Category Archives: #intelligent warfare

Chinese Military & Winning Mechanisms of Intelligent Warfare丨Focusing on Aspects of “Smart Victory”

中國軍隊與智慧戰爭制勝機制丨聚焦「智勝」各個面向

現代英語:

Modern warfare has undergone profound changes. The most fundamental thing is that the winning mechanism has changed. If you want to win the war, you must understand the winning mechanism of modern war. At present, the form of war is accelerating its evolution to information-based warfare, and intelligent warfare is beginning to take shape. What is the winning mechanism of intelligent warfare? What are the new changes and what are the new characteristics? In order to answer these questions clearly, this journal launches a series of articles “Focusing on the Winning Mechanism of Intelligent War”. Readers are welcome to contribute ideas and actively debate, so as to jointly promote the in-depth research on the winning mechanism of intelligent war.

At present, a new round of scientific and technological revolution and industrial transformation led by artificial intelligence is in the ascendant. “Artificial intelligence is like previous missiles and satellites. Whether you are prepared or not, it will enter the historical stage of human war.” Intelligent warfare has already Coming in stride. To win the intelligent wars that may occur in the future, the core is to clarify the winning mechanism of intelligent wars.

Clarify the unique connotation of the winning mechanism of intelligent warfare

To clarify the winning mechanism of intelligent warfare, we must first define the connotation of the word “mechanism” accurately. The author believes that “ji” can be understood as mystery and doorway, and “reason” can be interpreted as principle and reason. The so-called winning mechanism of intelligent war refers to the methods (paths) and principles for winning intelligent war. In order to further clarify this connotation, it is necessary to accurately grasp the differences and connections between the three pairs of concepts.

Grasp the unique connotation from the relationship between mechanism and laws. Laws are the inevitable connections between the inherent nature of things, and the laws for winning a war are the essential connections and inevitable trends of development of various factors related to winning a war. War is a complex giant system, and winning is also complicated. Many winning laws often work on the battlefield at the same time. If you conduct a detailed analysis of specific battle cases, you will find that in every battle of victory and defeat, there must be a certain law that plays a decisive role, and other laws play an auxiliary but indispensable role. The winning mechanism of war is the link and reason why the winning factors of war trigger the winning rules and play a winning role under certain conditions. The winning mechanism depends on the winning law and reflects the way and basis for the winning law to work. However, the winning law alone cannot become a winning mechanism. To summarize in relatively simple words, the winning law is the basis of the winning mechanism, and the winning mechanism is the application of the winning law.

Grasp the unique connotation from the relationship between mechanism and mechanism. Mechanism is the internal structure, function and interrelationship of things. The combat winning mechanism is the internal mechanism through which the various elements of the combat system interact to form a joint force and achieve victory. For example, gathering effectiveness and parallel linkage are all mechanisms. They are the application methods of relevant winning mechanisms. and implementation methods, and these methods and methods embody certain rules and have certain institutional characteristics. In information warfare, the comprehensive integration of combat elements such as intelligence reconnaissance, command and control, fire strikes and comprehensive support, and the optimization and reorganization of land, sea, air and other combat units will form a variety of winning mechanisms. Most of these winning mechanisms include information winning links that convert events into information, information into situation, situation into cognition, cognition into decision-making, decision-making into action, etc. It can be seen that the winning mechanism is the inner “Tao”, which is more abstract, while the winning mechanism is the “skill” of using Tao, which is more concrete.

Grasp the unique connotation from the relationship between mechanism and theory. Understanding, grasping and flexibly applying the laws and mechanisms of winning war requires correct guidance from the theoretical and strategic perspectives. Wise military theorists always make theoretical processing and creation after discovering new winning laws and mechanisms, thus forming new military guidance theories. It can be seen that the core of military theoretical innovation lies in revealing and clarifying new laws and mechanisms for winning wars, and then summarizing new war guidance. In the history of world military affairs, Mahan’s “sea power” theory, Douhet’s “air superiority” theory, Fuller’s “mechanized warfare” theory, Tukhachevsky’s “large depth operations” theory, Graham’s “high altitude” theory, etc. “Borderland” theory, etc., have revealed the corresponding laws and mechanisms for winning wars, led the military trend, and changed the face of war. It can be said that the mechanism of winning war is the basis and source of innovation in military theory, and military guidance theory is the smart application and theoretical sublimation of the mechanism of winning war.

Dialectically grasp the multiple implications of the winning mechanism of intelligent warfare

The winning mechanism of intelligent warfare includes the general mechanism of winning war, and at the same time embodies the distinctive characteristics of algorithmic games; there are corresponding winning mechanisms at the strategic, operational, tactical and other levels, and they are also closely related to algorithmic games. Due to various factors, the specific winning mechanism of each war may be different. Here, only a few types of winning mechanisms with certain universality are listed.

The “outwit” mechanism of using “strong” to defeat “weak”. “The strong wins and the weak loses” is a certain universal law for winning wars. Even in those battles in which the weak defeat the strong, it is often necessary to form a strength advantage over the enemy locally and at a specific period of time in order to truly win. According to the law of “the strong defeats the weak”, using the strong to defeat the weak has become a universal mechanism for winning wars. The “strong” here refers to the overall combat effectiveness. In the era of mechanized warfare, the strength of the overall combat effectiveness is mainly reflected in the superiority of troops and firepower. In the era of information warfare, the military’s ability to win wars depends on its information superiority. In the era of intelligent warfare, the contribution rate of intellectual superiority to combat effectiveness is much higher than other factors. In intelligent war confrontations, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. The side with higher and stronger intelligence can better develop and use the “outwit” mechanism of using the strong to defeat the weak, and even according to the This design war, dominates the development of the battle situation, and achieves final victory.

The “outwit” mechanism of using “high” to defeat “low”. The “high” and “low” here mainly refer to the “generation difference” and “dimensional difference”. Usually, the side that uses more advanced war forms and combat styles can defeat the side that is still using lower dimensional war forms and combat styles. For example, troops who generally use muskets can almost always outperform troops who use swords and spears. If “high” wins and “low” loses is the law of victory, then the methods and reasons for using “high” to defeat “low” become the winning mechanism. In the process of intelligent warfare, attacking the weaknesses of the opponent’s combat system to reduce or invalidate its “intelligence” and implementing “dimensionality reduction strikes” is the specific application of the “high” to defeat the “low” and “outwit” mechanisms. . It should also be noted that in the era of intelligent warfare, there are likely to be multiple stages of development from low to high. Try to keep yourself in an advanced stage and attack the opponent to a low-dimensional stage. This is also to use “high” to attack “low” The application of the “outwit” mechanism.

The “outwit” mechanism of using “fast” to defeat “slow”. With the strong promotion of science and technology, the connotation of “fast” in war is constantly being refreshed. During World War I, tanks could only maneuver at 4 to 8 miles per hour. By World War II, armored groups were able to conduct blitzes. In recent years, we have thought that supercomputers are already very fast, but quantum computers can process “Gaussian Bose sampling” one hundred trillion times faster than the fastest supercomputers. Quantum algorithms have achieved exponential acceleration compared to classical algorithms. Artificial Intelligence will achieve a qualitative leap. In future intelligent warfare, with the support of algorithms, early warning time will be advanced, decision-making time will be shortened, combat operations will be extended forward, the “observation-judgment-decision-action” cycle will be greatly compressed, and “instantaneous destruction” will be upgraded to “instantaneous destruction”, truly entering the future. The era of “instant kill” when discovered and destroyed.

The “outsmarting” mechanism of defeating “clumsy” with “skill”. In some classic battle cases, we can often see commanders using flexible strategies and tactics, turning passivity into initiative, and turning disadvantages into advantages, which embodies the law of victory that “skillful” can defeat “clumsy” and “skillful” can defeat “clumsy”. “Clumsy” winning mechanism. The “cleverness” in intelligent warfare, relying on the advantages of algorithms, began to come out of the commander’s brain and was endowed with “intelligent” weapon systems. When intelligent warfare develops to a certain stage, all-domain, multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build a combat system based on mission requirements, independently implement collaborative operations, and quickly return to the state of readiness for war after the mission is over, showing a trend of intelligent autonomy. . In the future, intelligent warfare will expand to the polar regions, deep sea, space and other fields. The mechanism of “outsmarting” by using “skill” to defeat “clumsy” will also expand accordingly, and more and newer “outsmart” paths will be developed.

Prospectively explore and develop the winning mechanism of intelligent warfare

In today’s world, the scientific and technological revolution and the military revolution influence each other, the form of war is accelerating the evolution, and the mechanism for winning war is constantly updated. In the context of the slowly opening of intelligent warfare, we must pay close attention to the development trend of the winning mechanism of intelligent war, change from passive to proactive, change from follow-up to leading, proactively explore and develop the winning mechanism of intelligent war, and firmly control the winning mechanism of intelligent war. Take the initiative to win intelligent wars.

Develop new winning mechanisms. History and reality show that once advanced science and technology are applied to the military, it will profoundly change the mechanism for winning wars, thus causing changes in existing combat guidance, doctrines, regulations, and troop formations. Today, with the rapid advancement of artificial intelligence, the development of military intelligence is limitless, and the specific winning mechanism of future intelligent warfare will inevitably exceed current expectations. We should actively explore the potential of existing advanced technologies in intelligent warfare and explore their possible winning mechanisms. Comprehensively analyze the weak points of the opponent’s unmanned combat system and our advantages, work backwards from the target points to determine the winning mechanism, propose military innovation needs, accurately develop strategic, cutting-edge, and disruptive technologies, and promote the “rules of the game” of war. A change of direction in my favor.

Validate new winning mechanisms. Whether the research results on the winning mechanism of intelligent warfare are effective or not needs to be tested in practice. In times of relative peace, we should strengthen the testing of actual combat training and targeted combat experiments, discover problems during testing, revise understandings, and make the new winning mechanism as scientific and thorough as possible. When the time and conditions are ripe, promote the new intelligent war winning mechanism to become the basis for the all-round reform and overall improvement of military training. We must persist in leading training with war and promoting war with training, so as to train according to the actual requirements of intelligent war and achieve Integration of operations and training. We must put ourselves first, learn from foreign militaries appropriately, break the limitations of more qualitative analysis and less quantitative analysis, vigorously build and improve intelligent warfare laboratories, open up innovative links from winning mechanisms to operational concepts to experimental platforms, and promote the elimination of the dross and the essence. Eliminate the false and preserve the true, and improve the scientificity and authoritativeness of the research results on the winning mechanism of intelligent warfare.

Sublimate new winning mechanisms. The new mechanism for winning wars is the deep basis for promoting innovation in military theory. When we discover new specific “outsmarting” mechanisms such as using “strong” to defeat “weak”, using “high” to defeat “low”, using “fast” to defeat “slow”, and using “skillful” to defeat “clumsy”. , in line with this mechanism, core combat concepts, combat principles, and war guidance can be put forward, and a new military theory on intelligent warfare can be formed through systematic processing. Some people say, “Rich imagination and deep insight are far more important than 100% accuracy.” It is necessary to moderately encourage “whimsical ideas” in war design, and guide creative researchers to propose new “war ideas” based on a deep understanding of military intelligence “technical creativity” and the winning mechanisms derived from it. Based on the research on the winning mechanism of intelligent warfare, we must deepen military theoretical innovation and accelerate the formation of a contemporary, leading and unique military theoretical system.

(Author’s affiliation: National Security College, National Defense University)

現代國語:

「智勝」機理:一個亟待研究的課題

■劉光明

編者按 現代戰爭發生了深刻變化,最根本的是製勝機理變了,要想贏得戰爭必須把現代戰爭制勝機理搞透。當前,戰爭形態加速向資訊化戰爭演變,智慧化戰爭初現端倪。智慧化戰爭的製勝機理是什麼,有什麼新變化,表現為哪些新特點?為把這些問題解答清楚,本刊特推出「聚焦智能化戰爭制勝機理」系列文章,歡迎廣大讀者獻計獻策、積極爭鳴,共同推動智能化戰爭制勝機理研究走向深入。

當前,由人工智慧引領的新一輪科技革命和產業變革方興未艾,“人工智慧就像先前的導彈、衛星一樣,無論你是否有所準備都將登上人類戰爭的歷史舞台”,智能化戰爭已經大步走來。打贏未來可能發生的智慧化戰爭,核心是釐清智慧化戰爭制勝機理。

釐清智慧化戰爭制勝機理獨特內涵

澄清智慧化戰爭制勝機理,首先要把「機理」一詞的內涵界定準確。筆者認為,「機」可理解為奧秘、門道,「理」可解讀為道理、理由。所謂智慧化戰爭制勝機理,即打贏智能化戰爭的門道(路徑)和道理。為進一步釐清這一內涵,需要準確掌握三對概念的區別與聯繫。

從機理與規律的關系把握獨特內涵。規律是事物內在的本質的必然的聯繫,戰爭制勝規律是與戰爭制勝有關各種因素的本質聯繫和發展的必然趨勢。戰爭作為複雜巨系統,制勝也具有復雜性,眾多的製勝規律往往在戰場上同時起作用。如果對具體戰例作具體分析會發現,每一次勝負較量必定有某個規律起決定性作用,其他規律則起著輔助的但也是不可缺少的作用。戰爭制勝機理則是戰爭制勝因素在一定條件下觸發制勝規律、發揮制勝作用的鏈路及其道理。制勝機理依賴制勝規律,體現了製勝規律發揮作用時的途徑和依據,但單憑制勝規律本身不能成為製勝機理。用相對簡單的話來概括,即制勝規律是製勝機理的基礎,制勝機理是製勝規律的應用之道。

從機理與機制的關系把握獨特內涵。機制是事物內部的構造、功能和相互關系,作戰制勝機制是作戰體系各要素互動形成合力、實現制勝的內在機制,如集效聚優、並行聯動都是機制,是對有關製勝機理的運用方法和實現方式,而這些方式方法體現一定的規則,帶有某種制度化的特徵。在資訊化戰爭中,對情報偵察、指揮控制、火力打擊和綜合保障等作戰要素進行綜合集成,對陸、海、空等作戰單元進行優化重組,會形成多種多樣的製勝機制。這些制勝機制大都包含這樣的製勝機理,即:事件轉化為資訊、資訊轉化為態勢、態勢轉化為認知、認知轉化為決策、決策轉化為行動的資訊制勝鏈路,等等。由此可見,制勝機理是內在的“道”,更為抽象,而製勝機制是運用道的“術”,更為具體。

從機理與理論的關系把握獨特內涵。認識、掌握和靈活運用戰爭制勝規律和機理,需要從理論和戰略策略上做出正確的指導。睿智的軍事理論家,總是在發現新的製勝規律和機理後,作出理論上的加工和創造,由此形成新的軍事指導理論。可見,軍事理論創新的核心在於揭示和釐清新的戰爭制勝規律和機理,進而概括出新的戰爭指導。世界軍事史上,馬漢的「海權」理論、杜黑的「制空權」理論、富勒的「機械化戰爭」理論、圖哈切夫斯基的「大縱深作戰」理論、格雷厄姆的「高邊疆」理論等,都揭示了相應的戰爭制勝規律和機理,引領了軍事潮流,改變了戰爭面貌。可以說,戰爭制勝機理是軍事理論創新的基礎和源泉,軍事指導理論是戰爭制勝機理的靈動運用和理論升華。

辯證掌握智慧化戰爭制勝機理多重意蘊

智慧化戰爭的製勝機理包括戰爭制勝的一般機理,同時又體現著演算法博弈的鮮明特點;在戰略、戰役、戰術等層面都有相應的製勝機理,同時也都與演算法博弈緊密聯繫。由於受多種因素制約,每一場戰爭具體的製勝機理都可能有所不同。這裡,僅列舉幾類帶有一定普遍性的製勝機理。

以「強」打「弱」的「智勝」機理。 「強勝弱敗」是帶有一定普遍性的戰爭制勝規律。即使是那些以弱勝強的戰例,往往也必須在局部和特定時段形成對敵的力量優勢才能真正取勝。依據「強勝弱敗」規律,以強打弱便成為帶有通用性的戰爭制勝機理。這裡的“強”,是整體戰鬥力的強。在機械化戰爭時代,整體戰鬥力的強大主要體現為兵力和火力優勢。在資訊化戰爭時代,軍隊能打勝仗有賴於資訊力優勢。而在智慧化戰爭時代,智力優勢對戰鬥力的貢獻率遠高於其他要素。在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,智能水平更高更強的一方,能夠更好地開發和運用以強打弱的“智勝”機理,甚至據此設計戰爭、主導戰局發展,取得最終勝利。

以「高」打「低」的「智勝」機理。這裡的“高”“低”,主要指“代差”“維度差”。通常情況下,運用較高級戰爭形態和作戰樣式的一方能夠打贏尚在運用較低維度戰爭形態和作戰樣式的一方。例如,普遍使用火槍的部隊幾乎都能勝過使用大刀長矛的部隊。如果說「高」勝「低」敗是製勝規律,那麼以「高」打「低」的那些門道及理由便成為製勝機理。在智能化戰爭進程中,針對對方作戰體系的弱點進行打擊,使其“智能”降低或失效,實施“降維打擊”,便是以“高”打“低”“智勝”機理的具體運用。還要看到,智能化戰爭時代很可能存在由低到高的多個發展階段,盡可能讓自己處於高級階段,攻擊對手使其處於低維度的階段,也是以“高”打“低”“智勝」機理的運用。

以「快」打「慢」的「智勝」機理。隨著科學技術的強勁推動,戰爭中「快」的內涵不斷刷新。第一次世界大戰期間,戰車機動速度每小時只能達到4~8英裡,到二戰期間裝甲集群已能實施閃擊戰。近年來我們認為超級計算機已經很快了,但量子計算機處理“高斯玻色採樣”的速度比最快的超級計算機快一百萬億倍,量子算法比經典算法實現了指數級的加速,人工智能將實現質的飛躍。未來智能化戰爭在演算法的支撐下,預警時間提前,決策時間縮短,作戰行動向前延伸,“觀察-判斷-決策-行動”週期大幅壓縮,“瞬時摧毀”升級為“即時摧毀”,真正進入發現即摧毀的「秒殺」時代。

以「巧」打「拙」的「智勝」機理。在一些經典戰例中,我們往往能夠看到指揮員運用靈活機動的戰略戰術,變被動為主動,化劣勢為優勢,體現了“巧”能勝“拙”的製勝規律和以“巧”打“拙」的製勝機理。智慧化戰爭中的“巧”,依托演算法優勢,開始從指揮員的大腦中走出來,被賦予擁有“智能”的武器系統。當智慧化戰爭發展到某個階段,全域多維、各種類型的智慧化作戰平台能夠快速耦合作戰力量,根據任務需求建立作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智慧自主趨勢。未來智慧化戰爭將向極地、深海、太空等領域拓展,以「巧」打「拙」的「智勝」機理也會相應拓展,開發出更多更新的「智勝」路徑。

前瞻探索與開發智慧化戰爭制勝機理

當今世界,科技革命和軍事革命相互影響,戰爭形態正在加速演變,戰爭制勝機理也不斷更新。在智能化戰爭大幕緩緩開啟的背景下,必須緊盯智能化戰爭制勝機理的發展趨勢,變被動為主動,變跟進為引領,前瞻探索和開發智能化戰爭制勝機理,牢牢掌控打贏得智能化戰爭的主動權。

開發新的製勝機理。歷史和現實表明,先進的科學技術一旦被運用於軍事,將使戰爭制勝機理發生深刻變化,從而使現有的作戰指導、條令法規和部隊編制隨之改變。在人工智慧飛速進步的今天,軍事智慧的發展不可限量,未來智慧化戰爭具體的製勝機理也必然超越現有的預料。應積極探索現有先進技術可能運用於智慧化戰爭的潛能,並探索其可能的致勝機理。全面分析對手無人化作戰體系的薄弱節點和我之優勢,從目標靶點反推制勝機理,提出軍事創新需求,精準研發戰略性、前沿性、顛覆性技術,推動戰爭「遊戲規則」向於我有利的方向轉變。

驗證新的製勝機理。智慧化戰爭制勝機理的研究成果究竟管不管用,需要用實踐來檢驗。在相對和平時期,應加強實戰化軍事訓練和針對性作戰實驗的檢驗,在檢驗中發現問題、修正認識,使新的製勝機理盡可能科學、周密。在時機和條件成熟時,推動新的智慧化戰爭制勝機理成為軍事訓練全方位變革、整體性提升的依據,堅持以戰領訓、以訓促戰,做到按智能化戰爭實戰要求訓練,實現作戰和訓練一體化。要以我為主,適度借鑑外軍,破除定性分析多、定量分析少的局限,大力構建完善智能化戰爭實驗室,打通從制勝機理到作戰概念再到實驗平台的創新鏈路,推動去粗取精、去偽存真,提升智慧化戰爭制勝機理研究成果的科學性、權威性。

升華新的製勝機理。新的戰爭制勝機理是推進軍事理論創新的深層依據。當我們發現了新的以「強」打「弱」、以「高」打「低」、以「快」打「慢」、以「巧」打「拙」等具體的「智勝」機理後,就可以契合這個機理提出核心作戰概念、作戰原則和戰爭指導等,經過系統加工形成關於智慧化戰爭的新的軍事理論。有人說,「豐富的想像力和深刻的洞察力,遠比百分之百的準確性更為重要」。要適度鼓勵戰爭設計上的“異想天開”,引導有創見的研究人員在深刻理解軍事智能“技術創意”及其衍生而來的製勝機理的基礎上,提出新的“戰爭創意”。要基於智慧化戰爭制勝機理的研究,深化軍事理論創新,加速形成具有時代性、引領性、獨特性的軍事理論體系。

(作者單位:國防大學國家安全學院)

來源:中國軍網-解放軍報 作者:劉光明 責任編輯:楊凡凡

中國原創軍事資源:https://www.81.cn/ll_208543/1011058888.html

Chinese Military Analysis on the Strategic Application of Intelligent Warfare


中國軍事對智慧戰爭戰略應用的分析

現代英語:

An analysis of the use of strategies in intelligent warfare

■Chen Dongheng, Zhong Ya

Reading Tips: “Warfare is the art of deception”. War is a competition of comprehensive strength. Ancient Chinese military strategists have always attached great importance to “strategizing in the tent and winning thousands of miles away”, and all of them regard strategy as the way to victory. War practice shows that as long as war is a confrontation between humans, smart strategies will not withdraw from the battlefield. Today’s battlefield competition is about intelligent skills, and what is fought is smart strategies.

“The best military is to attack the enemy’s strategy, the next best is to attack the enemy’s alliance, the next best is to attack the enemy’s soldiers, and the worst is to attack the city.” Strategy, as a component of combat power and a weapon to win the war, runs through ancient and modern times and transcends national boundaries, and has an important function of influencing and determining the outcome of the war. Although the role of science and technology is more prominent in intelligent warfare, it does not exclude the use of strategy. With the support and guidance of strategy, the combat system is more efficient. In-depth research and mastery of the use of strategy in intelligent warfare will be more conducive to winning the initiative in intelligent warfare.

The status and role of the use of strategy in intelligent warfare

The essence of strategy lies in the intelligent release of power. Scientific strategy application can often defeat the majority with the minority, the big with the small, and the strong with the weak. The battlefield of intelligent warfare presents more transparency, more extended combat space, more diverse means of confrontation, and more complex winning mechanism. This provides a solid material foundation and technical support for the implementation of strategy, and the status and role of strategy are becoming more and more important.

The internal driving force of the army construction and development planning. Demand is the order of the army, and use is the commander of the weapon. How science and technology are innovated, how weapons and equipment are developed, and how the national defense forces are built are often driven by demand and forward-looking planning. For example, in order to make up for the gap between Russia and the United States in terms of overall air defense and anti-missile strength, Russia used “asymmetric” strategies to focus on penetration technology and developed the “Zircon” and “Dagger” hypersonic missiles before the United States. Facts show that the application of strategies mainly focuses on “Tao” and “Fa”. The more reasonable the design and the more scientific the application, the more it can stimulate the motivation, vitality and potential of innovation and creation, and trigger a revolution in science and technology, weapons and equipment, and military construction and combat methods. Only when intelligent warfare, scientific and technological innovation and weapons and equipment development are closely connected with the needs of scientific war strategies can they adhere to the correct direction and be better transformed into actual combat power.

A multiplier of the actual combat effectiveness of the combat system. In the combat power spectrum, strategy, as an important soft power, has the value and significance of providing scientific methodological guidance, appropriate time and opportunity selection and correct path support for the use of military hard power. For example, Iran once used the “dislocation” tactics to launch a large-scale retaliatory air strike against Israel, first using hundreds of cheap drones to attract the consumption of Israel’s expensive air defense system, and then using more advanced high-value ballistic missiles to penetrate, which improved the hit rate to a certain extent. Facts show that when facing an opponent with superior hard power, if the strategy is used properly, it can also achieve miraculous results; and the same hard power may have very different combat effectiveness when using different strategies and tactics. In intelligent warfare, although the “blade” of military hard power is faster, in order to make it more effective, it still needs to rely on more sophisticated strategic “sword skills”.

Dependent variables of hybrid warfare operations. Strategy can not only empower military hard power, but also has a strong direct combat function, and can even defeat the enemy without fighting by “soft killing”. For example, the United States once spent a lot of money to capture the leader of al-Qaeda, Osama bin Laden, but he seemed to have disappeared from the world, and technical means could not determine his exact hiding place. He was finally tracked down by targeting his messenger through strategic use. The United States’ “live broadcast” “Spear of Poseidon” operation attempted to show the strength of the US military by killing Bin Laden to shock the international community. Intelligent warfare is a hybrid warfare, which has entered a new era of global live broadcast, universal participation, and full coverage. More and more countries are adopting strategic methods to enhance their own confidence and strike the opponent’s will to resist, and the strategic “soft kill” combat function is becoming more and more apparent.

Basic mechanism of intelligent warfare strategy application

Intelligent warfare, high-level development of artificial intelligence, rapid iteration, full spectrum penetration, and high-efficiency release, make the application of strategy have more dimensional support and stronger drive, showing a unique operation mechanism.

Cluster operation of strategy application. The application of strategy is based on the underlying logic of war operation and follows the law of evolution of the subject from individual to team and then to system. From a historical perspective, the application of strategy warfare in the cold weapon era relied more on the wisdom and experience accumulation of generals. Natural factors such as geography and weather are the main grasps of strategy operation. The burning of Red Cliff and borrowing arrows from straw boats are vivid footnotes. In the mechanized era, in order to adapt to the increasingly complex composition of military branches and the needs of fast-paced operations, the “General Staff” of senior military institutions dedicated to war planning services came into being. The “General Staff” in the two world wars is a typical representative. In the information age, the use of war strategies mainly relies on the control of information, and information power has become the main support behind strategic planning. In intelligent warfare, the comprehensiveness of technology application, the systematic nature of force planning, and the platform characteristics of game confrontation are more prominent, and the internal requirements are that the subject of strategy implementation should shift to a more powerful systematic platform.

Algorithm-driven strategy application. Strategy is based on strategy. The essence of planning is calculation, calculation of the world situation, calculation of military situation, calculation of development trend, calculation of strength and weakness, calculation of winning advantage… Whether it is calculation by human brain or machine, calculation by generals or calculation by teams, calculation is always the most critical supporting factor. Generally speaking, whoever has stronger computing power, more precise algorithms, and faster calculations can grab the “calculation” machine and win the victory. In the era of intelligent calculation, artificial intelligence participates in strategic decision-making with human-machine hybrid algorithms or machine algorithms, which greatly enhances the efficiency of calculation. It is based on this that major countries have focused on breakthroughs in artificial intelligence to win the future competition. These artificial intelligences, characterized by strong computing power, have great application potential in simulating battlefield situations, simulating war processes, and assisting decision-making and command. Only by guarding against the opponent’s technical aggression, vigorously improving our computing power, and adding the wings of algorithms to traditional strategies can we be invincible in the strategic game confrontation.

Intelligent support for the use of strategies. In intelligent warfare, strategies are based on the rapid development of artificial intelligence and its extensive military applications. It is a two-way “rush” of human strategic wisdom and “technical” wisdom. Now, the generals’ ingenuity and traditional staff work have become increasingly difficult to adapt to the needs of intelligent warfare. Comprehensive intelligent command and decision-making platforms have become an important support for the implementation of strategies. The command and decision-making system of the US military has developed into a large platform that integrates four-layer structural functions, including “intelligence support, information fusion, mission coordination, autonomous decision-making, action deployment, force allocation, situation adjustment, and real-time tracking”, and has become the brain of its “decision-making center warfare”. The Russian Federation Armed Forces Combat Command Center can dispatch and monitor the training and exercises of the entire army in real time, and undertake combat command tasks in low-intensity small-scale conflicts. It can be seen that intelligent support for strategic planning and strategy implementation has gradually taken shape. Intelligent strategic confrontation has put forward higher requirements for the professional integration of strategic subjects, and promoted the deep integration of human biological intelligence and artificial intelligence, which is “human-like intelligence”.

Main ways to use strategies in intelligent warfare

In intelligent warfare, the era background, supporting conditions, and action mechanisms of strategy application have undergone profound changes. The way of implementing strategies must keep pace with the times, strive to combine traditional strategic advantages with new technologies and new forms of warfare, innovate and expand scientific paths to effectively release strategic energy, and strive to plan quickly, plan carefully, and integrate strategy and attack.

Intelligent technology integration releases energy. That is, make full use of intelligent technology to empower and release energy for strategies. Generally speaking, the effective implementation of strategies is inseparable from accurate information perception, rapid personnel mobilization, and efficient force strikes. The innovative application of artificial intelligence enables people to see farther, hear more closely, know more, and calculate faster, making the army gather and disperse more quickly, move more covertly, and release power more rapidly, which is more conducive to the generation of strategies and the achievement of effectiveness. On the one hand, with the help of the rapidity and autonomy of artificial intelligence, the enemy situation can be quickly grasped through intelligent reconnaissance, the decision-making time can be greatly shortened by using machine algorithms, and the optimal strategy can be selected with the help of simulation deduction; on the other hand, relying on artificial intelligence to release and enhance the efficiency of strategies, modern brain control technology, deep fake technology, information confusion technology, public opinion guidance technology, etc., have greatly expanded the space and means of implementing strategies.

Human-machine complementation releases energy. That is, the strengths and weaknesses of human intelligence and machine intelligence complement each other and enhance efficiency and release energy. The biggest advantage of machine intelligence over human intelligence is that it can fight continuously without being affected by biological factors such as will, emotion, psychology, and physical strength. However, the “meta-intelligence” of human intelligence and its ability to adapt to changes are not possessed by machine intelligence. The two intelligence advantages complement each other and aggregate to form a powerful hybrid intelligence, which strongly supports the use of strategies in war. On the one hand, the “machine brain” safely and efficiently makes up for the shortcomings of the human brain; on the other hand, the human brain responds to special situations on the spot. Facts show that the biggest advantage of human intelligence over machine intelligence is that it can make decisions and deal with different situations on the spot, which just makes up for the shortcomings of machine intelligence. Only by combining the two can we form the optimal solution for intelligent calculation and gather the strongest strategic application.

The platform releases energy as a whole. It is to create a modular intelligent system, an integrated intelligent decision-making command action platform that integrates strategy generation and release. Intelligent warfare, every second counts, improves the time sensitivity of target strikes. The intelligent platform comprehensively uses intelligent computing and command automation technology to efficiently process massive data and complex battlefield situations, creating a “super brain” for commanders. It has significant advantages of good functional connection, high stability, fast operation speed, and high combat efficiency. It is a new quality combat force for strategic planning. Relying on the intelligent command and control system, it can make real-time decisions, form a list of time-sensitive targets, and independently solve the combat units and strike platforms that can be summoned and struck the fastest and best. The hardware and software can accurately strike the targets, and accurate strikes on time-sensitive targets can be achieved in real-time decisions, providing more options for assisting war decision-making and command.

(Author unit: Academy of Military Science)

現代國語:

試析智慧化戰爭的謀略運用

■陳東恆 鐘 婭

閱讀提示 「兵者,詭道也」。戰爭是綜合實力的比拼和競賽。我國古代兵家歷來重視“運籌帷幄之中,決勝千里之外”,無不把謀略視為取勝之道。戰爭實踐表明,只要戰爭是人類的對抗,智慧謀略就不會退出戰場。今天的戰場比拼,打的是智能技能,拼的更是智慧謀略。

「上兵伐謀,其次伐交,其次伐兵,其下攻城。」謀略作為戰鬥力的構件和製勝戰爭的利器,貫穿古今、超越國界,具有影響和決定戰爭勝負的重要功能。智能化戰爭中雖然科技的角色更突顯,但並不排斥謀略的運用,在謀略的支撐和引領推動下,作戰體系反而效率更高。深入研究掌握智慧化戰爭的謀略運用,更有利於贏得智慧化戰爭的主動權。

智慧化戰爭謀略運用的地位作用

謀略的本質在於力量的智慧化釋放。科學的謀略運用常能以少勝多、以小博大、以弱勝強。智慧化戰爭戰場呈現更透明、作戰空間更延展、對抗手段更多樣化、制勝機理更複雜等特點,這為施謀用計提供了堅實物質基礎和技術支撐,謀略的地位作用愈發重要。

軍隊建設發展規劃的內動力。需為軍之令,用為器之帥。科學技術如何創新、武器裝備怎樣發展、國防軍隊怎麼建設,常常由需求牽引、前瞻謀劃。例如,俄羅斯為彌補防空反導整體力量方面與美國的差距,運用「非對稱」謀略在突防技術上發力,先於美國研發出「鋯石」「匕首」高超聲速導彈。事實表明,謀略運用主要著力於“道”和“法”,其設計越合理、運用越科學,越能激發創新創造的動力、活力和潛力,引發科學技術、武器裝備和軍隊建設作戰方式的革命。智慧化戰爭,科技創新和武器裝備開發只有緊密對接科學的戰爭謀略需求,才能堅持正確的方向,更好地轉化為現實的戰鬥力。

作戰體系實戰效能的倍增器。在戰鬥力譜系中,謀略作為重要的軟力量,其存在的價值和意義在於為軍事硬實力運用提供科學的方法論指引、合適的時機場合選擇和正確的路徑支撐。例如,伊朗曾利用「錯置」戰法對以色列發動大規模報復性空襲,先是以數百架廉價無人機吸引消耗以軍昂貴的防空系統,繼而用更先進的高價值彈道導彈突防,一定程度上提高了命中率。事實顯示,面對硬實力佔優的對手,如果謀略運用得當也能收到奇效;而同樣的硬實力運用不同的策略戰法,作戰效能可能大相徑庭。智慧化戰爭,雖然軍事硬實力的「刀鋒」更快,但要使其發揮更大戰鬥效能,還需藉助更高明的謀略「刀法」。

混合戰爭作戰運籌的因變數。謀略不僅能為軍事硬實力賦能,本身還有強大的直接作戰功能,甚至能以「軟殺傷」不戰而屈人之兵。例如,美國曾重金緝拿基地組織頭目本·拉登,但他好像人間蒸發一樣,技術手段無法確定其確切藏身處,最終通過謀略運用盯上其信使才追踪到。而美國「直播」「海神之矛」作戰行動,則企圖透過擊殺賓拉登來展現美軍的強大,以震撼國際社會。智慧化戰爭是混合戰爭,已經進入全球直播、全民參與、全域覆蓋的全新時代,越來越多的國家採取謀略方式增強己方信心、打擊對手抵抗意志,謀略「軟殺傷」的作戰功能越加顯現。

智慧化戰爭謀略運用的基本機理

智慧化戰爭,人工智慧的高階位元發展、快速度迭代、全頻譜滲透、高效能釋放,使謀略運用有了更多維的支撐、更強大的驅動,展現出獨特的運行機理。

謀略運用的集群作業。謀略的運用,既基於戰爭運行的底層邏輯,也遵循施動主體從個體到團隊再到體系的流轉演進規律。從歷史上看,冷兵器時代的謀略戰爭運用,更多靠將帥的智謀和經驗積累,地理、天候等自然因素是謀略運籌的主要抓手,火燒赤壁、草船借箭就是其生動註腳。機械化時代,適應日益復雜的軍兵種構成和快節奏作戰需要,專司戰爭謀劃服務的高級軍事機構“參謀部”便應運而生,兩次世界大戰中“總參謀部”就是其中的典型代表。資訊化時代謀略的戰爭運用,依靠的主要是對資訊的掌控,資訊力成為謀略運籌背後的主要支撐力。智慧化戰爭,技術應用的綜合性、力量運籌的體系性、博弈對抗的平台化特徵更加突出,內在要求謀略的施動主體向功能更強大的體系化平台轉進。

謀略運用的演算法驅動。謀略以謀為關鍵。謀的本質是算,算天下大勢、算軍事態勢、算發展趨勢、算強弱勝勢、算制勝優勢……無論是人腦算還是機器算、將帥算還是團隊算,算始終是最關鍵的支撐要素。一般情況下,誰的算力更強、演算法更精、算計更快,誰就能搶得「算」機、贏得勝算。智能化時代的算,人工智慧以人機混合演算法或機器演算法參與謀略決算,極大增強了算的效率。正是基於此,各主要國家紛紛把贏得未來競爭的成長點聚焦到人工智慧突破上。這些以強算力為特徵的人工智慧,在模擬戰場態勢、模擬戰爭進程、輔助決策指揮上有極大應用潛力。謹防對手技術突襲,大力提高我們的算力,為傳統謀略插上演算法的翅膀,才能在謀略博弈對抗中立於不敗之地。

謀略運用的智慧支撐。智慧化戰爭,謀略基於的是人工智慧迅猛發展及其廣泛軍事應用,是人的謀略之智與「技術」之智的雙向「奔赴」。現在,將帥的神機妙算、傳統的參謀作業,已經越來越難以適應智能化戰爭需要,綜合性的智能化指揮決策平台,成為施謀用計的重要支撐。美軍的指揮決策體系,已經發展成為融「情報保障、資訊融合,任務協調、自主決策,行動展開、力量配屬,態勢調整、實時跟踪」等四層結構功能於一體的大平台,成為其「決策中心戰”的大腦。俄羅斯聯邦武裝力量作戰指揮中心,可即時調度監控全軍訓練演習,並在低強度小規模沖突中擔負作戰指揮任務。可見,智慧支撐謀略運籌、策略實施逐步形成。智慧化謀略對抗,對謀略主體的專業化整合性提出了更高要求,推動人的生物智慧與人工智慧這一「類人智慧」深度融合結合。

智慧化戰爭謀略運用的主要方式

智慧化戰爭,謀略運用的時代背景、支撐條件、作用機理等發生了深刻變化。施謀用計的方式必須與時俱進,努力把傳統謀略優勢與新的技術、新的戰爭形態結合起來,創新拓展有效釋放謀略能量的科學路徑,致力先知快謀、精謀巧打、謀打融合。

智技融合釋能。就是充分利用智慧科技為謀略賦能釋能。通常而言,謀略的有效實施離不開準確的資訊感知、迅捷的人員調動、高效的力量打擊。人工智慧的創新應用,使人看得更遠、聽得更切、知得更多、算得更快,使軍隊集散更迅速、行動更隱蔽、力量釋放更迅猛,更加有利於謀略生成和謀效達成。一方面,借助人工智慧的快速性、自主性,透過智慧偵察迅速掌握敵情,運用機器演算法極大縮短決策時間,借助模擬推演優選謀略方案;另一方面,依靠人工智慧為謀略釋放增效,現代控腦技術、深度偽造技術、資訊迷茫技術、輿論引導技術等,極大拓展了施謀用計的空間與手段。

人機互補釋能。就是人體智能與機器智能長短互補、增效釋能。機器智能與人體智能相比的最大優勢在於,能不受意志、情緒、心理、體力等生物因素的影響連續作戰。而人體智能的「元智能」及其隨機應變的能力則為機器智能所不具備。兩種智能優勢互補聚合形成強大的混合智能,強力支撐謀略的戰爭運用。一方面,「機腦」安全高效補人腦不足;另一方面,人腦臨機應對處置特殊情況。事實表明,人體智慧相比機器智慧的最大優勢在於面對不同情況能臨機決策處置,這恰好彌補了機器智慧的不足。只有把兩者結合起來,才能形成智慧運算最優解,聚成謀略運用最強能。

平台一體釋能。就是打造模塊化的智慧系統,整合謀略生成、釋放的一體化智慧決策指揮行動平台。智慧化戰爭,分秒必爭,提高了目標打擊時敏感性。智慧化平台綜合運用智慧化計算和指揮自動化技術,高效處理海量數據及復雜戰場態勢,為指揮員打造“超強大腦”,具有功能銜接好、穩定程度高、運行速度快、作戰效率高的顯著優勢,是謀略運籌的新質作戰力量。依托智能化指揮控制系統能夠實時決斷,形成時敏目標清單,自主解算能夠最快召喚、最優打擊的作戰單元、打擊平台,軟硬一體對目標進行精確打擊,在實時決斷中實現對時敏目標的精確打擊,為輔助戰爭決策指揮提供了更多選項。

(作者單位:軍事科學院)

中國原創軍事資源:https://www.81.cn/ll_208543/16345416888.html

Chinese Military Aggressively Advancing Human-Machine Collaboration in Unmanned Combat Systems

中國軍隊積極推進無人作戰系統中的人機協作

肖兴福 

中國軍網 國防部網 //2022年3月29日 星期二

現代英語:

At present, the widespread use of unmanned equipment in the military field is accelerating the evolution of war forms towards intelligence, and unmanned combat has also developed into an important combat style of intelligent warfare. However, it should be clearly seen that unmanned combat, from technical development to combat application, cannot be separated from the role of people, and people are still the “master switch” of the entire chain of unmanned combat. Therefore, unmanned combat is essentially still manned, and more attention should be paid to the construction of manned combat in unmanned combat.

From the perspective of operational design, the mission task is assigned by the mission tasker.

Equipment is the material basis of war, but people are the initiators and controllers of war. The role of any equipment in war is given by commanders and fighters at all levels. From the overall perspective of combat design, war involves multiple fields such as politics, economy, diplomacy, culture, and multiple levels such as strategy, campaign, and tactics. Winning a war requires the support of advanced equipment and technology, and more importantly, it requires all-round control of the war situation. Unmanned equipment is suitable for undertaking persistent and high-risk tasks because of its characteristics such as long-lasting endurance, concealed action, high mobility, low cost, and its advantages such as adaptability to extreme environments and flexible use. However, when encountering extremely complex combat environments, extremely fierce confrontations, and rapid changes in fighters that require real-time comprehensive weighing and decision-making, unmanned systems still need to be human-led, implement complex command and control, and control unmanned equipment to complete designated combat tasks. Therefore, although unmanned equipment has become a development trend in modern warfare, its dependence on and obedience to people will not change. It is necessary to accurately grasp the advantages and disadvantages of unmanned equipment, increase research in unmanned command and control theory, unmanned combat knowledge system, etc., to form a rich and complete combat theory system, drive the development of unmanned equipment, promote the formation of unmanned combat systems, and play a greater role in limited combat scenarios, thereby playing a good role as a “multiplier” of combat capabilities.

From the perspective of equipment research and development, unmanned systems are designed by humans.

Humans are the designers of unmanned equipment, especially in the intelligent software that empowers unmanned equipment. It is the core of unmanned equipment’s ability to perform various tasks, and it is also the embodiment of the designer’s wisdom. Although the artificial intelligence algorithms used in many core software have a certain self-learning ability and improve the autonomy of unmanned equipment, the choice of such self-learning strategies is still set by humans according to task requirements and specific scenarios. At present, various types of drones, unmanned ships, unmanned submarines, etc. have a certain ability to “think like humans”, but they are subject to the limitations of artificial intelligence algorithms, big data, and existing computer architectures. They cannot be separated from human thinking and input points set by humans. For a long time, the role of humans will still be the decisive factor in the development of unmanned equipment and warfare. Therefore, no matter to what extent informatization and intelligence develop, intelligent systems cannot completely replace humans, and the development of unmanned equipment is still dominated by humans. Manned/unmanned collaboration, human-machine coexistence, and intelligent integration are inevitable and feasible stages in the development of intelligent warfare. We must give full play to the “machine”‘s fast speed, high precision, fatigue resistance, and structured “computing” advantages, and give full play to the “human”‘s creativity, flexibility, initiative, and unstructured “calculation” advantages, integrate machine intelligence with human intelligence, learn from each other’s strengths and weaknesses, complement each other, and produce collective wisdom.

From the perspective of combat use, there are people everywhere in the circuit

The intelligent system of unmanned equipment can fully support command and control, combat operations, combat support and other aspects, so that the combat system capabilities can be rapidly improved. However, if we look deeply into the entire unmanned system operation process, it completes the “man-unmanned platform-man” loop, and achieves the combat purpose through the complementary advantages of man and machine. Any advanced unmanned equipment requires combatants to plan tasks in advance, and operators to monitor and control online to ensure that its technical characteristics are brought into play. In other words, the beginning of the loop comes from human program design and thinking introduction. The task process requires human decision-making, control, monitoring and intervention. The completion of the task requires people to evaluate the applicability and combat effectiveness of unmanned equipment and constantly adapt to new combat needs. Therefore, people are still the dominant players in the entire combat use process. If the effectiveness of unmanned equipment is to be maximized, it is necessary to implement systematic professional training for the pioneers of manned/unmanned integrated operation-people. For new combat force talents, especially unmanned combat personnel, we should set up professional training institutions, integrate teaching resources, improve supporting teaching equipment, increase artificial intelligence courses, and improve talent retention mechanisms in accordance with the concept of diversified channels, integrated design, multi-functionality, and hierarchical training. At the same time, we will draw on advanced training concepts and methods from foreign militaries, and comprehensively use simulation, computer networks, virtual reality and other technologies to carry out practical military training to cultivate compound unmanned combat talents with solid theoretical foundation, high equipment technology level, and excellent practical operation skills.

From the perspective of innovation in tactics, capability improvement depends on people.

The development of technologies such as artificial intelligence, quantum computing, unmanned and anti-unmanned systems, and hypersonic weapons has led to new characteristics of modern warfare, such as great depth, long distance, and non-contact. Unmanned, invisible, and silent warfare have begun to emerge, and the future combat concepts and combat styles will undergo profound changes. The maturity of unmanned equipment has accelerated the development of new combat concepts such as wide-area distributed combat, cross-domain collaborative combat, and unmanned cluster combat into actual combat. The advantage of unmanned equipment is that there is no one on the front-end platform, but the limitation is that there is no one, and it is impossible to independently design and summarize new combat concepts and tactics. In fact, it is all done by people to study the essence and laws of a certain type of combat problem, extract common characteristics and abstractly summarize them, and then guide the solution of such combat problems. Specifically, the new combat concept is based on the research and judgment of combat conditions such as historical, current and future technological development, threat judgment, geopolitical situation, combat opponents, battlefield environment, etc., and all of these are the condensation and crystallization of human wisdom. Therefore, in the face of the complex and changeable future battlefield environment, in order to make unmanned equipment play the best combat effectiveness, it is inseparable from the innovation of combat concepts and tactics. Based on changes in the battlefield environment and targeting different combat styles, we should conduct forward-looking designs on force deployment, timing of use, methods of action, and support methods, scientifically predict the development trend of unmanned combat, promote the mutual development of equipment technology and changes in combat methods, and explore and form a combat capability construction path that is mutually verified, closed-feedback, and rollingly developed through “conceptual design-combat experiment-equipment research and development.”

From the perspective of technological development, unmanned technology is controlled by humans.

At present, people generally believe that unmanned and intelligent applications can be competent for various tasks as long as the technology is mature, but in fact, the operating rules of computers are still limited to the von Neumann serial computing architecture, and there has not yet been a revolutionary product combining biotechnology and artificial intelligence. For example, “AlphaGo” with deep learning capabilities can quickly generate astronomical numbers of various response plans in the game with human Go masters, and is almost invincible, but its intelligent foundation is Go with relatively simple rules; the US Department of Defense’s ground-based simulated air combat project, the air combat intelligent agent it developed defeated human ace pilots in human-machine confrontation, but it can only be achieved in the simple battlefield environment of the simulator. It can be seen that the current development of the intelligent field is to be able to perform tasks purposefully in terms of selection and decision-making, while war is a dynamic game process. The intelligent solutions used by unmanned equipment are only in the background assumption situation, and the “water has no constant shape” war mode requires soldiers to respond more flexibly. Therefore, we must attach great importance to the decisive role of people in scientific and technological progress, scientifically grasp the development trend of informationized and intelligentized warfare, clarify the ideas of technological development, and actively explore and form an unmanned equipment technology research and development system and development path suitable for the characteristics of the military in accordance with the methods and steps of overall demonstration, key research, pilot verification and promotion and application.

From the perspective of war law, war is dominated by people.

With the continuous updating and iteration of unmanned equipment technology, unmanned combat has become more and more intelligent, which has led to the relative blurring of the boundaries between peacetime and wartime, front and rear, soldiers and civilians. In the Libyan conflict, drones relied on algorithms to select targets, automatically tracked and attacked armed personnel without the control of operators. It can be predicted that if unmanned equipment develops to a certain extent in autonomous calculation, autonomous decision-making, and autonomous action, and completely autonomously selects, identifies, and attacks targets, and humans do not restrain it, it will have a profound impact on morality, law, and war ethics. In fact, there are “reasons”, “laws”, and “people” behind unmanned combat. No matter what stage unmanned combat develops to, it still belongs to the category of war and is still subject to the rules of war. Whether it is international law or humanitarian law, the focus has always been on human issues, such as restrictions on combat methods and means, treatment of prisoners of war, protection of civilians, etc. All principles, rules and systems are based on the perspective of people and are solved through people. Therefore, in order to avoid humanitarian and war ethics issues caused by unmanned combat, from a technical perspective, humans need to supervise and manage the operation of unmanned systems, guide arbitration, and handle emergencies, grant them limited “right to fire”, reserve “start-stop” intervention interfaces, and be able to take over unmanned systems at any time; from a legal perspective, establish war rules between humans and weapons, enhance humans’ ability to apply the rules of war, and always play a leading role in war.

(Author’s unit: Naval Research Institute)(Editors: Dai Xiaoling, Wan Peng)

現代國語:

目前,無人裝備在軍事領域的廣泛運用正在加速戰爭形態向智慧化演進,無人作戰也發展成為智慧戰爭的重要作戰方式。但應該清醒地看到,無人作戰從技術發展到作戰應用,都離不開人的作用,人仍然是無人作戰全鏈條的「總開關」。因此,無人作戰本質上還是有人作戰,無人作戰中更要注重有人作戰的建設。

從作戰設計的角度來看,任務任務是由任務任務者指派的。

裝備是戰爭的物質基礎,但人是戰爭的發動者和控制者。任何裝備在戰爭中的作用都是由各級指揮官和戰士賦予的。從作戰設計的整體角度來看,戰爭涉及政治、經濟、外交、文化等多個領域,以及戰略、戰役、戰術等多個層面。贏得戰爭需要先進裝備和技術的支撐,更需要對戰局的全方位掌控。無人裝備具有持久續航、行動隱密、機動性強、成本低等特點,以及適應極端環境、使用彈性等優勢,適合承擔持續性、高風險任務。但在遇到極其複雜的作戰環境、極其激烈的對抗、戰機快速變化等需要即時綜合權衡和決策的情況下,無人系統仍然需要以人為主導,實施複雜的指揮控制,控制無人設備。指定的作戰任務。因此,無人裝備雖然成為現代戰爭的發展趨勢,但它對人的依賴和服從不會改變。要準確掌握無人裝備優缺點,加大無人指揮控制理論、無人作戰知識體係等方面的研究,形成豐富完整的作戰理論體系,帶動無人裝備發展,促進無人裝備發展。作戰系統,在有限的作戰場景中發揮更大的作用,從而起到良好的作戰能力「倍增器」作用。

從裝備研發的角度來看,無人系統是由人設計的。

人類是無人設備的設計者,尤其是賦能無人設備的智慧軟體。它是無人設備執行各種任務能力的核心,也是設計者智慧的展現。儘管許多核心軟體所採用的人工智慧演算法具有一定的自學習能力,提高了無人設備的自主性,但這種自學習策略的選擇仍然是由人類根據任務需求和具體場景來設定。目前,各類無人機、無人船、無人潛水艇等具備一定的「像人類一樣思考」的能力,但受到人工智慧演算法、大數據和現有電腦架構的限制。它們離不開人類的思維和人類設定的輸入點。相當長一段時間內,人類的角色仍將是無人裝備和戰爭發展的決定性因素。因此,無論資訊化、智慧化發展到什麼程度,智慧系統都無法完全取代人類,無人設備的發展仍由人類主導。有人/無人協作、人機共存、智慧融合是智慧戰爭發展的必然階段和可行階段。要充分發揮「機器」速度快、精度高、耐疲勞、結構化「運算」的優勢,充分發揮「人」的創造性、彈性、主動性、非結構化「計算」發揮機器智能與人類智能的優勢,將機器智能與人類智能融為一體,取長補短,優勢互補,產生集體智慧。

從戰鬥使用來看,電路裡到處都是人

無人裝備智慧系統可以全面支援指揮控制、作戰行動、作戰保障等方面,使作戰系統能力快速提升。但如果深入觀察整個無人系統運作過程,它完成了「人-無人平台-人」的循環,透過人與機的優勢互補來達到作戰目的。任何先進的無人裝備都需要作戰人員提前規劃任務,操作人員在線上監控和控制,以確保其技術特性發揮出來。在其他方面換句話說,循環的開始來自於人類的程式設計和思維引入。任務過程需要人的決策、控制、監控和介入。任務的完成需要人們評估無人裝備的適用性和戰鬥力,不斷適應新的作戰需求。因此,在整個戰鬥使用過程中,人仍然是主導者。想要發揮無人裝備的效能最大化,就需要對有人/無人一體化作業的先行者-人進行系統性的專業訓練。對於新型作戰力量人才特別是無人作戰人員,要依照多元化管道、一體化設計、多功能、分級訓練。同時,借鏡外軍先進訓練理念與方法,綜合運用模擬、電腦網路、虛擬實境等技術進行實戰軍事訓練,培養理論基礎紮實、裝備精良的複合型無人作戰人才技術水準和優秀的實際操作能力。

從戰術創新的角度來看,能力提升靠人。

人工智慧、量子運算、無人與反無人系統、高超音速武器等技術的發展,導致現代戰爭呈現大縱深、遠距離、非接觸等新特色。無人化、隱形化、無聲化的戰爭已經開始出現,未來的作戰概念和作戰方式將會發生深刻的變化。無人裝備的成熟,加速了廣域分散式作戰、跨域協同作戰、無人集群作戰等新作戰概念發展到實戰。無人裝備的優點在於前端平台無人,但限制在於無人,無法自主設計總結新的作戰概念和戰術。事實上,這都是人們研究某一類作戰問題的本質和規律,提取共性特徵並進行抽象概括,然後指導該類別作戰問題的解決。具體來說,新的作戰理念是基於對歷史、當前和未來技術發展、威脅判斷、地緣局勢、作戰對手、戰場環境等作戰條件的研判,而這些都是對作戰條件的凝結和結晶。智慧。因此,面對複雜多變的未來戰場環境,要讓無人裝備發揮最佳戰鬥力,離不開作戰概念和戰術的創新。根據戰場環境變化和針對不同作戰方式,對兵力部署、使用時機、行動方式、保障方式等進行前瞻性設計,科學預測無人作戰發展趨勢,促進無人作戰共同發展。探索形成「概念設計-作戰實驗-裝備研發」相互驗證、閉環回饋、滾動發展的作戰能力建設路徑。

從技術發展的角度來看,無人技術是由人類控制的。

目前,人們普遍認為只要技術成熟,無人化、智慧化應用就可以勝任各種任務,但事實上,電腦的運作規則仍限於馮諾依曼串列運算架構,目前還沒有是生物技術和人工智慧結合的革命性產品。例如,具有深度學習能力的「AlphaGo」在與人類圍棋高手的對弈中可以快速產生天文數字的各種應對方案,幾乎所向披靡,但其智慧基礎卻是規則相對簡單的圍棋;美國國防部的地面模擬空戰項目,其研發的空戰智能體在人機對抗中擊敗了人類王牌飛行員,但這只能在模擬器的簡單戰場環境中實現。可見,當前智慧領域的發展是能夠在選擇和決策方面有目的地執行任務,而戰爭則是一個動態的博弈過程。無人裝備所採用的智慧解決方案只是在背景假設情況下,「水無常」的戰爭模式需要士兵做出反應礦石靈活。因此,必須高度重視人在科技進步中的決定性作用,科學掌握資訊化、智慧化戰爭發展趨勢,明確技術發展思路,積極探索形成無人裝備技術研發體係依照總體論證、重點研究、試點驗證、推廣應用的方法與步驟,探索適合軍隊特色的發展道路。

從戰爭法的角度來看,戰爭是由人主導的。

隨著無人裝備技術的不斷更新迭代,無人作戰越來越智能化,導致平時與戰時、前線與後方、士兵與平民的界線相對模糊。在利比亞衝突中,無人機依靠演算法選擇目標,自動追蹤並攻擊武裝人員,無需操作人員控制。可以預見,如果無人裝備在自主計算、自主決策、自主行動方面發展到一定程度,完全自主選擇、識別、攻擊目標,而人類不對其進行約束,將會產生深遠的影響。戰爭道德。事實上,無人作戰背後有「理」、「法」、「人」。無人作戰無論發展到什麼階段,仍屬於戰爭範疇,仍受到戰爭規則的約束。無論是國際法或人道法,關注的焦點始終是人的問題,例如對作戰方法和手段的限制、戰俘待遇、保護平民等。也是透過人來解決的。因此,為了避免無人作戰引發的人道主義和戰爭倫理問題,從技術角度來說,人類需要對無人系統的運作進行監督管理、指導仲裁、處理突發事件,賦予其有限的“開火權” ,保留「啟動/停止」幹預接口,可隨時接管無人系統;從法律角度,建立人與武器之間的戰爭規則,增強人類運用戰爭規則的能力,始終在戰爭中扮演主導角色。

(作者單位:海軍研究院)

(編按:戴曉玲、萬鵬)

中國原創軍事資源:http://theory.people.com.cn/n1/2022/0329/c40531-32386526888.html

Chinese Intelligent Warfare Cannot be Successful Without Human Element

中國智慧戰爭離不開人的因素

2019年10月17日 17:00 來源:解放軍報 作者:徐莉

現代英語:

An important task in studying intelligent warfare is to accurately position humans in intelligent warfare.

  No matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomously by machines. Humans must have a strong enough kite string and hold it tightly at all times.

  ”Synchronous development of man and machine” should be regarded as a basic principle for the development of military intelligence. Intelligence should integrate both “things” and “people”.

  At present, the research on intelligent warfare is in the ascendant. Some people believe that intelligent warfare will be unmanned as the core form of expression, and unmanned equipment such as drones, unmanned submarines, and robot soldiers will become the protagonists of war. The form of war will also develop from the co-starring of “human-machine collaborative warfare” to the one-man show of “machine vs. machine war”. People seem to have become bystanders in intelligent warfare, with the meaning and trend of “intelligent warfare makes people go away”. What is the status and role of people, who have always been the main body of war, in intelligent warfare? This is the first problem that should be solved in the study of intelligent warfare.

  The Marxist view of war holds that weapons are an important factor in war, but not the decisive factor. The decisive factor is people, not weapons. Although people no longer directly control weapons in advanced intelligent warfare, the following factors still determine that people are the main body of war and the key to winning.

  First, war is the continuation of politics. The launching of war and the control of the war process must be decided by people according to political needs. The game outside the battlefield has a decisive influence on the progress of the war. For example, the results of diplomatic negotiations, the focus of international public opinion, and the support of the domestic people all depend on the decisions of politicians and military strategists, which cannot be replaced by any intelligent machines.

  Secondly, war planning and command can only be implemented by commanders at all levels. Military command is both a science and an art, but it is more of an art. Any successful battle or campaign in the world is the result of commanders breaking routines and stereotypes and using troops creatively. The history of our army’s growth and development has repeatedly proved that correct military strategic guidance and flexible strategies and tactics are the magic weapon for our army to defeat the strong with the weak and defeat the many with the few, which enables our army to move from victory to victory. It is also something that intelligent machines cannot imitate or create. For example, in the battle, the comparative analysis of enemy and our combat forces, the real-time control of the combat situation, the real-time evaluation of the overall damage effect, the combat psychological analysis of enemy commanders, and the prediction of the next combat action, etc., intelligent machines can only provide auxiliary decision-making information and suggestions. Commanders at all levels must make decisions, make combat decisions, and issue combat orders.

  Third, the level of intelligence of weapons and equipment ultimately depends on humans. Artificial intelligence originates from human intelligence. One of the major factors restricting the development of intelligence is that the scientific understanding of human intelligence is still superficial, and the understanding of the cognition, memory, thinking, decision-making and action mechanism of the human brain is still insufficient. The “Wuzhen Index: Global Artificial Intelligence Development Report 2016” pointed out that over the years, the proportion of biological research in the four sub-fields of artificial intelligence, machine learning, natural language processing, computer vision, and robotics, has been the lowest. Due to the lack of attention to the basic and decisive influence of brain science on artificial intelligence, the current artificial intelligence can only stay at the stage of superficial understanding and primary imitation of brain functions. Once there is a major breakthrough in the understanding of human intelligence, artificial intelligence will also be reborn and enter a leapfrog development stage.

  Fourth, only humans can control intelligent weapons and equipment and combat platforms. Although the final intelligent weapons can be operated without human on-site control, when to put intelligent weapons and equipment into battle, when to change the direction of attack, how to control the rhythm of the war, when to withdraw from the battle, etc., can only be decided by humans in the end. This is the basic principle that must be grasped when designing intelligent weapons and equipment, that is, one of Asimov’s three laws of robotics: robots must obey human orders. Once intelligent weapons and equipment are out of human control, it will be a disaster for the entire human race, not just the enemy. This also determines that no matter how high the “kite” of intelligent weapons and equipment flies, it can only be controlled by humans and autonomous control functions of machines. The autonomous function of machines can only be effective within the scope limited by humans. Humans must have a strong enough kite line and hold it tightly at all times.

  Fifth, only humans can crack and control the enemy’s intelligent weapons and equipment. The development of military history has proved that any weapon and equipment has its “Achilles’ heel” and will eventually be defeated. There has never been and will never be perfect and impeccable weapons and equipment in history, and intelligent weapons and equipment are no exception. The magic weapon to defeat the enemy is humans with infinite wisdom. For example, drones seem advanced, but they can be interfered, trapped or controlled by radio waves of a specific frequency. The same is true for other intelligent weapons and equipment, and finding and studying methods, technologies, and equipment to crack, control, and destroy intelligent weapons and equipment is where human wisdom comes into play.

  Therefore, “synchronous development of man and machine” should be taken as a basic principle for the development of military intelligence. Intelligence should be applied to both “objects” and “people”. As soldiers in the era of intelligent warfare, they must master the working principles and weak links of intelligent weapons and equipment, be familiar with and master the “thinking mode” and “conventional actions” of intelligent weapons and equipment, as well as the abnormal “abnormal thinking” and abnormal “extraordinary actions” that may appear, and understand their technical and tactical indicators and performance. Especially in the stage of man-machine collaborative operations, soldiers are required not only to be able to coordinate actions with machines, but also to communicate with machines without obstacles in cognitive ability and intelligence. This not only relies on intelligent knowledge reserves, but also relies on the “brain reading” and “brain strengthening” of intelligent equipment. Scientific research shows that the normal human brain usage rate is only 3%-5%, which shows that there is still a huge room for improvement and release of human intelligence. When studying intelligent warfare, we should also study how to improve human intelligence.

  In the face of intelligent warfare, we should prepare for the future, establish intelligent troops suitable for intelligent warfare as soon as possible, study the way to defeat the enemy in intelligent warfare, and establish and improve the theory of intelligent warfare; repair, maintain and improve intelligent weapons and equipment; study the methods, techniques and equipment to decipher the control keys of enemy weapons and equipment; study effective means to attack the enemy’s intelligent weapons and equipment, rewrite their combat rules and targets, and make them turn against us in the face of battle, or use high-energy lasers and high-power microwaves to directly destroy the enemy’s communication networks and weapons and equipment, demonstrating the way to win in intelligent warfare.

  In short, in intelligent warfare, people are still the main body of war and the decisive factor in the outcome of war. An important task in studying intelligent warfare is to find the correct position of people in intelligent warfare. Otherwise, it is easy to fall into the idealistic quagmire of “seeing things but not people”, “only weapons” and “only technology”.

現代國語:

研究智能化戰爭的一項重要任務,就是找準智能化戰爭中人的定位。

不論智慧化武器裝備這個「風箏」飛多高,永遠只能是人類控制與機器自主控制功能並存,人類必須擁有足夠結實的風箏線並時刻牢牢抓住它。

應把「人機同步發展」當作軍事智慧化發展的一個基本原則,智慧化既要化「物」也要化「人」。

當前,對智慧化戰爭的研究方興未艾。一些觀點認為,智慧化戰爭將以無人化為核心表現形式,無人機、無人潛航器、機器人士兵等無人裝備將成為戰爭主角,戰爭形態也將從「人機協同作戰」的聯袂主演,最後發展到「機器對機器大戰」的獨角戲。人似乎成了智慧化戰爭的旁觀者,大有「智慧化戰爭讓人走開」的意味和態勢。曾經一直是戰爭主體的人,在智能化戰爭中的地位和角色究竟是什麼,這是研究智能化戰爭應當首先解決的問題。

馬克思主義戰爭觀認為,武器是戰爭的重要因素,但不是決定的因素,決定的因素是人而不是武器。雖然在高階階段的智慧化戰爭中,人不再直接操控武器,但以下因素仍決定了人是戰爭的主體和關鍵的致勝力量。

首先,戰爭是政治的延續,戰爭的發動、戰爭進程的掌控,必須由人視政治需求作出決定。戰場以外的博弈對戰爭進程有著決定性的影響,如外交談判的結果、國際輿論的焦點、國內民眾支持度等,均取決於政治家、軍事家的決策,是任何智能化的機器都無法替代的。

其次,戰爭規劃和指揮只能由各級指揮官來實施。軍事指揮既是科學,也是藝術,但更體現為藝術。世界上任何一場取得勝利的戰鬥、戰役,都是指揮者打破常規和定式,創造性用兵的結果。我軍成長壯大的歷史也一再證明,正確的軍事戰略指導、機動靈活的戰略戰術,是以弱克強、以少勝多,使我軍不斷從勝利走向勝利的製勝法寶,也是智能化機器所無法模仿和創造的。例如,戰中對敵我作戰力量的比較分析、作戰態勢的即時掌控、整體毀傷效果的即時評估、敵軍指揮作戰心理分析,以及對下一步作戰行動的預判等等,智慧化機器只能提供輔助決策資訊和建議案,必須由各級指揮官親自決策、下定作戰決心,並下達作戰命令。

第三,武器裝備智慧化程度高低最終取決於人類。人工智慧源自人類智能,目前製約智能化發展的一大因素,就是對人類智能的科學認識尚膚淺,對人類大腦的認知、記憶、思維、決策和行動機理等的認識還很不夠。 《烏鎮指數:全球人工智慧發展報告2016》指出,歷年來人工智慧的機器學習、自然語言處理、電腦視覺、機器人四類細分領域涉及生物學研究的比例均最低。由於不重視腦科學對人工智慧基礎和決定性的影響,直接導致當前人工智慧只能停留在對大腦功能膚淺認識和初級模仿階段,一旦對人類智慧的認識有了重大突破,人工智慧也必將脫胎換骨,進入跨越式發展階段。

第四,控制智慧化武器裝備和作戰平台的只能是人。雖然最終的智慧化武器可以沒有人類現場操控,但智慧化武器裝備何時投入戰鬥、何時轉換進攻方向、如何把控戰爭節奏、何時撤出戰鬥等等,最終只能由人來決定,這是智慧化武器裝備設計時必須掌握的基本原則,即阿西莫夫機器人三定律之一:機器人必須服從人類的命令。一旦智能化的武器裝備脫離了人的控制,那將是整個人類而不僅僅是敵人的災難,這也決定了不論智能化武器裝備這個“風箏”飛多高,永遠只能是人類控制與機器自主控制功能並存,機器自主功能只能在人類限定的範圍內有效,人類必須擁有足夠堅固的風箏線並時刻牢牢抓住它。

第五,破解、控制敵人智慧化武器裝備的只能是人。軍事歷史發展證明,任何武器裝備都有其“阿喀琉斯之踵”,最終都會被擊敗。歷史上從來沒有、未來也不會出現完美無缺、無懈可擊的武器裝備,智慧化武器裝備也不例外,而克敵制勝的法寶就是擁有無窮智慧的人類。例如,無人機看似先進,但完全可以被特定頻率的電波幹擾、誘捕或控制。其他智慧化武器裝備也是如此,而尋找並研究破解、控制、擊毀智慧化武器裝備的方法、技術、裝備,則是人類聰明才智的用武之地。

因此,應把「人機同步發展」作為軍事智能化發展的一個基本原則,智能化既要化「物」也要化「人」。作為智能化戰爭時代的軍人,必須掌握智能化武器裝備的工作原理和薄弱環節,熟悉並掌握智能化武器裝備的“思維方式”和“常規動作”,以及可能出現的非常態的“異常思維”和變態的“超常動作”,了解其技戰術指標及性能,特別是人機協同作戰階段,不僅要求軍人能夠與機器協調行動,而且在認知能力和智力上能夠和機器無障礙交流,這不僅要依靠智能化的知識儲備,也要依賴智慧化裝備的「讀腦」「強腦術」。科學研究表明,正常人大腦使用率只有3%——5%,這說明,人類智慧仍有巨大的提升和釋放空間。研究智能化戰爭,也應同步研究如何提升人類智慧。

面對智慧化戰爭,我們應當未雨綢繆,儘早建立與智能化戰爭相適應的智能化部隊,研究智能化戰爭的克敵制勝之道,建立完善智能化戰爭理論;維修、保養、改進智能化武器裝備;研究破解敵方武器裝備操控密鑰的方法、技術、裝備;研究攻擊敵軍智能化武器裝備的有效手段,改寫其作戰規則和作戰對象,使其臨陣倒戈,或是利用高能量激光、高功率微波直接擊毀敵通信網絡和武器裝備,彰顯智慧化戰爭的致勝之道。

總之,智慧化戰爭中人仍是戰爭的主體,是戰爭勝負的決定性因素。研究智能化戰爭的一項重要任務就是找準智能化戰爭中人的定位。否則,就容易陷入「見物不見人」「唯武器論」「唯技術論」的唯心主義泥沼。

中國原創軍事資源:http://www.qstheory.cn/defense/2019-10/17/c_112511776588.htm