Category Archives: Chinese Military Artificial Intelligence Weaponizatio

China’s Position Paper : Regulating Military Applications of Artificial Intelligence

中國的立場文件:規範人工智慧的軍事應用

現代英語:

The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.

AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.

Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.

Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.

We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.

To this end, we call for:

– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.

– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.

– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values ​​of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.

– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.

– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.

– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.

——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.

– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.

現代國語:

人工智慧技術的快速發展及其廣泛應用,正深刻改變人類生產和生活方式,為世界帶來巨大機會的同時,也帶來難以預測的安全挑戰。特別值得關注的是,人工智慧技術的軍事應用,在戰略安全、治理規則、道德倫理等方面可能產生深遠影響和潛在風險。

人工智慧安全治理是人類面臨的共同課題。隨著人工智慧技術在各領域的廣泛應用,各方普遍對人工智慧軍事應用甚至武器化風險感到擔憂。

在世界和平與發展面臨多元挑戰的背景下,各國應秉持共同、綜合、合作、永續的全球安全觀,透過對話與合作,就如何規範人工智慧軍事應用尋求共識,建構有效的治理機制,避免人工智慧軍事應用為人類帶來重大損害甚至災難。

加強對人工智慧軍事應用的規範,預防和管控可能引發的風險,有利於增進國家間互信、維護全球戰略穩定、防止軍備競賽、緩解人道主義關切,有助於打造包容性和建設性的安全夥伴關係,在人工智慧領域實踐建構人類命運共同體理念。

我們歡迎各國政府、國際組織、技術企業、科研院校、民間機構和公民個人等各主體秉持共商共建共享的理念,協力共同促進人工智慧安全治理。

為此,我們呼籲:

——戰略安全上,各國尤其是大國應本著慎重負責的態度在軍事領域研發和使用人工智慧技術,不謀求絕對軍事優勢,防止加劇戰略誤判、破壞戰略互信、引發衝突升級、損害全球戰略平衡與穩定。

——在軍事政策上,各國在發展先進武器裝備、提高正當國防能力的同時,應銘記人工智慧的軍事應用不應成為發動戰爭和追求霸權的工具,反對利用人工智慧技術優勢危害他國主權和領土安全的行為。

——法律倫理上,各國研發、部署和使用相關武器系統應遵循人類共同價值觀,堅持以人為本,秉持「智能向善」的原則,遵守國家或地區倫理道德準則。各國應確保新武器及其作戰手段符合國際人道法和其他適用的國際法,努力減少附帶傷亡、降低人員財產損失,避免相關武器系統的誤用惡用,以及由此引發的濫殺。

——在技術安全上,各國應不斷提昇人工智慧技術的安全性、可靠性和可控性,增強對人工智慧技術的安全評估和管控能力,確保相關武器系統永遠處於人類控制之下,保障人類可隨時中止其運作。人工智慧資料的安全必須得到保證,應限制人工智慧資料的軍事化使用。

——研發作業上,各國應加強對人工智慧研發活動的自我約束,在綜合考慮作戰環境和武器特性的基礎上,在武器全生命週期實施必要的人機互動。各國應時常堅持人類是最終責任主體,建立人工智慧問責機制,對操作人員進行必要的訓練。

——風險管控上,各國應加強對人工智慧軍事應用的監管,特別是實施分級、分類管理,避免使用可能產生嚴重負面後果的不成熟技術。各國應加強對人工智慧潛在風險的研判,包括採取必要措施,降低人工智慧軍事應用的擴散風險。

——規則制定上,各國應堅持多邊主義、開放包容的原則。為追蹤科技發展趨勢,防範潛在安全風險,各國應進行政策對話,加強與國際組織、科技企業、技術社群、民間機構等各主體交流,增進理解與協作,致力於共同規範人工智慧軍事應用並建立普遍參與的國際機制,推動形成具有廣泛共識的人工智慧治理框架和標準規範。

——國際合作上,已開發國家應協助發展中國家提升治理水平,考慮到人工智慧技術的軍民兩用性質,在加強監管和治理的同時,避免採取以意識形態劃線、泛化國家安全概念的做法,消除人為製造的科技壁壘,確保各國充分享有技術發展與和平利用的權利。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjb_673085/zzjg_673183/jks_674633/zclc_674645/rgzn/202206/t20220614_10702838.shtml

Chinese Military Analysis on the Strategic Application of Intelligent Warfare


中國軍事對智慧戰爭戰略應用的分析

現代英語:

An analysis of the use of strategies in intelligent warfare

■Chen Dongheng, Zhong Ya

Reading Tips: “Warfare is the art of deception”. War is a competition of comprehensive strength. Ancient Chinese military strategists have always attached great importance to “strategizing in the tent and winning thousands of miles away”, and all of them regard strategy as the way to victory. War practice shows that as long as war is a confrontation between humans, smart strategies will not withdraw from the battlefield. Today’s battlefield competition is about intelligent skills, and what is fought is smart strategies.

“The best military is to attack the enemy’s strategy, the next best is to attack the enemy’s alliance, the next best is to attack the enemy’s soldiers, and the worst is to attack the city.” Strategy, as a component of combat power and a weapon to win the war, runs through ancient and modern times and transcends national boundaries, and has an important function of influencing and determining the outcome of the war. Although the role of science and technology is more prominent in intelligent warfare, it does not exclude the use of strategy. With the support and guidance of strategy, the combat system is more efficient. In-depth research and mastery of the use of strategy in intelligent warfare will be more conducive to winning the initiative in intelligent warfare.

The status and role of the use of strategy in intelligent warfare

The essence of strategy lies in the intelligent release of power. Scientific strategy application can often defeat the majority with the minority, the big with the small, and the strong with the weak. The battlefield of intelligent warfare presents more transparency, more extended combat space, more diverse means of confrontation, and more complex winning mechanism. This provides a solid material foundation and technical support for the implementation of strategy, and the status and role of strategy are becoming more and more important.

The internal driving force of the army construction and development planning. Demand is the order of the army, and use is the commander of the weapon. How science and technology are innovated, how weapons and equipment are developed, and how the national defense forces are built are often driven by demand and forward-looking planning. For example, in order to make up for the gap between Russia and the United States in terms of overall air defense and anti-missile strength, Russia used “asymmetric” strategies to focus on penetration technology and developed the “Zircon” and “Dagger” hypersonic missiles before the United States. Facts show that the application of strategies mainly focuses on “Tao” and “Fa”. The more reasonable the design and the more scientific the application, the more it can stimulate the motivation, vitality and potential of innovation and creation, and trigger a revolution in science and technology, weapons and equipment, and military construction and combat methods. Only when intelligent warfare, scientific and technological innovation and weapons and equipment development are closely connected with the needs of scientific war strategies can they adhere to the correct direction and be better transformed into actual combat power.

A multiplier of the actual combat effectiveness of the combat system. In the combat power spectrum, strategy, as an important soft power, has the value and significance of providing scientific methodological guidance, appropriate time and opportunity selection and correct path support for the use of military hard power. For example, Iran once used the “dislocation” tactics to launch a large-scale retaliatory air strike against Israel, first using hundreds of cheap drones to attract the consumption of Israel’s expensive air defense system, and then using more advanced high-value ballistic missiles to penetrate, which improved the hit rate to a certain extent. Facts show that when facing an opponent with superior hard power, if the strategy is used properly, it can also achieve miraculous results; and the same hard power may have very different combat effectiveness when using different strategies and tactics. In intelligent warfare, although the “blade” of military hard power is faster, in order to make it more effective, it still needs to rely on more sophisticated strategic “sword skills”.

Dependent variables of hybrid warfare operations. Strategy can not only empower military hard power, but also has a strong direct combat function, and can even defeat the enemy without fighting by “soft killing”. For example, the United States once spent a lot of money to capture the leader of al-Qaeda, Osama bin Laden, but he seemed to have disappeared from the world, and technical means could not determine his exact hiding place. He was finally tracked down by targeting his messenger through strategic use. The United States’ “live broadcast” “Spear of Poseidon” operation attempted to show the strength of the US military by killing Bin Laden to shock the international community. Intelligent warfare is a hybrid warfare, which has entered a new era of global live broadcast, universal participation, and full coverage. More and more countries are adopting strategic methods to enhance their own confidence and strike the opponent’s will to resist, and the strategic “soft kill” combat function is becoming more and more apparent.

Basic mechanism of intelligent warfare strategy application

Intelligent warfare, high-level development of artificial intelligence, rapid iteration, full spectrum penetration, and high-efficiency release, make the application of strategy have more dimensional support and stronger drive, showing a unique operation mechanism.

Cluster operation of strategy application. The application of strategy is based on the underlying logic of war operation and follows the law of evolution of the subject from individual to team and then to system. From a historical perspective, the application of strategy warfare in the cold weapon era relied more on the wisdom and experience accumulation of generals. Natural factors such as geography and weather are the main grasps of strategy operation. The burning of Red Cliff and borrowing arrows from straw boats are vivid footnotes. In the mechanized era, in order to adapt to the increasingly complex composition of military branches and the needs of fast-paced operations, the “General Staff” of senior military institutions dedicated to war planning services came into being. The “General Staff” in the two world wars is a typical representative. In the information age, the use of war strategies mainly relies on the control of information, and information power has become the main support behind strategic planning. In intelligent warfare, the comprehensiveness of technology application, the systematic nature of force planning, and the platform characteristics of game confrontation are more prominent, and the internal requirements are that the subject of strategy implementation should shift to a more powerful systematic platform.

Algorithm-driven strategy application. Strategy is based on strategy. The essence of planning is calculation, calculation of the world situation, calculation of military situation, calculation of development trend, calculation of strength and weakness, calculation of winning advantage… Whether it is calculation by human brain or machine, calculation by generals or calculation by teams, calculation is always the most critical supporting factor. Generally speaking, whoever has stronger computing power, more precise algorithms, and faster calculations can grab the “calculation” machine and win the victory. In the era of intelligent calculation, artificial intelligence participates in strategic decision-making with human-machine hybrid algorithms or machine algorithms, which greatly enhances the efficiency of calculation. It is based on this that major countries have focused on breakthroughs in artificial intelligence to win the future competition. These artificial intelligences, characterized by strong computing power, have great application potential in simulating battlefield situations, simulating war processes, and assisting decision-making and command. Only by guarding against the opponent’s technical aggression, vigorously improving our computing power, and adding the wings of algorithms to traditional strategies can we be invincible in the strategic game confrontation.

Intelligent support for the use of strategies. In intelligent warfare, strategies are based on the rapid development of artificial intelligence and its extensive military applications. It is a two-way “rush” of human strategic wisdom and “technical” wisdom. Now, the generals’ ingenuity and traditional staff work have become increasingly difficult to adapt to the needs of intelligent warfare. Comprehensive intelligent command and decision-making platforms have become an important support for the implementation of strategies. The command and decision-making system of the US military has developed into a large platform that integrates four-layer structural functions, including “intelligence support, information fusion, mission coordination, autonomous decision-making, action deployment, force allocation, situation adjustment, and real-time tracking”, and has become the brain of its “decision-making center warfare”. The Russian Federation Armed Forces Combat Command Center can dispatch and monitor the training and exercises of the entire army in real time, and undertake combat command tasks in low-intensity small-scale conflicts. It can be seen that intelligent support for strategic planning and strategy implementation has gradually taken shape. Intelligent strategic confrontation has put forward higher requirements for the professional integration of strategic subjects, and promoted the deep integration of human biological intelligence and artificial intelligence, which is “human-like intelligence”.

Main ways to use strategies in intelligent warfare

In intelligent warfare, the era background, supporting conditions, and action mechanisms of strategy application have undergone profound changes. The way of implementing strategies must keep pace with the times, strive to combine traditional strategic advantages with new technologies and new forms of warfare, innovate and expand scientific paths to effectively release strategic energy, and strive to plan quickly, plan carefully, and integrate strategy and attack.

Intelligent technology integration releases energy. That is, make full use of intelligent technology to empower and release energy for strategies. Generally speaking, the effective implementation of strategies is inseparable from accurate information perception, rapid personnel mobilization, and efficient force strikes. The innovative application of artificial intelligence enables people to see farther, hear more closely, know more, and calculate faster, making the army gather and disperse more quickly, move more covertly, and release power more rapidly, which is more conducive to the generation of strategies and the achievement of effectiveness. On the one hand, with the help of the rapidity and autonomy of artificial intelligence, the enemy situation can be quickly grasped through intelligent reconnaissance, the decision-making time can be greatly shortened by using machine algorithms, and the optimal strategy can be selected with the help of simulation deduction; on the other hand, relying on artificial intelligence to release and enhance the efficiency of strategies, modern brain control technology, deep fake technology, information confusion technology, public opinion guidance technology, etc., have greatly expanded the space and means of implementing strategies.

Human-machine complementation releases energy. That is, the strengths and weaknesses of human intelligence and machine intelligence complement each other and enhance efficiency and release energy. The biggest advantage of machine intelligence over human intelligence is that it can fight continuously without being affected by biological factors such as will, emotion, psychology, and physical strength. However, the “meta-intelligence” of human intelligence and its ability to adapt to changes are not possessed by machine intelligence. The two intelligence advantages complement each other and aggregate to form a powerful hybrid intelligence, which strongly supports the use of strategies in war. On the one hand, the “machine brain” safely and efficiently makes up for the shortcomings of the human brain; on the other hand, the human brain responds to special situations on the spot. Facts show that the biggest advantage of human intelligence over machine intelligence is that it can make decisions and deal with different situations on the spot, which just makes up for the shortcomings of machine intelligence. Only by combining the two can we form the optimal solution for intelligent calculation and gather the strongest strategic application.

The platform releases energy as a whole. It is to create a modular intelligent system, an integrated intelligent decision-making command action platform that integrates strategy generation and release. Intelligent warfare, every second counts, improves the time sensitivity of target strikes. The intelligent platform comprehensively uses intelligent computing and command automation technology to efficiently process massive data and complex battlefield situations, creating a “super brain” for commanders. It has significant advantages of good functional connection, high stability, fast operation speed, and high combat efficiency. It is a new quality combat force for strategic planning. Relying on the intelligent command and control system, it can make real-time decisions, form a list of time-sensitive targets, and independently solve the combat units and strike platforms that can be summoned and struck the fastest and best. The hardware and software can accurately strike the targets, and accurate strikes on time-sensitive targets can be achieved in real-time decisions, providing more options for assisting war decision-making and command.

(Author unit: Academy of Military Science)

現代國語:

試析智慧化戰爭的謀略運用

■陳東恆 鐘 婭

閱讀提示 「兵者,詭道也」。戰爭是綜合實力的比拼和競賽。我國古代兵家歷來重視“運籌帷幄之中,決勝千里之外”,無不把謀略視為取勝之道。戰爭實踐表明,只要戰爭是人類的對抗,智慧謀略就不會退出戰場。今天的戰場比拼,打的是智能技能,拼的更是智慧謀略。

「上兵伐謀,其次伐交,其次伐兵,其下攻城。」謀略作為戰鬥力的構件和製勝戰爭的利器,貫穿古今、超越國界,具有影響和決定戰爭勝負的重要功能。智能化戰爭中雖然科技的角色更突顯,但並不排斥謀略的運用,在謀略的支撐和引領推動下,作戰體系反而效率更高。深入研究掌握智慧化戰爭的謀略運用,更有利於贏得智慧化戰爭的主動權。

智慧化戰爭謀略運用的地位作用

謀略的本質在於力量的智慧化釋放。科學的謀略運用常能以少勝多、以小博大、以弱勝強。智慧化戰爭戰場呈現更透明、作戰空間更延展、對抗手段更多樣化、制勝機理更複雜等特點,這為施謀用計提供了堅實物質基礎和技術支撐,謀略的地位作用愈發重要。

軍隊建設發展規劃的內動力。需為軍之令,用為器之帥。科學技術如何創新、武器裝備怎樣發展、國防軍隊怎麼建設,常常由需求牽引、前瞻謀劃。例如,俄羅斯為彌補防空反導整體力量方面與美國的差距,運用「非對稱」謀略在突防技術上發力,先於美國研發出「鋯石」「匕首」高超聲速導彈。事實表明,謀略運用主要著力於“道”和“法”,其設計越合理、運用越科學,越能激發創新創造的動力、活力和潛力,引發科學技術、武器裝備和軍隊建設作戰方式的革命。智慧化戰爭,科技創新和武器裝備開發只有緊密對接科學的戰爭謀略需求,才能堅持正確的方向,更好地轉化為現實的戰鬥力。

作戰體系實戰效能的倍增器。在戰鬥力譜系中,謀略作為重要的軟力量,其存在的價值和意義在於為軍事硬實力運用提供科學的方法論指引、合適的時機場合選擇和正確的路徑支撐。例如,伊朗曾利用「錯置」戰法對以色列發動大規模報復性空襲,先是以數百架廉價無人機吸引消耗以軍昂貴的防空系統,繼而用更先進的高價值彈道導彈突防,一定程度上提高了命中率。事實顯示,面對硬實力佔優的對手,如果謀略運用得當也能收到奇效;而同樣的硬實力運用不同的策略戰法,作戰效能可能大相徑庭。智慧化戰爭,雖然軍事硬實力的「刀鋒」更快,但要使其發揮更大戰鬥效能,還需藉助更高明的謀略「刀法」。

混合戰爭作戰運籌的因變數。謀略不僅能為軍事硬實力賦能,本身還有強大的直接作戰功能,甚至能以「軟殺傷」不戰而屈人之兵。例如,美國曾重金緝拿基地組織頭目本·拉登,但他好像人間蒸發一樣,技術手段無法確定其確切藏身處,最終通過謀略運用盯上其信使才追踪到。而美國「直播」「海神之矛」作戰行動,則企圖透過擊殺賓拉登來展現美軍的強大,以震撼國際社會。智慧化戰爭是混合戰爭,已經進入全球直播、全民參與、全域覆蓋的全新時代,越來越多的國家採取謀略方式增強己方信心、打擊對手抵抗意志,謀略「軟殺傷」的作戰功能越加顯現。

智慧化戰爭謀略運用的基本機理

智慧化戰爭,人工智慧的高階位元發展、快速度迭代、全頻譜滲透、高效能釋放,使謀略運用有了更多維的支撐、更強大的驅動,展現出獨特的運行機理。

謀略運用的集群作業。謀略的運用,既基於戰爭運行的底層邏輯,也遵循施動主體從個體到團隊再到體系的流轉演進規律。從歷史上看,冷兵器時代的謀略戰爭運用,更多靠將帥的智謀和經驗積累,地理、天候等自然因素是謀略運籌的主要抓手,火燒赤壁、草船借箭就是其生動註腳。機械化時代,適應日益復雜的軍兵種構成和快節奏作戰需要,專司戰爭謀劃服務的高級軍事機構“參謀部”便應運而生,兩次世界大戰中“總參謀部”就是其中的典型代表。資訊化時代謀略的戰爭運用,依靠的主要是對資訊的掌控,資訊力成為謀略運籌背後的主要支撐力。智慧化戰爭,技術應用的綜合性、力量運籌的體系性、博弈對抗的平台化特徵更加突出,內在要求謀略的施動主體向功能更強大的體系化平台轉進。

謀略運用的演算法驅動。謀略以謀為關鍵。謀的本質是算,算天下大勢、算軍事態勢、算發展趨勢、算強弱勝勢、算制勝優勢……無論是人腦算還是機器算、將帥算還是團隊算,算始終是最關鍵的支撐要素。一般情況下,誰的算力更強、演算法更精、算計更快,誰就能搶得「算」機、贏得勝算。智能化時代的算,人工智慧以人機混合演算法或機器演算法參與謀略決算,極大增強了算的效率。正是基於此,各主要國家紛紛把贏得未來競爭的成長點聚焦到人工智慧突破上。這些以強算力為特徵的人工智慧,在模擬戰場態勢、模擬戰爭進程、輔助決策指揮上有極大應用潛力。謹防對手技術突襲,大力提高我們的算力,為傳統謀略插上演算法的翅膀,才能在謀略博弈對抗中立於不敗之地。

謀略運用的智慧支撐。智慧化戰爭,謀略基於的是人工智慧迅猛發展及其廣泛軍事應用,是人的謀略之智與「技術」之智的雙向「奔赴」。現在,將帥的神機妙算、傳統的參謀作業,已經越來越難以適應智能化戰爭需要,綜合性的智能化指揮決策平台,成為施謀用計的重要支撐。美軍的指揮決策體系,已經發展成為融「情報保障、資訊融合,任務協調、自主決策,行動展開、力量配屬,態勢調整、實時跟踪」等四層結構功能於一體的大平台,成為其「決策中心戰”的大腦。俄羅斯聯邦武裝力量作戰指揮中心,可即時調度監控全軍訓練演習,並在低強度小規模沖突中擔負作戰指揮任務。可見,智慧支撐謀略運籌、策略實施逐步形成。智慧化謀略對抗,對謀略主體的專業化整合性提出了更高要求,推動人的生物智慧與人工智慧這一「類人智慧」深度融合結合。

智慧化戰爭謀略運用的主要方式

智慧化戰爭,謀略運用的時代背景、支撐條件、作用機理等發生了深刻變化。施謀用計的方式必須與時俱進,努力把傳統謀略優勢與新的技術、新的戰爭形態結合起來,創新拓展有效釋放謀略能量的科學路徑,致力先知快謀、精謀巧打、謀打融合。

智技融合釋能。就是充分利用智慧科技為謀略賦能釋能。通常而言,謀略的有效實施離不開準確的資訊感知、迅捷的人員調動、高效的力量打擊。人工智慧的創新應用,使人看得更遠、聽得更切、知得更多、算得更快,使軍隊集散更迅速、行動更隱蔽、力量釋放更迅猛,更加有利於謀略生成和謀效達成。一方面,借助人工智慧的快速性、自主性,透過智慧偵察迅速掌握敵情,運用機器演算法極大縮短決策時間,借助模擬推演優選謀略方案;另一方面,依靠人工智慧為謀略釋放增效,現代控腦技術、深度偽造技術、資訊迷茫技術、輿論引導技術等,極大拓展了施謀用計的空間與手段。

人機互補釋能。就是人體智能與機器智能長短互補、增效釋能。機器智能與人體智能相比的最大優勢在於,能不受意志、情緒、心理、體力等生物因素的影響連續作戰。而人體智能的「元智能」及其隨機應變的能力則為機器智能所不具備。兩種智能優勢互補聚合形成強大的混合智能,強力支撐謀略的戰爭運用。一方面,「機腦」安全高效補人腦不足;另一方面,人腦臨機應對處置特殊情況。事實表明,人體智慧相比機器智慧的最大優勢在於面對不同情況能臨機決策處置,這恰好彌補了機器智慧的不足。只有把兩者結合起來,才能形成智慧運算最優解,聚成謀略運用最強能。

平台一體釋能。就是打造模塊化的智慧系統,整合謀略生成、釋放的一體化智慧決策指揮行動平台。智慧化戰爭,分秒必爭,提高了目標打擊時敏感性。智慧化平台綜合運用智慧化計算和指揮自動化技術,高效處理海量數據及復雜戰場態勢,為指揮員打造“超強大腦”,具有功能銜接好、穩定程度高、運行速度快、作戰效率高的顯著優勢,是謀略運籌的新質作戰力量。依托智能化指揮控制系統能夠實時決斷,形成時敏目標清單,自主解算能夠最快召喚、最優打擊的作戰單元、打擊平台,軟硬一體對目標進行精確打擊,在實時決斷中實現對時敏目標的精確打擊,為輔助戰爭決策指揮提供了更多選項。

(作者單位:軍事科學院)

中國原創軍事資源:https://www.81.cn/ll_208543/16345416888.html

Chinese Intelligent Warfare Cannot be Successful Without Human Element

中國智慧戰爭離不開人的因素

2019年10月17日 17:00 來源:解放軍報 作者:徐莉

現代英語:

An important task in studying intelligent warfare is to accurately position humans in intelligent warfare.

  No matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomously by machines. Humans must have a strong enough kite string and hold it tightly at all times.

  ”Synchronous development of man and machine” should be regarded as a basic principle for the development of military intelligence. Intelligence should integrate both “things” and “people”.

  At present, the research on intelligent warfare is in the ascendant. Some people believe that intelligent warfare will be unmanned as the core form of expression, and unmanned equipment such as drones, unmanned submarines, and robot soldiers will become the protagonists of war. The form of war will also develop from the co-starring of “human-machine collaborative warfare” to the one-man show of “machine vs. machine war”. People seem to have become bystanders in intelligent warfare, with the meaning and trend of “intelligent warfare makes people go away”. What is the status and role of people, who have always been the main body of war, in intelligent warfare? This is the first problem that should be solved in the study of intelligent warfare.

  The Marxist view of war holds that weapons are an important factor in war, but not the decisive factor. The decisive factor is people, not weapons. Although people no longer directly control weapons in advanced intelligent warfare, the following factors still determine that people are the main body of war and the key to winning.

  First, war is the continuation of politics. The launching of war and the control of the war process must be decided by people according to political needs. The game outside the battlefield has a decisive influence on the progress of the war. For example, the results of diplomatic negotiations, the focus of international public opinion, and the support of the domestic people all depend on the decisions of politicians and military strategists, which cannot be replaced by any intelligent machines.

  Secondly, war planning and command can only be implemented by commanders at all levels. Military command is both a science and an art, but it is more of an art. Any successful battle or campaign in the world is the result of commanders breaking routines and stereotypes and using troops creatively. The history of our army’s growth and development has repeatedly proved that correct military strategic guidance and flexible strategies and tactics are the magic weapon for our army to defeat the strong with the weak and defeat the many with the few, which enables our army to move from victory to victory. It is also something that intelligent machines cannot imitate or create. For example, in the battle, the comparative analysis of enemy and our combat forces, the real-time control of the combat situation, the real-time evaluation of the overall damage effect, the combat psychological analysis of enemy commanders, and the prediction of the next combat action, etc., intelligent machines can only provide auxiliary decision-making information and suggestions. Commanders at all levels must make decisions, make combat decisions, and issue combat orders.

  Third, the level of intelligence of weapons and equipment ultimately depends on humans. Artificial intelligence originates from human intelligence. One of the major factors restricting the development of intelligence is that the scientific understanding of human intelligence is still superficial, and the understanding of the cognition, memory, thinking, decision-making and action mechanism of the human brain is still insufficient. The “Wuzhen Index: Global Artificial Intelligence Development Report 2016” pointed out that over the years, the proportion of biological research in the four sub-fields of artificial intelligence, machine learning, natural language processing, computer vision, and robotics, has been the lowest. Due to the lack of attention to the basic and decisive influence of brain science on artificial intelligence, the current artificial intelligence can only stay at the stage of superficial understanding and primary imitation of brain functions. Once there is a major breakthrough in the understanding of human intelligence, artificial intelligence will also be reborn and enter a leapfrog development stage.

  Fourth, only humans can control intelligent weapons and equipment and combat platforms. Although the final intelligent weapons can be operated without human on-site control, when to put intelligent weapons and equipment into battle, when to change the direction of attack, how to control the rhythm of the war, when to withdraw from the battle, etc., can only be decided by humans in the end. This is the basic principle that must be grasped when designing intelligent weapons and equipment, that is, one of Asimov’s three laws of robotics: robots must obey human orders. Once intelligent weapons and equipment are out of human control, it will be a disaster for the entire human race, not just the enemy. This also determines that no matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomous control functions of machines. The autonomous function of machines can only be effective within the scope limited by humans. Humans must have a strong enough kite line and hold it tightly at all times.

  Fifth, only humans can crack and control the enemy’s intelligent weapons and equipment. The development of military history has proved that any weapon and equipment has its “Achilles’ heel” and will eventually be defeated. There has never been and will never be perfect and impeccable weapons and equipment in history, and intelligent weapons and equipment are no exception. The magic weapon to defeat the enemy is humans with infinite wisdom. For example, drones seem advanced, but they can be interfered, trapped or controlled by radio waves of a specific frequency. The same is true for other intelligent weapons and equipment, and finding and studying methods, technologies, and equipment to crack, control, and destroy intelligent weapons and equipment is where human wisdom comes into play.

  Therefore, “synchronous development of man and machine” should be taken as a basic principle for the development of military intelligence. Intelligence should be applied to both “objects” and “people”. As soldiers in the era of intelligent warfare, they must master the working principles and weak links of intelligent weapons and equipment, be familiar with and master the “thinking mode” and “conventional actions” of intelligent weapons and equipment, as well as the abnormal “abnormal thinking” and abnormal “extraordinary actions” that may appear, and understand their technical and tactical indicators and performance. Especially in the stage of man-machine collaborative operations, soldiers are required not only to be able to coordinate actions with machines, but also to communicate with machines without obstacles in cognitive ability and intelligence. This not only relies on intelligent knowledge reserves, but also relies on the “brain reading” and “brain strengthening” of intelligent equipment. Scientific research shows that the normal human brain usage rate is only 3%-5%, which shows that there is still a huge room for improvement and release of human intelligence. When studying intelligent warfare, we should also study how to improve human intelligence.

  In the face of intelligent warfare, we should prepare for the future, establish intelligent troops suitable for intelligent warfare as soon as possible, study the way to defeat the enemy in intelligent warfare, and establish and improve the theory of intelligent warfare; repair, maintain and improve intelligent weapons and equipment; study the methods, techniques and equipment to decipher the control keys of enemy weapons and equipment; study effective means to attack the enemy’s intelligent weapons and equipment, rewrite their combat rules and targets, and make them turn against us in the face of battle, or use high-energy lasers and high-power microwaves to directly destroy the enemy’s communication networks and weapons and equipment, demonstrating the way to win in intelligent warfare.

  In short, in intelligent warfare, people are still the main body of war and the decisive factor in the outcome of war. An important task in studying intelligent warfare is to find the correct position of people in intelligent warfare. Otherwise, it is easy to fall into the idealistic quagmire of “seeing things but not people”, “only weapons” and “only technology”.

現代國語:

研究智能化戰爭的一項重要任務,就是找準智能化戰爭中人的定位。

不論智慧化武器裝備這個「風箏」飛多高,永遠只能是人類控制與機器自主控制功能並存,人類必須擁有足夠結實的風箏線並時刻牢牢抓住它。

應把「人機同步發展」當作軍事智慧化發展的一個基本原則,智慧化既要化「物」也要化「人」。

當前,對智慧化戰爭的研究方興未艾。一些觀點認為,智慧化戰爭將以無人化為核心表現形式,無人機、無人潛航器、機器人士兵等無人裝備將成為戰爭主角,戰爭形態也將從「人機協同作戰」的聯袂主演,最後發展到「機器對機器大戰」的獨角戲。人似乎成了智慧化戰爭的旁觀者,大有「智慧化戰爭讓人走開」的意味和態勢。曾經一直是戰爭主體的人,在智能化戰爭中的地位和角色究竟是什麼,這是研究智能化戰爭應當首先解決的問題。

馬克思主義戰爭觀認為,武器是戰爭的重要因素,但不是決定的因素,決定的因素是人而不是武器。雖然在高階階段的智慧化戰爭中,人不再直接操控武器,但以下因素仍決定了人是戰爭的主體和關鍵的致勝力量。

首先,戰爭是政治的延續,戰爭的發動、戰爭進程的掌控,必須由人視政治需求作出決定。戰場以外的博弈對戰爭進程有著決定性的影響,如外交談判的結果、國際輿論的焦點、國內民眾支持度等,均取決於政治家、軍事家的決策,是任何智能化的機器都無法替代的。

其次,戰爭規劃和指揮只能由各級指揮官來實施。軍事指揮既是科學,也是藝術,但更體現為藝術。世界上任何一場取得勝利的戰鬥、戰役,都是指揮者打破常規和定式,創造性用兵的結果。我軍成長壯大的歷史也一再證明,正確的軍事戰略指導、機動靈活的戰略戰術,是以弱克強、以少勝多,使我軍不斷從勝利走向勝利的製勝法寶,也是智能化機器所無法模仿和創造的。例如,戰中對敵我作戰力量的比較分析、作戰態勢的即時掌控、整體毀傷效果的即時評估、敵軍指揮作戰心理分析,以及對下一步作戰行動的預判等等,智慧化機器只能提供輔助決策資訊和建議案,必須由各級指揮官親自決策、下定作戰決心,並下達作戰命令。

第三,武器裝備智慧化程度高低最終取決於人類。人工智慧源自人類智能,目前製約智能化發展的一大因素,就是對人類智能的科學認識尚膚淺,對人類大腦的認知、記憶、思維、決策和行動機理等的認識還很不夠。 《烏鎮指數:全球人工智慧發展報告2016》指出,歷年來人工智慧的機器學習、自然語言處理、電腦視覺、機器人四類細分領域涉及生物學研究的比例均最低。由於不重視腦科學對人工智慧基礎和決定性的影響,直接導致當前人工智慧只能停留在對大腦功能膚淺認識和初級模仿階段,一旦對人類智慧的認識有了重大突破,人工智慧也必將脫胎換骨,進入跨越式發展階段。

第四,控制智慧化武器裝備和作戰平台的只能是人。雖然最終的智慧化武器可以沒有人類現場操控,但智慧化武器裝備何時投入戰鬥、何時轉換進攻方向、如何把控戰爭節奏、何時撤出戰鬥等等,最終只能由人來決定,這是智慧化武器裝備設計時必須掌握的基本原則,即阿西莫夫機器人三定律之一:機器人必須服從人類的命令。一旦智能化的武器裝備脫離了人的控制,那將是整個人類而不僅僅是敵人的災難,這也決定了不論智能化武器裝備這個“風箏”飛多高,永遠只能是人類控制與機器自主控制功能並存,機器自主功能只能在人類限定的範圍內有效,人類必須擁有足夠堅固的風箏線並時刻牢牢抓住它。

第五,破解、控制敵人智慧化武器裝備的只能是人。軍事歷史發展證明,任何武器裝備都有其“阿喀琉斯之踵”,最終都會被擊敗。歷史上從來沒有、未來也不會出現完美無缺、無懈可擊的武器裝備,智慧化武器裝備也不例外,而克敵制勝的法寶就是擁有無窮智慧的人類。例如,無人機看似先進,但完全可以被特定頻率的電波幹擾、誘捕或控制。其他智慧化武器裝備也是如此,而尋找並研究破解、控制、擊毀智慧化武器裝備的方法、技術、裝備,則是人類聰明才智的用武之地。

因此,應把「人機同步發展」作為軍事智能化發展的一個基本原則,智能化既要化「物」也要化「人」。作為智能化戰爭時代的軍人,必須掌握智能化武器裝備的工作原理和薄弱環節,熟悉並掌握智能化武器裝備的“思維方式”和“常規動作”,以及可能出現的非常態的“異常思維”和變態的“超常動作”,了解其技戰術指標及性能,特別是人機協同作戰階段,不僅要求軍人能夠與機器協調行動,而且在認知能力和智力上能夠和機器無障礙交流,這不僅要依靠智能化的知識儲備,也要依賴智慧化裝備的「讀腦」「強腦術」。科學研究表明,正常人大腦使用率只有3%——5%,這說明,人類智慧仍有巨大的提升和釋放空間。研究智能化戰爭,也應同步研究如何提升人類智慧。

面對智慧化戰爭,我們應當未雨綢繆,儘早建立與智能化戰爭相適應的智能化部隊,研究智能化戰爭的克敵制勝之道,建立完善智能化戰爭理論;維修、保養、改進智能化武器裝備;研究破解敵方武器裝備操控密鑰的方法、技術、裝備;研究攻擊敵軍智能化武器裝備的有效手段,改寫其作戰規則和作戰對象,使其臨陣倒戈,或是利用高能量激光、高功率微波直接擊毀敵通信網絡和武器裝備,彰顯智慧化戰爭的致勝之道。

總之,智慧化戰爭中人仍是戰爭的主體,是戰爭勝負的決定性因素。研究智能化戰爭的一項重要任務就是找準智能化戰爭中人的定位。否則,就容易陷入「見物不見人」「唯武器論」「唯技術論」的唯心主義泥沼。

中國原創軍事資源:http://www.qstheory.cn/defense/2019-10/17/c_112511776588.htm

Chinese Military Center of Gravity for Winning Intelligent Warfare

中國打贏智慧戰爭的軍事重心

中國軍網 國防部網 // 2020年12月31日 星期四

現代英語:

The winning mechanism of war refers to the main factors for winning a war, the way they play a role, and the internal mechanisms, laws and principles of their mutual connection and interaction. With the advent of the intelligent era, the increasingly widespread application of artificial intelligence in the military field has promoted the transformation of the war form to intelligent warfare, and the winning mechanism of war has also changed accordingly.

Having data advantage is the basis for success

In the era of intelligence, the core foundation of many “disruptive technologies” is data, and war will also be “no data, no war”. In intelligent warfare, both sides will fight a “data war” around understanding data, relying on data, competing for data, and using data. Whoever owns the “data right” will have the initiative in the war. Fighting for data, mastering data, analyzing data, and applying data in war are the keys to winning intelligent warfare.

Data resources are combat effectiveness. In intelligent warfare, data comes first before troops move. Whoever controls the data controls the resources to win the war, and controls the initiative and the chips for victory. The ability to understand and use data is an important indicator for measuring combat capability and directly affects the outcome of the war. Obtaining data, analyzing data, and using data are not only the yardsticks for measuring the combat capability of troops, but also the new engine for improving the combat effectiveness of troops. Data is the most direct record of the objective world. It appears in the form of numbers and is raw data, such as the performance parameters of weapons and equipment, the size of troops, the number of guarantees, target parameters, etc. These data can be processed to become the information and intelligence needed for combat. In the information age led by data, data has become the blood of intelligent warfare.

Big data has given rise to a data-based battlefield. To some extent, whoever controls the data resources controls the “winning space” of the war. Data has changed the logical cognition of war. In the past, people inferred the whole from the individual and inferred the inevitability from the small probability events, but now they deduce individual characteristics from the high probability and find the internal laws of specific things from the correlation. Only by understanding the relevant data can we grasp the overall situation, only by gathering similar data can we grasp the trend, and only by integrating all-source data can we understand the connection. All of this is attributed to the control of the data-based battlefield.

Big data changes the way of fighting. As the most important strategic resource, how to distinguish the authenticity and quality of data, how to fight and counter-fight, deceive and counter-deceive, attack and counter-attack around massive data, has become a key issue in winning intelligent wars. When data becomes the focus of war, it will inevitably lead to competition and gaming around data, thereby promoting changes in the style of fighting. At present, the competition for data collection is intensifying, and major countries have launched research on national defense big data projects to provide more intelligence with practical value for military decision-making. The “asymmetry” of data forms the “asymmetry” of algorithms, and then achieves the “asymmetry” of tactics.

Data has given rise to intelligent equipment systems. Data technology has upgraded combat platforms to highly intelligent and autonomous systems. Data has enabled command and control systems, air combat platforms, precision-guided munitions, etc. to complete the transition from informatization to intelligence. For example, modern “swarm technology” is the application of artificial intelligence supported by big data. Data has become a “telescope”, “microscope” and “perspective lens” for analyzing wars. To win intelligent wars, one must have a data mind, data awareness and data thinking.

Mastering algorithm advantages is the key to success

One of the characteristics of intelligent warfare is that all battle plans, campaign plans and war plans need to be generated by computers, and its essence is algorithm-generated tactics. Having an algorithm advantage means having an intelligent advantage, which can achieve a high degree of unity of information advantage, cognitive advantage, decision-making advantage and action advantage.

Algorithm advantage dominates information advantage. Algorithm is a systematic method to describe the strategic mechanism for solving problems, and is the key and prerequisite for improving intelligence advantage. Algorithm technology mainly includes deep learning, supercomputing, brain-like intelligence and other technologies. The use of intelligent sensing and networking technology can widely and quickly deploy various types of intelligent perception nodes, and can implement active collaborative detection for tasks, thereby building a transparent and visible digital combat environment. Judging from the current development trend, the advantage of war algorithms dominates information advantage, which contains great potential to rewrite the rules of the modern war game. This pair of “invisible hands” will shape the new landscape of future intelligent warfare.

Algorithmic advantage dominates cognitive advantage. In intelligent warfare, big data can quickly convert massive amounts of data into useful intelligence after being processed by high-performance and efficient algorithms, thereby gaining cognitive advantage. Algorithms, as the “brain” of artificial intelligence, have become the key to intelligently sensing the battlefield and using it for decision-making, command, and coordination. The party with algorithmic advantage can dispel the “battlefield fog” and “information fog” caused by the failure to process data in a timely manner, making cognition more profound and thus seizing the initiative in the war. In the future, whoever has algorithmic advantage will have stronger cognitive ability, faster learning speed, and better quality results.

Algorithm advantage dominates decision-making advantage. With its high-speed and precise calculation, the algorithm can replace people’s hard thinking and repeated exploration, thereby accelerating knowledge iteration. With the support of massive data and supercomputing capabilities, the judgment and prediction results of artificial intelligence will be more accurate. By constructing combat model rules through algorithms, commanders can be assisted in making rapid decisions in multi-level planning and ad hoc handling of strategies, campaigns, tactics, etc. through actuarial, detailed, deep and expert reasoning. With the development of disruptive technologies such as big data, cloud computing, and quantum computing and their application in the military field, the future combat decision-making cycle will become near real-time. In intelligent warfare, the party that masters super algorithms can quickly propose flexible and diverse combat plans and countermeasures in response to changes in combat opponents, constantly disrupting the opponent’s established intentions and deployments, and thus seize the dominance of the war.

Algorithmic advantage leads to operational advantage. In the era of intelligent warfare, algorithms determine tactics, and algorithmic advantage leads to war advantage. Supported by superior algorithms, the reaction speed of artificial intelligence is thousands of times that of humans. “Algorithmic warfare” foreshadows the transformation of future wars. Whoever can seize the commanding heights of intelligent algorithms can seize the initiative and win before the battle. On the intelligent battlefield, algorithms are far more important than artillery shells. War algorithms have become the key factor in winning intelligent warfare and are the strategic commanding heights that future intelligent armies must seize. Intelligent warfare calculations are ubiquitous. The party that has the algorithmic advantage can quickly and accurately predict the battlefield situation, innovate combat methods, and achieve the advantage of “winning before the battle.”

Multi-domain integration is the key to success

Multi-domain integration is based on the cloud-based combat system. With the support of the cloud-based battlefield situation, various combat personnel, equipment, facilities, and environmental elements have expanded the battlefield space from the traditional three-dimensional space to the polar regions, deep sea, space, and cyberspace, and even to multi-dimensional domains such as cognitive domain and information domain. Multi-domain integration has formed a giant, complex, and adaptive confrontation system. The integration of “cloud gathering” and “network gathering” has become a new mechanism for intelligent combat.

Cross-domain integration and integrated energy release. Under the conditions of intelligent warfare, the emergence of a large number of new long-range combat platforms and intelligent new concept weapons has made the future combat landscape present the characteristics of air-ground-sea-sky integration, global instant strikes, and cross-domain strategic deterrence and control. Supported by the cross-domain, distributed, and networked “cloud killing” collaborative combat system, through the cross-domain aggregation of multiple combat capabilities, cross-domain interoperability of combat command, cross-domain sharing of combat information, cross-domain movement of combat weapons, cross-domain response of combat actions, and cross-domain complementarity of combat functions are achieved. Cross-domain integration is the close coordination of main domain control and cross-domain support to implement cross-domain collaborative support. Integrated energy release is the transition of joint operations from integrated joint operations to cross-domain joint operations, realizing the cross-domain aggregation and overall energy release of multiple combat capabilities.

Human-machine integration, using speed to defeat slowness. If weapons are an extension of the human body, intelligence is an extension of the human brain. In the era of intelligent warfare, there will be a mode of giving human intelligence to machines to implement combat. People will further withdraw from the front-line confrontation and combat, and the combination of people and weapons will appear in a new form. Unmanned combat weapons and human intelligence are deeply integrated into an organic symbiosis, perfectly combining human creativity, thinking and the precision and speed of machines. Therefore, in future intelligent warfare, the mode of engagement will gradually change from the mutual killing of “human-machine integration” to the unmanned system cluster confrontation of “human-machine integration”. Relying on the intelligent combat system, commanders adaptively adjust and select the mode of action according to changes in the battlefield environment. Unmanned combat develops from single-platform remote control combat to multi-platform cluster autonomy, forming a simple command chain of “commander-combat cluster”, highlighting the rapid, flexible and autonomous characteristics of human-machine collaboration.

Brain-intelligence fusion and efficient control. The combat system of intelligent warfare will be characterized by a highly intelligent “human + network + machine”. The intelligent command and control system will operate in a collaborative manner of “human brain + intelligent system”. The intelligent system will assist or even partially replace the role of humans in command and control. The intelligent command and control system will have relatively strong autonomous command and control capabilities, and can relatively independently obtain information, judge situations, make decisions, and deal with situations. Relying on the battlefield situation awareness system, with the help of big data, cloud computing, artificial intelligence, and modeling and simulation technology, it is possible to accurately analyze and judge massive battlefield information, realize the transformation of combat command from “human experience-centered” to “data and model-centered” intelligent decision-making methods, and make combat planning more scientific and efficient. In the future, the super self-evolution and strategic decision-making capabilities of deep neural networks will realize the combat cycle of “human out of the loop”.

Integration of intelligence and mind, attacking the mind and winning the will. With the development of artificial intelligence technology, the boundaries between the biologicalization and humanization of intelligent weapons will be blurred in the future, and the control of people themselves will become the focus. “Attacking the mind and winning the will” is still the highest combat purpose of intelligent warfare. “Cognitive control warfare” based on the control of human brain and consciousness cognition may evolve into an important combat style. With human cognitive thinking as the target, various means are used to stimulate, influence and control the cognitive system to achieve the effect of disrupting the enemy’s command and decision-making system, inducing the enemy’s combat power, and disintegrating the enemy’s morale. For example, based on brain reading and brain control technology, using mental guidance and control means, the strategic intentions, combat intentions, and combat methods of the enemy commander can be grasped in real time, and even directly act on the brain of the enemy personnel, or the consciousness of the party can be “injected” in the form of EEG coding to interfere with or control their consciousness, thinking and psychology, and finally seize the “right to control intelligence” and achieve deep control over combat personnel. With the large-scale application of intelligent combat platforms on the battlefield, information systems assisting humans will gradually transform into intelligent systems partially replacing humans. The focus of the power struggle will shift from “information rights” to “intelligence rights”, and using elite troops to gain control of key domains will become the dominant approach.

現代國語:

戰爭制勝機理,指贏得戰爭勝利的主要因素、發揮作用的方式及其相互聯繫、相互作用的內在機制、規律和原理。隨著智慧時代的到來,人工智慧在軍事領域越來越廣泛的應用,推動戰爭形態轉向智慧戰爭,戰爭制勝機制也隨之改變。

擁有數據優勢是致勝基礎

在智慧化時代,眾多「顛覆性科技」的核心根基就是數據,戰爭也將是「無數據不戰爭」。在智慧化戰爭中,雙方圍繞著認識數據、依靠數據、爭奪數據和運用數據開打“數據戰”,誰擁有“數據權”,誰就掌握了戰爭的主動權。爭奪數據、掌握數據、分析數據,並將數據運用於戰爭之中,是智慧化戰爭的勝利之要。

數據資源就是戰鬥力。在智慧化戰爭中,兵馬未動,資料先行。誰掌握了數據誰就掌握了取得戰爭勝利的資源,也就掌控了戰爭的主動和勝利的籌碼。認識和運用數據的能力,是衡量作戰能力的重要指標,直接影響戰爭的勝負。取得數據、分析數據和運用數據既是衡量部隊作戰能力的標尺,也是提升部隊戰鬥力的新引擎。數據是客觀世界最直接的記載,以數字的形式出現,是原始資料,如武器裝備的性能參數、兵力規模、保障數量、目標參量等,這些數據經過處理能夠成為作戰所需的資訊和情報。在數據引領的資訊時代,數據已成為智慧化戰爭的血液。

大數據催生數據化戰場。某種程度上講誰把控了資料資源,就把握了戰爭的「勝利空間」。數據改變了對戰爭的邏輯認知,過去是從個別推論整體、從小機率事件中推理必然性,而現在是從大概率中推導個別特徵、從相關性中找出具體事物的內在規律。只有洞察相關數據才能掌握全局,只有聚集同類數據才能掌握趨勢,只有融合全源數據才能洞悉關聯。而這一切都歸於對資料化戰場的把控。

大數據改變作戰樣式。數據作為最重要的戰略資源,如何辨別數據的真假優劣,如何圍繞海量數據開展爭奪與反爭奪、欺騙與反欺騙、攻擊與反攻擊,成為打贏智能化戰爭的關鍵問題。當數據成為戰爭爭奪的焦點,必然帶來圍繞數據的競賽和博弈,從而推動作戰樣式改變。目前,資料收集之爭愈演愈烈,大國紛紛進行國防大數據計畫研究,以便為軍事決策提供更多具有實際價值的情報。以資料的“非對稱”,形成演算法的“非對稱”,進而實現戰法的“非對稱”。

數據催生智慧化裝備系統。數據技術使作戰平台升級為高度智慧化和自主化的系統,數據使指揮控制系統、空中作戰平台、精確導引彈藥等完成由資訊化向智慧化過渡。例如,現代「蜂群技術」就是大數據支撐下的人工智慧運用。數據已經成為解析戰爭的“望遠鏡”“顯微鏡”“透鏡”,打贏智能化戰爭必須具備數據頭腦、數據意識、數據思維。

掌握演算法優勢是致勝關鍵

智慧化戰爭的特徵之一就是一切戰鬥計畫、戰役計畫和戰爭計畫都需轉向電腦生成上來,其本質就是演算法生成戰法。擁有演算法優勢就擁有智慧化優勢,就可以實現資訊優勢、認知優勢、決策優勢和行動優勢的高度統一。

演算法優勢主導資訊優勢。演算法是用系統化的方法描述解決問題的策略機制,是提高智慧優勢的關鍵和前提。演算法技術主要包括深度學習、超級運算、類腦智慧等技術。採用智慧感測與網路技術,可廣泛快速部署各類智慧感知節點,可面向任務實施主動協同探測,進而建構透明可見的數位化作戰環境。從當前的發展趨勢來看,戰爭演算法優勢主導資訊優勢,蘊含著改寫現代戰爭遊戲規則的巨大潛力,這雙「無形之手」將塑造未來智慧化戰爭新圖景。

演算法優勢主導認知優勢。在智慧化戰爭中,大數據經過高效能、高效率的演算法處理後,能夠將大量資料快速轉換為有用的情報,從而獲得認知優勢。演算法作為人工智慧的“大腦”,成為智慧感知戰場並由此用於決策、指揮和協同的關鍵。佔有演算法優勢的一方,能驅散因資料得不到及時處理而產生的“戰場迷霧”和“資訊迷霧”,使得認知更為深刻,從而奪取戰爭主動權。未來誰擁有演算法優勢,誰的認知能力就強,學習速度就快,品質效果就優。

演算法優勢主導決策優勢。演算法以其高速、精確的計算,能夠取代人的苦思冥想和反覆探索,加速知識迭代。在海量數據和超算能力支援下,人工智慧的判斷和預測結果將更加準確。透過演算法建構作戰模型規則,以精算、細算、深算和專家推理方式,可輔助指揮官在戰略、戰役、戰術等多層規劃規劃和臨機處置中實現快速決策。隨著大數據、雲端運算、量子運算等顛覆性技術的發展及其在軍事領域的應用,未來作戰決策週期將變成近實時。在智慧化戰爭中,掌握超強演算法的一方能夠針對作戰對手變化,快速提出靈活多樣的作戰方案與應對之策,不斷打亂對手既定企圖與部署,從而奪取戰爭主導權。

演算法優勢主導行動優勢。在智慧化戰爭時代,演算法決定戰法,演算法優勢主導戰爭優勢。在優勢演算法的支撐下,人工智慧的反應速度是人類的千百倍。 「演算法戰」預示著未來戰爭的變革,誰能搶佔智慧演算法制高點,誰就能搶得先機,未戰先勝。在智慧化戰場上,演算法遠比砲彈重要,戰爭演算法成為致勝智能化戰爭的關鍵因素,是未來智慧型軍隊必須搶佔的戰略高點。智慧化戰爭運算無所不在,掌握演算法優勢的一方,能夠快速且準確預測戰場態勢,創新作戰方法,達成「未戰而先勝」之利。

搞好多域融合是製勝樞紐

多域融合是以作戰體系的雲態化為基礎,各類作戰人員、裝備、設施、環境要素在雲態化的戰場態勢支撐下,戰場空間從傳統的三維空間,向極地、深海、太空和網電空間,乃至認知域、資訊域等多維域拓展,多域融合形成巨型複雜自適應對抗體系,「雲聚」融合「網聚」成為智慧化作戰新機理。

跨域融合、整合釋能。在智慧化戰爭條件下,多種新型遠戰平台、智慧化新概念武器的大量湧現,使未來作戰面貌呈現出空地海天一體、全球即時性打擊、跨域戰略懾控等特徵。以跨領域、分散式、網路化的「雲殺傷」協同作戰系統為支撐,透過多種作戰能力跨域聚合,實現作戰指揮跨域貫通,作戰資訊跨域共享,作戰兵器跨域穿行,作戰行動跨域回應,作戰功能跨域互補。跨域融合是主域主控與跨域支援的緊密配合,實施跨域協同支援。整合釋能是聯合作戰由一體化聯合作戰過渡到跨域聯合作戰,實現多種作戰能力的跨域聚合、整體釋能。

人機融合、以快製慢。如果說武器是人身體延伸的話,智慧則是人腦的延伸。智能化戰爭時代,將出現把人的智慧賦予機器進而實施作戰的模式,人將更進一步退出一線對抗作戰,人與武器結合方式將以嶄新形態出現。無人作戰武器與人類智慧深度融合為有機共生體,把人的創造性、思想性和機器的精準性、快速性完美結合。因此,在未來智慧化戰爭中,交戰方式將由「人機結合」的相互殺傷逐漸轉向「人機融合」的無人系統集群對抗。依托智能化作戰系統,指揮員針對戰場環境變化自適應調整選擇行動方式,無人作戰由單平台遙控作戰向多平台集群自主方向發展,形成「指揮官—作戰集群」的簡易指揮鏈,彰顯人機協同的快速靈活自主特徵。

腦智融合、高效控制。智慧化戰爭的作戰體系將表現為高度智慧化的“人+網路+機器”,智慧化指揮控制系統將以“人腦+智慧系統”的協作方式運行,智慧系統將輔助甚至部分替代人在指揮控制中的作用。智慧化指揮控制系統將具備較強的自主指揮、自主控制能力,可相對獨立自主地獲取資訊、判斷態勢、做出決策、處置狀況。依托戰場態勢感知系統,借助大數據、雲端運算、人工智慧和建模模擬技術,能夠對海量戰場資訊進行精準分析研判,實現作戰指揮由「以人的經驗為中心」向「以數據和模型為中心」的智慧化決策方式轉變,作戰規劃更加科學有效率。未來深度神經網路的超強自我進化和戰略決策能力,將實現「人在迴路外」的作戰循環。

智心融合,攻心奪志。隨著人工智慧技術的發展,未來智慧化武器的生物化和人的武器化將界線模糊,針對人本身的控制將成為焦點,「攻心奪志」仍是智慧化戰爭最高作戰目的,基於以人腦和意識認知實施控制為目標的「認知控制戰」可能演化為重要作戰樣式。以人的認知思維為目標,運用多種手段對認知體系施加刺激、影響與控制,達成擾亂敵指揮決策系統、誘導敵作戰力量、瓦解敵軍心士氣的效果。如基於讀腦、腦控技術,運用心智導控手段,即時掌握對方指揮官戰略意圖、作戰企圖、作戰方法等,甚至直接作用於對方人員大腦,或將己方意識以腦電編碼形式“注入” ,幹擾或控制其意識、思維和心理,最終奪取“制智權”,實現對作戰人員的深度控制。隨著智慧化作戰平台大量應用於戰場,資訊系統輔助人類將逐漸轉向智慧系統部分取代人類。制權爭奪的重心將由“資訊權”轉向“智能權”,以精兵點殺謀取關鍵維域控制權將成為主導方式。

中國原創軍事資源:https://www.81.cn/jfjbmap/content/2020-12/31/content_279888.htm

These Chinese Civilian AI “Black Technologies” Will Significantly Advance the People’s Liberation Army in “counterattacking” the US Military

這些中國民用人工智慧「黑科技」將大幅推動解放軍「反攻」美軍

現代英語:

At the World Internet Conference held in Wuzhen in recent years, many leaders of technology companies talked most about artificial intelligence, and the “Light of the Internet Expo” at previous conferences has become a “big show” for various artificial intelligence. In particular, this year, many well-known Chinese Internet companies have shown off their own “black technology”, which is impressive. China’s rapid progress in the field of artificial intelligence has amazed the world. Reuters commented that China is expected to be on par with the United States in five years and become the world’s leading artificial intelligence innovation center. Like the United States, China has clearly made artificial intelligence a priority in both economy and military.

    The report, written by Elsa Kania of the Center for a New American Security, asserts that future competition between China and the United States in the field of artificial intelligence “may change the future balance of economic and military power.” Earlier this year, an undisclosed Pentagon document exaggerated that Chinese companies are circumventing official supervision by purchasing shares in American companies to obtain sensitive American artificial intelligence technologies with potential military uses. Andrew Ng, a well-known scientist in the field of machine learning, said that if the United States wants to stay ahead, it must focus on developing its own artificial intelligence. China is by no means a slouch in the field of artificial intelligence that only relies on foreign technology. Foreign media commented that while the West is still discussing and keeping a close eye on its own technology, China’s innovative progress has begun to rewrite the world’s artificial intelligence technology landscape. The next question is whether China is willing to play with the West.

    The discussion that artificial intelligence will change the rules of war is no longer news. The Brookings Institution website once published an article suggesting that the US military bet on six major technologies, and artificial intelligence technology is one of them. Today, artificial intelligence has made breakthroughs in assisting combat personnel in decision-making and connecting combat personnel with intelligent combat systems, and has been widely used in simulated combat training. Today, a large number of unmanned equipment with intelligent features have entered the arsenals of major countries. Among them, the most widely used US military has nearly 10,000 unmanned aerial systems and more than 12,000 unmanned ground systems, which have become an indispensable and important part of US military operations.

    In a simulated confrontation in June 2016, an artificial intelligence system developed by American researchers defeated two retired fighter pilots in a simulated air battle. In this simulated air battle, the blue team consisting of two fighter jets was equipped with a stronger weapon system, but the red team of the artificial intelligence system defeated the enemy aircraft through evasive maneuvers. After the game, the pilots thought that the program was very good at controlling the situation and was surprisingly responsive. It seemed to be able to predict human intentions and quickly fight back when the opponent changed flight movements or launched missiles. This incident has attracted widespread attention, and the prospect that artificial intelligence will completely replace human soldiers on the battlefield in the future seems to have been further confirmed.

    Throughout human history, most epoch-making technologies have emerged from the military and wars. Humans are more likely to burst out with inspiration at the moment of life and death, and have greater motivation to promote technological progress. In the field of artificial intelligence, the boundaries between the civilian and military use of many technologies are not obvious. Today, the world’s technology giants also have more talents and financial resources than most countries, and the broad application prospects make them more motivated to invest in research and development. The future trend of artificial intelligence technology is expected to be led by these technology giants. This is why in the field of artificial intelligence, the “military-civilian integration” of major countries has become more in-depth, and even the US military has “widely issued invitations to heroes.”

    For example, at this year’s Internet Conference, Chinese companies displayed a variety of artificial intelligence products and technologies, which have broad application prospects in both civilian and military fields and can be called “black technology”. Intelligent drones and unmanned vehicles, these intelligent equipment can accurately deliver express deliveries to customers based on the target location. If applied to the battlefield, it will make front-line supply and evacuation of wounded soldiers more accurate and convenient. In addition, there are artificial intelligence-assisted treatment products, which integrate artificial intelligence technologies such as image recognition and deep learning with medicine to assist doctors in early screening and diagnosis of patients. If this technology is applied to the battlefield, it will greatly improve the work efficiency and treatment speed of medical soldiers. There is also lip reading recognition technology, which can achieve the effect of voice recognition by recognizing lip reading, and can easily carry out complex communication even on a noisy battlefield. In October this year, the PLA Air Force Logistics Department signed the “Military-Civilian Integration Strategic Cooperation Agreement” with executives of five leading logistics companies. Regarding the use of drones specifically mentioned by the Air Force, relevant companies also introduced the development and planning of large logistics drones. Artificial intelligence has a high priority in China’s military-civilian integration, which will enable the PLA to make full use of technological advances in the commercial field to enhance its military capabilities.

    Intelligent machines represented by drones have demonstrated their power on the battlefield or in simulated confrontations. The U.S. Department of Defense report believes that intelligent swarm systems will occupy an important position in future wars. Intelligent swarm attack refers to a swarm system composed of intelligent robots or drones, in which each component of the system independently selects targets, attack forms and formation forms. Compared with manned systems, it has incomparable advantages in coordination, intelligence, cost and speed. The Pentagon called on talented people from the private sector to join the military’s “drone swarm” development, hoping to speed up progress. In June 2017, China’s 119 fixed-wing drones achieved formation flight, setting a record in number. Although it is still far from achieving high-level intelligent formation operations, the U.S. think tank “Project 2049 Institute” admits that China’s drone formation technology is more advanced than that of the U.S. military.

    In future wars, the balance of victory between the two warring parties may completely tilt towards the side with a higher degree of intelligence, and the possibility of the technological laggards continuing to rely on the development of asymmetric combat power to bridge the gap in combat power is gradually decreasing. When the two sides are on the same battlefield, while the officers and soldiers of the side with weaker technical capabilities are busy attacking, retreating, and transferring, the other side with stronger technical capabilities uses unmanned intelligent equipment for all-weather, high-precision intelligent reconnaissance and strikes. Perhaps trapped by ethical issues, the final decision is still made by humans, but the experience of these controllers in the control room thousands of miles away is like playing an online game. The flesh and blood on the battlefield will be exposed, and the opponent’s life will be wiped out with every mouse click or voice command of the enemy. The psychological competition between the strong and weak warring personnel will be completely unbalanced.

    As Russian President Vladimir Putin said, “Whoever becomes the leader in the field of artificial intelligence will be the leader of the future world.” Artificial intelligence has become the “high ground” of the next military competition, and China is already in a leading position in the field of artificial intelligence. The People’s Liberation Army has the opportunity to actively shape the future war model through military innovation. Reuters commented that artificial intelligence will promote the modernization of the Chinese military and may pose a strategic challenge to the US military. (Dong Lei)

現代國語:

近些年在烏鎮舉行的世界互聯網大會上,眾多科技公司領軍人物談及最多的就是人工智能,而歷屆大會的“互聯網之光博覽會”更成為各類人工智能“大秀場”,尤其今年多家知名網路公司紛紛曬出自家“黑科技”,令人印象深刻。中國在人工智慧領域的快速進步令世界驚嘆,路透社就評論稱,中國5年內有望比肩美國,成為全球首要的人工智慧創新中心。與美國一樣,中國在經濟和軍事上都明確地將人工智慧當作重點。

由新美國安全中心的埃爾莎·卡尼亞撰寫的報告斷言,未來中美兩國在人工智慧領域的競爭「可能會改變未來的經濟和軍事力量對比」。今年早些時候,五角大廈一份未公開文件渲染說,中國企業正透過購買美國公司的股權來繞過官方監管,以取得有潛在軍事用途的美國人工智慧敏感技術。機器學習領域知名科學家吳恩達稱,美國要保持領先就必須把注意力放在發展自己的人工智慧上,中國在人工智慧領域絕非一個只是依賴外來科技的懈怠者。外媒評論稱,當西方還在探討看緊自己的技術的時候,中國的創新進步已開始改寫世界人工智慧技術的版圖,接下來的問題是中國還願不願意帶著西方一起玩。

關於人工智慧將改變戰爭規則的論述早就不是新聞,美國布魯金斯學會網站曾刊文建議美軍在6大技術上押下賭注,人工智慧技術就位列其中。而今人工智慧在輔助作戰人員決策,以及作戰人員與智慧化作戰系統對接方面已經獲得突破,而在模擬實戰化訓練等方面更是得到大規模應用。如今大量具有智慧特徵的無人裝備進入了各大國的武器庫。其中應用最廣泛的美軍已擁有近萬個空中無人系統,地面無人系統更是超過1.2萬個,其已成為美軍行動不可或缺的重要組成部分。

在2016年6月的一次模擬對抗中,美國研究人員開發的人工智慧系統在模擬空戰中大勝2名退役的戰鬥機飛行員。在這次模擬空戰中,由2架戰鬥機組成的藍隊裝備更強的武器系統,但人工智慧系統的紅隊透過閃避動作擊敗了敵機。比賽結束後,飛行員認為這款程式非常善於掌控態勢,反應也靈敏得出奇,似乎能預測人類意圖,並在對手改變飛行動作或發射飛彈時迅速回擊。這事件曾引起廣泛關注,未來戰場人工智慧將全面取代人類士兵的前景似乎得到了進一步佐證。

縱觀人類歷史,大多數劃時代的技術都是興起於軍隊發端於戰爭,人類在生死存亡之際更能迸發出靈感,也擁有更大的推動技術進步的動力。而在人工智慧領域,許多技術的民用與軍用界限並不明顯,如今全球的科技巨頭們也擁有超越多數國家的人才和財力,而廣闊的應用前景則令他們在研發投入上更有動力,未來的人工智慧科技潮流有望被這些科技巨頭所引領。這也是為何在人工智慧領域,各大國的「軍民融合」都更為深入,連美軍也「廣發英雄帖」。

例如在今年的網路大會上,中國企業展示的多款人工智慧產品及技術,在民用及軍用領域都有廣闊的應用前景,堪稱「黑科技」。智慧無人機與無人車,這些智慧裝備可以依據目標位置,精準地把快遞送達顧客手中,如果應用於戰場將令前線補給及後撤傷員等行動變得更加精準便捷。另外還有人工智慧輔助治療產品,透過影像辨識、深度學習等人工智慧技術與醫學融合,進而達到輔助醫師對病患的早期篩檢與診斷,這項技術如果應用於戰場,將大大提升醫療兵的工作效率和救治速度。還有唇語辨識技術,透過辨識唇語就可以達到原本需要聲音辨識的效果,即使是在吵雜的戰場上也可輕鬆進行複雜交流。今年10月解放軍空軍後勤部與5家物流領域領導企業主管簽署了《軍民融合戰略合作協議》,而對於空軍方面特別提到的無人機運用,相關企業也介紹了大型物流無人機的研發和規劃。人工智慧在中國軍民融合中的優先順序很高,這將讓解放軍得以充分利用商業領域的技術進步來增強軍事能力。

以無人機為代表的智慧機器已經在戰場或模擬對抗中展現出威力。美國國防部報告認為,智慧化蜂群系統將在未來戰爭中佔據重要地位。智慧化蜂群攻擊是指智慧機器人或無人機組成的蜂群系統,系統各組成部分自主選擇目標、攻擊形式和編隊形式。相比有人系統,在協調性、智慧性、成本以及速度等方面擁有無可比擬的優勢。五角大廈號召來自民間的才俊加入到軍方的「無人機蜂群」開發中,希望能加快進度。 2017年6月,中國119架固定翼無人機實現編隊飛行,創造了數量紀錄,儘管距離實現高階的智慧化編隊作戰仍較遠,但是美國智庫「2049計畫研究所」坦言中國的無人機編隊技術較之美軍更為先進。

在未來戰爭中,交戰雙方的勝利天平或將徹底偏向智能化程度更高的一方,科技落伍者繼續靠發展不對稱戰力來彌合戰力差距的可能性正逐漸變小。當雙方置身於同一戰場,技術能力較弱一方的官兵在進攻、撤退、轉移,疲於奔命時,技術能力強的另一方則是無人智能裝備全天候、高精度的智能偵察、打擊。或許受困於倫理問題,最終的決策仍由人來完成,但其待在千里之外的控制室,這些控制人員的體驗就像是玩網路遊戲。戰場上的血肉之軀將無所遁形,對手的生命在敵人的每一次滑鼠點擊或是語音命令中灰飛煙滅,強弱雙方交戰人員的心理比拼將完全失衡。

正如俄總統普丁所說,「誰成為人工智慧領域的領導者,誰就是未來世界的領導者」。人工智慧已成為下一個軍事競爭的“制高點”,而中國在人工智慧領域已處於領先位置,解放軍有機會透過軍事創新主動塑造未來戰爭模式,路透社則評論認為,人工智慧將推動中國軍隊的現代化並可能對美軍形成戰略挑戰。 (董磊)

中國原創軍事資源:http://m.news.cn/mil/2017-12/20/c_1297707888.htm

Chinese Military Weaponization of Artificial Intelligence

中國軍事人工智慧武器化

現代英語:

In April this year, the Center for Strategic and Budgetary Assessments of the United States released a “roadmap” for the development of the platform forces of the future ground forces of the US military. The “roadmap” points out that in the future, human-machine teamwork warfare of ground forces will become the main combat style of future ground forces under the influence of robots, artificial intelligence and augmented technology. We still don’t know when unmanned forces will completely replace manned forces. But what is certain is that the mode of man-machine combination is profoundly affecting the future combat methods, changing the current combat force composition to a large extent, and may become the protagonist in future wars.

Please pay attention to the report of the Liberation Army Daily today:

Artificial intelligence technology will promote the organic integration of unmanned combat platforms and manned combat systems.

How far are we from being the protagonists of the human-machine ensemble?

■Zhou Xiaocheng, Gao Dongming, Yuan Yi

In April this year, the Center for Strategic and Budgetary Assessments of the United States released a “roadmap” for the development of the U.S. military’s future ground force platform forces. The “roadmap” points out that in the future, human-machine teamwork warfare of ground forces will become the main combat style of future ground forces under the influence of robots, artificial intelligence and augmented technology.

We still don’t know when unmanned forces will completely replace manned forces. But what is certain is that the human-machine combination model is profoundly affecting the future combat methods, changing the current combat force composition to a great extent, and may become the protagonist in future wars.

The realization of human-machine teaming has benefited greatly from the rapid development of military artificial intelligence technology. At present, military artificial intelligence technology has become an important driving force for the development of human-machine teaming, promoting its comprehensive application in military fields such as command decision-making, organization and deployment, equipment operation, combat support, military training, and rear support. Human-machine teaming based on military artificial intelligence technology will effectively promote a significant increase in the combat effectiveness of the army, give birth to a new war style, and change the internal mechanism of winning the war.

In the field of information perception and processing, the armies of the United States, Russia and other countries have been equipped with digital individual systems with intelligent information perception and processing capabilities, which help soldiers to accurately grasp complex battlefield situations in real time and quickly and efficiently deal with various problems arising on the battlefield. At the same time, the deployment and application of a series of intelligent unmanned reconnaissance equipment has greatly improved battlefield transparency and greatly shortened the time for information acquisition and processing.

In terms of unmanned combat platform construction, intelligent unmanned combat equipment, mainly intelligent unmanned vehicles, drones and unmanned submarines, has gradually emerged in military applications. Various auxiliary decision-making systems developed based on artificial intelligence technology can build a powerful grid network information system, enhance the ability of intelligence analysis, command and decision-making, and thus greatly improve the command and decision-making efficiency of human-machine combinations.

Human-machine combination usually consists of manned forces and unmanned forces. Among them, manned forces are the command center, and unmanned forces accept the command and control of manned forces and perform combat missions according to the command and control of manned forces. The three basic forms of human-machine combination can be summarized as human-robot combination, human-AI combination and personnel enhancement. The three forms will greatly improve the deployability, lethality and sustainability of future military forces.

Human-robot teaming refers to a partnership between humans and robots, which aims to improve the ability of humans to interact with various types of robot formations to perform specific tasks. In 2017, the U.S. Air Force demonstrated a manned and unmanned aircraft formation in the “Have-Airstriker II” exercise, with unmanned wingmen autonomously performing ground attack missions. Autonomously controlled unmanned wingmen are able to make value judgments based on changes in the battlefield environment, act according to new action plans, and successfully achieve the expected results. In the same year, the French Dassault Aviation Company successfully achieved a flight of hundreds of kilometers between the “Neuron” drone and the “Rafale” fighter, accumulating technical experience for the research and development of unmanned wingmen.

The combination of human and AI is mainly manifested in the weaponization of humans and the humanization of weapons, which are applied in strategic analysis, combat planning and command decision-making. This requires specialized analysis and research related to but different from the combination of human and robot. Last year, Facebook announced its entry into the field of non-invasive brain-computer interface research. The Advanced Research Projects Agency of the U.S. Department of Defense also announced funding for several research institutions to carry out neuroengineering system design projects to develop brain-computer interfaces that can be implanted in the human brain to achieve high-speed communication between humans and machines.

Personnel augmentation aims to enhance the existing combat capabilities of combat personnel by using mechanical, wearable and implantable external forces. For example, the currently developed equipment such as modular and expandable individual protective equipment, enhanced combat helmets, individual exoskeletons and wearable data recorders highlight the concept of people-oriented and achieve the goals of enhancing personnel protection capabilities, improving battlefield perception capabilities and enhancing individual combat effectiveness.

In the future, human-machine combination will change the traditional combat mode, give birth to new combat forces, blur the boundary between war and non-war, and have a profound impact on future wars. Its development trend is mainly concentrated in three aspects:

First, it is developing towards comprehensive multi-mission combat capabilities. With the needs of future operations, human-machine teaming is developing towards comprehensive, multi-mission capabilities such as reconnaissance and strike, command and control, and combat support. Multi-mission requirements will make human-machine teaming a key node in future operations. Improving comprehensive multi-mission combat capabilities is an inevitable trend in the development of human-machine teaming.

The second is to develop in the direction of distributed networking, cross-domain clustering and collaborative operations. Human-machine collaborative combat technology will become a research focus. Relying on artificial intelligence, data fusion and data management and other related technical support, unmanned combat nodes and manned combat nodes will be distributedly networked to achieve cluster combat of human-machine combination, form wide-area combat capabilities, and achieve the purpose of collaborative combat.

The third is to develop in the direction of system, intelligence and module. The system construction is constantly strengthened, and the system combat capability of human-machine combination is improved according to different battlefield environments and combat requirements, the intelligence level of system combat is improved, the autonomy and interaction ability of unmanned forces in performing tasks are improved, and combat tasks that manned forces are unable to perform are completed.

現代國語:

來源:中國軍網綜合 作者:周小程 高冬明 袁 藝 責任編輯:焦國慶 2018-09-21 03:35

今年4月,美國戰略與預算評估中心發布了美軍未來地面部隊平台力量發展的「路線圖」。該「路線圖」指出,未來地面部隊人機組合作戰將在機器人、人工智慧和增強技術的影響下,成為未來地面部隊的主要作戰樣式。無人力量何時會完全取代有人力量,目前我們還不得而知。但可以肯定的是,人機組合的模式正在深刻影響未來作戰方式,在很大程度上改變當前的作戰力量編成,或將成為未來戰爭中的主角。

請關註今日《解放軍報》的報導——

人工智慧技術將推動無人作戰平台與有人作戰系統有機融合——

人機組合唱主角離我們還有多遠

■周小程 高冬明 袁 藝

今年4月,美國戰略與預算評估中心發布了美軍未來地面部隊平台力量發展的「路線圖」。該「路線圖」指出,未來地面部隊人機組合作戰將在機器人、人工智慧和增強技術的影響下,成為未來地面部隊的主要作戰樣式。

無人力量何時會完全取代有人力量,目前我們還不得而知。但可以肯定的是,人機組合的模式正在深刻影響未來作戰方式,在很大程度上改變當前的作戰力量編成,或將成為未來戰爭中的主角。

人機組合的實現在很大程度上得益於軍用人工智慧技術的快速發展。當前,軍用人工智慧技術已成為人機組合力量發展的重要推手,推動其在指揮決策、編成部署、裝備運用、作戰支援、軍事訓練、後裝保障等軍事領域全面應用。基於軍用人工智慧技術的人機組合將有力促進軍隊戰鬥力大幅提升,催生新的戰爭樣式,改變戰爭制勝的內在機理。

在資訊感知與處理領域,美、俄等國的軍隊已裝備了具有智能化信息感知與處理能力的數字化單兵系統,為士兵實時準確地掌握復雜戰場情況,快速高效地處置戰場上出現的各種問題提供了幫助。同時,一系列智慧化無人偵察裝備的部署應用,大大提高了戰場透明度,使資訊取得和處理的時間大大縮短。

在無人作戰平台建設方面,以智慧化無人車、無人機和無人潛航器為主體的智慧化無人作戰裝備逐漸在軍事應用中嶄露頭角。基於人工智慧技術開發的各種輔助決策系統可建立功能強大的柵格化網路資訊體系,增強情報分析、指揮決策的能力,從而大幅提高人機組合的指揮與決策效能。

人機組合通常由有人力量與無人力量構成。其中,有人力量是指揮中樞,無人力量接受有人力量的指揮和控制,根據有人力量的指揮控制執行作戰任務。人機組合的三種基本形式可以概括為人-機器人組合、人-AI組合和人員增強,三種形式將極大地提高未來軍事力量的可部署性、殺傷性和可持續性。

人-機器人組合是指人與機器人之間的合作夥伴關系,旨在提高執行特定任務的人與各型機器人編隊互動的能力。 2017年,美國空軍在「海弗-空襲者Ⅱ」演習中,展示了有人機和無人機編隊,無人僚機自主執行對地攻擊的任務。自主控制的無人僚機能夠根據戰場環境變化做出價值判斷,以新的行動方案開展行動,並成功實現預期結果。同年,法國達梭飛機製造公司成功實現了「神經元」無人機與「陣風」戰鬥機的數百千米飛行,為無人僚機的研究發展積累了技術經驗。

人-AI的組合主要表現為人的武器化和武器的人化,應用於戰略分析、作戰規劃和指揮決策等方面,這需要開展與人-機器人組合相關卻又與之不同的專門分析研究。去年,「臉書」宣布進軍非侵入性的腦機介面研究領域。美國國防部高級研究計劃局也宣布資助多家研究機構,開展神經工程系統設計項目,開發可植入人腦的腦機接口,實現人機間高速通訊。

人員增強旨在利用機械的、可穿戴和可植入的外部力量來增強作戰人員現有的作戰能力。例如目前開發的注入模塊化拓展的單兵防護裝備、增強型戰鬥頭盔、單兵外骨骼和可穿戴數據記錄儀等設備,突出了以人為本的理念,達到了增強人員防護能力、提高戰場感知能力和提升單兵戰鬥力的目標。

未來,人機組合將改變傳統的作戰模式,催生新型作戰力量,模糊戰爭與非戰爭界限,對未來戰爭產生深遠影響。其發展趨勢主要集中在三個方面:

一是向綜合多任務作戰能力方向發展。隨著未來作戰的需要,人機組合正向具備偵察打擊、指揮控制、作戰支援等綜合型、多任務能力方向發展。多任務需求,將使人機組合成為未來作戰的關鍵節點。提升綜合多任務作戰能力是人機組合發展的必然趨勢。

二是向分散式組網、跨域集群和協同作戰方向發展。人機協同作戰技術將成為研究重點,依託人工智慧、數據融合與數據管理等相關技術支撐,由無人作戰節點、有人作戰節點進行分散式組網,實現人機組合的集群作戰,形成廣域的作戰能力,達到協同作戰的目的。

第三是向體系、智能、模塊方向發展。體系化建設不斷加強,針對不同的戰場環境和作戰需求,提高人機組合的體係作戰能力,提升體係作戰的智能化水平,提高無人力量執行任務時的自主性和交互能力,完成有人力量無法勝任的作戰任務。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/tp_214132/jskj/4827888.html