Category Archives: #Information Support Force

Chinese Military Higher Education in the Age of Intelligent Warfare

智慧戰爭時代的中國軍事高等教育

現代英語:

“Military academies are born for war and built for war.” At the opening ceremony of the 2019 military academy presidents’ training, President Xi Jinping proposed the military education policy for the new era, which pointed out the direction for the training of high-quality and professional new military talents in military academies. At present, the war situation is accelerating towards informatization and intelligence. What kind of soldiers are needed to win the future intelligent war and how military higher education can cultivate talents adapted to intelligent warfare are major issues facing us.

Warfare is accelerating towards intelligence

The war form is a stage-by-stage manifestation and state of war history, marked by the technical attributes of the main combat weapons. So far, after experiencing cold weapon war, hot weapon war, and mechanized war, the war form is accelerating towards information-based and intelligent warfare. The increasingly widespread application of advanced technologies such as big data, the Internet of Things, artificial intelligence, biotechnology, and brain science in the military field is becoming an important driving force for the new military revolution, giving rise to new unmanned, autonomous, and intelligent war forms, and changing the traditional war winning mechanism. In 2014, a foreign military think tank released a research report titled “20YY: War in the Age of Robots”, which believes that a storm of military reform marked by intelligent armies, autonomous equipment and unmanned warfare is coming. It will develop intelligent combat platforms, information systems and decision support systems, as well as new weapons such as directed energy, hypersonic, bionics, genetics, and nanotechnology. By 2035, an intelligent combat system will be initially established, and by 2050 it will develop to an advanced stage, fully realizing the intelligence and even unmanned nature of combat platforms, information systems, and command and control, and new weapons such as bionics, genetics, and nanotechnology will enter the battlefield, and the combat space will be further expanded to biological space, nano space, and intelligent space.

In recent years, with the continuous deepening of research on the human brain, brain-computer interface technology is becoming more mature. In the future, information exchange between humans and the outside world will no longer be limited to the senses. Chips can also be used to achieve direct information exchange between the brain and the outside world. People and things are fully interconnected. Humans may surpass the Internet and the Internet of Things and enter the intelligent era supported by brain networking. In the era of brain networking, the brain of soldiers is directly connected to combat platforms, information systems, and decision support systems. With the assistance of technologies such as quantum computing and cloud platforms, decisions are made. The targets of attack will be expanded to human thoughts and actions, and matter, energy, information and mind will be integrated. Some domestic experts believe that with the help of artificial intelligence technology, the winning mechanism of future wars will change from “information-led, system confrontation, precise strikes, and joint victory” in information warfare to “intelligence-led, autonomous confrontation, traceability strikes, and cloud brain victory” in intelligent warfare. After matter, energy, and information, cloud intelligence that integrates man and machine will become the key to determining the outcome of wars. This transformation of the form of intelligent warfare is accelerating, and any hesitation may bring unimaginable consequences.

However, it should be noted that no matter how the war develops, people are always the most fundamental factor. The intelligent warfare will change the functions and roles of soldiers, and will place higher demands on the ability and quality of soldiers. Cognitive ability may surpass knowledge and skills to become the core ability of soldiers.

Intelligent warfare requires the comprehensive quality of soldiers to be upgraded and restructured

According to the talent growth cycle, the military personnel currently receiving higher education will become the main force of combat training in more than 10 years, and will also become the first batch of main forces to meet the challenges of intelligent warfare. At present, there are still some deficiencies in the design of talent training goals in our military higher education, and insufficient attention is paid to the ability to adapt to the changing intelligent battlefield in the future. There is still a certain gap between the talent training goals and the needs of intelligent warfare. On July 23, 2020, when President Xi visited the Air Force Aviation University, he emphasized the need to persist in cultivating people with morality and educating people for war, strengthen military soul education, strengthen fighting spirit, and comprehensively lay a solid foundation for the ideological and political, military professional, scientific and cultural, physical and psychological qualities of pilot trainees. In order to implement President Xi’s important instructions and meet the needs of future intelligent warfare, it is urgent to build a higher-level military talent training goal with thinking ability as the core and accelerate the upgrading and reconstruction of the comprehensive quality of the military.

Intelligent warfare is a complex system that integrates multiple fields. Its intelligence-based characteristics and iterative and changing development trend are changing the role of soldiers in war. Soldiers may gradually move from the front stage of war to the backstage, from direct face-to-face combat to human-machine collaborative combat, and from charging and trapping on the front line to planning and designing wars at the back end. To be competent in human-machine collaboration, war planning and design, and other functional roles, in addition to ideological and political and physical and psychological requirements, in terms of military professionalism and scientific culture, soldiers should focus on improving the following five aspects of knowledge and ability: First, a multidisciplinary knowledge structure, mastering the core principles of multiple intelligent warfare-related disciplines such as nature, military, cognitive psychology, and network intelligence, and being able to integrate knowledge across disciplines to guide military practice; second, strong cognitive ability, with logical thinking, critical thinking, and systematic thinking capabilities, and the ability to use scientific methods to analyze, infer, and solve operational problems; third, human-machine collaboration capabilities , deeply grasp the characteristics and laws of intelligent warfare, skillfully use combat platforms, command and control systems, and decision support systems, be able to control a variety of intelligent weapons and equipment, and realize efficient human-machine collaboration; fourth, innovation ability, with keen scientific and technological perception and strong creativity, be able to grasp the forefront of science and technology, innovate combat methods, and master the laws of war development; fifth, self-growth ability, be able to accurately recognize oneself, rationally plan military careers, freely use information means to acquire new knowledge, new technologies, and new methods, constantly improve knowledge structure, enhance cognitive ability, and better adapt to the complex and changeable development of the military revolution.

Finding the Focus of Military Higher Education Reform

At present, the overlapping advancement of informatization and intelligence has brought greater complexity to the talent training work of military academies. It is necessary to meet the actual needs of informationized warfare and lay the foundation for adapting to intelligent warfare. The following tasks should be focused on.

Reconstruct the curriculum system. The curriculum system supports the formation of the knowledge structure of talents. In order to cultivate military talents that meet the needs of intelligent warfare and achieve the training goals of military expertise and scientific culture, we should break the practice of designing a curriculum system based on a single major and establish a “general knowledge + direction” curriculum system. General knowledge courses are based on existing natural science and public courses, and add courses such as mathematical logic, mathematical modeling, critical thinking, network foundations, artificial intelligence, cognitive neuroscience, and system engineering to establish a cross-domain and cross-disciplinary horizontal curriculum system, expand the knowledge of students, build a knowledge structure urgently needed for intelligent warfare, and lay a broad knowledge foundation for their lifelong growth. Direction courses are to establish a discipline and professional direction, set up a vertical course system of mathematics and science, professional foundation, and professional positions, build a solid professional background, and cultivate students’ ability to use professional theories to solve complex combat training problems. The “general knowledge + direction” course system helps to build a “T”-shaped knowledge structure and meet the needs of military talents to adapt to the diverse and changing intelligent warfare.

Deepen classroom reform. Educational neuroscience believes that education is the reshaping of students’ brains, and the classroom is the main battlefield for reshaping students’ neural networks. It plays an irreplaceable role in the formation of high-level cognitive abilities required for intelligent warfare. Continuously deepening classroom reform is the current key task of military higher education. It should be noted that a classroom with only knowledge understanding is far from being a good classroom. All human behaviors, thoughts, and emotions are controlled by the brain. Every piece of knowledge, thinking, and emotion corresponds to a specific neural network of the brain. Therefore, classroom reform should focus on students’ learning, follow the cognitive laws of the human brain, start with attracting and maintaining attention, establish a scientific thinking framework, and mobilize students to think actively. Generally, the teaching methods that aim at high-level abilities have a common model – problem-driven heuristic teaching. Commonly used problem-based teaching methods, project-based teaching methods, and inquiry-based teaching methods all belong to this model. Therefore, the main path to promote classroom reform is to develop unknown, novel, and interesting questions and stories for students, design a thinking framework that aims at logical reasoning, critical thinking, reflective ability, creative ability, and learning ability, inspire students to think actively under the guidance of the framework, and then supplement it with the output process of speaking and writing, and finally achieve the goal of internalizing knowledge understanding and forming high-level abilities.

Promote all-round education. Modern educational theory not only regards the classroom as an important battlefield for education, but also regards all time and space outside the classroom as important resources for cultivating students. These time and space outside the classroom not only support classroom teaching and promote the formation of knowledge and ability, but are also important places for cultivating non-intellectual abilities. Colleges and universities should make full use of these time and space, clarify specific training goals, focus on going deep into the troops, getting close to actual combat, and highlighting practicality and creativity, and scientifically design education and training plans. Focus on giving full play to the management and education advantages of military academies, explore and establish a student management model, and promote the cultivation of students’ leadership and management capabilities; continuously enrich the second classroom, build an innovation platform, create more opportunities for independent practice, and enhance students’ innovation capabilities; make full use of various large-scale activities to cultivate students’ competitive awareness and teamwork capabilities; strengthen the construction of management cadres, improve scientific management capabilities, and be able to effectively guide students to carry out time management, goal management, emotional management, psychological adjustment, habit formation, etc., to help students improve their self-management and independent learning capabilities.

In short, education is a systematic project. The above are only three aspects to break through the shortcomings of talent training in the intelligent era. To truly solve the problem, military academies need to carry out systematic reforms to effectively support the achievement of talent training goals in strategic planning, quality management, personnel quality, teaching conditions and other aspects. This requires us to continue to explore and innovate, continuously improve the level of school management and education, and strive to open up a new situation in the construction and development of military academies.

(Author’s unit: Air Force Aviation University)

現代國語:

「軍隊院校因打仗而生、為打仗而建」。在2019年全軍院校長集訓開班式上,習主席提出新時代軍事教育方針,為全軍院校培養高素質、專業化新型軍事人才指明了方向。當前,戰爭形態正加速向資訊化、智慧化發展,打贏未來智能化戰爭需要什麼樣的軍人,軍事高等教育如何培養適應智慧化戰爭的人才等,是擺在我們面前的重大課題。

戰爭形態加速向智慧化發展

戰爭形態是以主戰兵器技術屬性為主要標志的、戰爭歷史階段性的表現形式和狀態。迄今為止,戰爭形態在經歷了冷兵器戰爭、熱兵器戰爭、機械化戰爭之後,正加速向資訊化、智慧化戰爭發展。大數據、物聯網、人工智慧、生物技術、腦科學等先進科技在軍事領域日益廣泛的應用,正成為新軍事革命的重要推手,催生新的無人化、自主化、智慧化戰爭形態,改變著傳統戰爭制勝機理。 2014年,外軍智庫發布名為《20YY∶機器人時代的戰爭》的研究報告,認為以智慧化軍隊、自主化裝備和無人化戰爭為標志的軍事變革風暴正在來臨,其將透過發展智慧化作戰平台、資訊系統與決策支援系統,以及定向能、高超音波、仿生、基因、納米等新型武器,2035年初步建成智慧化作戰體系,2050年將發展到高級階段,全面實現作戰平台、資訊系統、指揮控制智能化甚至無人化,仿生、基因、納米等新型武器走上戰場,作戰空間進一步拓展到生物空間、納米空間、智慧空間。

近年來,隨著人們對人腦研究的不斷深入,腦機介面技術正日趨成熟,未來人類與外部世界的資訊交換將不再局限於感官,還可以透過晶片實現大腦與外界直接的訊息交流,人與人、人與物充分互聯互通,人類或將超越互聯網、物聯網,進入腦聯網支援的智慧時代。腦聯網時代,軍人的大腦與作戰平台、資訊系統、決策支援系統直接相聯,在量子計算和雲平台等技術輔助下開展決策,打擊的對象將拓展到人的思想和行動,物質、能量、訊息與心智融為一體。國內有專家認為,在人工智慧技術的作用下,未來戰爭的製勝機理將由資訊化戰爭的“資訊主導、體系對抗、精確打擊、聯合製勝”,向智能化戰爭的“智能主導、自主對抗、溯源打擊、雲腦制勝」轉變,繼物質、能量、資訊之後,人機融合的雲智能成為決定戰爭勝負的關鍵。這一智慧化戰爭形態的轉變正在加速到來,任何遲疑都可能帶來難以想像的後果。

但應該看到,無論戰爭如何發展,人始終是最根本的要素。智慧化戰爭形態將促使軍人的職能角色發生變化,對軍人的能力素質將提出更高的要求,認知能力或將超越知識、技能成為軍人的核心能力。

智慧化戰爭要求軍人綜合素質升級重構

根據人才成長週期,目前正在接受高等教育的軍人,10多年後將成為部隊作戰訓練主體力量,也將成為迎接智慧化戰爭挑戰的第一批主力軍。當前,我軍高等教育在人才培養目標設計上尚存在一些不足,對適應未來多變的智慧化戰場能力關注不夠,人才培養目標與智慧化戰爭需求還有一定差距。 2020年7月23日,習主席視察空軍航空大學時,強調要堅持立德樹人、為戰育人,加強軍魂教育,強化戰鬥精神,全面打牢飛行學員思想政治、軍事專業、科學文化、身體心理等素質基礎。貫徹習主席重要指示,對標未來智慧化戰爭需求,迫切需要建立以思維力為核心的更高階的軍事人才培養目標,加快軍人綜合素質升級重構。

智慧化戰爭是整合多個領域的複雜巨系統,其智力為本的特徵和迭代多變的發展趨勢,正在改變軍人在戰爭中的角色。軍人或將逐步由戰爭前台走向幕後,由直接面對面作戰轉變為人機協同作戰,由前線沖鋒陷陣轉變為後端籌劃設計戰爭。要勝任人機協同、籌劃設計戰爭等職能作用,除思想政治和身體心理必須達到要求外,在軍事專業和科學文化方面,軍人應重點提升以下五個方面的知識能力素質:一是多學科融合的知識結構,掌握自然、軍事、認知心理、網絡智能等多個智能化戰爭相關學科領域的核心原理,能夠跨學科整合知識,指導軍事實踐;二是強大的認知能力,具有邏輯思維、審辨思維、系統思維能力,能夠運用科學方法分析推理解決作戰問題;三是人機協作能力,深刻掌握智慧化戰爭特點規律,熟練運用作戰平台、指揮控制系統、決策支援系統,能夠操控多樣化智慧武器裝備,實現人機高效協同;四是創新能力,具有敏銳的科技感知力和強大的創造力,能夠掌握科技前沿,創新作戰樣式,掌握戰爭發展規律;五是自我成長能力,能夠準確認知自我,合理規劃軍事職業生涯,自如運用資訊手段獲取新知識、新技術、新方法,不斷完善知識結構,提升認知能力,較好地適應複雜多變的軍事革命發展。

找準軍事高等教育改革著力點

當前,資訊化與智慧化的疊加推進,為軍隊院校人才培養工作帶來更大復雜性,既要滿足現實的資訊化作戰需要,同時又要為適應智慧化戰爭奠定基礎,應著重抓好以下幾項工作。

重構課程體系。課程體系支撐著人才知識結構的形成。為培養滿足智慧化戰爭需求的軍事人才,達成軍事專業、科學文化兩個面向的培養目標,應打破以單一專業為背景設計課程體系的做法,建立「通識+方向」的課程體系。通識課程是在現有自然科學和公共類課程基礎上,增加數理邏輯、數學建模、批判性思維、網絡基礎、人工智慧、認知神經科學、系統工程等課程,建立跨領域跨學科的橫向課程體系,拓展學員的知識面,建構智慧化戰爭急需的知識結構,為終身成長奠定廣博的知識基礎。方向課程是確立一個學科專業方向,設置數理科學、專業基礎、專業崗位的縱向課程體系,構建厚實的專業背景,培養學員運用專業理論解決復雜作戰訓練問題的能力。 「通識+方向」的課程體系,有助於建構「T」形知識結構,滿足軍事人才適應多樣多變智能化戰爭的需要。

深化課堂改革。教育神經科學認為,教育是對學生大腦的重塑,而課堂是重塑學生神經網絡的主陣地,特別對於智能化戰爭所需的高階認知能力形成具有不可替代的作用,持續深化課堂改革是軍事高等教育當前的關鍵任務。要看到,只有知識理解的課堂遠遠不是一個好課堂。人的一切行為、思想和情感全部由大腦控制,每個知識、思維和情緒都與大腦的特定神經網絡相對應,因此,課堂改革要以學生的學習為中心,遵循人腦的認知規律,以吸引並保持專注為起點,建立科學的思維框架,調動學員主動思考。通常,指向高階能力的教學方法具有一個通用模式——問題驅動的啟發式教學,常用的問題式教學法、項目式教學法、探究式教學法都屬於這一模式。所以,推進課堂改革的主要路徑是發展未知、新奇和學生感興趣的問題和故事,設計指向邏輯推理、審辨思維、反思能力、創造能力以及學習能力的思維框架,啟發學員在框架的指引下主動思考,再輔以講出來、寫出來的輸出過程,最後達成知識理解內化與高階能力形成的目標。

推動全面育人。現代教育理論不僅以課堂作為教育的重要陣地,還把課堂以外的所有時間和空間視為培養學生的重要資源。這些課堂以外的時間和空間不僅支持課堂教學、促進知識能力形成,也是培養非智力能力的重要場所。院校應充分利用這些時間和空間,明確具體的培養目標,以深入部隊、貼近實戰、突出實踐性和創造性為重點,科學設計教育訓練計劃。著重發揮軍隊院校管理育人優勢,探索建立學員管理模式,促進學員領導管理能力的培養;不斷豐富第二課堂,搭建創新平台,創造更多自主實踐機會,提升學員的創新能力;充分利用各種大型活動,培養學員競爭意識及團隊協作能力;加強管理幹部隊伍建設,提昇科學管訓能力,能有效輔導學員開展時間管理、目標管理、情緒管理、心理調節、習慣養成等,幫助學員提升自我管理和自主學習能力。

總而言之,教育是一個系統工程,以上僅是突破智能化時代人才培養短板的三個方面,真正解決問題還需要軍隊院校進行系統化改革,在戰略規劃、質量管理、人員素質、教學條件等諸方面都能夠有效支撐人才培養目標的達成,而這需要我們持續不斷地探索與創新,不斷提高辦學育人水平,並努力開創軍事院校建設發展新局面。

(作者單位:空軍航空大學)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jsyxgfs/4885203888.html?big=fan

China Exploring the Era of Building a World-Class Military

中國探索建立世界一流軍隊的時代

2024年04月04日09:33 | 来源:中国军网

現代英語:

In the picture of human history, war and military development are particularly eye-catching. When we cast our eyes on the long river of history of war, it is not difficult to find that in the magnificent world changes, the strength of the army has always been accompanied by the prosperity of the country, and every era has ushered in a first-class army. Exploring and studying the era trajectory of the construction and development of these armies and finding things with regularity will undoubtedly provide us with important inspiration and reference for achieving the goal of the 100th anniversary of the founding of the army as scheduled and accelerating the construction of the people’s army into a world-class army.

Driven by military needs, strengthening capabilities is a top priority

Military capability has always been the most critical part of the national security system. From the development of the military construction in major countries in the world, it can be found that military construction has always taken strengthening military capability as an urgent task. Military capability has been generally regarded as the ultimate standard for measuring military strength and the primary task of war preparation. In recent years, some military powers have continuously issued forward-looking military capability assessment and forecast reports, emphasizing the vigorous development of military deterrence and combat capabilities. It can be said that strengthening military capability is at a critical period of competition, which is a rare opportunity for latecomer countries. History and practice tell us that the construction of first-class military capability needs to seize the window period of transformation from quantitative accumulation to qualitative leap, take the historical mission of the army as the starting point, and take deterring and winning the war as the standard. At present, major military powers have focused on the needs of strategic application, continuously expanded into space, far sea, deep earth, network, electromagnetic and other spaces, planned ahead of time, stepped up efforts to fill the “gap” of new combat forces, and developed new domains and new qualities with decisive influence on military technology and equipment means, aiming to seize the “new commanding heights” of future military competition and build a lasting military advantage, which also reflects that the military capability structure will undergo a fundamental mutation and leap. For example, the US military has accelerated the development of military capabilities in the direction of “integration, both offensive and defensive, doubling advantages, rapid and precise”, attempting to achieve the deep integration of information, firepower, defense, guarantee and control, and form a system combat capability of one-time combat, multi-domain joint and rapid support.

Taking military training as the starting point and military training as the central task

Only when a soldier is familiar with the skills can he be good at fighting; being prepared for the unexpected is the way to keep the country safe. Training and preparation for war are the central tasks and normal manifestations of a first-class army. Only by real training and real preparation in peacetime can we be deployed, deployed and win in wartime. If a country does not make great efforts to improve the army’s ability to win and be ready to deal with possible military conflicts and potential war threats at any time, it will fall into a passive situation of being beaten once a war breaks out, and its national security and development interests will be greatly damaged. The practice of military construction in some countries in the world today has proved that first-class training and preparation for war must always be based on missions and tasks, insist on using the leading role of military struggle to control combat preparation and continuously exert efforts to actual training and preparation, use the integration of training and combat to control actual combat training to leap forward to high intensity, normalization and systematization, and use the ability to win battles to control the combat effectiveness standards to advance to high, deep and practical levels, so as to truly focus on preparing for war and invest various resources in preparing for war. In recent years, the development of the Russian army has benefited greatly from the consistent adherence to training to shape momentum, strengthen preparations, and promote combat, especially the high attention paid to carrying out a series of targeted pre-war training to enhance the cluster deterrence capabilities in various strategic directions, thus changing the army’s earlier image. It is worth noting that major military powers are taking the promotion of military intelligent means as an important part of training and preparation for war, focusing on liberating and developing combat effectiveness, integrating key technologies such as artificial intelligence and autonomous technologies of unmanned combat systems into preparation for war, guiding the implementation of the modernization tasks of combat theory, military personnel, and weapons and equipment, so as to accelerate the formation of a new pattern of modernization of the system of combat readiness and combat capability, and presenting distinctive contemporary characteristics of training and preparation for war.

Focus on integration and energy gathering, and make system deployment the key point

The joint operations of land, sea, air, space and power grids and the multi-domain integrated system operations characterized by cross-domain interaction urgently need to plan and construct an integrated combat system layout with deep integration of “detection, attack, control, defense and protection” from the “long term” to form a system victory. This has become the focus of major military powers in promoting the construction of first-class armies. In recent years, the concepts of “air-sea integrated warfare”, “joint all-domain operations” and “multi-domain operations” proposed by the US military are actually the systematization products of organically combining sea, air and space-based forces, land-based strike forces and network and power forces, which means that the US military is fully committed to optimizing the global layout of military forces through cutting-edge technological advantages in order to welcome the arrival of a new form of war. Today, the era of winning by relying solely on the advantages of combat units has ended. Instead, a combat force system that combines long, medium and short distances and integrates soft and hard forces has been built to ensure that key areas are controlled by the offensive and defensive advantages of the system. Therefore, the key to the systematic layout of joint operations is to gather the combat energy advantages of different domains and quickly integrate each combat module into the system operations to achieve a composite offensive and defensive situation layout with system efficiency increase, overall linkage, precise energy release and mutual coordination. In recent local wars and armed conflicts, the role of information networks as “hinge” and “enabling” in system layout has been revealed, enabling multiple combat forces to be autonomous, adaptive, interactive, and intelligently make decisions and control. In future operations, we should strengthen the intelligent advantage layout of “cloud” and “network” aggregation, skillfully combine tangible forces with intangible “cloud” and “network” deployment, and accelerate the formation of a combat layout that combines virtual and real forces and disperses form and gathers force, which will become a new model and trend of system deployment, integration and aggregation.

The main purpose is to gain an advantage, and to prioritize joint control.

Modern warfare begins with and is highly dependent on the comprehensive seizure and maintenance of battlefield control, which reflects the special significance of the struggle for control over the battlefield to the dominance of war. Planning key joint operations for control over the battlefield plays a crucial and decisive role in the struggle for control over key domains. Among them, gaining information advantage is the key to joint control over the battlefield. Military powers such as the United States and Russia generally believe that various combat forces in the era of informatization and intelligence must take the control advantage of multi-domain space as the basis for carrying out multiple tasks. The Russian military emphasizes improving the timeliness and anti-interference of joint combat force projection, and defeating opponents through cross-domain coordination and concentration. This shows that when fighting for control over the battlefield, we must first maintain the initiative strategically, that is, strategically establish the direction, goals and paths for obtaining joint control over the battlefield, stipulate the means and methods for creating and using overall advantages, and form an advantageous position in intelligent technology and weapon systems, information acquisition and utilization, and control capabilities. At present, some military powers use “big data intelligent technology and super network technology” as the “key catalyst” for seizing control over the battlefield, intending to form a decisive military advantage. This is a major strategic shift for military powers since the informatization of military affairs. In the future struggle for power, only by building intelligent efficiency chains and control relationships with parallel flow of material information and high aggregation can we promote the emergence of joint power-control efficiency through the linkage and energy-gathering effect.

Focusing on battlefield confrontation, improving efficiency is the key factor

Military activities and combat forces are inseparable from the physical and virtual battlefields of multi-dimensional space confrontation, and the rapid integration of multiple domains to form an integrated battlefield system makes the pursuit of maximizing the effectiveness of confrontation the key to battlefield confrontation and a topic that needs to be highly valued in building a first-class army. In recent years, major military powers have accelerated the construction of comprehensive information systems covering the full-dimensional space of the battlefield to pursue the overall benefits of battlefield confrontation. At present, the US military already has nearly 10,000 intelligent unmanned information network systems in the air and on the ground, and they are still being upgraded. With a view to solving bottlenecks such as the difficulty of responding to command and control in the informationized battlefield and the easy paralysis of the combat system, the future focus of battlefield system construction will be to rely on intelligent systems with rapid and autonomous decision-making, efficient information processing, precise coordinated operations and automatic control of weapons and equipment, establish a more complete and flexible control system and operation mechanism, and focus on doubling the effectiveness of battlefield cognition, command and control, precision strikes and information attack and defense confrontation. In addition, around the control of battlefield space, future battlefield confrontations will present a “flash” in terms of power, highlighting the joint deterrence of multiple forces, quickly accumulating power, and suddenly exerting force to form a soft and hard containment trend; “fast integration” in terms of means, effectively integrating and using multiple means, gathering combat energy in different domains, and forming a multi-dimensional linkage and precision attack to assist defense; “fast attack” in terms of action, real-time scenarios, efficient decision-making, seizing favorable opportunities, and forming a local battlefield advantage of rapid and high-intensity suppression in the entire domain. This is the focus of the current major military powers in studying and applying battlefield confrontation, and it will also become a new scenario and new content of combat that both sides of the confrontation will pay attention to.

Taking foresight and prediction as the first step and taking scientific and technological innovation as the strategic support

With the rapid development of a new round of scientific and technological revolution, industrial revolution and military revolution, the leading role of artificial intelligence, big data, cloud computing and other technical fields has become prominent. Major military powers pay more attention to placing continuous promotion of innovation in an important position, and advance systematic planning and construction in terms of innovation concepts, models, standards, systems and applications, providing important strategic support for building a first-class army. After World War II, some countries became military powers. One of the most important fulcrums was the extensive use of the latest science and technology, which produced new domains and new qualities of combat forces and promoted the leapfrog development of military combat effectiveness. At present, major military powers insist on using cutting-edge technologies to make innovative breakthroughs, step up the research and development of faster, more intelligent information and more destructive combat platforms, in an attempt to maintain an absolute leading position. It should be noted that the world’s century-old changes are accelerating, and the new military revolution is in the ascendant. This makes it more important to judge the direction of scientific and technological innovation. The role of scientific and technological innovation as an accelerator for promoting the construction and development of a first-class army is more obvious, especially scientific and technological innovation is shifting to key areas and key means, implementing key breakthroughs, promoting a leap in the combat capability of the multi-dimensional attack and defense system, and accelerating the overall transformation of the military field. This requires accurately predicting the new forms and characteristics of future wars, continuously applying advanced technological achievements, and striving to promote a fundamental change in the combat power generation model, accelerating the formation of a strong asymmetric victory and strategic balance of power. This is the first move and strong support for the construction of a first-class military. (Xu Jun)

(Editors: Chen Yu, Liu Yuanyuan)

現代國語:

在人類歷史的畫卷裡,戰爭與軍隊發展特別引人注目。當我們將探索的目光投向烽煙戰火的歷史長河,就不難發現,在波瀾壯闊的世界變局中,軍隊的強大歷來與國家的興盛相伴而行,每個時代都曾經迎來堪稱一流的軍隊。探尋研究這些軍隊建設發展的時代軌跡,找出帶有規律性的東西,這無疑會給我們如期實現建軍一百年奮鬥目標,加快把人民軍隊建成世界一流軍隊,提供重要的啟示與借鑒。

以軍事需求為牽引,把強化能力當作緊要任務

軍事能力歷來是國家安全體系中最關鍵的一環。從世界主要國家軍隊建設發展的歷程來看可以發現,軍隊建設始終以強化軍事能力為緊要任務,軍事能力已被普遍作為衡量軍隊實力的最終標準和戰爭準備的首要任務。尤其近年來,一些軍事強國不斷頒布前瞻性軍事能力評估與預測報告,強調大力發展軍事懾戰與應戰能力。可以說,強化軍事能力正處於千帆競發的關鍵時期,這對後發國家來說是一個難得的機會期。歷史和實踐告訴我們,一流軍事能力建設需要緊緊抓住由量變積累向質變飛躍轉化窗口期,以軍隊的歷史使命為出發點,以遏制和打贏戰爭為標準。目前,主要軍事強國紛紛著眼戰略運用需要,不斷向太空、遠海、深地、網絡、電磁等空間拓展,超前籌劃定位,加緊填補新型作戰力量“空缺”,發展新域新質方面具有決定性影響的軍事技術裝備手段,意在搶佔未來軍事競爭“新的製高點”,構築持久軍事優勢,也反映了軍事能力結構將發生根本性突變與飛躍。如美軍加快推進軍事能力朝向「一體融合、攻防兼備、優勢倍增、快速精準」的方向發展,企圖實現資訊、火力、防禦、保障和控制的深度融合,形成一次作戰、多域聯合、快速支援的體係作戰能力。

以練兵備戰為抓手,把軍事訓練當作中心工作

士熟於技,方能善戰;以備不虞,安國常道。練兵備戰是一流軍隊的中心任務和常態呈現,只有平時真訓實練、真打實務,戰時才能拉得出、上得去、打得贏。一個國家如果不下大力氣提升軍隊打贏能力,隨時準備應對可能的軍事衝突和潛在的戰爭威脅,一旦戰爭爆發,就要陷入被動挨打的境地,國家安全和發展利益就要受到極大損害。當今世界一些國家軍隊建設的實踐證明,一流的練兵備戰必須始終以使命任務統攬擺位,堅持用軍事鬥爭龍頭統住作戰準備向實踐實踐用力,用訓戰一體統住實戰化訓練向高強度、常態化、體系化推進躍升,用能打勝仗統住戰鬥力標準向高處、深處和實處確立挺進,真正做到各項工作聚焦備戰打仗,各種資源投向備戰打仗。近年來,俄軍的發展很大程度上得益於始終堅持以訓塑勢、以訓強備、以訓促戰,特別是高度重視開展一系列針對性臨戰訓練,提升各戰略方向集群懾戰能力,從而改變軍隊早前形象。值得關注的是,主要軍事強國正在將推進軍事智慧化手段建設作為練兵備戰的重要內容,緊緊圍繞解放和發展戰鬥力,將人工智慧、無人作戰系統自主技術等關鍵技術融合運用於備戰打仗,引導作戰理論、軍事人員、武器裝備現代化建設任務落地落實,以加速形成備戰打仗能力體系現代化新格局,呈現出練兵備戰工作鮮明的時代特徵。

以融合聚能為指向,把體系布勢當作重心要害

陸海空天電網的聯合作戰與以跨域互動為特徵的多域融合體係作戰趨勢,迫切需要從「長」規劃建構「偵、打、控、防、保」深度融合的一體化作戰體系佈局,形成體系製勝。這已成為主要軍事強國推進一流軍隊建設的聚焦重點。近年來,美軍提出的「空海一體戰」「聯合全域作戰」「多域作戰」等構想,其實就是把海空天基力量、陸基打擊力量及網電力量有機結合的體系化產物,意味著美軍為迎接新的戰爭形態到來,正全面致力於透過尖端技術優勢優化軍事力量在全球的佈局。如今,單純依靠作戰單元優勢取勝的時代結束了,取而代之的是建構遠中近結合、軟硬一體的作戰力量體系,確保以體系攻防優勢來控制關鍵領域。因此,聯合作戰體系化佈局的關鍵,是聚集不同質域的作戰能量優勢,把各作戰模組快速融入體係作戰之中,以達成體系增效、整體連動、精確釋能、相互配合的複合攻防態勢佈局。近幾場局部戰爭和武裝衝突,已經顯現出資訊網路在體系佈局中的「鉸鏈」「賦能」作用,使多元作戰力量能夠自主、適應、互動、智慧決策控制。未來作戰,應強化「雲」「網」聚集的智慧優勢佈局,將有形兵力和無形「雲」「網」布勢巧妙結合起來,加快形成虛實結合、形散力聚的作戰佈局,將成為體系布勢融合聚能的新模式新趨勢。

以奪得優勢為主旨,以聯合製權作為優先選項

現代戰爭首先展開並高度依賴全面奪取並維持戰場綜合控制權,體現了製權爭奪對戰爭主導權的特殊意義。而籌劃好關鍵性制權作戰聯合行動,對爭奪關鍵維域控制權起著至關重要的決定性作用。其中,爭得資訊優勢則是聯合製權的關鍵。美、俄等軍事強國普遍認為,資訊化智能化時代的各種作戰力量,必須把獲得對多域空間的控制優勢作為遂行多重任務的基礎。俄軍強調提升聯合作戰力量投射的時效性和抗干擾性,以跨域協同和聚優挫敗對手。這就表明,在爭奪制權時,首先要在戰略上保持主動,即從戰略上為獲​​得聯合奪控制權確立方向、目標與路徑,規定整體優勢創造和運用的手段與方式,並在智能技術與武器系統、資訊取得利用和控制能力上形成優勢地位。目前,有軍事強國以“大數據智慧技術和超級網技術”作為奪控制權的“關鍵催化劑”,意在形成決定性軍事優勢,這是軍事強國自軍事資訊化以來的重大戰略轉向。未來制權爭奪,只有建構物質資訊並行流動、高度聚合的智慧化效能連結與控制關係,才能以連結聚能作用促成聯合製權效能湧現。

以戰場對抗為著眼,以提升效能作為關鍵因素

軍事活動和作戰力量離不開多維空間領域對抗的物理和虛擬戰場,並且多域交叉快速融合形成一體化的戰場體系,使得追求對抗效益最大化成為戰場對抗的關鍵,也是建設一流軍隊需要高度重視的課題。近年來,主要軍事強國加速建構覆蓋戰場全維度空間的綜合資訊系統,追求戰場對抗的整體效益。目前,美軍已經擁有近萬個空中、地面智慧化無人資訊網路系統,且仍在持續升級。著眼解決資訊化戰場指控難應對、作戰體系易癱瘓等瓶頸,戰場體系建設未來重點將是依托快速自主決策、資訊高效處理、精準協同作戰和武器裝備自動控制的智慧化系統,建立更為完善靈活的控制體系與運作機制,著重倍增戰場認知、指揮控制、精確打擊與資訊攻防對抗效能。此外,圍繞控制戰場空間,未來戰場對抗將呈現出力量上的“快閃”,突出多種力量聯合懾打,迅速積聚力量,猝然發力,形成軟硬一體的遏制之勢;手段上的“快融”,有效整合運用多種手段,聚集不同質域的作戰能量,形成多維聯動精打的以攻助防之勢;行動上的“快打”,即時場景、高效決策,搶佔有利時機,形成全局快速高強度壓制的戰場局部優勢。這是當前主要軍事強國研究運用戰場對抗的著力點,也必將成為對抗雙方關注作戰的新場景新內容。

以前瞻預判為先手,把科技創新當作策略支撐

伴隨新一輪科技革命、產業革命和軍事革命快速發展,人工智慧、大數據、雲端運算等技術領域的引領作用突顯,主要軍事強國更重視把持續推動創新擺在重要位置,在創新理念、模式、標準、體系與應用方面超前進行系統規劃與建設,為建設一流軍隊提供重要的戰略支援。二戰後,有的國家成為軍事強國,其中最重要的支點之一是廣泛運用最新科學技術,產生了新域新質作戰力量,推動了軍事戰鬥力跨越式發展。目前,主要軍事強國更是堅持利用尖端技術進行創新突破,加緊研發速度更快、資訊智能含量更高、毀傷效能更大的作戰平台,企圖維持絕對領先地位。要看到,世界百年變局加速演進,新軍事革命方興未艾,這使得研判科技創新方向更為重要,科技創新作為推進一流軍隊建設發展的加速器作用更加明顯,特別是科技創新正在向關鍵領域、關​​鍵手段上轉變,實施重點突破,促成多維度攻防的體係作戰能力躍升,加速軍事領域實現整體性變革。這就要求準確預測未來戰爭的新形態新特徵,持續應用先進技術成果,著力推動戰鬥力生成模式實現根本性轉變,加速形成強大的非對稱制勝和戰略制衡優勢。這是一流軍隊建設的先手棋和強支撐。 (徐珺)

(編按:陳羽、劉圓圓)

中國原創軍事資源:https://military.people.com.cn/n1/2024/0404/c1011-40209814888.html

Chinese Military Simulation Technology—— Knocking on the door of Russian “war design”

中國軍事模擬技術—敲開俄羅斯「戰爭設計」之門

中國軍網 國防部網 // 2018年8月24日 星期五

現代英語:

Recently, the Russian Ministry of Defense announced the establishment of the “Era Military Innovation Technology Park”, which focuses on scientific research, testing and simulation of advanced weapons, military and special equipment. Coincidentally, the US military is also stepping up the development of the “Soldiers Build Intelligence System Military Training Support” project, hoping to better assist officers and soldiers in conducting military intelligence training by providing equipment, simulators and simulation modeling services. The frequently mentioned military simulation technology has attracted attention from all parties. With the rapid development of cloud computing, big data, artificial intelligence and other technologies, military simulation technology has made significant progress in equipment construction, military exercises, combat training and logistics support. At present, major military powers have recognized the huge application prospects of simulation technology in the military field and regard it as an “advanced intelligence contest” in modern warfare.

The “virtual battlefield” can also deploy troops

Once upon a time, we all “learned about war from war”. The emergence of military simulation technology has allowed us to learn about future wars from the “virtual battlefield”.

Simulation technology mainly relies on computer and other equipment platforms, and uses mathematical models to conduct scientific research, analysis, evaluation and decision-making on issues that need to be studied. Military simulation systems are simulation systems built specifically for military applications. They can conduct quantitative analysis of combat elements such as land, sea, air, space, electricity, and the Internet, the performance of weapons and equipment, and combat operations, and then accurately simulate the battlefield environment, present relevant battlefield situations, and achieve effectiveness evaluation of the combat system and command decision-making assistance.

At present, military simulation systems have become an effective means of studying future wars, designing weapons and equipment, and supporting the evaluation of tactics, and they run through the entire process of weapons and equipment development and testing. In recent years, military simulation technology has been increasingly regarded as a multiplier for improving combat effectiveness and one of the key technologies for national defense security and troop construction and development.

The United States has always listed modeling and simulation as an important key defense technology. As early as 1992, the United States announced the “Defense Modeling and Simulation Initiative” and established a special Defense Modeling and Simulation Office. The United States also specifically listed the “integrated simulation environment” as one of the seven driving technologies to maintain the US military advantage. At the same time, European countries attach great importance to the development of military simulation technology, and strive to continuously improve simulation methods in the process of developing a new generation of weapon systems, thereby improving the comprehensive effectiveness of weapon equipment construction and development.

In fact, military simulation technology has allowed people to fully learn about future wars in experiments. Before the outbreak of the Gulf War, the US Department of Defense used military simulation technology to analyze and determine the direct consequences of Iraq igniting all oil wells in Kuwait, which had a profound impact on the US military’s formulation of the Gulf War combat plan. In the integrated ballistic missile defense system project carried out by the US military, modeling and simulation methods are specifically used to conduct a preliminary assessment of the ballistic missile defense system. At the end of 2017, the US Department of Defense’s Advanced Research Projects Agency invested 12.8 million US dollars specifically for the construction of virtual simulation space battlefields. The US Army also spent 57 million US dollars to develop the Army Infantry Training System – this immersive military virtual simulation training system can provide soldiers with a more realistic battlefield combat simulation environment.

A brainstorming session to plan operations

From artillery simulation, aircraft simulation, missile simulation to today’s various types of weapon system equipment simulation and combat simulation, while simulation technology continues to meet the needs of military applications, it is also rapidly developing in the direction of virtualization, networking, intelligence, collaboration and universalization. In order to continuously improve military simulation calculation methods and improve simulation technology, people are constantly launching a “brainstorming” to plan operations.

Mathematical modeling algorithm. Mathematical model is the basis of simulation. To carry out simulation, we must first build a mathematical model of the object to be simulated. At the same time, the correctness and accuracy of the mathematical model directly affect the credibility of the simulation calculation results. In recent years, the rapid development of artificial intelligence technology has provided new ideas for mathematical modeling. Introducing artificial intelligence to build mathematical models can not only effectively improve the realism, reliability and accuracy of simulation models, but also further improve the efficiency of modeling and simulation.

Virtual reality technology. With virtual reality technology, people can interact with objects in a virtual simulation environment through related equipment, thereby creating an effect of “immersion” in the real environment. The augmented reality technology that has emerged in recent years has further increased the user’s perception of the virtual simulation system, and can superimpose virtual objects, scenes, and information generated by the military simulation system onto the real scene. The U.S. Army is currently relying on virtual reality and augmented reality technologies to develop the future overall training environment to achieve seamless, mixed immersive combat training.

Network grid technology. The realization of military simulation is inseparable from the strong support of computers, local area networks, software engineering and other technologies. The distributed interactive simulation that integrates simulation equipment or systems of different types in different locations into a whole provides a more realistic application environment for military simulation. In recent years, grid technology that can realize the rapid transmission of various types of information and resource sharing has become a research hotspot for military simulation. The US Department of Defense has begun to use the “Global Information Grid” plan to establish a military grid that communicates various information elements on the battlefield and realizes the dynamic sharing and collaborative application of various military network resources.

Winning the war before it starts

The future information warfare is an integrated war that is carried out simultaneously in multiple dimensions such as land, sea, air, space, electricity, and the Internet. Not only is the battle structure complex and the weapons and equipment diverse, but it also places higher demands on the combatants and the use of tactics. Only by building a “virtual battlefield” for future wars with the help of military simulation technology and realizing the scientific coordination of factors such as the scale of war, the course of war, war investment, the number of combatants and weapons and equipment, the targets of attack and the intensity of attack, can we be sure of victory before the war begins.

In the field of combat experiments, the U.S. military has fully reduced the losses caused by improper combat plans and action plans through a large number of computer simulation evaluations and iterative optimizations. The Russian military’s combat regulations and tactics are also “optimal battlefield solutions” obtained through scientific deduction and simulation calculation using mathematical models. Through military simulation analysis and evaluation, battlefield commanders and fighters can quickly understand the trend of war simulations and carry out effective responses according to various changes in the “virtual battlefield”, thereby effectively improving the effectiveness of combat experiments.

In the field of military training, individual soldier training can be carried out through an immersive virtual simulation training environment, which can be as close to the battlefield environment as possible and effectively improve the training effect. In recent years, the US Army has specially opened a “simulated immersion” training course in the “Advanced Course for Officers”. Through the implementation of virtual simulation military training, the organization and implementation of training are not restricted by time and weather conditions. The distributed training simulation system can even enable trainees in different locations to participate in the training together. By modeling and simulating the specific battlefield environment, tactical background and enemy forces, the military training system can also provide trainees with a more realistic battlefield perception.

In the field of equipment demonstration, the technical support of simulation systems is required throughout the life cycle of weapons and equipment development. At present, the United States has extensively adopted simulation technology in new weapon system development projects to fully support the development and testing, live-fire evaluation and combat testing of weapons and equipment. The U.S. Missile Defense Agency has further explored effective measures to deal with incoming missile threats through missile threat target modeling and simulation. The U.S. Navy simulates the operation of ship systems and crew members through mission analysis simulation software, and obtains simulation results for determining and optimizing the number of crew members. In the future, military simulation technology may become a new technological highland for the world’s major military powers to compete.

現代國語:

日前,俄羅斯國防部宣布組成“時代軍事創新科技園區”,重點進行先進武器、軍事和特殊裝備的科學研究、試驗以及模擬模擬。無獨有偶,美軍也在加緊研發「士兵建構情報系統軍隊訓練保障」項目,希望透過提供設備、模擬器與模擬建模等服務,更好地輔助官兵進行軍事情報訓練。這其中常提及的軍用模擬技術,引起各方注意。伴隨著雲端運算、大數據、人工智慧等技術的快速發展,軍事模擬技術在裝備建設、軍事演習、作戰訓練與後勤支援等領域相繼取得重大進展。目前,各軍事大國紛紛體認到模擬技術在軍事領域的巨大應用前景,將其視為現代戰爭的「超前智慧較量」。

「虛擬戰場」也能排兵布陣

曾幾何時,我們都是「從戰爭中學習戰爭」。軍用模擬技術的出現,開始讓我們從「虛擬戰場」學習未來戰爭。

模擬技術主要藉助電腦等設備平台,利用數學模型對需要研究的問題進行科學的研究、分析、評估與決策。軍用模擬系統是專門針對軍事應用建構的模擬模擬系統,可對陸、海、空、天、電、網等作戰元素、武器裝備性能以及作戰行動進行量化分析,進而精確模擬戰場環境、呈現相關戰場態勢,實現作戰體系的效能評估與指揮決策輔助。

目前,軍用模擬系統已成為研究未來戰爭、設計武器裝備、支撐戰法評估的有效手段,並貫穿武器裝備研發、試驗的整個過程。近年來,軍用模擬技術越來越被視為提升作戰效能的倍增器,是國防安全與部隊建設發展的關鍵技術之一。

美國一直將建模與模擬列為重要的國防關鍵技術。早在1992年,美國就宣布了“國防建模與模擬倡議”,並專門成立國防建模與模擬辦公室。美國也專門將「綜合模擬環境」列為保持美國軍事優勢的七大推動技術之一。同時,歐洲各國高度重視軍用模擬技術發展,力求在新一代武器系統研發過程中不斷完善模擬方法,進而提升武器裝備建設發展的綜合效能。

事實上,軍用模擬技術已經讓人們在實驗中充分學習了未來戰爭。在海灣戰爭爆發前,美國國防部就藉助軍用模擬技術,分析研判伊拉克點燃科威特境內全部油井的直接後果,對美軍制定海灣戰爭作戰方案產生了深遠影響。在美軍進行的一體化彈道飛彈防禦系統專案中,就專門採用建模模擬方法​​對彈道飛彈防禦系統進行預先評估。 2017年底,美國國防部高級研究計畫局投資1,280萬美元,專門用於虛擬模擬太空戰場建設。美國陸軍也耗資5,700萬美元研發陸軍步兵訓練系統-這款沉浸式軍事虛擬模擬訓練系統,能為士兵提供更真實的戰場作戰模擬環境。

掀起策劃作戰的“腦力激盪”

從火砲仿真、飛行器仿真、飛彈仿真到現今的各式武器系統裝備仿真以及作戰仿真,仿真技術在不斷滿足軍事應用需求的同時,自身也朝向虛擬化、網路化、智慧化、協同化與普適化方向迅速發展。為不斷完善軍用模擬計算方法、改進模擬技術手段,人們正不斷掀起謀劃作戰的「腦力激盪」。

數學建模演算法。數學模型是進行模擬的基礎,要進行模擬模擬,必須先建構被模擬物件的數學模型。同時,數學模型的正確與否以及精確度高低直接影響模擬計算結果的可信度。近年來,人工智慧技術的快速發展,為數學建模提供了新思路。引進人工智慧建構數學模型,不僅能有效改善模擬模型的逼真性、可靠性與精確性,也進一步提升了建模與模擬的效率。

虛擬實境技術。採用虛擬實境技術,人們可透過相關設備與虛擬模擬環境中的物件進行交互,進而產生「沉浸」於真實環境的效果。近年來興起的擴增實境技術,進一步增加了使用者對虛擬模擬系統的感知程度,能將軍用模擬系統產生的虛擬物件、場景和資訊疊加到真實場景中。美國陸軍目前就依賴虛擬實境和擴增實境技術開發未來整體訓練環境,實現無縫、混合的沉浸式作戰訓練。

網路網格技術。軍用仿真的實現離不開電腦、區域網路、軟體工程等技術的強大支撐,將分散於不同地點、不同類型的仿真設備或系統集成為一個整體的分散式交互仿真,為軍用仿真提供了更逼真的應用環境。近年來,可實現各類資訊快速傳輸和資源共享的網格技術成為軍用模擬的研究熱點。美國國防部已開始借助「全球資訊網格」計劃,建立起溝通戰場各類資訊要素的軍事網格,實現各類軍事網路資源的動態共享與協同應用。

在戰爭開始前穩操勝券

未來的資訊化戰爭是陸、海、空、天、電、網等多維空間同時展開的一體化戰爭,不僅戰役結構複雜、武器裝備多樣,對參戰人員和戰術運用也提出了更高要求。借助軍事模擬技術建構未來戰爭的“虛擬戰場”,實現對戰爭規模、戰爭進程、戰爭投入、作戰人員與武器裝備數量、打擊目標與打擊強度等要素的科學統籌,才能在戰爭開始之前穩操勝券。

在作戰實驗領域,美軍透過大量的電腦模擬評估和迭代優化,充分減少了因作戰方案和行動計畫不當而造成的損失。俄軍的作戰條令和戰法也都是運用數學模型進行科學推導、模擬計算得出的「戰場最優解」。透過軍用模擬分析與評估,戰場指戰員可以快速了解戰爭推演趨勢,在「虛擬戰場」中根據各種情況變化開展有效應對,進而有力提升作戰試驗效果。

在軍事訓練領域,透過沉浸式虛擬模擬訓練環境實施單兵訓練,能最大限度地貼近戰場環境,並有力提升訓練效果。近年來,美國陸軍已經在“軍官高級教程”中專門開設了“模擬沉浸”訓練課程。透過進行虛擬模擬軍事訓練,訓練的組織與實施不受時間和氣象條件限制,分散式訓練模擬系統甚至能使不同地點的參訓人員共同參與訓練。透過對具體戰場環境、戰術背景和敵方兵力進行建模和仿真,軍事訓練系統也能為訓練人員提供更逼真的戰場感知。

在裝備論證領域,武器裝備研發的全生命週期都需要模擬系統的技術支援。目前,美國在新型武器系統研發專案中大量採用模擬技術,全面支援武器裝備的開發測試、實彈評估測試和作戰測試。美國飛彈防禦局透過飛彈威脅目標建模與仿真,進一步探索出應對來襲飛彈威脅的有效措施。美國海軍則透過任務分析仿真軟體,對船艦系統和艦員的操作進行仿真,得出確定和優化艦員數量的仿真結果。未來,軍用模擬技術或將成為世界各軍事大國角逐的科技新高地。

製圖:陳 晨

中國原創軍事資源:https://www.81.cn/jfjbmap/content/2018-08/24/content_214234888.htm

China’s Military Looking at the Generation of New Quality Combat Power from the Perspective of Intelligent Victory

從智勝視角看中國軍隊新型優質戰鬥力生成

現代英語:

Intelligent victory is a distinct feature of the times in the “quality” of new quality combat power. With the development of science and technology and the evolution of war forms, intelligent joint operations based on “energy mobility and information interconnection”, supported by “network communication and distributed cloud”, with “data computing and model algorithms” as the core, and “cross-domain command and multi-domain operations” as the path, gradually outline a vivid scene of the application of new quality combat power. The intelligent trend of new quality combat power will trigger a chain breakthrough in the military field and become a key variable in changing the rules of war. To enhance new quality combat power and win future wars, we should “knock on the door” of intelligent operations and explore methods and paths to iteratively generate new quality combat power of intelligent joint operations.

Analyzing the characteristics of new quality combat power based on intelligent winning mechanism

Throughout human history, the mechanisms for winning wars have all left clear marks of the era of technological development. To understand and grasp the new quality of combat power of intelligent joint combat, we should keep up with the development of war forms and analyze its key characteristics.

The battlefield environment is distributed in multiple domains. The battlefield environment is the space for the use of new-quality combat power and the space-time framework for understanding the new-quality combat power of intelligent joint operations. Since the emergence of war, the space-time of war has undergone multiple leaps, including plane, three-dimensional, and invisible space. At present, combat confrontation is unfolding in a fusion space with dimensions including physical domain, information domain, and even biological domain and social domain. In intelligent joint operations, the status of virtual space rises and gradually integrates deeply with physical space. Invisible confrontations such as network, intelligence, and psychology constitute a new space. Establishing a virtual battlefield, realizing virtual-real interaction, and achieving virtual-real control have become new driving forces for joint operations.

Multiple integration of constituent elements. Constituent elements are the inherent characteristics of new-quality combat power and the basic elements of new-quality combat power of intelligent joint operations. Mechanized joint operations are platform-centric operations, with firepower and mobility as the dominant forces. The combination of people, mechanized equipment, and tactics is more of a superposition and accumulation, with the goal of carrying energy with objects and releasing energy with objects. Informatized joint operations are network-centric operations, with information power as the dominant force. The combination of network information, people, informationized equipment, and tactics is more of a linkage and interconnection, with the goal of gathering energy with the network and releasing energy with the network. The dominant force of intelligent joint operations is intelligence. The combat elements of cloud, network, people, equipment, and tactics are integrated through models, algorithms, and data to form a complex system with agile reorganization and autonomous adaptation, realizing the control of energy with intelligence and the control of energy with intelligence.

The mode of action is multi-functional and parallel. The mode of action is the energy release path of the new quality combat power and the key to analyzing the new quality combat power of intelligent joint operations. The use of system architecture and distributed coordination in joint operations has made distributed parallelism emerge in war. In joint operations, the speed of information sharing, mobile response, firepower strikes, and command and control decision-making has been greatly accelerated, and the effectiveness of different combat units can act in parallel. In recent local conflicts and military operations, the granularity of command and operations has become smaller and smaller, but the control range, combat effectiveness, and confrontation intensity have increased exponentially, which is the best example of multi-functional parallelism.

Evaluation and feedback from multiple perspectives. Evaluation and feedback is the iterative starting point for the evolution and improvement of new-quality combat power, the dynamic basis for promoting the development of new-quality combat power in intelligent joint combat, and an easily overlooked link in the generation of new-quality combat power. The high-precision and fast-paced characteristics of intelligent joint combat make multi-perspective evaluation and feedback a rigid need. Among them, the cloud-network-group-end link perspective can review the operating status of cloud platforms, networks, “swarms”, terminals, etc.; the manned and unmanned interaction perspective can judge the technical mechanisms of different interaction stages; the multi-domain aggregated space-time perspective is conducive to comprehensive evaluation and understanding of battlefield situations.

Reconstructing the new quality combat power generation model with system concept

At present, technologies such as artificial intelligence and cloud computing are constantly driving the transformation of the basic elements of joint operations. There is a new trend of development from separation to integration, from single equipment to clusters, and from physical to virtual-real interaction between functional modules such as intelligence, command and control, firepower, and network and electronics. The traditional combat capability generation model is no longer able to adapt to the development, and a new quality combat capability generation model should be reconstructed with new thinking.

Create an intelligent warfare system. Outdated military needs will not produce the best system for future warfare. Concept scenarios should be derived from intelligent technology, linking interactive intelligent components with existing personnel, equipment, tactics, etc. to form an intelligent combat system that includes perception, decision-making, offense and defense, support, and virtual-real interaction. An unchanging combat system will also be difficult to adapt to the rapid evolution of the war situation. An innovation chain of rapid iteration and leapfrogging should be formed to run through the entire process of generating new quality combat power and promote the evolution of the combat system from low-level to high-level.

Build agile combat units. The combat system is a high-intensity confrontation system. The faster the iteration speed in peacetime and the more advanced the construction level, the stronger the survivability in wartime. To build an intelligent joint combat system, we should start with cultivating the initiative and creativity of all individuals to form an agile team that can respond quickly and actively deal with battlefield uncertainties. Military training should fully absorb the lessons learned from recent local wars, change the traditional mode of large-scale linear deployment and group operations, highlight the distributed combat exercises of “breaking the whole into parts”, enhance the system’s anti-destruction ability, and improve stability.

Promote disruptive technological transformation. One of the secrets to the success of military revolution is the “surging” transformation of science and technology to the military. We should focus on advancing the basis of combat readiness with scientific and technological progress, transfer and transform the latest scientific achievements such as game theory, complex system science, and software definition, upgrade and transform the basic platforms of combat software and hardware, and explore the mechanism of system victory with innovative thinking, paradigms, and tools. At the same time, we should accelerate the extension of mature technologies such as mobile Internet and cloud computing to the combat system, accelerate the application of new materials, new energy, and advanced manufacturing to combat platforms, and improve the level of unmanned, bionic, and clustered intelligent combat.

Seek asymmetric checks and balances. Since the 20th century, “selective disclosure” and “cost imposition” have led opponents in the wrong direction and disrupted the rhythm, becoming common means in major countries’ military competition. Simply “fighting hard” according to the discourse system and method system dominated by others is often difficult to play one’s own advantages, and may even fall into the trap set by opponents. We should focus on leveraging our strengths and avoiding our weaknesses, scientifically choose our own combat effectiveness development path, and achieve misaligned competition. We should jump out of the leader’s preset, dynamically benchmark, and iteratively develop. Strengthen criticism and falsification to prevent being confused and misled by opponents.

Promoting the iterative development of new quality combat capabilities through continuous evolution

Whoever can take the lead in building new quality combat capability will gain the upper hand. The intelligent joint combat system is a complex and huge system that is constantly evolving. Its elements are constantly expanding and its environment spans multiple domains. It should follow the mechanism of continuous evolution and improvement, and within the scope of strategic management, take demand as the goal, efficiency as the key, and precision as the guide to promote the iterative development of new quality combat capability.

The generation link is included in strategic management. Intelligent joint operations are the new frontier for advancing war preparations and should be promoted in a coordinated manner according to the strategic management link. In the demand link, we should fully consider the gap between capabilities and needs, and scientifically justify the direction and amount of investment in construction resources; in the planning and budgeting link, we should follow the principle of matching goals and tasks with actual resources, focus on efficiency and implement budget control; in the execution and evaluation link, we should not only promote the top-level institutions to relay and coordinate operations vertically, but also regulate, supervise, and correct each field according to their responsibilities one by one.

The generation process establishes a positive cycle. Intelligent joint operations are in an era of change in which science and technology are developing from information networks to artificial intelligence, combat styles are changing from network-centric warfare to cross-domain autonomous parallel operations, and political, economic, diplomatic and military means are integrated and used. The generation process of new quality combat power should establish a positive cycle of iterative development and continuous evolution. It is necessary to pay attention to the balanced development of the capabilities of each system, as well as to clarify the levels and weights, and gradually achieve the best system and the strongest capabilities through hierarchical modeling and positive cycles.

The output of the generation is closely focused on the game confrontation. Only by keeping a close eye on the military game process can the construction of new quality combat power be targeted and in the right direction. We should focus on system competition, form a system of troops, seek system advantages, produce system results, and strengthen system capabilities in combat theory, equipment development, military training, etc., and avoid shortcomings. We should seek asymmetric checks and balances, neither closed and rigid, nor copy and paste, follow the trend, lead opponents in the key areas of building new quality combat power of intelligent joint operations, and create new advantages to check and balance powerful enemies in the process of actively responding to changes and seeking changes.

The generation efficiency is embedded in the inspection and evaluation. The generation efficiency of the new quality combat capability of intelligent joint operations should be included in the inspection and evaluation system. By analyzing strategic tasks to set operational requirements and new quality combat capability indicators, simulating and deducing the effectiveness of the use of new quality combat capability scenarios through major exercise activities, and testing and measuring new quality combat capability indicators through the design of evaluation model algorithms, evaluation and feedback can be used to support the construction of new quality combat capability of intelligent joint operations.

(Author’s unit: Strategic Assessment and Consulting Center, Academy of Military Science)

現代國語:

從智慧制勝角度看新質戰鬥力生成

■張宏昌 閻 魁 史 霞

引言

智能製勝,是新質戰鬥力「質」中鮮明的時代特徵。隨著科技發展與戰爭形態演變,以“能量機動和信息互聯”為基礎、“網絡通信和分佈式雲”為支撐、“數據計算和模型算法”為內核、“跨域指揮和多域行動”為途徑的智慧化聯合作戰,逐漸勾勒出新質戰鬥力應用的鮮活場景。新質戰鬥力的智慧化趨勢,將引發軍事領域的鍊式突破,成為改變戰爭規則的關鍵變數。提升新質戰鬥力、打贏未來戰爭,應該向智能化作戰“叩門”,探索迭代生成智能化聯合作戰新質戰鬥力的方法路徑。

按智能製勝機理解析新質戰鬥力特徵

縱觀人類史,戰爭制勝機理無不鮮明留下科技發展的時代烙印。認識掌握智慧化聯合作戰新質戰鬥力,應緊跟戰爭形態發展,解析其關鍵特徵。

戰場環境多域分佈。戰場環境是新質戰鬥力的運用空間,是認識智慧化聯合作戰新質戰鬥力的時空框架。自戰爭產生以來,戰爭時空經歷了平面、立體、無形空間等多次飛躍。目前,作戰對抗在包含物理域、資訊域甚至生物域、社會域等維度的融合空間展開。智能化聯合作戰,虛擬空間地位上升並逐漸與物理空間深度融合一體,網電、情報、心理等無形對抗構成全新空間,建立虛擬戰場、實現虛實互動、達成以虛制實成為聯合作戰新的發力端。

構成要素多元整合。構成要素是新質戰鬥力的內涵特徵,是智慧化聯合作戰新質戰鬥力的基礎元素。機械化聯合作戰是平台中心戰,主導力量是火力和機動力,人、機械化裝備、戰法的組合方式更多是疊加累積,目的是實現以物載能、以物釋能。資訊化聯合作戰是網絡中心戰,主導力量是資訊力,網絡資訊、人、資訊化裝備、戰法的組合方式更多是鏈接貫通,目的是實現以網聚能、以網釋能。智能化聯合作戰的主導力量是智力,作戰要素雲、網、人、裝備、戰法通過模型、算法、數據多元整合,構成敏捷重組、自主適應的復雜系統,實現以智蠅能、以智制能。

作用方式多能並行。作用方式是新質戰鬥力的釋能途徑,也是解析智能化聯合作戰新質戰鬥力的關鍵所在。體系架構、分佈協同在聯合作戰中的使用,使分佈並行在戰爭中嶄露頭角。聯合作戰中,資訊共享、機動反應、火力打擊、指控決策速度皆大幅加快,不同作戰單元效能可並行作用。在近年來的局部沖突和軍事行動中,指揮和作戰的顆粒度越來越小,但控制範圍、作戰效能、對抗烈度卻成倍增加,就是多能並行的最好例證。

評估反饋多層視角。評估回饋是新質戰鬥力演進提升的迭代起點,是推進智慧化聯合作戰新質戰鬥力發展的動態基礎,也是新質戰鬥力生成中易被忽視的環節。智慧化聯合作戰高精度、快節奏的特徵,讓多層視角評估回饋成為剛需。其中,雲網群端的鏈接視角,可以審視雲平台、網絡、「蜂群」、終端等運行狀況;有人無人的交互視角,能夠判斷不同交互階段技術機制;多域聚合的時空視角,有助於綜合評估認識戰場態勢。

用系統理念重構新質戰鬥力生成模式

目前,人工智慧、雲端計算等技術不斷催生聯合作戰基本要素發生嬗變。情報、指控、火力、網電等功能模塊之間,呈現由分離向融合、單裝向集群、實物為主向虛實互動發展的新趨勢。傳統作戰能力生成模式已難以適應發展,應以新思維重構新質戰鬥力生成模式。

創建智慧化戰爭體系。過時的軍事需求,孕育不出適應未來戰爭的最優體系。應以智慧科技為原點衍生概念場景,連結互動智慧零件和現有人員、裝備、戰法等,形成包含感知、決策、攻防、保障及虛實互動的智慧化作戰體系。一成不變的作戰體系,也難以適應戰爭形態的快速演變。應形成快速迭代、跨越提升的創新鏈,貫穿新質戰鬥力生成全過程,推動作戰體係從低階向高階演化。

打造敏捷性作戰單位。作戰體係是高強度的對抗系統,平時的迭代速度越迅速,建設水準越先進,戰時的生存能力就越強。打造智慧化聯合作戰體系,應以培育所有個體的主動性、創造性為起點,形成能夠快速響應,積極應對戰場不確定性的敏捷團隊。軍事訓練應充分汲取近期局部戰爭中的經驗教訓,改變大規模線式部署、集團作戰的傳統模式,突顯「化整為零」的分散式作戰演訓,增強體系抗毀性,提高穩定性。

推動顛覆性科技轉型。軍事革命的成功密碼之一,是科技向軍事的「浪湧」轉化。應著眼科技進步前移作戰準備基點,遷移轉化博弈論、複雜系統科學、軟件定義等最新科學成果,升級改造作戰軟硬體基礎平台,以創新思維、範式、工具,探尋體系製勝的機理。同時,加速移動互聯、雲端計算等成熟技術向作戰體系延伸,加速新材料、新能源、先進製造等向作戰平台應用,提高無人化、仿生化、群聚化智慧作戰水準。

謀求非對稱制衡優勢。 20世紀以來,「選擇性揭露」「成本強加」等將對手方向帶偏、節奏帶亂,成為大國軍事競爭中的慣用手段。單純依照他人主導的話語體系、方法體系“硬拼”,往往難以發揮自身優勢,甚至還會掉入對手預設的陷阱。應注重揚長避短,科學選擇自身戰鬥力發展路徑,實現錯位競爭。應跳出引領者預設,動態對標、迭代發展。強化批判證偽,防範被對手迷惑誤導。

以持續演化推動新質戰鬥力迭代發展

誰能在新質戰鬥力建設上領先一步,誰就能贏得制勝先機。智能化聯合作戰體係是一個不斷演進的復雜巨系統,其要素不斷拓展、環境跨越多域,應按照持續演化改進的機制,在戰略管理範疇內以需求為目標、以效能為關鍵、以精準為導向,推動新質戰鬥力迭代發展。

生成鏈路納入戰略管理。智慧化聯合作戰是推進戰爭準備的新前沿,應依照戰略管理連結統籌推進。需求環節,充分考慮能力與需求差距,科學論證建設資源投向投量;規劃及預算環節,依目標任務與現實資源匹配原則,著眼效益抓好預算控制執行;執行及評量環節,縱向上既要推進頂層機構接力協同作業,橫向再要調控、監督、糾偏各領域依職責逐一落實。

生成過程建立正向循環。智慧化聯合作戰處於科學技術由資訊網絡向人工智慧發展、作戰樣式由網絡中心戰向跨域自主並行作戰轉變、政治經濟外交與軍事手段融合運用的變革時代,新質戰鬥力生成過程應建立迭代發展、持續演進的正向循環。既注重各系統能力的均衡發展,也要劃清層次、釐清權重,透過分級建模、正向循環,逐步實現體系最優、能力最強。

生成輸出緊盯博弈對抗。只有緊盯軍事博弈過程,新質戰鬥力建設才能有的放矢、找準方向。應著眼體系競爭,在作戰理論、設備發展、軍訓等方面成體係用兵、謀體系優勢、出體系成果、強體系能力,避免短板缺項。要謀求非對稱制衡,既不封閉僵化,也不照抄照搬、跟風炒作,在智能化聯合作戰新質戰鬥力建設的關鍵領域領先對手,在主動應變求變中打造制衡強敵的新優勢。

產生效能嵌入檢驗評估。智慧化聯合作戰新質戰鬥力生成效能應納入檢驗評估體系。通過分析戰略任務設定作戰需求和新質戰鬥力指標、通過重大演訓活動模擬推演新質戰鬥力運用場景實效、通過設計評價模型算法檢驗度量新質戰鬥力指標,以評估反饋支撐智能化聯合作戰新質戰鬥力建設。

(作者單位:軍事科學院戰略評估諮詢中心)

來源:解放軍報 作者:張宏昌 閆魁 史霞 責任編輯:葉夢圓 2024-07-16 09

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/16324777888.html

China’s Artificial Intelligence Opens the Door to Intelligent Warfare Operational Success for the Military

中國人工智慧為軍隊開啟智慧戰爭作戰成功之門

現代英語:

At the beginning of 2017, Master, known as the evolved version of “AlphaGo”, swept Ke Jie, Park Tinghuan, Iyama Yuta and other top Go players on the Go online platform, winning 60 consecutive games, setting off a “Master storm” and causing many people to worry. What humans are worried about is not that Go, known as the “last bastion of human wisdom”, will be conquered by artificial intelligence, but that artificial intelligence has subverted Go today, what will it subvert tomorrow? This is the concern that hangs in people’s minds.

Master’s consecutive victories over human masters are similar to the nature of computers proving the four-color theorem. They are all victories of computing power and algorithms. There is no need to worry too much that they will dominate and enslave humans. However, artificial intelligence is developing rapidly, and it is generally believed that strong artificial intelligence will come sooner or later. Nowadays, artificial intelligence has penetrated into every corner of life. It is not uncommon to use artificial intelligence in war. Since the arrival of the artificial intelligence era is inevitable, how we use it in future wars will become the key to victory. Whether artificial intelligence brings threats or development to mankind depends on how to use it. “The fake horse is not good at running, but it can reach a thousand miles; the fake boat is not good at sailing, but it can cross the river.” The integration of war technology and artificial intelligence may be the way of the future.

Development History of Artificial Intelligence

Artificial Intelligence Opens the Door to Intelligent Warfare

Master’s 60-game winning streak makes us think about how artificial intelligence will change our lives. Perhaps the following life scenarios will gradually become a reality:

When driving, you tell the location and the autopilot system takes you to your destination;

In hospitals, you see tug-trailer robots from the United States transporting medical equipment and “Big White” robots caring for patients;

After get off work, you press the “Go Home Mode” on your phone, and when you open the door, you find that the curtains are closed, the temperature is right, the lights are soft, the water is hot, and there is a cute home robot greeting you.

In fact, you can also use an unmanned aerial vehicle to carry a diamond ring and propose to your beloved…

We have been looking forward to this day for a long time.

The era of great development of artificial intelligence is here!

As early as shortly after the first computer came out, scientists predicted that the era of artificial intelligence would come. In 1997, when Deep Blue defeated Kasparov, this beautiful scene seemed just around the corner. However, in the second half of the 20th century, artificial intelligence research fell into a cold winter due to the failure of several attempts at technological innovation. The most recent cold winter, from the end of the 20th century to the first decade of the 21st century, was caused by the bottleneck encountered in the research of neural networks.

In recent years, everyone can clearly feel that the theoretical research and perceptible products of artificial intelligence seem to have suddenly “exploded” in a blowout manner: wearable devices have appeared in large numbers, intelligent robots have appeared frequently, the accuracy of machine face recognition exceeds that of the naked eye, companies such as Apple and BMW have worked together to develop driverless cars, and the United States and Europe have successively established projects to tackle the human brain…

The explosion of artificial intelligence projects is not a coincidence, but a leap forward after more than 10 years of silence. Ray Kurzweil, an American scientist who successfully predicted that robots will defeat human chess players, has predicted that the wonderful intersection point when artificial intelligence surpasses the sum of human wisdom will be in 2045.

So, how big an impact will this wave of artificial intelligence explosion have, how long will the impact last, and to what extent will it change human life?

From weak artificial intelligence to strong artificial intelligence. After Deep Blue dominated the chess field in 1997, artificial intelligence did not change the world as expected, and Deep Blue disappeared after more than 10 years of silence. Artificial intelligence has also remained at the stage of weak artificial intelligence and has not made any breakthroughs. This period of nearly 20 years has become the longest artificial intelligence winter to date. Some people joked that the greatest achievement in the field of artificial intelligence in the past 20 years is that Spielberg made the science fiction movie “Artificial Intelligence” that has captivated the world. Spielberg put all the rich fantasies of human beings about the future world into the movie world he created. Subsequently, a series of movies about artificial intelligence such as “Robot Butler”, “Super Hacker” and “Ex Machina” came into being. Artificial intelligence has begun to enter all aspects of human life. The use of artificial intelligence in industries such as medicine, education, services, manufacturing, and even in the military field has become common, which makes many military enthusiasts think about what artificial intelligence means to the military field and where it will go in the future?

“AlphaGo” only represents the latest achievements of artificial intelligence in the fields of deep learning of machines based on neural networks, high-performance computing and big data technology, and is a weak artificial intelligence. However, some military experts predict that the application of strong artificial intelligence in the future will bring about huge changes, just like the entry of big data five years ago. In the military field where competition and game are more intense, artificial intelligence has been increasingly moving towards the battlefield since the emergence of computers in the last century, promoting the advent of the era of intelligent warfare.

Artificial intelligence is taking big steps onto the battlefield

Artificial intelligence is an important branch of modern information technology. The world’s first programmable “Giant” computer was born in Britain during World War II. Its purpose was to help the British army decipher German codes. In recent years, artificial intelligence has been increasingly used on the battlefield, profoundly changing the face of war. In summary, the application of artificial intelligence in the military field is mainly reflected in the following five aspects:

Intelligent perception and information processing. The rapid development of micro-electromechanical systems, wireless sensor network technology, and cloud computing technology has further developed battlefield perception methods in the direction of intelligent perception and information fusion processing. The U.S. military, Russian military, French military, German military, etc. are all equipped with digital soldier systems with intelligent information perception and processing capabilities, such as the U.S. military’s “Night Warrior” and the Russian military’s “Warrior”. In fiscal year 2015, the U.S. Department of Defense’s Advanced Research Projects Agency added research and development projects such as the “cerebral cortex processor”. This processor simulates the structure of the human cerebral cortex to solve problems such as real-time control of high-speed moving objects. In the future, its application will greatly improve the autonomous action capabilities of robots and drones.

Intelligent command and control assists decision-making. The military of various countries develops various military information systems in order to build a powerful grid network information system and improve intelligent evaluation and decision-making assistance capabilities. The command and control automation systems of major military powers are constantly developing, pursuing stronger information and decision-making advantages than their opponents. In recent years, the US military has established a cyber command to vigorously strengthen its network attack and defense capabilities, focusing on the development of intelligent diagnostic information systems for network intrusions based on cloud computing, big data analysis and other technologies, which can automatically diagnose the source of network intrusions, the degree of damage to one’s own network and data recovery capabilities.

Unmanned military platforms. Western countries began to attach importance to the research and development and application of small drones, remote-controlled unmanned vehicles and unmanned boats during World War I. At present, the armies of more than 70 countries in the world are developing unmanned system platforms. The US military has equipped more than 7,000 drones, and more than 12,000 ground wheeled (or tracked) robots have been put into use on the battlefields of Iraq and Afghanistan. In the near future, the US military will achieve that ground robots account for one-third of its ground forces, and the carrier-based X-47B drone will account for one-third of the total number of carrier-based aircraft, further promoting the coordinated training and exercise between manned and unmanned platforms.

Bionic robots. Since the 21st century, robot technology has developed rapidly. Various bionic robots such as humanoid robots, robot fish, and robot insects have been continuously introduced and have been increasingly used in the military field. For example, the US military once tested a “big dog” robot on the battlefield in Afghanistan to help soldiers with accompanying support. The US Department of Defense upgraded it in 2013, increasing its load capacity to 200 kilograms, running speed to 12 kilometers per hour, bulletproof and silent. The Russian army recently plans to step up the development of humanoid robots that can drive vehicles and form a robot unit that can fight side by side with human soldiers.

Expanding people’s physical skills and intelligence. The cross-integration of information technology, new material technology and biotechnology will further expand people’s physical strength, skills and intelligence. For example, foreign militaries are developing mechanical exoskeletons to create “mech warriors” with doubled physical strength; and by implanting bioinformatics chips to improve people’s memory and reaction ability, so that human soldiers can better adapt to the highly informationized combat environment in the future.

Artificial intelligence will drive a new round of military reforms

When new military technologies, operational concepts, and organizational structures interact to significantly enhance military combat capabilities, it will trigger new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, giving rise to new war styles and changing the internal mechanism of winning wars.

It brings a new impact on the concept of war. The history of human warfare has gone through the era of cold weapons, the era of hot weapons, the era of mechanization, and the era of informatization. The development of artificial intelligence has accelerated the arrival of the intelligent era. Can intelligence be divided into high-level intelligence and low-level intelligence? Do armies with high-level intelligence have an overwhelming advantage over low-level intelligence armies? If the “mechanization” of people and the “humanization” of machines are two inevitable development trends, does it go against the traditional ethics of war for robots that can think to fight instead of humans? Artificial intelligence has unprecedentedly improved battlefield perception and information processing capabilities. Does the “fog” of war still exist on the high-tech battlefield? To understand these issues, the military field must have a brainstorming session.

It brings new inspiration to theoretical innovation. The material and technological basis of war is constantly updated, opening up new space for innovation in strategic theories and operational concepts, and constantly giving birth to new disruptive technologies in the field of artificial intelligence; the combined application of precision strike ammunition, unmanned equipment and network information systems has given birth to new intelligent combat theories such as “distributed lethality”, “mothership theory”, “combat cloud” and “swarm tactics”; relying on one’s own information advantage and decision-making advantage, how to cut off and delay the opponent’s information and decision-making loop in a decentralized battlefield network has become a core issue that must be solved to win in intelligent warfare.

Future Trends in Military Applications of Artificial Intelligence

With the development and application of strategic frontier technology fields such as information technology, nanotechnology, biotechnology, new materials technology, and new energy technology, artificial intelligence-related technologies will continue to mature and play an increasingly important role in the military field.

Artificial intelligence technology and equipment continue to make breakthroughs. Major countries have elevated artificial intelligence to the level of national strategy. The Office of the Chief Scientist of the U.S. Air Force has issued the “Unmanned Systems Horizon” technology assessment and forecast report for 2035, which believes that the automation, autonomy and remote control performance of various unmanned systems and combat platforms in the future will continue to make breakthroughs with the advancement of technology. In particular, with the advancement of technologies such as super-large-scale computing, quantum computing, cloud computing, big data, and brain-like chips, artificial intelligence information processing and control technology will be greatly developed, profoundly changing the proportion of artificial intelligence technology in modern warfare.

Artificial intelligence has given rise to the vigorous development of new combat forces. The widespread application of artificial intelligence systems and combat platforms will make artificial intelligence, as an important combat element, permeate the entire process of war and combat preparation, and further enrich the connotation of new combat forces. With the application of drone formations, unmanned submarine formations, battlefield robot soldier formations, and coordinated formations of unmanned and manned combat units on the battlefield, various types of “mixed” new combat forces will continue to emerge. With the construction and application of military Internet of Things, military big data, and cloud computing technology in the military field, artificial intelligence combat forces such as “cloud brain”, “digital staff”, and “virtual warehousing” for information support, command and control, effect evaluation, and logistics support will play an increasingly important role in future wars.

Artificial intelligence is constantly evolving and upgrading through actual combat applications. Artificial intelligence systems and combat platforms, which are supported by information technology, are different from the research and development model of traditional mechanized weapons and equipment. Mechanized weapons and equipment are generally put into use after the technology matures until they are scrapped and eliminated, and have a certain service life; artificial intelligence systems are developed in the mode of system prototype-practical training-evolutionary upgrade. Artificial intelligence systems often use continuous evolution to improve their intelligence level according to different versions. The evolution direction of artificial intelligence is always towards high-level intelligence. This law of development of artificial intelligence systems and combat platforms has revolutionary significance for military training and combat capability improvement. In recent years, the United States and its allies have continued to organize activities such as the “Schriever” space (network) exercise and the “Lockton” cybersecurity exercise, which are repeated tests and upgrades of their artificial intelligence information systems. In the future, upgrading training of artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will be an important way to improve combat effectiveness.

Artificial Intelligence Helps Build Smart National Defense

Data is called a strategic resource in the information age. The emergence of artificial intelligence provides methods and means for humans to deeply mine the wisdom resources of data information, and is leading and reshaping the development trend of the world’s new military transformation. Facing the booming wave of artificial intelligence, how to meet challenges, seize opportunities, accelerate the construction of military informatization, and enhance the core military capabilities to win modern wars are the contemporary issues that our army must answer to achieve the goal of strengthening the army. On the one hand, our army must keep a clear mind and make prudent judgments. We must not be frightened by the seemingly powerful and mysterious appearance of artificial intelligence, nor blindly applaud it, nor be indifferent and lose the opportunity for development, and be attacked by opponents due to lack of technical cognition. Breakthroughs in individual technical fields of artificial intelligence are nothing more than an extension of human intelligence, but they cannot replace the dominant position of human intelligence. People are still the core element of all elements of combat effectiveness, and people’s subjective initiative is still the key to determining the outcome of intelligent warfare. On the other hand, our army should implement the military-civilian integration development strategy and the innovation-driven development strategy, grasp the trend of the times, highlight the characteristics of our army, keep a close eye on the opponent’s layout, boldly absorb and apply the relevant technological achievements of artificial intelligence to promote the information construction of the army, and try to apply artificial intelligence technology to achieve transformation and upgrading in platform construction, logistics support, military training, national defense mobilization and other fields. Actively develop countermeasures against the opponent’s military application of artificial intelligence, and explore the winning mechanism of the game with strong enemies in the field of artificial intelligence in practice.

Related links

The military application of artificial intelligence in the United States, Russia and other countries

United States: In July 2016, the U.S. Marine Corps tested the Modular Advanced Armed Robotic System (MAARS), which uses sensors and cameras to control gun-wielding robots based on artificial intelligence. The “Army Global Military Command and Control System” developed by the U.S. Army has been equipped with Army Aviation Force transport helicopters, allowing helicopter pilots to maintain contact with frontline soldiers and command ground forces.

Russia: The “Wolf-2” mobile robot system being developed by the Russian Strategic Missile Forces uses a tracked chassis and can be controlled via radio channels within a range of 5 kilometers. The shooting accuracy is guaranteed by a thermal imager, ballistic computer, laser rangefinder and gyro stabilizer, and it can hit the target at a speed of 35 kilometers per hour.

Israel: The robot “Dogo” developed by the company is an automatically armed tactical combat robot, which comes with a standard Glock 26 9mm caliber pistol. It can be said to be a little devil.

The arrival of the “Master” makes the combat style develop towards unmanned

The Go account Master has challenged the world’s top players on two major Go platforms, Yicheng Go and Tencent Go, and won 60 consecutive games, which has attracted great attention from the world on artificial intelligence. Few people thought that in the field of Go, machines did not experience a period of “stalemate” with humans, but directly left in the dust.

Engels once said that the application of cutting-edge technology began in the military field. Military struggle is a comprehensive contest covering multiple dimensions, multiple fields, full time domain and high intensity, and the addition of artificial intelligence will accelerate the pace of military reform in various countries like a catalyst. Looking at the entire process of the two industrial revolutions and the two world wars, we will find that there is an inevitable connection between “technology” and “war”. Technology will trigger war, and war in turn will promote the development of technology. At this stage, all countries have made great progress in the development of information and intelligent weapons and equipment, and various precise positioning, precise strike, and precise evaluation weapon systems have emerged in an endless stream. However, humans have not yet been separated from the weapon system, and a large part of the operations still need to be completed manually. The combination of artificial intelligence and weapons and equipment means that in the future, from searching and discovering targets, to threat assessment, to locking and destroying, and then to effect evaluation, this series of processes does not require human participation at all. Machines can help us make decisions and achieve unmanned development of combat styles.

Master quietly disappeared after winning 60 games in a row, but discussions about the future of artificial intelligence are still endless: Will it take away human jobs, or will it be an extension of human functions? Will it eventually surpass human intelligence, or will it merge with humans? The answers to these questions are not as simple as either one or the other. Solving them will accompany the future development of artificial intelligence. In 1997, “Deep Blue” defeated Kasparov, making more use of computer computing expertise such as hardware acceleration and brute force computing. AlphaGo uses new artificial intelligence technologies such as neural networks, deep learning, and Monte Carlo tree search, and its strength has already made a substantial leap. These new technologies make artificial intelligence more competent for tasks such as voice and image recognition and evaluation and analysis, and are therefore an important development direction.

Although the dust has settled on this round of the Go “man-machine battle”, the thoughts it has triggered in various fields are very worthy of study. Among them, “‘man-machine battle’ is the best pre-practice of war” is particularly worthy of serious study in the military field. Whether in the era of cold weapons or the mechanized era, fighting on the front line relies on “human wave tactics”, and solving problems requires “concentrating superior forces”. Informatized warfare no longer uses “human wave tactics”, and the scene of large-scale fighting is difficult to reproduce, but as far as the entire war is concerned, the use of troops is not necessarily less, on the contrary, it may be more, but the number of troops used at the forefront has been greatly reduced, and the position of the troops has undergone a major shift. In the unmanned, networked and non-contact combat mode of future wars, there will be more participants, and sometimes you cannot know who the opponent is or where he is hiding.

Although the competition field and the battlefield have different operating rules, many of the winning mechanisms are the same. In the past, we could only learn about war in war, but now we can learn about war in a computer-simulated, near-actual combat environment, and deduce the offensive and defensive modes and development trends of future wars. “AlphaGo” can easily collect the chess games of many Go masters, but in the military field, it is extremely difficult to obtain relevant data on your opponent’s training, exercises, and even combat! Future wars are carried out with the support of information systems. Only by solving the core problem of human-machine integration can we take the initiative on the battlefield and win the final victory in modern warfare. (Zhu Qichao, Wang Jingling, Li Daguang)

現代國語:

寫在前面

2017年伊始,被稱為進化版“阿爾法狗”的Master在圍棋網絡平台橫掃柯潔、樸廷桓、井山裕太等圍棋界頂尖高手,豪取60連勝,掀起一股“Master風暴”,也引起了很多人的擔憂。人類擔心的不是圍棋這塊被稱為「人類智慧的最後堡壘」的領域被人工智慧攻克,而是擔心人工智慧今天顛覆了圍棋,明天還會顛覆什麼?這是橫亙在人們心頭的顧慮。

Master連勝人類高手,與電腦證明四色定理性質相似,都是算力與演算法的勝利,不用過度擔憂它們會主宰人類、奴役人類。但人工智慧發展日新月異,大家普遍認為強人工智慧降臨是遲早的事。如今,人工智慧已經滲入生活的各個角落。在戰爭中運用人工智慧的情況也並不罕見,既然人工智慧時代的到來已經無法避免,那麼未來戰爭中我們如何運用它將會成為致勝關鍵。人工智慧帶給人類的是威脅還是發展,關鍵在於如何利用,「假輿馬者,非利足也,而致千里;假舟楫者,非能水也,而絕江河。」戰爭技術與人工智慧融合,也許是未來之路。

人工智慧發展歷程

人工智慧叩開智慧化戰爭大門

Master的60連勝讓人思考人工智慧會為我們的生活帶來如何的改變。或許,以下這些生活場景將陸續變成現實:

開車時,你說出地點,自動駕駛系統將你帶到目的地;

在醫院,你看到來自美國的拖車機器人在運送醫療器材和「大白」機器人在照顧病人;

下班後,你按下手機上的“回家模式”,推開家門你發現,窗簾已經拉上,溫度適宜,燈光柔和,熱水燒好,還有可愛的家居機器人跟你問好賣萌;

其實,你還可以使用無人飛行器,載著鑽戒,向心愛的她求婚…

這一天,我們期待已久。

人工智慧大發展時期來了!

早在第一台電腦問世後不久,就有科學家預言,人工智慧的時代必將來臨。 1997年,當「深藍」戰勝了卡斯帕羅夫之後,這美好的情景似乎更是指日可待。但在20世紀後半葉,人工智慧研究卻因為數次技術革新嘗試的失敗而陷入寒冬。最近的一個寒冬期,從20世紀末到21世紀的頭10年,是因為神經網路的研究遭遇瓶頸而帶來的。

近年來,大家都能明顯地感覺到,人工智慧的理論研究和可感知產品似乎突然井噴式地「爆發」了:可穿戴設備扎堆出現,智慧機器人頻頻亮相,機器的人臉辨識準確率超過肉眼,蘋果和寶馬等公司齊發力無人駕駛汽車,美國、歐洲先後設立人類大腦攻關計畫…

人工智慧計畫的大爆發,並不是巧合,而是在經歷了10餘年的沉寂後迎來的飛躍式發展。成功預言機器人必將會戰勝人類棋手的美國科學家雷‧庫茲韋爾又預言:人工智慧超越人類智慧能總和的那個奇妙交點,就在2045年。

那麼,這一波人工智慧的爆發會有多大影響,影響的時間會持續多久,又會在多大程度上改變人類的生活呢?

從弱人工智慧到強人工智慧。 1997年「深藍」在西洋棋領域稱霸以後,人工智慧沒有像預想的那樣改天換地,而「深藍」則在沉寂了10多年,銷聲匿跡。人工智慧也一直停留在弱人工智慧的階段,遲遲沒有突破,這段跨度近20年的時間,成為了迄今為止最長的一次人工智慧寒冬。有人戲談,這20年裡面人工智慧領域最大的成就,就是史匹柏拍出了《人工智慧》這部讓全世界傾倒的科幻電影,史匹柏把人類對於未來世界的豐富幻想傾盡所能地放入了自己製造的電影世界。隨之,《機器管家》《超級駭客》《機械姬》等一系列講述人工智慧的電影應運而生。人工智慧開始進入人類生活的各個層面,醫療、教育、服務、製造等產業,甚至軍事領域的人工智慧運用也變得普遍起來,這讓許多軍事愛好者思考,人工智慧對於軍事領域究竟意味著什麼,未來將走向何方?

「阿爾法狗」只代表了人工智慧在基於神經網路的機器深度學習、高效能運算和大數據技術等領域的最新成就,屬弱人工智慧。但有軍事專家預言,未來強人工智慧的運用就會如同5年前大數據的進入一樣,帶來巨大的改變。在競爭與博弈更為激烈的軍事領域,人工智慧自上個世紀隨著電腦的出現已經越來越多地走向戰場,推動著智慧化戰爭時代的來臨。

人工智慧正大踏步走上戰場

人工智慧是現代資訊科技的重要分支,世界上第一台可編程的「巨人」電腦誕生於二戰期間的英國,其目的就是為了幫助英軍破解德軍密碼。近年來,人工智慧越來越多地走上戰場,深刻改變戰爭面貌。總結來看,人工智慧在軍事領域的應用主要表現在以下5個面向:

智慧化感知與資訊處理。微機電系統、無線感測器網路技術、雲端運算技術的快速發展,使得戰場感知手段進一步朝著智慧感知與資訊融合處理的方向發展。美軍、俄軍、法軍、德軍等均裝備了具有智慧化訊息感知與處理能力的數位化士兵系統,如美軍的「奈特勇士」、俄軍的「戰士」等。美國國防部高級研究計畫局2015財年中新增了「大腦皮質處理器」等研發項目,該處理器透過模擬人類大腦皮質結構,解決高速運動物體的即時控制等難題,未來投入應用將大幅提高機器人、無人機等的自主行動能力。

智能化指揮控制輔助決策。各國軍隊透過開發各種軍事資訊系統,目的是建構功能強大的柵格化網路資訊體系,提升智慧化評估和輔助決策能力。各軍事大國不斷發展的指揮控制自動化系統,追求比對手更強的資訊優勢與決策優勢。近年來,美軍建立網路司令部,大力加強網路攻防能力,專注於雲端運算、大數據分析等技術研發針對網路入侵的智慧診斷資訊系統,能夠自動診斷網路入侵來源、己方網路受損程度與資料恢復能力。

無人化軍用平台。西方國家在一戰期間就開始重視小型無人機、遙控無人車和無人艇的研發應用。目前世界上已有70多個國家軍隊在發展無人系統平台。美軍已裝備的無人機達7,000多架,在伊拉克、阿富汗戰場上投入運用的地面輪式(或履帶式)機器人超過12,000個。美軍近期將實現地面機器人佔地面兵力的三分之一,艦載型X-47B無人機將佔艦載機總量的三分之一,進一步推進有人平台與無人平台之間的協同編組演訓。

仿生機器人。自21世紀以來,機器人技術呈現井噴式發展,類人機器人、機器魚、機器昆蟲等各種仿生機器人不斷問世,並在軍事領域有了越來越多的應用。例如美軍曾在阿富汗戰場上試驗了一款「大狗」機器人,幫助戰士實施伴隨保障。美國防部於2013年升級,提升負重至200公斤、奔跑時速每小時12公里、防彈和靜音效果。俄羅斯軍隊近來計畫加緊研發可以駕駛車輛的類人機器人、組成可與人類戰士並肩戰鬥的機器人部隊。

擴展人的體能技能和智能。資訊科技、新材料科技和生物科技的交叉融合使得人的體能、技能和智慧將進一步擴展。例如,外軍正透過研發機械外骨骼,來打造體力倍增的「機甲戰士」;透過生物資訊晶片的植入來提升人的記憶力與反應能力,以使人類戰士更能適應未來高度資訊化的作戰環境。

人工智慧將推動新一輪軍事變革

當新的軍事技術、作戰理念和組織編成相互作用顯著提升軍事作戰能力時,將促進新的軍事變革的發生。人工智慧在軍事領域越來越廣泛的應用,正成為軍事變革的重要推手,催生新的戰爭樣式,改變戰爭制勝的內在機制。

對於戰爭觀念帶來新的衝擊。人類戰爭史經歷了冷兵器時代、熱兵器時代、機械化時代、資訊時代,人工智慧的發展使得智慧化時代加速到來。智能是否可分為高階智能和低階智能?擁有高階智慧化程度的軍隊對於低階智慧化的軍隊是否具有壓倒性優勢?如果人的「機器化」和機器的「人化」是兩個必然的發展趨勢,會思考的機器人取代人類拼殺是否有違傳統的戰爭倫理?人工智慧使得戰場感知能力和資訊處理能力空前提高,在高技術化的戰場上戰爭的「迷霧」是否仍舊存在?對於這些問題的理解,要求軍事領域必須來一場腦力激盪。

對於理論創新帶來新的啟發。戰爭的物質技術基礎不斷更新,為戰略理論和作戰概念創新開闢了新的空間,不斷催生人工智慧領域新的顛覆性技術;精確打擊彈藥、無人化裝備與網路資訊體系的組合應用,催生了“分散式殺傷”“母艦理論」「作戰雲」「蜂群戰術」等新的智能化作戰理論;憑藉己方的信息優勢和決策優勢,如何在去中心化的戰場網絡中切斷和遲滯對手的信息與決策迴路,成為智能化戰爭制勝必須解決的核心問題。

人工智慧軍事應用的未來趨勢

隨著資訊科技、奈米技術、生物技術、新材料技術、新能源技術等戰略前沿技術領域的發展應用,必將繼續推動人工智慧相關技術日益成熟,在軍事領域扮演越來越重要的角色。

人工智慧技術與裝備不斷取得突破。主要國家紛紛將人工智慧提升到國家戰略高度,美空軍首席科學家辦公室頒布2035年的《無人系統地平線》技術評估與預測報告,認為未來各類無人系統與作戰平台的自動化、自主性和遠端遙控性能將隨著技術的進步而不斷取得突破。尤其隨著超大規模運算、量子運算、雲端運算、大數據、類腦晶片等技術的進步,將使得人工智慧的資訊處理與控制技術獲得極大發展,深刻改變現代戰爭人工智慧的技術比重。

人工智慧催生新型作戰力量蓬勃發展。人工智慧系統與作戰平台的廣泛應用,將使人工智慧作為重要的作戰要素滲透於戰爭與作戰準備的整個流程,進一步豐富新型作戰力量的內涵。隨著無人機編組、無人潛航器編組、戰場機器人士兵編組以及無人與有人作戰單元的協同編組走向戰場應用,各類「混搭式」新型作戰力量將持續出現。隨著軍事物聯網、軍用大數據、雲端運算技術在軍事領域的建置運用,用於資訊支援、指揮控制、效果評估、後勤支援的「雲端大腦」、「數位參謀」、「虛擬倉儲」等人工智慧作戰力量將在未來戰爭中發揮越來越重要的作用。

人工智慧透過實戰應用不斷演化升級。以資訊科技為核心支撐的人工智慧系統與作戰平台,與傳統機械化武器裝備的發展發展模式不同。機械化武器裝備一般在技術成熟後投入使用直到報廢淘汰,有著一定的使用壽命;人工智慧系統則是按照系統原型-實踐訓練-演化升級的模式發展,人工智慧的系統往往按照不同版本用不斷演化的方式提升其智能化水準。人工智慧的演化方向總是朝著高階智慧不斷升級,人工智慧系統與作戰平台的這種發展法則對於軍事訓練和作戰能力提升具有革命性意義。美國及其盟友近年來持續組織「施里弗」太空(網路)演習、「鎖頓」網路安全演習等活動,就是其人工智慧資訊系統的反覆測試與升級演化。未來,透過持續的對抗演習對人工智慧系統和各類無人化作戰平台的升級訓練,將是戰鬥力提升的重要方式。

人工智慧助力智慧國防建設

數據被稱為資訊時代的戰略資源,人工智慧的出現,為人類深度挖掘數據資訊的智慧資源提供了方法手段,正在引領並重塑世界新軍事變革的發展態勢。面對人工智慧蓬勃發展的浪潮,如何迎接挑戰,把握機遇,加速推進軍隊資訊化建設,提升打贏現代戰爭的核心軍事能力,是我軍實現強軍目標必須回答的時代議題。一方面,我軍要保持清醒頭腦、審慎研判,既不能被人工智慧看似強大神秘的表象所嚇倒,也不能盲目叫好,更不能無動於衷而喪失發展的機遇,由於缺乏技術認知力而被對手造成技術突襲。人工智慧個別技術領域的突破,不過是人類智能的延伸,卻不能取代人類智能的支配地位,人仍是戰鬥力各要素中的核心要素,人的主觀能動性仍是決定智能化戰爭勝負的關鍵。另一方面,我軍應貫徹軍民融合發展戰略、創新驅動發展戰略,掌握時代趨勢,彰顯我軍特色,緊盯對手佈局,大膽吸收應用人工智慧相關技術成果助推軍隊資訊建設,在平台建設、後勤保障、軍事訓練、國防動員等領域嘗試應用人工智慧技術實現轉型升級,積極發展針對對手人工智慧軍事應用的反製手段,在實踐中探索人工智慧領域與強敵博弈的致勝機制。

相關連結

美俄等國人工智慧在軍事上的運用

美國:2016年7月,美國海軍陸戰隊測試模組化先進武裝機器人系統(MAARS),利用感測器和攝影機基於人工智慧控制持槍機器人。美國陸軍開發的“陸軍全球軍事指揮控制系統”,目前已經裝備陸軍航空部隊運輸直升機,可使直升機駕駛員與前線士兵保持聯絡,並指揮地面部隊。

俄羅斯:俄羅斯戰略飛彈部隊正在研發的「狼式—2」移動式機器人系統使用履帶式底盤,可在5公里範圍內透過無線電頻道控制,由熱成像儀、彈道電腦、雷射測距儀和陀螺穩定器保證射擊精度,能夠在時速35公里的情況下擊中目標。

以色列:研發的機器人「多戈」自動武裝戰術作戰機器人,自備一支標準格洛克26型9毫米口徑手槍,堪稱人小鬼大。

「大師」來襲,讓作戰樣式向無人發展

圍棋帳號Master(大師),連續在弈城圍棋、騰訊圍棋兩大圍棋平台中,挑戰世界頂尖棋手,取得60連勝,引發全球對人工智慧的高度關注。幾乎沒有多少人想到,在圍棋領域機器沒有經歷與人類「相持」的時期,直接就絕塵而去。

恩格斯曾說過,尖端科技的應用最早是從軍事領域開始。軍事鬥爭是涵蓋多維度、多領域、全時域、高強度的綜合較量,而人工智慧的加入將如催化劑般加快各國軍事變革步伐。縱觀兩次工業革命和兩次世界大戰的整個過程,我們會發現「科技」和「戰爭」存在著必然的聯繫。科技會觸發戰爭,戰爭反過來推動科技的發展。現階段各國在武器裝備資訊化、智慧化發展方面都取得長足進步,各種精確定位、精確打擊、精確評估武器系統層出不窮。但是人類還未能從武器系統中分離出來,很大部分操作依然需要人工完成。人工智慧與武器裝備結合就意味著以後,從搜尋發現目標,到威脅評估,到鎖定摧毀,再到效果評估,這一系列過程完全不需要人類參與,機器就能幫我們作決定,做到作戰樣式無人發展。

Master取得60連勝後悄悄消失,但人工智慧何去何從的探討仍不絕於耳:它會搶了人類飯碗,還是作為人類功能的延伸?它終將超越人類智慧,還是會與人類融合?這些問題的答案,不是非此即彼那麼簡單。對於它們的求解,將伴隨著人工智慧未來的發展。 1997年「深藍」擊敗卡斯帕羅夫,更多發揮了硬體加速、暴力計算等電腦運算特長。而AlphaGo使用神經網路、深度學習、蒙地卡羅樹搜尋法等人工智慧新技術,實力早有實質飛躍。這類新技術讓人工智慧更加勝任語音和影像辨識以及評估分析等工作,因此是重要發展方向。

這一輪的圍棋「人機大戰」雖然塵埃落定,但它在各領域引發的思考卻非常值得研究。其中,「『人機大戰』是戰爭最好的預實踐」特別值得軍事領域認真研究。不管是冷兵器時代,還是機械化時代,在前方打仗靠的是“人海戰術”,解決問題需要“集中優勢兵力”。資訊化戰爭不再打“人海戰術”,大兵團廝殺的場景難於再現,但就整個戰爭而言,用兵並不見得少,相反有可能還多,只不過是用在最前沿的兵大大減少了,用兵的位置發生了乾坤大挪移。未來戰爭無人、網路化和非接觸的作戰模式,參與者會變得更多,有時你無法知道對手是誰、藏在哪裡。

賽場和戰場雖然有不同的運作法則,但制勝機制很多則是相通的。過去,我們只能在戰爭中學習戰爭,現在可以在電腦模擬的近似實戰環境下學習戰爭,推演未來戰爭的攻防模式和發展趨勢。 「阿爾法狗」可以輕易蒐集獲得眾多圍棋高手的棋局,但在軍事領域,你想要獲得對手訓練、演習乃至作戰方面的相關數據,難上加難!未來戰爭是在資訊體系支撐下進行的,只有解決好人機融合這一核心問題,才能佔據戰場的主動,贏得現代戰爭最後的勝利。 (朱啟超、王婧凌、李大光)

中國原創軍事資源:https://military.people.com.cn/n1/2017/0123/c1011-29044316888.html

Chinese Military & Winning Mechanisms of Intelligent Warfare丨Focusing on Aspects of “Smart Victory”

中國軍隊與智慧戰爭制勝機制丨聚焦「智勝」各個面向

現代英語:

Modern warfare has undergone profound changes. The most fundamental thing is that the winning mechanism has changed. If you want to win the war, you must understand the winning mechanism of modern war. At present, the form of war is accelerating its evolution to information-based warfare, and intelligent warfare is beginning to take shape. What is the winning mechanism of intelligent warfare? What are the new changes and what are the new characteristics? In order to answer these questions clearly, this journal launches a series of articles “Focusing on the Winning Mechanism of Intelligent War”. Readers are welcome to contribute ideas and actively debate, so as to jointly promote the in-depth research on the winning mechanism of intelligent war.

At present, a new round of scientific and technological revolution and industrial transformation led by artificial intelligence is in the ascendant. “Artificial intelligence is like previous missiles and satellites. Whether you are prepared or not, it will enter the historical stage of human war.” Intelligent warfare has already Coming in stride. To win the intelligent wars that may occur in the future, the core is to clarify the winning mechanism of intelligent wars.

Clarify the unique connotation of the winning mechanism of intelligent warfare

To clarify the winning mechanism of intelligent warfare, we must first define the connotation of the word “mechanism” accurately. The author believes that “ji” can be understood as mystery and doorway, and “reason” can be interpreted as principle and reason. The so-called winning mechanism of intelligent war refers to the methods (paths) and principles for winning intelligent war. In order to further clarify this connotation, it is necessary to accurately grasp the differences and connections between the three pairs of concepts.

Grasp the unique connotation from the relationship between mechanism and laws. Laws are the inevitable connections between the inherent nature of things, and the laws for winning a war are the essential connections and inevitable trends of development of various factors related to winning a war. War is a complex giant system, and winning is also complicated. Many winning laws often work on the battlefield at the same time. If you conduct a detailed analysis of specific battle cases, you will find that in every battle of victory and defeat, there must be a certain law that plays a decisive role, and other laws play an auxiliary but indispensable role. The winning mechanism of war is the link and reason why the winning factors of war trigger the winning rules and play a winning role under certain conditions. The winning mechanism depends on the winning law and reflects the way and basis for the winning law to work. However, the winning law alone cannot become a winning mechanism. To summarize in relatively simple words, the winning law is the basis of the winning mechanism, and the winning mechanism is the application of the winning law.

Grasp the unique connotation from the relationship between mechanism and mechanism. Mechanism is the internal structure, function and interrelationship of things. The combat winning mechanism is the internal mechanism through which the various elements of the combat system interact to form a joint force and achieve victory. For example, gathering effectiveness and parallel linkage are all mechanisms. They are the application methods of relevant winning mechanisms. and implementation methods, and these methods and methods embody certain rules and have certain institutional characteristics. In information warfare, the comprehensive integration of combat elements such as intelligence reconnaissance, command and control, fire strikes and comprehensive support, and the optimization and reorganization of land, sea, air and other combat units will form a variety of winning mechanisms. Most of these winning mechanisms include information winning links that convert events into information, information into situation, situation into cognition, cognition into decision-making, decision-making into action, etc. It can be seen that the winning mechanism is the inner “Tao”, which is more abstract, while the winning mechanism is the “skill” of using Tao, which is more concrete.

Grasp the unique connotation from the relationship between mechanism and theory. Understanding, grasping and flexibly applying the laws and mechanisms of winning war requires correct guidance from the theoretical and strategic perspectives. Wise military theorists always make theoretical processing and creation after discovering new winning laws and mechanisms, thus forming new military guidance theories. It can be seen that the core of military theoretical innovation lies in revealing and clarifying new laws and mechanisms for winning wars, and then summarizing new war guidance. In the history of world military affairs, Mahan’s “sea power” theory, Douhet’s “air superiority” theory, Fuller’s “mechanized warfare” theory, Tukhachevsky’s “large depth operations” theory, Graham’s “high altitude” theory, etc. “Borderland” theory, etc., have revealed the corresponding laws and mechanisms for winning wars, led the military trend, and changed the face of war. It can be said that the mechanism of winning war is the basis and source of innovation in military theory, and military guidance theory is the smart application and theoretical sublimation of the mechanism of winning war.

Dialectically grasp the multiple implications of the winning mechanism of intelligent warfare

The winning mechanism of intelligent warfare includes the general mechanism of winning war, and at the same time embodies the distinctive characteristics of algorithmic games; there are corresponding winning mechanisms at the strategic, operational, tactical and other levels, and they are also closely related to algorithmic games. Due to various factors, the specific winning mechanism of each war may be different. Here, only a few types of winning mechanisms with certain universality are listed.

The “outwit” mechanism of using “strong” to defeat “weak”. “The strong wins and the weak loses” is a certain universal law for winning wars. Even in those battles in which the weak defeat the strong, it is often necessary to form a strength advantage over the enemy locally and at a specific period of time in order to truly win. According to the law of “the strong defeats the weak”, using the strong to defeat the weak has become a universal mechanism for winning wars. The “strong” here refers to the overall combat effectiveness. In the era of mechanized warfare, the strength of the overall combat effectiveness is mainly reflected in the superiority of troops and firepower. In the era of information warfare, the military’s ability to win wars depends on its information superiority. In the era of intelligent warfare, the contribution rate of intellectual superiority to combat effectiveness is much higher than other factors. In intelligent war confrontations, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. The side with higher and stronger intelligence can better develop and use the “outwit” mechanism of using the strong to defeat the weak, and even according to the This design war, dominates the development of the battle situation, and achieves final victory.

The “outwit” mechanism of using “high” to defeat “low”. The “high” and “low” here mainly refer to the “generation difference” and “dimensional difference”. Usually, the side that uses more advanced war forms and combat styles can defeat the side that is still using lower dimensional war forms and combat styles. For example, troops who generally use muskets can almost always outperform troops who use swords and spears. If “high” wins and “low” loses is the law of victory, then the methods and reasons for using “high” to defeat “low” become the winning mechanism. In the process of intelligent warfare, attacking the weaknesses of the opponent’s combat system to reduce or invalidate its “intelligence” and implementing “dimensionality reduction strikes” is the specific application of the “high” to defeat the “low” and “outwit” mechanisms. . It should also be noted that in the era of intelligent warfare, there are likely to be multiple stages of development from low to high. Try to keep yourself in an advanced stage and attack the opponent to a low-dimensional stage. This is also to use “high” to attack “low” The application of the “outwit” mechanism.

The “outwit” mechanism of using “fast” to defeat “slow”. With the strong promotion of science and technology, the connotation of “fast” in war is constantly being refreshed. During World War I, tanks could only maneuver at 4 to 8 miles per hour. By World War II, armored groups were able to conduct blitzes. In recent years, we have thought that supercomputers are already very fast, but quantum computers can process “Gaussian Bose sampling” one hundred trillion times faster than the fastest supercomputers. Quantum algorithms have achieved exponential acceleration compared to classical algorithms. Artificial Intelligence will achieve a qualitative leap. In future intelligent warfare, with the support of algorithms, early warning time will be advanced, decision-making time will be shortened, combat operations will be extended forward, the “observation-judgment-decision-action” cycle will be greatly compressed, and “instantaneous destruction” will be upgraded to “instantaneous destruction”, truly entering the future. The era of “instant kill” when discovered and destroyed.

The “outsmarting” mechanism of defeating “clumsy” with “skill”. In some classic battle cases, we can often see commanders using flexible strategies and tactics, turning passivity into initiative, and turning disadvantages into advantages, which embodies the law of victory that “skillful” can defeat “clumsy” and “skillful” can defeat “clumsy”. “Clumsy” winning mechanism. The “cleverness” in intelligent warfare, relying on the advantages of algorithms, began to come out of the commander’s brain and was endowed with “intelligent” weapon systems. When intelligent warfare develops to a certain stage, all-domain, multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build a combat system based on mission requirements, independently implement collaborative operations, and quickly return to the state of readiness for war after the mission is over, showing a trend of intelligent autonomy. . In the future, intelligent warfare will expand to the polar regions, deep sea, space and other fields. The mechanism of “outsmarting” by using “skill” to defeat “clumsy” will also expand accordingly, and more and newer “outsmart” paths will be developed.

Prospectively explore and develop the winning mechanism of intelligent warfare

In today’s world, the scientific and technological revolution and the military revolution influence each other, the form of war is accelerating the evolution, and the mechanism for winning war is constantly updated. In the context of the slowly opening of intelligent warfare, we must pay close attention to the development trend of the winning mechanism of intelligent war, change from passive to proactive, change from follow-up to leading, proactively explore and develop the winning mechanism of intelligent war, and firmly control the winning mechanism of intelligent war. Take the initiative to win intelligent wars.

Develop new winning mechanisms. History and reality show that once advanced science and technology are applied to the military, it will profoundly change the mechanism for winning wars, thus causing changes in existing combat guidance, doctrines, regulations, and troop formations. Today, with the rapid advancement of artificial intelligence, the development of military intelligence is limitless, and the specific winning mechanism of future intelligent warfare will inevitably exceed current expectations. We should actively explore the potential of existing advanced technologies in intelligent warfare and explore their possible winning mechanisms. Comprehensively analyze the weak points of the opponent’s unmanned combat system and our advantages, work backwards from the target points to determine the winning mechanism, propose military innovation needs, accurately develop strategic, cutting-edge, and disruptive technologies, and promote the “rules of the game” of war. A change of direction in my favor.

Validate new winning mechanisms. Whether the research results on the winning mechanism of intelligent warfare are effective or not needs to be tested in practice. In times of relative peace, we should strengthen the testing of actual combat training and targeted combat experiments, discover problems during testing, revise understandings, and make the new winning mechanism as scientific and thorough as possible. When the time and conditions are ripe, promote the new intelligent war winning mechanism to become the basis for the all-round reform and overall improvement of military training. We must persist in leading training with war and promoting war with training, so as to train according to the actual requirements of intelligent war and achieve Integration of operations and training. We must put ourselves first, learn from foreign militaries appropriately, break the limitations of more qualitative analysis and less quantitative analysis, vigorously build and improve intelligent warfare laboratories, open up innovative links from winning mechanisms to operational concepts to experimental platforms, and promote the elimination of the dross and the essence. Eliminate the false and preserve the true, and improve the scientificity and authoritativeness of the research results on the winning mechanism of intelligent warfare.

Sublimate new winning mechanisms. The new mechanism for winning wars is the deep basis for promoting innovation in military theory. When we discover new specific “outsmarting” mechanisms such as using “strong” to defeat “weak”, using “high” to defeat “low”, using “fast” to defeat “slow”, and using “skillful” to defeat “clumsy”. , in line with this mechanism, core combat concepts, combat principles, and war guidance can be put forward, and a new military theory on intelligent warfare can be formed through systematic processing. Some people say, “Rich imagination and deep insight are far more important than 100% accuracy.” It is necessary to moderately encourage “whimsical ideas” in war design, and guide creative researchers to propose new “war ideas” based on a deep understanding of military intelligence “technical creativity” and the winning mechanisms derived from it. Based on the research on the winning mechanism of intelligent warfare, we must deepen military theoretical innovation and accelerate the formation of a contemporary, leading and unique military theoretical system.

(Author’s affiliation: National Security College, National Defense University)

現代國語:

「智勝」機理:一個亟待研究的課題

■劉光明

編者按 現代戰爭發生了深刻變化,最根本的是製勝機理變了,要想贏得戰爭必須把現代戰爭制勝機理搞透。當前,戰爭形態加速向資訊化戰爭演變,智慧化戰爭初現端倪。智慧化戰爭的製勝機理是什麼,有什麼新變化,表現為哪些新特點?為把這些問題解答清楚,本刊特推出「聚焦智能化戰爭制勝機理」系列文章,歡迎廣大讀者獻計獻策、積極爭鳴,共同推動智能化戰爭制勝機理研究走向深入。

當前,由人工智慧引領的新一輪科技革命和產業變革方興未艾,“人工智慧就像先前的導彈、衛星一樣,無論你是否有所準備都將登上人類戰爭的歷史舞台”,智能化戰爭已經大步走來。打贏未來可能發生的智慧化戰爭,核心是釐清智慧化戰爭制勝機理。

釐清智慧化戰爭制勝機理獨特內涵

澄清智慧化戰爭制勝機理,首先要把「機理」一詞的內涵界定準確。筆者認為,「機」可理解為奧秘、門道,「理」可解讀為道理、理由。所謂智慧化戰爭制勝機理,即打贏智能化戰爭的門道(路徑)和道理。為進一步釐清這一內涵,需要準確掌握三對概念的區別與聯繫。

從機理與規律的關系把握獨特內涵。規律是事物內在的本質的必然的聯繫,戰爭制勝規律是與戰爭制勝有關各種因素的本質聯繫和發展的必然趨勢。戰爭作為複雜巨系統,制勝也具有復雜性,眾多的製勝規律往往在戰場上同時起作用。如果對具體戰例作具體分析會發現,每一次勝負較量必定有某個規律起決定性作用,其他規律則起著輔助的但也是不可缺少的作用。戰爭制勝機理則是戰爭制勝因素在一定條件下觸發制勝規律、發揮制勝作用的鏈路及其道理。制勝機理依賴制勝規律,體現了製勝規律發揮作用時的途徑和依據,但單憑制勝規律本身不能成為製勝機理。用相對簡單的話來概括,即制勝規律是製勝機理的基礎,制勝機理是製勝規律的應用之道。

從機理與機制的關系把握獨特內涵。機制是事物內部的構造、功能和相互關系,作戰制勝機制是作戰體系各要素互動形成合力、實現制勝的內在機制,如集效聚優、並行聯動都是機制,是對有關製勝機理的運用方法和實現方式,而這些方式方法體現一定的規則,帶有某種制度化的特徵。在資訊化戰爭中,對情報偵察、指揮控制、火力打擊和綜合保障等作戰要素進行綜合集成,對陸、海、空等作戰單元進行優化重組,會形成多種多樣的製勝機制。這些制勝機制大都包含這樣的製勝機理,即:事件轉化為資訊、資訊轉化為態勢、態勢轉化為認知、認知轉化為決策、決策轉化為行動的資訊制勝鏈路,等等。由此可見,制勝機理是內在的“道”,更為抽象,而製勝機制是運用道的“術”,更為具體。

從機理與理論的關系把握獨特內涵。認識、掌握和靈活運用戰爭制勝規律和機理,需要從理論和戰略策略上做出正確的指導。睿智的軍事理論家,總是在發現新的製勝規律和機理後,作出理論上的加工和創造,由此形成新的軍事指導理論。可見,軍事理論創新的核心在於揭示和釐清新的戰爭制勝規律和機理,進而概括出新的戰爭指導。世界軍事史上,馬漢的「海權」理論、杜黑的「制空權」理論、富勒的「機械化戰爭」理論、圖哈切夫斯基的「大縱深作戰」理論、格雷厄姆的「高邊疆」理論等,都揭示了相應的戰爭制勝規律和機理,引領了軍事潮流,改變了戰爭面貌。可以說,戰爭制勝機理是軍事理論創新的基礎和源泉,軍事指導理論是戰爭制勝機理的靈動運用和理論升華。

辯證掌握智慧化戰爭制勝機理多重意蘊

智慧化戰爭的製勝機理包括戰爭制勝的一般機理,同時又體現著演算法博弈的鮮明特點;在戰略、戰役、戰術等層面都有相應的製勝機理,同時也都與演算法博弈緊密聯繫。由於受多種因素制約,每一場戰爭具體的製勝機理都可能有所不同。這裡,僅列舉幾類帶有一定普遍性的製勝機理。

以「強」打「弱」的「智勝」機理。 「強勝弱敗」是帶有一定普遍性的戰爭制勝規律。即使是那些以弱勝強的戰例,往往也必須在局部和特定時段形成對敵的力量優勢才能真正取勝。依據「強勝弱敗」規律,以強打弱便成為帶有通用性的戰爭制勝機理。這裡的“強”,是整體戰鬥力的強。在機械化戰爭時代,整體戰鬥力的強大主要體現為兵力和火力優勢。在資訊化戰爭時代,軍隊能打勝仗有賴於資訊力優勢。而在智慧化戰爭時代,智力優勢對戰鬥力的貢獻率遠高於其他要素。在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,智能水平更高更強的一方,能夠更好地開發和運用以強打弱的“智勝”機理,甚至據此設計戰爭、主導戰局發展,取得最終勝利。

以「高」打「低」的「智勝」機理。這裡的“高”“低”,主要指“代差”“維度差”。通常情況下,運用較高級戰爭形態和作戰樣式的一方能夠打贏尚在運用較低維度戰爭形態和作戰樣式的一方。例如,普遍使用火槍的部隊幾乎都能勝過使用大刀長矛的部隊。如果說「高」勝「低」敗是製勝規律,那麼以「高」打「低」的那些門道及理由便成為製勝機理。在智能化戰爭進程中,針對對方作戰體系的弱點進行打擊,使其“智能”降低或失效,實施“降維打擊”,便是以“高”打“低”“智勝”機理的具體運用。還要看到,智能化戰爭時代很可能存在由低到高的多個發展階段,盡可能讓自己處於高級階段,攻擊對手使其處於低維度的階段,也是以“高”打“低”“智勝」機理的運用。

以「快」打「慢」的「智勝」機理。隨著科學技術的強勁推動,戰爭中「快」的內涵不斷刷新。第一次世界大戰期間,戰車機動速度每小時只能達到4~8英裡,到二戰期間裝甲集群已能實施閃擊戰。近年來我們認為超級計算機已經很快了,但量子計算機處理“高斯玻色採樣”的速度比最快的超級計算機快一百萬億倍,量子算法比經典算法實現了指數級的加速,人工智能將實現質的飛躍。未來智能化戰爭在演算法的支撐下,預警時間提前,決策時間縮短,作戰行動向前延伸,“觀察-判斷-決策-行動”週期大幅壓縮,“瞬時摧毀”升級為“即時摧毀”,真正進入發現即摧毀的「秒殺」時代。

以「巧」打「拙」的「智勝」機理。在一些經典戰例中,我們往往能夠看到指揮員運用靈活機動的戰略戰術,變被動為主動,化劣勢為優勢,體現了“巧”能勝“拙”的製勝規律和以“巧”打“拙」的製勝機理。智慧化戰爭中的“巧”,依托演算法優勢,開始從指揮員的大腦中走出來,被賦予擁有“智能”的武器系統。當智慧化戰爭發展到某個階段,全域多維、各種類型的智慧化作戰平台能夠快速耦合作戰力量,根據任務需求建立作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智慧自主趨勢。未來智慧化戰爭將向極地、深海、太空等領域拓展,以「巧」打「拙」的「智勝」機理也會相應拓展,開發出更多更新的「智勝」路徑。

前瞻探索與開發智慧化戰爭制勝機理

當今世界,科技革命和軍事革命相互影響,戰爭形態正在加速演變,戰爭制勝機理也不斷更新。在智能化戰爭大幕緩緩開啟的背景下,必須緊盯智能化戰爭制勝機理的發展趨勢,變被動為主動,變跟進為引領,前瞻探索和開發智能化戰爭制勝機理,牢牢掌控打贏得智能化戰爭的主動權。

開發新的製勝機理。歷史和現實表明,先進的科學技術一旦被運用於軍事,將使戰爭制勝機理發生深刻變化,從而使現有的作戰指導、條令法規和部隊編制隨之改變。在人工智慧飛速進步的今天,軍事智慧的發展不可限量,未來智慧化戰爭具體的製勝機理也必然超越現有的預料。應積極探索現有先進技術可能運用於智慧化戰爭的潛能,並探索其可能的致勝機理。全面分析對手無人化作戰體系的薄弱節點和我之優勢,從目標靶點反推制勝機理,提出軍事創新需求,精準研發戰略性、前沿性、顛覆性技術,推動戰爭「遊戲規則」向於我有利的方向轉變。

驗證新的製勝機理。智慧化戰爭制勝機理的研究成果究竟管不管用,需要用實踐來檢驗。在相對和平時期,應加強實戰化軍事訓練和針對性作戰實驗的檢驗,在檢驗中發現問題、修正認識,使新的製勝機理盡可能科學、周密。在時機和條件成熟時,推動新的智慧化戰爭制勝機理成為軍事訓練全方位變革、整體性提升的依據,堅持以戰領訓、以訓促戰,做到按智能化戰爭實戰要求訓練,實現作戰和訓練一體化。要以我為主,適度借鑑外軍,破除定性分析多、定量分析少的局限,大力構建完善智能化戰爭實驗室,打通從制勝機理到作戰概念再到實驗平台的創新鏈路,推動去粗取精、去偽存真,提升智慧化戰爭制勝機理研究成果的科學性、權威性。

升華新的製勝機理。新的戰爭制勝機理是推進軍事理論創新的深層依據。當我們發現了新的以「強」打「弱」、以「高」打「低」、以「快」打「慢」、以「巧」打「拙」等具體的「智勝」機理後,就可以契合這個機理提出核心作戰概念、作戰原則和戰爭指導等,經過系統加工形成關於智慧化戰爭的新的軍事理論。有人說,「豐富的想像力和深刻的洞察力,遠比百分之百的準確性更為重要」。要適度鼓勵戰爭設計上的“異想天開”,引導有創見的研究人員在深刻理解軍事智能“技術創意”及其衍生而來的製勝機理的基礎上,提出新的“戰爭創意”。要基於智慧化戰爭制勝機理的研究,深化軍事理論創新,加速形成具有時代性、引領性、獨特性的軍事理論體系。

(作者單位:國防大學國家安全學院)

來源:中國軍網-解放軍報 作者:劉光明 責任編輯:楊凡凡

中國原創軍事資源:https://www.81.cn/ll_208543/1011058888.html

Chinese Military Analysis on the Strategic Application of Intelligent Warfare


中國軍事對智慧戰爭戰略應用的分析

現代英語:

An analysis of the use of strategies in intelligent warfare

■Chen Dongheng, Zhong Ya

Reading Tips: “Warfare is the art of deception”. War is a competition of comprehensive strength. Ancient Chinese military strategists have always attached great importance to “strategizing in the tent and winning thousands of miles away”, and all of them regard strategy as the way to victory. War practice shows that as long as war is a confrontation between humans, smart strategies will not withdraw from the battlefield. Today’s battlefield competition is about intelligent skills, and what is fought is smart strategies.

“The best military is to attack the enemy’s strategy, the next best is to attack the enemy’s alliance, the next best is to attack the enemy’s soldiers, and the worst is to attack the city.” Strategy, as a component of combat power and a weapon to win the war, runs through ancient and modern times and transcends national boundaries, and has an important function of influencing and determining the outcome of the war. Although the role of science and technology is more prominent in intelligent warfare, it does not exclude the use of strategy. With the support and guidance of strategy, the combat system is more efficient. In-depth research and mastery of the use of strategy in intelligent warfare will be more conducive to winning the initiative in intelligent warfare.

The status and role of the use of strategy in intelligent warfare

The essence of strategy lies in the intelligent release of power. Scientific strategy application can often defeat the majority with the minority, the big with the small, and the strong with the weak. The battlefield of intelligent warfare presents more transparency, more extended combat space, more diverse means of confrontation, and more complex winning mechanism. This provides a solid material foundation and technical support for the implementation of strategy, and the status and role of strategy are becoming more and more important.

The internal driving force of the army construction and development planning. Demand is the order of the army, and use is the commander of the weapon. How science and technology are innovated, how weapons and equipment are developed, and how the national defense forces are built are often driven by demand and forward-looking planning. For example, in order to make up for the gap between Russia and the United States in terms of overall air defense and anti-missile strength, Russia used “asymmetric” strategies to focus on penetration technology and developed the “Zircon” and “Dagger” hypersonic missiles before the United States. Facts show that the application of strategies mainly focuses on “Tao” and “Fa”. The more reasonable the design and the more scientific the application, the more it can stimulate the motivation, vitality and potential of innovation and creation, and trigger a revolution in science and technology, weapons and equipment, and military construction and combat methods. Only when intelligent warfare, scientific and technological innovation and weapons and equipment development are closely connected with the needs of scientific war strategies can they adhere to the correct direction and be better transformed into actual combat power.

A multiplier of the actual combat effectiveness of the combat system. In the combat power spectrum, strategy, as an important soft power, has the value and significance of providing scientific methodological guidance, appropriate time and opportunity selection and correct path support for the use of military hard power. For example, Iran once used the “dislocation” tactics to launch a large-scale retaliatory air strike against Israel, first using hundreds of cheap drones to attract the consumption of Israel’s expensive air defense system, and then using more advanced high-value ballistic missiles to penetrate, which improved the hit rate to a certain extent. Facts show that when facing an opponent with superior hard power, if the strategy is used properly, it can also achieve miraculous results; and the same hard power may have very different combat effectiveness when using different strategies and tactics. In intelligent warfare, although the “blade” of military hard power is faster, in order to make it more effective, it still needs to rely on more sophisticated strategic “sword skills”.

Dependent variables of hybrid warfare operations. Strategy can not only empower military hard power, but also has a strong direct combat function, and can even defeat the enemy without fighting by “soft killing”. For example, the United States once spent a lot of money to capture the leader of al-Qaeda, Osama bin Laden, but he seemed to have disappeared from the world, and technical means could not determine his exact hiding place. He was finally tracked down by targeting his messenger through strategic use. The United States’ “live broadcast” “Spear of Poseidon” operation attempted to show the strength of the US military by killing Bin Laden to shock the international community. Intelligent warfare is a hybrid warfare, which has entered a new era of global live broadcast, universal participation, and full coverage. More and more countries are adopting strategic methods to enhance their own confidence and strike the opponent’s will to resist, and the strategic “soft kill” combat function is becoming more and more apparent.

Basic mechanism of intelligent warfare strategy application

Intelligent warfare, high-level development of artificial intelligence, rapid iteration, full spectrum penetration, and high-efficiency release, make the application of strategy have more dimensional support and stronger drive, showing a unique operation mechanism.

Cluster operation of strategy application. The application of strategy is based on the underlying logic of war operation and follows the law of evolution of the subject from individual to team and then to system. From a historical perspective, the application of strategy warfare in the cold weapon era relied more on the wisdom and experience accumulation of generals. Natural factors such as geography and weather are the main grasps of strategy operation. The burning of Red Cliff and borrowing arrows from straw boats are vivid footnotes. In the mechanized era, in order to adapt to the increasingly complex composition of military branches and the needs of fast-paced operations, the “General Staff” of senior military institutions dedicated to war planning services came into being. The “General Staff” in the two world wars is a typical representative. In the information age, the use of war strategies mainly relies on the control of information, and information power has become the main support behind strategic planning. In intelligent warfare, the comprehensiveness of technology application, the systematic nature of force planning, and the platform characteristics of game confrontation are more prominent, and the internal requirements are that the subject of strategy implementation should shift to a more powerful systematic platform.

Algorithm-driven strategy application. Strategy is based on strategy. The essence of planning is calculation, calculation of the world situation, calculation of military situation, calculation of development trend, calculation of strength and weakness, calculation of winning advantage… Whether it is calculation by human brain or machine, calculation by generals or calculation by teams, calculation is always the most critical supporting factor. Generally speaking, whoever has stronger computing power, more precise algorithms, and faster calculations can grab the “calculation” machine and win the victory. In the era of intelligent calculation, artificial intelligence participates in strategic decision-making with human-machine hybrid algorithms or machine algorithms, which greatly enhances the efficiency of calculation. It is based on this that major countries have focused on breakthroughs in artificial intelligence to win the future competition. These artificial intelligences, characterized by strong computing power, have great application potential in simulating battlefield situations, simulating war processes, and assisting decision-making and command. Only by guarding against the opponent’s technical aggression, vigorously improving our computing power, and adding the wings of algorithms to traditional strategies can we be invincible in the strategic game confrontation.

Intelligent support for the use of strategies. In intelligent warfare, strategies are based on the rapid development of artificial intelligence and its extensive military applications. It is a two-way “rush” of human strategic wisdom and “technical” wisdom. Now, the generals’ ingenuity and traditional staff work have become increasingly difficult to adapt to the needs of intelligent warfare. Comprehensive intelligent command and decision-making platforms have become an important support for the implementation of strategies. The command and decision-making system of the US military has developed into a large platform that integrates four-layer structural functions, including “intelligence support, information fusion, mission coordination, autonomous decision-making, action deployment, force allocation, situation adjustment, and real-time tracking”, and has become the brain of its “decision-making center warfare”. The Russian Federation Armed Forces Combat Command Center can dispatch and monitor the training and exercises of the entire army in real time, and undertake combat command tasks in low-intensity small-scale conflicts. It can be seen that intelligent support for strategic planning and strategy implementation has gradually taken shape. Intelligent strategic confrontation has put forward higher requirements for the professional integration of strategic subjects, and promoted the deep integration of human biological intelligence and artificial intelligence, which is “human-like intelligence”.

Main ways to use strategies in intelligent warfare

In intelligent warfare, the era background, supporting conditions, and action mechanisms of strategy application have undergone profound changes. The way of implementing strategies must keep pace with the times, strive to combine traditional strategic advantages with new technologies and new forms of warfare, innovate and expand scientific paths to effectively release strategic energy, and strive to plan quickly, plan carefully, and integrate strategy and attack.

Intelligent technology integration releases energy. That is, make full use of intelligent technology to empower and release energy for strategies. Generally speaking, the effective implementation of strategies is inseparable from accurate information perception, rapid personnel mobilization, and efficient force strikes. The innovative application of artificial intelligence enables people to see farther, hear more closely, know more, and calculate faster, making the army gather and disperse more quickly, move more covertly, and release power more rapidly, which is more conducive to the generation of strategies and the achievement of effectiveness. On the one hand, with the help of the rapidity and autonomy of artificial intelligence, the enemy situation can be quickly grasped through intelligent reconnaissance, the decision-making time can be greatly shortened by using machine algorithms, and the optimal strategy can be selected with the help of simulation deduction; on the other hand, relying on artificial intelligence to release and enhance the efficiency of strategies, modern brain control technology, deep fake technology, information confusion technology, public opinion guidance technology, etc., have greatly expanded the space and means of implementing strategies.

Human-machine complementation releases energy. That is, the strengths and weaknesses of human intelligence and machine intelligence complement each other and enhance efficiency and release energy. The biggest advantage of machine intelligence over human intelligence is that it can fight continuously without being affected by biological factors such as will, emotion, psychology, and physical strength. However, the “meta-intelligence” of human intelligence and its ability to adapt to changes are not possessed by machine intelligence. The two intelligence advantages complement each other and aggregate to form a powerful hybrid intelligence, which strongly supports the use of strategies in war. On the one hand, the “machine brain” safely and efficiently makes up for the shortcomings of the human brain; on the other hand, the human brain responds to special situations on the spot. Facts show that the biggest advantage of human intelligence over machine intelligence is that it can make decisions and deal with different situations on the spot, which just makes up for the shortcomings of machine intelligence. Only by combining the two can we form the optimal solution for intelligent calculation and gather the strongest strategic application.

The platform releases energy as a whole. It is to create a modular intelligent system, an integrated intelligent decision-making command action platform that integrates strategy generation and release. Intelligent warfare, every second counts, improves the time sensitivity of target strikes. The intelligent platform comprehensively uses intelligent computing and command automation technology to efficiently process massive data and complex battlefield situations, creating a “super brain” for commanders. It has significant advantages of good functional connection, high stability, fast operation speed, and high combat efficiency. It is a new quality combat force for strategic planning. Relying on the intelligent command and control system, it can make real-time decisions, form a list of time-sensitive targets, and independently solve the combat units and strike platforms that can be summoned and struck the fastest and best. The hardware and software can accurately strike the targets, and accurate strikes on time-sensitive targets can be achieved in real-time decisions, providing more options for assisting war decision-making and command.

(Author unit: Academy of Military Science)

現代國語:

試析智慧化戰爭的謀略運用

■陳東恆 鐘 婭

閱讀提示 「兵者,詭道也」。戰爭是綜合實力的比拼和競賽。我國古代兵家歷來重視“運籌帷幄之中,決勝千里之外”,無不把謀略視為取勝之道。戰爭實踐表明,只要戰爭是人類的對抗,智慧謀略就不會退出戰場。今天的戰場比拼,打的是智能技能,拼的更是智慧謀略。

「上兵伐謀,其次伐交,其次伐兵,其下攻城。」謀略作為戰鬥力的構件和製勝戰爭的利器,貫穿古今、超越國界,具有影響和決定戰爭勝負的重要功能。智能化戰爭中雖然科技的角色更突顯,但並不排斥謀略的運用,在謀略的支撐和引領推動下,作戰體系反而效率更高。深入研究掌握智慧化戰爭的謀略運用,更有利於贏得智慧化戰爭的主動權。

智慧化戰爭謀略運用的地位作用

謀略的本質在於力量的智慧化釋放。科學的謀略運用常能以少勝多、以小博大、以弱勝強。智慧化戰爭戰場呈現更透明、作戰空間更延展、對抗手段更多樣化、制勝機理更複雜等特點,這為施謀用計提供了堅實物質基礎和技術支撐,謀略的地位作用愈發重要。

軍隊建設發展規劃的內動力。需為軍之令,用為器之帥。科學技術如何創新、武器裝備怎樣發展、國防軍隊怎麼建設,常常由需求牽引、前瞻謀劃。例如,俄羅斯為彌補防空反導整體力量方面與美國的差距,運用「非對稱」謀略在突防技術上發力,先於美國研發出「鋯石」「匕首」高超聲速導彈。事實表明,謀略運用主要著力於“道”和“法”,其設計越合理、運用越科學,越能激發創新創造的動力、活力和潛力,引發科學技術、武器裝備和軍隊建設作戰方式的革命。智慧化戰爭,科技創新和武器裝備開發只有緊密對接科學的戰爭謀略需求,才能堅持正確的方向,更好地轉化為現實的戰鬥力。

作戰體系實戰效能的倍增器。在戰鬥力譜系中,謀略作為重要的軟力量,其存在的價值和意義在於為軍事硬實力運用提供科學的方法論指引、合適的時機場合選擇和正確的路徑支撐。例如,伊朗曾利用「錯置」戰法對以色列發動大規模報復性空襲,先是以數百架廉價無人機吸引消耗以軍昂貴的防空系統,繼而用更先進的高價值彈道導彈突防,一定程度上提高了命中率。事實顯示,面對硬實力佔優的對手,如果謀略運用得當也能收到奇效;而同樣的硬實力運用不同的策略戰法,作戰效能可能大相徑庭。智慧化戰爭,雖然軍事硬實力的「刀鋒」更快,但要使其發揮更大戰鬥效能,還需藉助更高明的謀略「刀法」。

混合戰爭作戰運籌的因變數。謀略不僅能為軍事硬實力賦能,本身還有強大的直接作戰功能,甚至能以「軟殺傷」不戰而屈人之兵。例如,美國曾重金緝拿基地組織頭目本·拉登,但他好像人間蒸發一樣,技術手段無法確定其確切藏身處,最終通過謀略運用盯上其信使才追踪到。而美國「直播」「海神之矛」作戰行動,則企圖透過擊殺賓拉登來展現美軍的強大,以震撼國際社會。智慧化戰爭是混合戰爭,已經進入全球直播、全民參與、全域覆蓋的全新時代,越來越多的國家採取謀略方式增強己方信心、打擊對手抵抗意志,謀略「軟殺傷」的作戰功能越加顯現。

智慧化戰爭謀略運用的基本機理

智慧化戰爭,人工智慧的高階位元發展、快速度迭代、全頻譜滲透、高效能釋放,使謀略運用有了更多維的支撐、更強大的驅動,展現出獨特的運行機理。

謀略運用的集群作業。謀略的運用,既基於戰爭運行的底層邏輯,也遵循施動主體從個體到團隊再到體系的流轉演進規律。從歷史上看,冷兵器時代的謀略戰爭運用,更多靠將帥的智謀和經驗積累,地理、天候等自然因素是謀略運籌的主要抓手,火燒赤壁、草船借箭就是其生動註腳。機械化時代,適應日益復雜的軍兵種構成和快節奏作戰需要,專司戰爭謀劃服務的高級軍事機構“參謀部”便應運而生,兩次世界大戰中“總參謀部”就是其中的典型代表。資訊化時代謀略的戰爭運用,依靠的主要是對資訊的掌控,資訊力成為謀略運籌背後的主要支撐力。智慧化戰爭,技術應用的綜合性、力量運籌的體系性、博弈對抗的平台化特徵更加突出,內在要求謀略的施動主體向功能更強大的體系化平台轉進。

謀略運用的演算法驅動。謀略以謀為關鍵。謀的本質是算,算天下大勢、算軍事態勢、算發展趨勢、算強弱勝勢、算制勝優勢……無論是人腦算還是機器算、將帥算還是團隊算,算始終是最關鍵的支撐要素。一般情況下,誰的算力更強、演算法更精、算計更快,誰就能搶得「算」機、贏得勝算。智能化時代的算,人工智慧以人機混合演算法或機器演算法參與謀略決算,極大增強了算的效率。正是基於此,各主要國家紛紛把贏得未來競爭的成長點聚焦到人工智慧突破上。這些以強算力為特徵的人工智慧,在模擬戰場態勢、模擬戰爭進程、輔助決策指揮上有極大應用潛力。謹防對手技術突襲,大力提高我們的算力,為傳統謀略插上演算法的翅膀,才能在謀略博弈對抗中立於不敗之地。

謀略運用的智慧支撐。智慧化戰爭,謀略基於的是人工智慧迅猛發展及其廣泛軍事應用,是人的謀略之智與「技術」之智的雙向「奔赴」。現在,將帥的神機妙算、傳統的參謀作業,已經越來越難以適應智能化戰爭需要,綜合性的智能化指揮決策平台,成為施謀用計的重要支撐。美軍的指揮決策體系,已經發展成為融「情報保障、資訊融合,任務協調、自主決策,行動展開、力量配屬,態勢調整、實時跟踪」等四層結構功能於一體的大平台,成為其「決策中心戰”的大腦。俄羅斯聯邦武裝力量作戰指揮中心,可即時調度監控全軍訓練演習,並在低強度小規模沖突中擔負作戰指揮任務。可見,智慧支撐謀略運籌、策略實施逐步形成。智慧化謀略對抗,對謀略主體的專業化整合性提出了更高要求,推動人的生物智慧與人工智慧這一「類人智慧」深度融合結合。

智慧化戰爭謀略運用的主要方式

智慧化戰爭,謀略運用的時代背景、支撐條件、作用機理等發生了深刻變化。施謀用計的方式必須與時俱進,努力把傳統謀略優勢與新的技術、新的戰爭形態結合起來,創新拓展有效釋放謀略能量的科學路徑,致力先知快謀、精謀巧打、謀打融合。

智技融合釋能。就是充分利用智慧科技為謀略賦能釋能。通常而言,謀略的有效實施離不開準確的資訊感知、迅捷的人員調動、高效的力量打擊。人工智慧的創新應用,使人看得更遠、聽得更切、知得更多、算得更快,使軍隊集散更迅速、行動更隱蔽、力量釋放更迅猛,更加有利於謀略生成和謀效達成。一方面,借助人工智慧的快速性、自主性,透過智慧偵察迅速掌握敵情,運用機器演算法極大縮短決策時間,借助模擬推演優選謀略方案;另一方面,依靠人工智慧為謀略釋放增效,現代控腦技術、深度偽造技術、資訊迷茫技術、輿論引導技術等,極大拓展了施謀用計的空間與手段。

人機互補釋能。就是人體智能與機器智能長短互補、增效釋能。機器智能與人體智能相比的最大優勢在於,能不受意志、情緒、心理、體力等生物因素的影響連續作戰。而人體智能的「元智能」及其隨機應變的能力則為機器智能所不具備。兩種智能優勢互補聚合形成強大的混合智能,強力支撐謀略的戰爭運用。一方面,「機腦」安全高效補人腦不足;另一方面,人腦臨機應對處置特殊情況。事實表明,人體智慧相比機器智慧的最大優勢在於面對不同情況能臨機決策處置,這恰好彌補了機器智慧的不足。只有把兩者結合起來,才能形成智慧運算最優解,聚成謀略運用最強能。

平台一體釋能。就是打造模塊化的智慧系統,整合謀略生成、釋放的一體化智慧決策指揮行動平台。智慧化戰爭,分秒必爭,提高了目標打擊時敏感性。智慧化平台綜合運用智慧化計算和指揮自動化技術,高效處理海量數據及復雜戰場態勢,為指揮員打造“超強大腦”,具有功能銜接好、穩定程度高、運行速度快、作戰效率高的顯著優勢,是謀略運籌的新質作戰力量。依托智能化指揮控制系統能夠實時決斷,形成時敏目標清單,自主解算能夠最快召喚、最優打擊的作戰單元、打擊平台,軟硬一體對目標進行精確打擊,在實時決斷中實現對時敏目標的精確打擊,為輔助戰爭決策指揮提供了更多選項。

(作者單位:軍事科學院)

中國原創軍事資源:https://www.81.cn/ll_208543/16345416888.html

Chinese Military Aggressively Advancing Human-Machine Collaboration in Unmanned Combat Systems

中國軍隊積極推進無人作戰系統中的人機協作

肖兴福 

中國軍網 國防部網 //2022年3月29日 星期二

現代英語:

At present, the widespread use of unmanned equipment in the military field is accelerating the evolution of war forms towards intelligence, and unmanned combat has also developed into an important combat style of intelligent warfare. However, it should be clearly seen that unmanned combat, from technical development to combat application, cannot be separated from the role of people, and people are still the “master switch” of the entire chain of unmanned combat. Therefore, unmanned combat is essentially still manned, and more attention should be paid to the construction of manned combat in unmanned combat.

From the perspective of operational design, the mission task is assigned by the mission tasker.

Equipment is the material basis of war, but people are the initiators and controllers of war. The role of any equipment in war is given by commanders and fighters at all levels. From the overall perspective of combat design, war involves multiple fields such as politics, economy, diplomacy, culture, and multiple levels such as strategy, campaign, and tactics. Winning a war requires the support of advanced equipment and technology, and more importantly, it requires all-round control of the war situation. Unmanned equipment is suitable for undertaking persistent and high-risk tasks because of its characteristics such as long-lasting endurance, concealed action, high mobility, low cost, and its advantages such as adaptability to extreme environments and flexible use. However, when encountering extremely complex combat environments, extremely fierce confrontations, and rapid changes in fighters that require real-time comprehensive weighing and decision-making, unmanned systems still need to be human-led, implement complex command and control, and control unmanned equipment to complete designated combat tasks. Therefore, although unmanned equipment has become a development trend in modern warfare, its dependence on and obedience to people will not change. It is necessary to accurately grasp the advantages and disadvantages of unmanned equipment, increase research in unmanned command and control theory, unmanned combat knowledge system, etc., to form a rich and complete combat theory system, drive the development of unmanned equipment, promote the formation of unmanned combat systems, and play a greater role in limited combat scenarios, thereby playing a good role as a “multiplier” of combat capabilities.

From the perspective of equipment research and development, unmanned systems are designed by humans.

Humans are the designers of unmanned equipment, especially in the intelligent software that empowers unmanned equipment. It is the core of unmanned equipment’s ability to perform various tasks, and it is also the embodiment of the designer’s wisdom. Although the artificial intelligence algorithms used in many core software have a certain self-learning ability and improve the autonomy of unmanned equipment, the choice of such self-learning strategies is still set by humans according to task requirements and specific scenarios. At present, various types of drones, unmanned ships, unmanned submarines, etc. have a certain ability to “think like humans”, but they are subject to the limitations of artificial intelligence algorithms, big data, and existing computer architectures. They cannot be separated from human thinking and input points set by humans. For a long time, the role of humans will still be the decisive factor in the development of unmanned equipment and warfare. Therefore, no matter to what extent informatization and intelligence develop, intelligent systems cannot completely replace humans, and the development of unmanned equipment is still dominated by humans. Manned/unmanned collaboration, human-machine coexistence, and intelligent integration are inevitable and feasible stages in the development of intelligent warfare. We must give full play to the “machine”‘s fast speed, high precision, fatigue resistance, and structured “computing” advantages, and give full play to the “human”‘s creativity, flexibility, initiative, and unstructured “calculation” advantages, integrate machine intelligence with human intelligence, learn from each other’s strengths and weaknesses, complement each other, and produce collective wisdom.

From the perspective of combat use, there are people everywhere in the circuit

The intelligent system of unmanned equipment can fully support command and control, combat operations, combat support and other aspects, so that the combat system capabilities can be rapidly improved. However, if we look deeply into the entire unmanned system operation process, it completes the “man-unmanned platform-man” loop, and achieves the combat purpose through the complementary advantages of man and machine. Any advanced unmanned equipment requires combatants to plan tasks in advance, and operators to monitor and control online to ensure that its technical characteristics are brought into play. In other words, the beginning of the loop comes from human program design and thinking introduction. The task process requires human decision-making, control, monitoring and intervention. The completion of the task requires people to evaluate the applicability and combat effectiveness of unmanned equipment and constantly adapt to new combat needs. Therefore, people are still the dominant players in the entire combat use process. If the effectiveness of unmanned equipment is to be maximized, it is necessary to implement systematic professional training for the pioneers of manned/unmanned integrated operation-people. For new combat force talents, especially unmanned combat personnel, we should set up professional training institutions, integrate teaching resources, improve supporting teaching equipment, increase artificial intelligence courses, and improve talent retention mechanisms in accordance with the concept of diversified channels, integrated design, multi-functionality, and hierarchical training. At the same time, we will draw on advanced training concepts and methods from foreign militaries, and comprehensively use simulation, computer networks, virtual reality and other technologies to carry out practical military training to cultivate compound unmanned combat talents with solid theoretical foundation, high equipment technology level, and excellent practical operation skills.

From the perspective of innovation in tactics, capability improvement depends on people.

The development of technologies such as artificial intelligence, quantum computing, unmanned and anti-unmanned systems, and hypersonic weapons has led to new characteristics of modern warfare, such as great depth, long distance, and non-contact. Unmanned, invisible, and silent warfare have begun to emerge, and the future combat concepts and combat styles will undergo profound changes. The maturity of unmanned equipment has accelerated the development of new combat concepts such as wide-area distributed combat, cross-domain collaborative combat, and unmanned cluster combat into actual combat. The advantage of unmanned equipment is that there is no one on the front-end platform, but the limitation is that there is no one, and it is impossible to independently design and summarize new combat concepts and tactics. In fact, it is all done by people to study the essence and laws of a certain type of combat problem, extract common characteristics and abstractly summarize them, and then guide the solution of such combat problems. Specifically, the new combat concept is based on the research and judgment of combat conditions such as historical, current and future technological development, threat judgment, geopolitical situation, combat opponents, battlefield environment, etc., and all of these are the condensation and crystallization of human wisdom. Therefore, in the face of the complex and changeable future battlefield environment, in order to make unmanned equipment play the best combat effectiveness, it is inseparable from the innovation of combat concepts and tactics. Based on changes in the battlefield environment and targeting different combat styles, we should conduct forward-looking designs on force deployment, timing of use, methods of action, and support methods, scientifically predict the development trend of unmanned combat, promote the mutual development of equipment technology and changes in combat methods, and explore and form a combat capability construction path that is mutually verified, closed-feedback, and rollingly developed through “conceptual design-combat experiment-equipment research and development.”

From the perspective of technological development, unmanned technology is controlled by humans.

At present, people generally believe that unmanned and intelligent applications can be competent for various tasks as long as the technology is mature, but in fact, the operating rules of computers are still limited to the von Neumann serial computing architecture, and there has not yet been a revolutionary product combining biotechnology and artificial intelligence. For example, “AlphaGo” with deep learning capabilities can quickly generate astronomical numbers of various response plans in the game with human Go masters, and is almost invincible, but its intelligent foundation is Go with relatively simple rules; the US Department of Defense’s ground-based simulated air combat project, the air combat intelligent agent it developed defeated human ace pilots in human-machine confrontation, but it can only be achieved in the simple battlefield environment of the simulator. It can be seen that the current development of the intelligent field is to be able to perform tasks purposefully in terms of selection and decision-making, while war is a dynamic game process. The intelligent solutions used by unmanned equipment are only in the background assumption situation, and the “water has no constant shape” war mode requires soldiers to respond more flexibly. Therefore, we must attach great importance to the decisive role of people in scientific and technological progress, scientifically grasp the development trend of informationized and intelligentized warfare, clarify the ideas of technological development, and actively explore and form an unmanned equipment technology research and development system and development path suitable for the characteristics of the military in accordance with the methods and steps of overall demonstration, key research, pilot verification and promotion and application.

From the perspective of war law, war is dominated by people.

With the continuous updating and iteration of unmanned equipment technology, unmanned combat has become more and more intelligent, which has led to the relative blurring of the boundaries between peacetime and wartime, front and rear, soldiers and civilians. In the Libyan conflict, drones relied on algorithms to select targets, automatically tracked and attacked armed personnel without the control of operators. It can be predicted that if unmanned equipment develops to a certain extent in autonomous calculation, autonomous decision-making, and autonomous action, and completely autonomously selects, identifies, and attacks targets, and humans do not restrain it, it will have a profound impact on morality, law, and war ethics. In fact, there are “reasons”, “laws”, and “people” behind unmanned combat. No matter what stage unmanned combat develops to, it still belongs to the category of war and is still subject to the rules of war. Whether it is international law or humanitarian law, the focus has always been on human issues, such as restrictions on combat methods and means, treatment of prisoners of war, protection of civilians, etc. All principles, rules and systems are based on the perspective of people and are solved through people. Therefore, in order to avoid humanitarian and war ethics issues caused by unmanned combat, from a technical perspective, humans need to supervise and manage the operation of unmanned systems, guide arbitration, and handle emergencies, grant them limited “right to fire”, reserve “start-stop” intervention interfaces, and be able to take over unmanned systems at any time; from a legal perspective, establish war rules between humans and weapons, enhance humans’ ability to apply the rules of war, and always play a leading role in war.

(Author’s unit: Naval Research Institute)(Editors: Dai Xiaoling, Wan Peng)

現代國語:

目前,無人裝備在軍事領域的廣泛運用正在加速戰爭形態向智慧化演進,無人作戰也發展成為智慧戰爭的重要作戰方式。但應該清醒地看到,無人作戰從技術發展到作戰應用,都離不開人的作用,人仍然是無人作戰全鏈條的「總開關」。因此,無人作戰本質上還是有人作戰,無人作戰中更要注重有人作戰的建設。

從作戰設計的角度來看,任務任務是由任務任務者指派的。

裝備是戰爭的物質基礎,但人是戰爭的發動者和控制者。任何裝備在戰爭中的作用都是由各級指揮官和戰士賦予的。從作戰設計的整體角度來看,戰爭涉及政治、經濟、外交、文化等多個領域,以及戰略、戰役、戰術等多個層面。贏得戰爭需要先進裝備和技術的支撐,更需要對戰局的全方位掌控。無人裝備具有持久續航、行動隱密、機動性強、成本低等特點,以及適應極端環境、使用彈性等優勢,適合承擔持續性、高風險任務。但在遇到極其複雜的作戰環境、極其激烈的對抗、戰機快速變化等需要即時綜合權衡和決策的情況下,無人系統仍然需要以人為主導,實施複雜的指揮控制,控制無人設備。指定的作戰任務。因此,無人裝備雖然成為現代戰爭的發展趨勢,但它對人的依賴和服從不會改變。要準確掌握無人裝備優缺點,加大無人指揮控制理論、無人作戰知識體係等方面的研究,形成豐富完整的作戰理論體系,帶動無人裝備發展,促進無人裝備發展。作戰系統,在有限的作戰場景中發揮更大的作用,從而起到良好的作戰能力「倍增器」作用。

從裝備研發的角度來看,無人系統是由人設計的。

人類是無人設備的設計者,尤其是賦能無人設備的智慧軟體。它是無人設備執行各種任務能力的核心,也是設計者智慧的展現。儘管許多核心軟體所採用的人工智慧演算法具有一定的自學習能力,提高了無人設備的自主性,但這種自學習策略的選擇仍然是由人類根據任務需求和具體場景來設定。目前,各類無人機、無人船、無人潛水艇等具備一定的「像人類一樣思考」的能力,但受到人工智慧演算法、大數據和現有電腦架構的限制。它們離不開人類的思維和人類設定的輸入點。相當長一段時間內,人類的角色仍將是無人裝備和戰爭發展的決定性因素。因此,無論資訊化、智慧化發展到什麼程度,智慧系統都無法完全取代人類,無人設備的發展仍由人類主導。有人/無人協作、人機共存、智慧融合是智慧戰爭發展的必然階段和可行階段。要充分發揮「機器」速度快、精度高、耐疲勞、結構化「運算」的優勢,充分發揮「人」的創造性、彈性、主動性、非結構化「計算」發揮機器智能與人類智能的優勢,將機器智能與人類智能融為一體,取長補短,優勢互補,產生集體智慧。

從戰鬥使用來看,電路裡到處都是人

無人裝備智慧系統可以全面支援指揮控制、作戰行動、作戰保障等方面,使作戰系統能力快速提升。但如果深入觀察整個無人系統運作過程,它完成了「人-無人平台-人」的循環,透過人與機的優勢互補來達到作戰目的。任何先進的無人裝備都需要作戰人員提前規劃任務,操作人員在線上監控和控制,以確保其技術特性發揮出來。在其他方面換句話說,循環的開始來自於人類的程式設計和思維引入。任務過程需要人的決策、控制、監控和介入。任務的完成需要人們評估無人裝備的適用性和戰鬥力,不斷適應新的作戰需求。因此,在整個戰鬥使用過程中,人仍然是主導者。想要發揮無人裝備的效能最大化,就需要對有人/無人一體化作業的先行者-人進行系統性的專業訓練。對於新型作戰力量人才特別是無人作戰人員,要依照多元化管道、一體化設計、多功能、分級訓練。同時,借鏡外軍先進訓練理念與方法,綜合運用模擬、電腦網路、虛擬實境等技術進行實戰軍事訓練,培養理論基礎紮實、裝備精良的複合型無人作戰人才技術水準和優秀的實際操作能力。

從戰術創新的角度來看,能力提升靠人。

人工智慧、量子運算、無人與反無人系統、高超音速武器等技術的發展,導致現代戰爭呈現大縱深、遠距離、非接觸等新特色。無人化、隱形化、無聲化的戰爭已經開始出現,未來的作戰概念和作戰方式將會發生深刻的變化。無人裝備的成熟,加速了廣域分散式作戰、跨域協同作戰、無人集群作戰等新作戰概念發展到實戰。無人裝備的優點在於前端平台無人,但限制在於無人,無法自主設計總結新的作戰概念和戰術。事實上,這都是人們研究某一類作戰問題的本質和規律,提取共性特徵並進行抽象概括,然後指導該類別作戰問題的解決。具體來說,新的作戰理念是基於對歷史、當前和未來技術發展、威脅判斷、地緣局勢、作戰對手、戰場環境等作戰條件的研判,而這些都是對作戰條件的凝結和結晶。智慧。因此,面對複雜多變的未來戰場環境,要讓無人裝備發揮最佳戰鬥力,離不開作戰概念和戰術的創新。根據戰場環境變化和針對不同作戰方式,對兵力部署、使用時機、行動方式、保障方式等進行前瞻性設計,科學預測無人作戰發展趨勢,促進無人作戰共同發展。探索形成「概念設計-作戰實驗-裝備研發」相互驗證、閉環回饋、滾動發展的作戰能力建設路徑。

從技術發展的角度來看,無人技術是由人類控制的。

目前,人們普遍認為只要技術成熟,無人化、智慧化應用就可以勝任各種任務,但事實上,電腦的運作規則仍限於馮諾依曼串列運算架構,目前還沒有是生物技術和人工智慧結合的革命性產品。例如,具有深度學習能力的「AlphaGo」在與人類圍棋高手的對弈中可以快速產生天文數字的各種應對方案,幾乎所向披靡,但其智慧基礎卻是規則相對簡單的圍棋;美國國防部的地面模擬空戰項目,其研發的空戰智能體在人機對抗中擊敗了人類王牌飛行員,但這只能在模擬器的簡單戰場環境中實現。可見,當前智慧領域的發展是能夠在選擇和決策方面有目的地執行任務,而戰爭則是一個動態的博弈過程。無人裝備所採用的智慧解決方案只是在背景假設情況下,「水無常」的戰爭模式需要士兵做出反應礦石靈活。因此,必須高度重視人在科技進步中的決定性作用,科學掌握資訊化、智慧化戰爭發展趨勢,明確技術發展思路,積極探索形成無人裝備技術研發體係依照總體論證、重點研究、試點驗證、推廣應用的方法與步驟,探索適合軍隊特色的發展道路。

從戰爭法的角度來看,戰爭是由人主導的。

隨著無人裝備技術的不斷更新迭代,無人作戰越來越智能化,導致平時與戰時、前線與後方、士兵與平民的界線相對模糊。在利比亞衝突中,無人機依靠演算法選擇目標,自動追蹤並攻擊武裝人員,無需操作人員控制。可以預見,如果無人裝備在自主計算、自主決策、自主行動方面發展到一定程度,完全自主選擇、識別、攻擊目標,而人類不對其進行約束,將會產生深遠的影響。戰爭道德。事實上,無人作戰背後有「理」、「法」、「人」。無人作戰無論發展到什麼階段,仍屬於戰爭範疇,仍受到戰爭規則的約束。無論是國際法或人道法,關注的焦點始終是人的問題,例如對作戰方法和手段的限制、戰俘待遇、保護平民等。也是透過人來解決的。因此,為了避免無人作戰引發的人道主義和戰爭倫理問題,從技術角度來說,人類需要對無人系統的運作進行監督管理、指導仲裁、處理突發事件,賦予其有限的“開火權” ,保留「啟動/停止」幹預接口,可隨時接管無人系統;從法律角度,建立人與武器之間的戰爭規則,增強人類運用戰爭規則的能力,始終在戰爭中扮演主導角色。

(作者單位:海軍研究院)

(編按:戴曉玲、萬鵬)

中國原創軍事資源:http://theory.people.com.cn/n1/2022/0329/c40531-32386526888.html

Chinese Intelligent Warfare Cannot be Successful Without Human Element

中國智慧戰爭離不開人的因素

2019年10月17日 17:00 來源:解放軍報 作者:徐莉

現代英語:

An important task in studying intelligent warfare is to accurately position humans in intelligent warfare.

  No matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomously by machines. Humans must have a strong enough kite string and hold it tightly at all times.

  ”Synchronous development of man and machine” should be regarded as a basic principle for the development of military intelligence. Intelligence should integrate both “things” and “people”.

  At present, the research on intelligent warfare is in the ascendant. Some people believe that intelligent warfare will be unmanned as the core form of expression, and unmanned equipment such as drones, unmanned submarines, and robot soldiers will become the protagonists of war. The form of war will also develop from the co-starring of “human-machine collaborative warfare” to the one-man show of “machine vs. machine war”. People seem to have become bystanders in intelligent warfare, with the meaning and trend of “intelligent warfare makes people go away”. What is the status and role of people, who have always been the main body of war, in intelligent warfare? This is the first problem that should be solved in the study of intelligent warfare.

  The Marxist view of war holds that weapons are an important factor in war, but not the decisive factor. The decisive factor is people, not weapons. Although people no longer directly control weapons in advanced intelligent warfare, the following factors still determine that people are the main body of war and the key to winning.

  First, war is the continuation of politics. The launching of war and the control of the war process must be decided by people according to political needs. The game outside the battlefield has a decisive influence on the progress of the war. For example, the results of diplomatic negotiations, the focus of international public opinion, and the support of the domestic people all depend on the decisions of politicians and military strategists, which cannot be replaced by any intelligent machines.

  Secondly, war planning and command can only be implemented by commanders at all levels. Military command is both a science and an art, but it is more of an art. Any successful battle or campaign in the world is the result of commanders breaking routines and stereotypes and using troops creatively. The history of our army’s growth and development has repeatedly proved that correct military strategic guidance and flexible strategies and tactics are the magic weapon for our army to defeat the strong with the weak and defeat the many with the few, which enables our army to move from victory to victory. It is also something that intelligent machines cannot imitate or create. For example, in the battle, the comparative analysis of enemy and our combat forces, the real-time control of the combat situation, the real-time evaluation of the overall damage effect, the combat psychological analysis of enemy commanders, and the prediction of the next combat action, etc., intelligent machines can only provide auxiliary decision-making information and suggestions. Commanders at all levels must make decisions, make combat decisions, and issue combat orders.

  Third, the level of intelligence of weapons and equipment ultimately depends on humans. Artificial intelligence originates from human intelligence. One of the major factors restricting the development of intelligence is that the scientific understanding of human intelligence is still superficial, and the understanding of the cognition, memory, thinking, decision-making and action mechanism of the human brain is still insufficient. The “Wuzhen Index: Global Artificial Intelligence Development Report 2016” pointed out that over the years, the proportion of biological research in the four sub-fields of artificial intelligence, machine learning, natural language processing, computer vision, and robotics, has been the lowest. Due to the lack of attention to the basic and decisive influence of brain science on artificial intelligence, the current artificial intelligence can only stay at the stage of superficial understanding and primary imitation of brain functions. Once there is a major breakthrough in the understanding of human intelligence, artificial intelligence will also be reborn and enter a leapfrog development stage.

  Fourth, only humans can control intelligent weapons and equipment and combat platforms. Although the final intelligent weapons can be operated without human on-site control, when to put intelligent weapons and equipment into battle, when to change the direction of attack, how to control the rhythm of the war, when to withdraw from the battle, etc., can only be decided by humans in the end. This is the basic principle that must be grasped when designing intelligent weapons and equipment, that is, one of Asimov’s three laws of robotics: robots must obey human orders. Once intelligent weapons and equipment are out of human control, it will be a disaster for the entire human race, not just the enemy. This also determines that no matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomous control functions of machines. The autonomous function of machines can only be effective within the scope limited by humans. Humans must have a strong enough kite line and hold it tightly at all times.

  Fifth, only humans can crack and control the enemy’s intelligent weapons and equipment. The development of military history has proved that any weapon and equipment has its “Achilles’ heel” and will eventually be defeated. There has never been and will never be perfect and impeccable weapons and equipment in history, and intelligent weapons and equipment are no exception. The magic weapon to defeat the enemy is humans with infinite wisdom. For example, drones seem advanced, but they can be interfered, trapped or controlled by radio waves of a specific frequency. The same is true for other intelligent weapons and equipment, and finding and studying methods, technologies, and equipment to crack, control, and destroy intelligent weapons and equipment is where human wisdom comes into play.

  Therefore, “synchronous development of man and machine” should be taken as a basic principle for the development of military intelligence. Intelligence should be applied to both “objects” and “people”. As soldiers in the era of intelligent warfare, they must master the working principles and weak links of intelligent weapons and equipment, be familiar with and master the “thinking mode” and “conventional actions” of intelligent weapons and equipment, as well as the abnormal “abnormal thinking” and abnormal “extraordinary actions” that may appear, and understand their technical and tactical indicators and performance. Especially in the stage of man-machine collaborative operations, soldiers are required not only to be able to coordinate actions with machines, but also to communicate with machines without obstacles in cognitive ability and intelligence. This not only relies on intelligent knowledge reserves, but also relies on the “brain reading” and “brain strengthening” of intelligent equipment. Scientific research shows that the normal human brain usage rate is only 3%-5%, which shows that there is still a huge room for improvement and release of human intelligence. When studying intelligent warfare, we should also study how to improve human intelligence.

  In the face of intelligent warfare, we should prepare for the future, establish intelligent troops suitable for intelligent warfare as soon as possible, study the way to defeat the enemy in intelligent warfare, and establish and improve the theory of intelligent warfare; repair, maintain and improve intelligent weapons and equipment; study the methods, techniques and equipment to decipher the control keys of enemy weapons and equipment; study effective means to attack the enemy’s intelligent weapons and equipment, rewrite their combat rules and targets, and make them turn against us in the face of battle, or use high-energy lasers and high-power microwaves to directly destroy the enemy’s communication networks and weapons and equipment, demonstrating the way to win in intelligent warfare.

  In short, in intelligent warfare, people are still the main body of war and the decisive factor in the outcome of war. An important task in studying intelligent warfare is to find the correct position of people in intelligent warfare. Otherwise, it is easy to fall into the idealistic quagmire of “seeing things but not people”, “only weapons” and “only technology”.

現代國語:

研究智能化戰爭的一項重要任務,就是找準智能化戰爭中人的定位。

不論智慧化武器裝備這個「風箏」飛多高,永遠只能是人類控制與機器自主控制功能並存,人類必須擁有足夠結實的風箏線並時刻牢牢抓住它。

應把「人機同步發展」當作軍事智慧化發展的一個基本原則,智慧化既要化「物」也要化「人」。

當前,對智慧化戰爭的研究方興未艾。一些觀點認為,智慧化戰爭將以無人化為核心表現形式,無人機、無人潛航器、機器人士兵等無人裝備將成為戰爭主角,戰爭形態也將從「人機協同作戰」的聯袂主演,最後發展到「機器對機器大戰」的獨角戲。人似乎成了智慧化戰爭的旁觀者,大有「智慧化戰爭讓人走開」的意味和態勢。曾經一直是戰爭主體的人,在智能化戰爭中的地位和角色究竟是什麼,這是研究智能化戰爭應當首先解決的問題。

馬克思主義戰爭觀認為,武器是戰爭的重要因素,但不是決定的因素,決定的因素是人而不是武器。雖然在高階階段的智慧化戰爭中,人不再直接操控武器,但以下因素仍決定了人是戰爭的主體和關鍵的致勝力量。

首先,戰爭是政治的延續,戰爭的發動、戰爭進程的掌控,必須由人視政治需求作出決定。戰場以外的博弈對戰爭進程有著決定性的影響,如外交談判的結果、國際輿論的焦點、國內民眾支持度等,均取決於政治家、軍事家的決策,是任何智能化的機器都無法替代的。

其次,戰爭規劃和指揮只能由各級指揮官來實施。軍事指揮既是科學,也是藝術,但更體現為藝術。世界上任何一場取得勝利的戰鬥、戰役,都是指揮者打破常規和定式,創造性用兵的結果。我軍成長壯大的歷史也一再證明,正確的軍事戰略指導、機動靈活的戰略戰術,是以弱克強、以少勝多,使我軍不斷從勝利走向勝利的製勝法寶,也是智能化機器所無法模仿和創造的。例如,戰中對敵我作戰力量的比較分析、作戰態勢的即時掌控、整體毀傷效果的即時評估、敵軍指揮作戰心理分析,以及對下一步作戰行動的預判等等,智慧化機器只能提供輔助決策資訊和建議案,必須由各級指揮官親自決策、下定作戰決心,並下達作戰命令。

第三,武器裝備智慧化程度高低最終取決於人類。人工智慧源自人類智能,目前製約智能化發展的一大因素,就是對人類智能的科學認識尚膚淺,對人類大腦的認知、記憶、思維、決策和行動機理等的認識還很不夠。 《烏鎮指數:全球人工智慧發展報告2016》指出,歷年來人工智慧的機器學習、自然語言處理、電腦視覺、機器人四類細分領域涉及生物學研究的比例均最低。由於不重視腦科學對人工智慧基礎和決定性的影響,直接導致當前人工智慧只能停留在對大腦功能膚淺認識和初級模仿階段,一旦對人類智慧的認識有了重大突破,人工智慧也必將脫胎換骨,進入跨越式發展階段。

第四,控制智慧化武器裝備和作戰平台的只能是人。雖然最終的智慧化武器可以沒有人類現場操控,但智慧化武器裝備何時投入戰鬥、何時轉換進攻方向、如何把控戰爭節奏、何時撤出戰鬥等等,最終只能由人來決定,這是智慧化武器裝備設計時必須掌握的基本原則,即阿西莫夫機器人三定律之一:機器人必須服從人類的命令。一旦智能化的武器裝備脫離了人的控制,那將是整個人類而不僅僅是敵人的災難,這也決定了不論智能化武器裝備這個“風箏”飛多高,永遠只能是人類控制與機器自主控制功能並存,機器自主功能只能在人類限定的範圍內有效,人類必須擁有足夠堅固的風箏線並時刻牢牢抓住它。

第五,破解、控制敵人智慧化武器裝備的只能是人。軍事歷史發展證明,任何武器裝備都有其“阿喀琉斯之踵”,最終都會被擊敗。歷史上從來沒有、未來也不會出現完美無缺、無懈可擊的武器裝備,智慧化武器裝備也不例外,而克敵制勝的法寶就是擁有無窮智慧的人類。例如,無人機看似先進,但完全可以被特定頻率的電波幹擾、誘捕或控制。其他智慧化武器裝備也是如此,而尋找並研究破解、控制、擊毀智慧化武器裝備的方法、技術、裝備,則是人類聰明才智的用武之地。

因此,應把「人機同步發展」作為軍事智能化發展的一個基本原則,智能化既要化「物」也要化「人」。作為智能化戰爭時代的軍人,必須掌握智能化武器裝備的工作原理和薄弱環節,熟悉並掌握智能化武器裝備的“思維方式”和“常規動作”,以及可能出現的非常態的“異常思維”和變態的“超常動作”,了解其技戰術指標及性能,特別是人機協同作戰階段,不僅要求軍人能夠與機器協調行動,而且在認知能力和智力上能夠和機器無障礙交流,這不僅要依靠智能化的知識儲備,也要依賴智慧化裝備的「讀腦」「強腦術」。科學研究表明,正常人大腦使用率只有3%——5%,這說明,人類智慧仍有巨大的提升和釋放空間。研究智能化戰爭,也應同步研究如何提升人類智慧。

面對智慧化戰爭,我們應當未雨綢繆,儘早建立與智能化戰爭相適應的智能化部隊,研究智能化戰爭的克敵制勝之道,建立完善智能化戰爭理論;維修、保養、改進智能化武器裝備;研究破解敵方武器裝備操控密鑰的方法、技術、裝備;研究攻擊敵軍智能化武器裝備的有效手段,改寫其作戰規則和作戰對象,使其臨陣倒戈,或是利用高能量激光、高功率微波直接擊毀敵通信網絡和武器裝備,彰顯智慧化戰爭的致勝之道。

總之,智慧化戰爭中人仍是戰爭的主體,是戰爭勝負的決定性因素。研究智能化戰爭的一項重要任務就是找準智能化戰爭中人的定位。否則,就容易陷入「見物不見人」「唯武器論」「唯技術論」的唯心主義泥沼。

中國原創軍事資源:http://www.qstheory.cn/defense/2019-10/17/c_112511776588.htm

Chinese Military Experts: Seize the Brainpower of Future Wars to Safeguard National Cognitive Space Security

中國軍事專家:抓住未來戰爭智囊,維護國家認知空間安全

現代英語:

With the rise of the global Internet and the development of emerging media, the world’s major military powers are now paying great attention to the strategic issue of cognitive space security. The recently published monograph “Brain Control: The Laws of War and National Security Strategy in the Global Media Age” focuses on the future development trend of war and the issue of national cognitive space security in the global media era. It puts forward the concept of “brain control” in cognitive space, which has attracted the attention of the military academic community. On this topic, the reporter interviewed the main author of the book, Professor Zeng Huafeng, Dean of the School of Humanities and Social Sciences of the National University of Defense Technology.

  “Subjugating the enemy without fighting” is the highest realm of information warfare

  Reporter: The concept of brain control is inseparable from the understanding of cognitive space. What is cognitive space and what is brain control?

  Zeng Huafeng: Information warfare is the unity of material and spirit, concept and reality. It is not only the manifestation of the development of material form, but also the inevitable result of the action of spiritual factors. Information warfare has enabled human warfare to truly have three combat spaces for the first time: one is the natural space composed of land, sea, air, and space; the second is the network electromagnetic space based on physical principles, which is essentially a technical space; the third is the cognitive space composed of human spiritual and psychological activities. To win the future information warfare, we must grasp the initiative of the war, obtain the control of the war domain, and dominate the discourse of the war. Seizing the control of the brain in the cognitive space and “defeating the enemy without fighting” is the highest realm of information warfare.

  Cognitive space refers to the scope and field of human cognitive activities. It is an invisible space that reflects people’s emotions, will, beliefs and values, and exists in the minds of participants in the struggle. The national cognitive space exists in the subjective world of each individual, and is composed of the superposition of the cognitive spaces of countless individuals in the whole society. National interests exist not only in physical form in natural space and technological space, but also invisibly in cognitive space. “Brain control” is to use the spiritual information carried by propaganda media, national languages, cultural products, etc. as weapons, to infiltrate, influence and even dominate the cognition, emotions and consciousness of the general public and national elites, and ultimately manipulate a country’s values, national spirit, ideology, cultural traditions, historical beliefs, etc., to prompt it to abandon its own theoretical understanding, social system and development path, and achieve the strategic goal of winning without fighting.

  Reporter: At present, with the advent of the global media age, especially the development of emerging social media, the political game between major powers continues to intensify, and “cognitive domain symptoms” such as human psychological confusion, moral crisis, and loss of faith continue to emerge. What do you think are the characteristics of cognitive space confrontation?

  Zeng Huafeng: I think there are three main characteristics: First, the security boundary of the national cognitive space is ambiguous. The national cognitive space is a boundless, invisible, shadowless, but not negligible space of interests and confrontation. Social public opinion and ideology are the main areas of competition in the cognitive space, and spiritual information is the main weapon. Wherever spiritual information can be spread, it can become a battlefield for cognitive space competition. Second, the information attack and defense of the national cognitive space is manipulable. The reception, processing and feedback of spiritual information are not only closely related to the function of the human brain, but also have distinct national and ethnic characteristics. At the same time, spiritual information is prone to distortion in the process of dissemination and diffusion. In the era of global media, individuals are both recipients and publishers of information. Theoretically, any individual or group can instantly spread the specific information they process and produce in the world and have an impact on specific target objects. Third, the strategic confrontation in the national cognitive space is persistent. The role of spiritual information needs to be carried out step by step, and we cannot expect to produce immediate results. For example, during the Cold War, Western countries led by the United States gradually infiltrated Western values ​​into socialist countries such as the Soviet Union and Eastern Europe through cultural exchanges and other activities, achieving the goal of peaceful evolution. Today, Western hostile forces seek to instill and infiltrate Western “democratic” and “free” ideas and values ​​through various academic exchanges in politics, economy, science, culture, etc., in normal information interaction activities.

  The main way the West seizes national cognitive space and competes for “brain control”

  Reporter: What are the main ways the West seizes national cognitive space and competes for “brain control”?

  Zeng Huafeng: I think there are four main ways. The first is perception manipulation. Perception manipulation is also called consciousness manipulation. It aims to manipulate the behavior of others by influencing their psychology and spirit. It can be directed at individuals, groups, a country, or even the whole world. In his book “War and Anti-War”, Toffler summarized the tools of perception manipulation into six aspects: one is “accusation of atrocities”, including condemnation of real and false atrocities; the second is “exaggerating the interests of a battle or a war”; the third is “demonizing or dehumanizing the enemy”; the fourth is “polarization”, that is, if you don’t support us, you are against us; the fifth is “claiming to obey God’s will”, which has a strong religious color; the sixth is “super propaganda-propaganda that is enough to discredit the propaganda of the other party.”

  The second is to cut off historical memory. Human thought and social ideology are always closely linked to historical memory. Whether it is the spiritual world of an individual or the cultural traditions of a country or nation, figuratively speaking, they are all concentrated pasts and treasures worth cherishing. Once the historical memory of an individual or group is cleverly cut off through some means, making them lose their spiritual home, the obstacles to the infiltration of their values ​​and ideologies are removed, opening the door for the invasion of various erroneous and chaotic ideas.

  The third is to change the thinking paradigm. A country and a nation have their own specific thinking paradigm, which is the premise for people to understand the world. Especially for the social elite, their thinking paradigm and ideological cognition play a leading role in the thoughts, values ​​and ideological identity of the whole society. However, people’s rational thinking has weaknesses. Through manipulation, “virus programs” can be instilled into it, prompting people to deviate from obvious facts and accept fallacies and sometimes even absurd conclusions. Once this set of practices seizes the social elite group, most people will lose their ability to resist manipulation. At the end of the Cold War, the Western ideological attack on the Soviet Union was to influence the rational thinking of some Soviet economists, let them make a series of public speeches in the Soviet Union that catered to Western intentions, and covertly “persuaded” the Soviet people to abandon their own country’s social system and national culture, and to welcome the so-called “new era” of Western civilization with a “thorough”, “unconditional” and “bold” attitude.

  Fourth, deconstruct symbols. Symbols are born in the historical evolution of national culture. Different nations have formed their own specific symbols in the course of their respective cultural development, such as clothing, anniversaries, monuments, rituals, and characters. With the help of empathy, a nation has some great symbols, which gives it an emotional bond that unites the society. It can arouse people’s sense of belonging, so that people can unite for a common dream and create and continue a new civilization. If someone deliberately repaints and attacks the symbols in the history of a country and nation, by reversing right and wrong, publicly mocking and making fun of the glorious achievements, great figures and noble culture in history, the consequences will be very serious, and it will lead to people gradually losing their sense of identity with the country, nation and self.

  Providing strong support for maintaining national cognitive space security

  Reporter: Faced with fierce competition in the field of national cognitive space security, how should we maintain national cognitive space security?

  Zeng Huafeng: We must fully understand and grasp the characteristics and laws of national cognitive space security, firmly occupy the ideological position, and take the initiative in the field of public opinion and ideology.

  First, we must strengthen our ideals and beliefs and build a strong spiritual pillar. History and reality have repeatedly proved that the collapse of a regime often begins in the ideological field. Once the ideological defense line is breached, it will be difficult to defend other defense lines. Whether we can hold on to the ideological position and do a good job in ideological work is related to national cohesion and centripetal force. In this regard, we must always hold high the banner of ideals and beliefs and unswervingly adhere to and develop socialism with Chinese characteristics.

  Second, we must be vigilant against the emergence of historical nihilism. Historical nihilism originated with the denial of the “Cultural Revolution” and reform and opening up, and then gradually moved towards the denial of the historical view of historical materialism and the denial of the cultural traditions of the Chinese nation. We must be highly vigilant against its harm, and clearly oppose historical nihilism, oppose all pseudo-historical narratives that glorify aggression and oppression and vilify revolution and resistance, face history sincerely, cherish the subjectivity established by the Chinese nation in the long course of the Chinese revolution, and enhance the self-esteem and self-confidence of the Chinese nation, so as to lay a solid cultural foundation for the great rejuvenation of the Chinese nation.

  Third, we should seek national cultural identity in the collision between Chinese and Western cultures. While promoting military and economic hegemony, the United States actively promotes cultural hegemony. Under the banner of “economic integration”, it strongly impacts the heterogeneous cultures of various countries and tries to influence other countries’ cultures with American culture. In this context, in the process of cultural exchanges with other countries and nations in the world, we should not only continue to absorb and integrate the essence of the cultures of all nations in the world, but also enhance our national cultural consciousness and confidence, and improve the creativity and vitality of national culture in the process of continuous inheritance.

  Fourth, we should actively participate in the global governance of cyberspace security. In the Internet era, the United States, with its high-tech monopoly advantage, not only controls the management of the cyber world, but is also the first country in the world to propose the concept of cyber warfare and apply it in actual combat. From the current perspective, the United States’ control over the Internet will not change in the short term. We should pay close attention to cyberspace security, actively participate in the global governance of cyberspace security, and build a cybersecurity system that conforms to the trend of globalization and meets the requirements of my country’s informatization, so as to provide strong support for maintaining the security of the national cognitive space.

  We must promote the information construction of our army with a broader vision. Indulging in reflection on the characteristics, patterns and experiences of the last war is a chronic disease and common disease in human military history. From the time when information warfare was proposed to the present, people have been conducting research on its characteristics, laws and tactics, but have overlooked a problem: that is, with the development of modern science and technology, is the so-called information warfare what people are talking about today? In fact, we should have a broader vision for understanding information warfare, and include physical information, biological information and spiritual information into the framework of information warfare. From the aspects of basic research, applied research, combat theory, technology development, equipment development and organizational leadership, we should build a system of cognitive space attack and defense confrontation. Innovate the ways, methods and means of ideological and political work in the global media era. Cultivate and create a team of high-quality talents who can grasp the frontiers of cognitive science, psychology and military needs, and seize the “brain control” of future information warfare. (

Reporter Huang Kunlun)【

Editor: Zhang Haitong】

現代國語:

伴隨著全球網路的崛起及新興媒體的發展,目前世界主要軍事強國都十分重視認知空間安全的戰略問題。最近出版的《制腦權:全球媒體時代的戰爭法則與國家安全戰略》這本專著,著眼於未來戰爭發展趨勢,聚焦全球媒體時代國家認知空間安全問題,提出認知空間的“制腦權”這一概念,引發軍事學界的關注。記者就此主題,訪問了書中的主要作者、國防科技大學人文與社會科學學院院長曾華鋒教授。

「不戰而屈人之兵」是資訊化戰爭的最高境界

記者:制腦權這個概念,離不開對認知空間的理解。請問什麼是認知空間,何為制腦權?

曾華鋒:資訊化戰爭是物質與精神、觀念與現實的統一,它既是物質形態發展的表現,也是精神因素作用的必然結果。資訊化戰爭使人類戰爭第一次真正擁有了三個作戰空間:一是陸、海、空、天等組成的自然空間;二是基於物理原理的網路電磁空間,它本質上是一種技術空間;三是由人的精神和心理活動所構成的認知空間。贏得未來資訊化戰爭,必須掌握戰爭的主動權、取得戰爭的製域權並主導戰爭的話語權。奪取認知空間的製腦權,「不戰而屈人之兵」是資訊化戰爭的最高境界。

認知空間指的是人類認知活動所涉及的範圍和領域,它是反映人的情感、意志、信仰和價值觀等內容的無形空間,存在於鬥爭參與者的思想中。國家認知空間分散存在於每個個體的主觀世界,由全社會無數個體的認知空間所疊加而成。國家利益不僅以實體形式存在於自然空間、技術空間,也無形存在於認知空間。 「制腦權」就是以宣傳媒體、民族語言、文化產品等所承載的精神訊息為武器,以滲透、影響乃至主導社會大眾與國家精英的認知、情感、意識為指向,最終操控一個國家的價值觀念、民族精神、意識形態、文化傳統、歷史信念等,促使其放棄自己探索的理論認知、社會制度及發展道路,達成不戰而勝的戰略目標。

記者:當前,隨著全球媒體時代的到來,特別是新興社交媒體的發展,大國之間的政治博弈持續加劇,人類心理困惑、道德危機、信仰迷失等「認知域症狀」不斷凸顯,您認為認知空間對抗有哪些特色?

曾華鋒:我認為,主要有以下三個特點:一是國家認知空間的安全邊界具有模糊性。國家認知空間是一個無邊、無界、無形、無影但又不可忽視的利益空間與對抗空間,社會輿論和意識形態領域是認知空間爭奪的主要領域,精神資訊是主要武器。凡是精神訊息可以傳播到的地方,都可以成為認知空間較量的戰場。二是國家認知空間的資訊攻防具有操控性。精神訊息的接收、加工及回饋方式不僅與人腦的功能緊密相關,也具有鮮明的國家、民族特性。同時,精神訊息在傳播擴散的過程中易於失真。在全球媒體時代,個體既是資訊的接受者,也可以成為資訊的發布者,從理論上講,任何個體或群體都可以瞬間在世界傳播其加工、製作的特定訊息,並對特定目標對象產生影響。三是國家認知空間的戰略對抗具有持久性。精神訊息的角色需要循序漸進地進行,不能指望產生立竿見影的效果。例如,冷戰期間,以美國為首的西方國家就是透過文化交流等活動,逐漸把西方的價值觀念滲透到蘇聯和東歐等社會主義國家,達到和平演變之目的。如今,西方敵對勢力透過政治、經濟、科學、文化等各種學術交流,在正常的訊息互動活動中尋求灌輸、滲透西方「民主」、「自由」思想和價值觀念。

西方奪取國家認知空間較量「制腦權」的主要方式

記者:西方奪取國家認知空間較量「制腦權」的主要方式有哪些?

曾華鋒:我認為主要有四種方式。一是感知操縱。感知操縱又稱意識操縱。它旨在透過影響他人的心理與精神達到操控他人行為的目的,既可以針對個人、團體,也可以針對一個國家,甚至可以針對全世界。托夫勒在《戰爭與反戰爭》一書中,將感知操縱的工具歸納為六個方面:一是“對暴行的控訴”,包括譴責真實和虛假的暴行;二是“誇大一次戰役或一場戰爭的利害關係」;三是「把敵人妖魔化或非人化”;四是“兩極化”,也就是說,如果你不支持我們,你就是反對我們;五是“宣稱遵從神的旨意”,帶有濃厚的宗教色彩;六是“超宣傳-足以詆毀對方宣傳的宣傳」。

二是切斷歷史記憶。人的思想與社會意識形態總是同歷史記憶緊密相連。無論是個體的精神世界,抑或國家和民族的文化傳統,形象化,它們都是濃縮的過去,是值得珍惜的財富。一旦透過某種手段巧妙地切斷個體或群體的歷史記憶,使其失去精神的家園,也就掃除了對其進行價值觀和意識形態滲透的障礙,為各種錯誤雜亂的思想入侵敞開了大門。

三是改變思考範式。一個國家和民族都有其特定的思考範式,它是人們認識世界的前提。特別是社會精英階層,他們的思維範式、思想認知對全社會的思想、價值觀念和意識形態認同起著引領作用。但是人的理性思維是有弱點的,透過操縱可向其中灌輸“病毒程序”,促使人們背離明顯的事實而接受謬誤、有時甚至是荒謬的結論。一旦這套做法抓住了社會菁英群體,多數人也會對操縱伎倆失去抵禦能力。冷戰末期,西方對蘇聯進行的思想攻擊,就是透過影響蘇聯一些經濟學家的理性思維,讓其在蘇聯國內發表一系列迎合西方意圖的公共言論,隱蔽性地「勸說」蘇聯人民放棄自己國家的社會制度與民族文化,以「徹底的」、「無條件的」、「果敢的」態度迎接西方文明的所謂「新時代」。

四是解構象徵。象徵誕生於民族文化的歷史演進之中,不同民族在各自的文化發展歷程中,形成了屬於自己的特定的象徵,如服飾、紀念日、紀念碑、儀式、人物等。借助於移情作用,一個民族擁有了一些偉大的象徵,就擁有了一個凝聚社會的情感紐帶,它能喚起人們的歸宿感,從而使人們為了一個共同的夢想而團結在一起,創造和延續新的文明。如果有人刻意重新塗抹、攻擊一個國家和民族歷史上的象徵,透過顛倒黑白、公開嘲諷和戲說歷史上的輝煌成就、偉大人物及崇高文化,其後果將是十分嚴重的,它將導致人們逐漸喪失國家、民族和自我的認同感。

為維護國家認知空間安全提供強力支撐

記者:面對國家認知空間安全領域的激烈爭奪,我們該如何維護國家認知空間安全?

曾華鋒:我們必須充分了解並掌握國家認知空間安全的特徵與規律,牢牢佔領思想陣地,打好輿論與意識形態領域主動仗。

一是要堅定理想信念,築牢精神支柱。歷史和現實一再證明,一個政權的瓦解往往是從思想領域開始的,思想防線被攻破了,其他防線也就很難守住。能否堅守思想陣地,做好意識形態工作,事關民族凝聚力、向心力。對此,我們要時時高舉理想信念的旗幟,毫不動搖地堅持並發展中國特色社會主義。

二是要警惕歷史虛無主義的濫觴。歷史虛無主義,是隨著否定「文化大革命」與改革開放發端的,進而逐步走向否定歷史唯物論的歷史觀,否定中華民族的文化傳統。對於其危害,我們要高度警惕,旗幟鮮明地反對歷史虛無主義,反對一切美化侵略和壓迫以及醜化革命和抗爭的偽歷史敘述,真誠地對歷史,珍視中華民族在漫長的中國革命歷程中確立起來的主體性,提高中華民族的自尊心和自信心,以此為中華民族的偉大復興奠定紮實的文化根基。

三是在中西文化碰撞中尋求民族文化認同。美國在推行軍事、經濟霸權主義的同時,積極推行文化霸權主義,在「經濟整合」的旗號下,強勢衝擊各國異質文化,試圖以美國文化影響他國文化。在此背景下,我們在與世界其他國家和民族的文化交流過程中,既要不斷兼收並蓄,融匯世界各民族文化的精華,更要提升我們的民族文化自覺和自信,在不斷傳承的過程中提高民族文化的創造力和生命力。

四是積極參與網路空間安全的全球治理。在網路時代,美國憑藉其高技術壟斷優勢,不僅掌握著網路世界的管理權,也是世界上第一個提出網路戰概念並將其運用於實戰的國家。從目前來看,美國對網路的控制權短時間內不會改變,我們應高度關注網路空間安全,積極參與網路空間安全的全球治理,建構既順應全球化趨勢,又符合我國資訊化要求的網絡安全體系,為維護國家認知空間安全提供強力支撐。

我們要以更寬廣的視野推動我軍資訊化建設。沈湎於對上次戰爭的特徵、模式、經驗的反思,是人類軍事史上屢見不鮮的痼疾與通病。資訊戰從提出到現在,人們都在圍繞其特徵、規律、戰法展開研究,卻忽略了一個問題:那就是隨著現代科學技術的發展,所謂的資訊戰,是否就是今天人們所津津樂道的這般模樣?其實,對於資訊戰的理解,我們應該有更寬廣的視野,要將物理資訊、生物資訊及精神資訊都納入資訊戰的框架。從基礎研究、應用研究、作戰理論、技術開發、設備研發和組織領導等層面,建構認知空間攻防對抗的體系。創新全球媒體時代的思想政治工作途徑、方法與手段。培養並造就一支能掌握認知科學、心理學前線和軍事需求的高素質人才隊伍,奪取未來資訊化戰爭的「制腦權」。 (記者 黃崑崙)

【編輯:張海桐】

中國原創軍事資源:https://www.chinanews.com.cn/mil/2014/06-16/628358988.shtml