中國前瞻性的智慧作戰系統為中國軍隊提供了「智慧」優勢
現代英語:
The evolution of warfare and combat styles is inextricably linked to profound changes in combat systems. The “intelligence” of intelligent combat systems lies not merely in the accumulation of technologies, but more importantly in the reconstruction of the paths for generating and releasing combat power, enabling leaps in combat effectiveness and serving as a key fulcrum for achieving victory in future wars. A deep understanding and forward-looking construction of the “intelligent” advantages of intelligent combat systems has become an essential requirement for winning intelligent warfare.
Survival advantages of elastic redundancy
The survival of operational elements is fundamental to victory in combat. Intelligent combat systems, through distributed and flexible deployment, modular functional reconfiguration, and autonomous damage recovery, have formed a resilient survival mode to cope with high-intensity confrontation and uncertainty.
Heterogeneous and distributed global deployment. Heterogeneity reflects the degree of aggregation of different capabilities on the same platform, while distribution reflects the degree of distribution of the same capability on different platforms. Intelligent combat systems enhance the diversity of platform capabilities through heterogeneity. For example, new combat aircraft can serve as multi-functional integrated platforms with sensing, command and control, relay, and strike capabilities. By distributing combat functions to different platforms, large-scale, low-cost global deployment can be achieved. For instance, the same combat function can be assigned to multiple platforms and systems such as UAVs and loitering munitions. With the heterogeneous dispersion and matrix cross-linking of intelligent nodes, continuous pressure can be formed everywhere and in all directions in physical space, while rapid aggregation in key directions can be achieved. This unifies global elasticity and dynamic real-time optimization, maximizing functional distribution and effectiveness release to cope with the uncertainties of intelligent combat.
Functional restructuring through modular combination. The intelligent combat system, employing a flexible paradigm of software-defined, task-oriented invocation, and modular reconfiguration, deconstructs functions fixed to specific equipment into standardized, interoperable hardware and software modules. During combat, based on rapidly changing battlefield demands, these modules can be quickly and flexibly loaded and combined online through a unified interface and open architecture, achieving non-linear functional combinations and flexible capability reshaping. This plug-and-play, on-demand generation model unlocks unlimited functional potential within a limited physical scale, realizing a shift from “using whatever weapons are available to fight” to “generating the appropriate capabilities for the specific battle,” fundamentally enhancing the adaptability and mission flexibility of the combat system.
Self-healing resilience. The advantage of an intelligent combat system lies not in its absolute invulnerability, but in its self-healing resilience—the ability to detect damage and reconstruct immediately upon interruption. When some nodes fail due to combat damage or interference, the system autonomously and rapidly diagnoses the damage based on preset functions and path redundancy rules. It then mobilizes nearby healthy nodes to take over the mission or activates backup communication paths to rebuild connections, propelling the system to quickly transition to a new stable state. This inherent elastic redundancy allows the system to maintain core functions and reconstruct the combat network even after enduring continuous attacks, minimizing the impact of combat damage on overall combat effectiveness.
The cognitive advantage of agile penetration
Cognitive advantage is key to gaining the initiative in battlefield information and achieving decisive victory. Its essence lies in breaking through the barriers of “information fog” and the constraints of “decision anxiety” through the deep integration of intelligent algorithms and advanced sensors, and realizing a leap from passive perception to proactive cognition.
Resilient communication capable of adapting to changing circumstances. Resilient communication refers to the ability of communication systems to detect interference in real time and dynamically reconfigure links in highly contested and complex electromagnetic environments to maintain the continuity and stability of command and control. Intelligent combat systems, relying on technologies such as cognitive radio, achieve on-demand allocation of communication resources, intelligent optimization of transmission paths, and autonomous reconfiguration of network topology, enabling them to “penetrate gaps” in complex electromagnetic environments and flexibly acquire communication “windows.” This resilience—able to maintain communication even amidst interference and resume operations even after interruptions—ensures the continuity of command and control relationships in extremely harsh electromagnetic environments, providing a reliable communication line for system cognitive activities.
The organic integration of multi-modal information. Multi-modal integration refers to the process of extracting consistency from diverse and heterogeneous information to form a high-value battlefield situation. The intelligent combat system, based on intelligent algorithms, performs cross-modal alignment of data from different sources such as radar, optoelectronics, reconnaissance, and cyber warfare. It automatically extracts enemy deployment, action patterns, and tactical intentions from massive and fragmented intelligence, achieving heterogeneous complementarity and cross-verification. This drives a qualitative leap from data redundancy to accurate intelligence, thereby providing commanders with a comprehensive and reliable battlefield cognitive map, clearing away the “fog of war,” and reaching the core of the situation.
Human-machine interaction achieves seamless intent. Intent-based intent aims to bridge the semantic gap between human commanders and intelligent combat systems, enabling precise and lossless conversion from natural language commands to machine-executable tasks. Intelligent combat systems utilize technologies such as natural language processing and knowledge graphs to construct an intelligent interaction engine with natural language understanding and logical reasoning capabilities. This engine automatically decomposes the commander’s general operational intent into task lists, constraints, and evaluation criteria, generating machine-understandable and executable tactical instructions and action sequences, which are then precisely distributed to the corresponding combat units, directly driving their execution. This “what is thought is what is directed, what is directed is what is attacked” command model significantly reduces the understanding and communication cycle in the traditional command chain, enabling deep integration of human and machine intelligence at the decision-making level and achieving a leap in command effectiveness.
Synergistic advantages of autonomous adaptation
Synergistic advantages are a multiplier for unleashing the effectiveness of system-of-systems warfare. The synergy of intelligent combat systems transcends programmed pre-setup, manifesting as the self-organizing and adaptive synchronization and cooperation of cross-domain combat units under unified rules and common missions. Its essence is the embodiment of system intelligence at the operational level.
Spatiotemporal coordination constrained by rules. Spatiotemporal coordination refers to setting action boundaries and interaction rules for widely dispersed combat units within a unified spatiotemporal reference framework, ensuring their orderly cooperation in the physical domain. Under a unified operational rule framework, each unit of the intelligent combat system autonomously calculates its relative position and predicts its trajectory through intelligent algorithms, achieving time-domain calibration, spatial-domain integration, and frequency-domain nesting of different platforms. This ensures conflict-free path planning, interference-free spectrum use, and accident-free firepower application. This collaborative mechanism, which combines order and flexibility, avoids mutual interference while maintaining tactical flexibility, providing a spatiotemporal reference for combat operations in complex battlefield environments.
Task-driven logical coordination. Logical coordination refers to using combat missions as the underlying logic, autonomously decomposing tasks, allocating resources, and planning actions to achieve intelligent organization and scheduling. The intelligent combat system, based on task analysis, capability matching, and planning generation algorithms, automatically decomposes combat objectives into specific action sequences and intelligently schedules corresponding combat units to “dispatch orders.” Each intelligent node, based on its understanding of the overall mission, real-time situational awareness, and its own capabilities, autonomously decides on action plans through a multi-agent negotiation mechanism and dynamically negotiates and cooperates with relevant units to “accept orders.” This task-oriented command greatly liberates higher-level commanders, enabling the system to possess agility and flexibility in responding to emergencies and significantly improving its mission adaptability.
Target-aligned awareness collaboration. Awareness collaboration refers to the autonomous decision-making and actions of combat units based on a shared understanding of the target and environment, resulting in synergistic effects. Intelligent combat systems consist of systems or nodes with predictive and reasoning capabilities. Driven by operational objectives, they can anticipate the actions of friendly forces and the course of the battlefield, and through local perception and independent decision-making, conduct self-organized and self-inspired collaborative support. This efficiency-driven, unspoken consensus transcends communication constraints and pre-set procedures, enabling the system to demonstrate exceptional adaptability and creativity when facing powerful adversaries.
The evolutionary advantages of learning iteration
Evolutionary advantage is key to a combat system’s sustained competitiveness and ability to seize the initiative on the battlefield. Intelligent combat systems rely on real-time adversarial data to drive overall optimization, accelerate capability diffusion through cross-domain experience transfer, and foster disruptive tactics through virtual gaming environments, thereby achieving autonomous evolution and generational leaps in combat effectiveness during the adversarial process.
The evolution of a system built upon accumulated experience. Intelligent combat systems will gather perception, decision-making, and action data acquired from complex adversarial environments in real time to a knowledge hub. Leveraging advanced algorithms such as reinforcement learning, they will conduct in-depth analysis and mining, performing closed-loop evaluation and dynamic adjustment of system-level operational logic such as command processes, coordination rules, and resource allocation strategies. This will form reusable and verifiable structured knowledge units, enhancing the combat system’s understanding of its environment and its autonomous adaptability. This will enable the entire system to form a shared “collective memory,” achieving adaptive radiation from single-point intelligence to overall operational effectiveness, and ultimately achieving individual evolution that becomes “more refined with each battle.”
Cross-domain empowerment of knowledge transfer. The intelligent combat system, relying on a unified semantic space and feature alignment framework, can rapidly embed localized experiences extracted and summarized from a specific battlefield or domain into other combat domains or mission scenarios. This breaks down information barriers between combat units, enabling the lossless transformation and cross-domain application of combat experience. Essentially, it promotes the secure flow and synergistic effect of knowledge within the system, completing the sublimation and reconstruction from “concrete experience” to “abstract knowledge,” achieving “gains from one battle benefiting all domains,” and accelerating the synchronous evolution of combat capabilities across various domains. This not only significantly improves the overall learning efficiency of the combat system and avoids repeated trial and error, but also achieves the intensive enhancement and systematic inheritance of combat capabilities.
The disruptive potential of game theory and confrontation is emerging. Systemic intelligent game theory aims to break through the boundaries of human cognition, fostering disruptive combat capabilities that transcend traditional experience. Its essence lies in the proactive creation and self-transcendence of knowledge at the system level. By constructing a high-intensity, long-term, realistic “red-blue” adversarial environment in a digital twin battlefield, and utilizing generative adversarial networks and multi-agent reinforcement learning frameworks, intelligent combat systems can explore the unknown boundaries of the strategy space in continuous game development. Based on game theory and complex systems theory, the system can spontaneously form better strategies during adversarial evolution, leading to combat modes and organizational forms that transcend conventional cognition. This makes the intelligent combat system a “super think tank” capable of continuously producing disruptive tactics.
現代國語:
戰爭和作戰方式的演變與作戰系統的深刻變革密不可分。智慧作戰系統的「智慧」不僅在於技術的積累,更重要的是重構作戰能力生成與釋放路徑,從而實現作戰效能的飛躍,並成為未來戰爭取勝的關鍵支點。深入理解並前瞻性地建構智慧作戰系統的「智慧」優勢,已成為贏得智慧戰爭的必要條件。
彈性冗餘的生存優勢
作戰要素的生存是戰爭勝利的根本。智慧作戰系統透過分散式靈活部署、模組化功能重建和自主損傷恢復,形成了應對高強度對抗和不確定性的韌性生存模式。
異質分散式全球部署。異質性反映了不同能力在同一平台上的聚合程度,而分散式則反映了相同能力在不同平台上的分佈程度。智慧作戰系統透過異質性增強了平台能力的多樣性。例如,新型作戰飛機可以作為集感知、指揮控制、中繼和打擊能力於一體的多功能整合平台。透過將作戰功能分配到不同的平台,可以實現大規模、低成本的全球部署。例如,同一作戰功能可以分配給多個平台和系統,例如無人機和巡彈。借助智慧節點的異質分散和矩陣式交叉連接,可以在物理空間的各個方向形成持續的壓力,同時實現關鍵方向的快速聚合。這統一了全局彈性和動態即時最佳化,最大限度地提高功能分配和效能釋放,以應對智慧作戰的不確定性。
透過模組化組合進行功能重構。智慧作戰系統採用軟體定義、任務導向和模組化重構的靈活範式,將固定於特定設備的功能解構為標準化、可互通的硬體和軟體模組。在戰鬥中,基於瞬息萬變的戰場需求,這些模組可透過統一的介面和開放式架構,在線上快速靈活地載入和組合,實現非線性功能組合和靈活的能力重塑。這種即插即用、按需生成的模式,在有限的物理規模內釋放了無限的功能潛力,實現了從「使用任何可用武器作戰」到「為特定戰鬥生成合適的能力」的轉變,從根本上增強了作戰系統的適應性和任務靈活性。
自癒韌性。智慧作戰系統的優勢不在於其絕對的無懈可擊,而在於其自癒韌性——即在中斷發生後能夠立即檢測損傷並進行重建。當某些節點因戰鬥損傷或乾擾而失效時,系統會基於預設功能和路徑冗餘規則,自主快速地診斷損傷。然後,它會調動附近的健康節點接管任務,或啟動備用通訊路徑重建連接,從而使系統迅速過渡到新的穩定狀態。這種固有的彈性冗餘使系統即使在遭受持續攻擊後也能維持核心功能並重建作戰網絡,從而最大限度地降低戰鬥損傷對整體作戰效能的影響。
敏捷滲透的認知優勢
認知優勢是掌握戰場資訊主動權並取得決定性勝利的關鍵。其本質在於透過智慧演算法和先進感測器的深度融合,突破「資訊迷霧」的障礙和「決策焦慮」的束縛,實現從被動感知到主動認知的飛躍。
適應環境變化的彈性通訊。彈性通訊是指通訊系統在高度對抗且複雜的電磁環境中即時偵測幹擾並動態重配置鏈路,以維持指揮控制的連續性和穩定性的能力。智慧作戰系統依托認知無線電等技術,實現通訊資源的按需分配、傳輸路徑的智慧優化以及網路拓撲的自主重配置,使其能夠在複雜的電磁環境中「穿透縫隙”,靈活獲取通訊「視窗」。這種韌性-即使在…之中也能保持溝通即使中斷後也能進行幹擾並恢復操作-確保在極度惡劣的電磁環境下指揮控制關係的連續性,為系統認知活動提供可靠的通訊線路。
多模態訊息的有機融合。多模態融合是指從多樣化且異構的資訊中提取一致性,形成高價值的戰場態勢的過程。基於智慧演算法的智慧作戰系統,對雷達、光電、偵察和網路戰等不同來源的資料進行跨模態對齊。它能夠從海量且碎片化的情報中自動提取敵方部署、行動模式和戰術意圖,實現異質互補和交叉驗證。這實現了從數據冗餘到精準情報的質的飛躍,從而為指揮官提供全面可靠的戰場認知地圖,撥開“戰爭迷霧”,直擊戰局核心。
人機互動實現無縫意圖傳遞。基於意圖的意圖旨在彌合人類指揮官與智慧作戰系統之間的語義鴻溝,實現自然語言指令到機器可執行任務的精確無損轉換。智慧作戰系統利用自然語言處理和知識圖譜等技術建構具備自然語言理解和邏輯推理能力的智慧互動引擎。該引擎自動將指揮官的整體作戰意圖分解為任務清單、約束條件和評估標準,產生機器可理解和執行的戰術指令和行動序列,並將其精確地分發給相應的作戰單元,直接驅動其執行。這種「所想即所發,所發即所攻」的指揮模式顯著縮短了傳統指揮鏈中的理解和溝通週期,實現了決策層面的人機智能深度融合,從而大幅提升了指揮效能。
自主調適的協同優勢
協同優勢是釋放系統間作戰效能的倍增器。智慧作戰系統的協同作用超越了預設的程序,表現為跨域作戰單元在統一規則和共同任務下進行自組織、自適應的同步與協作。其本質是系統智能在作戰層面的體現。
規則約束下的時空協調。時空協調是指在統一的時空參考框架內,為分散部署的作戰單元設定行動邊界和交互規則,確保其在物理域內的有序協作。在統一的作戰規則框架下,智慧作戰系統的每個單元透過智慧演算法自主計算其相對位置並預測其軌跡,實現不同平台的時域校準、空域融合和頻域嵌套。這確保了無衝突的路徑規劃、無幹擾的頻譜使用和無事故的火力運用。這種兼具有序性和靈活性的協同機制,在保持戰術靈活性的同時避免了相互幹擾,為複雜戰場環境下的作戰行動提供了時空參考。
任務驅動的邏輯協調。邏輯協調是指以作戰任務為底層邏輯,自主分解任務、分配資源、規劃行動,進而達成智慧化的組織與調度。智慧作戰系統基於任務分析、能力匹配和計畫生成演算法,自動將作戰目標分解為具體的行動序列,並智慧調度相應的作戰單位進行「命令下達」。每個智慧節點基於對整體任務的理解、即時態勢感知以及自身能力,透過多智能體協商機制自主制定行動計劃,並與相關單位動態協商協作以「接受命令」。這種以任務為導向的指揮方式極大地解放了上級指揮官,使系統在應對突發事件時具備敏捷性和靈活性,顯著提升了任務適應性。
目標對齊感知協同。感知協同是指作戰單位基於對目標和環境的共同理解進行自主決策和行動,從而產生協同效應。智慧作戰系統由具備預測和推理能力的系統或節點組成。在營運目標的驅動下,它們可以智慧作戰系統能夠預判友軍行動和戰場局勢,透過局部感知和獨立決策,進行自組織、自發的協同支援。這種以效率為導向的、無聲的共識超越了溝通限制和預設程序,使系統在面對強大對手時展現出卓越的適應性和創造力。
學習迭代的演化優勢
演化優勢是作戰系統保持競爭力和在戰場上掌握主動權的關鍵。智慧作戰系統依靠即時對抗數據來驅動整體優化,透過跨域經驗轉移加速能力擴散,並透過虛擬博弈環境培養顛覆性戰術,從而在對抗過程中實現自主演化和作戰效能的世代飛躍。
基於經驗累積的系統演化。智慧作戰系統將從複雜的對抗環境中即時獲得的感知、決策和行動數據收集到知識中心。利用強化學習等先進演算法,該系統將進行深度分析和挖掘,對系統級運作邏輯(如指揮流程、協調規則和資源分配策略)進行閉環評估和動態調整,從而形成可重用、可驗證的結構化知識單元,增強作戰系統對環境的理解和自主適應能力。這將使整個系統形成共享的“集體記憶”,實現從單點智慧到整體作戰效能的自適應輻射,並最終實現“越戰越精進”的個體演進。
跨域知識遷移賦能。智慧作戰系統依托統一的語意空間和特徵對齊框架,能夠將從特定戰場或領域提取和總結的局部經驗快速嵌入到其他作戰領域或任務場景中,打破作戰單元之間的資訊壁壘,實現作戰經驗的無損轉換和跨域應用。本質上,它促進了系統內知識的安全流動和協同效應,完成了從「具體經驗」到「抽象知識」的昇華和重構,實現了「一戰多域」的效益,並加速了跨領域作戰能力的同步演進。這不僅顯著提高了作戰系統的整體學習效率,避免了重複試錯,而且實現了作戰能力的強化和系統繼承。
博弈論與對抗的顛覆性潛能正在顯現。系統智慧博弈論旨在突破人類認知的限制,培養超越傳統經驗的顛覆性作戰能力。其本質在於系統層面知識的主動創造與自我超越。透過在數位孿生戰場上建構高強度、長期、逼真的「紅藍」對抗環境,並利用生成對抗網路和多智能體強化學習框架,智慧作戰系統能夠在持續的博弈演進中探索戰略空間的未知邊界。基於博弈論和複雜系統理論,該系統能夠在對抗演化過程中自發性地形成更優策略,從而產生超越傳統認知的作戰模式和組織形式。這使得該智慧作戰系統成為一個能夠持續產生顛覆性戰術的「超級智庫」。
中國原創軍事資源:https://military.people.com.cn/n18/2025/18216/c1011-480682584829.html