階段超級人工智慧與無人平台完全融為一體,以其為腦的具身智慧高度發展,超能無人平台成為戰場的絕對主力。超級智慧無人戰爭階段,主戰裝備、作戰編成、作戰空間等都將產生顛覆性變化,其主要特徵是無人平台超能、幾乎完全無人、全域空間作戰。具備超強智能、超強機動、超強火力性能的無人平台,在人類授權下自主遂行作戰任務,模擬人類思維實施行動。快速、小巧、密集的智慧化武器將自主建構形成巨型、複雜、自適應作戰體系,創造極度複雜的戰場環境。作戰主要空間由傳統的陸海空戰場拓展甚至轉移至深海、太空、網空等領域,後者成為決定戰爭勝負的主戰場。智慧「蜂群」「狼群」「鯊群」等完全取代有人無人協同,實現真正的「人在環外」自主決策。

綜上所述,對應第三波達峰、強人工智慧和超級人工智慧的實現,智慧化戰爭的演進劃分為近景、中景、遠景三個階段。順應智慧化戰爭演進三個階段的趨勢要求,近景階段重在解決戰鬥力生成急需,應當立足於自下而上的理念,有什麼裝備打什麼仗,把現有的和近期能夠落實的無人智能裝備用好用充分,融入聯合作戰體系,最大限度釋放其效能增益;重中之重在於中景階段,需要密切跟踪並敏銳深刻洞見智能科技發展趨勢,自上而下地前瞻設計無人智能戰爭,按照打什麼仗發展什麼裝備的理念搞建設,深研搞好與近景階段無人化建設的統籌銜接;遠景階段就需要足夠耐心和戰略定力,在扎實積累和不懈探索中迎接“智能爆炸奇點”的到來。

中國原創軍事資源:http://www.81.cn/yw_208727/16332240888.html

Analyzing the New Features of Chinese Military Intelligent Warfare

中國軍事智能化戰爭新特徵解析

現代英語:

China Military Network Ministry of National Defense NetworkThursday, November 14, 2024

Intelligent warfare is the latest form of warfare development. Under intelligent warfare conditions, the battle rhythm changes rapidly, humans and machines are deeply integrated, and complex elements are interconnected, presenting new characteristics on the battlefield.

The combat tempo changes rapidly. The combat tempo refers to the phenomenon that in the course of combat, different participating forces, under different combat missions, actions, and spaces, synchronously complete their respective established tasks at specified time nodes according to the combat phase division. In essence, the combat tempo is the effect of the confrontational interaction between the military systems of all parties in a common external environment. It is a regular phenomenon that appears periodically or non-periodically. It is objective due to the interaction, and uncertain due to the active role played by the opposing parties based on their respective perspectives. In war, the combat tempo represents not only the speed of time and speed, but also the embodiment of the comprehensive effect of multiple factors such as time, space, purpose, goal, and opponent. With the continuous expansion of the battlefield and the improvement of battlefield cognitive decision-making capabilities, the future intelligent battlefield may gradually change from the simple “quick kill” type of simple use of the one-dimensionality of time to a comprehensive game and mixed confrontation in multiple dimensional fields such as politics, economy, diplomacy and multiple time and space cycles. Combat is a game between the enemy and us, and the quality of our combat rhythm depends largely on the opponent as a reference system. The combat rhythm should always focus on the opponent, and by changing the enemy and our power comparison in various forms in various dimensions, we can gain an “asymmetric” advantage, so that the battlefield situation can continue to develop in a direction that is beneficial to us in a variety of states between the active “using our own capabilities to control the enemy’s inability” and “suppressing the enemy’s capabilities when we are unable to do so.”

Humans and machines achieve deep integration. In a broad sense, human-machine integration refers to the state and process in which all humans and machines work closely together based on their respective characteristics and advantages. With the emergence of artificial intelligence technology, especially multimodal large models represented by ChatGPT, the foundation has been laid for the knowledge-level interaction between humans and machines, which has brought new opportunities for combat planning and combat command invisibly. As intelligent creatures, humans have creativity and thoughtfulness that other objects cannot match. Compared with humans, machines have obvious advantages in storage, computing and other capabilities, and have the characteristics of fast response speed and strong environmental adaptability. Under current technical conditions, the dominance of humans in human-machine fusion intelligence determines the basic mode of human-machine fusion operations. Machines are only tools and means of implementation for operations. To a certain extent, they become the main body of operations together with operators. The interactive output is also limited to the predictable changes defined by several major variables, and is closely related to the professional ability and experience of the operators themselves. As technology continues to improve, the positioning of people may gradually shift to macro-control, focusing on controlling strategic key contents and nodes such as the timing of launching a war, the scale level, the style intensity, the process development, and the ending time. The combination of human and machine does not mean a hard coupling between the two in terms of spatial position and physics, but through the mechanism and engineering of business processes and operating procedures, they play to their respective strengths and achieve dynamic adaptive operation.

Complex elements are interconnected. Modern warfare is a complex giant system, especially in the current era of global, cross-domain, and distributed operations. Focusing on the construction of the “kill network” and element-level coordination, the widely distributed combat force entities, combat platforms, sensors, weapons, etc. are further decoupled, and the combat system is gradually developing towards “decentralization”. Focusing on the combat purpose and combat objectives, in the combat system, various functional combat elements that are three-dimensionally networked are quickly reorganized and aggregated in a self-organizing and self-adaptive manner to dynamically form a closed kill chain. It is difficult to discover, identify, and calibrate the landmark nodes of the opponent’s system one by one in the various links of “detection, control, attack, and evaluation” as before, and then achieve system destruction. This “black box” state in the organization and operation of forces makes the logical causal relationship of the combat behaviors of all parties more “inexplicable” and the “incomprehensible war” effect more prominent. War is largely a confrontation of human thinking, and thanks to the help of intelligent decision-making systems, the uncertainty of combat intentions in future wars will be further increased in the fierce confrontation of broader cognitive and information domains. From the initial combat purpose to the final combat means, combat methods, and force application, “misalignment” may occur. Therefore, future wars will place more emphasis on finding a balance in active changes at the battle tactical level, which puts higher demands on better realizing “you fight yours, I fight mine” and exerting one’s own advantages.

現代國語:

關 宇

智能化戰爭是戰爭發展的最新形態。智慧化戰爭條件下,作戰節奏快速變化、人機實現深度融合、複雜要素相互關聯,戰場呈現新的特點。

作戰節奏快速變化。作戰節奏是指在作戰過程中,不同參戰力量在作戰任務、行動、空間各不相同情況下,依照作戰階段劃分,在規定的若干時間節點同步完成各自既定任務的現象。從本質上講,作戰節奏是一種在共同外部環境下各方軍事系統間對抗性交互產生的效果,週期或非週期顯現的一種規律性現象,其因交互作用而呈現客觀性,又因對抗各方基於各自視角所進行的能動作用而具有不確定性。在戰爭中,作戰節奏所代表的並不僅僅是時間和速度的快慢,而是時間、空間、目的、目標、對手等多種因素綜合作用的體現。隨著作戰域的不斷拓展以及戰場認知決策能力的提升,未來智能化戰場可能由單純「快速秒殺」式的對時間一維性的簡單運用,逐步向政治、經濟、外交等多個維度領域和多個時空週期的綜合博弈、混合對抗轉變。作戰是敵我雙方的博弈,己方作戰節奏的好壞很大程度上要以對手為參照系。作戰節奏應始終聚焦對手,透過在各維域以各種形式改變敵我力量對比,獲取「不對稱」優勢,使得戰局形勢在能動的「以己之能製敵不能」和「己不能時抑敵之能」間的多種狀態下不斷向有利於我方的方向發展。

人機實現深度融合。從廣義上講,人機融合泛指一切人與機器根據各自特點優勢,密切協同開展作業的狀態和過程。隨著人工智慧技術特別是以ChatGPT為代表的多模態大模型的出現,為人機間的知識層面互動奠定了基礎,這在無形之中為作戰籌劃和作戰指揮帶來了新的機會。人作為智慧生物,具有其他器物無法比擬的創造性和思想性。相較於人類,機器的儲存、計算等能力則優勢明顯,具有響應速度快、環境適應性強等特徵。在當前技術條件下,人機融合智能中人的主導性,決定了人機融合作業的基本模式。機器只是作業的工具和實現手段,在一定程度上與作業人員共同成為作業主體,交互輸出也局限於幾個主要變量所限定的可預測變化,且與作業人員自身專業能力和經驗密切相關。隨著技術不斷完善,人的定位或將逐漸轉向宏觀控制,重點掌控戰爭發起時機、規模層次、樣式強度、進程發展、結束時機等戰略性關鍵內容和節點。人機融合的編組並不意味著二者在空間位置和物理上的硬耦合,而是透過機制化、工程化的業務流程和作業程序,圍繞發揮各自所長,實現動態自適應運行。

複雜要素相互關聯。現代戰爭是一個複雜巨系統,特別是在全局作戰、跨域作戰、分散式作戰的當下,圍繞著「殺傷網」的構建和要素級協同,廣域分佈的作戰力量實體、作戰平台、傳感器、武器等進一步解耦,作戰體系逐漸向「去中心」化發展。圍繞作戰目的,聚焦作戰目標,作戰體系中,立體網狀關聯的各種功能性作戰要素,以自組織、自適應方式快速重組聚合,動態形成閉合殺傷鏈。很難如從前一樣,在「偵、控、打、評」的各環節上逐一發現、識別和標定對手體系各標志性節點進而實現體系破擊。這種在力量組織和運行實施中的“黑盒”狀態,使得各方作戰行為的邏輯因果關系更趨“不可解釋性”,“看不懂的戰爭”效應更加凸顯。戰爭在很大程度上是人類思維的對抗,得益於智慧化決策系統的助力,未來戰爭在更廣闊的認知和資訊領域激烈對抗中,作戰意圖的不確定性進一步增大。從最初始的作戰目的,直至末端的作戰手段、作戰方式、力量運用等各方面,都可能出現「錯置」。因此,未來戰爭在戰役戰術層面將更加強調在主動變化中求得平衡,這對更好實現“你打你的,我打我的”,發揮己方優勢提出了更高要求。

2024年11月14日 星期四

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-11-14&paperNumber=07&articleid=943398881

Chinese Military Evaluation of Foreign Armed Forces Perspectives on Multi-domain Operations

中國軍方對外軍多域作戰觀點的評估

現代英語:

The opening of each combat domain will inevitably lead to a new round of changes in combat methods. Driven by the new round of scientific and technological revolution and industrial revolution characterized by intelligence, ubiquity and integration, emerging combat domains such as space, cyberspace, electromagnetic spectrum, and cognitive space have an increasing impact on future operations. The concept of “multi-domain combat” has emerged through cross-domain collaboration with traditional land, sea, and air combat domains to achieve complementary advantages and system efficiency, and is becoming a new combat theory that adapts to the evolution of war forms.

The concept of “multi-domain combat” was first proposed by the US military. Subsequently, the United Kingdom, France, and other NATO member states have developed the concept of “multi-domain combat” in different forms. Israel was the first to apply the concept of “multi-domain operations” in actual combat. The Russian army innovatively proposed its own “multi-domain operations” theory from the perspective of its opponents. At present, the concept of “multi-domain operations” has become an important concept that triggers a new round of changes and transformations in foreign military operations.

The concept of “multi-domain operations” is a new operational concept first proposed by the US Army and jointly promoted by other services based on the changes in operational methods in the information age.

The US military believes that the winning mechanism of the concept of “multi-domain operations” is to form multiple advantages in a specific time window through the rapid and continuous integration of all war domains (land, sea, air, space, and cyberspace) and force the enemy into a dilemma. The U.S. Army proposed to be guided by the idea of ​​”global integrated operations” and the concept of “cross-domain collaboration”, and strive to form an asymmetric advantage in future wars through “multi-domain operations”. The multi-domain task force (brigade level) will be the core combat force of the U.S. Army to implement multi-domain operations, integrating artillery, land-based tactical missiles, land aviation, cyberspace, electromagnetic spectrum, space and air defense forces, and forming multi-domain combat capabilities through cross-domain mixed formations. The U.S. Air Force actively responded to the concept of “multi-domain operations”, focused on building a joint combat command and control system, proposed the concept of multi-domain command and control, and focused on developing advanced combat management systems, sinking multi-domain operations to the tactical level to improve the agility and cross-domain collaboration capabilities of future operations. The U.S. Navy has absorbed the core idea of ​​the “multi-domain combat” concept, proposed to build an “integrated global maritime military force”, focused on developing the “distributed lethality” combat concept, and proposed to strengthen the design and exercise of global combat.

The U.S. Department of Defense and the Joint Chiefs of Staff have gathered the ideas and mechanisms of the new combat concept of “multi-domain combat” of the military services, and proposed the top-level concept of “global combat”, aiming to form a new round of asymmetric advantages, lead the transformation of combat methods and military transformation. The global combat concept is centered on joint global command and control, aiming to integrate traditional combat domains with space, cyberspace, electromagnetic spectrum, air defense and anti-missile and cognitive domain capabilities, and compete with global competitors in a full-spectrum environment. It is reported that the concept is still in its infancy and is undergoing theoretical deepening, experimental verification, exercise evaluation and doctrine transformation, and is constantly enriching its conceptual core through multiple work lines. Among them, the US Joint Chiefs of Staff leads the transformation of concepts into policies, doctrines and requirements; the Air Force promotes the concept to maturity by developing advanced combat management systems, the Army by implementing the “Convergence Project”, and the Navy by launching the “Transcendence Project”. The US theater supports the development of multi-domain combat concepts and multi-domain combat modes through war games, project demonstrations and joint exercises.

Based on the perspective of reference and integration, NATO countries such as the United Kingdom actively participated in the development and testing of the US military’s “multi-domain operations” concept, and revised the operational concept in combination with actual conditions.

The British Ministry of Defense proposed the concept of “multi-domain integration”, which is consistent with the concept mechanism of the US military’s “multi-domain operations”, focusing on integrating operations in different domains and at different levels, preparing for the development of a joint force and maintaining competitive advantages in 2030 and beyond. The British Ministry of Defense pointed out that “integrating capabilities in different domains and at different levels through information systems, creating and utilizing synergies to gain relative advantages is the winning mechanism of the multi-domain integration concept.” The concept emphasizes gaining information advantages, shaping strategic postures, building a multi-domain combat environment, and creating and utilizing synergies. The concept raises four specific issues: how to provide an advantage over rivals by 2030 and beyond through “multi-domain integration”; how to achieve cross-domain integration of the Ministry of Defense in cooperation with allies, governments and civilian departments; how to solve the policy issues involved in the concept of “multi-domain integration”; how to promote research on defense concepts, capabilities and war development. With this as a starting point, the British Army has launched a multi-faceted, step-by-step, and systematic military transformation.

Other NATO countries are also jointly developing and innovatively applying the concept of “multi-domain operations” to varying degrees, and promoting the transformation and implementation of the concept of “multi-domain operations” in the form of joint exercises and allied cooperation. In 2019, the US Army led the “Joint Operational Assessment (2019)” exercise, which aimed to assess the combat capabilities of the Indo-Pacific Command’s multi-domain task force. Forces from France, Canada, Australia, New Zealand and other countries formed a multinational task force to participate in the exercise, which assessed the multi-domain combat concepts, formations and capabilities in the combat environment from 2025 to 2028. In October 2019, the NATO Joint Air Power Competition Center held a meeting on “Shaping NATO’s Future Multi-Domain Combat Posture”. In order to shape NATO’s future multi-domain combat posture, it explored and studied military thinking, multi-domain combat forces, multi-domain combat operations and training joint forces. In June 2020, the NATO Command and Control Center of Excellence released a white paper on the Multi-Domain Operations Command and Control Demonstration Platform, which aims to respond to threats and challenges in multiple operational domains with a decentralized, data-driven integrated environment by bridging the command and control gap between technology and operators, tactics and campaign levels, and academia and the military.

Based on the perspective of its opponents, the Russian army seeks a way to crack it on the one hand, and on the other hand, based on the winning mechanism of “cross-domain operations”, it combines its own characteristics to innovate combat theories

After the US military proposed the concept of “multi-domain operations”, the Russian army actively sought a way to crack it based on its own security interests. In December 2020, the Russian magazine “Air and Space Power Theory and Practice” published an article titled “Argument for the Use of Aviation Power to Break the Enemy’s Large-Scale Joint Air Strikes in Multi-Domain Operations”, which stated that large-scale joint air strikes are the initial stage for NATO countries to implement multi-domain operations. Large-scale coordinated operations will be carried out against Russia’s most important key facilities, creating conditions for subsequent decisive actions by NATO joint armed forces. The Russian army must comprehensively use the reconnaissance and strike system composed of the aviation forces of the theater forces to cause unbearable losses to the enemy, break its large-scale joint air strikes, and force NATO’s initial stage goals of multi-domain operations to fail to be achieved, causing NATO’s political and military leadership to abandon the attempt to continue to implement multi-domain operations.

On the other hand, the Russian army proposed the “military unified information space” theory for the new combat method of “cross-domain combat”. Its core idea is: to use modern information technology to establish a networked command and control system to achieve the deep integration of the army’s command, communication, reconnaissance, firepower, support and other elements, thereby improving the battlefield situation perception capability and combat command efficiency. The Russian military continues to promote theoretical development around the realization of cross-domain combat capabilities: first, relying on the unified information space of the army to establish a network-centric command model; second, introducing artificial intelligence into the command and control system to achieve the unification of the physical domain and the cognitive domain; third, developing network, space and underwater combat forces to gain advantages in emerging combat fields; fourth, establishing a unified military standard system to enhance the interoperability of forces and weapons. The Russian military has not completely absorbed the Western concept of “multi-domain combat”, nor has it completely denied the beneficial elements of the Western “multi-domain combat”, but has combined its own absorption of some advanced combat ideas of “multi-domain combat” to enrich its own unique combat theory.

Based on the perspective of combat needs, Israel took the lead in applying the concept of “multi-domain combat” on the Gaza battlefield, and used the multi-domain combat force “Ghost” as the main combat force.

The Israeli army believes that multi-domain joint combat is an inevitable trend in the development of future wars. For Israel, which mainly relies on ground combat, by integrating land, air, cyberspace, electromagnetic spectrum and sea elite forces, it can quickly identify, track and destroy enemy targets, and further improve the lethality of the Israeli army. This concept is in line with the concept of “multi-domain combat” proposed by the US Army. Under the guidance of this concept, the Israeli army formed the “Ghost” force and took the lead in actual combat testing on the Gaza battlefield. In the Israeli-Palestinian conflict in May 2021, Israel used the “Ghost” combat battalion for the first time to implement multi-domain operations in the code-named “Wall Guardian” operation against Hamas, which was called the world’s first “artificial intelligence war”. The Israeli army mainly relied on machine learning and data collection in this war, and artificial intelligence became a key component of combat and a force multiplier for the first time. In the operation to clear the Hamas tunnel network, the Israeli army used big data fusion technology to pre-identify and target, and then dispatched 160 fighter jets to carry out precise strikes, which greatly destroyed the Hamas tunnel network and achieved air control over the ground; in the attack on Hamas rocket launchers, the Israeli fighter pilots, ground intelligence forces and naval forces used command and control systems to quickly find targets and carry out real-time precise strikes, quickly shaping a favorable battle situation.

According to the Israeli army, the “Ghost” force is very different from traditional forces in terms of combat organization, weapon configuration and combat methods. The unit is temporarily organized under the 98th Paratrooper Division of Israel, including the brigade reconnaissance battalion, the ground forces of the Paratrooper Brigade, the armored brigade, the engineering corps, the special forces, the F-16 squadron and the Apache helicopter, as well as the “Heron” drone and other multi-domain combat forces. Through the use of multi-domain sensors and precision strike weapons, cross-domain maneuvers and strikes are achieved, “changing the battlefield situation in a very short time”. The battalion was established in July 2019. Although it is a ground force, it integrates multi-domain combat forces such as air strikes, network reconnaissance, precision firepower, electronic confrontation, intelligence interconnection and maritime assault. It is a battalion-level combat unit with division-level combat capabilities. After its establishment, the unit has continuously improved its multi-domain integration and cross-domain strike capabilities through exercises, and has quickly exerted two major functions with the support of the newly developed artificial intelligence technology platform: one is to serve as an elite weapon on the battlefield and fight in an asymmetric manner; the other is to serve as a test unit to continuously innovate and develop new combat concepts, combat theories and technical equipment, and to promote successful experiences to other units at any time.

現代國語:

褚 睿 劉瑤琦

每一個作戰域的開闢,必將引發新一輪作戰方式的變革。在以智慧、泛在、融合為特點的新一輪科技革命和產業革命的加速推動下,太空、網絡空間、電磁頻譜、認知空間等新興作戰域對未來作戰影響日益增大,透過與傳統陸、海、空作戰域跨域協同實現優勢互補、體系增效的「多域作戰理論」概念應而生,正成為適應戰爭形態演進的新型作戰理論。

「多域作戰」概念最早由美軍提出。隨後,英國、法國以及其他北約成員國均以不同形式發展「多域作戰」概念。以色列率先將「多域作戰」概念運用於實戰。俄軍從對手視角創新提出了自己的「多域作戰」理論。當前,「多域作戰」概念已成為引發外軍新一輪作戰方式變革轉型的重要概念。

「多域作戰」概念是基於資訊時代作戰方式變革,由美陸軍率先提出、其他軍種協力推進的新型作戰概念

美軍認為,透過所有戰爭領域(陸、海、空、太空、網路空間)快速且持續的整合,在特定時間窗口形成多重優勢,迫使敵人陷入困境是「多域作戰」概念的製勝機理。美陸軍提出以「全球一體化作戰」思想和「跨域協同」理念為指導,力求透過「多域作戰」方式形成未來戰爭非對稱優勢。多域特遣部隊(旅級)將是美陸軍實施多域作戰的核心作戰力量,集砲兵、陸基戰術導彈、陸航、網絡空間、電磁頻譜、太空以及防空力量於一身,通過跨域混合編組形成多域作戰能力。美空軍積極響應「多域作戰」概念,著眼於建構聯合作戰指揮與控制體系,提出多域指揮與控制概念,聚力開發先進作戰管理系統,將多域作戰向戰術級下沉,以提高未來作戰的敏捷性和跨域協同能力。美國海軍吸納“多域作戰”概念的核心思想,提出打造“一體化全局海上軍事力量”,重點開發“分佈式殺傷”作戰概念,提出加強全局作戰設計和演習。

美國國防部和參聯會匯集軍種「多域作戰」新型作戰概念的思想與機理,提出了「全局作戰」頂層概念,旨在瞄準形成新一輪非對稱優勢,牽引作戰方式變革與軍事轉型。全局作戰概念以聯合全局指揮與控制為核心,旨在將傳統作戰域與太空、網絡空間、電磁頻譜、防空反導和認知領域等能力整合在一起,與全球性競爭對手在全頻譜的環境中競爭。據悉,該概念目前尚處於萌芽期,正在進行理論深化、試驗驗證、演習評估和條令轉化,並通過多條工作線,不斷豐富其概念內核。其中美軍參聯會領導概念向政策、條令和需求轉化;空軍通過開發先進作戰管理系統、陸軍通過實施“融合項目”、海軍通過啟動“超越項目”共同推動該概念走向成熟。美戰區透過兵棋推演、項目展示和聯合演習等形式支援多域作戰概念和多域作戰模式開發。

英國等北約國家基於借鑑與融入視角,積極參與美軍「多域作戰」概念的發展與試驗,並結合實際修訂作戰概念

英國國防部提出了「多域融合」概念,與美軍「多域作戰」概念機理相一致,著重於整合不同領域和不同層次的作戰,為2030年及以後發展一支聯合部隊、保持競爭優勢做準備。英國國防部指出,「透過資訊系統整合不同領域和不同層級的能力,創造和利用協同效應,以獲得相對優勢,是多域融合概念的製勝機理。」該概念強調奪取資訊優勢、塑造戰略態勢、構設多域作戰環境、創造和利用協同效應。該概念提出4個具體問題:如何透過「多域融合」為2030年及以後提供超越對手的優勢;如何實現國防部與盟友、政府和民事部門合作的跨域融合;如何解決「多域融合」概念涉及的政策問題;如何促進國防概念、能力和戰爭發展方面的研究。以此為抓手,英軍開啟了多面向、分步驟、體系化的軍事轉型。

其他北約國家也正在不同程度地聯合開發和創新運用「多域作戰」概念,並以聯合演習、盟國協作等形式推動「多域作戰」概念轉化落地。 2019年美陸軍領導開展的、旨在評估印太司令部多域特遣部隊作戰能力的「聯合作戰評估(2019)」演習中,法國、加拿大、澳大利亞、新西蘭等國部隊組成多國任務組織參與其中,評估了2025-2028年作戰環境下的多域作戰概念、編組、能力。 2019年10月,北約聯合空中力量競爭中心召開了「塑造北約未來的多域作戰態勢」會議,為塑造北約未來多域作戰態勢,從軍事思想、多域作戰力量、多域作戰行動和訓練聯合部隊等方面進行了探索和研究。 2020年6月,北約指揮控制卓越中心發布了多域作戰指揮控制演示平台白皮書,旨在通過彌合技術和作戰人員、戰術和戰役層面、學術界和軍方之間的指揮控制鴻溝,以分散、數據驅動的綜合環境來應對多個作戰域的威脅與挑戰。

俄軍基於對手視角,一方面尋求破解之道,另一方面基於「跨域作戰」制勝機理,結合自身特點創新作戰理論

美軍提出「多域作戰」概念後,俄軍基於自身安全利益考量,積極尋求破解之道。 2020年12月,俄羅斯《空天力量理論與實踐》雜志刊發《論證運用航空力量打破敵方多域作戰中大規模聯合空襲》的文章,認為大規模聯合空襲是北約國家實施多域作戰的初始階段,將對俄羅斯最為重要的關鍵設施實施大規模協同作戰,為北約聯合武裝力量後續決定性行動創造條件。俄軍必須綜合運用戰區部隊的航空力量組成的偵察打擊系統,給敵造成無法承受的損失,打破其大規模聯合空襲,迫使北約多域作戰初始階段目標無法實現,致使北約政治軍事領導層放棄繼續實施多域作戰的企圖。

另一方面,俄軍針對「跨域作戰」這種新型作戰方式,提出了「軍隊統一資訊空間」理論,其核心思想是:利用現代資訊技術建立網絡化的指揮控制系統,以實現全軍指揮、通信、偵察、火力、保障等要素的深度融合,進而提升戰場態勢感知能力與作戰指揮效率。圍繞實現跨域作戰能力,俄軍持續推進理論開發:一是依托軍隊統一資訊空間,建立網絡中心指揮模式;二是將人工智慧引入指揮控制系統,實現物理域與認知域的統一;三是發展網絡、太空和水下作戰力量,爭取新興作戰領域優勢;四是建立統一的軍事標準體系,提升兵力兵器互操作能力。俄軍沒有全盤吸收西方「多域作戰」概念,也沒有全盤否定西方「多域作戰」有益成分,而是結合自身將「多域​​作戰」的一些先進作戰思想吸收,充實自身特色的作戰理論。

以色列基於作戰需求視角,率先運用「多域作戰」概念於加薩戰場,將多域作戰力量「幽靈」部隊作為主要作戰力量

以軍認為,多域聯合作戰是未來戰爭發展的必然趨勢,對於以地面作戰為主的以色列而言,透過整合陸上、空中、網絡空間、電磁頻譜和海上精銳力量,迅速識別、追踪和摧毀敵方目標,能夠進一步提高以軍的殺傷力。這一理念與美陸軍提出的「多域作戰」概念一脈相承。在這一理念的指導下,以軍組建了「幽靈」部隊,並率先在加薩戰場上進行了實戰檢驗。在2021年5月的巴以沖突中,以色列在對哈馬斯的代號為「城牆衛士」行動中首次運用「幽靈」戰鬥營實施了多域作戰,被稱為世界上第一場「人工智慧戰爭」。以軍在這場戰爭中主要依靠機器學習和數據收集,人工智慧首次成為作戰的關鍵組成部分和力量倍增器。在對哈馬斯地道網的清除行動中,以軍通過大數據融合技術進行預先識別和瞄準,而後出動戰機160架次進行精確打擊,極大破壞了哈馬斯的地道網,實現以空制地;在對哈馬斯火箭發射裝置的打擊中,以軍戰鬥機飛行員、地面情報部隊和海軍部隊之間使用和控制系統,快速指揮目標

根據以軍的說法,「幽靈」部隊在作戰編成、武器配置和作戰方式等方面與傳統部隊迥然不同。該部隊編制暫屬以色列第98傘兵師,包括旅偵察營、傘兵旅的地面部隊,裝甲旅、工程兵、特種部隊,F-16中隊和阿帕奇直升機,以及“蒼鷺”無人機等多域作戰力量,通過使用多域傳感器和精確打擊武器,實現跨域機動與打擊,“在極短時間內改變戰場局勢”。該營成立於2019年7月,雖然是一支地面部隊,但它整合了空中打擊、網絡偵防、精確火力、電子對抗、情報互聯以及海上突擊等多域作戰力量,是具備師旅級作戰能力的營級作戰單元。該部隊組建以後,不斷通過演習提升多域融合和跨域打擊能力,並在新開發的人工智能技術平台的支撐下迅速發揮兩大功能:一是在戰場上作為精兵利器,以非對稱方式作戰;二是作為試驗部隊,不斷創新和發展新型作戰概念、作戰理論和技術裝備,隨時將成功經驗推廣到其他部隊。

中國原創軍事資源:http://www.81.cn/xxqj_207719/xxjt/ll/10068139888.html

Operational Window: Chinese Military New Perspectives for Implementing Cross-Domain Collaborative Operations

作戰窗口:中國軍隊實施跨域協同作戰的新視角

現代英語:

The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.

Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations

The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.

Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.

Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.

Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.

Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation

The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.

Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.

Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.

Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.

Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations

The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.

Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.

Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.

Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.

現代國語:

劉 陽 李志華

引言

作戰窗口,是指為激發體係作戰週期效能而選擇的有利於聯合作戰力量實施跨域協同作戰的時空範圍。作戰窗口概念來自戰機,是戰機在新局勢下聯合作戰指揮理論的創新發展,在作戰指揮活動中將比戰機應用更廣泛。能否將聯合作戰力量體系對抗中戰機的選擇看作「作戰窗口」的形式,直接影響了指揮的眼界。在複雜多變的資訊化戰場環境下,作戰窗口逐漸成為聯合作戰力量實施跨域協同作戰的新基點,對奪取戰場主動,塑造有利態勢,具有重要意義。

構設作戰窗口,突顯跨域協同作戰準備的全面性

戰區聯指應緊貼作戰任務、戰鬥對手、作戰環境,牢牢掌握戰略戰役主動權,加強聯合作戰資源預設,積極優化戰場環境,為構設作戰窗口創造條件。

圍繞作戰窗口實施周密持續的聯合偵察。作戰窗口的時空範圍包括打擊敵目標的時間區間與打擊地幅。其中,打擊地幅一般以打擊目標為中心,指能調控體係作戰力量持續維持局部戰場綜合控制權、適合打擊敵節點目標的相對密閉空間。為確保在作戰窗口區順利實施作戰,其外圍可區分為警戒巡邏區、攔截阻殲區與防禦作戰區等為其提供支撐保障。聯指機關應圍繞作戰窗口優先情報告警信息的提報需求,綜合運用諸軍兵種偵察預警力量和手段,為獲取作戰窗口區及其外圍區域的情報告警信息實施周密持續有重點的聯合偵察。必要時可協調戰略偵察預警力量提供情報支援,消除作戰窗口時空的偵察預警盲區,確保情報告警信息從獲取至運用的流轉過程高效穩定。

預測作戰窗口及時調整任務部隊戰備訓練的週期計畫。諸軍兵種任務部隊保持高度戒備狀態的規模強度極大限製作戰窗口的時空範圍。週期性保持高度戒備狀態,要求諸軍兵種任務部隊依照臨戰狀態進行管理運作,是體現任務部隊戰鬥力高低的重要標誌。當前任務部隊應依照戰備、訓練、整備三種狀態進行日常管理和訓練,目的是確保相當規模的能戰兵力可隨時遂行作戰窗口任務並不斷提高實行水平,非能戰兵力應統籌資源集中精力進行系統作戰能力的生成訓練。整備期則處於戰備訓練間隙,應機動靈活組織作戰人員休息、裝備維修和必要訓練,為轉入訓練週期或戰備週期創造條件。戰區聯指透過預測作戰窗口,及時調整較大規模任務部隊戰備訓練的周期計劃,使其有節奏、規律地處於高度戒備狀態,為實施窗口作戰提供力量基礎。

聚焦作戰視窗滾動組織跨域協同作戰方案計畫的聯動作業。由於作戰窗口往往稍縱即逝,圍繞作戰窗口應急制定的諸軍兵種跨域協同作戰方案計劃的完備性可能會大打折扣。因此戰區聯指應凝聚指揮員及其指揮機關的集體智慧,依靠指揮資訊系統,透過體系化、程序化、專業化的快速指揮聯動作業,滾動組織擬制跨域協同作戰方案計劃。指揮聯動作業涉及上下級指揮機構聯動作業、偵控打保評全流程聯動作業及人機交互聯動作業等。實施指揮聯動作業應統一作戰意圖,聚焦作戰窗口,利用態勢共享的指揮作業平台,聯動展開平行作業,進行週期性的作戰規劃,隨時開展研判態勢,跟進提出作戰構想,增強推演評估的可信度,同步擬制並日臻完善跨域協同作戰的方案計劃。實施聯動作業有助於縮短跨域協同作戰方案計畫的製定時間,提高方案計畫的可行性,儘早掌握作戰窗口的先機。

應用作戰窗口,突顯跨域協同作戰體系對抗的效能性

戰區聯指應針對不同作戰目的任務,不同作戰對手屬性,不同作戰類型樣式,在精心籌劃和全面準備的基礎上,果斷決策發起作戰,迅速奪取作戰窗口的戰場主動權。

疊加作戰體系效能。諸軍兵種任務部隊在作戰窗口時空範圍內密切協同,整體聯動,聚焦作戰任務形成體係作戰效果。目前隨著軍事科技的快速發展與新銳作戰力量不斷調整優化,精確化、自動化、智慧化、無人化的武器裝備應用越來越廣泛,在特定的作戰窗口範圍內,幾乎每個軍兵種都或多或少地具備遠程多域精確打擊敵目標的手段。即使是陸戰型任務部隊,也具備較遠距離的精確遠火打擊能力與近海兵力投送能力,這就使得諸軍兵種任務部隊在作戰窗口內實施複合打擊,成為聯合作戰打擊敵目標的首選方式。多軍兵種複合打擊與單一軍兵種相比,將會產生更猛、更準、更穩、更快的複合打擊效能。諸軍兵種任務部隊的複合打擊效能在作戰窗口範圍內聚焦作戰目標,將促使跨域協同作戰效能的量值陡增,疊加效果更加顯現。

匯聚作戰保障資源。作戰保障資源是影響作戰窗口選擇應用的物質因素,涉及偵察情報保障、資訊保障與後裝保障等諸多資源。戰時對本戰區實施匯聚式支援保障是應用作戰窗口的關鍵。友鄰戰區的作戰支援將使任務部隊保持較高的戰備水平,指揮官將具有更多的作戰選擇性;戰略支援部隊提供的航天資訊支援、網路作戰支援將是聯合偵察情報、資訊作戰領域的重要支撐;而聯勤保障部隊是實施聯勤保障和戰略戰役支援保障的主要力量,戰區任務部隊作戰能力的波動性很大程度上受此制約。對此,透過明確作戰保障力量的使命任務、指揮權限、體制機制與法規制度等約束激勵手段,主動圍繞作戰窗口匯聚作戰保障資源,實施一體化綜合高效保障,大力提升跨域協同作戰的體系效能。

調控作戰波動週期。聯指機關指揮諸軍兵種任務部隊對敵目標實施打擊行動,其行動前需進行戰備等級轉換、協同演練與機動展開至待機地域等。即使任務部隊打擊準備速度再快,打擊方法再熟練,打擊流程再優化,也需要在相應的時間週期內完成。同時指揮與戰鬥人員會受到作戰疲勞的影響,造成指揮決策效率、打擊效能大幅降低,極大限製作戰持續時間的延長,使得任務部隊作戰能力的波動週期更加明顯。而打擊行動結束後,作戰人員的補充休整,武器裝備的保養修理,作戰經驗教訓的總結檢討,均需要一個調整週期。指揮員需根據諸軍兵種作戰方式與武器裝備毀傷機理的不同,及時調控任務部隊打擊能力的變化波動週期,明確任務部隊的能戰閾值,盡可能減少作戰波動幹擾,從而大幅提升跨域協同作戰能力。

維持作戰窗口,突顯跨域協同作戰戰場管控的穩定性

戰區聯指應嚴格控制窗口作戰的規模強度,加強連動管控,嚴控作戰成本,提升作戰效益,積極塑造有利戰場態勢,避免作戰被動,防止將窗口作戰擴大成全面作戰。

加強戰場聯動管控。諸軍兵種戰場管控對塑造穩定的作戰態勢,加強多域空間管制,維持作戰窗口有重要作用。加強跨域協同作戰戰場空間的管控,包括陸地、海洋、空中、太空、網路等戰場空間,以及電磁頻譜與時空基準戰場空間等。其中,戰場管控區域重點劃分為各領域的作戰窗口區、戰略支撐區、警戒隔離區、前沿預警區以及友鄰支援區等,諸軍兵種任務部隊在指揮員及指揮機關的統一指揮控制下,釐清跨域協同管控的主次關係,明確管控規則、機製與紀律,採用多種管控方法,綜合用級管控法

全面評估作戰效果。指揮機構應緊貼作戰窗口跨域協同作戰方案計畫的製定流程,緊貼協同控制指令,緊貼任務部隊協同動作,緊貼協同保障實際,在窗口作戰過程中實施快速、高效、持續的績效與效力評估。圍繞作戰目的的達成,適應全局聯動的窗口作戰特點,綜合運用多種作戰評估工具和手段,集成系統評估的算法、數據與能力於一體,優化作戰效益主導、流程管理、資訊支撐、人在迴路的評估體系,形成作戰命令、行動、效果的相互匹配,績效與效力時效力時相互結合的評估模式,從而提高作戰後效性指標的準確性和時效性指標的準確性和效能性指標。從而提高作戰時效性指標。

主動塑造戰場新態。經過平時持續對敵軍事鬥爭準備、互動懾控以及作戰窗口內有限的打擊較量後,敵我雙方在作戰力量對比、部署和行動等方面形成的狀態和形勢表現相對穩定,從而形成塑造了新形勢下的戰場態勢,其發展趨勢也顯得可預測、可期望。指揮者及其指揮機關對本戰略方向的敵情、我情與戰場環境的特點規律不斷深度掌握,對未來鬥爭形勢的基本輪廓走向就有了清晰認識,就能明確今後的作戰目標舉措,打贏自信也會逐步增強,為確定下一輪的作戰窗口創造了條件。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/06/content_222435888.htm

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

Chinese Military Intelligent Warfare Imminent

中國軍事智慧化戰爭迫在眉睫

現代英語:

At present, accelerating the development of military intelligence is becoming a consensus among the world’s superpowers. Artificial intelligence technology is accelerating its penetration into the military field and has become an important driving force for military reform. It will inevitably give rise to new combat styles and change the internal mechanism of war. We should firmly grasp the new quality growth point of military intelligence to enhance the combat effectiveness of the army, organically integrate military theory, science and technology, and military applications, intelligently upgrade traditional combat fields, and innovate combat concepts, so that the “intelligent factor” radiates from weapons and equipment to all aspects of military construction, and focus on breakthroughs in key areas such as military theory systems, command information systems, unmanned combat systems, comprehensive support systems, and new combat forces, and promote the reshaping, reconstruction, transformation and upgrading of combat systems.

Artificial intelligence stimulates new developments in theory

When new military technologies, operational concepts, and organizational structures interact to significantly enhance military operational capabilities, they will promote new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, thereby giving rise to new operational styles and changing the internal mechanism of winning wars.

Innovative combat theory. New disruptive technologies in the field of intelligence have opened up new space for innovation in military theory. Integrating precision strike ammunition and unmanned equipment into the network information system will give rise to new intelligent combat theories such as “distributed killing”, “multi-domain warfare”, “combat cloud”, “swarm tactics”, and “intelligent security warfare”; combining intelligent technology with information dominance theory, relying on one’s own information advantages and decision-making advantages, cutting off and delaying the opponent’s information and decision-making loops in the decentralized battlefield network will become the key to winning intelligent warfare. Enrich combat styles. With the development and maturity of intelligent technology and the large-scale deployment of unmanned autonomous combat platforms, unmanned combat will become a disruptive new combat style that dominates future battlefields. Infiltrate the entire process of warfare with intelligent elements, use intelligent perception, intelligent decision-making, intelligent control, and unmanned platforms to innovate the combat process. Use unmanned systems and manned systems in coordination, cluster and plan the use of unmanned combat platforms to enrich combat styles. Expand combat forces. The widespread application of intelligent systems and unmanned combat platforms will further enrich the connotation of new combat forces, and various “mixed” new combat forces will be applied on the battlefield. With the construction and application of the Internet of Things, big data, and cloud computing technologies in the military field, new combat forces such as space and networks will play an increasingly important role in future wars.

Accelerate the intelligent upgrade of command systems

The intelligence of command information systems is the key to achieving a leap forward in combat command means and forming decision-making advantages. In future wars, the battlefield space will be unprecedentedly expanded, the elements of war will be extremely rich, the tempo of confrontation will be significantly accelerated, and the combat system will change dynamically. There is an urgent need for the in-depth application of intelligent technology in battlefield perception, command decision-making, and human-computer interaction.

In terms of intelligent perception, intelligent sensing and networking technologies are adopted to widely and rapidly deploy various intelligent perception nodes, conduct active collaborative detection for tasks, and build a transparent and visible digital combat environment. Relying on technologies such as data mining and knowledge graphs, intelligent processing in aspects such as multi-source intelligence fusion and battlefield situation analysis is carried out to dispel the fog of war, analyze the enemy’s combat intentions, and predict the development of the battle situation. In terms of intelligent decision-making, by constructing combat model rules, using actuarial, detailed, deep and expert reasoning methods, commanders are assisted in making quick decisions in multi-level planning and ad hoc handling of strategies, campaigns, tactics, etc.; using machine learning, neural network and other technologies to create a “command brain” to learn and apply the laws of war and the art of command in terms of planning, strategy planning, and battle situation control, and expand the wisdom of commanders with machine intelligence. In terms of intelligent interaction, we comprehensively utilize intelligent interaction technologies such as feature recognition, semantic understanding, virtual augmented reality, holographic touch, and brain-computer interface to summarize and analyze the behavioral characteristics of commanders, build new human-computer interaction environments such as holographic projection digital sandbox, immersive battlefield perception command, and wearable smart devices, and provide intelligent means to support commanders in perceiving the battlefield and controlling the battle situation.

Build an intelligent unmanned combat system

Intelligent unmanned combat systems are a new trend in the development of future war equipment. The core is to aim at the requirements of “zero casualties”, “full coverage” and “quick response” in future wars, make full use of the development results of new theories, new materials, new processes, new energy and new technologies, and continuously make breakthroughs in human-machine collaboration and autonomous action, build a new type of intelligent unmanned army on a large scale, and realize the systematic collaborative combat of unmanned combat systems.

In terms of human-machine collaboration, relying on the integrated space-ground information network, self-organizing network and collaborative interaction technology, we will open up the human-machine interaction link and establish a manned-unmanned collaboration system of “human-led, machine-assisted, mixed formation, and joint action”. Facing complex combat missions and the global battlefield environment, we will strengthen the research on mechanisms and technologies such as safe and reliable information transmission, precise and efficient behavior control, and highly coordinated human-machine mixing to achieve highly compatible human-machine collaborative combat. In terms of autonomous action, relying on mission planning, distributed computing and intelligent networking technologies, research and develop unmanned combat systems and cluster formation technologies with fast response speed, strong adaptability, high reliability, flexible organization plan and reasonable action planning. They can fully respond to various changes in terrain, weather, disasters, damage, etc., and intelligently and dynamically adjust movement posture, travel route, firepower use, energy distribution, self-healing and self-destruction strategies to realize the replacement of humans by intelligent machines, expand the combat space, and avoid casualties.

Strengthening intelligent comprehensive security measures

Before troops move, support comes first. On the intelligent battlefield, the realization of comprehensive support for joint operations is an important factor that directly affects the combat effectiveness of troops. The development of intelligent technology will inevitably trigger revolutionary changes in the construction of the joint combat support system and realize intelligent comprehensive support.

In terms of political work, we will make full use of technologies such as social networks, personnel profiling, public opinion monitoring, sentiment analysis, and behavior prediction to build an intelligent political work system covering battlefield control, public opinion and legal struggle, social situation monitoring, personnel relationship analysis, personnel ideological trends, human resource management and other businesses, to provide support for exploring new approaches, new carriers, and new models for ideological and political work. In terms of after-sales support, by using technologies such as the Internet of Things, drones, smart cars, remote surgery, and 3D printing, we have upgraded and built an intelligent after-sales support system covering intelligent warehousing, intelligent delivery, intelligent maintenance, and intelligent medical care, to achieve automatic, rapid, and accurate supply of battlefield after-sales materials, rapid diagnosis and repair of equipment failures, and timely rescue of battlefield personnel, turning passive support into active services, and improving the overall efficiency and effectiveness of after-sales support. In terms of combat training, by comprehensively using technologies such as cloud computing, virtual reality, simulated confrontation, and adjudication and evaluation, we have created an integrated training platform for “guidance, control, adjudication, evaluation, and management”, an intelligent virtual blue army, and an immersive training environment to support tactics and strategy training, equipment skills training, and joint confrontation exercises.

Exploring the intelligent combat force system

The new intelligent combat force system is a comprehensive product of the development of artificial intelligence technology, the formation of new-quality combat power and the evolution of war forms. It is the “killer hand” for seizing the initiative in the future global combat space, the key to forming an integrated joint combat system, and a new growth point for our military’s combat power.

Focus on new battlefields. The combat space of the new era has expanded from the traditional battlefield space to new battlefields such as space, the Internet, and spiritual will, and gradually extended to various fields of human activities and ideology. New combat forces such as rapid response satellites, network autonomous security, brain-controlled weapons, and genetic weapons are being integrated into the combat system. Military intelligence plays an increasingly important role in new combat styles such as space warfare, network warfare, mind warfare, and biological warfare. Pay attention to new technologies. Intelligent space-based weapon systems, with outer space as the battlefield, will help achieve the struggle for control of the sky; based on autonomous network intelligent security technology, it will help achieve a network security confrontation with integrated offense and defense and dynamic defense; brain control technology will help to attack the enemy’s spirit, nerves and mind; intelligent means may also accelerate the development of genetic weapons in some countries. Military intelligence is integrating into all aspects of the military field at an unprecedented speed, breadth and depth, deconstructing and reshaping the traditional appearance of war presented to the world. We must plan ahead to be invincible.

Laying a solid foundation for the development of intelligent military

The construction of military intelligence is a large and complex systematic project. Accelerating the development of military intelligence requires advanced theories as support, institutional mechanism construction as guarantee, technological breakthroughs as the starting point, and talent team building as the source of motivation.

Establish a collaborative innovation mechanism for military-civilian integration. The rapid development of intelligent technology has become an accelerator for military intelligence. In the information age, the boundaries between military and civilian technologies are becoming increasingly blurred, and their convertibility is becoming increasingly stronger. Actively establish a collaborative innovation mechanism for military-civilian integration, continuously strengthen the driving force of military core technologies, build an open industry-university-research collaborative innovation system for the whole society, make forward-looking arrangements for core cutting-edge technologies such as artificial intelligence, support investment, give full play to the innovation power of the entire society, and promote the rapid and sustainable development of military intelligence. Accelerate the advancement of technological breakthroughs in key areas. We must focus on relevant key technology areas and break the technical bottlenecks that restrict the development of military intelligence. On the one hand, we should strengthen research in the basic support areas of military intelligence, such as military big data and military Internet of Things; on the other hand, based on battlefield needs, we should strengthen research on intelligent application technologies in various combat elements, especially intelligent command decision-making, intelligent weapon platforms, and intelligent battlefield perception. We should vigorously build a team of high-quality talents. Military intelligence places higher demands on the quality of people. Only the effective combination of high-quality personnel and intelligent weapons can maximize combat effectiveness. To accelerate the development of military intelligence, we should explore the training rules of relevant talents, make full use of military and local education resources, increase the training of relevant talents, and provide solid intellectual support and talent guarantee for promoting the construction of military intelligence.

(Yin Junsong, Cheng Gang)

現代國語:

當前,加速軍事智能化發展正成為世界強國的共識。人工智慧技術加速向軍事領域滲透,已成為軍事變革的重要推手,必將催生新的作戰樣式,改變戰爭的內在機理。應緊緊抓住軍事智能化這個提升軍隊戰鬥力的新質增長點,有機融合軍事理論、科學技術和軍事應用,智能升級傳統作戰領域、創新作戰概念,使「智能因子」由武器裝備輻射至軍隊建設的各個方面,在軍事理論體系、指揮資訊系統、無人作戰系統、綜合保障體系、新型作戰力量等重點領域聚力轉型,在軍事理論體系、指揮資訊系統、無人作戰系統、綜合保障體系、新型作戰力量等重點領域聚力轉型,推動戰力領域的重塑突破與再造和再造一個關鍵領域的重塑。

人工智慧催生理論新發展

當新的軍事技術、作戰理念和組織編成相互作用顯著提升軍事作戰能力時,將促進新的軍事變革。人工智慧在軍事領域越來越廣泛的應用,正成為軍事變革的重要推手,由此催生新的作戰樣式,改變戰爭制勝的內在機理。

創新作戰理論。智慧領域新的顛覆性技術,為軍事理論創新開啟了新的空間。將精確打擊彈藥、無人裝備融入網絡資訊體系,催生「分散式殺傷」「多域戰」「作戰雲」「蜂群戰術」「智慧安全戰」等新的智能化作戰理論;將智能化技術與資訊主導理論相結合,憑借己方的資訊優勢與決策優勢,在去中心化的戰場網絡中切斷關鍵與遲滯對手的資訊與決策迴路,成為智能化的戰場網絡中與決策迴路的資訊與決策迴滯。豐富作戰樣式。伴隨著智慧技術的發展成熟以及無人自主作戰平台的規模列裝,無人作戰將成為一種顛覆性的新型作戰樣式主導未來戰場。將智慧化要素滲透於戰爭的整個流程,運用智慧感知、智慧決策、智慧控制、無人平台,創新作戰流程。協同運用無人系統與有人系統,集群、規劃運用無人作戰平台,豐富作戰樣式。拓展作戰力量。智慧系統與無人作戰平台的廣泛應用,將進一步豐富新型作戰力量的內涵,各類「混搭式」新型作戰力量將邁向戰場應用。隨著物聯網、大數據、雲端運算技術在軍事領域的建設運用,太空、網路等新型作戰力量將在未來戰爭中發揮越來越重要的作用。

加速指揮系統智慧化升級

指揮資訊系統的智慧化是作戰指揮手段實現躍升、形成決策優勢的關鍵。未來戰爭,戰場空間空前擴展、戰爭要素極大豐富、對抗節奏明顯加快、作戰體系動態變化,迫切需要智慧技術在戰場感知、指揮決策和人機互動等方面深度運用。

在智能感知方面,採用智慧傳感與組網技術,廣泛快速部署各類智能感知節點,面向任務主動協同探測,構建透明可見的數字化作戰環境;依托數據挖掘、知識圖譜等技術,開展多源情報融合、戰場情況研判等方面的智能化處理,撥開戰爭迷霧,透析敵作戰意圖,預測戰局發展。在智能決策方面,通過構建作戰模型規則,以精算、細算、深算和專家推理方式,輔助指揮員在戰略、戰役、戰術等多級籌劃規劃和臨機處置中實現快速決策;運用機器學習、神經網絡等技術打造“指揮大腦”,從謀局布勢、方略籌劃、戰局控制等方面學習戰爭規律和拓展藝術員,以掌控機器和拓展藝術員。在智慧互動方面,綜合利用特徵識別、語義理解、虛擬增強現實、全像觸摸、腦機介面等智慧互動技術,歸納分析指揮人員行為特徵,建構全像投影數字沙盤、沉浸式戰場感知指揮、穿戴式智慧型裝置等新型人機互動環境,為指揮者感知戰場、掌控戰局提供智慧化手段支撐。

構建智慧化無人作戰系統

智慧化無人作戰系統是未來戰爭裝備發展新趨勢。其核心在於瞄準未來戰爭「零傷亡」「全覆蓋」「快響應」等要求,充分運用新理論、新材料、新工藝、新能源、新技術發展成果,在人機協同和自主行動兩個方面不斷取得突破,規模化打造新型智能無人之師,實現無人作戰系統的體系化協同作戰。

在人機協同方面,依托天地一體資訊網絡、自組網和協同交互技術,打通人機交互鏈路,建立“人為主導、機器協助、混合編組、聯合行動”的有人-無人協作體系,面向復雜作戰任務、全局戰場環境,加強安全可靠的信息傳輸、精準高效的行為控制、高度協同的人機組合作等機制和技術研究,實現高可靠的信息傳輸。在自主行動方面,依托任務規劃、分佈計算和智能組網技術,研究發展反應速度快、適應能力強、可靠程度高、編組計劃靈活、行動規劃合理的無人作戰系統及集群編隊技術,充分應對地形、天氣、災害、毀傷等各種變化,智能動態調整運動姿態、行動規劃、火力運用、能源分配和自傷自毀自毀等策略,實現智能機器等策略,以避免

建強智慧化綜合保障手段

兵馬未動,保障先行。智慧化戰場,聯合作戰綜合保障實現度是直接影響部隊戰鬥力生成的重要因素。智慧化技術的發展必將觸發聯合作戰保障體系建設的革命性變化,實現智慧化綜合保障。

在政治工作方面,充分運用社會網絡、人員畫像、輿情監控、情感分析、行為預測等技術,建構覆蓋戰場管控、輿論法理鬥爭、社情監控、人員關系分析、人員思想動態、人力資源管理等業務的智能政工體系,為探索思想政治工作的新途徑、新載體、新模式提供支撐。在後裝保障方面,透過運用物聯網、無人機、智慧車、遠端手術、3D列印等技術,升級打造涵蓋智慧倉儲、智慧投送、智慧維修、智慧醫療等智慧後裝保障體系,實現戰場後裝物資自動快速精準補給、裝備故障快速診斷與維修、戰場人員及時救護,變被動保障為整體主動保障。在作戰訓練方面,通過綜合運用雲計算、虛擬現實、模擬對抗、裁決評估等技術,打造「導、控、裁、評、管」一體化演訓平台、智慧化虛擬藍軍、沉浸式訓練環境,支撐戰法謀略研練、裝備技能訓練、聯合對抗演練。

探索智慧化作戰力量體系

智慧化新型作戰力量體係是人工智慧技術發展、新質戰鬥力形成與戰爭形態演變的綜合產物,是奪取未來全局作戰空間主動權的“殺手鐧”,是構成一體化聯合作戰體系的關鍵,是我軍戰鬥力新的增長點。

著眼新戰場。新時代的作戰空間由傳統戰場空間向太空、互聯網、精神意誌等新型戰場拓展,逐漸延伸至人類活動和意識形態各領域,快速響應衛星、網絡自主安防、大腦控制武器、基因武器等新質作戰力量正在融入作戰體系,軍事智能化在太空戰、網絡戰、意念戰、生物戰等新型作戰力量中扮演越來越重要的角色。關注新技術。智能化的天基武器系統,以外層空間為戰場,有助於實現對製天權的爭奪;基於自主網絡智能安全技術,有助於實現攻防一體、動態防禦的網絡安全對抗;控腦技術,有助於實現對敵方人員精神、神經和心靈進行攻擊;智能化手段還可能加速某些國家基因武器研製。軍事智能化正在以前所未有的速度、廣度和深度融入軍事領域的各個層面,解構重塑著戰爭呈現給世人的傳統面貌,我們必須未雨綢繆,方可立於不敗之地。

夯實軍事智能化發展基礎

軍事智能化建設是一個龐大復雜的系統工程,加快推進軍事智能化發展需要以先進的理論作為支撐,以體制機制建設作為保障,以技術突破為抓手,以人才隊伍建設為動力源泉。

建立軍民融合協同創新機制。智慧技術的快速發展,已成為軍事智能化的加速器。資訊時代軍用技術和民用技術的界線越來越模糊,可轉換性越來越強。積極建立軍民融合協同創新機制,不斷強化軍用核心技術原動力,建構全社會開放的產學研協同創新體系,對人工智慧等核心前沿技術前瞻佈局、扶持投資,充分發揮整個社會的創新力量,促進軍事智能化快速可持續發展。加速推進重點領域技術突破。要聚焦相關重點技術領域,打破限制軍事智慧化發展的技術瓶頸。一方面,加強軍事智慧化基礎支撐領域的研究,例如,軍事大數據、軍事物聯網等;另一方面,從戰場需求出發,加強各個作戰要素方面的智慧化應用技術研究,尤其是智慧化指揮決策、智慧化武器平台、智慧化戰場感知等方面的研究。大力建設高素質人才隊伍。軍事智能化對人的素質提出了更高要求,高素質人員和智慧化武器的有效結合,才能最大程度地發揮作戰效能。加速軍事智慧化發展,應抓緊探索相關人才的培養規律,充分利用軍地教育資源,加大相關人才培養力度,為推進軍事智慧化建設提供堅實的智力支持與人才保障。 (

尹峻松、程鋼)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4810306888.html?

Chinese Military Analysis Development Trends of Combat Coordination During Era of Intelligence

中國軍事分析智能化時代作戰協同發展趨勢

現代英語:

Operational coordination is a key element in achieving systemic operations, releasing overall effectiveness, and achieving operational objectives in modern warfare. In recent years, with the breakthrough progress of military science and technology represented by artificial intelligence, the enabling and efficiency-enhancing role of science and technology has become more prominent. While profoundly changing the form of war and combat style, it has also spawned a new mode of operational coordination – autonomous coordination. At present, we should scientifically grasp the opportunities and challenges of the new military revolution, dynamically coordinate the development trend of autonomous coordination, and thus promote the accelerated transformation and upgrading of combat methods.

Transforming towards intelligent empowerment and autonomous collaboration

Future wars will be all-round confrontations between the two sides using “people + intelligent equipment”. Limited by military technology, system platforms, combat capabilities, etc., traditional combat coordination has been difficult to adapt to the modern battlefield where opportunities are fleeting due to limitations such as periodic solidification and low fault tolerance. With the strong support of advanced technical means such as artificial intelligence and big data, the autonomy and automation level of combat coordination will be greatly improved, and autonomous coordination under intelligent empowerment will also become the key to defeating the enemy.

Wide-area ubiquitous collaboration. In recent years, the in-depth development of communication technology and intelligent technology, the accumulation of data, algorithms, and computing power have promoted the interconnection and aggregation of people, machines, objects, and energy, and extended the military Internet of Things to many fields such as situational awareness, command and control, information and fire strikes, and after-sales support. While promoting the iterative upgrade of combat capabilities, it also provides more options for modern combat collaboration. It can be foreseen that the military Internet of Things will shine on future battlefields. It is not only a key infrastructure to support combat operations, but also a joint hub to maintain combat collaboration. With this as a basis, it will give rise to ubiquitous operations with wide-area dispersion of forces, organizational modules, and highly coordinated actions, which are omnipresent, ubiquitous, and uncontrolled and autonomous.

Deep collaboration between humans and machines. In the Nagorno-Karabakh conflict, the Azerbaijani army built a strong battlefield advantage with the advantage of drones, and to some extent, it also announced the debut of “robot war”. In future wars, unmanned combat forces such as drones, unmanned vehicles, and unmanned ships are accelerating from backstage support and guarantee to front-line combat, and are beginning to play the “protagonist” of the battlefield. Compared with traditional combat coordination, manned and unmanned intelligent coordination presents the characteristics of “decentralization” of combat command, “de-division of labor” in the combat process, high-end skill operation, and fuzzification of the front and rear, and emphasizes human-machine collaboration and algorithm victory. Especially in recent years, intelligent unmanned clusters have emerged and begun to strongly impact the modern battlefield. In the face of these new situations and changes, cluster formation algorithms, formation control algorithms, and complex scene optimization algorithms should be used in a coordinated manner to promote unmanned and manned networking communications and intelligent coordination, promote the integrated operation of intelligence chain, command chain, mobility chain, strike chain, and support chain, and accelerate the generation of precise enemy comprehensive combat capabilities.

Digital intelligence drives collaboration. The traditional combat coordination model under progressive command is no longer able to adapt to the multi-dimensional fast pace of modern warfare. In future wars, intelligence is the key and data is king. The deep integration of big data, cloud computing, and artificial intelligence has realized the storage, analysis, integration, and application of massive battlefield data, making command and control more scientific and combat coordination more efficient. With powerful resource integration, computing processing, and data analysis capabilities, battlefield intelligence can be quickly integrated, battlefield situation can be perceived in real time, coordination plans can be efficiently formulated, and threat levels can be instantly assessed. The prediction of combat operations, the dissection of typical scenarios, the deployment of combat forces, and the allocation of combat resources can be coordinated as a whole, thereby comprehensively improving the comprehensive quality and efficiency of command and control, firepower strikes, and comprehensive support, and promoting revolutionary changes in combat coordination.

Evolving towards multi-domain linkage and autonomous collaboration

In future wars, the participating forces will be complex and diverse, weapons and equipment will be matched at different levels, and combat methods will be used in a mixed manner, showing distinct characteristics such as intelligent dynamic dispersion of combat command, intelligent wide-area deployment of combat forces, and intelligent dynamic differentiation of combat tasks. It can be foreseen that multi-domain linkage and autonomous coordination will become an important component of combat coordination.

System self-reshapes coordination. In future wars, the multi-domain battlefield space will be a combination of virtual and real, various military operations will interact, and constraints and collaboration will be randomly transformed. Only by adopting an engineered and systematic organizational model can we adapt to the complex multi-domain coordination needs. The essence of this coordination model is to form a wide-area holographic support framework for system self-reshape coordination. Specifically, it is to highlight the concept of system combat, and to solve the practical contradictions such as organizational system construction, institutional mechanism establishment, and coordination rule formulation from an overall perspective; to pay more attention to the system integration effect, and to achieve beyond-visual-range combat and cross-domain coordinated combat of combat units from a wide area; to emphasize efficient and flexible command, to refine the command relationship from various dimensions, and to clarify the command responsibilities; to pay more attention to data precision drive, to integrate network system platforms at all levels, and to establish a dynamic optimization network for detection, control, attack, evaluation and protection tasks. Once this coordination model is formed, it will undoubtedly be able to study and predict typical confrontation scenarios, dynamically select action coordination links, and plan combat operations in various fields in an integrated manner according to the combat environment, combat opponents, and combat tasks.

Tactical adaptive coordination. Local wars and conflicts in recent years have repeatedly shown that the complexity and systemicity of combat coordination have increased exponentially due to the extension of combat data information to the tactical level. Only by achieving efficient processing, integration and sharing of combat data information can adaptive and autonomous coordination between combat users be guaranteed. This coordination model pays more attention to scientific planning and innovative means to form a universal battlefield situation map with full-dimensional coverage, support hierarchical, leapfrog and cross-domain sharing and collaboration among users of all levels and types deployed in a wide area, realize the common perception of battlefield situation by command elements and combat units, and ensure self-synchronous operations within the framework of unified strategic intent, campaign guidance and coordination plan. This coordination model emphasizes the vertical integration of strategy, campaign and tactics, and the horizontal integration of land, sea, air, space and electricity, provides strong information sharing services in detection, early warning and surveillance, and relies on information media to promote the extension of campaign-level joint to tactical-level joint. This coordination model highlights the standardized operation of command operation and force application, and promotes the connection of combat command levels, cross-domain linkage, element interaction and situation sharing with the help of cutting-edge technologies such as big data and cloud computing, realizes intelligent coordination between command systems, weapon platforms and sensors, and implements the key to winning by defeating slowness with speed.

Advantages and intelligence complement and synergy. In future wars, combat operations in space, network and other fields will be deeply integrated into the traditional battlefield space, requiring higher standards and higher requirements for planning and design of the overall combat situation. Only by clarifying the complementary relationship of advantages in various combat domains and the proportion of input and effectiveness, and then sorting out the operational relationship of cross-domain coordination, can we bridge the gap in field operations and achieve complementary advantages on the multi-dimensional battlefield. In essence, this is also a concentrated reflection of the view of war efficiency. From another perspective, in a war, when the local advantage of the battlefield is not obvious or there is a hidden crisis, by gaining local advantages in other fields to make up for it and achieve comprehensive advantages, the overall goal of winning can also be achieved. In the future information-based and intelligent wars, this point will be more prominent and more complex, requiring comprehensive measures in the fields of military, politics, public opinion, legal theory, psychology, diplomacy, etc., and leveraging each other to fully release the maximum combat effectiveness; requiring traditional forces and new forces to work closely together, relying on the network information system to build an integrated combat system, and maximizing overall effectiveness through advantage synergy.

Transition to Dynamically Coupled Autonomous Collaboration

In the era of artificial intelligence, along with the profound changes in information technology and weapons and equipment, combat operations place more emphasis on breaking up traditional force groupings, connecting traditional platform functions, breaking traditional offensive and defensive boundaries, and achieving full-time dynamic control of combat operations through dynamic coupling and autonomous coordination.

Dynamic focal point coordination. In future wars, the enemy-to-enemy confrontation will be more intense, and the battlefield situation will be more changeable. The previous static, extensive, and step-by-step coordination methods will be difficult to adapt. It is necessary to pay close attention to the key nodes of the operation. On the basis of keeping a close eye on the overall situation, anchoring the combat mission, and focusing on the combat objectives, we must assess the situation and seize the opportunity. According to the predetermined coordination rules, we can flexibly change the coordination objects, flexibly adjust the coordination strategies, and autonomously negotiate and coordinate actions. It should be noted that this coordination method based on key combat nodes particularly emphasizes that combat forces transcend structural barriers and organically aggregate combat effectiveness. Through the flexible structure of the collaborative organization, self-coupling and autonomous elimination of contradictions and conflicts, bridging combat gaps, and promoting the precise release of the combined forces of the combat system.

Dynamic control and coordination. The battlefield situation in future wars is changing rapidly, and the combat process is often difficult to advance according to the predetermined combat plan, and combat operations have great uncertainty. Invisibly, this also requires us to break through traditional combat thinking, keep a close eye on the changes in the battlefield situation, and implement immediate, flexible and autonomous coordination of the combat process. This collaborative method, through real-time assessment of battlefield situation changes, the degree of damage to enemy targets, and the scale and efficiency of combat operations, can achieve rapid command and control, precise coordination in force projection, fire support, and comprehensive support, and always grasp the initiative on the battlefield. This collaborative method requires relying on advanced intelligent auxiliary means to quickly divide the combat phase, predict the duration of combat operations, analyze the overall deployment of combat forces, calculate the allocation of combat operation resources, and accurately control the decision-making cycle and combat rhythm, and accurately coordinate the actions of troops and the combat process to ensure that various randomness and uncertainties in combat can be effectively dealt with.

Dynamic response coordination. The operational mechanism of future wars is unpredictable. The deep effects of asymmetric operations, hybrid games, and system emergence will inevitably lead to various emergencies in the implementation of the planned operational plans. To this end, dynamic coordination for emergencies is an effective strategy to resolve the above-mentioned contradictions. This coordination method emphasizes the dynamic adjustment of coordinated actions according to different situations. When an emergency occurs on a local battlefield or in a local action, which has little impact on the overall operation and has sufficient time, the combat system automatically responds, partially adjusts the combat deployment and combat operations, and ensures the achievement of the expected combat objectives. When multiple urgent and slow situations coexist on the battlefield and partially affect the battlefield situation, the combat actions are dynamically and immediately coordinated according to the principle of first urgent and then slow according to the specific situation, so as to promote the development of the war in a direction that is beneficial to me. When there are multiple major unexpected situations or unexpected changes in the overall development of the war situation, coordination is carried out according to the principle of first major direction and then minor direction, and new coordinated disposal measures are quickly generated to effectively respond to various emergencies on the battlefield.

現代國語:

■吳思亮 賈春傑 侯永紅

引言

作戰協同是現代戰爭中實現體係作戰、釋放整體效能、達成作戰目標的關鍵要素。近年來,隨著以人工智慧為代表的軍事科學技術取得突破性進展,科技的賦能增效作用進一步凸顯,在深刻改變戰爭形態、作戰樣式的同時,也催生出一種新的作戰協同模式——自主協同。當前,應科學掌握新軍事革命的機會挑戰,動態統籌好自主協同發展走向,從而推動作戰方式加速轉型升級。

向智能賦能自主協同蛻變

未來戰爭將是對抗雙方採用「人+智慧裝備」展開的全方位對抗。受軍事技術、系統平台、作戰能力等限制,傳統作戰協同因為存在周期固化、容錯率低等局限,已難以適應戰機轉瞬即逝的現代戰場。在人工智慧、大數據等先進技術手段的強力支撐下,作戰協同的自主性、自動化水準將極大提升,智慧賦能下的自主協同也將成為克敵制勝的關鍵。

廣域泛在協同。近年來,通訊技術、智慧技術的深度發展,數據、演算法、算力的累積疊加,促進了人、機、物、能的互聯聚合,將軍事物聯網延伸擴展至態勢感知、指揮控制、信火打擊、後裝保障等諸多領域,在促進作戰能力迭代升級的同時,也為現代作戰協同提供了更多選項。可以預見,軍事物聯網將在未來戰場上大放異彩,不僅是支撐作戰行動的關鍵性基礎設施,也是維繫作戰協同的關節樞紐。以此為依托,將催生出力量廣域分散、組織模塊構成、行動高度協同的泛在式作戰,無時不在、無處不在、無控自主。

人機深度協同。在納卡沖突中,阿塞拜疆軍隊憑借無人機優勢構建起強大戰場優勢,某種程度上也宣告「機器人戰爭」登場。未來戰爭,無人機、無人車、無人艦等無人作戰力量,正加速從後台支援保障走向一線作戰前台,開始擔當戰場「主角」。較之傳統作戰協同,有人無人智能協同呈現出作戰指揮「去中心化」、作戰過程「去分工化」、技能操作高端化、前沿與後方模糊化等特點,更加強調人機協同、演算法取勝。尤其是近年來,智慧無人集群異軍突起,開始強烈沖擊現代戰場。面對這些新情況新變化,應統籌運用集群編隊演算法、隊形控制演算法以及復雜場景優化演算法等,推動無人與有人組網通訊、智慧協同,促進情報鏈、指揮鏈、機動鏈、打擊鍊和保障鏈一體運轉,加快生成精確制敵綜合作戰能力。

數智驅動協同。逐層遞進指揮下的傳統作戰協同模式,已難以適應現代戰爭的多維度快節奏。未來戰爭,智能為要,數據為王。大數據、雲計算、人工智慧等深度融合,實現了對海量戰場數據的儲存、分析、融合和運用,從而使得指揮控制更加科學、作戰協同更有效率。透過強大的資源整合、計算處理和數據分析能力,可以快速融合戰場情報、實時感知戰場態勢、高效製定協同計劃、瞬時評估威脅等級,將預測作戰行動、解剖典型場景、布勢作戰力量和配置作戰資源一體統籌,從而全面提升指揮控制、火力打擊、綜合保障等方面的綜合質效,推動作戰協同革命性變革。

向多域聯動自主協同演進

未來戰爭,參戰力量複雜多元、武器裝備高低搭配、作戰方法混合運用,呈現作戰指揮智能動態分散、作戰力量智聯廣域部署、作戰任務智配動態區分等鮮明特徵。可以預見,多域聯動自主協同將成為作戰協同的重要組成。

體係自重塑協同。未來戰爭多域戰場空間虛實結合、多樣軍事行動交互作用,約束與協作隨機轉化,只有採取工程化、系統化的組織模式,才能適應龐雜的多域協同需求。這種協同模式,其實質是要形成體係自重塑協同的廣域全像支撐架構。具體來看,就是更突顯體係作戰理念,從整體上破解組織體系建構、制度機制設立、協同規則制訂等現實矛盾;更重視體系融合效應,從廣域上實現作戰單元超視距作戰、跨域協同作戰;更強調高效率靈活指揮,從諸維度細化指揮指揮、釐清指揮權責優化;這種協同模式一旦形成,無疑能夠針對作戰環境、作戰對手和作戰任務等,研判預測典型對抗態勢場景,動態選擇行動協同鏈路,一體規劃各領域作戰行動。

戰術自適應協同。近年來的局部戰爭沖突一再表明,由於作戰數據資訊向戰術層共享應用延伸,作戰協同的複雜性系統性呈指數級躍升。只有實現作戰數據資訊的高效處理、融合共享,才能保證作戰用戶間自適應、自主化協同。這種協同模式,更重視科學規劃、創新手段,形成全維覆蓋的通用戰場態勢圖,支持廣域分散部署的各級各類用戶間按級、越級、跨域共享協作,實現指揮要素、作戰單元共同感知戰場態勢,確保在統一的戰略意圖、戰役指導、協同計劃框架內自同步作戰。這種協同模式,更強調縱向貫通戰略、戰役、戰術,橫向融匯陸海空天電,在探測、預警、監視等方面提供強力資訊共享服務,依托資訊介質推動戰役級聯合向戰術級聯合延伸。這種協同模式,更加突出指揮運行、力量運用等的標準化運行,借助大數據、雲計算等前沿技術推動作戰指揮層級銜接、跨域聯動、要素交互、態勢共享,實現指揮系統、武器平台、傳感器間的智能化協同,落地落實以快製慢制勝關鍵。

優勢智互補協同。未來戰爭,太空、網路等領域作戰行動深度融入傳統戰場空間,要求對作戰全局實施更高標準更高要求的規劃設計。只有搞清各作戰域優勢互補關聯、投入成效比重,進而梳理出跨領域協同的運行關系,才能彌合領域作戰縫隙,實現多維戰場優勢互補。從本質上看,這也是戰爭效益觀的集中反映。從另一個視角來看,一場戰爭,當戰場局部優勢不明顯或暗藏危機時,透過在其他領域取得局部優勢予以彌補並達成綜合優勢,同樣可以實現整體制勝目的。未來資訊化智能化戰爭,這一點將體現得更為突出也更為復雜,要求針對軍事、政治、輿論、法理、心理、外交等領域綜合施策,相互借力充分釋放最大作戰效能;要求傳統力量、新質力量密切配合,依托網絡信息體系打造一體化作戰體系,通過優勢協同實現整體效能最大化。

向動態耦合自主協同變遷

人工智慧時代,伴隨資訊科技與武器裝備的深度變革,作戰行動更強調打散傳統力量編組、打通傳統平台功能、打破傳統攻防界限,透過動態耦合自主協同實現對作戰行動的全時動態可控。

動態聚點協同。未來戰爭敵我對抗更加激烈、戰場態勢更為多變,以往那種靜態粗放、按部就班的協同方式將難以適應。必須對作戰的關鍵節點給予高度關注,在緊盯整體態勢、錨定作戰任務、聚焦作戰目標的基礎上,審時度勢把握戰機,依據預定的協同規則,敏捷變換協同對象、靈活調整協同策略、自主協商協同行動。需要注意的是,這種基於關鍵作戰節點的協同方式,特別強調作戰力量跨越結構壁壘、有機聚合作戰效能,透過協同組織的彈性結構,自耦合自主化消解矛盾沖突、彌合作戰縫隙,促進作戰體系合力精準釋放。

動態調控協同。未來戰爭戰場態勢瞬息萬變,作戰進程往往難以依照預定作戰計畫推進,作戰行動有著極大的不確定性。在無形中,這也要求我們突破傳統作戰思維,緊盯戰場態勢變化對作戰進程實施即時靈活自主協同。這種協同方式,透過即時評估戰場態勢變化、敵方目標毀傷程度、作戰行動規模效益等,從而在力量投送、火力支援、綜合保障等方面實現快速指控、精準協同,始終把握戰場主動權。這種協同方式,要求依托智能輔助先進手段,快速切分作戰階段,預測作戰行動持續時間,研判作戰力量整體布勢,計算作戰行動資源分配,據此精準控制決策週期和作戰節奏,精準協調部隊行動和作戰進程,確保能夠有效應對作戰中的各種隨機性、不確定性。

動態響應協同。未來戰爭作戰機理變化莫測,非對稱作戰、混合賽局、體制湧現等的深層作用,使得預定作戰方案計劃在執行中必然遇到各類突發情況。為此,針對突發情況動態協同是解決上述矛盾問題的有效策略。這種協同方式,更強調依據不同情況動態調整協同行動。當局部戰場或局部行動出現突發情況,對作戰全局影響不大且時間充裕時,作戰體係自動響應,部分調整作戰部署和作戰行動,確保實現預期作戰目標。當戰場出現多個急緩並存情況且部分影響戰場態勢時,根據具體情況按照先急後緩原則動態即時協調作戰行動,推動戰局向著有利於我的方向發展。當戰局整體發展出現多個重大意外情況或出現未曾預想的變化時,按先主要方向、後次要方向的原則展開協同,快速生成新的協同處置措施,有效應對戰場各類突發情況。

中國原創軍事資源:http://www.81.cn/ll_208543/16378145888.html