Tag Archives: #Intelligent Warfare

Research on Chinese Military Affairs, Studying War丨Brief Analysis of China’s Winning Mechanisms of Intelligent Warfare

研究中國軍事,研究戰爭丨中國智慧化戰爭制勝機制淺析

現代英語:

President Xi pointed out that the core of studying combat issues is to clarify the characteristic rules and winning mechanisms of modern warfare. In today’s world, major changes unseen in a century are accelerating. Disruptive technologies represented by artificial intelligence are developing rapidly and widely used in the military field, accelerating the evolution of war forms towards intelligence. The corresponding war winning mechanism is also changing. “ Victory tends to smile at those who can foresee changes in the characteristics of war, rather than at those who wait for changes to occur before adapting”. Only by discovering changes in a timely manner, proactively responding to changes, and actively adapting to changes can we better grasp the initiative in future wars and remain invincible in future wars.

Outwitted

In the “intelligent warfare confrontation”, human intelligence has widely penetrated into the combat field and been transplanted into weapon systems. Global multi-dimensional and various types of intelligent combat platforms can quickly couple combat forces, build combat systems according to mission requirements, and independently implement coordinated operations, the mission ends and quickly returns to a state of readiness for war, showing a trend of intelligent autonomy. Whoever possesses the empowerment and gain advantage of intelligent technology in the combat system can design wars, lead the development of the battlefield, master battlefield initiative, and achieve “using wisdom to defeat clumsiness”. First, algorithms, computing power, and data determine system operational capabilities. Relying on intelligent algorithms and powerful computing power, it can quickly and efficiently analyze targets and match resource means, solve high-frequency cross-domain collaboration problems, achieve coordinated planning, parallel actions, and real-time evaluation, and greatly improve system operating speed and strike efficiency. Second, intelligent networks support cross-domain all-in-one action. The intelligent network information system provides basic support and link links for the combat system. Combat units and combat elements in different combat domains can be integrated into the entire combat system at any time “plug and play” to achieve rapid information transmission and sharing. Again, an intelligent weapon platform enables autonomous and flexible strikes. Intelligent technology achieves the organic combination of human strategy and machine’s autonomous perception, autonomous decision-making, and autonomous action by empowering weapon platforms, elements, and forces. Through “software defines the combat system structure and functions, and uses software to empower weapon platforms and ammunition, the platform can independently select and attack targets, and flexibly build a kill chain”.

Gathering is better than scattering

With the support of the “intelligent network information system”, the combat system has become an organic whole with a high degree of autonomous coordination, allowing the overall linkage of combat operations and the operational effectiveness index to be magnified, relying on the overall power of the system to win. First, the multiple elements of information, firepower, military power and cognition are linked together to release energy. With the injection of intelligent factors into the combat system, information, firepower, force and cognition will be given new quality capabilities, and based on the support of intelligent network information systems, software and hardware capabilities will be organically combined and physical and intangible means will be closely integrated to achieve combat effectiveness. maximize. Secondly, the multi-spatial multi-directional linkage of land, sea, air, space, network, electricity and other forces gathers forces to release energy. The seizure and control of battlefield control will rely more on the integrated linkage and cross-domain coordination of multi-domain space operations. By dispersing various combat forces deployed in a vast space, they will immediately gather advantages, forming a multi-domain, multi-directional energy release advantage for dimensionality reduction attacks in one domain, thereby taking control of battlefield initiative. Again, the multi-link linkage of detection, control, and evaluation gathers strength to release energy. Through the “ubiquitous Internet network”, cross-domain response to combat operations, cross-domain sharing of combat information, and cross-domain complementation of combat functions can be realized, and anti-virus networks can be dynamically adjusted or constructed according to the enemy’s circumstances and circumstances to achieve rapid system operation and concentrated energy release.

“Exquisite” is better than coarse

Intelligent warfare must be reasonably invested, effectively regulate combat forces, and be used as a means of warfare to achieve the goal of “refining the rough” and winning at the lowest cost. First, a precise target-information-driven system operates efficiently. Relying on various intelligent sensing platforms covering multi-dimensional and wide-area deployment, it detects and locates obstacles or targets in the battlefield environment. Precisely control the flow, flow, and velocity of information to achieve rational allocation of combat resources, coordinated and orderly combat operations, and precise release of combat energy. Second, precise breaching operations achieve a rapid transition between good and bad. The application of big data, big model analysis algorithms and other technologies can accurately analyze and judge combat systems “weak spots ”“ Achilles’ heel”, accurately guide the use of weapons and high-energy weapons such as lasers and hypersonic speeds, make the choice of precise strike methods more diverse, and can make the enemy Combat systems are instantly disabled. Again, precise strike evaluation supports the optimal superposition of combat effects. The target damage effect is accurately obtained through intelligent channels and means, and the conclusion is revised based on the human-computer interaction evaluation system. The commander can compare, interact, feedback, and correct the damage effect assessment conclusions with the information stored in the system knowledge base and his or her own professional knowledge to achieve the purpose of accurately assessing the impact effect of the target.

Faster than Slow

“The main speed of military intelligence”, the rapid development of military intelligence has greatly improved the speed of information transmission and the accuracy of weapon strikes, greatly reduced the time for reconnaissance and early warning, intelligence processing, command and decision-making, fire strike, and damage assessment, and accelerated “OODA” kill chain Cycle, new rapid-fire weapons such as hypersonic missiles, laser weapons, microwave weapons, and electromagnetic pulse weapons further push the rhythm of war to “instant kill”. Hybrid human-machine decision-making becomes the key to enemy action first. On the one hand, the new model of human-machine hybrid cloud-brain decision-making is based on the intelligent “network, cloud, terminal” system and integrates intelligent battlefield perception, decision-making and weapon control systems to quickly select combat plans and achieve instant decision-making advantages. On the other hand, the speed at which the kill chain is constructed becomes the basic yardstick for system confrontation. Under the empowerment of “intelligent technology”, the acquisition, processing and transmission time of battlefield information is greatly shortened. The intelligent platform uses algorithms to analyze battlefield spatial situations and target information in real time, and the time of the kill chain is shortened to seconds, thus achieving “destroy upon discovery”.

Toughness is better than crispness

War is not only a military contest, but also a competition between the country’s human, material and financial resources. Maintaining the lasting resilience of the combat system has become a key factor affecting the outcome of the operation. First, the large-scale use of low-cost unmanned intelligence platforms has become a completely new way of fighting. Unmanned intelligence platforms, micro-intelligent robot autonomous combat clusters, etc., dispersed to more small and low-cost combat platforms, can enhance the recovery speed and overall penetration of the combat system after damage, and achieve maximum combat benefits at a smaller cost. Secondly, the continued guarantee of intelligent resources becomes the key to the operation of the combat system. Various new weapons and new means such as unmanned combat platforms, intelligent algorithms, and cyber attacks are constantly emerging. Powerful computing power, advanced algorithms, and accurate data support have become the guarantee for the continued and stable operation of the system, and intelligent resources “timely, appropriately, applicable, and appropriately” continue to be effective. Guarantee has become an important influencing factor in the victory of intelligent warfare. Again, the operational system’s requirements for balance of offensive and defensive capabilities are getting higher and higher. The local area network, wide area network and even brain network behind the network and digitalization of the combat system leave room for opponents to launch attacks; the “cloud— network —end” structure of the combat system intelligent network information system, its data center, supercomputing center and other network infrastructure It will also be an important hub for opponents to focus on attacking and destroying.

Heart is better than things

Intelligent warfare is different from traditional warfare in which the main purpose is to eliminate the enemy’s effective power. It will pay more attention to weakening the enemy’s morale, disintegrating the enemy’s will, and destroying the enemy’s psychology. Smart technology has become a new way to influence the minds of all employees at all times. First of all, intelligent new media, new technologies and new means have created new ways for the psychological influence of public opinion. Enhanced consciousness and the development of information editing and other technologies have made the methods of conscious attack and defense more diverse, the methods of confrontation more varied, and the technological content higher. Use “intelligent weapons, intelligent technology and intelligent information struggle methods to carry out information attacks on the enemy, thereby forming psychological deterrence”. Secondly, intelligent and deep interaction makes obtaining data richer and more complete. Technologies such as AI face-changing, holographic projection, and audio-visual synthesis provide new means to implement intelligent manufacturing and confuse facts. Again, smart models, massive amounts of data, and high-performance servers provide new tools for quickly concocting information ammunition. Mental guidance and control can be closely coordinated with military, economic, and diplomatic forces to amplify the deterrent effect, constantly create pressure from public opinion to force the enemy to compromise, form psychological deterrence and make them hesitate to give in, change the enemy’s cognition through differentiation of value identity, and achieve subjugation without fighting.

More than single

The rapid development of science and technology has opened up new space for activities and interests for human society, but new security threats and challenges have followed suit, promoting the corresponding expansion of battlefield space and confrontation fields. Currently, wars are constrained and influenced by many factors such as politics, economy, diplomacy, military, technology, geography, and psychology. Unconventional mixed wars supported by military capabilities have become more intense. The competition space for hybrid warfare has extended to various fields such as politics, economy, diplomacy, culture, and military. It emphasizes the comprehensive use of national strategic resources and strategic tools to achieve traditional war goals and transcend traditional war methods. It has a special status and role. As intelligent technology matures, the threshold for intelligent warfare will show a downward trend. Participating parties may adopt an undeclared war approach to launch a variety of integrated economic warfare, diplomatic warfare, cyber warfare, public opinion warfare, psychological warfare, legal warfare, etc. Mixed warfare, mixed victory means giving priority to politics, economy, diplomacy, etc. on the basis of comparing the advantages and disadvantages of the opponent and one’s own side in all aspects Public opinion and other non-military tools and means that can use strengths and avoid weaknesses, use four taels to move a thousand pounds, pursue “no war” or “less war ”“small war” and subjugate others. As long as we deeply understand and accurately grasp the characteristic rules and operating mechanisms of future hybrid warfare, and creatively use clever and efficient strategic techniques, we can fully achieve the expected strategic results.

現代國語:

羅振華 鑫 言

引 言

習主席指出,研究作戰問題,核心是要把現代戰爭的特點規律和制勝機理搞清楚。當今世界,百年未有之大變局加速演進,以人工智能為代表的顛覆性技術迅猛發展,並廣泛應用於軍事領域,使戰爭形態向智能化加速演變,與之相應的戰爭制勝機理也正在發生嬗變。“勝利往往向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生後才去適應的人微笑”。及時發現變化,主動應對變化,積極適應變化,才能夠更好地把握未來戰爭主動權,在未來戰爭中立於不敗之地。

智勝於拙

在智能化戰爭對抗中,人的智能廣泛滲透到作戰領域、移植到武器系統,全域多維、各種類型的智能化作戰平台能夠快速耦合作戰力量,根據任務需求構建作戰體系,自主實施協同作戰,任務結束迅速回歸待戰狀態,呈現智能自主趨勢。誰佔有智能技術對作戰體系的賦能增益優勢,誰就能據此設計戰爭、主導戰局發展,掌握戰場主動,實現“以智制拙”。首先,算法、算力和數據決定體系作戰能力。依托智能算法和強大算力,可以快速高效地分析目標、匹配資源手段,解決高頻次跨域協同難題,實現協調規劃、並行行動、即時評估,大幅提高體系運行速度和打擊效能。其次,智能網絡支撐跨域一體行動。智能網絡信息系統為作戰體系提供基礎支撐和鏈接紐帶,不同作戰域的作戰單元、作戰要素,隨時可“即插即用”融入整個作戰體系,實現信息快速傳遞共享。再次,智能化武器平台實現自主靈活打擊。智能技術通過賦能武器平台、要素和力量,達到人的謀略與機器的自主感知、自主決策、自主行動有機結合。通過軟件定義作戰體系結構和功能,用軟件賦能武器平台和彈藥,可實現平台自主選擇和打擊目標,靈活構建殺傷鏈。

聚勝於散

在智能化網絡信息系統支撐下,作戰體系成為具有高度自主協調力的有機整體,使得作戰行動整體聯動、作戰效能指數級放大,靠系統湧現的整體威力制勝。首先,信息、火力、兵力和認知等多要素聯動聚力釋能。隨著作戰體系注入智能因素,信息、火力、兵力和認知都將賦予新質能力,並基於智能化網絡信息系統的支撐,實現軟硬能力有機復合、有形無形手段緊密融合,達成作戰效能最大化。其次,陸海空天網電等多空間多方向聯動聚力釋能。戰場制權的奪控,將更加依賴多域空間行動的一體聯動和跨域協同,通過分散部署在廣闊空間的各種作戰力量即時聚優,形成多域多向對一域降維打擊的釋能優勢,從而掌握戰場主動。再次,偵控打評等多環節聯動聚力釋能。通過泛在互聯網絡,實現作戰行動跨域響應、作戰信息跨域共享、作戰功能跨域互補,因敵因情因勢動態調整或構建殺傷網,實現體系快速運轉和聚力釋能。

精勝於粗

智能化戰爭必須合理投入、有效調控作戰力量,恰當選用作戰手段,達成“以精制粗”,以最小代價取勝的目的。首先,精准的目標信息驅動體系高效運行。依托覆蓋全域多維、廣域部署的各種智能感知平台,探測、定位戰場環境中的障礙或目標。精確控制信息的流向、流量、流速,實現作戰資源的合理分配、作戰行動的協調有序和作戰能量的精確釋放。其次,精准的破擊行動實現快速優劣轉化。大數據、大模型分析算法等技術的運用,可精確分析判斷作戰體系“軟肋”“死穴”,精確制導武器和激光、高超聲速等高能武器的使用,讓精確打擊的手段選擇更加多樣,可使敵作戰體系瞬時失能。再次,精准的打擊評估支撐作戰效果最優疊加。通過智能化途徑和手段准確獲取目標毀傷效果,依托人機交互評估系統對結論進行修正。指揮員可將毀傷效果評估結論與系統知識庫儲存的信息以及自身專業知識進行比對、交互、反饋、修正,達到精准評估目標打擊效果的目的。

快勝於慢

“兵之情主速”,軍事智能化的飛速發展大大提升了信息傳遞速度和武器打擊精度,大幅縮減了偵察預警、情報處理、指揮決策、火力打擊、毀傷評估的時間,加速“OODA”殺傷鏈循環,高超聲速導彈、激光武器、微波武器、電磁脈沖武器等新型快速殺傷武器進一步將戰爭節奏推向“秒殺”。人機混合決策成為先敵行動的關鍵。一方面,人機混合的雲腦決策的全新模式,以智能“網、雲、端”體系為依托,集智能化戰場感知、決策和武器控制系統於一體,可快速優選作戰方案,實現即時決策優勢。另一方面,殺傷鏈構建速度成為體系對抗的基本衡量標准。在智能技術賦能作用下,戰場信息的獲取、處理和傳輸時間極大縮短,智能平台利用算法可對戰場空間態勢和目標信息實時分析,殺傷鏈的時間縮短至秒級,從而實現“發現即摧毀”。

韌勝於脆

戰爭不但是軍事的較量,更是國家人力物力財力的比拼。保持作戰體系持久韌性,成為影響作戰勝負的關鍵因素。首先,低成本無人智能平台的規模化運用成為全新作戰方式。無人智能平台、微型智能機器人自主作戰集群等,分散到更多小型廉價作戰平台的做法,可增強作戰體系受損後的恢復速度和整體突防力,以較小代價取得最大作戰效益。其次,智能資源的持續保障成為作戰體系運行的關鍵。無人作戰平台、智能算法、網絡攻擊等各種新武器、新手段不斷湧現,強大算力、先進算法和精准數據支撐成為體系持續穩定運行的保證,“適時、適地、適用、適量”的智能資源持續有效保障,成為智能化戰爭制勝的重要影響因素。再次,作戰體系的攻防一體能力平衡性要求越來越高。作戰體系網絡化、數字化背後的局域網、廣域網甚至腦聯網,給對手發起攻擊留下空間;作戰體系的“雲—網—端”結構智能網信系統,其數據中心、超算中心等網絡基礎設施也將是對手重點攻擊破壞的重要樞紐。

心勝於物

智能化戰爭與傳統戰爭中以消滅敵人有生力量為主要目的不同,將更加注重削弱敵方的士氣,瓦解敵方的意志,摧毀敵方的心理。智能科技已成為全時全域影響全員心智的全新方式。首先,智能化的新媒體、新技術和新手段,為輿論心理影響開創了新方式。意識增強、信息編輯等技術的發展,使得意識攻防手段更加多樣、對抗方式更加多變、科技含量更高。運用智能武器、智能技術和智能信息斗爭的方法,對敵實施信息打擊,從而形成心理威懾。其次,智能化的深度互動,使得獲取數據更為豐富,要素更加齊全。AI換臉、全息投影、影音合成等技術,為實施智能制造、混淆事實真相提供了新手段。再次,智能模型、海量數據和高性能服務器,為快速炮制信息彈藥提供了新工具。心智導控可與軍事、經濟、外交密切配合,放大震懾效應,不斷制造輿論壓力迫敵妥協,形成心理震懾使其遲疑退讓,通過價值認同分化改變敵認知,實現不戰而屈人之兵。

多勝於單

科學技術的迅猛發展,為人類社會打開了新的活動空間和利益空間,但新的安全威脅和挑戰也隨之而來,推動了戰場空間和對抗場域的相應拓展。當前,戰爭受到政治、經濟、外交、軍事、技術、地理、心理等諸多因素的制約和影響,以軍事能力為支撐的非常規的混合戰爭反而更加激烈。混合戰爭的角逐空間已經延伸至政治、經濟、外交、文化、軍事等各領域,強調綜合運用國家戰略資源和戰略工具聚合發力,既能夠實現傳統戰爭目標,又能夠超越傳統戰爭手段,地位作用特殊。隨著智能技術的發展成熟,智能化戰爭的門檻將呈現下降趨勢,參戰方可能采取不宣而戰的方式發起融合經濟戰、外交戰、網絡戰、輿論戰、心理戰、法律戰等多種樣式的混合戰爭,混合制勝就是要在對比敵手和己方各方面優勢劣勢的基礎之上,優先選擇政治、經濟、外交、輿論等能揚長避短的非軍事類工具和手段,以四兩撥千斤,追求“不戰”或“少戰”“小戰”而屈人之兵。只要深刻認識和准確把握未來混合戰爭的特點規律、運行機理,創造性地運用巧妙、高效的策略手法,完全能夠達到預期戰略效果。

中國原創軍事資源:http://www.81.cn/yw_208727/16393427.html

Chinese Military Higher Education During an Era of Intelligent Warfare

智慧戰爭時代的中國軍事高等教育

現代英語:

“Military academies were born and built for war”. At the opening ceremony of the 2019 military academy principals training camp, President Xi proposed a new era of military education policy, pointing out the direction for the military academies to cultivate high-quality, professional new military talents. At present, the form of war is accelerating towards informatization and intelligence. What kind of soldiers are needed to win future intelligent wars, and how military higher education can cultivate talents to adapt to intelligent wars are major issues before us.

The war form is accelerating towards intelligence

The form of war is a staged expression and state of war history that is mainly marked by the technical attributes of main battle weapons. So far, after experiencing cold weapon wars, hot weapon wars, and mechanized wars, war forms are accelerating their development towards information-based and intelligent wars. The increasingly widespread application of advanced technologies such as big data, the Internet of Things, artificial intelligence, biotechnology, and brain science in the military field is becoming an important driver of the new military revolution, giving birth to new unmanned, autonomous, and intelligent warfare forms, and changing the traditional The winning mechanism of war. In 2014, a foreign military think tank released a research report titled “War in the 20YY∶ Robot Era”, believing that a storm of military change marked by intelligent armies, autonomous equipment, and unmanned warfare is coming, and it will develop intelligent combat platforms, information systems and decision-making support systems, as well as new weapons such as directional energy, hypersonic speed, bionic, genetic, and nanometer By 2035, an intelligent combat system will be initially built, and by 2050, it will develop to an advanced stage, fully realizing intelligent or even unmanned combat platforms, information systems, and command and control. New weapons such as bionics, genes, and nanometers will enter the battlefield, and combat space will be further expanded. Expand to biological space, nanospatial space, and intelligent space.

In recent years, as people’s research on the human brain continues to deepen, brain-computer interface technology is becoming increasingly mature. In the future, the exchange of information between humans and the external world will no longer be limited to the senses. Direct information exchange between the brain and the outside world can also be achieved through chips. People and people, people and things are fully interconnected, and humans may transcend the Internet and the Internet of Things and enter the intelligent era supported by the Internet of Things. In the era of brain networking, soldiers’ brains are directly connected to combat platforms, information systems, and decision-making support systems. With the assistance of technologies such as quantum computing and cloud platforms, decisions will be made. The targets of attack will expand to human thoughts and actions, matter, energy, information and The mind is integrated. Some domestic experts believe that under the influence of artificial intelligence technology, the winning mechanism of future wars will shift from information-based warfare “information-led, system confrontation, precise strike, joint victory” to intelligent warfare “intelligent-led, autonomous confrontation, traceability Strike, cloud brain victory” transformation, following matter, energy, and information, cloud intelligence that integrates humans and machines becomes the key to determining the outcome of a war. The transformation of this “intelligent war form” is accelerating, and any hesitation may have unimaginable consequences.

However, it should be noted that man is always the most fundamental element, no matter how the war develops. The intelligent war form will promote changes in the functional role of military personnel, and will put forward higher requirements for military personnel’s ability quality. Cognitive ability may surpass knowledge and skills and become the core ability of military personnel.

Intelligent warfare requires military personnel to upgrade and reconstruct their comprehensive quality

According to the “talent growth cycle”, soldiers who are currently receiving higher education will become the main force in military combat training in more than 10 years, and will also become the first main force to meet the challenges of intelligent warfare. At present, our military’s higher education still has some shortcomings in the design of talent training goals. It does not pay enough attention to the ability to adapt to future changes in the intelligent battlefield. There is still a certain gap between talent training goals and the demand for intelligent warfare. On July 23, 2020, when President Xi inspected the Air Force Aviation University, he emphasized the need to adhere to cultivating people with moral integrity, educating people for war, strengthening military spirit education, strengthening the fighting spirit, and comprehensively laying a solid foundation for the ideological and political, military professional, scientific and cultural, and physical and psychological qualities of pilot students. Base. Implementing President Xi’s important instructions and benchmarking against the needs of future intelligent warfare, there is an urgent need to build a higher-level military talent training goal with thinking as the core, and accelerate the upgrading and reconstruction of the comprehensive quality of military personnel.

Intelligent warfare is a complex giant system that integrates multiple fields. Its intelligence-based characteristics and iterative and changeable development trends are changing the role of soldiers in war. Soldiers may gradually move from the front desk of the war to the backstage, from direct face-to-face combat to human-machine coordinated combat, and from front-line charging to back-end planning and design of the war. To be competent in functional roles such as human-machine collaboration, planning and designing wars, in addition to ideological, political and physical psychology requirements, in terms of military profession and science and culture, soldiers should focus on improving their knowledge and ability in the following five aspects: First, multi-disciplinary Integrate the knowledge structure, master the core principles of multiple intelligent war-related disciplines such as nature, military, cognitive psychology, and network intelligence, and be able to integrate knowledge across disciplines Guide military practice; the second is strong cognitive ability, with logical thinking, critical thinking, and systematic thinking abilities, and the ability to use scientific methods to analyze and infer combat problems; the third is human-machine collaboration ability, deeply grasp the characteristics and rules of intelligent warfare, and be proficient in operating Combat platforms, command and control systems, and decision-making support systems can control a variety of intelligent weapons and equipment to achieve efficient human-machine collaboration; fourth, innovative capabilities Have keen scientific and technological perception and strong creativity, and be able to grasp the forefront of science and technology, innovate combat styles, and master the laws of war development; fifth, self-growth ability, be able to accurately recognize oneself, reasonably plan military career, and freely use information means to acquire new knowledge, new technologies, new methods, constantly improve the knowledge structure, improve cognitive abilities, and better adapt to the complex and ever-changing development of military revolutions.

Find the focus of “paramilitary higher education reform”

At present, the superimposed advancement of informatization and intelligence has brought greater complexity to the talent training work of military academies. It is necessary to not only meet the needs of real-life information operations, but also lay the foundation for adapting to intelligent warfare. The following should be focused on Work.

Reconstructing the curriculum system. The curriculum system supports the formation of the talent knowledge structure. In order to “cultivate military talents that meet the needs of intelligent warfare and achieve the training goals of military major, science and culture, we should break the practice of designing curriculum systems with a single major as the background and establish a “general + direction” curriculum system”. General courses are based on existing natural science and public courses, adding courses such as mathematical logic, mathematical modeling, critical thinking, network basics, artificial intelligence, cognitive neuroscience, systems engineering, etc., and establishing a cross-field and cross-disciplinary horizontal course system, expand students’ knowledge, build the knowledge structure urgently needed for intelligent warfare, and lay a broad knowledge foundation for their lifelong growth. Direction courses are to establish a subject professional direction, set up a vertical course system of mathematical science, professional foundation, and professional positions, build a solid professional background, and cultivate students’ ability to use professional theories to solve complex combat training problems.“ The general knowledge +direction” curriculum system helps build a “T”-shaped knowledge structure to meet the needs of military talents to adapt to diverse and intelligent warfare.

Deepen classroom reform. Educational neuroscience believes that education is the reshaping of students’ brains, and classrooms are the main position for reshaping students’ neural networks. They play an irreplaceable role in the formation of high-level cognitive abilities required for intelligent warfare. Continuously deepening classroom reform is The current key task of military higher education. You have to see that a classroom with only knowledge understanding is far from a good classroom. All human behaviors, thoughts and emotions are controlled by the brain, and every knowledge, thought and emotion corresponds to the specific neural network of the brain. Therefore, classroom reform should focus on students’ learning and follow the cognitive laws of the human brain to attract and maintain attention as the starting point, establish a scientific thinking framework, and mobilize students to think proactively. Usually, the teaching method pointing to higher-order abilities has a general model —— problem-driven inspired teaching. Commonly used problem teaching methods, project teaching methods, and inquiry teaching methods all belong to this model. Therefore, the main way to promote classroom reform is to develop unknown, novel and questions and stories that students are interested in, design a thinking framework that points to logical reasoning, critical thinking, reflective ability, creative ability and learning ability, and inspire students to be guided by the framework. Actively think, supplemented by the output process of speaking and writing, and finally achieve the goal of internalizing knowledge understanding and forming high-level abilities.

Promoting comprehensive education. Modern educational theory not only regards the classroom as an important position in education, but also regards all time and space outside the classroom as an important resource for cultivating students. The time and space outside these classes not only support classroom teaching and promote the formation of intellectual abilities, but are also important places for cultivating non-intellectual abilities. Colleges and universities should make full use of these times and spaces, clarify specific training goals, and scientifically design education and training plans with a focus on going deep into the army, being close to actual combat, and highlighting practicality and creativity. Pay attention to giving full play to the management and education advantages of military academies, explore the establishment of student management models, and promote the cultivation of students’ leadership and management capabilities; continuously enrich the second classroom, build an innovation platform, create more independent practice opportunities, and enhance students’ innovative abilities; make full use of various large-scale activities, cultivate students’ competitive awareness and team collaboration capabilities; strengthen the construction of management cadre teams, improve scientific management and training capabilities, and be able to effectively guide students in time management and goal management Emotional management, psychological adjustment, habit development, etc., help students improve their self-management and independent learning abilities.

In short, education is a systematic project. The above are only three aspects that break through the shortcomings of talent training in the intelligent era. To truly solve the problem, military academies need to carry out systematic reforms in strategic planning, quality management, personnel quality, and teaching conditions. It can effectively support the achievement of talent training goals in all aspects, and this requires us to continue to explore and innovate, and continuously improve the level of running schools and educating people Efforts have been made to create a new situation in the construction and development of military academies.

(Author’s unit: Air Force Aviation University)

現代國語:

“軍隊院校因打仗而生、為打仗而建”。在2019年全軍院校長集訓開班式上,習主席提出新時代軍事教育方針,為全軍院校培養高素質、專業化新型軍事人才指明了方向。當前,戰爭形態正加速向信息化、智能化發展,打贏未來智能化戰爭需要什麼樣的軍人,軍事高等教育如何培養適應智能化戰爭的人才等,是擺在我們面前的重大課題。

戰爭形態加速向智能化發展

戰爭形態是以主戰兵器技術屬性為主要標志的、戰爭歷史階段性的表現形式和狀態。迄今為止,戰爭形態在經歷了冷兵器戰爭、熱兵器戰爭、機械化戰爭之後,正加速向信息化、智能化戰爭發展。大數據、物聯網、人工智能、生物技術、腦科學等先進科技在軍事領域日益廣泛的應用,正成為新軍事革命的重要推手,催生新的無人化、自主化、智能化戰爭形態,改變著傳統戰爭制勝機理。2014年,外軍智庫發布名為《20YY∶機器人時代的戰爭》的研究報告,認為以智能化軍隊、自主化裝備和無人化戰爭為標志的軍事變革風暴正在來臨,其將通過發展智能化作戰平台、信息系統與決策支持系統,以及定向能、高超聲速、仿生、基因、納米等新型武器,到2035年初步建成智能化作戰體系,到2050年將發展到高級階段,全面實現作戰平台、信息系統、指揮控制智能化甚至無人化,仿生、基因、納米等新型武器走上戰場,作戰空間進一步向生物空間、納米空間、智能空間拓展。

近年來,隨著人們對人腦研究的不斷深入,腦機接口技術正日趨成熟,未來人類與外部世界的信息交換將不再局限於感官,還可以通過芯片實現大腦與外界直接的信息交流,人與人、人與物充分互聯互通,人類或將超越互聯網、物聯網,進入腦聯網支持的智能時代。腦聯網時代,軍人的大腦與作戰平台、信息系統、決策支持系統直接相聯,在量子計算和雲平台等技術輔助下開展決策,打擊的對象將拓展到人的思想和行動,物質、能量、信息與心智融為一體。國內有專家認為,在人工智能技術的作用下,未來戰爭的制勝機理將由信息化戰爭的“信息主導、體系對抗、精確打擊、聯合制勝”,向智能化戰爭的“智能主導、自主對抗、溯源打擊、雲腦制勝”轉變,繼物質、能量、信息之後,人機融合的雲智能成為決定戰爭勝負的關鍵。這一智能化戰爭形態的轉變正在加速到來,任何遲疑都可能帶來難以想象的後果。

但應該看到,無論戰爭如何發展,人始終是最根本的要素。智能化戰爭形態將促使軍人的職能作用發生變化,對軍人的能力素質將提出更高的要求,認知能力或將超越知識、技能成為軍人的核心能力。

智能化戰爭要求軍人綜合素質升級重構

根據人才成長周期,目前正在接受高等教育的軍人,10多年後將成為部隊作戰訓練主體力量,也將成為迎接智能化戰爭挑戰的第一批主力軍。當前,我軍高等教育在人才培養目標設計上尚存在一些不足,對適應未來多變的智能化戰場能力關注不夠,人才培養目標與智能化戰爭需求還有一定差距。2020年7月23日,習主席視察空軍航空大學時,強調要堅持立德樹人、為戰育人,加強軍魂教育,強化戰斗精神,全面打牢飛行學員思想政治、軍事專業、科學文化、身體心理等素質基礎。貫徹習主席重要指示,對標未來智能化戰爭需求,迫切需要構建以思維力為核心的更加高階的軍事人才培養目標,加快軍人綜合素質升級重構。

智能化戰爭是整合多個領域的復雜巨系統,其智力為本的特點和迭代多變的發展趨勢,正在改變軍人在戰爭中的角色。軍人或將逐步由戰爭前台走向幕後,由直接面對面作戰轉變為人機協同作戰,由前線沖鋒陷陣轉變為後端籌劃設計戰爭。要勝任人機協同、籌劃設計戰爭等職能作用,除思想政治和身體心理必須達到要求外,在軍事專業和科學文化方面,軍人應重點提升以下五個方面的知識能力素質:一是多學科融合的知識結構,掌握自然、軍事、認知心理、網絡智能等多個智能化戰爭相關學科領域的核心原理,能夠跨學科整合知識,指導軍事實踐;二是強大的認知能力,具有邏輯思維、審辨思維、系統思維能力,能夠運用科學方法分析推理解決作戰問題;三是人機協作能力,深刻把握智能化戰爭特點規律,熟練運用作戰平台、指揮控制系統、決策支持系統,能夠操控多樣化智能武器裝備,實現人機高效協同;四是創新能力,具有敏銳的科技感知力和強大的創造力,能夠把握科技前沿,創新作戰樣式,掌握戰爭發展規律;五是自我成長能力,能夠准確認知自我,合理規劃軍事職業生涯,自如運用信息手段獲取新知識、新技術、新方法,不斷完善知識結構,提升認知能力,較好地適應復雜多變的軍事革命發展。

找准軍事高等教育改革著力點

當前,信息化與智能化的疊加推進,給軍隊院校人才培養工作帶來更大復雜性,既要滿足現實的信息化作戰需要,同時又要為適應智能化戰爭奠定基礎,應著重抓好以下幾項工作。

重構課程體系。課程體系支撐著人才知識結構的形成。為培養滿足智能化戰爭需要的軍事人才,達成軍事專業、科學文化兩個方面的培養目標,應打破以單一專業為背景設計課程體系的做法,建立“通識+方向”的課程體系。通識課程是在現有自然科學和公共類課程基礎上,增加數理邏輯、數學建模、批判性思維、網絡基礎、人工智能、認知神經科學、系統工程等課程,建立跨領域跨學科的橫向課程體系,拓展學員的知識面,搭建智能化戰爭急需的知識結構,為其終身成長奠定廣博的知識基礎。方向課程是確立一個學科專業方向,設置數理科學、專業基礎、專業崗位的縱向課程體系,構建厚實的專業背景,培養學員運用專業理論解決復雜作戰訓練問題的能力。“通識+方向”的課程體系,有助於構建“T”形知識結構,滿足軍事人才適應多樣多變智能化戰爭的需要。

深化課堂改革。教育神經科學認為,教育是對學生大腦的重塑,而課堂是重塑學生神經網絡的主陣地,特別對於智能化戰爭所需要的高階認知能力形成具有不可替代的作用,持續深化課堂改革是軍事高等教育當前的關鍵任務。要看到,只有知識理解的課堂遠遠不是一個好課堂。人的一切行為、思想和情感全部由大腦控制,每個知識、思維和情緒都與大腦的特定神經網絡相對應,因此,課堂改革要以學生的學習為中心,遵循人腦的認知規律,以吸引和保持注意力為起點,建立科學的思維框架,調動學員主動思考。通常,指向高階能力的教學方法具有一個通用模式——問題驅動的啟發式教學,常用的問題式教學法、項目式教學法、探究式教學法都屬於這一模式。所以,推進課堂改革的主要路徑是開發未知、新奇和學生感興趣的問題和故事,設計指向邏輯推理、審辨思維、反思能力、創造能力以及學習能力的思維框架,啟發學員在框架的指引下主動思考,再輔以講出來、寫出來的輸出過程,最後達成知識理解內化和高階能力形成的目標。

推動全面育人。現代教育理論不僅把課堂作為教育的重要陣地,還把課堂之外的所有時間和空間都視作培養學生的重要資源。這些課堂以外的時間和空間不僅支撐課堂教學、促進知識能力形成,還是培育非智力能力的重要場所。院校應充分利用這些時間和空間,明確具體的培養目標,以深入部隊、貼近實戰、突出實踐性和創造性為重點,科學設計教育訓練計劃。注重發揮軍隊院校管理育人優勢,探索建立學員管理模式,促進學員領導管理能力的培養;不斷豐富第二課堂,搭建創新平台,創造更多自主實踐機會,提升學員的創新能力;充分利用各種大型活動,培養學員競爭意識和團隊協作能力;加強管理干部隊伍建設,提高科學管訓能力,能夠有效輔導學員開展時間管理、目標管理、情緒管理、心理調節、習慣養成等,幫助學員提升自我管理和自主學習能力。

總而言之,教育是一個系統工程,以上僅是突破智能化時代人才培養短板的三個方面,真正解決問題還需要軍隊院校進行系統化改革,在戰略規劃、質量管理、人員素質、教學條件等諸方面都能夠有效支撐人才培養目標的達成,而這需要我們持續不斷地探索與創新,不斷提高辦學育人水平,努力開創軍事院校建設發展新局面。

(作者單位:空軍航空大學)

來源:解放軍報 作者:唐維忠 責任編輯:王鳳 2021-05-13 10:24:xx

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/jsyxgfs/4885203888.html?big=fan

United States Continuing Promoting Use of Artificial Intelligence During Combat Operations

美國繼續推動在作戰行動中使用人工智慧

現代英語:

The US military is accelerating the application of artificial intelligence technology in actual combat.

According to foreign media reports, the US Department of Defense recently released a strategic planning document on artificial intelligence technology to strengthen top-level design and promote the rapid development of related technologies. At the same time, the US military has also continued to strengthen its combat use of artificial intelligence technology.

Release of strategic planning documents

Recently, U.S. Deputy Secretary of Defense Hicks signed the strategic document “Responsible Artificial Intelligence Strategy and Implementation Approach”, which clarified the basic principles and main framework for the U.S. Department of Defense to implement the artificial intelligence strategy. The main contents include the following two aspects.

Sort out the “demand side”. First, adjust the management structure and process, and continue to follow up on the development of artificial intelligence technology in the Ministry of National Defense. Second, pay attention to the research and development and procurement of artificial intelligence products, and adjust the speed of artificial intelligence technology development in a timely manner. Third, use the demand verification procedure to ensure that artificial intelligence capabilities are consistent with operational requirements.

Optimize the “R&D end”. First, create a trustworthy AI system and AI-enabled system. Second, promote a common understanding of the concept of “responsible AI” through domestic and international cooperation. Third, improve the theoretical and operational level of AI-related personnel in the Ministry of National Defense.

In addition to the military’s strategic planning report, American think tanks have recently made recommendations on the cooperation between the United States and its allies in the application of artificial intelligence technology. The Center for Security and Emerging Technologies at Georgetown University in the United States released a report stating that the U.S. government, universities, research institutions and the private sector should promote artificial intelligence technology research cooperation with Australia, India and Japan in various ways to achieve an open, accessible and secure technology ecosystem and improve the performance of relevant U.S. military weapons and equipment.

Accelerate the pace of technology application

In addition to formulating a “roadmap” for the development of artificial intelligence technology in top-level design, the US military has also taken a number of measures recently to try to apply relevant mature technologies to military practice.

From the perspective of military construction, the Army’s “Integration Plan”, the Navy’s “Winning Plan” and the Air Force’s “Advanced Combat Management System” are the three major artificial intelligence programs of the US military. All three programs are being promoted simultaneously. Recently, the US Army Contracting Command awarded a US military contractor Engineering and Computer Simulation a contract totaling $63.28 million to design and develop new artificial intelligence algorithms. Kitchener, commander of the US Navy’s surface forces, said that the US Navy’s surface forces will focus on integrating capabilities such as artificial intelligence and machine learning in the near future to significantly enhance their combat advantages. The US Air Force recently successfully demonstrated an artificial intelligence algorithm called Artuu, which can automatically manipulate U-2 reconnaissance aircraft to search for enemy missile launchers and generate real-time combat maps of cross-domain threats.

From the perspective of combat power generation, the U.S. military is accelerating the application of artificial intelligence technology in actual combat. The U.S. National Interest bimonthly website recently published an article saying that the U.S. Navy and Air Force are developing a new generation of training systems to help their fighters better deal with new air threats. This intelligent technology, called the “P5 Combat Training System,” can help U.S. military pilots conduct virtual training in high-threat, high-confrontation combat scenarios.

The Defense Advanced Research Projects Agency (DARPA) is busy verifying an “autonomous cyber attack system based on artificial intelligence chips”. It is reported that the system can generate a set of attack codes every 24 hours and dynamically adjust the attack program according to the real-time network environment. Since the attack code is newly generated, it is difficult for antivirus systems that rely on existing virus libraries and behavior recognition to identify it, and the code is highly concealed and destructive. The Defense Advanced Research Projects Agency (DARPA) believes that the system has extremely high application potential and can help the US military gain technological advantages in future cyber operations.

Triggering a cutting-edge military competition

Overall, the US military has been active in the development of artificial intelligence recently, and related developments may trigger a new round of global cutting-edge military competition.

On the one hand, the US military is promoting the idea of ​​”everything can be intelligent” internally. The US military claims that fighter jets, tanks, ground control stations and surface ships can not only serve as entities with combat capabilities, but also as nodes for monitoring battlefields and obtaining war information. To achieve this goal, artificial intelligence will play an irreplaceable role. Combined with the US military’s strategic planning documents, it is not difficult to see that in order to create more nodes, the US military will give full play to the enabling role of artificial intelligence in the next step to help various weapon platforms find and strike targets faster.

On the other hand, it will have an external impact on the global military development pattern. The US military and its allies are vigorously promoting the development of artificial intelligence technology, mainly to use these advanced technologies to suppress rival countries, and the backlash effect of related practices may be immediate. At present, many countries in the world are vigorously developing related technologies. It can be foreseen that with the rapid development and support of technologies such as artificial intelligence, the future battlefield will accelerate the transition to an intelligent and unmanned battlefield. Cross-domain collaborative operations such as land, sea, air, space, and the Internet will become the main combat style of future wars, driving the development and application of equipment technology, and promoting major changes in the global military development pattern.

現代國語:

據外媒報道,近期,美國國防部發布人工智能技術戰略規劃文件,強化頂層設計,推動相關技術快速發展。與此同時,美軍也持續加強對人工智能技術的作戰運用。

出台戰略規劃文件

近期,美國防部常務副部長希克斯簽署《負責任的人工智能戰略和實施途徑》戰略文件,明確美國防部實施人工智能戰略的基本原則和主體框架,主要內容包括以下兩個方面。

理順“需求端”。一是調整管理結構和流程,持續跟進國防部人工智能技術發展。二是關注人工智能產品的研發和采購,適時調整人工智能技術開發速度。三是使用需求驗證程序,確保人工智能能力與作戰需求保持一致。

優化“研發端”。一是創建可信的人工智能系統和人工智能賦能系統。二是通過國內、國際合作,促進對“負責任的人工智能”概念的共同理解。三是提高國防部人工智能相關人員的理論和操作水平。

除軍方的戰略規劃報告外,近期,美國智庫也對美國與盟友的人工智能技術應用合作提出建議。美國喬治城大學安全和新興技術中心發布報告稱,美國政府、大學、研究機構和私營部門應通過多種方式,促進與澳大利亞、印度和日本3國的人工智能技術研究合作,以實現開放、可訪問和安全的技術生態系統,提升美軍相關武器裝備性能。

加快技術應用步伐

除在頂層設計上為人工智能技術發展制定“路線圖”外,美軍近期還多措並舉,試圖將相關成熟技術運用於軍事實踐。

從軍種建設層面看,陸軍的“融合計劃”、海軍的“制勝計劃”和空軍的“先進作戰管理系統”是美軍當前三大人工智能計劃。三大計劃均在同步推進。近期,美陸軍合同司令部授予美軍事承包商工程與計算機模擬公司一份總金額6328萬美元的合同,以設計和開發新的人工智能算法。美海軍水面部隊指揮官基奇納表示,美海軍水面部隊近期將重點整合人工智能與機器學習等能力,以大幅提升作戰優勢。美空軍近期成功演示了一種名為Artuu的人工智能算法,能自動操縱U-2偵察機尋找敵方的導彈發射器,生成跨域威脅實時作戰圖。

從戰力生成層面看,美軍正在加速人工智能技術在實戰方面的應用。美國《國家利益》雙月刊網站近日刊文稱,美海軍和空軍正在研發新一代訓練系統,幫助其戰斗機更好地應對新的空中威脅。這種名為“P5作戰訓練系統”的智能技術,可幫助美軍飛行員進行高威脅、高對抗作戰場景下的虛擬訓練。

美國防高級研究計劃局則在忙於驗證一款“基於人工智能芯片的自主網絡攻擊系統”。據悉,該系統每24小時可生成一套攻擊代碼,並能根據網絡實時環境,對攻擊程序進行動態調整。由於攻擊代碼是全新生成的,因此,依托現有病毒庫和行為識別的防病毒系統難以識別,代碼的隱蔽性和破壞性強。美國防高級研究計劃局認為,該系統具有極高的應用潛力,能夠在未來的網絡作戰中幫助美軍獲得技術優勢。

引發前沿軍事競賽

總體來看,近期美軍在人工智能建設方面動作頻頻。相關動向或將引發新一輪全球前沿軍事競賽。

一方面,對內推動“萬物皆可智能”。美軍宣稱,無論是戰斗機、坦克、地面控制站還是水面艦船,不僅可作為一個具有作戰能力的實體,還可作為一個監視戰場和獲取戰爭信息的節點。要實現這個目標,人工智能將發揮不可替代的作用。結合美軍戰略規劃文件不難看出,為打造更多節點,美軍下一步將充分發揮人工智能的賦能作用,助力各類武器平台更快地發現和打擊目標。

另一方面,對外影響全球軍事發展格局。美軍及其盟友大力推動人工智能技術發展的做法,主要目的是利用這些先進技術打壓對手國家,相關做法的反噬效應或將立竿見影。目前,世界多國都在大力發展相關技術。可以預見,在人工智能等技術的快速發展和支撐下,未來戰場將加速向智能化、無人化戰場過渡,陸、海、空、天、網等跨域協同作戰,將成為未來戰爭的主要作戰樣式,牽引裝備技術發展和運用轉化,推動全球軍事發展格局發生重大變化。

來源:中國軍網-中國國防報 作者:傅 波 責任編輯:尚曉敏

中國原創軍事資源:http://www.81.cn/wj_208604/10169848888.html

Chinese Military Laws Necessary for Winning Intelligent Warfare

中國軍事法規是贏得智慧化戰爭的必要條件

現代英語:

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12

現代國語:

认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。

●战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。

习主席指出,要认真研究军事、研究战争、研究打仗,把握现代战争规律和战争指导规律。今天,战争的智能化特征日益凸显,智能化战争已经展现出早期形态的样貌。要想掌握未来智能化战争主动权,就应积极跟踪现代战争发展,紧贴现实军事斗争准备,前瞻认识智能化战争规律,深刻把握其指导规律,着力回答“是什么”、解决 “怎么做”等问题,不断创新战争和战略指导。

回答“是什么”,前瞻认识智能化战争规律

毛泽东同志指出:“战争的规律——这是任何指导战争的人不能不研究和不能不解决的问题。”今天,在智能化战争初显端倪之际,应前瞻认识智能化战争“是什么”,否则就不能解决“怎么做”,更不可能驾驭未来战争。

智能化战争规律是战争知行体系的重建。智能化战争规律,和冷兵器战争、热兵器战争、机械化战争、信息化战争的规律一样,是战争诸要素间内在的、本质的联系,不同之处在于它有新质的要素和新的要素间的构成模式,本质上是基于智能化革命所引发的战争知行体系的重建。今天,认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。掌握这些规律,就能克服未来战争中的纷乱和不确定性,从中找出条理和确定性,这是应对智能化战争的客观要求。

智能化战争规律是战争指导规律的依据。毛泽东在《中国革命战争的战略问题》中,首先分析了中国革命战争的特点,揭示了战争规律,然后“由此产生我们的战略战术”,即战争指导规律;在《论持久战》中,他首先说明了“是什么”,再转到研究“怎么做”的问题上,体现了一种认识过程的逻辑顺序。今天,研究智能化战争仍应遵循这一顺序,既不能本末倒置,颠倒顺序;也不能增加、减少或更换环节。要在掌握智能自主这一根本规律的基础上,揭示自主感知、自主规划、自主实施、自主联动、自主评估等战争指导规律。

不懂得智能化战争规律,就不能指导战争。《孙膑兵法》指出:“知道,胜”“不知道,不胜”。道是战争规律,掌握它、行动符合它,就能取胜;反之,则败。毛泽东也强调:“不知道战争的规律,就不知道如何指导战争,就不能打胜仗。”同样,掌握智能化战争规律,是正确指导智能化战争的前提。否则,就难免要被智能化战争的表面现象所迷惑。今天,要通过分析智能化技术群对战争的基础性、长远性和颠覆性影响,研究智能化战争是个什么样子?有哪些规律?应该怎么打?这些都是智能化战争指导必须回答的重大课题。

解决“怎么做”,揭示掌握智能化战争指导规律

智能化战争指导规律是运用智能化战争规律指导实践的中介,起到“桥”和“船”的作用。应在回答“是什么”的基础上解决“怎么做”的问题,提出智能化战争的“游泳术”。

智能化战争指导规律是运用战争规律的规律。认识战争规律的目的在于应用。马克思指出:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”同样,智能化战争本身迫使指挥员不发现规律则已,一旦发现,就会结合能动性,利用规律为打赢战争服务,这就必然导致智能化战争指导规律的产生。今天,战争是政治的继续仍是智能化战争规律,由此得出智能化战争必须服从服务于政治的指导规律;兵民是胜利之本仍是智能化战争规律,由此得出最广泛地动员民众的指导规律,等等。这些智能化战争指导规律是战争规律派生出来的,是“智能化战争大海中的游泳术”。

充分发挥人在智能化战争中的能动作用。恩格斯说过:“赢得战斗胜利的是人而不是枪。”智能化战争指导规律是实践规律、使用规律。它不是对智能化战争规律的简单“移用”“照搬”,而是加上人的主观能动性,才能转化为战争指导规律。今天,掌握人工智能的军事人才,不仅是智能化武器的操控者,更是人工智能的创造者。人在智能化人机系统中仍处于主体地位,是智能化战争胜负的决定性因素。指挥员应在掌握智能化战争规律的基础上,充分发挥能动性,坚持“技术+谋略”的作战理论生成模式,才能由回答“是什么”向解决“怎么做”转变。

智能化战争指导规律是不断发展的。战争是一条“变色龙”。智能化战争本身也会经历萌芽、发展、成熟等不同阶段,这就必然带来智能化战争指导规律的发展。战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。要紧跟战争形态向智能化加速迈进的历史进程,把握智能化战争发展方向和时代脉搏,把对智能化战争指导规律的研究推向新境界,在未来战场占据战略主动和先机。

紧盯“主动权”,不断创新智能化战争和战略指导

兵无常势,水无常形。在智能化战争已然来临之际,要在遵循智能化战争规律和指导规律的基础上,紧贴现实军事斗争准备,加强对手研究、敌情研究,主动设计“在什么时间”“在什么地点”“和谁打仗”,创新战争和战略指导,牢牢掌握未来战争的战略主动权。

你打你的,我打我的。战争指导艺术的最高境界,就是你打你的、我打我的。“各打各的”要求指挥员在未来智能化战争中,无论处于怎样复杂、困难的环境,首先要立足自身实际,独立自主地使用自己的力量。特别是拥有高技术装备之敌,可能造成暂时的局部的敌之主动、我之被动的局面,这时要通过政治、经济、外交等综合手段,以总体有利态势弥补武器上的劣势,迅速扭转这一局面,恢复主动地位。如果被战略对手牵着鼻子走,就可能吃大亏。

把握时机,因时用兵。《六韬》指出:“用之在于机。”若米尼强调:“全部战争艺术就在于善于待机而动。”一方面,时不至,不可强动。要持重时机,时机未到,应有极大耐心,防止战略盲动。另一方面,时不再来,机不可失。要善于把握时机,一旦遇上有利时机,就要坚决利用,防止畏首畏尾。需要指出的是,要辩证地看待时机成熟问题。未来智能化战争瞬息万变,要求快速决策,而面对不确定性因素,又必须慎重决策。有时及早定下决心,比明天下达更完善的决心也许更有效。因此,要敢于冒一点风险,不然则会坐视成功机会的丧失。

各域有别,因地运筹。克劳塞维茨指出:“战争不像长满庄稼的田地,而像长满大树的土地。收割庄稼时不需要考虑每棵庄稼的形状,收割得好坏取决于镰刀的好坏;而用斧头砍伐大树时,就必须注意到每棵大树的形状和方向。”战略空间不同,战争就不同,战争指导也不一样。当前,战场空间不断由陆海空等传统空间向太空、网络等新型空间拓展,战争指导者应根据多域性、立体性、网络性等特点,探索新的智能化战争规律和指导规律。

瞄准对手,因敌制胜。《孙子兵法》指出:“践墨随敌,以决战事。”约米尼也说过:“不管是谁,如果不了解敌人,怎能知道自己应该如何行动呢?”着眼未来,聪明的战略家应根据轻重、缓急程度,把作战对象区分为主要作战对象和一般作战对象、现实作战对象和潜在作战对象,全面客观地了解不同作战对象的战略意图、兵力部署、作战构想等,提出能充分发挥己方战力优长的新的智能化战争指导规律,实施正确的战争行动。

总之,智能化战争规律是认识过程中的规律,解决“是什么”;指导规律是实践过程中的规律,解决“怎么做”。二者辩证统一,不可分割,构成了认识和指导智能化战争的完整链条。“战胜不复,而应形于无穷。”今天,战争和战略指导者应基于客观情况,深入探索和灵活运用智能化战争规律和战争指导规律,与时俱进创新战争和战略指导。

(作者单位:军事科学院战争研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f8888

Chinese Military Review of the Strategic Game Among Major Powers Within Context of Military Intelligence

軍事情報視野下的大國戰略博弈-中國軍事評論

現代英語:

In today’s world, the new military revolution has entered a critical qualitative change stage. Intelligent warfare with ubiquitous intelligence, interconnectedness, human-machine integration, and full-domain collaboration is accelerating. In order to consolidate its position as the world’s hegemon, the United States actively promotes the third “offset strategy” to “change the future war situation”, formulates an artificial intelligence development strategy, accelerates the actual combat testing and exercises of artificial intelligence, and regards intelligent technology as the core of a “disruptive technology group” that can change the “rules of the game”. Military powers such as Russia, Britain, and Israel are unwilling to lag behind and are also stepping up to improve their respective strategic layouts in the field of artificial intelligence. As competition among major powers intensifies, military intelligence will become the new commanding heights of the arms race.

    【Key words】military conflict, artificial intelligence strategy, AI war 【Chinese Library Classification Number】D81 【Document Identification Code】A

    In 2017, Master, known as the evolved version of “AlphaGo”, swept the top Go players on the online Go platform and won 60 consecutive games; in 2019, in the StarCraft II man-machine competition, two top human players were defeated with a score of 1:10; in 2020, in the “Alpha” air combat competition held by the Defense Advanced Research Projects Agency of the United States Department of Defense, the F-16 piloted by the US military ace pilot was completely defeated by the artificial intelligence fighter with a score of 0:5. These events show that the era of artificial intelligence that humans both look forward to and fear has quietly arrived.

    Engels said, “Once technological advances can be used for military purposes and have been used for military purposes, they will immediately and almost forcibly, and often against the will of the commander, cause reforms or even changes in the way of warfare.” At present, the militarized application of artificial intelligence has caused “the winning mechanism of war to undergo an unprecedented transformation, and the center of gravity of combat power generation is undergoing a historic shift.” A new round of scientific and technological revolution, industrial revolution and military revolution provides support for the intelligent era of “controlling energy with intelligence.”

    Military artificial intelligence demonstrates its powerful power in modern warfare

    The drive of the arms race among the major powers is triggering a chain of changes in the military field. In recent years, the world situation has been in a turbulent period, which has triggered a series of geopolitical crises. The concept of “hybrid warfare” has entered the war stage, and military artificial intelligence has entered a new stage of development. The rapid development and comprehensive integration of technologies such as artificial intelligence, big data, cloud computing, and reconnaissance and strike drones have demonstrated their powerful power in modern warfare. Whether it is the physical domain of firepower strikes, the interest domain of economic sanctions, or the cognitive domain of public opinion and psychological control, it makes people deeply feel that military artificial intelligence is becoming popular.

    Assassinating senior Iranian officials, AI becomes a “killing tool” for the US military. On January 3, 2020, then-US President Trump ordered the US military to launch an airstrike on Baghdad International Airport in Iraq without the consent of the US Congress. This airstrike directly killed Iranian senior official Soleimani. Soleimani is the top commander of the “Quds Brigade” of the Iranian Revolutionary Guard. Why was he successfully assassinated by the United States in the capital of Iraq? It is reported that the “Reaper” drone carried out this mission, which “targeted and eliminated” Soleimani by projecting “Hellfire” missiles. The operation was very secretive and could not be detected by radar. Even the US spy satellites did not know the location of the “Reaper” at the time. It should be emphasized that the assassination of Soleimani was an illegal and brutal act of the United States using terrorist means, “one of the war crimes committed by the United States by abusing force”, and its so-called “rules-based international order” is a pure whitewash, and its essence is a true manifestation of hegemony.

    In the Israeli-Palestinian conflict, Israel launched the “first AI war”. In May 2021, Israel launched “Operation Rampart” against Hamas. During the 11-day battle in the Gaza Strip, Israel relied on advanced information collection technology, analytical algorithms and AI-led decision support systems to quickly and effectively select attack targets and use the most appropriate ammunition as needed. Through hundreds of intensive and precise strikes from multiple combat platforms, it paralyzed Hamas and the Palestinian Islamic Jihad Organization’s rocket positions, rocket manufacturing plants, ammunition depots, military intelligence agencies, senior commanders’ residences and other key facilities, destroyed several autonomous GPS-guided submarines of the Hamas Maritime Commando, and killed Bassem Issa and other Hamas senior commanders and senior agents.

    It has been disclosed that the artificial intelligence system used in the war is an algorithm system developed by an elite team code-named 8200. The three systems “Alchemist”, “Gospel” and “Deep Wisdom” hatched by the team were all used in this military operation. The “Alchemist” system can analyze the enemy’s attempt to launch an attack and provide real-time warnings through the communication device carried by individual soldiers. The information fed back by the soldiers will also be collected again and evaluated for the next attack; the “Gospel” system can generate target strike suggestions and mark target information in real time. Commanders can flexibly select important targets and implement strikes based on battlefield conditions; the “Deep Wisdom” system can accurately draw a map of the tunnel network of Hamas armed organizations in the Gaza Strip through intelligence collection and big data fusion such as signal intelligence, visual intelligence, personnel intelligence, and geographic intelligence, forming a situation map that fully reflects the conflict area scenario. The use of these technologies has greatly enhanced the Israeli army’s battlefield situation awareness capabilities. A senior intelligence official of the Israel Defense Forces said that this is “the first time that AI has become a key component and combat power amplifier in fighting the enemy.” The Israeli military believes that the use of AI has brought “super cognitive ability” and even directly calls it “the first artificial intelligence war.”

    In order to seize the technological commanding heights, countries are stepping up their strategic layout of military intelligence

    Artificial intelligence is regarded as a key strategic technology in the Fourth Industrial Revolution. In order to gain the upper hand in the new round of disruptive technology competition, the world’s military and technological powers, led by the United States, have stepped up their strategic layout around military intelligence, and are working intensively and spare no effort.

    The United States attempts to rely on artificial intelligence to maintain its military hegemony. Since 2016, the U.S. Department of Defense has successively issued documents such as “Preparing for the Future of Artificial Intelligence”, “National Artificial Intelligence Research and Development Strategic Plan”, and “Department of Defense Artificial Intelligence Strategy”, which have elevated the development of artificial intelligence to the national strategic level. In order to establish its own “rules of war”, the Pentagon has successively formulated artificial intelligence technology research and development plans, key project concepts, and technical standards and specifications, and focused on building a research and development production and combat application system. In summary, the U.S. military’s layout for the future development of artificial intelligence can be roughly divided into three stages: near, medium, and long. In the first stage, before 2025, with unmanned, stealth, and remote combat platforms as the development focus, a “global surveillance and strike system” will be built, and unmanned systems will become the main means of military intervention by the U.S. military. In the second stage, before 2035, with intelligent combat platforms, information systems, and command and decision-making systems as the development focus, an intelligent combat system will be initially established, and unmanned systems will surpass manned systems and occupy a dominant position in combat. The third stage, before 2050, will focus on the development of technologies such as strong artificial intelligence, nanorobots, and brain networking, fully realize the intelligence of combat platforms, information systems, and command and control, promote the expansion of combat space to biospace, nanospace, and intelligent space, and strive to seek the intelligent combat system to enter the advanced stage.

    The various branches of the U.S. military have also launched and continuously updated their artificial intelligence development plans. The ground unmanned autonomous system has the “U.S. Ground Unmanned System Roadmap” and the “U.S. Robot Development Roadmap”, etc., and plans to achieve intelligent formations and coordinated actions of manned and unmanned by 2030, and realize the mobility of synthetic forces by 2040. The aerial unmanned autonomous system has a special drone development plan, and the long-term goal is to form a complete aerial unmanned equipment system covering high, medium and low altitudes, large, medium, small and micro, ordinary and long flight time. The maritime unmanned autonomous system is divided into two directions. One is to create a new underwater combat system, using multiple unmanned submarines to form a mobile integrated reconnaissance, detection, and strike network, and form an “advanced underwater unmanned fleet”; the other is to accelerate the development of surface unmanned ships and make breakthroughs in the “human-machine cooperation” of surface unmanned ships. In addition, the U.S. Department of Defense has also established partnerships with industry, academia and allies to ensure access to the most advanced artificial intelligence technology support.

    Russia has also put forward its own strategic plan in the field of artificial intelligence. In recent years, Russian President Vladimir Putin has attached great importance to the development of artificial intelligence. He proposed that artificial intelligence is the future for both Russia and all mankind. Whoever becomes a leader in this field will stand out and gain a huge competitive advantage. Artificial intelligence is related to the future of the country. Russian Chief of General Staff Gerasimov said that the Russian army is “developing non-nuclear strategic deterrence forces” through artificial intelligence equipment. Russian Defense Minister Sergei Shoigu said that the Russian army is stepping up the research and development and deployment of military robots, and combat robots will be put into mass production.

    As early as November 2014, Russia adopted a plan to develop combat robots by 2025, proposing that robot systems will account for 30% of the entire weapons and military technology system by 2025. In December 2015, Putin signed a presidential decree to “establish a national robotics technology development center”, providing institutional support for the development of artificial intelligence from a strategic level. In recent years, Russia has successively issued strategic plans such as “Future Russian Military Robot Application Concept”, “National Artificial Intelligence Development Strategy by 2030”, and “Russian Federation Defense Plan 2021-2025”, carried out war games in various complex combat environments, studied the impact of artificial intelligence on various levels such as strategy, campaign and tactics, and strived to build a multi-level and multi-dimensional unmanned intelligent combat system that is interconnected.

    From the perspective of medium- and long-term goals, attacking unmanned equipment is the focus of Russia’s development. In 2019, Russian President Vladimir Putin proposed at the Russian Federation Security Conference that in the next 10 years, the Russian army will vigorously develop combat robot systems that can perform tasks on the battlefield. The short-term goal is to build a multifunctional combat robot force with certain autonomous control capabilities by 2025. According to information, the force will be composed of 5 types of robots, each of which can be independently divided into combat units and can basically complete battlefield combat tasks without or with very little human intervention. At present, the Russian army has started the experimental design work of the heavy and light robot “assault” and “comrade” systems. Some experts analyzed that the combat robot force may become an independent and brand-new branch of the Russian army.

    The United States is wooing its allies to prepare for AI wars, and the AI ​​arms race is intensifying. In recent years, in order to maintain its absolute leading position in the field of artificial intelligence, the United States has stepped up its own AI militarization construction while trying to win over its allies to jointly develop a joint operation AI system in the name of serving the alliance combat system. According to the U.S. “Defense News” website, in September 2020, the U.S. Joint Artificial Intelligence Center has launched the “Defense Partnership Program”, which covers the United Kingdom, France, Israel, Japan, South Korea, Australia, Canada, Finland, Norway, Sweden and other countries. It aims to develop an AI system that is interconnected with the above-mentioned allies and lay the foundation for joint operations in intelligent warfare. It is reported that relevant defense representatives of the United States and its allies have held several meetings around this plan. The United States also claimed that this defense cooperation will “open the door” to more interested U.S. allies.

    The United States’s push will undoubtedly intensify the AI ​​arms race among the world’s major military powers. Among the United States’ many allies, Israel’s AI level is the best. Israel is the world’s largest exporter of military drones; it has the world’s first controllable autonomous unmanned vehicle, the Guardian, which has been equipped to the troops; it is the only country in the world, except the United States, equipped with unmanned surface vessels, and has many types of unmanned surface vessels such as the Protector, Stingray, and Seagull.

    Other major countries are also stepping up their layout in the field of artificial intelligence. The United Kingdom has formulated an artificial intelligence development path of “universities as the source, military-civilian integration”, and issued the “National Artificial Intelligence Strategy” and the “Robots and Artificial Intelligence” strategic plan. France has formulated the “French Artificial Intelligence Strategy” and the “French Artificial Intelligence Plan”. Since 2018, it has increased its defense budget year by year and continuously increased investment in the research and development of artificial intelligence weapons. Germany has the world’s largest artificial intelligence research center. In 2018, it issued the “Artificial Intelligence Strategy” and planned to create an “Artificial Intelligence Made in Germany” brand by 2025. Japan has successively issued the “Artificial Intelligence Strategy”, “New Robot Strategy” and “Comprehensive Science and Technology Innovation Strategy”, and established the “Innovative Intelligence Comprehensive Research Center” to focus on the development of artificial intelligence-related technologies. In January 2021, the Australian Department of Defense issued the “Fighting the Artificial Intelligence War: Operational Concepts for Future Intelligent Warfare”. This document focuses on how to apply artificial intelligence to land, sea and air combat.

    As some experts have said, “Intelligent technology is a double-edged sword. While it promotes the evolution of warfare to intelligent warfare, it also brings about a series of new war ethics issues and dilemmas in the law of war.” What changes will artificial intelligence bring to human society? This issue deserves in-depth thinking and continued attention.

    (The author is the director of the News Research Department of Guangming Daily)

    【References】

    ①Wu Mingxi: Intelligent Warfare—AI Military Vision, Beijing: National Defense Industry Press, January 2020.

    ②Guo Ming: “Basic Understanding of Intelligent Warfare”, “People’s Forum·Academic Frontier”, Issue 10, 2021.

    ③ Ding Ning and Zhang Bing: “Development of Intelligent Weapons and Equipment of Major Military Powers in the World”, “Military Digest”, Issue 1, 2019.

    ④ Ge Yan and Jia Zhenzhen: “Future Combat Concepts and Combat Styles under Military Transformation”, “Military Digest”, Issue 15, 2020.

    ⑤He Fuchu: “The Future Direction of the New World Military Revolution”, Reference News, August 23, 2017.

    ⑥Ma Junyang: “Russian-made unmanned intelligent weapons debut in Syria”, People’s Liberation Army Daily, December 30, 2019.

Geng HaijunPeople’s Forum (July 1, 2022, Issue 03)

現代國語:

當今世界,新軍事變革進入關鍵性變遷階段,智慧泛在、萬物互聯、人機共融、全局協同的智慧化戰爭正加速演進。為鞏固世界霸主地位,美國積極推行“改變未來戰局”的第三次“抵消戰略”,制定人工智能發展戰略,加速人工智能實戰檢驗和演習,將智能科技視作可改變“遊戲規則”的“顛覆性技術群”的核心。俄羅斯、英國、以色列等軍事強國不甘落後,也加緊完善各自在人工智慧領域的戰略佈局。大國競爭加劇,軍事智慧化將成為新的軍備競賽制高點。

【關鍵字】軍事衝突 人工智慧戰略 AI戰爭 【中圖分類號】D81 【文獻識別碼】A

2017年,被稱為進化版「阿爾法狗」的Master在圍棋網路平台橫掃圍棋界頂尖高手,豪取60連勝;2019年,星際爭霸Ⅱ遊戲人機對抗賽中,兩位人類頂尖選手以1:10的比數慘敗;2020年,在美國國防部高級研究計畫局舉辦的「阿爾法」空中格鬥競賽中,由美軍王牌飛行員駕駛的F-16以0:5完敗於人工智慧戰鬥機。這些事件表明,人類既期待又畏懼的人工智慧時代已經悄悄到來。

恩格斯說,「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改革甚至變革」。當下,人工智慧的軍事化應用使「戰爭的致勝機制正在發生前所未有的嬗變,戰鬥力生成的重心正發生歷史性的位移」。新一輪科技革命、產業革命和軍事革命為「以智地」的智慧化時代提供了支撐。

軍事人工智慧在現代戰爭中展現出強大威力

大國軍備競賽的驅動,正引發軍事領域鍊式變革。近年來,世界局勢處於動盪不安時期,由此引發了一系列地緣政治危機,「混合戰爭」概念登上戰爭舞台,軍事人工智慧進入發展新階段。人工智慧、大數據、雲端運算、察打一體無人機等技術的快速發展、全面融合,在現代戰爭中展現出強大威力。無論是火力打擊的物理域、經濟制裁的利益域,或是輿情心理控制的認知域,無不使人深刻感受到軍事人工智慧正在大行其道。

刺殺伊朗高官,AI成為美軍「殺人工具」。 2020年1月3日,時任美國總統川普未經美國國會同意,下令讓美軍空襲伊拉克巴格達國際機場。這次空襲,直接殺死了伊朗高官蘇萊曼尼。蘇萊曼尼是伊朗革命衛隊「聖城旅」最高指揮官,為何會被美國在伊拉克首都暗殺成功?有消息透露,實施這項任務的是「收割者」無人機,它透過投射「地獄火」飛彈,對蘇萊曼尼進行了「定點清除」。這次行動十分隱秘,雷達無法偵測到,連美軍間諜衛星都不知道這架「收割者」當時的位置。需要強調的是,刺殺蘇萊曼尼,是美國動用恐怖主義手段的非法和殘暴行徑,“是美國濫用武力犯下的戰爭罪行之一”,其所謂的“基於規則的國際秩序”是純粹的粉飾,本質是霸權主義的真實表露。

在巴以衝突中,以色列打響了「第一次AI戰爭」。 2021年5月,以色列對哈馬斯發起「城牆衛兵行動」。在加薩地帶11天的戰鬥中,以色列依靠先進的資訊收集技術、分析演算法和人工智慧主導的決策支援系統,快速有效地選擇攻擊目標並根據需要使用最合適的彈藥,透過數百次多種作戰平台的密集、精確打擊,癱瘓了哈馬斯和巴勒斯坦伊斯蘭聖戰組織的火箭陣地、火箭製造廠、彈藥倉庫、軍事情報機構、高級指揮官住所等關鍵設施,摧毀了哈馬斯海上突擊隊多艘自主GPS制導潛艇,擊殺了巴塞姆·伊薩等多名哈馬斯高級指揮官和高級特工。

有資訊揭露,此次應用於戰爭的人工智慧系統,是由一支代號8200的精英小組所開發的演算法系統。由該小組孵化的「煉金術士」「福音」「深度智慧」三個系統,全部被用於這次軍事行動。 「煉金術士」系統可對敵方發動攻擊的企圖進行分析,並透過單兵攜帶的通訊裝置即時預警,而士兵回饋的訊息也會被重新收集並對下一次攻擊作出評估;「福音」系統可產生目標打擊建議,並即時標記目標訊息,指揮人員結合戰場情況可靈活選擇重要目標並實施打擊;「深度智慧」系統透過訊號情報、視覺情報、人員情報、地理情報等情報收集和大數據融合,可精確繪製哈馬斯武裝組織在加薩地帶的地道網絡圖,形成了全面反映衝突區域情景的態勢圖。這些技術的運用,大大提升了以軍的戰場態勢感知能力。以色列國防軍一名高級情報官員表示,這是「AI第一次成為與敵人作戰的關鍵組成部分和戰力放大器」。以色列軍方認為,使用AI帶來了“超認知能力”,甚至直接稱其為“第一場人工智慧戰爭”。

各國為搶佔技術制高點,加緊軍事智慧化戰略佈局

人工智慧被視為第四次工業革命的關鍵性戰略技術,為謀求在新一輪顛覆性技術爭奪中獨佔鰲頭,以美國為首的世界軍事科技強國圍繞軍事智能化加緊戰略佈局,可謂緊鑼密鼓、不遺餘力。

美國企圖依賴人工智慧維持其軍事霸權。自2016年以來,美國防部連續推出《為人工智慧的未來做好準備》《國家人工智慧研究與發展戰略規劃》《國防部人工智慧戰略》等文件,將人工智慧發展提升至國家戰略層面。五角大廈為確立由自己主導的“戰爭規則”,相繼制定了人工智慧技術研發規劃、重點專案設想和技術標準規範等,著力建構研發生產和作戰運用體系。概括起來看,美軍對未來人工智慧發展的佈局大致可分為近、中、遠三個階段。第一階段,2025年前,以無人化、隱身化、遠程化作戰平台為發展重點,建構“全球監視打擊體系”,無人系統成為美軍軍事幹預的主要手段。第二階段,2035年前,以智慧化作戰平台、資訊系統、指揮決策系統為發展重點,初步建成智慧化作戰體系,無人系統將超過有人系統,居於作戰的主導地位。第三階段,2050年前,以強人工智慧、奈米機器人、腦聯網等技術為發展重點,全面實現作戰平台、資訊系統、指揮控制智慧化,推動作戰空間向生物空間、奈米空間、智慧空間拓展,努力尋求智慧化作戰體系進入高階階段。

美軍各軍種也相繼推出並不斷更新其人工智慧發展規劃。地面無人自主系統有《美國地面無人系統路線圖》《美國機器人發展路線圖》等,計畫在2030年實現有人與無人的智慧編隊、協同行動,2040年實現合成兵力機動。空中無人自主系統有專項的無人機發展規劃,長遠目標是形成覆蓋高、中、低空,大、中、小微型,普通與長航時完備的空中無人裝備體系。海上無人自主系統分兩個方向,一個是打造新型水下作戰體系,利用多個無人潛航器組成機動式一體化偵察、偵測、打擊網絡,組成「先進水下無人艦隊」;另一個是加速發展水面無人艦艇,在水面無人艇「人機合作」方面取得突破。此外,美國防部也與工業界、學術界和盟國建立夥伴關係,確保獲得最先進的人工智慧技術支援。

俄羅斯在人工智慧領域也提出了自己的戰略計畫。近年來,俄羅斯總統普丁高度重視人工智慧發展,他提出,無論對俄羅斯或全人類,人工智慧都是未來,誰成為這個領域的領導者,誰就會脫穎而出,進而獲得巨大的競爭優勢,人工智慧關係國家未來。俄總參謀長格拉西莫夫稱,俄軍正透過人工智慧裝備「發展非核手段戰略威懾力量」。俄國國防部長紹伊古則表示,俄軍正加緊進行軍用機器人的研發、列裝工作,戰鬥機器人將投入量產。

早在2014年11月,俄羅斯就通過了2025年前發展作戰機器人計劃,提出2025年機器人系統將佔整個武器和軍事技術系統的30%。 2015年12月,普丁簽署「成立國家機器人技術發展中心」總統令,從戰略層面為人工智慧的發展提供了體制支撐。近幾年,俄羅斯先後推出了《未來俄軍用機器人應用構想》《2030年前人工智慧國家發展戰略》《2021—2025年俄聯邦國防計畫》等戰略規劃,開展了各種複雜作戰環境下的兵棋推演,研究人工智慧對戰略、戰役和戰術等各層面的影響,努力建構多層次相互智能化、相互智能化體系的無個人化作戰。

從中長目標來看,攻擊無人裝備是俄羅斯發展的重點。 2019年,俄羅斯總統普丁在俄聯邦安全會議上提出,未來10年俄軍將大力發展能在戰場上執行任務的戰鬥機器人系統。近期目標,是2025年建造具有一定自主控制能力的多功能戰鬥機器人部隊。根據資料介紹,該部隊將由5種機器人組成,每種機器人都可以獨立劃分為作戰單元,可在無需人工或僅需很少人工幹預下,基本完成戰場作戰任務。目前,俄軍已啟動重型和輕型機器人「突擊」及「戰友」系統的試驗設計工作。有專家分析,戰鬥機器人部隊或將成為俄獨立的、具有全新意義的兵種。

美國拉攏盟友備戰AI戰爭,人工智慧軍備競賽加劇。近年來,美國為維持在人工智慧領域的絕對領先地位,在加緊推進自身人工智慧軍事化建設的同時,也以服務聯盟作戰體系為名,試圖拉攏盟友共同開發聯合操作人工智慧系統。根據美國「防務新聞」網站報道,2020年9月,美聯合人工智慧中心已啟動“防務夥伴關係計畫”,該計畫涵蓋英國、法國、以色列、日本、韓國、澳洲、加拿大、芬蘭、挪威、瑞典等國,旨在開發與上述盟國互聯互通的人工智慧系統,為智能化戰爭聯合作戰奠定基礎。有報導稱,圍繞這個計劃,美國及其盟友的相關國防代表已多次召開會議。美國還聲稱,這個國防合作將向更多感興趣的美國盟友「敞開大門」。

美國的助推,無疑將使全球主要軍事大國間的人工智慧軍備競賽愈演愈烈。在美國眾多盟友中,以色列的人工智慧水準獨領風騷。以色列是世界最大的軍用無人機出口國;擁有世界上第一種可控的自主式無人車——“守護者”,並已裝備部隊;是世界上除美國之外僅有的裝備了無人水面艇的國家,擁有“保護者”“黃貂魚”“海鷗”等多型無人水面艇。

其他大國也加緊佈局人工智慧領域。英國制定了「高校為源、軍民融合」的人工智慧發展路徑,推出了《國家人工智慧戰略》《機器人與人工智慧》戰略規劃。法國制定有《法國人工智慧戰略》《法國人工智慧計畫》,從2018年起逐年增加國防預算,不斷增加人工智慧武器研發投資力道。德國擁有世界上最大的人工智慧研究中心,2018年發布了《人工智慧戰略》,計畫2025年前打造「人工智慧德國製造」品牌。日本先後推出《人工智慧戰略》《新機器人戰略》《科技創新綜合戰略》,成立“革新智慧綜合研究中心”,集中開發人工智慧相關技術。 2021年1月,澳洲國防部發表《打好人工智慧戰爭:未來智慧化戰爭之作戰構想》。這份文件著重探討如何將人工智慧應用到陸、海、空作戰領域。

正如一些專家所言:「智慧科技是一把雙面刃,在推動戰爭形態向智慧化戰爭演變的同時,也帶來一系列全新的戰爭倫理問題和戰爭法困境。」人工智慧將為人類社會帶來哪些變革?這一問題值得深入思考並持續關注。

(作者為光明日報社新聞研究部主任)

【參考文獻】

①吳明曦:《智能化戰爭-AI軍事暢想》,北京:國防工業出版社,2020年1月。

②郭明:《關於智慧化戰爭的基本認知》,《人民論壇‧學術前線》,2021年第10期。

③丁寧、張兵:《世界主要軍事強國的智慧化武器裝備發展》,《軍事文摘》,2019年第1期。

④葛妍、賈珍珍:《軍事變遷下的未來作戰概念與作戰樣式》,《軍事文摘》,2020年第15期。

⑤賀福初:《世界新軍事革命未來走向》,《參考消息》,2017年8月23日。

⑥馬浚洋:《俄製無人智慧武器亮相敘利亞》,《解放軍報》,2019年12月30日。

中國原創軍事資源:https://paper.people.com.cn/rmlt/html/2022-07/01/content_2593935188.htm

Concept of future human-machine integrated forces

中國未來人機一體化軍事構想

現代英語:

At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.

The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.

USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.

On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.

The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.

On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.

According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.

In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment

The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.

Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).

It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.

In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.

On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.

Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.

Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.

Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.

On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.

The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.

At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.

It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force

With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.

In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”

In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.

The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.

Source: China Aviation News Author: Wei Yuejiang Editor-in-charge: Wu Xingjian 2021-03-26 08:0x

現代國語:

目前,從世界上主要國家編制體制改革發展情況看,軍隊正向精干、小型、高效、智能、“人機(機器人無人機)”一體方向發展,謀求機器人士兵、無人機與人類戰士一起並肩協同、聯合作戰。據統計,目前全球超過60個國家的軍隊已裝備了軍用機器人,種類超過150種。預計到2040年,世界軍事強國可能會有一半的成員是機器人。除美、俄、英、法、日、以色列、土耳其、伊朗等國家已相繼推出各自的機器人戰士外,其他國家也投入到這場無人化武器的研制與開發中去。

世界軍事強國將掀起組建無人作戰部隊爭鋒熱潮所謂無人作戰部隊,就是作戰機器人或者戰場殺人機器人系統的統稱。隨著各類信息化、精確化、數據化武器裝備的發展,智能化平台成為預先設計戰場的推手,作戰機器人成為戰場的主力軍,人機結合對抗成為克敵制勝的關鍵,未來戰場空間力量將凸顯陸海空三維無人化發展趨勢。

《今日美國報》曾發表的《新型機器人把戰爭帶入下一個層次:無人戰爭》一文中,這樣描述無人化戰爭:無人機編隊蜂擁而來,用精密的儀器探測、偵察與反偵察,它們鎖定目標後,從容地發射導彈;自動編程的無人潛艇,執行水下搜索、偵察、排除水雷等多種任務;地面戰場上,機器人負責彈藥、醫療補給和食物的配送……未來戰爭中,這些或許將成為現實。

在陸地,能執行特定任務的各種機器人,就是機械化、信息化、智能化高度融合的機動打擊平台。如:無人坦克,就是以自身程序控制為主的無人化履帶式裝甲平台,可讓士兵們遠程控制,以遠距離攻擊型智能化武器、信息化武器為主導,能自動裝載彈藥和自主發射,實施遠程間接精確打擊,有效降低士兵傷亡率。在海洋,各種無人潛艇、無人戰艦等,可航行數千英裡,無需船上人員操控就能執行各種海上作戰任務。在空中,實戰部署的人為控制操作的無人機系統,就是一種具有自己偵察判斷、人為控制、察打一體、自主攻擊、人機協同的無人機系統平台。

無人機武器在戰爭中的運用凸顯其作戰能力,必然牽引世界各國軍隊緊鑼密鼓組建無人作戰部隊。在伊拉克戰爭中,美國就開始對無人戰車的實戰能力進行測試。2013年3月,美國發布新版《機器人技術路線圖:從互聯網到機器人》,闡述了包括軍用機器人在內的機器人發展路線圖,決定將巨額軍備研究費投向軍用機器人研制,使美軍無人作戰裝備的比例增加至武器總數的30%,計劃未來三分之一的地面作戰行動將由軍用機器人承擔。據悉,美軍在2015年前就部署第一支未來機器人作戰旅(至少包括151個機器人戰士)。2016年,美軍在一次多國聯合軍事演習中,對“模塊化無人戰車”再次進行了試驗模擬測試。2020年,美國五角大樓發出一項標價1100萬美元的合同,以組建具有人類和機器人協同作戰能力的“聯合兵種班”,計劃2030年前完成15個未來作戰旅的全部建設工作。所有班成員,具有類似人一樣的視、聽、觸和嗅覺,能適時發出信息並對目標發起攻擊,甚至可以擔負自我維修與車輛維修及運輸、掃雷、偵察、巡邏等任務。美國每日科學網站報道稱,美陸軍研發了一種新技術,可迅速教會機器人在最低限度人為干預情況下完成新的穿越動作。報道稱,該技術可使移動機器人平台在作戰環境中自主導航,同時在特定情況下讓機器人完成人類期望其執行的作戰行動。目前,美陸軍科學家希望為機器人培育肌肉細胞和組織,進行生物雜交,而不是直接從活的有機體中提取,由此這種采取肌肉與機器人的組合,讓筆者聯想到電影《終結者:黑暗命運》中的半生化人葛蕾絲。

2018年4月21日,俄聯邦安全局(FSB)特戰隊在達吉斯坦傑爾賓特市,發動了一次針對極端組織恐怖分子的突襲行動,首次公開出動了配備機槍的武裝無人戰車打先鋒。美國在2018年俄羅斯紅場閱兵中發現了大批俄軍曾經在敘利亞南部與敘利亞反政府武裝交火的“天王星-9”機器人等作戰系統,向觀眾展示其外形特征。俄軍在2015年8月敘利亞戰場上使用戰斗機器人作戰連實施陣地攻堅戰,履帶式機器人沖鋒、打擊、吸引武裝分子開火,並引導自行火炮群將暴露火力點逐個摧毀,最後機器人作戰連僅用20分鐘就一舉攻下如今俄軍士兵難以攻下的高地,取得零傷亡斃敵77人戰績。

據英國《明星日報》網站報道稱,英國陸軍在一場名為“自主戰士2018”的活動中進行了大規模作戰機器人測試後,把無人機、無人駕駛汽車和戰斗人員統一到未來數十年穩居世界一流的軍隊中。未來的英軍自主軍用裝備,無論是坦克、機器人還是無人機,都可能會有腿而不是履帶或輪子。2021年年初,英國舉辦“未來海上航空力量加速日”活動後,繼續開發“即插即用”的海上自主平台開發系統,該系統接入皇家海軍的艦船後,可以簡化自動化和無人操作技術的獲取和使用過程。

除了俄羅斯、美國、英國研發裝備機器人外,其他有實力的國家也相續推出各自研制的機器人戰士,預計在未來20年內世界必將迎來陸海空機器人代替士兵執行高風險任務,未來戰場必將是無人化或人機結合一體化聯合作戰行動。世界軍事強國將掀起人機(無人機)一體化作戰試驗

空戰的樣式總是隨著航空科技的進步而在不斷發展變化。自1917年至今,隨著英國成功研制出世界第一架無人駕駛遙控飛機,無人裝備大家庭也不斷發展壯大,各種無人機日益活躍在現代戰爭的舞台上。

21世紀以來,隨著大量無人機被應用於戰場,作戰樣式不斷翻新。海灣戰爭中,無人機還僅僅限定於偵察監視、目標引導,可是到了阿富汗戰爭、伊拉克戰爭和反恐戰爭,無人機作戰能力日益凸顯,作戰樣式和方法呈現出新特點,讓世界各國看到無人機這把空中利劍,從此拉開人機(無人機)一體化作戰試驗序幕。

據報道,1993~2005年間,北約國家無人機總數增加了1.7倍,2006年前,這一數量達到11萬架。美國、北約其他國家、以色列、南非都非常重視無人偵察機和多用途無人機的研制和生產。

2019年,世界上大約有30多個國家已研制出了50多種類型無人機,有50多個國家裝備了無人機。主要種類:“密碼”無人機、多功能無人機、人工智能無人機、長時留空無人機、反導無人機、預警無人機、隱身無人機、微型無人機、空戰無人機、測繪無人機、航拍無人機。主要回收方式:自動著陸、降落傘回收、空中回收、攔阻回收。

2019年9月14日,沙特阿美石油公司的一處“世界最大石油加工設施”和油田遭襲擊後,也門胡塞武裝宣布“對此事負責”,並宣稱其使用了10架無人機對上述設施進行了攻擊。2020年1月3日,伊朗伊斯蘭革命衛隊下屬“聖城旅”指揮官卡西姆·蘇萊馬尼在美國對伊拉克首都巴格達國際機場凌晨發起的一場無人機突襲中被“定點清除”。2020年底,亞美尼亞和阿塞拜疆在納戈爾諾-卡拉巴赫(納卡地區)的戰斗中,無人機在雙方沖突中扮演重要角色顯而易見。尤其是許多軍事專家對阿塞拜疆國防部不斷發布剛從土耳其購買的TB-2“旗手”和以色列“哈羅普”自殺式無人機打擊亞方裝甲車輛、火炮、汽車甚至步兵陣地、S-300防空導彈畫面的視頻感到十分震撼。2020年12月,中東和外高加索地區所發生的局部沖突表明,無人機的作用正日益增大。基於此,有軍事家甚至預言,21世紀將是無人機發展的“黃金時期”,無人機勢必全面取代有人戰機,並成為21世紀的“戰場主角”。

目前,美國空軍計劃擴大無人機與有人機之間的有人與無人平台組隊,到2025年90%戰機將是無人機。也就是說,較大型飛機(F-35戰機或F-22戰機)能夠控制一支附近的無人機隊。如F-35戰斗機像一種飛行傳感計算機,能夠獲得大量數據,並自行聯系、分析和判斷,最後向飛行員的頭盔顯示屏上傳結論後,由飛行員對獲取的信息進行分析和處理,根據作戰計劃、戰場態勢、編隊配備的武器等制訂作戰方案後,再下達給無人機……實現有人機指揮無人機協同作戰的目的。也就是說,有人機與無人機混合編隊,把以往由地面控制改為空中控制無人機,由飛行員直接指揮無人機作戰行動。美軍設想采用模塊化設計,以便在未來戰場作戰需要時士兵從背包中取出無人機的零部件後組裝無人機,還可利用3D打印無人機。2020年8月,美國空軍在模擬空戰中AI擊敗了頂尖的F-16戰斗機飛行員,也有力證明AI飛行員能創造性地快速“思考”,將來可能超過人類飛行員技能為時不遠。美海軍新型MQ-25“黃貂魚”艦載無人加油機將於2021年試飛,2024年具備初始作戰能力,有利於航母艦載機擴大作戰半徑。

俄羅斯從2013年起,配備了大量無人機,其中僅無人偵察機到2019年年底已超過2000架,其中大多數是輕型無人機,如參與敘利亞的軍事行動的卡拉什尼科夫無人機。下一步,俄陸軍部隊每個旅或師級單位將分別編有無人機連,空降兵部隊也將裝備大量無人機。俄北方艦隊將編有無人機團,在俄軍一些現代化軍艦上也將配備了無人機。另外,從2021年起,由喀琅施塔得集團研發的“獵戶座”察打一體無人機裝備俄軍。這種重型無人機可搭載多種制導彈藥,執行作戰任務。此外,俄軍還在試驗“牽牛星”和C-70“獵人”兩款重型無人機。這些足以表明俄羅斯在無人機研發領域已經取得重大進展。

以色列是無人機領域真正的先驅,研制的無人機不僅先進,而且還出口其他國家,已經裝備部隊包括“鳥眼”系列單兵無人機、“螢火蟲”無人機、輕型“雲雀-I”無人機、輕型“英雄”無人機、中型“雲雀-II/III”無人機、“蒼鷺”無人機等型號數百架無人機。20世紀80年代中期,以色列已研發出名為“哈比”又稱“鷹身女妖”的陸基發射巡飛無人機。“哈比”是一種能夠自主進行反雷達攻擊的“自殺式無人機,重量為135千克,可攜帶32千克的高爆炸藥,航程為500千米。由於保密原因,目前尚不知以色列國防軍裝備無人機的具體數量和型號。為了對付敵方的地地導彈等威脅性目標,以色列飛機工業公司正在研制一種高空長航時隱身無人駕駛戰斗機。該機采用隱身技術與遠距空空導彈相結合,可攜帶莫阿布導彈,突入敵方戰區後方,攔截和攻擊處於助推階段的地地導彈。

2013年2月5日,駐扎在阿富汗的英國軍隊首次采用微型無人直升機執行刺探軍情的前線工作。這種無人直升機安裝了微型攝像機,可以將拍攝到的畫面即時傳送到手持式控制終端機;可以繞角落飛行,會規避障礙物,以辨別潛在危險。下一步,英國計劃實現一架有人機能夠同時指揮5架無人機。據英國《泰晤士報》網站2021年1月26日報道,英國國防部投資3000萬英鎊,將在北愛爾蘭研發首支無人機部隊。報道稱,設計和制造原型機的合同已交給美國“勢必銳”航空系統公司。該公司在貝爾法斯特設有分部,合同預計將提供100個工作崗位。英國國防部計劃到2025年開始制造首架這種新型無人機原型機。它將配備導彈、偵察和電子戰技術裝備,成為英軍首款能夠瞄准並擊落敵方戰機、並能規避地空導彈攻擊的無人機。與其搭檔的有人戰機將能夠專注於電子戰、偵察及轟炸等任務,從而以較低的成本和降低英軍機組人員面臨的高風險。

法國海軍將在土倫附近的某基地組建首個艦載無人機中隊,為法國海軍航空兵第36F艦載機中隊。該中隊將裝備S-100無人機,搭載於海軍西北風級兩棲登陸艦上。此次艦載無人機中隊的組建,反映了法國海軍希望將無人機專業知識融入到一個單一專業團隊的願望。此前,法國海軍內部討論了建立專屬無人機中隊,以及在31F、35F或36F中隊中配備無人機的方案。

在2004年6月舉行的巴黎航展上,法國達索飛機制造公司展示的NX70神經元無人作戰飛機的全尺寸模型,使人們對歐洲無人機的發展重新產生了興趣。伊朗、土耳其、阿聯酋……一些新的國家打亂了無人機地緣政治格局,正在書寫新的一頁。

可以預測,無人機必將成為世界各國武器裝備發展中的最大亮點,成為21世紀陸戰、海戰、空戰、天戰的“撒手鐧”,成為攻防作戰中一種新生作戰力量,既能使用自身攜帶的多種對地攻擊武器對敵前沿和縱深地區地面軍事目標進行打擊,也能使用空對地導彈或炸彈對敵防空武器實施壓制;既能使用反坦克導彈等武器對敵坦克或坦克群進行攻擊,也能使用集束炸彈等武器對敵地面部隊進行轟炸;既能發現目標、判斷目標價值後就可自主發射導彈,也能對敵方指揮控制系統進行欺騙干擾,等等。世界軍事強國將掀起組建“人機(機器人無人機)”一體部隊爭鋒

隨著軍民融合的深度推進,人工智能技術的突飛猛進,大數據、雲計算、物聯網的日新月異,不僅給無人化武器裝備發展帶來巨大變革,而且還將顛覆現有軍隊力量組建形態,“人機(機器人無人機)”一體化智能型軍隊必將到來。

2015年12月,俄軍在敘利亞戰場上除派出傳統作戰力量外,還首次成建制派出一個以無人作戰平台為主的機器人作戰連參加戰斗。該連采取有人無人混合編組的新型作戰模式,構建起以“仙女座-D”自動化指揮系統為核心的智能化作戰體系,采用全維偵察和飽和攻擊相結合的作戰方式對754.5高地發起進攻,順利奪佔高地。幾年前,負責遠征作戰的美國海軍官員就提到過打造千只人機結合戰艦的願景,即由人類控制的,由相互協同的無人艦組成的更大艦隊。美國海軍宣布,計劃未來5年打造一支由10艘大型無人水面艦艇組成的無人艦隊,用於獨立作戰或與水面部隊聯合作戰。根據美國海軍當前披露的構想方案,大型無人水面艦艇組成的無人艦隊將主要協助海軍完成高度危險的作戰任務,通過與“宙斯盾”作戰系統以及其他傳感器相結合,提升有人及無人系統的協同作戰能力,其部署將有助於減少大型有人戰艦的數量需求,減少作戰中的人員傷亡。國家利益網2021年1月20日消息,美國海軍作戰部長邁克爾·吉爾戴在1月11日發布《海軍作戰部長導航計劃》文件,呼籲建立包括大型戰艦、各型無人艦、潛航器和空襲裝備的人機混合艦隊,為未來幾十年的新威脅環境做好全域作戰准備。文件中寫道:“要建立滿足部隊戰略和戰役需求的,水下、水面和水上平台,有人與無人平台混合的更大艦隊。”

在“人機(機器人無人機)”一體部隊中,靠人工智能技術達到“人機”有機結合,靠雲計算、新算法、大數據擬制“人機”協同作戰計劃。人工智能就像一台發動機,大數據+雲計算就如宇宙飛船,智能機器人就是宇航員,三者有機結合定能如虎添翼、人機一體。未來軍隊就是人機結合軍隊,班排連長由人擔任逐步被機器人所取代,機器人由人為控制逐步轉變為機器人自主決策或者機器人通過人的腦細泡進行意念控制,軍營也可能出現無食堂軍營,部隊管理也可能出現由一名或幾名軍事人員率領多台甚至幾十台具有不同分工任務的智能機器人團隊,去完成以往班排連共同完成的戰訓管理任務,亦或是軍事訓練只有一名軍事指揮人員在指揮控制中心,通過視頻指揮控制訓練場所有智能機器人進行對抗訓練,或者遠程遙控機器人指揮員實時下達新的訓練指令、調整任務部署、變換訓練場。

對軍事人才智能素質的迫切需求,也會倒逼人工智能領域一級軍事學科的設置重新調整,未來軍隊院校也將開設智能機器人控制學科,建立有關人機結合實驗室和培訓基地,重點培訓既懂計算機控制程序、智能設計與管理、圖像認知、數據挖掘、知識圖譜,又能系統掌握智能科學與技術、具有創新意識的智能型職業化軍事人才。未來軍事人才必須熟練掌握智能技術、大數據應用、雲計算,尤其是能隨時利用3D或4D打印技術制作各種軍事裝備,精通智能機器人的控制程序、指揮方式、指令下達、調整任務,熟練掌握人機一體化自主作戰協同的要領,達到人的信息化科技素質與智能機器人的高效運作的最佳結合。此外,也不排除成立人機結合班排連、作戰模擬中心、假想敵部隊、作戰分隊、智能司令部、無人化旅、師等。屆時,軍事主官也可能人機各一或者機器人給人當下手或者副手。

中國原創軍事資源:http://www.81.cn/bq_208581/jdt_208582/9991323888.html

Operational Window: Chinese Military New Perspectives for Implementing Cross-Domain Collaborative Operations

作戰窗口:中國軍隊實施跨域協同作戰的新視角

現代英語:

The combat window refers to the time and space range that is chosen to stimulate the effectiveness of the system’s combat cycle and is conducive to the joint combat force’s implementation of cross-domain coordinated operations. The concept of combat window comes from fighter jets. It is an innovative development of the theory of joint combat command under the new situation. It will be more widely used than fighter jets in combat command activities. Whether the selection of fighter jets in the confrontation of the joint combat force system can be regarded as a form of “combat window” directly affects the commander’s vision. In the complex and changeable information battlefield environment, the combat window has gradually become a new basis for the joint combat force to implement cross-domain coordinated operations, which is of great significance for seizing the initiative on the battlefield and shaping a favorable situation.

Constructing a combat window to highlight the comprehensiveness of cross-domain collaborative combat preparations

The theater joint command should closely follow the combat missions, opponents, and environment, firmly grasp the strategic and campaign initiative, strengthen the pre-positioning of joint combat resources, actively optimize the battlefield environment, and create conditions for establishing combat windows.

Carry out careful and continuous joint reconnaissance around the operational window. The time and space scope of the operational window includes the time interval and the strike area for attacking enemy targets. Among them, the strike area is generally centered on the strike target, which refers to a relatively closed space that can regulate the system combat forces to maintain comprehensive control over the local battlefield and is suitable for attacking enemy node targets. In order to ensure the smooth implementation of operations in the operational window area, its periphery can be divided into warning patrol areas, interception and annihilation areas, and defensive combat areas to provide support and guarantee for it. The joint command agency should focus on the reporting needs of priority intelligence and warning information in the operational window, and comprehensively use the reconnaissance and early warning forces and means of various services to implement careful, continuous and focused joint reconnaissance to obtain intelligence and warning information in the operational window area and its peripheral areas. If necessary, strategic reconnaissance and early warning forces can be coordinated to provide intelligence support, eliminate reconnaissance and early warning blind spots in the time and space of the operational window, and ensure that the flow of intelligence and warning information from acquisition to use is efficient and stable.

Predict the combat window and timely adjust the cycle plan of the combat readiness training of the task force. The scale and intensity of the high alert state maintained by the task forces of various services and arms greatly restricts the time and space scope of the combat window. Periodically maintaining a high state of alert requires the task forces of various services and arms to manage and operate in accordance with the state of war, which is an important indicator of the combat effectiveness of the task force. At present, the task force should carry out daily management and training in accordance with the three states of combat readiness, training, and preparation. The purpose is to ensure that a considerable number of combat-capable forces can carry out combat window tasks at any time and continuously improve their actual combat level. Non-combat-capable forces should coordinate resources and concentrate on training to generate system combat capabilities. The preparation period is in the interval between combat readiness training. The combat personnel should be flexibly organized to rest, repair equipment and conduct necessary training to create conditions for transitioning to the training cycle or combat readiness cycle. By predicting the combat window, the theater joint command timely adjusts the cycle plan of combat readiness training for large-scale task forces, so that they are rhythmically and regularly in a high state of alert, providing a force basis for implementing window operations.

Focus on the operational window and roll out the linkage operation of cross-domain collaborative combat plans. Since the operational window is often fleeting, the completeness of the cross-domain collaborative combat plans of various services and arms formulated around the operational window may be greatly reduced. Therefore, the theater joint command should gather the collective wisdom of commanders and their command organs, rely on the command information system, and roll out the formulation of cross-domain collaborative combat plans through systematic, procedural, and professional fast command linkage operations. Command linkage operations involve linkage operations of superior and subordinate command agencies, linkage operations of the entire process of reconnaissance, control, attack, protection, and evaluation, and human-machine interaction linkage operations. The implementation of command linkage operations should unify operational intentions, focus on operational windows, use the command operation platform for situation sharing, carry out parallel operations in a coordinated manner, conduct periodic operational planning, conduct situation analysis at any time, follow up on operational concepts, enhance the credibility of simulation and evaluation, and simultaneously formulate and improve cross-domain collaborative combat plans. The implementation of linkage operations helps to shorten the formulation time of cross-domain collaborative combat plans, improve the feasibility of plans, and seize the opportunity of operational windows as soon as possible.

Applying combat windows to highlight the effectiveness of cross-domain collaborative combat system confrontation

The theater joint command should make decisive decisions to launch operations based on careful planning and comprehensive preparation in response to different combat objectives and tasks, different attributes of combat opponents, and different combat types and styles, and quickly seize the initiative on the battlefield in the combat window.

Superimpose the effectiveness of the combat system. The task forces of various services and arms work closely together within the time and space of the combat window, work together as a whole, and focus on combat tasks to form a system combat effect. At present, with the rapid development of military science and technology and the continuous adjustment and optimization of new combat forces, precision, automation, intelligence, and unmanned weapons and equipment are being used more and more widely. Within a specific combat window, almost every service and arms has more or less the means to accurately strike enemy targets in multiple domains over long distances. Even land-based task forces have the ability to accurately strike enemy targets at long distances and the ability to project troops near the coast, which enables the task forces of various services and arms to carry out compound strikes within the combat window, becoming the preferred method for joint operations to strike enemy targets. Compared with a single service and arms, compound strikes of multiple services and arms will produce more powerful, more accurate, more stable, and faster compound strike effectiveness. The compound strike effectiveness of the task forces of various services and arms focuses on combat targets within the combat window, which will cause the value of cross-domain collaborative combat effectiveness to increase sharply, and the superimposed effect will be more obvious.

Converge combat support resources. Combat support resources are material factors that affect the selection and application of combat windows, involving many resources such as reconnaissance and intelligence support, information support, and rear-end support. Implementing converged support and support for the theater in wartime is the key to applying the combat window. The combat support of friendly theaters will enable the task force to maintain a high level of combat readiness, and commanders will have more combat options; the aerospace information support and network combat support provided by the strategic support force will be an important support in the field of joint reconnaissance and intelligence, and information operations; and the joint logistics support force is the main force for implementing joint logistics support and strategic and campaign support, and the volatility of the combat capability of the theater task force is largely restricted by this. In this regard, by clarifying the mission and tasks, command authority, institutional mechanisms, and laws and regulations of the combat support force, we will actively gather combat support resources around the combat window, implement integrated, comprehensive and efficient support, and greatly improve the system effectiveness of cross-domain collaborative operations.

Regulate the operational fluctuation cycle. The joint command command command of the task forces of various services and arms to carry out strike operations against enemy targets. Before the operation, it is necessary to convert the combat readiness level, conduct coordinated exercises, and deploy to the standby area. Even if the task force is faster in preparation for strikes, more skilled in strike methods, and more optimized in strike processes, it needs to be completed within the corresponding time period. At the same time, commanders and combatants will be affected by combat fatigue, resulting in a significant reduction in command decision-making efficiency and strike effectiveness, which greatly restricts the extension of combat duration and makes the fluctuation cycle of the combat capability of the task force more obvious. After the strike operation, the replenishment and rest of combat personnel, the maintenance and repair of weapons and equipment, and the summary and review of combat experience and lessons all require an adjustment cycle. Commanders need to timely regulate the fluctuation cycle of the task force’s strike capability according to the different combat methods and weapon and equipment damage mechanisms of various services and arms, clarify the combat threshold of the task force, and minimize the interference of combat fluctuations as much as possible, thereby greatly improving the cross-domain collaborative combat capability.

Maintain the operational window and highlight the stability of battlefield control in cross-domain collaborative operations

The theater joint command should strictly control the scale and intensity of window operations, strengthen joint management and control, strictly control combat costs, improve combat effectiveness, actively create a favorable battlefield situation, avoid combat passivity, and prevent window operations from expanding into full-scale operations.

Strengthen battlefield linkage control. Battlefield control by various services plays an important role in shaping a stable combat situation, strengthening multi-domain space control, and maintaining combat windows. Strengthen the control of cross-domain collaborative combat battlefield space, including battlefield spaces such as land, sea, air, space, and network, as well as electromagnetic spectrum and time-space reference battlefield space. Among them, the battlefield control area is mainly divided into combat window areas, strategic support areas, alert isolation areas, frontier warning areas, and friendly support areas in various fields. Under the unified command and control of commanders and command agencies, the task forces of various services and arms clarify the primary and secondary relationships of cross-domain collaborative control, clarify control rules, mechanisms and disciplines, adopt a variety of control methods, and comprehensively use command information systems and other advanced technical means to vigorously strengthen the timeliness and accuracy of battlefield linkage control.

Comprehensively evaluate the combat effectiveness. The command organization should closely follow the formulation process of the cross-domain collaborative combat plan of the combat window, closely follow the collaborative control instructions, closely follow the collaborative actions of the task force, and closely follow the actual collaborative support, and implement rapid, efficient, and continuous performance and effectiveness evaluation during the window operation. Focusing on the achievement of combat objectives, adapting to the characteristics of window operations with full-domain linkage, comprehensively using a variety of combat evaluation tools and means, integrating system evaluation algorithms, data and capabilities, optimizing the evaluation system dominated by combat effectiveness, process management, information support, and human-in-the-loop, forming an evaluation model that matches combat orders, actions, and effects, and combines combat performance with effectiveness indicator judgment, thereby improving the accuracy and timeliness of combat window effect evaluation.

Actively shape the new battlefield situation. After continuous preparations for military struggle against the enemy, interactive deterrence and control, and limited strikes within the combat window, the state and situation formed by the enemy and us in terms of combat force comparison, deployment and action are relatively stable, thus forming a battlefield situation under the new situation, and its development trend is also predictable and expected. Commanders and their command organs continue to have a deep understanding of the characteristics and laws of the enemy situation, our situation and battlefield environment in this strategic direction, and have a clear understanding of the basic outline of the future struggle situation. They can clarify future combat objectives and measures, and their confidence in winning will gradually increase, creating conditions for determining the next round of combat windows.

現代國語:

劉 陽 李志華

引言

作戰窗口,是指為激發體係作戰週期效能而選擇的有利於聯合作戰力量實施跨域協同作戰的時空範圍。作戰窗口概念來自戰機,是戰機在新局勢下聯合作戰指揮理論的創新發展,在作戰指揮活動中將比戰機應用更廣泛。能否將聯合作戰力量體系對抗中戰機的選擇看作「作戰窗口」的形式,直接影響了指揮的眼界。在複雜多變的資訊化戰場環境下,作戰窗口逐漸成為聯合作戰力量實施跨域協同作戰的新基點,對奪取戰場主動,塑造有利態勢,具有重要意義。

構設作戰窗口,突顯跨域協同作戰準備的全面性

戰區聯指應緊貼作戰任務、戰鬥對手、作戰環境,牢牢掌握戰略戰役主動權,加強聯合作戰資源預設,積極優化戰場環境,為構設作戰窗口創造條件。

圍繞作戰窗口實施周密持續的聯合偵察。作戰窗口的時空範圍包括打擊敵目標的時間區間與打擊地幅。其中,打擊地幅一般以打擊目標為中心,指能調控體係作戰力量持續維持局部戰場綜合控制權、適合打擊敵節點目標的相對密閉空間。為確保在作戰窗口區順利實施作戰,其外圍可區分為警戒巡邏區、攔截阻殲區與防禦作戰區等為其提供支撐保障。聯指機關應圍繞作戰窗口優先情報告警信息的提報需求,綜合運用諸軍兵種偵察預警力量和手段,為獲取作戰窗口區及其外圍區域的情報告警信息實施周密持續有重點的聯合偵察。必要時可協調戰略偵察預警力量提供情報支援,消除作戰窗口時空的偵察預警盲區,確保情報告警信息從獲取至運用的流轉過程高效穩定。

預測作戰窗口及時調整任務部隊戰備訓練的週期計畫。諸軍兵種任務部隊保持高度戒備狀態的規模強度極大限製作戰窗口的時空範圍。週期性保持高度戒備狀態,要求諸軍兵種任務部隊依照臨戰狀態進行管理運作,是體現任務部隊戰鬥力高低的重要標誌。當前任務部隊應依照戰備、訓練、整備三種狀態進行日常管理和訓練,目的是確保相當規模的能戰兵力可隨時遂行作戰窗口任務並不斷提高實行水平,非能戰兵力應統籌資源集中精力進行系統作戰能力的生成訓練。整備期則處於戰備訓練間隙,應機動靈活組織作戰人員休息、裝備維修和必要訓練,為轉入訓練週期或戰備週期創造條件。戰區聯指透過預測作戰窗口,及時調整較大規模任務部隊戰備訓練的周期計劃,使其有節奏、規律地處於高度戒備狀態,為實施窗口作戰提供力量基礎。

聚焦作戰視窗滾動組織跨域協同作戰方案計畫的聯動作業。由於作戰窗口往往稍縱即逝,圍繞作戰窗口應急制定的諸軍兵種跨域協同作戰方案計劃的完備性可能會大打折扣。因此戰區聯指應凝聚指揮員及其指揮機關的集體智慧,依靠指揮資訊系統,透過體系化、程序化、專業化的快速指揮聯動作業,滾動組織擬制跨域協同作戰方案計劃。指揮聯動作業涉及上下級指揮機構聯動作業、偵控打保評全流程聯動作業及人機交互聯動作業等。實施指揮聯動作業應統一作戰意圖,聚焦作戰窗口,利用態勢共享的指揮作業平台,聯動展開平行作業,進行週期性的作戰規劃,隨時開展研判態勢,跟進提出作戰構想,增強推演評估的可信度,同步擬制並日臻完善跨域協同作戰的方案計劃。實施聯動作業有助於縮短跨域協同作戰方案計畫的製定時間,提高方案計畫的可行性,儘早掌握作戰窗口的先機。

應用作戰窗口,突顯跨域協同作戰體系對抗的效能性

戰區聯指應針對不同作戰目的任務,不同作戰對手屬性,不同作戰類型樣式,在精心籌劃和全面準備的基礎上,果斷決策發起作戰,迅速奪取作戰窗口的戰場主動權。

疊加作戰體系效能。諸軍兵種任務部隊在作戰窗口時空範圍內密切協同,整體聯動,聚焦作戰任務形成體係作戰效果。目前隨著軍事科技的快速發展與新銳作戰力量不斷調整優化,精確化、自動化、智慧化、無人化的武器裝備應用越來越廣泛,在特定的作戰窗口範圍內,幾乎每個軍兵種都或多或少地具備遠程多域精確打擊敵目標的手段。即使是陸戰型任務部隊,也具備較遠距離的精確遠火打擊能力與近海兵力投送能力,這就使得諸軍兵種任務部隊在作戰窗口內實施複合打擊,成為聯合作戰打擊敵目標的首選方式。多軍兵種複合打擊與單一軍兵種相比,將會產生更猛、更準、更穩、更快的複合打擊效能。諸軍兵種任務部隊的複合打擊效能在作戰窗口範圍內聚焦作戰目標,將促使跨域協同作戰效能的量值陡增,疊加效果更加顯現。

匯聚作戰保障資源。作戰保障資源是影響作戰窗口選擇應用的物質因素,涉及偵察情報保障、資訊保障與後裝保障等諸多資源。戰時對本戰區實施匯聚式支援保障是應用作戰窗口的關鍵。友鄰戰區的作戰支援將使任務部隊保持較高的戰備水平,指揮官將具有更多的作戰選擇性;戰略支援部隊提供的航天資訊支援、網路作戰支援將是聯合偵察情報、資訊作戰領域的重要支撐;而聯勤保障部隊是實施聯勤保障和戰略戰役支援保障的主要力量,戰區任務部隊作戰能力的波動性很大程度上受此制約。對此,透過明確作戰保障力量的使命任務、指揮權限、體制機制與法規制度等約束激勵手段,主動圍繞作戰窗口匯聚作戰保障資源,實施一體化綜合高效保障,大力提升跨域協同作戰的體系效能。

調控作戰波動週期。聯指機關指揮諸軍兵種任務部隊對敵目標實施打擊行動,其行動前需進行戰備等級轉換、協同演練與機動展開至待機地域等。即使任務部隊打擊準備速度再快,打擊方法再熟練,打擊流程再優化,也需要在相應的時間週期內完成。同時指揮與戰鬥人員會受到作戰疲勞的影響,造成指揮決策效率、打擊效能大幅降低,極大限製作戰持續時間的延長,使得任務部隊作戰能力的波動週期更加明顯。而打擊行動結束後,作戰人員的補充休整,武器裝備的保養修理,作戰經驗教訓的總結檢討,均需要一個調整週期。指揮員需根據諸軍兵種作戰方式與武器裝備毀傷機理的不同,及時調控任務部隊打擊能力的變化波動週期,明確任務部隊的能戰閾值,盡可能減少作戰波動幹擾,從而大幅提升跨域協同作戰能力。

維持作戰窗口,突顯跨域協同作戰戰場管控的穩定性

戰區聯指應嚴格控制窗口作戰的規模強度,加強連動管控,嚴控作戰成本,提升作戰效益,積極塑造有利戰場態勢,避免作戰被動,防止將窗口作戰擴大成全面作戰。

加強戰場聯動管控。諸軍兵種戰場管控對塑造穩定的作戰態勢,加強多域空間管制,維持作戰窗口有重要作用。加強跨域協同作戰戰場空間的管控,包括陸地、海洋、空中、太空、網路等戰場空間,以及電磁頻譜與時空基準戰場空間等。其中,戰場管控區域重點劃分為各領域的作戰窗口區、戰略支撐區、警戒隔離區、前沿預警區以及友鄰支援區等,諸軍兵種任務部隊在指揮員及指揮機關的統一指揮控制下,釐清跨域協同管控的主次關係,明確管控規則、機製與紀律,採用多種管控方法,綜合用級管控法

全面評估作戰效果。指揮機構應緊貼作戰窗口跨域協同作戰方案計畫的製定流程,緊貼協同控制指令,緊貼任務部隊協同動作,緊貼協同保障實際,在窗口作戰過程中實施快速、高效、持續的績效與效力評估。圍繞作戰目的的達成,適應全局聯動的窗口作戰特點,綜合運用多種作戰評估工具和手段,集成系統評估的算法、數據與能力於一體,優化作戰效益主導、流程管理、資訊支撐、人在迴路的評估體系,形成作戰命令、行動、效果的相互匹配,績效與效力時效力時相互結合的評估模式,從而提高作戰後效性指標的準確性和時效性指標的準確性和效能性指標。從而提高作戰時效性指標。

主動塑造戰場新態。經過平時持續對敵軍事鬥爭準備、互動懾控以及作戰窗口內有限的打擊較量後,敵我雙方在作戰力量對比、部署和行動等方面形成的狀態和形勢表現相對穩定,從而形成塑造了新形勢下的戰場態勢,其發展趨勢也顯得可預測、可期望。指揮者及其指揮機關對本戰略方向的敵情、我情與戰場環境的特點規律不斷深度掌握,對未來鬥爭形勢的基本輪廓走向就有了清晰認識,就能明確今後的作戰目標舉措,打贏自信也會逐步增強,為確定下一輪的作戰窗口創造了條件。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2018-12/06/content_222435888.htm

Chinese Military Comprehensive Observations of Intelligent Warfare: Focus on Anti-AI Operations During Intelligent Warfare

中國軍隊智慧化戰爭綜合觀察:聚焦智慧化戰爭中的反人工智慧作戰

現代英語:

Focus on anti-AI operations in intelligent warfare

■ Kang Ruizhi and Li Shengjie

introduction

The extensive application of science and technology in the military field has caused profound changes in the form and mode of warfare. The military game between major powers is increasingly manifested in technological subversion and counter-subversion, surprise and counter-surprise, offset and counter-offset. To win the future intelligent war, we must not only continue to promote the deep transformation and application of artificial intelligence technology in the military field, but also strengthen dialectical thinking, adhere to asymmetric thinking, innovate and develop anti-artificial intelligence combat theories and tactics, and proactively plan anti-artificial intelligence technology research and weapons and equipment research and development to achieve “breaking intelligence” and win, and strive to seize the initiative in future wars.

Fully understand the inevitability of anti-AI operations

Comrade Mao Zedong pointed out in “On Contradiction”: “The law of contradiction of things, that is, the law of the unity of opposites, is the most fundamental law of dialectical materialism.” Looking at the history of the development of military technology and its combat application, it has always been full of the dialectical relationship between attack and defense. The phenomenon of mutual game and alternating suppression between the “spear” of technology and the “shield” of corresponding counter-technology is common.

In the era of cold weapons, people not only invented eighteen kinds of weapons such as “knives, guns, swords, and halberds”, but also created corresponding “helmets, armor, and shields”. In the era of hot weapons, the use of gunpowder greatly increased the attack distance and lethality, but also gave rise to technical and tactical innovations represented by defensive fortifications such as “trench” and “bastion”. In the mechanized era, tanks shined in World War II, and people’s development of technical and tactical related to “tank armor” and “anti-tank weapons” continues to this day. In the information age, “electronic attack” and “electronic protection” around information control have set off a new wave of enthusiasm, and electronic countermeasures forces have emerged. In addition, there are countless opposing concepts in the military field such as “missiles” and “anti-missiles”, “unmanned combat” and “anti-unmanned combat”.

It should be noted that “anti-AI warfare”, as the opposing concept of “intelligent warfare”, will also gradually emerge with the extensive and in-depth application of intelligent technology in the military field. Prospective research on the concepts, principles and technical and tactical implementation paths of anti-AI warfare is not only a need of the times for a comprehensive and dialectical understanding of intelligent warfare, but also an inevitable move to seize the high ground of future military competition and implement asymmetric warfare.

Scientific analysis of anti-AI combat methods and paths

At present, artificial intelligence technology is undergoing a leapfrog development stage from weak to strong, and from special to general. From the perspective of its underlying support, data, algorithms, and computing power are still its three key elements. Among them, data is the basic raw material for training and optimizing models, algorithms determine the strategic mechanism of data processing and problem solving, and computing power provides hardware support for complex calculations. Seeking ways to “break intelligence” from the perspective of the three elements of data, algorithms, and computing power is an important method and path for implementing anti-artificial intelligence operations.

Anti-data operations. Data is the raw material for artificial intelligence to achieve learning and reasoning. The quality and diversity of data have an important impact on the accuracy and generalization ability of the model. There are many examples in life where artificial intelligence models fail due to minor data changes. For example, the face recognition model in the mobile phone may not be able to accurately identify the identity of the person because of wearing glasses, changing hairstyle or changes in the brightness of the environment; the autonomous driving model may also misjudge the road conditions due to factors such as road conditions, road signs and weather. The basic principle of implementing anti-data operations is to mislead the training and learning process or judgment process of the military intelligent model by creating “polluted” data or changing the distribution characteristics of the data, and use the “difference” of the data to cause the “error” of the model, thereby reducing the effectiveness of the military intelligent model. Since artificial intelligence models can conduct comprehensive analysis and cross-verification of multi-source data, anti-data operations should pay more attention to packaging false data information from multi-dimensional features to enhance its “authenticity”. In recent years, foreign militaries have conducted relevant experimental verifications in this regard. For example, special materials coating, infrared transmitting device camouflage and other methods are used to simulate the optical and infrared characteristics of real weapon platforms and even the engine vibration effects to deceive intelligent intelligence processing models; in cyberspace, traffic data camouflage is implemented to enhance the silent operation capability of network attacks and reduce the effectiveness of network attack detection models.

Anti-algorithm warfare. The essence of an algorithm is to describe a strategy mechanism for solving a problem in computer language. Since this strategy mechanism has a limited scope of adaptation, it may fail when faced with a wide variety of real-world problems. A typical example is Lee Sedol’s “God’s Move” in the 2016 man-machine Go match. After reviewing and analyzing the game, many professional Go players said that the “God’s Move” was not actually valid, but it worked for AlphaGo. Silva, the developer of AlphaGo, explained that Lee Sedol had hit an unknown loophole in the computer; there are also analyses that it may be that “this move” contradicts the Go logic of AlphaGo or is beyond its strategy learning range, making it unable to cope. The basic principle of implementing anti-algorithm warfare is to conduct logical attacks or logical deceptions against loopholes in the algorithm strategy mechanism and weaknesses in the model architecture to reduce the effectiveness of the algorithm. Anti-algorithm warfare should be combined with specific combat actions to achieve “misleading deception” against the algorithm. For example, drone swarm reconnaissance operations often use reinforcement learning algorithm models to plan reconnaissance routes. To address this situation, irregular or abnormal actions can be created to make the reward mechanism in the reinforcement learning algorithm model less effective or invalid, thereby achieving the goal of reducing its reconnaissance and search efficiency.

Anti-computing power operations. The strength of computing power represents the speed of converting data processing into information advantage and decision-making advantage. Unlike anti-data operations and anti-algorithm operations, which are mainly based on soft confrontation, the confrontation method of anti-computing power operations is a combination of soft and hard. Hard destruction mainly refers to the attack on the enemy’s computing power center, computing network facilities, etc., by cutting off its computing power to make it difficult for its artificial intelligence model to function; soft confrontation focuses on increasing the enemy’s computing power cost, mainly by creating a “fog” of war and data noise. For example, during combat, a large number of meaningless data such as images, audio, video, and electromagnetic are generated to contain and consume the enemy’s computing power resources, reducing the effective effect rate of its computing power. In addition, attacks can also be carried out on weak links in defense such as the support environment and supporting construction of computing power. The computing power center consumes huge amounts of electricity, and attacking and destroying its power support system can also achieve the effect of anti-computing power operations.

Proactively plan the construction of anti-AI combat capabilities

In any war, the right tactics are used to win. In the face of intelligent warfare, while continuing to promote and improve intelligent combat capabilities, it is also necessary to strengthen preparations for anti-AI operations, proactively plan theoretical innovations, supporting technology development, and equipment platform construction related to anti-AI operations, and ensure the establishment of an intelligent combat system that is both offensive and defensive, and integrated with defense and counterattack.

Strengthen the innovation of anti-AI combat theory. Scientific military theory is combat effectiveness. Whether it is military strategic innovation, military scientific and technological innovation, or other military innovations, they are inseparable from theoretical guidance. We must persist in emancipating our minds, broadening our horizons, strengthening dialectical thinking, and using the innovation of anti-AI combat theory as a supplement and breakthrough to build a theoretical system of intelligent combat that supports and serves to win the battle. We must insist on you fight yours and I fight mine, strengthen asymmetric thinking, and provide scientific theoretical support for seizing battlefield control through in-depth research on anti-AI combat concepts, strategies and tactics, and effectively play the leading role of military theory. We must persist in the integration of theory and technology, enhance scientific and technological cognition, innovation, and application, open up the closed loop between anti-AI combat theory and technology, let the two complement and support each other, and achieve deep integration and benign interaction between theory and technology.

Focus on the accumulation of anti-AI military technology. Science and technology are important foundations for generating and improving combat effectiveness. Once some technologies achieve breakthroughs, the impact will be subversive, and may even fundamentally change the traditional war offense and defense pattern. At present, major countries in the world regard artificial intelligence as a subversive technology and have elevated the development of military intelligence to a national strategy. At the same time, some countries are actively conducting research on technologies related to anti-AI operations and exploring methods of AI confrontation, with the intention of reducing the effectiveness of the opponent’s military intelligence system. To this end, we must explore and follow up, strengthen the tracking and research of cutting-edge technologies, actively discover, promote, and stimulate the development of technologies such as intelligent confrontation that have anti-subversive effects, seize the technological advantage at the beginning of anti-AI operations, and prevent enemy technological raids; we must also carefully select, focus on maintaining sufficient scientific rationality and accurate judgment, break through the technical “fog”, and avoid falling into the opponent’s technical trap.

Research and develop weapons and equipment for anti-AI operations. Designing weapons and equipment is designing future wars. What kind of wars will be fought in the future will determine what kind of weapons and equipment will be developed. Anti-AI operations are an important part of intelligent warfare, and anti-AI weapons and equipment will also play an important role on future battlefields. When developing anti-AI weapons and equipment, we must first keep close to battlefield needs. Closely combine combat opponents, combat tasks, and combat environments, strengthen anti-AI combat research, accurately describe anti-AI combat scenarios, and ensure that the demand for anti-AI combat weapons and equipment is scientific, accurate, and reasonable. Secondly, we must establish a cost mindset. The latest local war practices show that combat cost control is an important factor affecting the outcome of future wars. Anti-AI operations focus on interfering with and confusing the enemy’s military intelligence system. Increasing the development of decoy weapon platforms is an effective way to reduce costs and increase efficiency. By using low-cost simulations to show false targets to deceive the enemy’s intelligent reconnaissance system, the “brain-breaking” effect can be extended and amplified, and efforts can be made to consume its high-value strike weapons such as precision-guided missiles. Finally, we must focus on upgrading while building, using, and upgrading. Intelligent technology is developing rapidly and is updated and iterated quickly. We must closely track the opponent’s cutting-edge military intelligent technology applications, understand their intelligent model algorithm architecture, and continuously promote the application and upgrading of the latest anti-artificial intelligence technology in weapon platforms to ensure its efficient use on the battlefield.

現代國語:

關注智慧化戰爭中的反人工智慧作戰

■康睿智 李聖傑

引言

科學技術在軍事領域的廣泛運用,引起戰爭形態和作戰方式的深刻變化,大國軍事博弈越來越表現為技術上的顛覆與反顛覆、突襲與反突襲、抵消與反抵消。打贏未來智慧化戰爭,既要不斷推進人工智慧技術在軍事領域的深度轉化應用,還應加強辯證思維、堅持非對稱思想,創新發展反人工智慧作戰理論和戰法,前瞻佈局反人工智慧技術研究和武器裝備研發,實現「破智」制勝,努力把握未來戰爭主動權。

充分認識反人工智慧作戰必然性

毛澤東同志在《矛盾論》中指出:「事物的矛盾法則,即對立統一的法則,是唯物辯證法的最根本的法則。」縱觀軍事技術發展及其作戰運用歷史,從來都充滿了攻與防的辯證關系,技術之「矛」與相應反制技術之「盾」之間相互博弈、交替壓制的現象屢見不鮮壓制的現象屢見不鮮。

在冷兵器時代,人們不僅發明出「刀、槍、劍、戟」等十八般兵器,與之相應的「盔、甲、盾」等也被創造出來。熱兵器時代,火藥的使用大幅提升了攻擊距離和殺傷力,但同時也催生了以「塹壕」「棱堡」等防禦工事為代表的技術戰術創新。機械化時代,坦克在二戰中大放異彩,人們對「坦克裝甲」與「反戰車武器」相關技戰術的開發延續至今。資訊時代,圍繞制資訊權的「電子攻擊」與「電子防護」又掀起一陣新的熱潮,電子對抗部隊應運而生。此外,「導彈」與「反導」、「無人作戰」與「反無人作戰」等軍事領域的對立概念不勝枚舉。

應當看到,「反人工智慧作戰」作為「智慧化作戰」的對立概念,也必將隨著智慧技術在軍事領域的廣泛深度運用而逐漸顯現。前瞻性研究反人工智慧作戰相關概念、原則及其技戰術實現路徑,既是全面辯證認識智慧化戰爭的時代需要,也是搶佔未來軍事競爭高地、實施非對稱作戰的必然之舉。

科學分析反人工智慧作戰方法路徑

目前,人工智慧技術正經歷由弱向強、由專用向通用的跨越式發展階段。從其底層支撐來看,數據、演算法、算力依舊是其三大關鍵要素。其中,數據是訓練和優化模型的基礎原料,演算法決定了數據處理與問題解決的策略機制,算力則為復雜計算提供硬體支撐。從數據、演算法、算力三個要素的角度尋求「破智」之道,是實施反人工智慧作戰的重要方法路徑。

反數據作戰。數據是人工智慧實現學習和推理的原始素材,數據的品質和多樣性對模型的準確度和泛化能力有重要影響。生活中因為微小數據變化而導致人工智慧模型失效的例子比比皆是。例如,手機中的人臉識別模型,可能會因人戴上眼鏡、改變發型或環境明暗變化等原因,而無法準確識別身份;自動駕駛模型也會因路況、路標及天氣等因素,產生對道路情況的誤判。實施反數據作戰,其基本原理是通過製造“污染”數據或改變數據的分佈特徵,來誤導軍事智能模型的訓練學習過程或判斷過程,用數據之“差”引發模型之“謬”,從而降低軍事智能模型的有效性。由於人工智慧模型能夠對多源數據進行綜合分析、交叉印證,反數據作戰應更加註重從多維特徵出發,包裝虛假數據信息,提升其「真實性」。近年來,外軍在這方面已經有相關實驗驗證。例如,利用特殊材料塗裝、紅外線發射裝置偽裝等方式,模擬真實武器平台光學、紅外特徵甚至是發動機震動效果,用以欺騙智能情報處理模型;在網絡空間,實施流量數據偽裝,以提升網絡攻擊靜默運行能力,降低網絡攻擊檢測模型的效果。

反演算法作戰。演算法的本質,是用計算機語言描述解決問題的策略機制。由於這種策略機制的適應範圍有限,在面對千差萬別的現實問題時可能會失效,一個典型例子就是2016年人機圍棋大戰中李世石的「神之一手」。不少職業圍棋選手復盤分析後表示,「神之一手」其實並不成立,但卻對「阿爾法狗」發揮了作用。 「阿爾法狗」開發者席爾瓦對此的解釋是,李世石點中了電腦不為人知的漏洞;還有分析稱,可能是「這一手」與「阿爾法狗」的圍棋邏輯相悖或不在其策略學習範圍內,導致其無法應對。實施反演算法作戰,其基本原理是針對演算法策略機制漏洞和模型架構弱點,進行邏輯攻擊或邏輯欺騙,以降低演算法有效性。反演算法作戰應與具體作戰行動結合,達成針對演算法的「誤導欺騙」。例如,無人機群偵察行動常採用強化學習演算法模型規劃偵察路徑,針對此情況,可透過製造無規則行動或反常行動,致使強化學習演算法模型中的獎勵機制降效或失效,從而達成降低其偵察搜尋效率的目的。

反算力作戰。算力的強弱代表著將資料處理轉換為資訊優勢和決策優勢的速度。不同於反數據作戰和反演算法作戰以軟對抗為主,反算力作戰的對抗方式是軟硬結合的。硬摧毀主要指對敵算力中心、計算網絡設施等實施的打擊,通過斷其算力的方式使其人工智能模型難以發揮作用;軟對抗著眼加大敵算力成本,主要以製造戰爭“迷霧”和數據噪聲為主。例如,作戰時大批量產生影像、音訊、影片、電磁等多類型的無意義數據,對敵算力資源進行牽制消耗,降低其算力的有效作用率。此外,也可對算力的支撐環境和配套建設等防備薄弱環節實施攻擊,算力中心電能消耗巨大,對其電力支援系統進行攻擊和摧毀,也可達到反算力作戰的效果。

前瞻佈局反人工智慧作戰能力建構

凡戰者,以正合,以奇勝。面對智慧化戰爭,持續推進提升智慧化作戰能力的同時,也需強化對反人工智慧作戰的未雨綢繆,前瞻佈局反人工智慧作戰相關理論創新、配套技術發展和裝備平台建設,確保建立攻防兼備、防反一體的智慧化作戰體系。

加強反人工智慧作戰理論創新。科學的軍事理論就是戰鬥力,軍事戰略創新也好,軍事科技創新也好,其他方面軍事創新也好,都離不開理論指導。要堅持解放思想、開闊視野,強化辯證思維,以反人工智慧作戰理論創新為補充和突破,建構支撐和服務打贏制勝的智慧化作戰理論體系。要堅持你打你的、我打我的,強化非對稱思想,通過對反人工智慧作戰概念、策略戰法等問題的深化研究,為奪取戰場制智權提供科學理論支撐,切實發揮軍事理論的先導作用。要堅持理技融合,增強科技認知力、創新力、運用力,打通反人工智慧作戰理論與技術之間的閉環迴路,讓兩者互相補充、互為支撐,實現理論與技術的深度融合和良性互動。

注重反人工智慧軍事技術累積。科學技術是產生和提高戰鬥力的重要基礎,有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變傳統的戰爭攻防格局。當前,世界各主要國家將人工智慧視為顛覆性技術,並將發展軍事智慧化上升為國家戰略。與此同時,也有國家積極進行反人工智慧作戰相關技術研究,探索人工智慧對抗方法,意圖降低對手軍事智慧系統效能。為此,既要探索跟進,加強對前沿技術的跟踪研究,積極發現、推動、催生智能對抗這類具有反顛覆作用的技術發展,在反人工智能作戰起步階段就搶佔技術先機,防敵技術突襲;還要精挑細選,注重保持足夠科學理性和準確判斷,破除技術“迷霧”,避免陷入對手技術陷阱。

研發反人工智慧作戰武器裝備。設計武器裝備就是設計未來戰爭,未來打什麼仗就發展什麼武器裝備。反人工智慧作戰是智慧化戰爭的重要組成部分,反人工智慧武器裝備也將在未來戰場上發揮重要作用。在研發反人工智慧作戰武器裝備時,首先要緊貼戰場需求。緊密結合作戰對手、作戰任務和作戰環境等,加強反人工智慧作戰研究,把反人工智慧作戰場景描述準確,確保反人工智慧作戰武器裝備需求論證科學、準確、合理。其次要樹立成本思維。最新局部戰爭實踐表明,作戰成本控制是影響未來戰爭勝負的重要因素。反人工智慧作戰重在對敵軍事智慧系統的干擾與迷惑,加大誘耗型武器平台研發是一種有效的降本增效方法。通過低成本模擬示假目標欺騙敵智能偵察系統,可將「破智」效應延伸放大,力爭消耗其精確制導導彈等高價值打擊武器。最後要注重邊建邊用邊升級。智慧技術發展速度快、更新迭代快,要緊密追蹤對手前沿軍事智慧技術應用,摸準其智慧模型演算法架構,不斷推動最新反人工智慧技術在武器平台中的運用升級,確保其戰場運用的高效能。

中國原創軍事資源:http://www.81.cn/ll_208543/16387159888.html

China’s Military Will Actively Respond to Challenges of Intelligent Warfare

中國軍隊將積極應對智慧化戰爭挑戰

現代英語:

In recent years, the wave of intelligence has surged and has been widely used in the military field. Major countries in the world attach great importance to the construction and application of military intelligence. Various unmanned combat platforms and intelligent weapons and equipment continue to appear and are equipped in the army for actual combat. In the face of the accelerated evolution of the intelligent form of war, only by seizing development opportunities, actively responding to challenges, accelerating the development of military intelligence, and accelerating the forging of intelligent combat capabilities can we seize the strategic initiative of intelligent warfare and win the future intelligent war.

Focusing on the creation of intelligent theory of war design

Military theory originates from combat practice and is used to guide combat practice. In the past, due to various restrictions, military theory research was mostly “looking back”, that is, summarizing combat cases to form combat guidance. With the rapid development of modern technology, especially disruptive technologies such as big data and cloud computing, combat theory research has broken away from the traditional follow-up and inductive reasoning mode and entered a new era of experimental warfare and designed warfare. New disruptive technologies in the field of intelligence have opened up new space for innovation in military theory. To this end, we should follow the idea of ​​”proposing concepts-demand analysis-innovative theories” to create the basic theory of intelligent warfare, and conduct in-depth research on the conceptual connotation, essential characteristics, war guidance, combat style, offensive and defensive actions, winning mechanism, characteristics and laws of intelligent warfare; innovate intelligent warfare methods and methods, give full play to the overall effectiveness of the intelligent combat system, strengthen the research on new intelligent combat methods and methods such as human-machine collaborative intelligent warfare, intelligent robot warfare, and intelligent unmanned cluster warfare, as well as the processes and methods of intelligent combat command and intelligent combat support; focus on effectively responding to intelligent combat threats and study strategies to defeat the enemy, such as intelligent blocking warfare and intelligent disruption warfare. These theories are the cornerstone of the intelligent warfare theory system. In the future, the war theory centered on strengthening “intellectual power” and competing for “algorithm-centric warfare” is very likely to replace the war theory centered on “network-centric warfare”.

Focusing on cross-domain interconnection and exploring intelligent forms

Military organization is the link between military technology and combat theory, and is the lever for exerting the overall combat effectiveness of the army. Modern combat emphasizes “elite combat under the support of a large system”, that is, with the support of the joint combat system, “elite front and strong back”, and organizes precise and multi-functional combat modules according to the idea of ​​”integrated design, modular organization, and combined use” to maximize the release of combat energy. The system organization of future intelligent warfare will form small, multi-functional, intelligent new joint combat forces of different types and purposes according to different levels of strategy, campaign, and tactics and different military arms, and emphasize the organization of “global” forces that can perform diversified combat tasks. Through intelligent combat networks, according to the requirements of reconfigurability, scalability and adaptability, single weapon platforms can be seamlessly linked and flexibly organized according to changes in the enemy situation, battlefield environment, etc., and then aggregate to form system advantages and form an integrated offensive and defensive combat module. The new intelligent combat force system is the comprehensive product of the development of artificial intelligence technology, the formation of new quality combat power and the evolution of war forms. It is the “trump card” to seize the initiative in the future all-domain combat space, the key to the construction of an integrated joint combat system, and a new growth point for the army’s combat effectiveness.

Focusing on the integration of man and machine to develop intelligent weapons

With the development of information technology and intelligent technology, whoever can win in the field of artificial intelligence will have the opportunity to take the initiative in future military confrontation. We should focus on the dual needs of intelligent war system operations and intelligent weapons and equipment system construction, do a good job in top-level design and overall coordination, compile a roadmap for the development of intelligent weapons and equipment systems, and develop intelligent unmanned combat equipment systems that match operations and support in a planned, focused, and step-by-step manner, covering land, sea, air, space, electricity, and network space fields, and establish a “human-led, machine-assisted, mixed formation, and joint action” manned-unmanned collaborative system to enhance the system integration of various military services and various intelligent weapons and equipment such as operations and support. Intelligent unmanned combat systems are a new trend in the development of future war equipment. Its core lies in aiming at the requirements of “zero casualties”, “full coverage”, and “fast response” in future wars, making full use of the development results of new theories, new materials, new processes, new energy, and new technologies, and continuously making breakthroughs in human-machine collaboration and autonomous action. We will build a three-level unmanned equipment system of strategy, campaign, and tactics, build a new type of intelligent unmanned division on a large scale, and realize the systematic collaborative operations of unmanned combat systems. At the same time, we should focus on the needs of unmanned and anti-unmanned, intelligent and anti-intelligent combat, and pay attention to the research and development of weapons and equipment systems for anti-enemy intelligent unmanned combat, to ensure that we can effectively engage in intelligent unmanned offensive and defensive confrontation with the enemy.

Focus on the ability to combine innovation and intelligent training

The professional division of modern warfare is becoming more and more detailed, and the entire combat system is becoming more and more complex, which promotes the transformation of combat from labor-intensive to technology-intensive. It requires that combatants must not only have good physical fitness, but also have good technical literacy and intellectual advantages to cope with the needs of different combat tasks, combat environments, and combat opponents. Military intelligence has put forward higher requirements on the quality of people. Correspondingly, intelligent military talents should have the characteristics of talent group, advanced skills, complex knowledge, innovative thinking, and intelligent decision-making. Intelligent warfare will be a war jointly implemented by man and machine, and combat forces with intelligent unmanned combat systems as the main body will play an increasingly important role. Only the effective combination of high-quality personnel and intelligent weapons can maximize the combat effectiveness. It is necessary to adapt to the new characteristics of the intelligent warfare force system, innovate and develop intelligent training concepts, and explore new models for the generation of intelligent warfare combat effectiveness. At present, artificial intelligence technology can create a more “real” weapon operation experience and battlefield environment, and can realistically interpret the combat process, assist decision-making and command, and evaluate combat concepts. To this end, we should adapt to the new characteristics of the intelligent war force system, focus on improving the self-command, self-control, and self-combat capabilities of the intelligent combat system, make full use of the characteristics of the intelligent system that can self-game and self-grow, form a training system, training environment, and training mechanism specifically for the intelligent combat system, strengthen the training of “people” to control the intelligent system, and explore a new training model with “machines” as the main object. In this way, the intelligent combat system can obtain a leap in combat capability through short-term autonomous intensive training to cope with the test of disorder, complexity, and uncertainty in the future combat environment.

Focus on improving the guarantee model with precision and efficiency

In the intelligent battlefield, the realization degree of comprehensive support for joint operations is an important factor that directly affects the generation of combat effectiveness of troops. The development of intelligent technology will inevitably trigger revolutionary changes in the construction of the joint combat support system and realize intelligent comprehensive support. Comprehensive support is the foundation of combat effectiveness and a bridge for transforming the country’s economic strength into the combat capability of troops. With the continuous maturity of Internet of Things technology, intelligent warfare places more emphasis on integrated support, precise support, and distribution support, that is, delivering to the required location at the required time according to the required quantity. Relying on the integrated support system, the dispersed support forces and resources will be organized according to functional modules such as supply, materials, maintenance, ammunition and management, so that they cover all areas of combat service support work. Relying on visualization technology, the current status of combat supply will be tracked and mastered throughout the process, and information control, reception and distribution of personnel and material flows will be carried out according to the real-time development of the battle situation, so as to achieve point-to-point direct support. By using technologies such as the Internet of Things, drones, smart cars, remote surgery, and 3D printing, we will upgrade and create an intelligent after-sales support system covering smart warehousing, smart delivery, smart maintenance, and smart medical care. This will enable automatic, rapid, and accurate replenishment of battlefield after-sales materials, rapid diagnosis and repair of equipment failures, and timely rescue of battlefield personnel. We will transform passive support into active service, and improve the overall efficiency and benefits of after-sales support.

Focusing on military and civilian dual-use to deepen intelligent integration

Breakthroughs in the core key technologies of artificial intelligence are the “national heavy weapons” to deal with the threats and challenges of intelligent warfare. The rapid development of intelligent technology has become an accelerator of military intelligence. In the information age, the boundaries between military and civilian technologies are becoming increasingly blurred, and their convertibility is becoming stronger and stronger. Actively establish a military-civilian collaborative innovation mechanism, continuously strengthen the driving force for the innovation and development of intelligent core technologies, build an open industry-university-research collaborative innovation system for the whole society, make forward-looking arrangements and support investments in core cutting-edge technologies such as artificial intelligence, give full play to the innovative power of the entire society, and promote the rapid and sustainable development of military intelligence. Accelerate the advancement of technological breakthroughs in key areas. We must focus on relevant key technology areas and break the technical bottlenecks that restrict the development of military intelligence. Strengthen research in the basic support areas of military intelligence, such as military big data and military Internet of Things; based on combat needs, strengthen research on intelligent application technologies in various combat elements, especially research on intelligent command decision-making, intelligent weapon platforms, intelligent battlefield perception, and intelligent confrontation technologies. The research and development of core key technologies of military intelligence should not only carry out cross-disciplinary and cross-domain collaborative innovation, but also make social intelligence and military intelligence development dock and track, learn from mature technologies and successful experiences in the development of social intelligence, and promote the rapid embedding of various artificial intelligence technologies into combat elements and combat processes. To accelerate the development of military intelligence, we should speed up the exploration of the training rules of relevant talents, make full use of military and local educational resources, increase the training of relevant talents, and provide solid intellectual support and talent guarantee for promoting the construction of military intelligence.

現代國語:

尹峻松 李明海 李始江  高  凱

中國軍網 國防部網 2020年2月6日 星期四

近年來,智慧化浪潮洶湧而來,並在軍事領域廣泛應用。世界主要國家高度重視軍事智慧化建設和應用,各種無人作戰平台和智慧化武器裝備不斷出現,並列裝部隊投入實戰。面對戰爭形態智能化加速演變,只有把握發展機遇,積極應對挑戰,加速軍事智能化發展,加速鍛造智能化作戰能力,才能奪取智能化戰爭戰略主動,從而打贏未來智能化戰爭。

著眼設計戰爭創建智慧化理論

軍事理論源自於作戰實踐,並用於指導作戰實踐。過去受各種條件的限制,軍事理論研究多是“向後看”,即總結戰例形成作戰指導。隨著現代技術,尤其是大數據、雲端運算等顛覆性技術的快速發展,使作戰理論研究擺脫了傳統的跟進式、歸納推理式的模式,走入了實驗戰爭、設計戰爭的新時代。智慧領域新的顛覆性技術,為軍事理論創新開啟了新的空間。為此,我們應依照「提出概念—需求分析—創新理論」的思路,創造智慧化戰爭基礎理論,深入研究智慧化戰爭的概念內涵、本質特徵、戰爭指導、作戰樣式、攻防行動、制勝機理、特徵規律等內容;創新智慧化作戰方式,充分發揮智慧化作戰方式體系整體效能,加強人機協同智慧作戰、智慧化機器人作戰、智慧無人集群作戰等新的智慧化作戰方式方法研究,以及智慧化作戰指揮、智慧化作戰保障的流程和方式方法等;著眼有效應對智慧化作戰威脅,研究克敵制勝之策,如智慧阻斷戰、智慧擾亂戰等。這些理論是智慧化戰爭理論體系的基石。未來以強化「制智權」爭奪「演算法中心戰」為核心的戰爭理論,極有可能取代以「網路中心戰」為核心的戰爭理論。

著眼於跨域互聯探索智慧化形態

軍隊組織是連結軍事技術和作戰理論的紐帶,是發揮軍隊整體作戰效能的槓桿。現代作戰更強調“大體系支撐下的精兵作戰”,即以聯合作戰體系為支撐,“精前台、強後台”,按照“一體化設計、模組化編組、組合式運用”的思路,編組精確多能的作戰模組,使得作戰能量得到最大限度釋放。未來智慧化戰爭的體制編制將按戰略、戰役、戰術不同層次和不同軍兵種,組成不同類型、不同用途的小型多能智能化新型聯合作戰部隊,更加強調編組能夠執行多樣化作戰任務的「全局化」部隊,透過智慧化的作戰網絡,依照可重構性、可擴充性和自適應要求,能夠依據敵情、戰場環境等態勢變化,將單一武器平台進行無縫連結、靈活編組,進而聚合形成體系優勢,形成攻防一體的作戰模組。智慧化新型作戰力量體係是人工智慧技術發展、新質戰鬥力形成與戰爭形態演變的綜合產物,是奪取未來全局作戰空間主動權的“殺手鐧”,是構成一體化聯合作戰體系的關鍵,是軍隊戰鬥力新的增長點。

著眼於人機融合發展智慧化武器

隨著資訊科技、智慧科技的發展,誰能在人工智慧領域中取勝,誰就有望擁有未來軍事對抗的主動權。應著眼於智慧化戰爭體係作戰和智慧化武器裝備體系建設的雙重需要,搞好頂層設計和整體統籌,編制智能化武器裝備體系發展路線圖,按計劃、有重點、分步驟地研製高中低端、大中小型、遠中近程,覆蓋陸、海、空、天、電和網路等太空領域,作戰與保障相配套的智慧化無人作戰裝備體系,建立「人為主導、機器協助、混合編組、聯合行動」的有人-無人協作體系,增強各軍兵種和作戰、保障等各種智能化武器裝備的體系融合度。智慧化無人作戰系統是未來戰爭裝備發展新趨勢。其核心在於瞄準未來戰爭「零傷亡」「全覆蓋」「快響應」等要求,充分運用新理論、新材料、新工藝、新能源、新技術發展成果,在人機協同和自主行動兩個方面不斷取得突破,構建戰略、戰役、戰術三級無人裝備體系,規模化打造新型智能無人之師,實現無人作戰系統的體系化協同作戰。同時,應著眼無人與反無人、智能與反智能作戰需要,注重研發反敵智能化無人作戰的武器裝備系統,確保能夠有效地與敵進行智能化無人攻防對抗。

著眼能力複合創新智能化訓練

現代戰爭專業分工越來越細、整個作戰體系越來越複雜,推動作戰由人力密集型向技術密集型轉變,要求參戰人員不僅要具備良好的身體素質,更要具備良好的技術素養和智力優勢,以應對不同作戰任務、作戰環境、作戰對手的需要。軍事智慧化對人的素質提出了更高要求,相應地智能化軍事人才應具有人才群體性、技能精尖性、知識複合性、思維創新性、決策智能性等特徵。智慧化戰爭將是人機結合共同實施的戰爭,以智慧化無人作戰系統為主體的作戰力量將發揮越來越重要的作用。高素質人員和智慧化武器的有效結合,才能最大程度地發揮作戰效能。必須適應智慧化戰爭力量體系新特點,創新發展智慧化訓練概念,探索智慧化戰爭戰鬥力生成新模式。目前,人工智慧技術能夠創造出更「真實」的武器操作體驗與戰場環境,能夠逼真演繹作戰進程、輔助決策指揮、評估作戰構想。為此,適應智慧化戰爭力量體系構成新特點,聚焦於智慧化作戰系統自我指揮、自我控制、自我作戰能力的提升,充分利用智慧化系統能夠自我博弈、自我成長的特點,形成專門針對智慧化作戰系統訓練體系、訓練環境和訓練機制,強化「人」駕馭智慧系統訓練,探索以「機」為主體對象的新型訓練模式。從而使智慧化作戰系統經過短期的自主強化訓練即可獲得作戰能力的躍升,以應對未來作戰環境無序性、複雜性、不確定性的考驗。

著眼精準高效能改善保障模式

智慧化戰場,聯合作戰綜合保障實現度是直接影響部隊戰鬥力生成的重要因素。智慧化技術的發展必將觸發聯合作戰保障體系建設的革命性變化,實現智慧化綜合保障。綜合保障是戰鬥力的基礎,是把國家經濟實力轉化為部隊作戰能力的橋樑。隨著物聯網技術的不斷成熟,智慧化戰爭更強調一體保障、精確保障、配送保障,也就是依照所需的量在需要的時間投放到需要的地點。依託一體化保障體系,將分散部署的保障力量和資源,按照補給、物資、維修、彈藥和管理等職能模組編組,使其涵蓋戰鬥勤務保障工作的各個領域,依托可視化技術,全程跟踪作戰供應現狀,根據戰況實時發展對人員流、物資流進行信息控制、接收和分發,實現點對點的直達保障。透過運用物聯網、無人機、智慧車、遠距手術、3D列印等技術,升級打造涵蓋智慧倉儲、智慧投送、智慧維修、智慧醫療等智慧後裝保障體系,實現戰場後裝物資自動快速精準補給、設備故障快速診斷與維修、戰場人員及時救護,變被動式為主動服務,提升後負配備保障整體效率和效益。

著眼軍民兼用深化智能化融合

人工智慧核心關鍵技術的突破,是應對智慧化戰爭威脅和挑戰的「國之重器」。智慧科技的快速發展,已成為軍事智慧化的加速器。資訊時代軍用技術和民用技術的界線越來越模糊,可轉換性越來越強。積極建立軍民協同創新機制,不斷強化智慧化核心技術創新發展原動力,建構全社會開放的產學研協同創新體系,對人工智慧等核心前沿技術前瞻佈局、扶持投資,充分發揮整個社會的創新力量,促進軍事智慧化快速永續發展。加快推進重點領域技術突破。要聚焦相關重點技術領域,打破限制軍事智慧化發展的技術瓶頸。加強軍事智慧化基礎支撐領域的研究,例如,軍用大數據、軍用物聯網等;從作戰需求出發,加強各個作戰要素方面的智慧化應用技術研究,尤其是智慧化指揮決策、智慧化武器平台、智慧化戰場感知、智慧化對抗技術等方面的研究。軍事智慧化核心關鍵技術的研發,不僅要進行跨領域、跨領域協作創新,還要使社會智慧化與軍事智慧化發展對接並軌,借鏡社會智慧發展的成熟技術與成功經驗,推動各類人工智慧技術快速嵌入作戰要素、作戰流程。加速軍事智慧化發展,應抓緊探索相關人才的培養規律,充分利用軍地教育資源,加大相關人才培養力度,為推進軍事智慧化建設提供堅實的智力支持與人才保障。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2020-02/06/content_25335288.htm

Comprehensively Promote Modernization of Chinese Military’s Organizational Form|How Chinese Military Services Implement Building Construction for War

全面推進軍隊組織形態現代化|中國軍隊如何實施戰爭建設

現代英語:

A brief analysis of how the military implements the principle of “building for war”

■ Wang Xueping, Xu Yan, Zhu Xiaomeng

Introduction

To implement the general principle of “the Military Commission is in charge of the overall situation, the theater is responsible for war, and the military is responsible for construction”, the military forces need to accurately grasp the interactive rules of war and construction, strengthen the connection with the theater, form a work pattern with clear rights and responsibilities, positive interaction, smooth and efficient, and focus the main tasks, main responsibilities, and main energy on building and managing the troops. Always adhere to the principle of leading construction with war, building for war, managing for war, and promoting war with construction, comprehensively improve the practical level of military training, and provide high-quality combat forces for the theater.

Get the coordinates of building for war

The coordinates are the epochal orientation of building for war. Only when the orientation is clear can construction be accelerated on track. Entering the new era, the firepower intensity, maneuvering speed, striking accuracy and intelligence of weapons and equipment have greatly increased, the battlefield space has been continuously expanded, the coupling of combat actions has become closer, and the battlefield situation has changed more rapidly. Wars have gradually shown the characteristics of platform combat, system support, tactical actions, and strategic support. In particular, the use of intelligent, stealth, and unmanned combat, as well as aerospace forces, new concept weapons, and high-efficiency destructive ammunition have fundamentally changed the concept of war time and space. The war form has accelerated the evolution from mechanized informationization to informationized intelligence, and intelligent warfare has begun to emerge. The military should focus on building the combat power of informationized warfare with intelligent characteristics, rather than the combat power of mechanized warfare. When the armed forces are building for war, they must focus on information warfare with intelligent characteristics, turn their attention to intelligent military reform, fully imagine the future war form, scale, intensity, spatial region, etc., and use the concept beyond the times to lead the vision of construction forward again and again; they must deeply study the winning mechanism, scientifically judge, and build the troops needed to win the future war, so as to be targeted.

Find the target of building for war

The target is not only a beacon of construction and development, but also a scale to test combat effectiveness. Only by setting the correct target can the armed forces be targeted when building for war, and lead the innovative development of weapons and equipment, system organization and combat theory without deformation or distortion. When the armed forces are building for war, they are not fighting ordinary opponents, but strong enemies in the world military game. This requires the military to build for war, and must lock on to strong enemies, insist on focusing all their attention on defeating strong enemies, and exert their efforts in all work to defeat strong enemies. Closely aiming at world-class standards, the focus should be on firmly grasping the characteristics of future combat systems and system confrontations, exploring standardized and modular construction issues, and forming an integrated and coordinated system combat capability; centering on the requirements of all-domain combat, focusing on tackling practical issues such as rapid response, long-range delivery, and integrated support, and strengthening rapid and mobile cross-domain action capabilities. Grasp the key of balancing powerful enemies, strengthen targeted research on powerful enemies, insist on focusing on what the enemy fears, develop what can balance powerful enemies, and prepare more, strive to have a chance of winning in war, have bargaining chips, and have confidence, focus on solving bottlenecks such as the construction of new military forces, the use of high-tech equipment, and information intelligence integration, and build a world-class military in an all-round way.

Innovation and construction as the forerunner of war

Theory is the forerunner of practice, and scientific military theory is combat effectiveness. Whoever can grasp the development pulse of future wars and possess superb war design capabilities can win the initiative in war and even the final victory. The military should not build for war, but should place war research and construction in a strategic position, carry out forward-looking, targeted, and reserve-oriented innovative research, propose new concepts, seek new breakthroughs, and form innovative theories that are contemporary, leading, and unique. The military should build for war, and must focus on the current practice and future development of war, clarify the vertical evolution axis, focus on shaping the future battlefield, changing the future combat rules, and promote the reshaping of concepts and the reconstruction of systems as soon as possible; focus on cutting-edge technology fields and future intelligent war design, and make efforts to achieve major breakthroughs in new technologies and new forms of war; focus on the continuous development of new concepts such as combat thinking, action patterns, and capability requirements, and form forward-looking thinking on future combat actions. At the same time, the new theories and concepts should be systematized and concretized, and become a “roadmap” for planning and designing force system construction, weapons and equipment development, military training transformation, and combat talent training. It is necessary to form a closed loop from practice to theory and then from theory to practice, so that military theoretical research can draw rich nutrients from practice, and advanced and mature theoretical results can enter the military decision-making and practice links to achieve a benign interaction between theory and practice.

Build a hard core for war

Science and technology are the most revolutionary force. Scientific and technological innovation has always been a race with time and speed. If you don’t work hard to innovate, you will fall behind and be beaten. If you innovate slowly, you will also fall behind and be beaten. Today, scientific and technological innovation has become the core strategy for many countries and militaries to seek advantages. The armed forces must pay close attention to the leading role of science and technology in building for war, integrate the most cutting-edge and even imagined future science and technology into the overall planning of construction, guide the basic direction of construction and development, and actively explore the path of scientific and technological innovation to fight a future war with future enemies with our future army; we must implement the strategy of strengthening the military with science and technology, demand combat effectiveness from scientific and technological innovation, vigorously cultivate new scientific and technological growth points, and focus on improving the contribution rate of scientific and technological innovation to the development of the military’s combat effectiveness; we must face the world’s scientific and technological frontiers, the main battlefields of the future, and the major needs of combat, accelerate the pace of innovation, and launch one project after planning and justifying it, especially to let disruptive technologies run ahead, strive to run at an accelerated pace, and win new advantages. Obviously, talent is the key to building a hard core of “grasping construction for war”. Talent is the most difficult preparation. Whoever has more high-quality new military talents can gain or gain more opportunities to win on the future battlefield. We must accurately grasp the characteristics and laws of modern warfare and the requirements of military transformation and construction, and cultivate what talents are needed for war and give priority to what talents are most in short supply, so that the supply side of talent training can be accurately matched with the needs of the future battlefield.

Lay a solid foundation for grasping construction for war

Fight hard and train hard. The root of “war” lies in “construction”, and the foundation of “construction” lies in “training”. Military training, as a regular and central task of the troops, is not only the basic way to generate and improve combat effectiveness, but also the most direct preparation for military struggle. In the new era, the war situation is accelerating towards informationization and intelligence, the military’s missions and tasks are constantly expanding, the level of informationization and intelligence of weapons and equipment is gradually improving, and the training support conditions are gradually improving. It is urgent for the military forces to consider the interaction of multiple fields such as the war situation, combat methods, weapons and equipment, and personnel quality, and analyze the impact of many factors such as known and unknown, possible and impossible, and possible and impossible, so as to comprehensively upgrade their actual combat capabilities. To build for war, we must focus on training troops against strong enemies, practice reconnaissance, coordination, equipment, and support around the development of the real enemy situation, practice real force deployment, practice fast battlefield construction, practice real equipment data, and practice strong support; we must aim at the latest enemy situation in multiple fields such as land, sea, air, space, and cyberspace, and carry out real, difficult, rigorous, and practical full-element training in scenario re-enactment, “fight” with strong enemies, and let the troops gain real skills and strengthen their strength in real confrontation; we must pursue extreme training, constantly challenge the limits of people and equipment, so that the physiological and psychological limits of officers and soldiers, the performance limits of equipment, and the combat effectiveness limits of the combination of people and weapons can be fully unleashed. Only by using “extremely difficult and extremely difficult” training to present all shortcomings and weaknesses and overcome them can we cope with the most brutal battlefield. Some tactics and strategies trained beyond the limit are often the key move and fatal blow to defeat the enemy in actual combat.

Do a good job in coupling construction for war

The fundamental purpose of war and construction is to be able to fight and win. It is necessary to accelerate the realization of functional coupling under the new system and work together to accelerate the generation of combat power. Building an army that adapts to future combat needs is, in the final analysis, to build a force that can complete future combat tasks and has corresponding combat capabilities. Combat requirements are the concrete manifestation of such mission requirements and capabilities. Building for war should be based on the needs of fulfilling missions and tasks, and should be designed in advance according to future combat military needs. Military construction should be guided by military needs, and combat needs should be continuously refined and dynamically adjusted to promote the coupling of war and construction. By strengthening the argumentation and research of future combat requirements and doing a good job in top-level planning, we can grasp the direction and focus of military construction in general, consider the comprehensive development of military weapons and equipment and personnel quality from a strategic height and long-term development, clarify the focus, adhere to the principle of doing what we should do and not doing what we should not do, concentrate on developing strategic and key projects, give priority to emergency operations, correctly handle the primary and secondary, urgent and slow, light and heavy aspects of military construction, firmly grasp the main and key ones, and promote coordinated and complementary military construction, scientific and reasonable, standardized and orderly, and sustainable development. Scientific combat effectiveness assessment can not only scientifically and specifically understand the composition and strength of one’s own combat effectiveness, but also help to take targeted measures to promote the coupling of building for war, timely discover and correct deficiencies in construction, truly realize the scientific development of military construction, intensive and efficient, and promote the advancement of combat effectiveness construction.

Strictly grasp the test of building for war

Whether a unit is well built and whether it has the ability to win a battle, it must ultimately be tested through military practice. After a comprehensive test of military practice, it is inevitable that the problems in the construction of the unit will be exposed, thereby promoting the army to make corresponding adjustments in the content, focus, and direction of construction. Through repeated tests of military practice, new requirements and new goals are constantly put forward for the construction of the troops, thus leading the construction of the troops to a higher stage. Make good use of network simulated confrontation tests. The informatization and intelligence of network simulated confrontation make the cognition, decision-making, feedback, correction, and action of simulated confrontation more close to actual combat, and revolutionize the process of military activities, thereby producing positive effects on weapons and equipment, command and control, force organization and other fields, thereby promoting the continuous leap of the combat effectiveness of the troops, and even giving birth to new war styles and changing the mechanism of winning wars. Make good use of on-site live-fire exercises. As a pre-practice for future wars, live-fire exercises can not only effectively test the actual combat capabilities of the troops, but more importantly, they can discover some weak links in the construction of the troops, optimize and improve them in a targeted manner, and obtain the maximum combat effectiveness return. Make good use of the test of war practice. The leading role of war practice in the construction of the troops is irreplaceable. Strict war practice can truly test which aspects of the construction of the troops are suitable and which are not suitable for future wars, and then correct the deviations and mistakes in many aspects such as construction guidance, construction priorities, and construction methods, so as to prepare for winning the next war.

現代國語:

淺析軍種如何落實抓建為戰

■王雪平  許炎 朱小萌

引言

貫徹「軍委管總、戰區主戰、軍種主建」總原則,軍種部隊需要準確把握戰與建互動規律,加強同戰區對接,形成權責清晰、正向互動、順暢高效的工作格局,把主要任務、主要職責、主要精力放在建設、管理部隊上,始終堅持以戰領建、抓建為戰、抓管為戰、以建促戰,全面提高軍事訓練實戰化水平,為戰區提供優質作戰力量。

把準抓建為戰的坐標

坐標是抓建為戰的時代方位,只有方位明晰,建設才能依軌加速。進入新時代,武器裝備的火力強度、機動速度、打擊精度、智慧化程度大幅躍升,戰場空間不斷拓展,作戰行動耦合更加緊密,戰場態勢變換更加迅速,戰爭逐漸呈現出平台作戰、體系支撐,戰術行動、戰略保障等特點,特別是智能化、隱身化、無人化作戰以及空天力量、新概念武器、高效毀傷彈藥的運用,從根本上改變了戰爭時空概念,戰爭形態加速由機械化信息化向資訊化智能化演變,智能化戰爭初見端倪。軍種主建,建的應是具有智慧化特徵的資訊化戰爭的戰鬥力,而不是機械化戰爭的戰鬥力。軍種抓建為戰,必須聚焦具有智慧化特徵的資訊化戰爭,把目光投向智能化軍事變革,充分設想未來戰爭形態、規模、強度、空間地域等,用超越時代的理念,引領建設視野向前再向前;必須深研製勝機理,科學研判,打贏未來戰爭需要什麼部隊就建設什麼部隊,做到有的放矢。

找準抓建為戰的靶標

靶標既是建設發展的燈塔,也是檢驗戰鬥力的天秤。只有樹立正確靶標,軍種抓建為戰才能有的放矢,不變形、不走樣地牽引武器裝備、體制編制和作戰理論創新發展。軍種抓建為戰,戰的不是一般對手,而是世界軍事賽場上的強敵。這就要求軍種抓建為戰,必然要鎖定強敵,堅持全部心思向打敗強敵聚焦、各項工作向戰勝強敵用勁。緊緊瞄準世界一流標準,重點要牢牢把握未來作戰體係與體系對抗的特徵,探索標準化、模塊化建設問題,形成一體聯動的體係作戰能力;圍繞全局作戰要求,聚力攻關快速反應、遠程投送、融合保障等現實課題,建強快速機動跨域行動能力。抓住制衡強敵這個關鍵,加強對強敵的針對性研究,堅持敵人怕什麼就重點建什麼,發展什麼能製衡強敵就多備幾手,力求做到戰有勝算、談有籌碼、懾有底氣,著力解決軍種新型力量建設、高新裝備運用、資訊智慧整合等瓶頸問題,全面建成世界一流軍隊。

創新抓建為戰的先導

理論是實踐的先導​​,科學的軍事理論就是戰鬥力。誰能把準未來戰爭的發展脈搏、擁有高超的戰爭設計能力,誰就能贏得戰爭的主動權甚至最後的勝利。軍種抓建為戰,不能走到哪算哪,要把研戰謀建擺在戰略位置,開展前瞻性、針對性、儲備性創新研究,提出新概念、尋找新突破,形成具有時代性、引領性、獨特性的創新理論。軍種抓建為戰,必須著眼於戰爭當前實踐和未來發展,理清縱向演進軸線,把重點放在塑造未來戰場、改變未來作戰規則研究上,盡快推動觀念重塑、體系重構;放在聚焦前沿技術領域、未來智慧化戰爭設計上,下氣力在戰爭新技術、新形態方面實現重大突破;放在持續推進作戰思想、行動樣式、能力需求等新概念的開發上,形成對未來作戰行動的前瞻性性思考。同時把新理論新概念體系化、具體化,成為規劃設計力量體系建構、武器裝備發展、軍事訓練轉變、作戰人才培養的「路線圖」。要形成從實踐到理論、再從理論到實踐的閉環迴路,讓軍事理論研究從實踐中汲取豐厚養分,讓先進成熟的理論成果進入軍事決策和實踐環節,實現理論和實踐良性互動。

打造抓建為戰的硬核

科技是最具革命性的力量。科技創新歷來是與時間與速度的賽跑。不努力創新就會落後挨打,創新速度慢了也同樣會落後挨打。今天,科技創新已成為許多國家和軍隊謀求優勢的核心戰略。軍種抓建為戰,必須高度關注科技引領作用的發揮,通過把當前最前沿甚至是設想中的未來科學技術融入建設整體規劃之中,引領建設發展的基本方向,積極探索用未來的我軍與未來的敵人打一場未來戰爭的科技創新路徑;必須落實科技強軍戰略,向科技創新要戰鬥力,大力培育新的科技增長點,著力提高科技創新對軍種戰鬥力發展的貢獻率;必鬚麵向世界科技前沿、面向未來主要戰場、面向作戰重大需求,加快創新速度,規劃論證好一項就要上馬一項,特別是要讓顛覆性技術跑在前面,力爭跑出加速度,贏得新優勢。顯然,打造抓建為戰的硬核,人才是關鍵。人才是最艱難的準備,誰擁有更多高素質新型軍事人才,誰就能在未來戰場上早獲得或多獲得一些致勝先機。要準確把握現代戰爭特點規律和軍種轉型建設要求,做到打仗需要什麼人才就培養什麼人才、什麼人才最緊缺就優先鍛造什麼人才,使人才培養供給側同未來戰場需求側精準對接。

夯實抓建為戰的根基

打仗硬碰硬,訓練實打實。 「戰」的根本在於「建」,「建」的基礎在於「練」。軍事訓練作為部隊的經常性中心工作,既是產生和提高戰鬥力的基本途徑,也是最直接的軍事鬥爭準備。新時代,戰爭形態加速向資訊化智能化發展,軍隊使命任務不斷拓展,武器裝備資訊化智能化水平逐步提高,訓練保障條件逐步改善,迫切需要軍種部隊從考慮戰爭形態、作戰方法、武器裝備、人員素質等多個領域的互動,到分析已知與未知、可能與不可能、可為與不可為等諸多因素的影響,全面升級實戰能力。抓建為戰,必須聚焦強敵練兵,圍繞真實敵情的進展,練偵察、練協同、練裝備、練保障,練實力量布勢、練快戰場建設、練真裝備數據、練強保障支撐;必須瞄準陸海空及太空、網絡空間等多領域最新敵情,在情景重現中開展真、難、嚴、實的全要素訓練,與強敵“過招”,讓部隊在真刀真槍對抗中礪實功、強實力;必須追求極限訓練,不斷向人和裝備極限沖擊,使官兵的生理心理極限、裝備的性能極限、人與武器結合的戰鬥力極限全面迸發。唯有用「逼到絕境、難到極致」的訓練呈現所有短板弱項,並加以克服,才能應對最殘酷的戰場。一些超越極限訓出的戰術戰法,往往是實戰中勝敵的關鍵一招、致命一擊。

搞好抓建為戰的耦合

戰與建,根本目的都是為了能打仗、打勝仗,必須在新體制下加速實現功能耦合,為加速戰鬥力生成共同發力。建設適應未來作戰需求的軍隊,說到底是建設能完成未來作戰任務、具備相應作戰能力的部隊,作戰需求就是這種任務需求和能力的具體體現。抓建為戰應根據履行使命任務需要,針對未來作戰軍事需求超前設計,以軍事需求牽引軍隊各項建設,不斷細化和動態化調整作戰需求促進戰建耦合。透過加強未來作戰需求論證研究搞好頂層規劃,從總體上把握軍隊建設的方向和重點,從戰略高度和長遠發展考慮軍隊武器裝備、人員素質的全面發展,明確重點,堅持有所為有所不為,集中力量發展戰略性、關鍵性項目,優先保障應急作戰,正確處理軍隊建設的主與次、急與緩、輕與重,緊緊抓住主要的、關鍵的,推動軍隊建設協調配套,科學合理,規範有序,持續發展。科學的戰鬥力評估不僅能夠科學具體地認識己方戰鬥力的組成及其強弱,還有利於採取針對性措施促進抓建為戰的耦合,及時發現並糾正建設中的不足,真正實現軍隊建設的科學發展、集約高效,促進戰鬥力建設上台階。

嚴格抓建為戰的檢驗

一支部隊建設得好不好,是不是已經具備打勝仗的能力,最終還是要通過軍事實踐來檢驗。經過軍事實踐的全面檢驗,必然揭露部隊建設上存在的問題,從而推動軍隊在建設內容、重點、方向上做出相應的調整。通過這樣一次次軍事實踐的反復檢驗,不斷地給部隊建設提出新要求新目標,由此引領部隊建設向著更高的階段發展。用好網絡模擬對抗檢驗。網絡模擬對抗資訊化智慧化,使得模擬對抗的認知、決策、回饋、修正、行動等更趨於實戰,革命性地改造軍事活動流程,進而對武器裝備、指揮控制、力量編組等多個領域產生積極作用,由此促進部隊戰鬥力不斷躍升,甚至催生新的戰爭樣式、改變戰爭制勝機理。用好現地實兵演習檢驗。作為未來戰爭的預實踐,實兵演習不僅能有效檢驗部隊的實戰能力,更為重要的,是能發現部隊建設中存在的一些薄弱環節,有針對性地加以優化改進,獲得最大限度的戰鬥力回報。用好戰爭實踐檢驗。戰爭實踐對部隊建設的引領作用不可取代。嚴酷的戰爭實踐,可以真正檢驗部隊建設哪些適合、哪些不適合未來戰爭,進而修正在建設指導、建設重點、建設方法等諸多方面的偏差和失誤,為打贏下一場戰爭做好準備。

中國原創軍事資源:https://www.81.cn/ll_208543/9904888.html