Category Archives: Drone Warfare

Functional Orientation of the Modern Combat System with Chinese Characteristics

中國特色現代作戰體系的功能定位

2018年08月14日 xx:xx 来源:解放军报

現代英語:

Functional Orientation of the Modern Combat System with Chinese Characteristics

  Key Points

  ● The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also represent the historical position of building a modern combat system with Chinese characteristics.

  ● Traditional and non-traditional security threats are intertwined, and various strategic directions and security fields face diverse real and potential threats of local wars. This requires our military to abandon old models such as linear warfare, traditional ground warfare, and homeland defense warfare, and accelerate the transformation to joint operations and all-domain operations.

  The report to the 19th National Congress of the Communist Party of China proposed that, standing at a new historical starting point and facing the demands of building a strong country and a strong military, “we should build a modern combat system with Chinese characteristics.” This is a strategic choice to adapt to the rapidly evolving nature of warfare, to thoroughly implement Xi Jinping’s thought on strengthening the military, to comprehensively advance the modernization of national defense and the armed forces, and to aim at building a world-class military. Among these choices, the grasp of the functional orientation of the modern combat system with Chinese characteristics greatly influences the goals, direction, and quality of its construction.

  Seize the opportunities of the times and take the integrated development of mechanization, informatization and intelligentization as the historical orientation.

  The combat system is the material foundation of war and is closely related to the form of warfare. In today’s world, a new round of technological and industrial revolution is brewing and emerging. Original and disruptive breakthroughs in some major scientific problems are opening up new frontiers and directions, prompting human society to rapidly transform towards intelligence, and accelerating the evolution of warfare towards intelligence. Currently, our military is in a stage of integrated mechanization and informatization development. Mechanization is not yet complete, informatization is being deeply advanced, and we are facing both opportunities and challenges brought about by the intelligent military revolution. The new era provides us with a rare historical opportunity to achieve innovative breakthroughs and rapid development, and also provides a rare historical opportunity for our military’s combat system construction to achieve generational leaps and leapfrog development.

  A new era and a new starting point require establishing a new coordinate system. The coexistence, iterative development, dynamic evolution, and integrated development of multiple generations of mechanization, informatization, and intelligentization constitute the historical context of national defense and military construction in the new era, and also the historical position of building a modern combat system with Chinese characteristics. We should accurately grasp the historical process of the evolution of warfare, the historical stage of the combined development of mechanization and informatization, and the historical opportunities brought about by intelligent warfare. We must prioritize the development of military intelligence, using intelligence to lead and drive mechanization and informatization, coordinating mechanization and informatization within the overall framework of intelligent construction, and completing the tasks of mechanization and informatization development within the process of intelligentization. We must focus on top-level design for military intelligence development, researching and formulating a strategic outline and roadmap for military intelligence development, clarifying key areas, core technologies, key projects, and steps for intelligent development, and accelerating the construction of a military intelligent combat system. We must achieve significant progress as soon as possible in key technologies such as deep learning, cross-domain integration, human-machine collaboration, autonomous control, and neural networks, improving the ability to materialize advanced scientific and technological forces into advanced weaponry and equipment, and providing material conditions for building a modern combat system.

  Emphasizing system-on-system confrontation, with the development of joint operations and all-domain operations capabilities as the core indicators.

  Information-based local wars are characterized by integrated joint operations as their basic form, with network support, information dominance, and system-on-system confrontation as their main features. The combat capability generation model is shifting towards a network-based information system. Currently and for some time to come, my country’s geostrategic environment remains complex, with traditional and non-traditional security threats intertwined. Various strategic directions and security domains face diverse real and potential threats of local wars. Simultaneously, with the expansion of national interests, the security of overseas interests is becoming increasingly prominent, requiring the PLA to abandon old models such as linear warfare, traditional ground warfare, and territorial defense warfare, and accelerate its transformation towards joint operations and all-domain operations.

  The report of the 19th CPC National Congress pointed out that “enhancing joint operational capabilities and all-domain operational capabilities based on network information systems” is a new summary of the PLA’s operational capabilities in the new era and a core indicator for building a modern operational system with Chinese characteristics. We should actively explore the characteristics, laws, and winning mechanisms of modern warfare, and proactively design future operational models, force application methods, and command and coordination procedures to provide advanced theoretical support for building a modern operational system with Chinese characteristics. Following the new pattern of the Central Military Commission exercising overall command, theater commands focusing on combat operations, and services focusing on force development, we should adapt to the new joint operational command system, the reform of the military’s size, structure, and force composition, highlighting the network information system as the core support, and building an operational system capable of generating powerful joint operational capabilities to fully leverage the overall power of the various services and branches. With a view to properly addressing various strategic directions and traditional and non-traditional security threats, ensuring the PLA can reliably carry out various operational missions, we should build an operational system capable of generating powerful all-domain operational capabilities, achieving overall linkage across multiple battlefields and domains, including land, sea, air, space, and cyberspace.

  Focusing on real threats, the strategic objective is to gain an asymmetric advantage over the enemy.

  The world today is at a new turning point in the international situation, with strategic competition among major powers taking on new forms and the struggle for dominance in the international and regional order becoming unprecedentedly fierce. The specter of hegemonism and power politics lingers, and some countries are intensifying their efforts to guard against and contain China. my country’s geostrategic environment is becoming increasingly complex, with multiple destabilizing factors, facing multi-directional security pressures, and an increasingly complex maritime security environment. All of these factors contribute to increasing the dangers and challenges to national security.

  Effectively responding to real military security threats is a crucial strategic task in our military preparedness and a strategic direction for building a modern combat system with Chinese characteristics. We should focus on keeping up with technological advancements, vigorously developing advanced equipment, and striving to avoid creating new technological gaps with potential adversaries. This will provide solid material support for the construction of our combat system. Simultaneously, we must emphasize leveraging the PLA’s long-standing principles of flexibility, mobility, and independent operation, capitalizing on our strengths and avoiding weaknesses, targeting the enemy’s vulnerabilities and weaknesses. We should not simply compete with the best in high-tech fields, but rather focus on deterring the enemy and preventing war. We must accelerate the development of asymmetric counterbalancing mechanisms, strengthen the construction of conventional strategic means, new concepts and mechanisms, and strategic deterrence in new domains, supporting the formation of a new combat system with new deterrent and combat capabilities. We must not fear direct confrontation, preparing for the most complex and difficult situations, and building a combat system capable of providing multiple means, forces, and methods to address diverse war threats. This will ensure that, in the event of conflict, the comprehensive effectiveness of the combat system is fully utilized, guaranteeing victory in battle and deterring further war through war.

  Promoting military-civilian integration and using the national strategic system to support winning the people’s war in the new era is a fundamental requirement.

  The deepest roots of the power of war lie within the people. The concept of people’s war is the magic weapon for our army to defeat the enemy. Modern warfare is a comprehensive confrontation of the combined strength of opposing sides, involving political, economic, military, technological, and cultural fronts. Various armed forces are closely integrated, and various forms of struggle are coordinated with each other. The role and status of civilian technology and civilian forces in war are increasingly important, which further requires integrating the national defense system into the national economic and social system and striving to win the people’s war in the new era.

  Leveraging the power of military-civilian integration to support the fight against people’s war in the new era with the national strategic system is a fundamental requirement for building a modern combat system with Chinese characteristics. We must deeply implement the national strategy of military-civilian integration, deeply integrate the construction of our military’s combat system into the national strategic system, utilize national resources and overall strength to achieve a continuous leap in combat effectiveness, and maximize the overall power of people’s war. We must focus on strengthening military-civilian integration in emerging strategic fields, actively seize the commanding heights of future military competition, and continuously create new advantages in people’s war. We must incorporate the military innovation system into the national innovation system, strengthen demand alignment and collaborative innovation, enhance independent innovation, original innovation, and integrated innovation capabilities, and proactively discover, cultivate, and utilize strategic, disruptive, and cutting-edge technologies to provide advanced technological support for building a modern combat system. We must also focus on the in-depth exploitation of civilian resources, strengthen the integration of various resources that can serve national defense and military construction, prevent duplication and waste, self-contained systems, and closed operations, and maximize the incubation effect of civilian resources on the construction of a modern combat system.

  (Author’s affiliation: Institute of War Studies, Academy of Military Sciences)

Zhang Qianyi

現代國語:

中國特色現代作戰體系的功能取向

要點提示

●機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。

●傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告提出,站在新的歷史起點上,面對強國強軍的時代要求,“構建中國特色現代作戰體系”。這是適應戰爭形態加速演變的時代要求,深入貫徹習近平強軍思想、全面推進國防和軍隊現代化、瞄準建設世界一流軍隊的戰略抉擇。其中,對中國特色現代作戰體系功能取向的把握,極大影響著體系構建的目標、方向和質量。

抓住時代機遇,以機械化信息化智能化融合發展為歷史方位

作戰體係是戰爭的物質基礎,與戰爭形態緊密關聯。當今世界,新一輪科技革命和產業革命正在孕育興起,一些重大科學問題的原創性顛覆性突破正在開闢新前沿新方向,促使人類社會向智能化快速轉型,戰爭形態向智能化加速演變。當前,我軍正處於機械化信息化複合發展階段,機械化尚未完成、信息化深入推進,又面臨智能化軍事革命帶來的機遇和挑戰。新時代為我們實現創新超越、快速發展提供了難得歷史機遇,也為我軍作戰體系建設實現跨代超越、彎道超車提供了難得歷史機遇。

新時代新起點,需要確立新的坐標系。機械化信息化智能化多代並存、迭代孕育、動態演進、融合發展,是新時代國防和軍隊建設的時代背景,也是中國特色現代作戰體系建設的歷史方位。應準確把握戰爭形態演變的歷史進程,準確把握機械化信息化複合發展的歷史階段,準確把握智能化戰爭帶來的歷史機遇,堅持把軍事智能化建設擺在優先發展位置,以智能化引領帶動機械化信息化,在智能化建設全局中統籌機械化信息化,在智能化進程中完成機械化信息化發展的任務;注重搞好軍事智能化發展的頂層設計,研究制定軍事智能化發展戰略綱要和路線圖,明確智能化發展的關鍵領域、核心技術、重點項目和步驟措施等,加快軍事智能化作戰體系建設進程;盡快在深度學習、跨界融合、人機協同、自主操控、神經網絡等關鍵技術上取得重大進展,提高先進科技力物化為先進武器裝備的能力,為構建現代作戰體系提供物質條件。

突出體係對抗,以打造聯合作戰和全域作戰能力為核心指標

信息化局部戰爭,一體化聯合作戰成為基本形式,網絡支撐、信息主導、體係對抗成為主要特徵,戰鬥力生成模式向基於網絡信息體系轉變。當前及今後一個時期,我國地緣戰略環境仍然複雜,傳統和非傳統安全威脅相互交織,各戰略方向、各安全領域面臨多樣化現實和潛在的局部戰爭威脅,同時隨著國家利益的拓展,海外利益安全問題日益凸顯,要求我軍必須摒棄平麵線式戰、傳統地面戰、國土防禦戰等舊模式,加快向聯合作戰、全域作戰轉變。

黨的十九大報告指出,“提高基於網絡信息體系的聯合作戰能力、全域作戰能力”,這是對新時代我軍作戰能力的新概括,也是中國特色現代作戰體系建設的核心指標。應積極探索現代戰爭特點規律和製勝機理,前瞻設計未來作戰行動模式、力量運用方式、指揮協同程式等,為構建中國特色現代作戰體系提供先進理論支撐;按照軍委管總、戰區主戰、軍種主建的新格局,適應聯合作戰指揮新體制、軍隊規模結構和力量編成改革,突出網絡信息體系這個核心支撐,打造能夠生成強大聯合作戰能力的作戰體系,充分發揮諸軍兵種作戰力量整體威力;著眼妥善應對各戰略方向、傳統和非傳統安全威脅,確保我軍可靠遂行各種作戰任務,打造能夠生成強大全域作戰能力的作戰體系,實現陸海空天電網多維戰場、多域戰場的整體聯動。

著眼現實威脅,以形成對敵非對稱作戰優勢為戰略指向

當今世界,國際形勢正處在新的轉折點上,大國戰略博弈呈現新態勢,圍繞國際和地區秩序主導權的鬥爭空前激烈。霸權主義和強權政治陰魂不散,一些國家加緊對華防範和遏制。我國地緣戰略環境日趨複雜,存在多重不穩定因素,面對多方向安全壓力,我海上安全環境日趨複雜等,這些都使得國家安全面臨的危險和挑戰增多。

有效應對現實軍事安全威脅,是我軍事鬥爭準備的重要戰略任務,也是中國特色現代作戰體系建設的戰略指向。應注重技術跟進,大力研發先進裝備,力避與潛在對手拉開新的技術代差,為作戰體系建設提供堅實物質支撐,同時注重發揮我軍歷來堅持的靈活機動、自主作戰原則,揚長避短,擊敵弱項、軟肋,不單純在高科技領域“與龍王比寶”,著眼懾敵止戰,加快發展非對稱制衡手段,加強常規戰略手段、新概念新機理和新型領域戰略威懾手段建設,支撐形成具有新質威懾與實戰能力的新型作戰體系;不懼直面過招,立足最複雜最困難情況,構建能夠提供多種手段、多種力量、多種方式應對多樣化戰爭威脅的作戰體系,確保一旦有事,充分發揮作戰體係綜合效能,確保戰而勝之、以戰止戰。

推進軍民融合,以國家戰略體系支撐打贏新時代人民戰爭為根本要求

戰爭偉力之最深厚根源存在於民眾之中。人民戰爭思想是我軍克敵制勝的法寶。現代戰爭是敵對雙方綜合實力的整體對抗,涉及政治、經濟、軍事、科技、文化等各條戰線,各種武裝力量緊密結合、各種鬥爭形式相互配合,民用技術和民間力量在戰爭中的地位作用日益提升,更加要求把國防體系融入國家經濟社會體系,努力打贏新時代人民戰爭。

發揮軍民融合時代偉力,以國家戰略體系支撐打贏新時代人民戰爭,是中國特色現代作戰體系建設的根本要求。要深入實施軍民融合發展國家戰略,推動我軍作戰體系建設深度融入國家戰略體系,利用國家資源和整體力量實現戰鬥力的持續躍升,最大限度發揮人民戰爭的整體威力;注重加強在新興戰略領域的軍民融合發展,積極搶占未來軍事競爭的製高點,不斷創造人民戰爭的新優勢;把軍事創新體系納入國家創新體系之中,加強需求對接、協同創新,增強自主創新、原始創新、集成創新能力,主動發現、培育和運用戰略性顛覆性前沿性技術,為構建現代作戰體系提供先進技術支撐;抓好民用資源深度挖掘,強化可服務於國防和軍隊建設的各種資源整合力度,防止重複浪費、自成體系、封閉運行,最大限度發揮民用資源對現代作戰體系構建的孵化效應。

(作者單位:軍事科學院戰爭研究院)

張謙一

中國原創軍事資源:https://www.chinanews.com.cn/mil/2018/08-14/8599617888.shtml

Chinese Military: Drones Possessing Swarm Intelligence What Combat Advantages Exist?

中國軍方:具備群體智慧的無人機有哪些作戰優勢?

現代英語:

A drone is an unmanned aerial vehicle that uses radio remote control equipment or autonomous control devices to control its flight.

Compared with manned aircraft, unmanned aircraft have advantages such as greater flexibility and higher cost-effectiveness in combat.

However, in system-of-systems warfare, due to the complex battlefield environment, dispersed resource allocation, and multi-dimensional combat styles, a single UAV is difficult to perform diverse combat missions.

By leveraging swarm intelligence to conduct intelligent drone swarm operations, the numerical advantage of drones can be transformed into an asymmetric warfare advantage.

Intelligent combat style of drone swarm

In recent years, unmanned aerial vehicle (UAV) swarms have played an increasingly important role in combat missions such as collaborative detection, all-domain strikes, and tactical deception, becoming one of the key development directions in the military field.

Based on the current level of collective intelligence and combat style of drone swarms, they can be divided into three types:

—Pseudo-swarm. This is a type of “swarm” where multiple drones are controlled separately by ground personnel. While the drones appear to be in a swarm, they are actually independent and do not interact or coordinate with each other.

In 2016, the U.S. Navy conducted hundreds of simulation tests of drone swarm attacks against the Aegis defense system. The results showed that when a swarm of eight drones launched a penetration attack, the defense system struggled to allocate firepower effectively, with an average of about 2.8 drones managing to evade the interception system and carry out the attack each time.

In the above cases, the drones appear to be in a “swarm” but lack collective intelligence; their combat capabilities are only enhanced by the numerical advantage brought about by the aggregation of multiple drones.

—Centralized Cluster. This is a clustering approach where a ground command center acts as the cluster’s brain, and drones operate independently, all under the unified command and control of this brain. In November 2020, the U.S. military conducted a two-hour autonomous, coordinated flight test using ground-based software to drive a cluster of Avenger drones. This project utilizes software to determine the optimal combat strategy, improving the flexibility and survivability of existing unmanned combat forces.

Centralized clusters have low levels of intelligence and face potential problems such as single-chain failures and poor reliability. When the communication link between the ground command center and the cluster is damaged, the entire cluster will lose its combat capability due to loss of control.

In 2018, Syrian opposition forces deployed a concentrated swarm of 13 fixed-wing drones to harass and attack a Russian airbase. Russia responded using electronic warfare combined with firepower to intercept the drones, ultimately capturing six and shooting down seven.

—Distributed Cluster. This is a cluster approach where there is no central controller, and drones collaborate and cooperate to execute combat missions through information sharing. This approach has advantages such as decentralization, low complexity, and self-organization, greatly improving the ability to perform complex tasks.

In 2017, the United States used three F/A-18 fighter jets to launch 103 drones, forming a distributed swarm for flight tests. The tests demonstrated functions such as aircraft launch and formation changes, achieving the expected combat results.

Compared to centralized clusters, distributed clusters possess a distributed architecture, and inter-machine information interaction provides the necessary conditions for the emergence of swarm intelligence. Unmanned aerial vehicle (UAV) swarms with swarm intelligence exhibit high autonomy and good security, representing a major development direction for swarm warfare.

Empowering clusters with intelligence by leveraging group behavior characteristics

In the magnificent natural world, there exist biological communities such as schools of fish, herds of mammals, swarms of bees, and flocks of birds. These individual organisms are fragile, but the groups they form through interaction and cooperation possess stronger abilities in foraging, seeking advantage and avoiding harm, and migration.

Biological communities achieve efficient collaboration through simple communication, exhibiting behavioral characteristics such as collaborative aggregation, target attraction, and collision avoidance and repulsion, thus achieving a win-win cluster effect.

This macroscopic intelligent behavior, exhibited by social organisms through cooperation, is known as swarm intelligence. Swarm intelligence is an important research area in artificial intelligence.

By combining unmanned aerial vehicle (UAV) system technology with research on the theory and methods of swarm intelligence, it is hoped that UAV swarms with more autonomous intelligence characteristics can be explored, thus forming advanced swarm intelligence.

—Based on the characteristics of collaborative aggregation behavior, distributed operation of UAV swarms is achieved. In nature, schools of fish foraging for food can gather through local information exchange to improve foraging efficiency. When encountering predators, they can quickly disperse and escape, distracting the predators and reducing the risk of being preyed upon. Similarly, the flight control of UAV swarms, through information exchange between adjacent UAVs, designs a UAV collaborative control protocol, enabling each member in the swarm to reach a “consensus” on global consistency, directional convergence, and desired formation, truly realizing distributed operation of the swarm. Just like the phenomenon of wave motion, information is transmitted rapidly and accurately between them, thereby achieving consistency in action.

—Utilizing target attraction behavior, drone swarms can achieve formation tracking. Just as a wolf pack, led by an alpha wolf, can divide tasks and cooperate closely to hunt prey, with the alpha wolf tracking the target and issuing commands, while the pack members perform different roles and work together efficiently to complete the hunt, drone swarms can follow a similar model. The alpha drone, with its strong detection, identification, and analysis capabilities, is responsible for tracking the target and generating its trajectory. Leveraging its high performance and situational awareness, it achieves real-time target tracking. Follower drones not only track the alpha drone’s trajectory in real time but also form the necessary swarm configuration through inter-drone collaboration, improving payload distribution efficiency and enhancing mission execution.

—Based on collision avoidance and repulsion behavior characteristics, intelligent collision avoidance is achieved for UAV swarms. Intelligent collision avoidance is a fundamental requirement for ensuring the flight safety and successful execution of missions by UAV swarms during combat operations. “Intelligent collision avoidance for swarms” aims to enable individual UAVs to avoid obstacles in the battlefield environment in real time, while preventing collisions between swarm members. To achieve this, an “intelligent repulsive potential field” can be constructed between UAVs and between the swarm and obstacles: when the relative distance is too small, a collision avoidance and repulsion mechanism is triggered, effectively coping with complex environments and combat modes.

Intelligent clusters lead to a new style of system-of-systems warfare

Judging from the development trends of the world’s military powers, with the application of information, unmanned and intelligent technologies on the battlefield, the ability to conduct systematic combat will become an important factor in determining the success or failure of a war.

The development of swarm intelligence technology will greatly promote the transformation of unmanned aerial vehicle (UAV) swarm warfare, and is an important means for future militaries to adapt to complex battlefield environments and enhance their combat capabilities. UAV swarms will revolutionize traditional warfare and become a new type of combat style for winning future battlefields.

Unmanned aerial vehicle (UAV) swarms possessing a certain degree of coordination and autonomy can carry different types of payloads and perform diverse combat missions. Experimental results from UAV swarm collaboration verification projects such as the US’s “Gremlins” and “Partridges” demonstrate that miniaturized, low-cost UAV swarms are expected to achieve collaborative capabilities in detection, perception, identification, communication, and attack in the short term through inter-UAV information sharing.

In light of this, major military powers continue to develop unmanned aerial vehicle (UAV) swarm warfare capabilities, hoping to use systematic, low-cost UAV swarms to harass relatively isolated, high-value military targets and leverage the advantages of asymmetric warfare.

With the continuous upgrading of artificial intelligence technology, drone swarms with collective intelligence can leverage their advantages of strong environmental adaptability, flexible deployment, functional integration, small size and high efficiency to achieve intelligent networking, collaborative combat and strategic confrontation, implement all-round penetration against defense systems, form a “reconnaissance-resistance-strike-assessment” combat closed loop, and defeat the enemy in future multi-domain and multi-dimensional systemic warfare.

現代國語:

無人機蜂群作戰系統示意圖。

無人機是一種利用無線電遙控設備或者自主控制裝置操縱飛行狀態的無人飛行器。

與有人機相比,無人機在作戰中具備靈活性強、作戰效費比高等優勢。

然而,在體系化作戰中,由於戰場環境復雜、要素配置分散、作戰樣式多維,單一無人機難以勝任多樣化作戰任務。

依托群體智能開展智能化無人機集群作戰,可將無人機數量優勢轉化為非對稱作戰優勢。

無人機集群智能化作戰樣式

近年來,無人機集群在協同探測、全域打擊、戰術騙擾等作戰任務中,逐漸發揮出越來越重要的作用,成為軍事領域重點發展方向之一。

按照目前無人機集群的群體智能化程度與作戰樣式,可將其劃分為3種類型:

——偽集群。這是一種由地面人員分別操控多架無人機構成的“集群”方式。無人機看上去是集群,其實相互獨立,並不存在信息交互協同。

2016年,美國海軍進行了數百次無人機“集群”進攻“宙斯盾”防御系統的模擬試驗。結果表明,當由8架無人機組成的“集群”突防攻擊時,防御系統難以合理分配火力,平均每次約有2.8架無人機可避開攔截系統實施打擊。

上述案例,無人機在形式上表現為“集群”,但不存在群體智能,僅靠多架無人機集聚帶來的數量優勢提高作戰能力。

——集中式集群。這是一種以地面指揮中心作為集群大腦、無人機之間無交互、統一受集群大腦指揮調度的集群方式。2020年11月,美軍通過地面軟件驅動“復仇者”無人機組成集群,進行了約2小時的自主協同飛行試驗。該項目利用軟件確定最優作戰方案,提高了現有無人作戰力量的靈活性和生存能力。

集中式集群智能化程度低,面臨單鏈失效、可靠性差等潛在問題。當地面指揮中心與集群通信鏈路遭到破壞時,整個集群將因失去控制而喪失作戰能力。

2018年,敘利亞反對派出動13架固定翼無人機構成集中式集群,對俄羅斯空軍基地進行襲擾攻擊。俄方利用電子戰加火力殺傷的手段實施攔截,最終俘獲6架無人機,擊落7架無人機。

——分布式集群。這是一種不存在中心控制器、各無人機通過機間信息共享、協同配合執行作戰任務的集群方式。該方式具有去中心化、低復雜度和自組織性等優勢,極大提高了遂行復雜任務能力。

2017年,美國利用3架F/A-18戰斗機釋放了103架無人機,形成分布式集群進行飛行試驗,實現了載機發射、隊形變換等功能,達到了預期作戰效果。

相比於集中式集群,分布式集群具備了分布式體系結構,機間信息交互為群體智能的產生提供了必要條件。擁有群體智能的無人機集群,自主性高、安全性好,是集群作戰的主要發展方向。

利用群體行為特征為集群賦智

在瑰麗的自然界中,存在著魚群、獸群、蜂群和鳥群等生物群落。這些生物個體本身是脆弱的,但通過交互協作聚集而成的群體,則擁有更強的覓食、趨利避害和遷徙等能力。

生物群落通過簡單通信實現高效協同,表現出協同聚集、目標吸引和避撞排斥等行為特征,能夠達成合作共贏的集群效果。

這種由群居性生物通過協作表現出的宏觀智能行為特征,即為群體智能。群體智能是人工智能的一個重要研究方向。

結合無人機系統技術,研究群體智能的理論與方法,有望探求到更具自主智能特性的無人機集群,形成高級群體智能。

——根據協同聚集行為特征,實現無人機集群的分布式作業。在自然界中,覓食的魚群能通過局部信息交流聚集,提高覓食效率。在遭遇捕食者時,又可快速散開逃逸,分散捕食者注意力,降低被捕食風險。與之類似,無人機集群的飛行控制,通過相鄰無人機的信息交互,設計無人機協同控制協議,使得集群中的每一成員就全局一致、方向趨同和期望隊形等達成“共識”,真正實現集群的分布式作業。就像波動現象一樣,相互間迅速准確地傳導信息,從而達成行動的一致性。

——利用目標吸引行為特征,實現無人機集群的編隊跟蹤。狼群能在頭狼帶領下進行任務分工,密切配合圍捕獵物。頭狼負責追蹤目標並發布命令,狼群則擔負不同職責共同協作高效完成捕獵任務。無人機集群可參照狼群模式,利用目標吸引行為特征,形成領航跟隨任務模式。領航機探測識別與分析處理能力較強,負責跟蹤目標生成航跡,發揮高性能優勢和態勢感知能力,實現對目標的實時跟蹤,跟隨機既能實時跟蹤領航機航跡,又能通過機間協同形成任務所需的集群構型,提高載荷分布配置效能,強化任務執行力。

——依據避撞排斥行為特征,實現無人機集群的智能防撞。無人機集群在執行作戰任務時,實現智能防撞是保證自身飛行安全和順利執行任務的基本要求。“集群智能防撞”,就是要讓各無人機實時規避戰場環境中的障礙物,同時集群間不發生碰撞。要實現這一效果,可構建無人機之間和集群與障礙物之間的“智能斥力勢場”:當相對距離過小時,觸發避撞排斥機制,有效應對復雜環境和作戰模式。

智能集群引領體系化作戰新樣式

從世界軍事強國發展趨勢來看,隨著信息化、無人化和智能化技術應用於戰場,是否具備體系化作戰能力將成為決定戰爭成敗的重要因素。

群體智能技術的發展,將極大推動無人機集群作戰模式的變革,是未來軍隊適應復雜戰場環境、提升作戰能力的重要手段。無人機集群將顛覆傳統戰爭形態,成為制勝未來戰場的新型作戰樣式。

具備一定協同能力與自主性的無人機集群,可搭載不同種類載荷,執行多樣化作戰任務。從美國的“小精靈”“山鶉”等無人機集群協同作戰驗證項目的實驗效果來看,小型化、低成本的無人機集群,在短期內有望通過機間信息共享,形成探測、感知、識別、通信和攻擊等協同能力。

鑑於此,各軍事強國持續發展無人機集群作戰力量,期望以成體系的低成本無人機集群,襲擾相對孤立的高價值軍事目標,發揮出非對稱作戰優勢。

隨著人工智能技術的不斷升級,擁有群體智能的無人機集群,可發揮其環境適應能力強、部署靈活、功能集成、小型高效的優勢,實現智能組網、協同作戰與博弈對抗,對防御系統實施全向突防,形成“偵-抗-打-評”作戰閉環,在未來多域多維的體系化作戰中克敵制勝。

中國原創軍事資源:http://www.81.cn/yw_208788827/10085732.html