Category Archives: #Artificial #Intelligence

China’s position paper on regulating military applications of artificial intelligence

中國關於規範人工智慧軍事應用的立場文件

現代英語:

The rapid development and widespread application of artificial intelligence technology are profoundly changing human production and lifestyles, bringing huge opportunities to the world while also bringing unpredictable security challenges. It is particularly noteworthy that the military application of artificial intelligence technology may have far-reaching impacts and potential risks in terms of strategic security, governance rules, and moral ethics.

AI security governance is a common issue facing mankind. With the widespread application of AI technology in various fields, all parties are generally concerned about the risks of AI military applications and even weaponization.

Against the backdrop of diverse challenges facing world peace and development, all countries should uphold a common, comprehensive, cooperative and sustainable global security concept and, through dialogue and cooperation, seek consensus on how to regulate the military applications of AI and build an effective governance mechanism to prevent the military applications of AI from causing significant damage or even disasters to humanity.

Strengthening the regulation of the military application of artificial intelligence and preventing and controlling the risks that may arise will help enhance mutual trust among countries, maintain global strategic stability, prevent an arms race, alleviate humanitarian concerns, and help build an inclusive and constructive security partnership and practice the concept of building a community with a shared future for mankind in the field of artificial intelligence.

We welcome all parties including governments, international organizations, technology companies, research institutes and universities, non-governmental organizations and individual citizens to work together to promote the safe governance of artificial intelligence based on the principle of extensive consultation, joint construction and sharing.

To this end, we call for:

– In terms of strategic security, all countries, especially major powers, should develop and use artificial intelligence technology in the military field with a prudent and responsible attitude, not seek absolute military advantage, and prevent exacerbating strategic misjudgments, undermining strategic mutual trust, triggering escalation of conflicts, and damaging global strategic balance and stability.

– In terms of military policy, while developing advanced weapons and equipment and improving legitimate national defense capabilities, countries should bear in mind that the military application of artificial intelligence should not become a tool for waging war and pursuing hegemony, and oppose the use of the advantages of artificial intelligence technology to endanger the sovereignty and territorial security of other countries.

– In terms of legal ethics, countries should develop, deploy and use relevant weapon systems in accordance with the common values ​​of mankind, adhere to the people-oriented principle, uphold the principle of “intelligence for good”, and abide by national or regional ethical and moral standards. Countries should ensure that new weapons and their means of warfare comply with international humanitarian law and other applicable international law, strive to reduce collateral casualties, reduce human and property losses, and avoid the misuse of relevant weapon systems and the resulting indiscriminate killing and injury.

– In terms of technical security, countries should continuously improve the security, reliability and controllability of AI technology, enhance the security assessment and control capabilities of AI technology, ensure that relevant weapon systems are always under human control, and ensure that humans can terminate their operation at any time. The security of AI data must be guaranteed, and the militarized use of AI data should be restricted.

– In terms of R&D operations, countries should strengthen self-discipline in AI R&D activities, and implement necessary human-machine interactions throughout the weapon life cycle based on comprehensive consideration of the combat environment and weapon characteristics. Countries should always insist that humans are the ultimate responsible party, establish an AI accountability mechanism, and provide necessary training for operators.

– In terms of risk management, countries should strengthen supervision of the military application of artificial intelligence, especially implement hierarchical and classified management to avoid the use of immature technologies that may have serious negative consequences. Countries should strengthen the research and judgment of the potential risks of artificial intelligence, including taking necessary measures to reduce the risk of proliferation of military applications of artificial intelligence.

——In rule-making, countries should adhere to the principles of multilateralism, openness and inclusiveness. In order to track technological development trends and prevent potential security risks, countries should conduct policy dialogues, strengthen exchanges with international organizations, technology companies, technology communities, non-governmental organizations and other entities, enhance understanding and cooperation, and strive to jointly regulate the military application of artificial intelligence and establish an international mechanism with universal participation, and promote the formation of an artificial intelligence governance framework and standard specifications with broad consensus.

– In international cooperation, developed countries should help developing countries improve their governance level. Taking into account the dual-use nature of artificial intelligence technology, while strengthening supervision and governance, they should avoid drawing lines based on ideology and generalizing the concept of national security, eliminate artificially created technological barriers, and ensure that all countries fully enjoy the right to technological development and peaceful use.

現代國語:

人工智慧技術的快速發展及其廣泛應用,正深刻改變人類生產和生活方式,為世界帶來巨大機會的同時,也帶來難以預測的安全挑戰。特別值得關注的是,人工智慧技術的軍事應用,在戰略安全、治理規則、道德倫理等方面可能產生深遠影響和潛在風險。

人工智慧安全治理是人類面臨的共同課題。隨著人工智慧技術在各領域的廣泛應用,各方普遍對人工智慧軍事應用甚至武器化風險感到擔憂。

在世界和平與發展面臨多元挑戰的背景下,各國應秉持共同、綜合、合作、可持續的全球安全觀,透過對話與合作,就如何規範人工智慧軍事應用尋求共識,建構有效的治理機制,避免人工智慧軍事應用為人類帶來重大損害甚至災難。

加強對人工智慧軍事應用的規範,預防和管控可能引發的風險,有利於增進國家間互信、維護全球戰略穩定、防止軍備競賽、緩解人道主義關切,有助於打造包容性和建設性的安全夥伴關係,在人工智慧領域實踐建構人類命運共同體理念。

我們歡迎各國政府、國際組織、技術企業、科研院校、民間機構和公民個人等各主體秉持共商共建共享的理念,協力共同促進人工智慧安全治理。

為此,我們呼籲:

——戰略安全上,各國尤其是大國應本著慎重負責的態度在軍事領域研發和使用人工智慧技術,不謀求絕對軍事優勢,防止加劇戰略誤判、破壞戰略互信、引發衝突升級、損害全球戰略平衡與穩定。

——在軍事政策上,各國在發展先進武器裝備、提高正當國防能力的同時,應銘記人工智慧的軍事應用不應成為發動戰爭和追求霸權的工具,反對利用人工智慧技術優勢危害他國主權和領土安全的行為。

——法律倫理上,各國研發、部署和使用相關武器系統應遵循人類共同價值觀,堅持以人為本,秉持「智能向善」的原則,遵守國家或地區倫理道德準則。各國應確保新武器及其作戰手段符合國際人道法和其他適用的國際法,努力減少附帶傷亡、降低人員財產損失,避免相關武器系統的誤用惡用,以及由此引發的濫殺。

——在技術安全上,各國應不斷提昇人工智慧技術的安全性、可靠性和可控性,增強對人工智慧技術的安全評估和管控能力,確保相關武器系統永遠處於人類控制之下,保障人類可隨時中止其運作。人工智慧資料的安全必須得到保證,應限制人工智慧資料的軍事化使用。

——研發作業上,各國應加強對人工智慧研發活動的自我約束,在綜合考慮作戰環境和武器特性的基礎上,在武器全生命週期實施必要的人機互動。各國應時常堅持人類是最終責任主體,建立人工智慧問責機制,對操作人員進行必要的訓練。

——風險管控上,各國應加強對人工智慧軍事應用的監管,特別是實施分級、分類管理,避免使用可能產生嚴重負面後果的不成熟技術。各國應加強對人工智慧潛在風險的研判,包括採取必要措施,降低人工智慧軍事應用的擴散風險。

——規則制定上,各國應堅持多邊主義、開放包容的原則。為追蹤科技發展趨勢,防範潛在安全風險,各國應進行政策對話,加強與國際組織、科技企業、技術社群、民間機構等各主體交流,增進理解與協作,致力於共同規範人工智慧軍事應用並建立普遍參與的國際機制,推動形成具有廣泛共識的人工智慧治理框架和標準規範。

——國際合作上,已開發國家應協助發展中國家提升治理水平,考慮到人工智慧技術的軍民兩用性質,在加強監管和治理的同時,避免採取以意識形態劃線、泛化國家安全概念的做法,消除人為製造的科技壁壘,確保各國充分享有技術發展與和平利用的權利。

中國原創軍事資源:https://www.mfa.gov.cn/web/wjb_673085/zzjg_673183/jks_674633/zclc_674645/rgzn/202206/t20220614_1070283888.shtml

Chinese Weaponization of Artificial Intelligence…Does Intelligent Warfare Enable China’s Military?

中國人工智慧武器化
智慧戰爭能否助力中國軍事發展?

現代英語:

Through the smoke of war, we can see that today’s war has evolved from the bloody fights of ignorant barbarism and the battles of conquering cities to the precise beheadings dominated by information and the fierce competition on the battlefield of intelligence. This objective fact tells us that war, as a specific complex social phenomenon, will present different war forms and winning mechanisms in different historical periods. As American futurist Alvin Toffler pointed out, “artificial intelligence is like the missiles and satellites before. Whether you are prepared or not, it will enter the historical stage of human civilization war.” President Xi Jinping clearly pointed out: “If we do not understand the winning mechanism of modern warfare, we will only be able to see through a mirror and miss the point.” The winning mechanism of war refers to the way in which various factors of war play a role in order to win the war, as well as the laws and principles of their mutual connection and interaction. Compared with the traditional information warfare, the winning mechanism of future intelligent warfare has undergone significant changes.

The confrontation mode has changed from “system confrontation” to “algorithm game”, and the algorithm advantage dominates the war advantage

Algorithms are strategic mechanisms for solving problems. In fact, “algorithms” are a series of clear instructions for solving problems, and are clear steps to solve a certain type of problem according to certain rules. In future wars, the side that has the advantage of algorithms will be able to quickly and accurately predict battlefield situations, innovate the best combat methods, and achieve the war goal of “winning before fighting.”

Algorithms are the key to dominating intelligent warfare. First, algorithmic advantage dominates cognitive advantage. After big data is processed by high-performance and efficient algorithms, massive amounts of data are quickly converted into useful intelligence. Therefore, the party with algorithmic advantage can dispel the “battlefield fog” caused by the failure to process data in a timely manner, making cognition more profound. Second, algorithmic advantage dominates speed advantage. Compared with classical algorithms, quantum algorithms have achieved an exponential acceleration effect. In addition, quantum computers have increased from 1 quantum bit in 2003 to 1,000 quantum bits in 2015, and their computing efficiency is 100 million times faster than that of classical computers, making artificial intelligence a qualitative leap. Third, algorithmic advantage dominates decision-making advantage. With its high-speed and accurate calculations, the algorithm replaces human “deep thinking” and repeated exploration, thereby accelerating knowledge iteration. Mastering super-powerful algorithms can quickly propose flexible and diverse combat plans and countermeasures in response to changes in the enemy’s situation, constantly disrupting the enemy’s established intentions and deployments.

Algorithms are the core of the leap in war effectiveness. First, wars are more efficient. With the support of algorithms, the reaction speed of artificial intelligence is hundreds or thousands of times that of humans. In 2016, the “Alpha” intelligent software developed by the United States reacted 250 times faster than humans and controlled a third-generation aircraft to defeat a manned fourth-generation aircraft in a simulated air battle. Second, war endurance is stronger. Artificial intelligence is not limited by physiological functions and can continuously perform repetitive and mechanical tasks. In September 2016, an F-16 fighter jet reached 8 times the gravity overload during training, causing the pilot to lose consciousness. However, before the aircraft hit the ground, the onboard “automatic collision avoidance system” automatically pulled the aircraft up, avoiding the tragedy. Third, the war ends better. With the support of massive data and supercomputing capabilities, AI’s judgment and prediction results are more accurate. The US military’s search and killing of Osama bin Laden, which combined manned and unmanned equipment, is a successful example.

The elements of combat are changing from “information-led” to “machine-led”, and machine-led combat is reshaping the combat process.

In the future, intelligent technology will penetrate all elements and processes of war. The Internet of Things, the Internet of Intelligence and the Internet of Brains will become the foundation of war. The four domains of physical domain, information domain, cognitive domain and social domain will be deeply integrated, making the battlefield holographically transparent, with humans controlling the war and no humans fighting on the battlefield. Intelligent weapons and equipment will reshape the combat process from “sensor to shooter”.

Smart eyes “detect”. “Detection” means intelligent intelligence detection. It can virtualize collaborative networking, self-organized dynamic scheduling, automatic multi-source intelligence mining, and order-based on-demand use of multi-dimensional sensors such as land, sea, air, space, and electricity, to the greatest extent possible to dispel the “war fog” caused by insufficient or redundant information and open the “smart eyes” to see through intelligent warfare.

Loop “control”. “Control” refers to intelligent command and control. Focusing on the core of decision-making advantage, the “man-in-the-loop” human-machine collaborative technology is used. According to the autonomy of the machine, three decision-making and control methods are adopted: “man-in-the-loop”, “man-on-the-loop” and “man-out-of-the-loop”, to form a comprehensive advantage with superior decision-making quality and action speed.

Intelligent “fighting”. “Fighting” means intelligent offensive and defensive operations. Relying on the advantages of system structure and algorithm, it mobilizes multi-dimensional, manned and unmanned combat platforms in real time, quickly couples combat forces, builds combat systems on demand, focuses on targets, and independently implements “distributed” and “swarm” collaborative operations. After the battle, it quickly decouples and waits for battle, so that the troops are in a state of flux and gather and disperse at random. At the end of 2015, Russia deployed 6 tracked unmanned combat vehicles, 4 wheeled unmanned combat vehicles and 1 drone to support the Syrian government forces in their assault on the strongholds of Islamic extremist forces, and won the world’s first offensive battle dominated by unmanned combat vehicles. About 70 extremist militants were killed in the battle, while only 4 Syrian government forces were injured.

The decision-making method changes from “human brain decision-making” to “intelligent decision-making”, and intelligent decision-making optimizes combat operations

With the emergence of intelligent decision-making technology and “cloud brain”, “digital staff” and “virtual warehouse”, war decision-making has evolved from simple human brain decision-making to human-machine hybrid decision-making, cloud brain intelligent decision-making and neural network decision-making.

Human-machine hybrid decision-making. Reasonable division of labor and interactive collaboration between humans and machines is the best solution to explore and solve problems. The advantages of the human brain lie in creativity, flexibility, and initiative; the advantages of machines lie in speed, high precision, and fatigue resistance. High-level decision-making and other highly artistic tasks are handled by the human brain, while big data calculations are completed by machines. Human-machine interaction enables machines to “listen” to human language, “see” human movements and expressions, and “understand” human emotions and intentions, and present the calculation process and results in a way that is easy for people to understand.

Cloud brain intelligent decision-making. In the future intelligent warfare, there will be a metaphorical center of “brain”, and distributed combat units will be linked through the cloud brain. This cloud brain is not only a physical information, physiological information and psychological information center, but also a military command center. Cloud brain decision-making is based on the intelligent “network, cloud, terminal” system. “Network” is an intelligent combat infrastructure network that integrates intelligent battlefield perception, decision-making and weapon control systems. “Cloud” is built on the “network” and is based on the intelligent resource service layer. It is not only a “resource pool” that integrates various combat resources, but also an “intelligent cloud” that provides intelligent services for combat operations. Due to the coupling of multiple centers, networking and decision-making can be quickly established even if it is bombarded with information. “End” refers to the combat resource end. The discrete intelligence and networked intelligence in the combat process can not only make autonomous decisions, but also provide distributed intelligent resources for the war system, enabling the new war system to emerge with collective intelligence.

Neural network decision-making. In July 2018, Russia developed fully automatic artificial neural network software that can destroy as soon as it is found. The intelligent decision-making tool developed by the US military aims to shorten the decision-making cycle and improve decision-making efficiency. The application of neural networks was once limited to tactical-level calculations, and it was difficult to make qualitative analysis and decisions on macroscopic and complex strategic situations. “AlphaGo” has made a breakthrough in the field of Go by simulating the working mechanism of human brain neural networks. In the future, the super self-evolution and strategic decision-making capabilities of deep neural networks will realize the “man-out-of-the-loop” combat cycle.

The combat style has changed from “breaking the chain and destroying the body” to “extreme combat”, which subverts traditional combat methods.

Extreme warfare has broken through the boundaries of traditional warfare, overturned traditional combat patterns, greatly increased the effectiveness of warfare, and brought about truly all-weather, all-time, all-dimensional, and all-domain intelligent warfare.

Break through the limits of human physiology and thinking. First, the combat space and domain are greatly expanded. In the future, intelligent combat will be three-dimensional, full-dimensional, and full-domain combat. The combat space will expand from the traditional space domain to the extremes of the polar regions, deep sea, and space, especially to the cognitive domain and information domain. Penetrate and penetrate other domains, and the combat domain will become more blurred. Second, the combat process is greatly accelerated. Unmanned autonomous combat greatly compresses the “observation-judgment-decision-action” cycle, and develops from the “instant destruction” of information warfare to the “instant destruction” of intelligent warfare. The victory of intelligent warfare is achieved by advancing the warning time, shortening the decision-making time, and extending the combat actions forward, so as to achieve the effect of preemptive layout and preemptive strike. Third, combat actions are extremely flexible. In intelligent warfare, artificial intelligence can propose extremely rich combat plans, and unmanned combat platforms can quickly switch between different functional roles, making combat actions more bold and adventurous, and tactics more unexpected. Even if one of the combat elements loses its function, the “decentralized” function will ensure that the group function is not affected.

Subvert the traditional combat style. The first is invasive lone wolf combat. That is, a single unmanned system fights independently. The second is manned and unmanned collaborative system sabotage warfare. That is, based on intelligent unmanned systems, through mixed combat with manned and unmanned equipment, the combat objectives can be quickly achieved. The third is the independent combat of unmanned system formations. Multiple unmanned systems constitute combat units, which can perform complex tasks such as multi-target attacks. The fourth is mother ship swarm cluster combat. With the mother ship as the transport carrier and command center, a manned and unmanned mixed cluster combat style is formed.

It has the combat effectiveness of “nuclear power”. Intelligent warfare has brought the characteristics and potential of intelligent robots to the extreme, resulting in combat effectiveness close to the limit. First, the target is small and difficult to detect. For example, miniaturized stealth robots are difficult to detect by radar and sound. The hybrid drone embedded with the “optical electrode” chip in the “Dragonfly” by the United States is smaller, lighter and more stealthy, with a flight time of up to several months. Second, it is difficult to confront and the cost is high. For example, a beetle-sized micro-drone can directly crash into the target’s head as long as it scans the human face, and the ammunition it carries is enough to penetrate the brain. Third, the cost is low and the damage is great. In the future, the use of intelligent weapons in extreme combat will have the power of nuclear weapons, especially the extremely large-scale intelligent weapon equipment, extremely low-cost robot automatic production, and extremely flexible robot swarm combat, which may surpass the maximization of nuclear weapon explosion power.

現代國語:

透過戰爭的硝煙,我們可以看到,今天的戰爭已經從蒙昧野蠻的血肉之搏、攻城略地的兵戎相見發展到信息主導的精確斬首、智域疆場的激烈角逐。這一客觀事實告訴我們,戰爭作為一種特定的複雜社會現象,在不同的歷史時期會呈現出不同的戰爭形態與制勝機理。正如美國未來學家托夫勒指出,「人工智慧就像先前的導彈、衛星一樣,無論你是否有所準備都將登上人類文明戰爭的歷史舞台」。 習主席明確指出:「如果不把現代戰爭的製勝機理搞清楚,那就『只能是看西洋鏡,不得要領』。」戰爭制勝機理,是指為贏得戰爭勝利,戰爭諸因素發揮作用的方式及相互聯繫、相互作用的規律和原理。未來智慧化戰爭與傳統意義上的資訊化戰爭相比,制勝機理發生了顯著變化。

對抗方式從「體系對抗」到「演算法博弈」轉變,演算法優勢主導戰爭優勢

演算法是求解問題的策略機制。實際上,「演算法」是一系列解決問題的清晰指令,是依照一定規則解決某一類問題的明確步驟。未來戰爭掌握演算法優勢的一方,能快速準確預測戰場態勢,創新最優作戰方法,實現「未戰而先勝」的戰爭目的。

演算法是主導智能化戰爭的關鍵。第一,演算法優勢主導認知優勢。大數據透過高效能、高效率的演算法進行處理後,將海量數據快速轉換為有用的情報。因此,佔有演算法優勢的一方,能驅散因數據得不到及時處理而產生的“戰場迷霧”,使得認知更為深刻。第二,演算法優勢主導速度優勢。量子演算法相較於經典演算法,實現了指數級的加速效果,再加上量子計算機從2003年的1位量子比特,到2015年1000位量子比特,計算效率比經典計算機快了一億倍,使人工智能實現了質的飛躍。第三,演算法優勢主導決策優勢。演算法以其高速、精確的計算,取代人的「冥思苦想」和反復探索,從而加速知識迭代。掌握超強演算法能夠針對敵情變化快速提出靈活多樣的作戰方案與應對之策,不斷打亂敵既定企圖與部署。

演算法是戰爭效能躍升的核心。一是戰爭效率更高。在演算法的支撐下,人工智慧的反應速度是人類的數百倍。 2016年,美國研發的「阿爾法」智慧軟件,反應速度比人類快250倍,在模擬空戰中操控三代機擊敗了有人駕駛的四代機。二是戰爭耐力更強。人工智慧不受生理機能限制,可連續執行重復性、機械性任務。 2016年9月,一架F-16戰機在訓練中達到8倍重力過載,導致飛行員失去知覺,然而,在飛機撞擊地面前,機載「自動防撞系統」自動將飛機拉起,避免了悲劇發生。三是戰爭結局比較好。在海量數據和超算能力支持下,人工智慧的判斷和預測結果更加準確。美軍尋找和捕殺賓拉登行動,有人和無人裝備的組合運用就是一個成功的戰例。

作戰要素從「資訊主導」轉變為「機器主戰」,機器主戰重塑作戰流程

未來智慧科技將滲透到戰爭全要素全過程。物聯網、智聯網與腦聯網成為戰爭的基礎,物理域、資訊域、認知域、社會域四域深度融合,使戰場全像透明,戰爭控制有人,戰場交鋒無人。智慧化武器裝備將重塑「從感應器到射手」的作戰流程。

慧眼“偵”。 “偵”,即智能化情報偵察。能將陸、海、空、天、電等多維傳感器,進行虛擬化協同組網、自組織動態調度、多源情報自動挖掘、訂單式按需使用,最大程度上撥開信息不足或信息冗餘帶來的“戰爭迷霧”,開啟透視智能化戰爭的“慧眼”。

迴路“控”。 “控”,即智慧化指揮控制。圍繞決策優勢這一核心,運用「人在迴路」的人機協同技術,依照機器的自主權限,採取「人在迴路中」「人在迴路」「人在迴路外」三種決策與控制方式,以高敵一籌的決策品質和行動速度形成全面優勢。

智能“打”。 “打”,即智慧化攻防作戰。依托體系結構與演算法優勢,實時調集全局多維、有人無人作戰平台,快速耦合作戰力量,按需構建作戰體系,聚焦目標,自主實施「分散式」「蜂群式」協同作戰,交戰完畢迅速解耦待戰,做到兵無常勢、聚散隨機。 2015年底,俄羅斯投入6台履帶式無人戰車、4台輪式無人戰車和1架無人機,支援敘利亞政府軍強攻伊斯蘭極端勢力據點,取得了世界上第一場以無人戰車為主的攻堅戰勝利。戰鬥中約70名極端勢力武裝份子被擊斃,而敘利亞政府軍只有4人受傷。

決策方式從「人腦決策」轉變為「智慧決策」,智慧決策優化作戰行動

隨著智慧輔助決策技術和「雲端大腦」「數字參謀」「虛擬倉儲」的出現,戰爭決策由單純的人腦決策發展為人機混合決策、雲腦智慧決策和神經網絡決策。

人機混合決策。人與機器的合理分工與互動協同是探索解決問題的最優方案。人腦的優勢在於創造性、彈性、主動性;機器的優勢在於速度快、精度高、抗疲勞。高層決策等藝術性強的工作由人腦來處理,大數據計算由機器完成。人機互動是讓機器能「聽」懂人類語言、「看」懂人類動作與表情、「理解」人的情緒和意圖,把計算過程和結果用人容易理解的方式呈現出來。

雲腦智能決策。未來智慧化戰爭,將有一個「大腦」的隱喻中心,分散式的作戰單元將透過雲大腦連結。這個雲大腦既是物理資訊、生理資訊和心理資訊中心,也是軍事指控中心。雲腦決策以智慧「網、雲、端」體係為依賴。 “網”,是集智能化戰場感知、決策和武器控制系統於一體的智慧型作戰基礎網絡。 “雲”,依“網”而建,以智慧型資源服務層為主體,既是融合各類作戰資源的“資源池”,也是為作戰行動提供智能化服務的“智能雲”。由於多中心的耦合,即使遭受資訊轟炸也能快速組網和決策。 「端”,是指作戰資源端,作戰流程上的分立智能和聯網智能,既能自主決策,又能為戰爭體系提供分佈式智能資源,使新的戰爭體系湧現出群體智能。

神經網絡決策。 2018年7月,俄羅斯研發的人工神經網路全自動軟件,能做到發現即摧毀。美軍研發的智慧化決策工具,意在縮短決策週期,提高決策效率。神經網絡的應用曾侷限在戰術級計算,難以對戰略級宏觀複雜態勢做出定性分析與決策。 「阿爾法狗」透過模擬人腦神經網絡工作機制在圍棋領域取得突破。未來深度神經網絡的超強自我進化和戰略決策能力,將實現「人在迴路外」的作戰循環。

作戰樣式從「斷鍊破體」轉變為「極限作戰」,極限作戰顛覆傳統作戰手段

極限作戰突破了傳統戰爭的界限,顛覆了傳統的作戰樣式,使戰爭效能劇增,出現了真正意義上的全天候、全時空、全方位、全領域的智能化戰爭。

突破人類生理和思維極限。一是作戰空間和領域極度拓展。未來智慧化作戰是立體、全維、全領域作戰,戰爭空間將從傳統的空間領域,向極地、深海、太空等極限拓展,特別是向認知域、資訊域滲透並貫穿其他領域,作戰領域更加模糊。二是作戰進程極度加快。無人自主作戰大幅壓縮「觀察—判​​斷—決策—行動」週期,從資訊化戰爭的「瞬間摧毀」發展為智慧化戰爭的「即時摧毀」。智慧化戰爭的勝利,是透過預警時間提前、決策時間縮短,作戰行動向前延伸,達到先手佈局、先發製人的效果。第三是作戰行動極度靈活。在智慧化戰爭中,人工智慧能夠提出極為豐富的作戰方案,加上無人作戰平台,能夠在不同功能角色之間快速切換,作戰行動更為大膽冒險,戰術戰法更為出乎意料。即使作戰要素中的某一個喪失功能,「去中心化」的功能也會確保群體功能不受影響。

顛覆傳統作戰樣式。一是侵入式獨狼作戰。即單套無人系統獨立作戰。二是有人無人協同體系破擊戰。即基於智慧無人系統,透過有無人裝備混合作戰,快速達成作戰目的。第三是無人系統編隊獨立作戰。多套無人系統構成作戰單元,可執行多目標攻擊等複雜任務。四是母艦蜂群集群作戰。以母艦為運輸載體和指揮中心,形成有人無人混合集群作戰樣式。

具備「核武威力」的作戰效能。智慧化戰爭把智慧機器人的特性和潛能發揮到極致,導致作戰效能接近極限。一是目標小、難發現。例如微型化隱身機器人,雷達和聲吶很難發現。美國在「蜻蜓」中嵌入「光極」晶片的混合無人機,更小更輕更隱秘,續航時間高達幾個月。二是對抗難,代價高。例如甲蟲大小的微型無人機只要掃描到人臉景象,經過數據分析確定即可直接撞擊目標頭部,攜帶的彈藥足以穿透大腦。三是造價低、破壞大。未來運用智慧化武器極限作戰具有核武的威力,特別是極大體量的智慧化武器裝備,極低成本的機器人自動生產,極度靈活的機器人集群作戰,可能會超越核武爆炸威力的極大化。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/483452588.html?

Artificial Intelligence Changes the Mechanism of China Winning Future Wars

人工智慧改變中國贏得未來戰爭的機制

現代英語:

Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. In recent years, it has developed rapidly and has been widely used in the military field, constantly giving rise to new asymmetric advantages, and profoundly changing the basic form, combat methods and winning mechanisms of future wars. We should have a deep understanding of artificial intelligence as a revolutionary technological driving force, accurately recognize changes, respond to changes scientifically, and actively seek changes, strive to explore ways to win future wars, and gain the initiative in the accelerating intelligent war.

Information mechanism

Knowing yourself and the enemy will ensure victory in a hundred battles. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situations, intelligent analysis of massive data, and intelligent processing of multiple information, and can form a “transparent” advantage on the battlefield.

Autonomous implementation of battlefield perception. By embedding intelligent modules into the wartime reconnaissance system, various reconnaissance node units can realize random networking, ad hoc coordination, and organic integration, and can autonomously capture battlefield information in all directions and dimensions, build a relatively “transparent” digital battlefield environment and combat situation, and then dispel the “fog” of war and present the combat scene in a panoramic manner.

Accurately identify massive amounts of data. Relying on intelligent technologies such as precise sensing technology and analytical recognition technology, it accurately judges, analyzes, compares, and integrates diversified voice, text, pictures, videos, and other data to obtain faster, more complete, more accurate, and deeper battlefield situation results, far exceeding the speed and accuracy of human brain processing.

Efficient response to key information. Based on intelligent technologies such as combat cloud, big data, and the Internet of Things, it can quickly discover large quantities of non-standardized and heterogeneous intelligence data, autonomously discover symptoms, identify intentions, analyze trends, find patterns, and respond to commanders’ needs for key information in real time and accurately.

Synchronous sharing of integrated situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air, space and radio networks, and play an important hub role in sharing information and unified cognition, building a situation based on “one picture”, “one network” and “one chain”, so that all combat units can synchronously share the required information from different spaces, distances and frequencies in all domains and at all times, realizing intelligent sharing.

Decision-making mechanism

Those who can plan for victory before the battle have made more calculations. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can conduct dynamic battlefield simulation and deduction, quickly give feasible decisions, greatly shorten the decision-making cycle of combat planning, and form a decision-making advantage.

Intelligent strategic situation analysis. The decision-making support system that incorporates artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analysis capabilities, maximize the separation of false and true, correlation verification, and link thinking, and automatically conduct big data analysis such as enemy situation, our situation, and battlefield environment, forming comparative data on related forces and weapons, which can efficiently assist combat commanders and help commanders quickly make combat decisions.

Intelligent optimization of combat plans. Relying on the intelligent combat simulation system, it automatically generates multiple sets of intuitive plans and programs based on the pre-input combat missions and strike target information, comprehensively evaluates their advantages and disadvantages and potential risks, and selects the plan that is most conducive to realizing the commander’s intention for the commander to make the final decision. After receiving the combat missions and target requirements from the superior, each combat unit will further screen the battlefield target information in combination with the tasks and requirements of its own level, and independently formulate the best plan and program at its own level to maximize combat effectiveness.

Intelligent prediction of decision-making effectiveness. The intelligent decision-making auxiliary system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system a more advanced “brain-like” ability, which can think more rationally about unexpected situations on the battlefield and quickly come to a relatively objective combat result.

Power control mechanism

The dominant position is to control power by taking advantage of the situation. Seizing control power is the key factor to win the war. Artificial intelligence can “transplant” part of human intelligence to weapons, making the combination of humans and weapon systems more and more close. The deep interaction between humans and machines has changed the traditional control elements, endowed new control connotations, and can help gain new control advantages.

The dominance of the domain is expanding to the high frontier. In the future, highly intelligent unmanned systems will be able to carry out a variety of combat missions even in harsh conditions such as high temperature, extreme cold, high pressure, lack of oxygen, toxicity, radiation, and in extreme environments such as extreme height, extreme distance, extreme depth, extreme micro, extreme darkness, and extreme brightness. The competition for dominance of the combat domain and combat space will extend to the high frontier, the far frontier, and the deep frontier.

The right to control information is expanding to multiple means. The traditional way to seize the right to control information is to control the channels of information acquisition, processing, and distribution by attacking the enemy’s reconnaissance and early warning system and destroying its command and control system. However, information warfare under the guidance of artificial intelligence uses information itself as “ammunition”, and the means to seize the right to control information are more diverse.

The network control power is expanding to distributed. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services, which can realize modular organization and automatic reorganization of combat forces. The traditional purpose of disconnecting the network and destroying the chain by striking key nodes will no longer be achieved. It is inevitable to respond to the “decentralized” battlefield with an intelligent distributed strike mode.

The power to control the brain is expanding to new dimensions. Brain-like technology and simulation technology are gradually militarized, forming new areas of competition and confrontation. The focus has shifted from focusing on confrontation in the physical and information domains to more emphasis on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can confuse the real with the fake. “Core attack” can quietly change the enemy’s command and control system algorithm. “Brain control” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, and will, the goal of stopping and winning the war can be achieved at the lowest cost.

Mechanism of action

The key to victory in war is speed. Taking unexpected actions against the enemy is the key to victory in war. Artificial intelligence can improve the intelligence level of weapons and equipment, command and control systems, and action decisions, making mobile response capabilities faster and joint strike capabilities more accurate, creating a super action advantage.

The speed of action is “killed in seconds”. The intelligent combat system can see, understand, learn and think, effectively shortening the “OODA” cycle. Once an “opportunity” is found, it will use intelligently controlled hypersonic weapons, kinetic weapons, laser weapons, etc. to quickly “kill” the target at a long distance.

Action style is “unmanned”. “Unmanned + intelligent” is the future development direction of weapons and equipment. Low-cost unmanned vehicles, drones, unmanned submarines and other unmanned autonomous equipment, with the support of cluster autonomous decision-making systems, can plan the task division of each unit according to combat targets, and unmanned devices can accurately dock, autonomously combine, and covertly penetrate to carry out cluster saturation attacks on the enemy.

The action space is “fuzzy”. In future wars, using interference means to carry out soft strikes on the enemy’s intelligent combat systems and intelligent weapons, and using intelligent weapons to delay or influence the enemy’s decision-making and psychology will become the key to victory. Most of these actions are completed unconsciously or silently, presenting a “fuzzy” state where the enemy and us are invisible, the boundaries between the front and the rear are unclear, and it is difficult to distinguish between the visible and the invisible.

The action deployment is “stealth”. The intelligent command system and weapon equipment have bionic and stealth properties. As long as they are deployed in advance in possible combat areas during peacetime preparations or training exercises, they can be hidden and dormant and ready for combat. Once they are activated in time in wartime, they can launch a sudden attack on the enemy, which will help to quickly seize the initiative in the war.

System Mechanism

Five things and seven strategies determine victory or defeat. Future wars will be full-domain, full-system, full-element, full-process system confrontations, and a stable and efficient combat system is the basic support for winning the war. With the continuous expansion of the application of artificial intelligence in the military field, the combat system is becoming more and more intelligent, and the full-domain integrated combat system will produce a strong system advantage.

There are more means of “detection”. Intelligent combat clusters rely on network information systems to connect with various large sensors, electronic warfare systems and other human-machine interaction platforms, use the detection and perception equipment of each combat unit to obtain battlefield data, give play to the self-organizing characteristics of intelligent groups, strengthen real-time detection and support for joint combat systems and back-end intelligence analysis, and can achieve full-domain detection, joint early warning, and coordinated verification, forming a multi-dimensional, full-domain coverage of large-area joint detection intelligence system.

The scope of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of the senses, and the physical limits of existence, and replace humans to enter traditional life restricted areas such as the deep sea, space, polar regions, and strong radiation areas, and stay there for a long time to implement “unconventional warfare”, thereby further expanding the combat space and having the ability to continuously repel opponents in a wider range of fields.

The speed of “fighting” is faster. With the support of intelligent network information system, the intelligence chain, command chain and killing chain are seamlessly connected, the speed of information transmission, decision-making speed and action speed are accelerated simultaneously, and the intelligent combat units can be flexibly organized, autonomously coordinated and quickly strike. All of these make the time utilization efficiency extremely high and the battlefield response speed extremely fast.

The “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavioral systems, the intelligent combat evaluation system can autonomously complete the collection, aggregation, grading and classification of multi-means action effect evaluation information, accurately perceive battlefield actions based on big data and panoramic images, dynamically identify combat processes and correct defects, predict complex battlefield changes, and make comprehensive plans and flexibly respond.

The “security” is more efficient. The widespread application of intelligent comprehensive security systems represented by equipment maintenance expert systems and intelligent sensing equipment can efficiently respond to security needs in various domains, intelligently plan security resources, and ensure that the “cloud” aggregates various battlefield resources, effectively improving the comprehensive security capabilities of the networked battlefield.

(Author’s unit: Henan Provincial Military Region)

現代國語:

人工智慧技術是提高新興領域戰略能力的重要支撐,近年來獲得快速發展並廣泛運用於軍事領域,不斷催生新的非對稱優勢,深刻改變未來戰爭的基本形態、作戰方式和製勝機理。應該深刻認識人工智慧這一革命性技術動力,準確識變、科學應變、主動求變,努力探尋制勝未來戰爭之道,在加速來臨的智能化戰爭中贏得主動。

資訊機理

知彼知己,百戰不殆。快速有效地掌握全方位資訊是戰爭制勝的首要前提。人工智慧可實現戰場態勢智慧感知、大量數據智慧分析、多元資訊智慧處理,能夠形成戰場「透明」優勢。

戰場感知自主實施。將智慧模塊嵌入戰時偵察系統,各類偵察節點單元可以實現隨機組網、臨機協同、有機整合,能夠全方位、多維度自主捕獲戰場信息,構建相對“透明”的數字化戰場環境和作戰態勢,進而撥開戰爭“迷霧”,全景式呈現作戰場景。

海量數據精準識別。依托精準感知技術和分析識別技術等智慧化科技,精準判讀、分析、比對、融合多元化的語音、文字、圖片、視頻等數據,從而獲取更快、更全、更準、更深的戰場態勢結果,遠超人腦處理的速度和精度。

關鍵資訊高效響應。基於作戰雲、大數據、物聯網等智慧化技術群,能夠從大批量、非標準化、異構化的情報數據中快速發掘,自主發現徵候、識別意圖、研判趨勢、找到規律,實時精準地響應指揮員對關鍵信息的需求。

融合態勢同步共用。智慧化控制系統能夠將分佈在陸海空天電網等不同空間、不同頻域的各種偵察監視系統優化整合,並發揮共享信息和統一認知的重要樞紐作用,構建形成基於“一幅圖”“一張網”“一條鏈”的態勢,使各作戰單元全局全頻全時從不同空間、不同距離、不同頻率同步共享所需信息,實現智能共享。

決策機理

夫未戰而廟算勝者,得算多也。科學準確決策是戰爭制勝的先決條件。人工智慧可進行動態戰場模擬推演,快速給出可行決策,大幅縮短作戰籌劃決策週期,能夠形成決策優勢。

戰略形勢智能研判。融入人工智慧技術的決策輔助系統,具備資訊收集、查詢管理、數據處理、關聯分析等功能,可有效突破人類分析能力的限制,最大限度去偽存真、關聯印證、鏈接思考,自動進行敵情、我情和戰場環境等大數據分析,形成相關兵力、兵器等對比數據,能夠高效輔助作戰指揮,幫助指揮員快速定下作戰決心。

作戰方案智能優選。依托智能化作戰模擬系統,根據預先輸入的作戰任務和打擊目標訊息,自動產生多套形象直觀的方案和計劃,綜合評估其優缺點及潛在風險,優選出最有利於實現指揮員意圖的方案,供指揮員作出最後決斷。各作戰單元接到上級作戰任務和目標需求後,結合本級任務和要求,進一步對戰場目標資訊進行甄別篩選,自主訂定本級最優方案和計畫,實現作戰效能最大化。

決策效能智能預測。智慧化輔助決策系統依賴大數據、高效能計算、神經網絡演算法等智慧化技術,賦予指揮控制系統更高階的「類腦」能力,可以更理性地思考戰場上出現的意外情況,快速得出相對客觀的交戰結果。

制權機理

勢者,因利而製權也。奪取制權是贏得戰爭制勝優勢的關鍵因素。人工智慧可將人的部分智慧「移植」到武器上,使得人與武器系統結合越來越緊密,人機一體深度互動改變了傳統的製權要素,賦予新的製權內涵,能夠助力獲得新的製權優勢。

制域權向高邊疆拓展。未來高度智慧化的無人系統,即使在高溫、極寒、高壓、缺氧、有毒、輻射等惡劣條件下,在極高、極遠、極深、極微、極黑、極亮等極端環境中,仍然可以遂行多種作戰任務,作戰領域和作戰空間的製權之爭向高邊疆、遠邊疆、深邊疆延伸。

制資訊權向多手段拓展。傳統的奪取制資訊權,是通過打擊敵偵察預警體系、破壞其指揮控制系統等手段實現對信息獲取、處理、分發等途徑的控制,而人工智能主導下的信息作戰是將信息本身作為“彈藥”,奪取制信息權的手段更加多樣。

製網權向分散式拓展。基於智慧科技構建的網絡資訊體系,提供泛在網絡「雲」以聚合各類終端的戰場資源並提供服務,能夠實現作戰力量模塊化編組、自動化重組,傳統的通過打擊關鍵節點,達成斷網毀鏈的目的將很難再實現,必然是以智能化分佈式打擊模式來應對「去中心化」的戰場。

制腦權向新維域拓展。類腦技術、模擬技術等逐步軍事化,形成了新的博弈和對抗領域,重心由注重物理域、信息域對抗向更加註重影響和控制對手心理轉變,虛擬現實、聲像合成等技術能夠以假亂真,「攻芯戰」能夠悄無聲息地改變敵方指揮控制系統之止,「控戰」能夠直接控制敵人做出決定,通過思維和影響力的演算法。

行動機理

兵之情主速,乘人之不及。採取敵方意料不到的行動是戰爭制勝的關鍵要害。人工智慧可提高武器裝備、指控系統、行動決策等方面的智慧化程度,使機動反應能力更快、聯合打擊能力更準,創造出超強的行動優勢。

行動速度「秒殺化」。智慧化作戰系統看得見、聽得懂、能學習、會思考,有效縮短了“OODA”循環週期,一旦發現“有機可乘”,便運用智能化控制的超高聲速武器、動能武器、激光武器等,對目標進行遠距離快速“秒殺”。

行動樣式“無人化”。 「無人+智慧」是未來武器裝備發展方向。低成本的無人車、無人機、無人潛航器等無人自主裝備,在集群自主決策系統支援下,可針對作戰目標規劃各單元的任務分工,無人器之間精準對接、自主組合、隱蔽突防,對敵進行集群飽和攻擊。

行動空間「模糊化」。未來戰爭中,利用乾擾手段對敵方的智慧化作戰系統和智慧武器實施軟打擊,利用智慧武器遲滯或影響敵方人員的決策和心理將成為製勝關鍵。這些行動大都是在不知不覺或無聲無息中完成的,呈現敵我雙方不見人影、前方後方界限不清、有形無形難以辨別的「模糊」狀態。

行動布勢「隱身化」。智慧化指揮系統和武器裝備具有生物仿生和隱身性能。只要在平時備戰或訓練演習時提前佈設在可能交戰地域,潛伏預置、休眠待戰,戰時一旦需要適時激活,對敵實施猝然打擊,有助於快速掌握戰爭主動權。

體系機理

五事七計知勝負。未來戰爭是全領域、全系統、全要素、全流程的體系對抗,穩定高效的作戰體係是戰爭制勝的基礎支撐。隨著人工智慧在軍事領域應用不斷拓展,作戰體系智慧化程度越來越高,全域融合的作戰體係將產生強大的體系優勢。

「偵」的手段更多。智能化作戰集群依托網絡資訊體係與各類大型傳感器、電子戰系統及其他人機交互平台進行連接,運用各作戰單元自身檢測感知設備獲取戰場數據,發揮智能群體自組織特性,強化對聯合作戰體係及後端情報分析的實時偵監支持,能夠實現全局偵搜、聯合預警、協同印證,形成多維一體、全域覆蓋情報體的大統偵察體系。

「控」的領域更廣。運用智慧化無人作戰平台,能夠突破人類思維的邏輯極限、感官的生理極限和存在的物理極限,並代替人類進入深海、太空、極地、強輻射地域等傳統的生命禁區,並長時間置身其中實施“非常規作戰”,從而使作戰空間進一步拓展,具備在更廣的領域持續懾對手的實力。

「打」的速度更快。在智慧化網路資訊體系支撐下,情報鏈、指揮鏈、殺傷鏈無縫連接,資訊傳輸速度、決策速度與行動速度同步加快,智慧化作戰單元能夠靈活編組、自主協同、快速打擊。這些都使得時間利用效率極高、戰場反應速度極快。

「評」的精度更準。運用經驗式互動學習、類腦行為體係等智慧化科技,智慧化作戰評估系統能夠自主完成多手段行動效果評估資訊的擷取匯聚、分級分類,基於大數據和全景圖精準感知戰場行動,動態識別作戰進程並糾正缺陷問題,預判復雜戰場變化,綜合規劃、靈活應對。

「保」的效率更高。以裝備維修專家系統、智慧化感知設備為代表的智慧化綜合保障系統的廣泛應用,能夠高效響應各域保障需求,智慧規劃保障資源,保障「雲」聚合各類戰場資源,有效提升網絡化戰場綜合保障能力。

(作者單位:河南省軍區)

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-05-02&paperNumber=03&articleid=93033888

Chinese Military Focus Developing Weaponizing Artificial Intelligence

中國軍方重點發展武器化人工智慧

現代英語:

As a strategic technology leading a new round of scientific and technological revolution and industrial transformation, artificial intelligence is profoundly changing the form of modern warfare. Countries have taken a national strategic approach to Focus on the military field and develop artificial intelligence.

Currently, artificial intelligence is profoundly changing people’s thinking, lifestyles and exploration directions. Its application and development in the military field will also have a profound impact on future war fighting styles, combat spaces and means. While major countries have elevated artificial intelligence to a national strategy, they are also taking various measures to promote the military application of artificial intelligence.

Russia–

Highlight military priority

Focus on actual combat testing

As the importance of artificial intelligence technology gradually becomes apparent, Russia has listed artificial intelligence as a priority development area to promote military modernization and intelligence and compete for strategic commanding heights.

Russia has successively introduced strategic plans such as the “National Weapons and Equipment Plan 2018-2025” and the “National Artificial Intelligence Development Strategy before 2030”, and established the National Artificial Intelligence Center, the Robotics Technology Development Center, etc. to carry out theoretical and applied research in the fields of artificial intelligence and information technology.

The Russian military has currently developed and applied artificial intelligence technology in all combat domains on land, sea and air, and possesses a considerable scale of unmanned combat forces.

On land, China has unmanned combat vehicles represented by the “Uranus” series, “Platform-M” and “Argo” models. In the air, China has “Pomegranate”-4, “Fast Light Particle” short-range UAVs, “Sea Eagle”-10, “Outpost” and other medium-sized UAVs that perform reconnaissance, command and communication relay tasks. Underwater, China has in service large-scale “Harpsichord”-1R, small-scale “Marlin-350”, “Vision-600” micro-unmanned submarines, especially the “Poseidon” nuclear-powered unmanned submarine, which can carry a nuclear warhead with a TNT equivalent of 2 million tons.

Since 2015, the Russian army has formed combat robot companies in various military regions and fleets, equipped a large number of robots, and continuously organized artificial intelligence exercises. In addition, the Russian army has accelerated the research on combat theory and the development of new equipment systems, and conducted actual combat tests in the battlefields of Syria and eastern Ukraine, providing a reliable basis for the development and improvement of unmanned combat systems. In the Syrian military operation in early 2016, the Russian army used six “Platform-M” tracked unmanned combat vehicles and four “Codeword” wheeled unmanned reconnaissance vehicles for the first time to participate in the attack and occupy enemy positions, creating a practical precedent for ground unmanned equipment to move from auxiliary combat to main combat.

Currently, the Russian military is stepping up efforts to integrate artificial intelligence systems with drones, missiles, etc. to cope with the future era of intelligent warfare.

USA–

Develop long-term plans

Strengthening technology leadership

The U.S. military has always focused on the research and development of artificial intelligence technology, and has made arrangements at the national strategic level, with a clear development strategy, specific tactical models and strong technical support. Since 2000, the U.S. Department of Defense has strengthened the top-level planning of unmanned equipment and technology development by regularly updating the unmanned equipment development strategy and roadmap.

In 2014, the United States proposed the “Third Offset Strategy” with artificial intelligence as the key supporting technology. In October 2016, then-US President Obama released a report at the White House, “National Artificial Intelligence Research and Development Strategic Plan”, which proposed seven strategic directions and two suggestions for the priority development of artificial intelligence in the United States. The US military has successively formulated artificial intelligence technology research and development plans, key project ideas, and technical standards and specifications, focusing on building a research and development production and combat application system, and promoting the deployment of projects such as intelligent missiles and unmanned autonomous aerial refueling.

At present, the U.S. military’s active unmanned equipment is still mainly controlled by remote control or pre-programming. It is expected that in the future, major breakthroughs will be made in the autonomy of unmanned equipment and manned-unmanned collaboration. The U.S. military also hopes to further develop neural technology to enable combat personnel to interact with the system on the battlefield in the future, and ultimately achieve consciousness connection and human-like thinking of artificial intelligence systems.

With the deployment of a series of new combat concepts and related military application projects, the United States is accelerating the transformation of artificial intelligence technology into weapons and equipment systems and unmanned combat systems to offset the combat capabilities of its opponents, maintain absolute military advantages, and safeguard its global hegemony.

Yingde is based on——

Promoting resource integration

Each has its own development path

The UK has defined its AI strategy as a key national strategy and has developed a development path of “universities as the source and military-civilian integration”, focusing on cooperating with the world’s top universities and mature companies to explore ways to maintain military advantages on future battlefields. In September 2018, the UK announced that it had developed an AI military robot called “Sapiens” that can scan urban battlefields, detect hidden enemies, and send information to soldiers.

As a traditional industrial power, Germany regards artificial intelligence as the key to maintaining Germany’s competitiveness and safeguarding Germany’s future. Germany, which has the world’s largest artificial intelligence research center, released the national “Artificial Intelligence Strategy” in 2018, planning to invest about 3 billion euros at the federal level by 2025 to create an “artificial intelligence made in Germany” brand. In terms of military applications of artificial intelligence, Germany has also achieved many important results. The German army has been equipped with digital systems with intelligent information perception and processing capabilities in large quantities. The German Air Force’s “Typhoon” fighter has successfully achieved interconnection with remote-controlled vehicles and can receive and execute combat missions at the same time.

Israel has a small territory and a complex surrounding situation. A strong sense of insecurity is a powerful driving force for its development of artificial intelligence, and deep military-civilian integration has provided advanced technology, abundant funds and high-level talents for the rapid development of artificial intelligence in the Israeli military. Its national artificial intelligence program, the “Tower” program, a collaboration between the military and the Hebrew University, has provided a number of outstanding talents for the Israel Defense Forces to improve their intelligence level.

Today, Israel has become the world’s largest exporter of military drones, accounting for about 60% of the world’s exports. Among them, drones such as “Hermes” and “Skylark” represent the world’s advanced level. Many of the Azerbaijani drones that have attracted attention in the recent war between India and Pakistan were imported from Israel. Israel’s “Guardian” unmanned vehicle is the world’s first controllable autonomous unmanned vehicle. The Israeli Navy is equipped with multiple types of unmanned surface vessels such as “Protector”, “Stingray” and “Seagull”, among which the “Seagull” unmanned surface vessel can perform a variety of tasks such as anti-submarine, anti-mine, and anti-frogman.

現代國語:

人工智慧作為引領新一輪科技革命和產業變革的戰略技術,正深刻改變現代戰爭形態,各國紛紛將重點發展軍事領域人工智慧上升為國家戰略。

目前,人工智慧正在深刻改變人們的思維理念、生活方式和探索方向,其在軍事領域的運用和發展,也將對未來戰爭作戰樣式、作戰空間和作戰手段產生深遠影響。各主要國家在把人工智慧上升為國家戰略的同時,也採取多種措施促進人工智慧的軍事應用。

俄羅斯——

突顯軍用優先

注重實戰檢驗

隨著人工智慧技術的重要性逐漸顯現,俄羅斯已將人工智慧列入優先發展領域,以促進軍事現代化和智慧化,爭取戰略制高點。

俄羅斯先後推出了《2018~2025年國家武器裝備計畫》《2030年前人工智慧國家發展戰略》等戰略規劃,組成國家人工智慧中心、機器人技術發展中心等,用以進行人工智慧和資訊科技領域的理論與應用研究。

俄軍目前在陸海空各個作戰域內,都開發應用了人工智慧技術,擁有了相當規模的無人作戰力量。

陸上有以「天王星」系列和「平台-M」「阿爾戈」等型號為代表的無人戰車。空中擁有遂行偵察、指揮和通訊中繼任務的「石榴」-4、「超光速粒子」近程無人機,「海鷹」-10、「前哨」等中型無人機。水下在役「大鍵琴」-1R大型、「馬爾林-350」小型、「視野-600」微型小型無人潛航器等,特別是「波塞冬」核動力無人潛航器,可攜帶200萬噸TNT當量的核子戰鬥部。

從2015年開始,俄軍在各軍區和艦隊組成戰鬥機器人連,大量列裝機器人,不斷組織人工智慧演練。此外,俄軍加快作戰理論研究和新型裝備系統研發,並在敘利亞和烏克蘭東部戰場進行實戰檢驗,為無人作戰系統的研發改進提供可靠依據。在2016年初的敘利亞軍事行動中,俄軍首次使用6台「平台-M」履帶式無人戰車和4部「暗語」輪式無人偵察車參與進攻並佔領敵方陣地,開創了地面無人裝備從輔戰走向主戰的實戰先例。

目前,俄軍正加緊將人工智慧系統與無人機、飛彈等結合,以應對未來的智慧化戰爭時代。

美國——

制定長期規劃

強化技術引領

美軍一直注重人工智慧領域的技術研發,從國家戰略層面進行佈局,具有明晰的發展策略、具體的戰術模式和強而有力的技術支撐。從2000年開始,美國防部就透過定期更新無人裝備發展策略與路線圖,加強無人裝備與技術發展的頂層規劃。

2014年,美國提出了以人工智慧為關鍵支撐技術的「第三次抵銷策略」。 2016年10月,時任美國總統歐巴馬在白宮發布報告《國家人工智慧研究與發展戰略計畫》,提出了美國優先發展的人工智慧七大戰略方向和兩方面建議。美國軍方相繼制定了人工智慧技術研發規劃、重點專案設想、技術標準規範,著力建構研發生產和作戰運用體系,推動智慧飛彈、無人自主空中加油等項目的部署。

目前,美軍現役無人裝備仍主要採取遙控或預編程方式進行控制,預計未來將在無人裝備自主性、有人-無人協同等方面取得較大突破。美軍也希望透過進一步開發神經技術,在未來戰場上使作戰人員能夠與系統進行思想交互,最終實現人工智慧系統的意識連結和類人化思考。

隨著一系列新型作戰概念和相關軍事應用項目的部署,美國正在加快人工智慧技術向武器裝備系統和無人作戰體系的轉化進程,以抵消對手作戰能力,維持絕對軍事優勢,維護其全球霸權。

英德以——

推進資源融合

各闢發展路徑

英國把人工智慧戰略定性為國家重點戰略,並製定了「高校為源、軍民融合」的發展路徑,注重與世界頂級高校和成熟的公司合作,探索在未來戰場上保持軍事優勢的途徑。 2018年9月,英國宣稱已經研發了一種名為「智人」的人工智慧軍事機器人,能夠掃描城市戰場,發現隱藏敵人,並將訊息傳送給士兵。

作為傳統的工業強國,德國將人工智慧視為維持德國競爭力、保障德國未來的關鍵。擁有世界上最大的人工智慧研究中心的德國,於2018年發布了國家層級的《人工智慧戰略》,計畫2025年前在聯邦層級投入約30億歐元,打造「人工智慧德國製造」品牌。在人工智慧軍事應用方面,德國也取得了不少重要成果。德軍已經大批量裝備具有智慧化資訊感知與處理能力的數位化系統,德國空軍的「颱風」戰鬥機,已成功實現與遙控載具的互聯互通,可同時領受和執行作戰任務。

以色列國土狹小、週邊形勢複雜,強烈的不安全感是促使其發展人工智慧的強大動力,而深度軍民融合,則為以軍人工智慧飛速發展提供了先進技術、充裕資金和高水準人才。其國家級人工智慧計畫——軍隊和希伯來大學合作的「塔樓」計劃,就為以色列國防軍提升智慧化水平輸送了不少優秀人才。

如今以色列已成為全球最大的軍用無人機出口國,出口量約佔全球的60%,其中,「赫爾墨斯」「雲雀」等無人機代表世界先進水準。近期在亞阿戰爭中令人關注的阿塞拜疆無人機,不少就是從以色列引進的。以色列「守護者」無人車,是世界上第一種可控的自主式無人車。以海軍則裝備「保護者」「魟魚」「海鷗」等多型無人水面艇,其中「海鷗」無人水面艇可執行反潛、反水雷、反蛙人等多樣化任務。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2020-11/19/content_27624788.htm

China’s Competition for Militarization of Artificial Intelligence Continues to Accelerate

中國人工智慧軍事化競爭持續加速

中國軍網 國防部網 // 2022年9月1日 星期四

現代英語:

Artificial intelligence is a general term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future war form, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.

With the rapid development of technology and the continuous acceleration of competition, major countries have launched their own artificial intelligence development plans, and accelerated the promotion of organizational mechanism reform, scientific and technological research and development, and tactical and combat innovation, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.

Accelerate organizational form innovation

Promote technology transformation and application

Unlike traditional technologies, the research and development and transformation of artificial intelligence have their own characteristics. The institutional settings and operation methods of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, breaking the institutional barriers in the process of artificial intelligence technology research and development, and accelerating the transformation and application of related technologies.

Emphasize “connection between the near and the far”. The United Kingdom, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Future Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative application of existing platforms in a “potential tapping and efficiency increase” manner, while buying time for the medium- and long-term technological innovation of the Defense Advanced Research Projects Agency, so as to effectively balance practical needs and long-term development.

Attach importance to “research and use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat selection, and other aspects. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements transformation, and promote the widespread application of artificial intelligence in the U.S. Department of Defense and various services.

Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Committee”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.

Highlight the “combination of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department, which fully demonstrates new technologies, new theories, and new concepts based on the specific effects of various systems organically integrated into various services and arms, so as to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of national defense technology innovation and application by re-establishing the position of Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, concepts, and methods, so as to select the focus of various technology research and development and the direction of strategic and tactical research, and achieve a benign interaction between technology development and theoretical innovation.

Project establishment for military needs

Seize the opportunity for future development

In recent years, various military powers have aimed at the research and development of cutting-edge artificial intelligence technologies, and have widely established projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, intending to seize the opportunity for future development.

Situational awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” with blurred peace and war, integration of soldiers and civilians, internal and external linkage, and full-domain integration, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use intelligent information analysis and data sharing platforms to improve the fire support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.

Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and operational advantages. Russia’s “Combat Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, and other aspects, and improving commanders’ ability to control complex battlefields and command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, using artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, event roots, and relationships behind the war; the “Marvin” project uses machine learning algorithms and face recognition technology to screen and sort out various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.

Unmanned combat field. In some technologically advanced countries, unmanned combat systems are becoming more mature and equipment types are becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and transport and recovery of drones in all-terrain and all-time conditions. The Russian military’s “Outpost-R” drone system, which has the ability to detect and strike in one, can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s effectiveness in performing combat missions such as reconnaissance and surveillance, auxiliary targeting, battle damage assessment, and communication relay.

Adapting to the transformation of future battlefields

Continuously exploring new tactics

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the participation efficiency of artificial intelligence in key military decisions and actions.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, fully utilizing the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side always leads the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the U.S. Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the U.S. military’s algorithmic warfare further moving towards actual combat.

Unmanned warfare, guided by low-cost attrition warfare of saturated quantity attack and system attack and defense operations, strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat mode. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”.

Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses shallow footprints, low-feature, fast-paced forces such as special forces to form small groups of multi-group mobile formations, disperse and infiltrate the combat area in a multi-directional and multi-domain manner, continuously break the enemy’s system shortcomings and chain dependence, and increase the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.

Fusion warfare, relying on network quantum communication and other means, builds an anti-interference, high-speed “combat cloud” to eliminate the technical barriers of data link intercommunication, interconnection and interoperability between military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break data barriers and greatly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information of various services, which improved the integration between services and enhanced the effectiveness of joint command and control.

(Author’s unit: National University of Defense Technology)

程柏华

現代國語:

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以「戰略能力辦公室」和「首席數位與人工智慧長」為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以「挖潛增效」方式加強現有平台的創新運用,同時為國防高級研究計劃局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新思想、新理念、新方法進行實踐檢驗,以選定各類技術研發焦點與戰略戰術攻關方向,實現技術發展與創新理論的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源信息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發製人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力和全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增大其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

(作者單位:國防科技大學)

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_32324488.htm

People’s Republic of China’s Development Trend & Governance Strategy for Weaponization of Artificial Intelligence

中華人民共和國人工智慧武器化發展趨勢與治理策略

現代英語:

The weaponization of artificial intelligence is an inevitable trend in the new round of military transformation. Local wars and conflicts in recent years have further stimulated relevant countries to promote the strategic deployment of artificial intelligence weaponization and seize the commanding heights of future wars. The potential risks of artificial intelligence weaponization cannot be ignored. It may intensify the arms race and break the strategic balance; empower the combat process and increase the risk of conflict; increase the difficulty of accountability and increase collateral casualties; lower the threshold of proliferation and lead to misuse and abuse. In this regard, we should strengthen international strategic communication to ensure consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on the construction of laws and regulations to form a unified and standardized legal framework; strengthen the ethical constraints of artificial intelligence to ensure that technological development meets ethical standards; actively participate in global security governance cooperation and jointly maintain peace and stability in the international community.

    The weaponization of artificial intelligence is to apply artificial intelligence-related technologies, platforms and services to the military field, making it an important driving force for enabling military operations, thereby improving the efficiency, accuracy and autonomy of military operations. With the widespread application of artificial intelligence technology in the military field, major powers and military powers have increased their strategic and resource investment and accelerated the pace of research and development and application. The frequent regional wars and conflicts in recent years have further stimulated the battlefield application of artificial intelligence, and profoundly shaped the form of war and the future direction of military transformation.

    It cannot be ignored that, as a rapidly developing technology, AI itself may have potential risks due to the immaturity of its inherent technology, inaccurate scene matching, and incomplete supporting conditions. It is also easy to bring various risks and challenges to the military field and even the international security field due to human misuse, abuse, or even malicious use. To conscientiously implement the global security initiative proposed by General Secretary Xi Jinping, we must face the development trend of weaponization of AI worldwide, conduct in-depth analysis of the security risks that may be brought about by the weaponization of AI, and think about scientific and feasible governance ideas and measures.

    Current trends in the weaponization of artificial intelligence

    In recent years, the application of artificial intelligence in the military field is fundamentally reshaping the future form of war, changing the future combat system, and affecting the future direction of military reform. Major military powers have regarded artificial intelligence as a subversive key technology that will change the rules of future wars, and have invested a lot of resources to promote the research and development and application of artificial intelligence weapons.

    The weaponization of artificial intelligence is an inevitable trend in military transformation.

    With the rapid development of science and technology, the necessity and urgency of military reform have become increasingly prominent. Artificial intelligence can simulate human thinking processes, extend human brainpower and physical strength, realize rapid information processing, analysis and decision-making, and develop increasingly complex unmanned weapon system platforms, thus providing unprecedented intelligent support for military operations.

    First, it provides intelligent support for military intelligence reconnaissance and analysis. Traditional intelligence reconnaissance methods are constrained by multiple factors such as manpower and time, and it is difficult to effectively respond to large-scale, high-speed and high-complexity intelligence processing needs. The introduction of artificial intelligence technology has brought innovation and breakthroughs to the field of intelligence reconnaissance. In military infrastructure, the application of artificial intelligence technology can build an intelligent monitoring system to provide high-precision and real-time intelligence perception services. In the field of intelligence reconnaissance, artificial intelligence technology has the ability to process multiple “information flows” in real time, thereby greatly improving analysis efficiency. ① By using technical tools such as deep learning, it is also possible to “see the essence through the phenomenon”, dig out the deep context and causal relationship in various types of fragmented intelligence information, and quickly transform massive fragmented data into usable intelligence, thereby improving the quality and efficiency of intelligence analysis.

    Second, provide data support for combat command and decision-making. Artificial intelligence provides strong support for combat command and military decision-making in terms of battlefield situation awareness. ② Its advantage lies in the ability to perform key tasks such as data mining, data fusion, and predictive analysis. In information-based and intelligent warfare, the battlefield environment changes rapidly, and the amount of intelligence information is huge, requiring rapid and accurate decision-making responses. Therefore, advanced computer systems have become an important tool to assist commanders in managing intelligence data, making enemy situation judgments, proposing combat plan suggestions, and formulating plans and orders. Taking the US military as an example, the ISTAR (Intelligence, Surveillance, Target Identification and Tracking) system developed by Raytheon Technologies Corporation of the United States covers intelligence collection, surveillance, target identification and tracking functions, and can gather data from multiple information sources such as satellites, ships, aircraft and ground stations, and conduct in-depth analysis and processing. This not only significantly improves the speed at which commanders obtain information, but also can provide data support with the help of intelligent analysis systems, making decisions faster, more efficient and more accurate.

    Third, it provides important support for unmanned combat systems. Unmanned combat systems are a new type of weapon and equipment system that can independently complete military tasks without direct human manipulation. They mainly include intelligent unmanned combat platforms, intelligent ammunition, and intelligent combat command and control systems, and have significant autonomy and intelligent features. As a technical equipment that leads the transformation of future war forms, unmanned combat systems have become an important bargaining chip in military competition between countries. The system has achieved adaptability to different battlefield environments and combat spaces by using key technologies such as autonomous navigation, target recognition, and path planning. With the help of advanced algorithms such as deep learning and reinforcement learning, unmanned combat systems can independently complete navigation tasks and achieve precise strikes on targets. The design concept of this system is “unmanned platform, manned system”, and its essence is an intelligent extension of manned combat systems. For example, the “MQM-57 Falconer” drone developed by the US Department of Defense’s Advanced Research Projects Agency (DARPA) uses advanced artificial intelligence technology and has highly autonomous target recognition and tracking functions.

    Fourth, provide technical support for military logistics and equipment support. In the context of information warfare, the war process has accelerated, mobility has improved, and combat consumption has increased significantly. The traditional “excessive pre-storage” support model can no longer adapt to the rapidly changing needs of the modern battlefield. Therefore, higher requirements are placed on combat troops to provide timely, appropriate, appropriate, appropriate, and appropriate rapid and accurate after-sales support. As a technology with spillover and cross-integration characteristics, artificial intelligence is integrated with cutting-edge technologies such as the Internet of Things, big data, and cloud computing, allowing artificial intelligence knowledge groups, technology groups, and industrial groups to fully penetrate the military after-sales field, significantly improving the logistics equipment support capabilities.

    Major countries are planning to develop military applications of artificial intelligence.

    In order to enhance their global competitiveness in the field of artificial intelligence, major powers such as the United States, Russia, and Japan have stepped up their strategic layout for the military application of artificial intelligence. First, by updating and adjusting the top-level strategic planning in the field of artificial intelligence, they provide clear guidance for future development; second, in response to future war needs, they accelerate the deep integration of artificial intelligence technology and the military field, and promote the intelligent, autonomous, and unmanned development of equipment systems; in addition, they actively innovate combat concepts to drive combat force innovation, thereby improving combat effectiveness and competitive advantages.

    The first is to formulate a strategic plan. Based on the strategic paranoia of pursuing military hegemony, political hegemony, and economic hegemony with technological hegemony, the United States is accelerating its military intelligence process. In November 2023, the U.S. Department of Defense issued the “Data, Analysis and Artificial Intelligence Adoption Strategy”, which aims to expand the advanced capabilities of the entire Department of Defense system to gain lasting military decision-making advantages. The Russian military promulgated the “Russian Weapons and Equipment Development Outline from 2024 to 2033”, known as the “3.0 version”, which aims to provide guidance for the development of weapons and equipment in the next 10 years. The outline emphasizes the continued advancement of nuclear and conventional weapons construction, and focuses on the research of artificial intelligence and robotics technology, hypersonic weapons and other strike weapons based on new physical principles.

    The second is to develop advanced equipment systems. Since 2005, the U.S. military has released a version of the “Unmanned System Roadmap” every few years to look forward to and design unmanned system platforms in various fields such as air, ground, surface/underwater, and connect the development chain of unmanned weapons and equipment such as research and development-production-testing-training-combat-support. At present, more than 70 countries in the world can develop unmanned system platforms, and various types of drones, unmanned vehicles, unmanned ships (boats), and unmanned submarines are springing up like mushrooms after rain. On July 15, 2024, Mark Milley, former chairman of the U.S. Joint Chiefs of Staff, said in an interview with U.S. Defense News that by 2039, one-third of the U.S. military will be composed of robots. The Platform-M combat robot, the “Lancet” suicide drone, and the S70 “Hunter” heavy drone developed by the Russian army have been put into actual combat testing.

    The third is to innovate future combat concepts. The combat concept is a forward-looking study of future war styles and combat methods, which can often lead to the leapfrog development of new combat force formations and weapons and equipment. In recent years, the US military has successively proposed combat concepts such as “distributed lethality”, “multi-domain warfare” and “mosaic warfare” in an attempt to lead the development direction of military transformation. Taking “mosaic warfare” as an example, this combat concept regards various sensors, communication networks, command and control systems, weapon platforms, etc. as “mosaic fragments”. These “fragment” units, with the support of artificial intelligence technology, can be dynamically linked, autonomously planned, and collaboratively combined through network information systems to form an on-demand integrated, highly flexible, and flexible killing network. In March 2022, the US Department of Defense released the “Joint All-Domain Command and Control (JADC2) Strategic Implementation Plan”, which aims to expand multi-domain operations to all-domain operations concepts, connect sensors of various services to a unified “Internet of Things”, and use artificial intelligence algorithms to help improve combat command decisions. ③

    War conflicts stimulate the weaponization of artificial intelligence.

    In recent years, local conflicts such as the Libyan conflict, the Nagorno-Karabakh conflict, the Ukrainian crisis, and the Israeli-Kazakh conflict have continued, further stimulating the development of the weaponization of artificial intelligence.

    In the Libyan conflict, the warring parties used various types of drones to perform reconnaissance and combat missions. According to a report released by the United Nations Panel of Experts on Libya, the Turkish-made Kargu-2 drone carried out a “hunt and engage remotely” operation in Libya in 2020, and could autonomously attack retreating enemy soldiers. This incident marked the first use of lethal autonomous weapon systems in actual combat. As American scholar Zachary Cullenborn said, if someone unfortunately died in such an autonomous attack, this would most likely be the first known example in history of artificial intelligence autonomous weapons being used for killing. In the 2020 Nagorno-Karabakh conflict, Azerbaijan used a formation of Turkish-made “Flagship” TB2 drones and Israeli-made “Harop” drones to successfully break through the Armenian air defense system and gain air superiority and initiative on the battlefield. ④ The remarkable results of the Azerbaijani army’s drone operations are largely due to the Armenian army’s “underestimation of the enemy” mentality and insufficient understanding of the importance and threat of drones in modern warfare. Secondly, from the perspective of offensive strategy, the Azerbaijani army has made bold innovations in drone warfare. They flexibly use advanced equipment such as reconnaissance and strike drones and cruise missiles, which not only improves combat efficiency, but also greatly enhances the suddenness and lethality of combat. ⑤

    During the Ukrainian crisis that broke out in 2022, both Russia and Ukraine widely used military-grade and commercial drones to perform reconnaissance, surveillance, artillery targeting and strike missions. The Ukrainian army used the “Flagship” TB2 drone and the “Switchblade” series of suicide drones assisted by the United States to carry out precision strikes and efficient killings, becoming a “battlefield killer” that attracted worldwide attention. In the Israeli-Kazakhstan conflict, the Israeli military was accused of using an artificial intelligence system called “Lavender” to identify and lock bombing targets in Gaza. It once marked as many as 37,000 Palestinians in Gaza as suspected “militants” and identified them as targets that could be directly “assassinated”. The Israeli military’s actions have attracted widespread attention and condemnation from the international community. ⑥

    Security risks posed by weaponization of artificial intelligence

    From automated command systems to intelligent unmanned combat platforms, to intelligent decision-making systems in network defense, the application of artificial intelligence technology in the military field is becoming more and more common and has become an indispensable part of modern warfare. However, with the trend of weaponization of artificial intelligence, its misuse, abuse and even malicious use will also bring risks and challenges to international security that cannot be ignored.

    Intensify the arms race and disrupt the strategic balance.

    In the information and intelligent era, the disruptive potential of artificial intelligence is hard for major military powers to resist. They are all focusing on the development and application of artificial intelligence military capabilities, fearing that they will fall behind in this field and lose strategic opportunities. Deepening the military application of artificial intelligence can gain “asymmetric advantages” at a lower cost and with higher efficiency.

    First, countries are scrambling to seize the “first mover advantage”. When a country achieves technological leadership in the development of intelligent weapon systems, it means that the country has more advanced artificial intelligence and related application capabilities, giving it a first-mover advantage in weapon system development, control, and emergency response. This advantage includes higher autonomy, intelligence, and adaptability, which increases the country’s military strength and strategic competitive advantage. At the same time, the military advantage of the first mover may become a security threat to competitors, leading to a scramble among countries in the military application of advanced technologies. ⑦ In August 2023, US Deputy Secretary of Defense Kathryn Hicks announced the “Replicator initiative”, which seeks to deploy thousands of “autonomous weapon systems” in the Indo-Pacific region in less than two years. ⑧

    Second, the opacity of AI armament construction in various countries may intensify the arms race. There are two main reasons for this: First, AI technology is an “enabling technology” that can be used to design a variety of applications, which means that it is difficult to verify the specific situation of AI military applications. It is difficult to determine whether a country is developing or deploying nuclear weapons by monitoring uranium, centrifuges, weapons and delivery systems, as is the case with nuclear weapons. The difference between semi-autonomous and fully autonomous weapon systems is mainly due to different computer software algorithms, and it is difficult to verify the implementation of treaties by various countries through physical verification. Second, in order to maintain their strategic advantages, countries often take confidentiality measures for the details of the military application of advanced technologies, so that opponents cannot detect their strategic intentions. In the current international environment, this opacity not only intensifies the arms race, but also lays the groundwork for future escalation of conflicts.

    Third, the uncertainty of the strategic intentions of various countries will also intensify the arms race. The impact of artificial intelligence on strategic stability, nuclear deterrence and war escalation depends largely on other countries’ perception of its capabilities rather than its actual capabilities. As American scholar Thomas Schelling pointed out, international relations often have the characteristics of risk competition, which is more of a test of courage than force. The relationship between major opponents is determined by which side is ultimately willing to invest more power, or make it look like it is about to invest more power. ⑨ An actor’s perception of the capabilities of others, whether true or false, will greatly affect the progress of the arms race. If a country vigorously develops intelligent weapon systems, competitors will become suspicious of their competitors’ armament capabilities and intentions to develop armaments without being sure of the other party’s intentions, and often take reciprocal measures, that is, to meet their own security needs by developing armaments. It is this ambiguity of intention that stimulates technological accumulation, exacerbates the instability of weapons deployment, and ultimately leads to a vicious cycle.

    Empowering operational processes increases the risk of conflict.

    Empowered by big data and artificial intelligence technologies, traditional combat processes will be rebuilt intelligently, that is, from “situational awareness – command decision-making – attack and defense coordination – comprehensive support” to “intelligent cognition of global situation – human-machine integrated hybrid decision-making – manned/unmanned autonomous coordination – proactive on-demand precise support”. However, although the intelligent reconstruction of combat processes has improved the efficiency and accuracy of operations, it has also increased the risk of conflict and misjudgment.

    First, wars that break out at “machine speed” will increase the risk of hasty actions. Artificial intelligence weapon systems have demonstrated strong capabilities in accuracy and response speed, making future wars break out at “machine speed”. ⑩ However, too fast a war will also increase the risk of conflict. In areas such as missile defense, autonomous weapon systems, and cyberspace that value autonomy and response speed, faster response speeds will bring huge strategic advantages, but will also greatly compress the time window for the defender to respond to military actions, causing combat commanders and decision makers to be under tremendous “time pressure”, exacerbating the risk of “hasty action” and increasing the possibility of accidental escalation of crises.

    Second, reliance on system autonomy may increase the chance of misjudgment under pressure. The U.S. Department of Defense believes that “highly autonomous artificial intelligence systems can autonomously select and execute corresponding operations based on the dynamic changes in mission parameters, and efficiently achieve human preset goals. The increase in autonomy not only greatly reduces dependence on manpower and improves overall operational efficiency, but is also regarded by defense planners as a key factor in maintaining tactical leadership and ensuring battlefield advantage.” ⑪ However, since human commanders cannot respond quickly enough, they may gradually delegate control to autonomous systems, increasing the chance of misjudgment. In March 2003, the U.S. Patriot missile system mistakenly marked a friendly Tornado fighter as an anti-radiation missile. The commander chose to launch the missile under the pressure of only a few seconds to react, resulting in the death of two pilots. ⑫

    Third, it weakens the effectiveness of the crisis termination mechanism. During the Cold War, the United States and the Soviet Union led the construction of a series of restrictive measures to curb the escalation of crises and prevent them from evolving into large-scale nuclear wars. In these measures, humans play a vital role as “supervisors”. When risks may get out of control, they can initiate termination measures in sufficient time to avoid large-scale humanitarian disasters. However, with the improvement of the computing power of artificial intelligence systems and their deep integration with machine learning, combat responses have become faster, more precise and destructive, and humans’ termination intervention mechanism for crises may be weakened.

    War accountability is difficult and collateral casualties increase.

    Artificial intelligence weapon systems make it more difficult to define responsibility for war. In traditional combat modes, weapons systems are controlled by humans. Once errors or crises occur, human operators or developers of operating systems will bear corresponding responsibilities. Artificial intelligence technology itself weakens human initiative and control capabilities, making the attribution of responsibility for technical behavior unclear.

    The first is the problem of the “black box” of artificial intelligence. Although artificial intelligence has significant advantages in processing and analyzing data, its internal operating rules and causal logic are often difficult for humans to understand and explain, which makes it difficult for programmers to correct errors in the algorithm. This problem is often referred to as the “black box” of the algorithm model. Once the artificial intelligence weapon system poses a safety hazard, the “algorithm black box” may become a rational excuse for the relevant responsible parties to shirk responsibility. Those who pursue responsibility can only face generalized shirking and shirking of responsibility, and point the finger of responsibility at the artificial intelligence weapon system. In practice, if the decision-making process of artificial intelligence cannot be understood and explained, it may cause a series of problems, such as decision-making errors, trust crises, and information abuse.

    The second is the division of responsibilities between humans and machines in military operations. When an AI system fails or makes a wrong decision, should it be considered an independent entity to bear responsibility? Or should it be considered a tool, with human operators bearing all or part of the responsibility? The complexity of this division of responsibilities lies not only in the technical level, but also in the ethical and legal levels. On the one hand, although AI systems can make autonomous decisions, their decision-making process is still limited by human preset procedures and algorithms, so their responsibilities cannot be completely independent of humans. On the other hand, AI systems may go beyond the preset scope of humans and make independent decisions in some cases. How to define their responsibilities at this time has also become a difficult problem in the field of arms control.

    The third is the issue of the allocation of decision-making power between humans and artificial intelligence weapon systems. According to the different autonomous powers of the machine, the artificial intelligence system can perform tasks in three decision-making and control modes: semi-autonomous, supervised autonomous, and fully autonomous. In a semi-autonomous system, the decision-making power of the action is controlled by humans; in supervised autonomous actions, humans supervise and intervene when necessary; in fully autonomous actions, humans do not participate in the action process. With the gradual deepening of the military application of artificial intelligence, the role of humans in the combat system is undergoing a gradual transformation from the traditional “man in the loop” mode to the “man on the loop”, and humans have evolved from direct operators inside the system to supervisors outside the system. However, this transformation has also raised new problems. How to ensure that artificial intelligence weapon systems can still follow human ethics and values ​​when operating independently is a major challenge facing the current field of artificial intelligence weapon research and development.

    Lowering the threshold for proliferation leads to misuse and abuse.

    Traditional strategic competition usually involves large-scale research and development and procurement of weapons systems, which requires a lot of money and technical support. After AI technology matures and spreads, it has the advantages of being easy to obtain and inexpensive. Even small and medium-sized countries may have the ability to develop advanced intelligent weapon systems. At present, strategic competition in the field of military AI is mainly concentrated between major military powers such as the United States and Russia. However, in the long run, the spread of AI technology will expand the scope of strategic competition and pose a destructive threat to the existing strategic balance. Once smaller countries that master AI technology have relatively strong competitiveness, their willingness to initiate confrontation when facing threats from major powers may increase.

    First, artificial intelligence helps develop some lightweight and agile means of warfare, thereby encouraging some small and medium-sized countries or non-state actors to use it to carry out small, opportunistic military adventures, achieving their strategic goals at a lower cost and with more abundant channels. Second, the rapid development of artificial intelligence has made new forms of warfare such as cyber warfare and electronic warfare increasingly prominent. In a highly competitive battlefield environment, malicious third-party actors can influence military planning and strategic deterrence by manipulating information, leading to an escalation of the situation. In the Ukrainian crisis that broke out in 2022, a lot of false information was spread on the Internet to confuse the public. Third, the widespread application of artificial intelligence technology has also reduced strategic transparency. Traditional military strategies often rely on a large amount of intelligence collection, analysis and prediction, and with the assistance of artificial intelligence technology, combat planning and decision-making processes have become more complex and unpredictable. This opacity may lead to misunderstandings and misjudgments, thereby increasing the risk of escalating conflicts.

    Governance Path for Security Risks of Weaponized Artificial Intelligence

    To ensure the safe development of artificial intelligence and avoid the potential harm caused by its weaponization, we should strengthen international communication on governance strategies, seek consensus and cooperation among countries on the military application of artificial intelligence; promote dialogue and coordination on laws and regulations to form a unified and standardized legal framework; strengthen the constraints on artificial intelligence ethics to ensure that technological development complies with ethical standards; and actively participate in global security governance cooperation to jointly maintain peace and stability in the international community.

    Attach great importance to strategic communication at the international level.

    AI governance is a global issue that requires the concerted efforts of all countries to solve. On the international stage, countries have both mixed and conflicting interests. Therefore, dealing with global issues through effective communication channels has become the key to maintaining world peace and development.

    On the one hand, we need to accurately grasp the challenges of international governance of AI. We need to grasp the consensus of various countries on the development of weaponized AI, pay close attention to the policy differences among countries in the security governance of weaponized AI applications, and coordinate relevant initiatives with the UN agenda through consultation and cooperation, so as to effectively prevent the military abuse of AI and promote the use of AI for peaceful purposes.

    On the other hand, governments should be encouraged to reach relevant agreements and establish strategic mutual trust through official or semi-official dialogues. Compared with the “Track 1 Dialogue” at the government level, the “Track 1.5 Dialogue” refers to dialogues between government officials and civilians, while the “Track 2 Dialogue” is a non-official dialogue between scholars, retired officials, etc. These two forms of dialogue have higher flexibility and are important supplements and auxiliary means to official dialogues between governments. Through a variety of dialogue and communication methods, officials and civilians can widely discuss possible paths to arms control, share experiences and expertise, and avoid the escalation of the arms race and the deterioration of tensions. These dialogue mechanisms will provide countries with a continuous communication and cooperation platform, help enhance mutual understanding, strengthen strategic mutual trust, and jointly respond to the challenges brought about by the militarization of artificial intelligence.

    Scientifically formulate laws and ethical norms for artificial intelligence.

    Artificial intelligence technology itself is neither right nor wrong, good nor evil, but there are differences in good and bad intentions in the design, development, manufacturing, use, operation and maintenance of artificial intelligence. The weaponization of artificial intelligence has aroused widespread ethical concerns. Under the framework of international law, can autonomous weapon systems accurately distinguish between combatants and civilians on a complex battlefield? In addition, if artificial intelligence weapon systems cause unexpected harm, how to define the responsibility? Is it in line with moral and ethical standards to give machines the decision-making power of life and death? These concerns highlight the need to strengthen the ethical constraints of artificial intelligence.

    On the one hand, we must insist on ethics first and integrate the concept of “intelligent for good” from the source of technology. In the design process of artificial intelligence military systems, values ​​such as people-oriented and intelligent for good will be embedded in the system. The purpose is to eliminate the indiscriminate killing and injury that may be caused by artificial intelligence from the source, control its excessive lethality, and prevent accidental damage, so as to limit the damage caused by artificial intelligence weapon systems to the smallest possible range. At present, nearly 100 institutions or government departments at home and abroad have issued various artificial intelligence ethical principle documents, and academia and industry have also reached a consensus on the basic ethical principles of artificial intelligence. In 2022, China’s “Position Paper on Strengthening the Ethical Governance of Artificial Intelligence” submitted to the United Nations provided an important reference for the development of global artificial intelligence ethical supervision. The document clearly emphasizes that artificial intelligence ethical supervision should be promoted through institutional construction, risk control, collaborative governance and other measures.

    On the other hand, we need to improve relevant laws and regulations and clarify the boundaries of rights and responsibilities of AI entities. We need to formulate strict technical review standards to ensure the security and reliability of AI systems. We need to conduct comprehensive tests before AI systems go online to ensure that they do not have a negative impact on human life and social order. We need to clarify the legal responsibilities of developers, users, maintainers and other parties throughout the life cycle of AI systems, and establish corresponding accountability mechanisms.

    Pragmatically participate in international cooperation on artificial intelligence security governance.

    The strategic risks brought about by the military application of artificial intelligence further highlight the importance of pragmatic cooperation in international security. It is recommended to focus on three aspects:

    First, promote the formulation of guidelines for the use of artificial intelligence in the military field. Formulating a code of conduct for the military application of artificial intelligence is an important responsibility of all countries to regulate the military application of artificial intelligence, and it is also a necessary measure to promote international consensus and comply with international laws and regulations. In 2021, the Chinese government submitted the “China’s Position Paper on Regulating the Military Application of Artificial Intelligence” to the United Nations Convention on Certain Conventional Weapons Conference, and issued the “Global Artificial Intelligence Governance Initiative” in 2023. These have provided constructive references for improving the code of conduct for regulating the military application of artificial intelligence.

    The second is to establish an applicable regulatory framework. The dual-use nature of AI involves many stakeholders. Some non-state actors, such as non-governmental organizations, technology communities, and technology companies, will play a more prominent role in the global governance of AI and become an important force in the construction of a regulatory framework for the military application of AI. The technical regulatory measures that countries can take include: clarifying the scope of use of AI technology, responsible entities, and penalties for violations; strengthening technology research and development to improve the security and controllability of technology; establishing a regulatory mechanism to supervise the development and application of technology throughout the process, and promptly discover and solve problems.

    Third, jointly develop AI security prevention technologies and solutions. Encourage bilateral or multilateral negotiations between governments and militaries to be included in the dialogue options for military AI applications, conduct extensive exchanges on military AI security prevention technologies, operating procedures and practical experience, promote the sharing and reference of relevant risk management technical standards and usage specifications, and continuously inject new stability factors into the international security mutual trust mechanism under the background of AI militarization.

    (The author is the director, researcher, and doctoral supervisor of the National Defense Science and Technology Strategic Research Think Tank of the National University of Defense Technology; Liu Hujun, a master’s student at the School of Foreign Languages ​​of the National University of Defense Technology, also contributed to this article)

現代國語:

【摘要】人工智慧武器化是新一輪軍事變革的必然趨勢,近年來局部戰爭的衝突進一步刺激相關國家推動人工智慧武器化戰略部署,搶佔未來戰爭制高點。人工智慧武器化的潛在風險不容忽視,將可能加劇軍備競賽,打破戰略平衡;賦能作戰流程,加大衝突風險;提升問責難度,增加附帶傷亡;降低擴散門檻,導致誤用濫用。對此,應加強國際間戰略溝通,確保各國在人工智慧軍事應用上的共識與協作;推動法律法規建設的對話與協調,以形成統一規範的法律架構;加強人工智慧倫理約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

【關鍵字】人工智慧 軍事應用 安全風險 安全治理 【中圖分類號】F113 【文獻識別碼】A

人工智慧武器化,是將人工智慧相關技術、平台與服務應用到軍事領域,使其成為賦能軍事行動的重要驅動力量,進而提升軍事行動的效率、精準度與自主性。隨著人工智慧技術在軍事領域的廣泛應用,各主要大國及軍事強國紛紛加大戰略與資源投入,加速研發應用步伐。近年來頻繁的區域戰爭衝突也進一步刺激了人工智慧的戰場運用,並深刻塑造戰爭形態以及軍事變革的未來走向。

不容忽視的是,人工智慧作為一類快速發展中的技術,其本身由於內在技術的不成熟、場景匹配的不準確、支持條件的不完備,可能存在潛在風險,而由於人為的誤用、濫用甚至惡意使用,也容易給軍事領域乃至國際安全領域帶來多種風險挑戰。認真貫徹實習近平總書記提出的全球安全倡議,必須直面世界範圍內人工智慧武器化的發展趨勢,深入分析人工智慧武器化應用可能帶來的安全風險,並思考科學可行的治理思路與舉措。

當前人工智慧武器化的發展趨勢

近年來,人工智慧在軍事領域的應用,正從根本上重塑未來戰爭形態、改變未來作戰體系,影響軍事變革的未來走向。主要軍事大國已將人工智慧視為改變未來戰爭規則的顛覆性關鍵技術,紛紛挹注大量資源,並推動人工智慧武器的研發與應用。

人工智慧武器化是軍事變革的必然趨勢。

隨著科學技術的快速發展,軍事變革的必要性與緊迫性愈發凸顯。人工智慧透過模擬人類的思考過程,延展人類的腦力與體力,可實現資訊快速處理、分析與決策,研發日益複雜的無人化武器系統平台,進而為軍事行動提供前所未有的智慧化支援。

一是為軍事情報偵察與分析提供智慧支援。傳統的情報偵察方式受到人力和時間等多重因素制約,難以有效應對大規模、高速度和高複雜度的情報處理需求。人工智慧技術的引進,為情報偵察領域帶來革新和突破。在軍事基礎設施中,應用人工智慧技術,可建構智慧監測系統,提供高精度即時的情報感知服務。在情報偵察領域,人工智慧技術具備對多個「資訊流」進行即時處理的能力,從而大大提高分析效率。 ①透過使用深度學習等技術工具,還可以“透過現像看本質”,挖掘出各類碎片化情報信息中的深層脈絡與因果聯繫,將海量碎片化數據快速轉變為可以利用的情報,從而提升情報分析的質效。

二是為作戰指揮與決策提供資料支援。人工智慧在戰場態勢感知方面為作戰指揮和軍事決策提供有力支援。 ②其優點在於能夠進行資料探勘、資料融合以及預測分析等關鍵任務。在資訊化智能化戰爭中,戰場環境瞬息萬變,情報資訊量龐大,要求決策反應迅速且準確。因此,先進的電腦系統就成為協助指揮人員管理情報資料、進行敵情判斷、提出作戰方案建議以及擬制計畫與命令的重要工具。以美軍為例,美國雷神科技公司(Raytheon Technologies Corporation)研發的ISTAR(情報、監視、目標辨識與追蹤)系統,涵蓋了情報採集、監視、目標辨識及追蹤功能,可匯聚來自衛星、艦船、飛機及地面站等多元資訊來源的數據,並對其進行深度分析與處理。這不僅顯著提高了指揮官獲取資訊的速度,而且可藉助智慧分析系統提供數據支持,使決策更加快速、高效和精準。

第三是為無人作戰系統提供重要支撐。無人作戰系統是一種無需人類直接操縱,便可獨立完成軍事任務的新型武器裝備系統,主要包括智慧化無人作戰平台、智慧化彈藥和智慧化作戰指揮控制系統等組成部分,具備顯著的自主性和智慧化特徵。無人作戰系統,作為引領未來戰爭形態變革的技術裝備,成為國家間軍事競爭的重要籌碼。該系統透過運用自主導航、目標辨識、路徑規劃等關鍵技術,實現了不同戰場環境及作戰空間的適應能力。透過深度學習、強化學習等先進演算法,無人作戰系統能夠獨立完成導航任務,並實現精準打擊目標。這種系統的設計理念是“平台無人,系統有人”,其本質是對有人作戰系統的智慧化延伸。例如,美國國防部高級研究計畫局(DARPA)研發的「MQM-57獵鷹者」無人機,就採用了先進的人工智慧技術,具備高度自主的目標識別和追蹤功能。

四是為軍事後勤與裝備保障提供技術支援。在資訊化戰爭的背景下,戰爭進程加快、機動性提升、作戰消耗顯著增加。傳統的「超量預儲」保障模式已無法適應現代戰場快速變化的需求,因此,對作戰部隊進行適時、適地、適需、適量的快速精確後裝保障提出了更高的要求。人工智慧作為一種具有溢出帶動和交叉融合特性的技術,與物聯網、大數據、雲端運算等尖端技術相互融合,使得人工智慧知識群、技術群和產業群全面滲透到軍事後裝領域,顯著提升了後勤裝備保障能力。

主要國家紛紛佈局人工智慧軍事應用。

為增強人工智慧領域的全球競爭力,美國、俄羅斯、日本等主要大國加緊人工智慧軍事應用的戰略佈局。首先,透過更新和調整人工智慧領域的頂層策略規劃,為未來的發展提供明確指導;其次,針對未來戰爭需求,加速人工智慧技術與軍事領域的深度融合,推動裝備系統的智慧化、自主化和無人化發展;此外,積極創新作戰概念,以驅動作戰力量創新,進而提升作戰效能和競爭優勢。

一是製定戰略規劃。基於技術霸權追求軍事霸權、政治霸權、經濟霸權的戰略偏執,美國正加速自體軍事智慧化進程。 2023年11月,美國國防部發布《數據、分析與人工智慧採用戰略》,旨在擴展整個國防部體系的先進能力,以獲得持久的軍事決策優勢。俄軍頒布被稱為「3.0版本」的《2024年至2033年俄羅斯武器裝備發展綱要》,旨在為未來10年武器裝備發展提供指導,綱要強調繼續推進核武器和常規武器建設,並重點研究人工智慧和機器人技術、高超音速武器和其他基於新物理原理的打擊兵器。

二是研發先進裝備系統。美軍自2005年開始每隔幾年都會發布一版“無人系統路線圖”,以展望並設計空中、地面、水面/水下等各領域無人系統平台,貫通研發—生產—測試—訓練—作戰—保障等無人化武器裝備發展鏈路。目前,世界上已有70多個國家可以研發無人化系統平台,各種類型的無人機、無人車、無人船(艇)、無人潛航器如雨後春筍般不斷出現。 2024年7月15日,美軍參會前主席馬克‧米利接受《美國防務新聞》採訪時稱,到2039年,三分之一的美軍部隊將由機器人組成。俄軍研發的平台-M作戰機器人、「柳葉刀」自殺式無人機和S70「獵人」重型無人機等,已投入實戰檢驗。

三是創新未來作戰概念。作戰概念是對未來戰爭樣式與作戰方式進行的前瞻性研究,往往可牽引新的作戰力量編組及武器裝備跨越發展。美軍近年來提出「分散式殺傷」「多域戰」「馬賽克戰」等作戰概念,試圖引領軍事變革的發展方向。以“馬賽克戰”為例,該作戰概念將各種感測器、通訊網路、指揮控制系統、武器平台等視為“馬賽克碎片”,這些“碎片”單元在人工智慧技術賦能支援下,透過網路資訊系統可動態連結、自主規劃、協同組合,從而形成一個按需整合、極具彈性、靈活機動的殺傷網。 2022年3月,美國國防部發布《聯合全域指揮控制(JADC2)戰略實施計畫》,該計畫旨在將多域作戰向全局作戰概念拓展,將各軍種感測器連接到一個統一「物聯網」中,利用人工智慧演算法幫助改善作戰指揮決策。 ③

戰爭衝突刺激人工智慧武器化進程。

近年來,利比亞衝突、納卡衝突、烏克蘭危機、哈以衝突等局部衝突不斷,進一步刺激了人工智慧武器化的發展進程。

在利比亞衝突中,交戰雙方採用多種型號無人機執行偵察和作戰任務。根據聯合國利比亞問題專家小組發布的報告指出,土耳其製造的「卡古-2」(Kargu-2)無人機2020年在利比亞執行了「追捕並遠程交戰」行動,可自主攻擊撤退中的敵方士兵。這事件標誌著致命性自主武器系統在實戰中的首次運用。如美國學者扎卡里·卡倫伯恩所述,若有人在此類自主攻擊中不幸喪生,這極有可能是歷史上首個已知的人工智慧自主武器被用於殺戮的例子。在2020年納卡衝突中,阿塞拜疆運用土耳其生產的「旗手」TB2無人機編隊和以色列生產的「哈洛普」無人機成功突破了亞美尼亞防空系統,掌握了戰場制空權和主動權。 ④ 阿塞拜疆軍隊無人機作戰的顯著成效,在很大程度上源於亞美尼亞軍隊的「輕敵」心態,對無人機在現代戰爭中的重要性和威脅性認識不足。其次,從進攻策略的角度來看,阿塞拜疆軍隊在無人機戰法上進行了大膽的創新。他們靈活運用察打一體無人機和巡彈等先進裝備,不僅提升了作戰效率,也大大增強了戰鬥的突然性和致命性。 ⑤

在2022年爆發的烏克蘭危機中,俄羅斯和烏克蘭都廣泛使用軍用級和商用無人機執行偵察監視、火砲瞄準和打擊任務。烏克蘭軍隊透過使用「旗手」TB2無人機以及美國援助的「彈簧刀」系列自殺式無人機,實施精準打擊和高效殺傷,成為令世界矚目的「戰場殺手」。在哈以衝突中,以色列軍方被指控使用名為「薰衣草」(Lavender)的人工智慧系統來識別並鎖定加薩境內的轟炸目標,曾將多達3.7萬名加薩巴勒斯坦人標記為「武裝分子」嫌疑對象,並將其認定為可直接「暗殺」的目標,以軍事行動引發了國際社會廣泛關注和譴責對象。 ⑥

人工智慧武器化帶來的​​安全風險

從自動化指揮系統到智慧無人作戰平台,再到網路防禦中的智慧決策系統,人工智慧技術在軍事領域的應用正變得愈發普遍,已成為現代戰爭不可或缺的一部分。然而,在人工智慧武器化的趨勢下,其誤用、濫用甚至惡意使用,也將為國際安全帶來不可忽視的風險挑戰。

加劇軍備競賽,打破戰略平衡。

在資訊化智能化時代,人工智慧所具有的顛覆潛力讓軍事大國都難以抗拒,紛紛聚焦人工智慧軍事能力的開發與運用,唯恐在這一領域落後而喪失戰略機會。深化人工智慧軍事應用,則能夠以更低成本、更高效率的方式獲得「非對稱優勢」。

一是各國紛紛搶抓「先行者優勢」。當一個國家在智慧武器系統開發領域取得技術領先地位時,意味著該國具備更高階的人工智慧和相關應用能力,使其在武器系統開發、控制和緊急應變等方面具有先發優勢。這種優勢包括更高的自主性、智慧化程度和自適應能力,從而增加了該國的軍事實力和戰略競爭優勢。同時,先行者的軍事優勢可能會成為競爭對手的安全威脅,導致各國在先進技術的軍事應用上呈現出你爭我趕的態勢。 ⑦ 2023年8月,美國國防部副部長凱瑟琳·希克斯宣布了「複製者計畫」(Replicator initiative),該倡議力求在不到兩年的時間內在印太地區部署數千個「自主武器系統」。 ⑧

二是各國人工智慧軍備建設的不透明性可能加劇軍備競賽。這主要有兩個方面的原因:一是人工智慧技術是一種可用於設計多種應用的“使能技術”,這意味著人工智能軍事應用具體情況核查難度較高,難以像核武器可以通過對鈾、離心機以及武器和運載系統的監測來判斷一個國家是否在進行核武器的開發或部署。半自主、完全自主武器系統之間的差異主要是由於電腦軟體演算法不同導致的,很難透過物理核查手段來對各國的條約執行情況進行核查。二是各國為了維持己方的戰略優勢,往往對先進技術的軍事應用相關細節採取保密措施,使對手無法探知其戰略意圖。在當前國際環境中,這種不透明性不僅加劇了軍備競賽,更為未來衝突升級埋下了伏筆。

三是各國戰略意圖的不確定性也會加劇軍備競賽。人工智慧對於戰略穩定、核威懾和戰爭升級的影響,很大程度上取決於他國對其能力的感知,而非其實質能力。正如美國學者托馬斯·謝林指出,國際關係常常具有風險競爭的特徵,更多的是對勇氣而不是武力的考驗,主要對手之間的關係是由哪一方最終願意投入更大的力量,或使之看起來即將投入更大的力量來決定的。 ⑨ 一個行為體對於他者能力的感知,無論真假,都會在很大程度上影響軍備競賽進程。如果一個國家大力發展智慧武器系統,競爭對手在不確定對方意圖的情況下,會對競爭對手的軍備能力及發展軍備的意圖產生猜忌,往往採取對等措施,即透過發展軍備來滿足自身安全需求。正是這種意圖的模糊性刺激了技術積累,加劇武器部署的不穩定性,最終導致惡性循環。

賦能作戰流程,增加衝突風險。

在大數據與人工智慧技術賦能下,傳統作戰流程將實現智慧化再造,即由「態勢感知—指揮決策—攻防協同—綜合保障」轉向「全局態勢智慧認知—人機一體混合決策—有人/無人自主協同—主動按需精準保障」轉變。然而,作戰流程的智慧化再造雖然提高了作戰的效率和精準性,但也提升了衝突和誤判的風險。

一是以「機器速度」爆發的戰爭將增加倉促行動的風險。人工智慧武器系統在精確度和反應速度上表現出強大的能力,使得未來戰爭將以「機器速度」爆發。 ⑩ 但戰爭速度過快也將增加衝突風險。在飛彈防禦、自主武器系統和網路空間等重視自主性以及反應速度的領域,更快的反應速度將帶來巨大的戰略優勢,同時也極大地壓縮了防禦方對軍事行動作出反應的時間窗口,導致作戰指揮官和決策者置身於巨大的「時間壓力」之下,加劇了「倉促行動」的風險,並增加了危機意外升級的可能性。

二是依賴系統自主性可能增加壓力下的誤判幾率。美國國防部認為,「高度自主化的人工智慧系統,能夠根據任務參數的動態變化,自主選擇並執行相應操作,高效實現人類預設的目標。自主性的增加不僅大幅減少了對人力的依賴,提高了整體操作效率,更被國防規劃者視為保持戰術領先、確保戰場優勢的關鍵要素。」⑪然而,由於人類指揮官無法做出足夠快的決定權,可能會逐漸增加自己。 2003年3月,美國「愛國者」飛彈系統曾錯誤地將友軍的「龍捲風」戰鬥機標記為反輻射飛彈,指揮人員在只有幾秒鐘反應時間的壓力狀態下,選擇發射飛彈,造成了兩名飛行員的死亡。 ⑫

三是削弱了危機終止機制的有效性。冷戰時期,美蘇主導建構了一系列限制性措施來遏止危機的升級,避免其演變為大規模的核戰。在這些措施中,人類扮演著至關重要的「監督者」角色,在可能出現風險失控時,能夠在充足的時間內啟動終止措施,避免大規模人道災難發生。但是,隨著人工智慧系統運算能力的提升及其與機器學習的深度融合,作戰反應變得更為迅捷、精確和具有破壞性,人類對於危機的終止幹預機制將可能被削弱。

戰爭問責困難,增加附帶傷亡。

人工智慧武器系統使得戰爭責任更難界定。在傳統作戰模式下,由人類控制武器系統,一旦造成失誤或危機,人類操作員或作業系統的研發者將承擔相應的責任。人工智慧技術本身弱化了人類的能動性和控制能力,致使技術性行為的責任歸屬變得模糊不清。

一是人工智慧「黑箱」問題。儘管人工智慧在處理和分析資料方面有著顯著優勢,但是其內部運作規律和因果邏輯卻常常難以被人類理解和解釋,這使得程式設計師難以對錯誤演算法進行糾偏除誤,這一問題常常被稱為演算法模型的「黑盒子」。一旦人工智慧武器系統產生安全危害,「演算法黑箱」可能成為相關責任方推卸責任的合理化藉口,追責者只能面臨泛化的卸責與推諉,並將責任矛頭指向人工智慧武器系統。在實踐中,如果無法理解並解釋人工智慧的決策過程,可能會引發一系列的問題,如決策失誤、信任危機、資訊濫用等。

二是軍事行動中人機責任劃分問題。當人工智慧系統出現故障或決策失誤時,是否應將其視為一種獨立的實體來承擔責任?或者,是否應該將其視為一種工具,由人類操作者承擔全部或部分責任?這種責任劃分的複雜性不僅在於技術層面,更在於倫理和法律層面。一方面,人工智慧系統雖然能夠自主決策,但其決策過程仍受到人類預設的程式和演算法限制,因此其責任無法完全獨立於人類之外。另一方面,人工智慧系統在某些情況下可能會超越人類的預設範圍,做出獨​​立的決策,此時其責任又該如何界定,也成為軍控領域的難題。

三是人與人工智慧武器系統的決策權分配問題。依照機器自主權限的不同,人工智慧系統能夠以半自主、有監督式自主以及完全自主三種決策與控制方式執行任務。在半自主系統中,行動的決策權由人類掌控;在有監督式自主行動中,人類實施監督並在必要時幹預;在完全自主行動中,人類不參與行動過程。隨著人工智慧軍事應用程度的逐漸加深,人類在作戰系統中的角色正經歷由傳統的「人在迴路內」模式逐步向「人在迴路」轉變,人類從系統內部的直接操控者演化為系統外部的監督者。然而,這項轉變也引發了新的問題。如何確保人工智慧武器系統在獨立運作時仍能遵循人類倫理和價值觀,這是當前人工智慧武器研發領域面臨的重大挑戰。

降低擴散門檻,導致誤用濫用。

傳統的戰略競爭通常涉及大規模的武器系統研發和採購,需要大量資金和技術支援。人工智慧技術成熟擴散後,具有易取得且價格低廉等優勢,即便是中小國家也可能具備開發先進智慧武器系統的能力。目前,軍用人工智慧領域的戰略競爭主要集中在美俄等軍事大國之間。但長遠來看,人工智慧技術的擴散將擴大戰略競爭的範圍,對現有的戰略平衡構成破壞性威脅。一旦掌握人工智慧技術的較小規模國家擁有相對較強的競爭力,這些國家在面臨大國威脅時發起對抗的意願可能就會增強。

一是人工智慧有助於發展一些輕便靈巧的作戰手段,從而鼓勵一些中小國家或非國家行為體利用其開展小型的、機會主義的軍事冒險,以更低廉的成本和更豐富的途徑來達到其戰略目地。二是人工智慧的快速發展使得網路戰、電子戰等新型戰爭形態日益凸顯。在競爭激烈的戰場環境中,惡意的第三方行為體可以透過操縱資訊來影響軍事規劃和戰略威懾,導致局勢升級。在2022年爆發的烏克蘭危機中,就有眾多網路假訊息傳播混淆視聽。三是人工智慧技術的廣泛應用也降低了戰略透明度。傳統的軍事戰略往往依賴大量的情報收集、分析和預測,而在人工智慧技術的輔助下,作戰計畫和決策過程變得更加複雜和難以預測。這種不透明性可能導致誤解和誤判,增加了衝突升級的風險。

人工智慧武器化安全風險的治理路徑

為確保人工智慧安全發展,避免其武器化帶來的​​潛在危害,應加強國際間的治理戰略溝通,尋求各國在人工智慧軍事應用方面的共識與協作;推進法律法規對話協調,以形成統一規範的法律框架;加強人工智慧倫理的約束,確保技術發展符合道德標準;積極參與全球安全治理合作,共同維護國際社會的和平與穩定。

高度重視國際層面戰略溝通。

人工智慧治理是全球性問題,需要各國通力合作,共同解決。在國際舞台上,各國利益交融與利益衝突並存,因此,透過有效的溝通管道來處理全球性議題成為維護世界和平與發展的關鍵。

一方面,要精準掌握人工智慧國際治理挑戰。既要掌握各國對人工智慧武器化發展的共識,也要密切關注各國在人工智慧武器化應用安全治理方面的政策差異,透過協商合作,使相關倡議與聯合國議程相協調,從而有效防止人工智慧在軍事上的濫用,推動人工智慧用於和平目的。

另一方面,推動各國政府透過官方或半官方對話,達成相關協議,建立戰略互信。相較於政府層面的“1軌對話”,“1.5軌對話”指的是政府官員與民間人士共同參與的對話,而“2軌對話”則是由學者、退休官員等進行的民間非官方形式的對話。這兩種對話形式具有更高的彈性,是政府間官方對話的重要補充和輔助。透過多樣化的對話交流方式,官方和民間人士可以廣泛諮詢軍備控制的可能實現路徑,分享經驗和專業知識,以避免軍備競賽的升級和緊張局勢的惡化。這些對話機制將為各國提供持續的溝通與合作平台,有助於增進相互理解、加強戰略互信,共同因應人工智慧軍事化應用帶來的挑戰。

科學制定人工智慧法律和倫理規約。

人工智慧技術本身並無對錯善惡之分,但對於人工智慧的設計、研發、製造、使用、運作以及維護確有善惡意圖之別。人工智慧武器化引發了廣泛的倫理關注。國際法框架下,自主武器系統是否能夠在複雜戰場上精準區分戰鬥人員與平民?此外,若人工智慧武器系統導致非預期的傷害,其責任歸屬如何界定?將關乎生死的決策權交付於機器,這項做法是否符合道德倫理標準?這些擔憂凸顯了加強人工智慧倫理約束的必要性。

一方面,要堅持倫理先行,從技術源頭融入「智能向善」的概念。在人工智慧軍事系統的設計過程中,將以人為本、智能向善等價值觀內嵌於系統中。其目的是從源頭杜絕人工智慧可能引發的濫殺濫傷行為,控制其過度殺傷力,防範意外毀傷的發生,從而將人工智慧武器系統所帶來的毀傷程度限制在盡可能小的範圍內。目前,國內外已有近百家機構或政府部門發佈各類人工智慧倫理原則文件,學術界和產業界亦就人工智慧基本倫理原則達成共識。 2022年,中國向聯合國遞交的《關於加強人工智慧倫理治理的立場文件》為全球人工智慧倫理監管的發展提供了重要參考。文件明確強調,應透過制度建置、風險管控、協同共治等多方面的措施來推動人工智慧倫理監管。

另一方面,要完善相關法律法規,明確人工智慧主體的權責邊界。制定嚴格的技術審核標準,確保人工智慧系統的安全性和可靠性。在人工智慧系統上線前進行全面的測試,確保其不會對人類生活和社會秩序造成負面影響。明確開發者、使用者、維護者等各方在人工智慧系統全生命週期中的法律責任,以及建立相應的追責機制。

務實參與人工智慧安全治理國際合作。

人工智慧軍事應用所帶來的戰略風險,更凸顯國際安全務實合作的重要性。建議重點從三個面向著手:

一是推動制定人工智慧在軍事領域的運用準則。制定人工智慧軍事應用的行為準則,是各國規範人工智慧軍事應用的重要責任,也是推動國際共識和遵守國際法規的必要措施。中國政府在2021年向聯合國《特定常規武器公約》大會提交了《中國關於規範人工智慧軍事應用的立場文件》,2023年發布《全球人工智慧治理倡議》,這些都為完善規範人工智慧軍事應用的行為準則提供了建設性參考。

二是建立適用的監理架構。人工智慧軍民兩用性使其涉及眾多利益攸關方,一些非國家行為體如非政府組織、技術社群、科技企業在人工智慧全球治理過程中的作用將更加突出,成為人工智慧軍事應用監管框架建設的重要力量。各國可採取的技術監管措施包括:明確人工智慧技術的使用範圍、責任主體和違規處罰措施;加強技術研發,提高技術的安全性和可控性;建立監管機制,對技術的研發和應用進行全程監管,及時發現和解決問題。

三是共同研發人工智慧安全防範技術和解決方案。鼓勵將政府間和軍隊間的雙邊或多邊談判納入軍用人工智慧應用的對話選項,就軍用人工智慧安全防範技術、操作規程及實踐經驗廣泛交流,推動相關風險管理技術標準和使用規範的分享借鑒,為人工智慧軍事化背景下的國際安全互信機制不斷注入新的穩定因素。

(作者為國防科技大學國防科技戰略研究智庫主任、研究員,博導;國防科技大學外國語學院碩士研究生劉胡君對本文亦有貢獻)

中國原創軍事資源:http://paper.people.com.cn/rmlt/pc/content/202502/05/content_30059349.html