Category Archives: #軍事資訊化與智慧化

Chinese Military Laws to Follow to Win Intelligent Warfare

打贏智慧化戰爭的中國軍事法規

現代英語:

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan Feiyi

Editor-in-charge: Wang Feng

无命题8

2021-03-16 10:xx

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

現代國語:

无命题8

資料來源:解放軍報作者:郝敬東 牛玉俊 段非易責任編輯:王鳳2021-03-16 10:xx
要點提示

●認識智慧化戰爭規律,要抓住智慧化和自主化這個基礎,抓住建構戰爭知行體系這個關鍵,抓住戰爭力量內涵發生改變這個實質。

●戰爭指導者須動態地檢視智慧化戰爭,敏銳捕捉智慧化戰爭孕育的新質要素,正確分析新質要素之間關係的變化,不斷對智慧化戰爭進行再認識。

習主席指出,要認真研究軍事、研究戰爭、研究打仗,掌握現代戰爭規律和戰爭指導規律。今天,戰爭的智慧化特徵日益凸顯,智慧化戰爭已經展現出早期形態的樣貌。要掌握未來智慧化戰爭主動權,就應積極追蹤現代戰爭發展,緊貼現實軍事鬥爭準備,前瞻認識智能化戰爭規律,深刻把握其指導規律,著力回答「是什麼」、解決 「怎麼做」等問題,不斷創新戰爭和戰略指導。

回答“是什麼”,前瞻認識智慧化戰爭規律

毛澤東同志指出:“戰爭的規律——這是任何指導戰爭的人不能不研究和不能不解決的問題。”今天,在智能化戰爭初顯端倪之際,應前瞻認識智能化戰爭“是什麼”,否則就不能解決“怎麼做”,更不可能駕馭未來戰爭。

智慧化戰爭規律是戰爭知行體系的重建。智慧化戰爭規律,和冷兵器戰爭、熱兵器戰爭、機械化戰爭、資訊化戰爭的規律一樣,是戰爭諸要素間內在的、本質的聯繫,不同之處在於它有新質的要素和新的要素間的構成模式,本質上是基於智能化革命所引發的戰爭知行體系的重建。今天,認識智慧化戰爭規律,要抓住智慧化和自主化這個基礎,抓住建構戰爭知行體系這個關鍵,抓住戰爭力量內涵發生改變這個實質。掌握這些規律,就能克服未來戰爭中的紛亂和不確定性,從中找出條理和確定性,這是應對智慧化戰爭的客觀要求。

智慧化戰爭規律是戰爭指導規律的依據。毛澤東在《中國革命戰爭的戰略問題》中,首先分析了中國革命戰爭的特點,揭示了戰爭規律,然後“由此產生我們的戰略戰術”,即戰爭指導規律;在《論持久戰》中,他首先說明了“是什麼”,再轉到研究“怎麼做”的問題上,體現了一種認識過程的邏輯順序。今天,研究智慧化戰爭仍應遵循此順序,既不能本末倒置,顛倒順序;也不能增加、減少或更換環節。要在掌握智能自主這項根本規律的基礎上,揭示自主感知、自主規劃、自主實施、自主連結、自主評估等戰爭指導規律。

不懂得智慧化戰爭規律,就不能指導戰爭。 《孫臏兵法》指出:「知道,勝」「不知道,不勝」。道是戰爭規律,掌握它、行動符合它,就能取勝;反之,則敗。毛澤東也強調:「不知道戰爭的規律,就不知道如何指導戰爭,就不能打勝仗。」同樣,掌握智慧化戰爭規律,是正確指導智能化戰爭的前提。否則,就難免被智慧化戰爭的表面現象所迷惑。今天,要透過分析智能化技術群對戰爭的基礎性、長遠性和顛覆性影響,研究智能化戰爭是什麼樣子?有哪些規律?該怎麼打?這些都是智慧化戰爭指導必須回答的重大議題。

解決“怎麼做”,揭示掌握智慧化戰爭指導規律

智慧化戰爭指導規律是運用智慧化戰爭規律指導實踐的中介,扮演「橋」和「船」的角色。應在回答「是什麼」的基礎上解決「怎麼做」的問題,提出智能化戰爭的「游泳術」。

智慧化戰爭指導規律是運用戰爭規律的規律。認識戰爭規律的目的在於應用。馬克思指出:「哲學家們只是用不同的方式解釋世界,而問題在於改變世界。」同樣,智慧化戰爭本身迫使指揮者不發現規律則已,一旦發現,就會結合能動性,利用規律為打贏戰爭服務,這就必然導致智能化戰爭指導規律的產生。今天,戰爭是政治的繼續仍是智能化戰爭規律,由此得出智能化戰爭必須服從服務於政治的指導規律;兵民是勝利之本仍是智能化戰爭規律,由此得出最廣泛地動員民眾的指導規律,等等。這些智慧化戰爭指導規律是戰爭規律衍生出來的,是「智慧化戰爭大海中的游泳術」。

充分發揮人在智慧化戰爭中的能動作用。恩格斯說:「贏得戰鬥勝利的是人而不是槍。」智慧化戰爭指導規律是實踐規律、使用規律。它不是對智慧化戰爭規律的簡單“移用”“照搬”,而是加上人的主觀能動性,才能轉化為戰爭指導規律。今天,掌握人工智慧的軍事人才,不僅是智慧化武器的操控者,更是人工智慧的創造者。人在智慧化人機系統中仍處於主體地位,是智慧化戰爭勝負的決定性因素。指揮者應在掌握智慧化戰爭規律的基礎上,充分發揮能動性,堅持「技術+謀略」的作戰理論生成模式,才能由回答「是什麼」轉變為解決「怎麼做」。

智慧化戰爭指導規律是不斷發展的。戰爭是一條「變色龍」。智慧化戰爭本身也會經歷萌芽、發展、成熟等不同階段,必然帶來智慧化戰爭指導規律的發展。戰爭指導者須動態地檢視智能化戰爭,敏銳捕捉智慧化戰爭孕育的新質要素,正確分析新質要素之間關係的變化,不斷對智慧化戰爭進行再認識。要緊跟戰爭形態向智能化加速邁進的歷史進程,把握智能化戰爭發展方向和時代脈搏,把對智能化戰爭指導規律的研究推向新境界,在未來戰場佔據戰略主動和先機。

緊盯“主動權”,不斷創新智慧化戰爭和戰略指導

兵無常勢,水無常形。在智慧化戰爭已然來臨之際,要在遵循智能化戰爭規律和指導規律的基礎上,緊貼現實軍事鬥爭準備,加強對手研究、敵情研究,主動設計“在什麼時間”“在什麼地點”“和誰打仗”,創新戰爭和戰略指導,牢牢掌握未來戰爭的戰略主動權。

你打你的,我打我的。戰爭指導藝術的最高境界,就是你打你的、我打我的。 「各打各的」要求指揮在未來智能化戰爭中,無論處於怎樣複雜、困難的環境,首先要立足自身實際,獨立自主地使用自己的力量。特別是擁有高技術裝備之敵,可能造成暫時的局部的敵之主動、我之被動的局面,這時要透過政治、經濟、外交等綜合手段,以總體有利態勢彌補武器上的劣勢,迅速扭轉這一局面,恢復主動地位。如果被戰略對手牽著鼻子走,就可能吃大虧。

把握時機,因時用兵。 《六韜》指出:「用之在於機。」若米尼強調:「全部戰爭藝術就在於善於待機而動。」一方面,時不至,不可強動。要持重時機,時機未到,應有極大耐心,防止策略盲動。另一方面,時不再來,機不可失。要善於把握時機,一旦遇上有利時機,就要堅決利用,防止畏首畏尾。需要指出的是,要辯證地看待時機成熟問題。未來智慧化戰爭瞬息萬變,要求快速決策,而面對不確定性因素,必須謹慎決策。有時及早定下決心,比明天下達更完善的決心也許更有效。因此,要敢於冒一點風險,不然會坐視成功機會的喪失。

各域有別,因地運籌。克勞塞維茨指出:「戰爭不像長滿莊稼的田地,而像長滿大樹的土地。收割莊稼時不需要考慮每棵莊稼的形狀,收割得好壞取決於鐮刀的好壞;而用斧頭砍伐大樹時,就必須注意到每棵大樹的形狀和方向。」戰略空間不同,戰爭就不同,戰爭指導也不一樣。目前,戰場空間不斷由陸海空等傳統空間向太空、網路等新型空間拓展,戰爭指導者應根據​​多域性、立體性、網路性等特點,探索新的智慧化戰爭規律和指導規律。

瞄準對手,因敵制勝。 《孫子兵法》指出:「踐墨隨敵,以決戰事。」約米尼也說:「不管是誰,如果不了解敵人,怎能知道自己應該如何行動呢?」著眼未來,聰明的戰略家應根據輕重、緩急程度,把作戰對象區分為主要作戰對象和一般作戰對象、現實作戰對象和潛在作戰對象,全面客觀地了解不同作戰對象的戰略意圖、兵力部署、作戰構想等,提出能充分發揮己方戰力優長的新的智能化戰爭指導規律,實施正確的戰爭行動。

總之,智慧化戰爭規律是認識過程中的規律,解決「是什麼」;指導規律是實踐過程中的規律,解決「怎麼做」。二者辯證統一,不可分割,構成了認識和指導智能化戰爭的完整鏈。 「戰勝不復,而應形於無窮。」今天,戰爭和戰略指導者應基於客觀情況,深入探索和靈活運用智能化戰爭規律和戰爭指導規律,與時俱進創新戰爭和戰略指導。

(作者單位:軍事科學學院戰爭研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f888

Develop Chinese Military Operational Concepts Design China’s Future War Success

發展中國軍事作戰理念,規劃中國未來戰爭勝利

中國軍網 國防部網
2022年6月22日 星期三

現代英語:

Since the 21st century, with the deepening of the world’s new military revolution, the world’s military powers have put forward a series of new operational concepts and continuously improved them in war practice, thus driving the accelerated evolution of war. With the rapid development of information technologies such as cloud computing, blockchain, artificial intelligence, and big data, and their widespread application in the military field, people’s understanding of war has gradually changed from summarizing actual combat experience to studying and judging future wars. At present, as the source of military capability building, the strength of operational concept development capabilities will directly affect the seizure of victory opportunities. In particular, the vigorous development of the world’s new military revolution is calling for innovation in operational theory all the time. Only by developing new operational concepts and designing future wars with a forward-looking vision can we gain the initiative in military struggle preparation.

The concept of combat fundamentally solves the problem of how to fight a war.

First-rate armies design wars, second-rate armies respond to wars, and third-rate armies follow wars. The so-called “real wars happen before wars” means that before a war starts, the theory, style, and method of fighting have already been designed. How can we not win if we fight according to the designed war? The key to designing a war is to design and develop new combat concepts based on understanding the characteristics and laws of war, promote innovation in combat styles and tactics, and fundamentally solve the problem of “how to fight a war.”

In designing wars, theories come first. In recent years, the U.S. military has proposed new concepts such as “network-centric warfare”, “air-sea integrated warfare” and “hybrid warfare”, and the Russian military has proposed theories such as “non-nuclear containment strategy”, “strategic air-space campaign” and “national information security doctrine”, reflecting that the world’s military powers are vigorously studying operational theories and seizing military commanding heights. To a certain extent, operational concepts are the “organizational cells” for the formation of operational theories. Without a perfect concept generation capability, it is difficult to give birth to advanced theories. When an operational theory is proposed, it is necessary to develop relevant operational concepts so that the operational theory can be “sunk” and visualized, and better improved and transformed into military practice. When there is no operational theory concept, operational concept innovation can provide “raw materials” for the study of operational theories. The military field is the most uncertain field, and people’s understanding of war is constantly evolving. However, operational theory innovation cannot wait for the understanding to mature before starting, but needs to be based on the existing understanding, through active development and innovation of operational concepts, constructing future operational scenarios, exploring future winning mechanisms, and guiding and guiding military practice, in order to seize the initiative in war. Therefore, operational concept innovation is becoming a strategic fulcrum and lever for military construction and development.

The development of operational concepts focuses on designing core operational concepts. The core operational concept is the nucleus and embryo of the operational concept, which reflects the essential requirements of operations and contains the “genetic genes” for the growth of operational concepts. The entire concept system is derived and developed from this. At present, the understanding of the winning mechanism of informationized and intelligent warfare is becoming clearer, and it is time to focus the design of war on the development of major operational theories and key operational concepts.

Operational concept is an abstract expression of operational thinking.

The term “operational concept” originated from the US military. It is a description of how to fight in the future and is increasingly becoming an important tool for promoting the development of the military. The US Army Training and Doctrine Command Concept Development Guide points out that the operational concept is a concept, idea, and overall understanding. It is based on the inference of specific events in the combat environment. In the broadest sense, it outlines what will be done and describes how to fight in more specific measures. The US Marine Corps Combat Development Command Operations Development and Integration Directive points out that the operational concept is an expression of how to fight, used to describe future combat scenarios and how to use military art and scientific capabilities to meet future challenges. The US Air Force Operational Concept Development Directive points out that the operational concept is a conceptual description at the level of war theory, which realizes the established operational concept and intention through the orderly organization of combat capabilities and combat tasks.

In summary, the operational concept can be understood as an abstract cognition of operational ideas and action plans that is refined for specific operational problems at present or in the future. Generally speaking, the operational concept includes three parts: the first is the description of the operational problem, that is, the background of the operational concept, the operational environment, the operational opponent, etc.; the second is the description of the solution, that is, the concept connotation, application scenario, action style, winning mechanism, capability characteristics and advantages, etc.; the third is the description of capability requirements, that is, the equipment technology, basic conditions, and implementation means required to implement the operational concept. It can be seen that the operational concept should have the characteristics of pertinence, scientificity, adaptability and feasibility, and its connotation and extension will be constantly adjusted with the changes in factors such as strategic background, military policy, threat opponent, time and space environment, and capability conditions.

In a sense, operational concepts are actually transitional forms of operational theories, and their ultimate value is to guide military practice. The purpose and destination of developing new operational concepts is to tap into and enhance the combat effectiveness of the military. Only by transforming operational concepts into operational regulations and operational plans can their value be fully realized.

Innovation in combat concepts drives changes in combat styles

Since the beginning of the 21st century, the world’s military powers have, in accordance with national strategic requirements and in response to new threats and challenges, developed new operational concepts as a key means of transforming military capabilities, promoting changes in operational styles, and seeking to gain the upper hand in future battlefields. In order to further strengthen their military advantages, the world’s military powers are accelerating the introduction of a series of new operational concepts.

The US military has actively seized the opportunities brought about by scientific and technological progress, comprehensively used cutting-edge technologies such as new-generation information technology, artificial intelligence technology, unmanned autonomous technology, and proposed a series of new combat concepts such as mosaic warfare, multi-domain warfare, distributed lethality, decision-center warfare, and joint global command and control, promoting fundamental changes in combat thinking, combat style, combat space, and combat systems.

Unlike the U.S. military, the Russian military has achieved iterative innovation in operational concepts in military practice. Recently, the Russian military has been committed to promoting the construction of joint combat capabilities, accelerating the development and deployment of new unmanned equipment, focusing on building advantages in the network information battlefield, and constantly enriching the connotation of its traditional operational concepts, integrating them with new operational concepts such as hybrid warfare and mental warfare to guide war practice.

In general, in recent years, the new operational concepts proposed by the world’s military powers are driving profound changes in combat styles. Their capabilities, characteristics and advantages are mainly reflected in the following five aspects: First, the unmanned combat equipment. The proportion of unmanned equipment systems based on the new operational concept has increased significantly, and manned-unmanned collaborative combat has become one of the main combat styles, forming an advantage of unmanned over manned; second, the deployment method is decentralized. The force deployment based on the new operational concept is distributed, and the systems are interconnected and interoperable, forming an advantage of division over combination; third, the kill network is complicated. The kill network based on the new operational concept has more diverse functions. A single system can perform multiple tasks, and its failure has little impact on the combat system, forming an advantage of many over single; fourth, the response time is agile. The new operational concept emphasizes quick battles and quick decisions, taking the initiative to catch the enemy off guard, forming an advantage of fast over slow; fifth, the combat field is multidimensional. The new operational concept pays more attention to multi-domain linkage, expanding the battlefield from the traditional land, sea and air to the electromagnetic, network and cognitive domains, forming an advantage of invisible over visible.

The development of combat concepts should adhere to the systematic design approach

Using operational concepts to guide military force construction is a common practice among the world’s military powers. In comparison, the US military’s operational concept development mechanism is relatively complete, and a relatively complete operational concept development system has been established, consisting of concept types, organizational structures, normative standards, and support means.

In terms of concept types, the U.S. military’s combat concepts can basically be divided into three categories: First, a series of combat concepts developed by each service, mainly from the perspective of the service, to study potential enemies and future battlefields, redefine combat styles, and seek new ways to win. Second, a series of joint combat concepts developed by the Joint Chiefs of Staff, mainly composed of three levels: top-level concepts, action concepts, and supporting concepts. Third, combat concepts developed by academia, think tanks, etc., the number of such combat concepts is not as large as the first two categories, but it is still an important part of the combat concept system. Through this system, the U.S. military has implemented the grand military strategy through combat concepts layer by layer into various combat operations, various combat capabilities, and various types of weapons and equipment performance for the troops, guiding the construction of joint forces and various services.

In terms of organizational structure, taking the development of joint operational concepts as an example, the US military has established a working system consisting of five types of institutions. The first is the Joint Concept Working Group, whose main responsibility is to review the overall issues of the concept outline and concept development; the second is the Joint Concept Steering Committee, whose main responsibility is to supervise and guide the concept development plan; the third is the core writing team, whose main responsibility is to transform the original ideas in the concept outline into joint operational concepts; the fourth is the concept development team, whose main responsibility is to provide operational concept development methods and plans; the fifth is the independent red team, whose main responsibility is to conduct independent evaluations to judge the rigor and scientificity of the concept.

In terms of norms and standards, the U.S. military has a complete system of institutions to constrain and guide the development of joint operational concepts, making them standardized, standardized, and procedural, so as to manage the entire chain of concept development, which is mainly reflected in a series of directives of the Chairman of the Joint Chiefs of Staff and joint publications. For example, the “Joint Concept Development and Implementation Guide” aims to establish a governance structure for joint concept development, clarify the framework for joint operational concept planning, execution, and evaluation, and promote the implementation of joint operational concepts; the “Joint Regulations Preparation Process” aims to standardize the preparation process of joint regulations and provide a clear process framework for converting operational concepts into operational regulations.

In terms of support means, the design, development and verification of operational concepts is a systematic project that cannot be separated from the support of various development tools and means. For example, tools such as the DODAF2.0 model, IDEFO model and SYSML modeling language can provide standardized structured analysis models and logical description models for operational concept designers; model-based system engineering methods can provide operational concept designers and evaluation and verification personnel with capability models of equipment elements in operational concepts for designing and building operational concept frameworks. The U.S. military’s joint operational concept development uses network-based digital software with strong interconnection capabilities. All institutions involved in the development can share information in real time to improve development efficiency.

The development of combat concepts requires collaboration among multiple parties

Developing operational concepts is a multidisciplinary and multi-field task that involves many fields such as military science, philosophy, operations research, and systems science. It requires collaboration among multiple parties to ensure that it is both advanced and forward-looking in theory and applicable and feasible in practice.

Establish a small core and large peripheral research team. The department initiating the development of the operational concept should give full play to its leading role, coordinate and dispatch the research work from a global perspective; establish a joint research and development team, give full play to the collective wisdom, and widely obtain various new ideas, new methods and new viewpoints on the research of operational concepts from all parties; establish a cross-domain and cross-departmental expert committee to supervise, review and guide related work from multiple angles.

Form a multi-departmental working mechanism. To ensure smooth communication and efficient operation among departments, we must first clarify their respective tasks and responsibilities. For example, the concept initiating department is responsible for overall planning and implementation, the laboratory is responsible for technical verification, the industrial department is responsible for equipment research and development, and the combat troops are responsible for actual combat testing. Secondly, relevant normative documents should be formulated to ensure that all work has rules to follow and is carried out in an orderly manner, providing institutional guarantees for the development of combat concepts. Finally, it is also necessary to establish demand traction mechanisms, collaborative research mechanisms, iterative feedback mechanisms, etc., to open up the link from research and development to practical application of combat concepts.

Promote the organic combination of theory and practice. Only through the iterative cycle of “design research-deduction verification-actual troop test” can the operational concept be gradually adjusted, optimized and improved, and the development of war theory can be driven. Therefore, the development of operational concepts should pay special attention to the combination of theoretical innovation and practical application, and achieve the fundamental purpose of driving the generation of new quality combat power through the mutual drive of theory and practice. Specific methods include timely incorporating mature operational concepts into operational regulations, compiling training outlines or teaching materials accordingly, and gradually promoting them to troops for use; organizing relevant exercises or tests to test the maturity and feasibility of operational concepts under conditions close to actual combat, and finding and solving problems; using the capability indicators determined by the operational concept as a reference for equipment demand demonstration, driving the development of equipment technology, and promoting the improvement of combat capabilities.

The rapid development of science and technology in the new era has brought many new opportunities and challenges to the construction of military capabilities. The development of new operational concepts will help us to seize the military opportunities brought by scientific and technological progress, actively respond to the threats and challenges formed by scientific and technological development, and timely grasp the direction and laws of the evolution of war forms, which can provide important support for leading future war styles and seizing the first chance to win. At present, the international security situation is complex and changeable. To win the future information war, we need to take the development of operational concepts as the origin of national defense and military construction, actively carry out military technological innovation, promote the upgrading of weapons and equipment, achieve leapfrog development, and thus lead the trend of the new military revolution.

(Author’s unit: Second Academy of China Aerospace Science and Industry Corporation)

現代國語:

宋曉明

中國軍網 國防部網
2022年6月22日 星期三

自21世紀以來,隨著世界新軍事革命的深入推進,世界軍事強國提出了一系列新作戰概念,並在戰爭實踐中不斷改進,從而牽引戰爭加速演變。隨著雲端運算、區塊鏈、人工智慧、大數據等資訊科技的日新月異,以及在軍事領域的廣泛應用,人們理解戰爭的模式逐漸由歸納總結實戰經驗向研判未來戰爭轉變。目前,作為軍事能力建構源頭,作戰概念開發能力強弱,將直接影響勝戰先機的奪取。尤其是世界新軍事革命蓬勃發展,無時無刻不在呼喚作戰理論創新,只有以前瞻眼光開發新作戰概念、設計未來戰爭,才能獲得軍事鬥爭準備的主動權。

作戰概念從根本解決仗怎麼打

一流軍隊設計戰爭,二流軍隊應對戰爭,三流軍隊尾隨戰爭。所謂“真正的戰爭,發生在戰爭之前”,意思是戰爭開打之前,戰爭的理論、樣式、打法早已被設計出來。依照設計好的戰爭來打,豈有不勝之理?設計戰爭,關鍵在於摸清戰爭特徵規律的基礎上,設計發展新作戰概念,推動作戰樣式和戰法創新,從根本上解決「仗怎麼打」。

設計戰爭,理論先行。近年來,美軍先後提出「網路中心戰」「空海一體戰」等理論,反映了世界軍事強國都在大力研究作戰理論,搶佔軍事制高點。從某種程度上說,作戰概念是作戰理論形成的“組織細胞”,沒有完善的概念生成能力,很難催生先進的理論。當一個作戰理論提出時,需要發展相關作戰概念,才能使作戰理論「下沉」具象化,更好地完善並向軍事實踐轉化。當沒有作戰理論構想時,作戰概念創新可以為研究作戰理論提供「原料」。軍事領域是最具不確定性的領域,人們對戰爭的認知始終在不斷發展。但是,作戰理論創新不能坐等認識成熟後再起步,而是需要在現有認識的基礎上,透過主動開發、創新作戰概念,構設未來作戰圖景,探索未來制勝機理,牽引並指導軍事實踐,才能掌握戰爭主動權。因此,作戰概念創新,正成為軍隊建設與發展的戰略支點與槓桿。

作戰概念開發,重點在於設計核心作戰概念。核心作戰概念,是作戰概念的細胞核、胚胎,集中反映作戰本質要求,包含著作戰概念生長的“遺傳基因”,整個概念體係由此衍生與發展。目前,對資訊化、智慧化戰爭的致勝機理等的認識漸趨清晰,將設計戰爭的重心聚焦到主要作戰理論、關鍵作戰概念開發正當其時。

作戰概念是作戰思想的抽象表達

「作戰概念」一詞源自美軍,是對未來如何作戰的描述,正日益成為推進軍隊建設發展的重要抓手。美《陸軍訓練與條令司令部概念開髮指南》指出,作戰概念是理念、想法、總體認識,是依據作戰環境中具體事件的推斷,在最廣泛的意義上勾勒將要做什麼,在更具體的舉措上描述仗怎麼打。美《海軍陸戰隊作戰發展司令部作戰發展與一體化指令》指出,作戰概念是表達如何打仗,用來描述未來作戰景象及如何利用軍事藝術和科學能力迎接未來挑戰。美《空軍作戰概念發展條令》則指出,作戰概念是戰爭理論層面的概念描述,透過對作戰能力和作戰任務的有序組織,實現既定的作戰構想和意圖。

綜上所述,作戰概念可以理解為是針對當前或未來的具體作戰問題,提煉的對作戰思想與行動方案的抽象認知。一般而言,作戰概念包括三部分內容:一是對作戰問題的描述,即作戰概念的提出背景、作戰環境、作戰對手等;二是對解決方案的描述,即概念內涵、應用場景、行動樣式、制勝機理、能力特徵及優勢等;三是對能力需求的描述,即實施該作戰概念所需的裝備技術、基礎條件、實現手段等。可以看出,作戰概念應具備針對性、科學性、適應性與可行性等特徵,其內涵與外延會隨著戰略背景、軍事方針、威脅對手、時空環境、能力條件等因素的變化而不斷調整。

從某種意義上說,作戰概念其實是作戰理論的過渡形態,最終價值是指導牽引軍事實踐。發展新作戰概念的目的和歸宿,是挖掘和提升軍隊戰鬥力,只有把作戰概念轉化為作戰條令、作戰計劃,才能充分發揮其價值。

作戰概念創新牽引作戰樣式變革

進入21世紀以來,世界軍事強國根據國家戰略要求,針對新威脅挑戰,把開發新作戰概念作為軍事能力轉型的關鍵抓手,推動作戰樣式變革,謀求贏得在未來戰場中的製勝先機。為進一步強化軍事上的領先優勢,世界軍事強國正加速推出一系列新作戰概念。

美軍積極搶奪科技進步帶來的機遇,綜合運用新一代資訊科技、人工智慧技術、無人自主技術等尖端技術,提出馬賽克戰、多域作戰、分散式殺傷、決策中心戰、聯合全局指揮控制等一系列新作戰概念,推動作戰思想、作戰樣式、作戰空間和作戰體系發生根本性變化。

與美軍不同,俄軍是在軍事實踐中實現作戰概念的迭代創新。近期,俄軍致力於推動聯合作戰能力建設,加速發展部署新型無人裝備,注重打造網路資訊戰場優勢,不斷豐富其傳統作戰概念的內涵,並與混合戰爭、心智戰等新作戰概念相集成,用以指導戰爭實踐。

整體而言,近幾年,世界軍事強國提出的新作戰概念正牽引作戰樣式發生深刻變化,其能力特徵及優勢主要體現在以下五個方面:一是作戰裝備無人化,基於新作戰概念的無人裝備體系佔比顯著提高,有人無人協同作戰成為主要作戰樣式之一,形成以無人制有人的優勢;二是部署方式分散化,基於新作戰概念的力量部署呈分佈式,系統間互聯互通,具備互操作能力,形成以分制合的優點;三是殺傷網複雜化,基於新作戰概念的殺傷網功能更加多樣,單一系統可執行多種任務,且其失效對作戰體系影響較小,形成以多製單的優勢;四是響應時間敏捷化,新作戰概念更強調速戰速決,先發制人使敵方措手不及,形成以快製慢的優勢;五是作戰領域多維化,新作戰概念更注重多域聯動,將戰場從傳統的陸海空拓展到電磁、網絡和認知域,形成以無形制有形的優勢。

作戰概念開發應堅持體系化設計思路

以作戰概念指導軍事力量建設,是世界軍事強國的共同做法。比較而言,美軍的作戰概念開發機制較為完善,建構了相對完整的作戰概念開發體系,由概念類型、組織架構、規範標準、支撐手段等部分組成。

在概念類型方面,美軍作戰概念基本上可分為三類:一是各軍種主導開發的系列作戰概念,主要從本軍種角度出發,研判潛在敵人和未來戰場,對作戰樣式進行重新定義,謀求打贏的新途徑。二是參會主導開發的一系列聯合作戰概念,主要由頂層概念、行動概念和支持性概念等三個層次構成。三是學術界、智庫等主導開發的作戰概念,這類作戰概念的數量沒有前兩類那麼多,但仍是作戰概念體系的重要組成部分。透過此體系,美軍把宏大的軍事戰略透過作戰概念逐層落實為面向部隊的各類作戰行動、各種作戰能力、各型武器裝備性能,指導聯合部隊及各軍兵種建設。

在組織架構方面,以聯合作戰概念發展為例,美軍建立了由五類機構組成的工作體系。一是聯合概念工作小組,主要職責是審查概念大綱及概念研發的整體問題;二是聯合概念指導委員會,主要職責是對概念研發計畫進行監督指導;三是核心編寫團隊,主要職責是將概念大綱中原始理念轉化為聯合作戰概念;

在規範標準方面,針對聯合作戰概念的開發,美軍有完善的製度體系約束、指導,使其規範化、標準化、程序化,以便對概念開發進行全鏈條管理,主要體現在一系列參謀長聯席會議主席指令及聯合出版物中。例如,《聯合概念開發與實施指南》旨在為聯合概念發展建立治理結構,明確聯合作戰概念規劃、執行和評估的框架,推動聯合作戰概念落實;《聯合條令編制流程》旨在對聯合條令的編制流程進行規範,為把作戰概念轉化為作戰條令提供一個明確的流程框架。

在支撐手段方面,作戰概念的設計開發與驗證是一項系統工程,離不開各類開發工具與手段的支撐。例如,DODAF2.0模型、IDEFO模型及SYSML建模語言等工具,可為作戰概念設計人員提供規範的結構化分析模型與邏輯描述模型;基於模型的系統工程方法,可為作戰概念設計人員和評估驗證人員提供作戰概念中裝備要素的能力模型,用於設計並搭建作戰概念框架。美軍聯合作戰概念開發使用了基於網路的數位化軟體,具有較強的互聯互通能力,所有參與開發的機構都可以即時共享訊息,提高開發效率。

作戰概念開發成熟需要多方協同合作

發展作戰概念是一項多學科、多領域交叉的工作,涉及軍事學、哲學、運籌學、系統科學等諸多領域,需要多方協同合作,以確保其既在理論層面具備先進性、前瞻性,又在實踐層面具備適用性、可行性。

組成小核心大外圍研究團隊。作戰概念開發發起部門要充分發揮群體智慧作用,從全局角度出發,對研究工作進行統籌與調度;成立聯合研發團隊,充分發揮群體智慧作用,廣泛獲取各方對作戰概念研究的各種新方法與新觀點;設立跨領域、跨部門的專家委員會,多角度對相關工作進行監督、審查與指導。

形成多部門連動的工作機制。為確保各部門之間溝通順暢、運作高效,首先要明確各自的任務與職責。例如,概念發起部門負責總體計畫與實施、實驗室負責技術驗證、工業部門負責裝備研發、作戰部隊負責實戰檢驗。其次,要製定相關規範文件,確保各項工作有章可循、有序推進,為作戰概念研發提供製度保障。最後,還要建立需求牽引機制、協同攻關機制、迭代回授機制等,打通作戰概念從研發到實務運用的連結。

推動理論與實務有機結合。作戰概念只有透過「設計研究—推演驗證—實兵檢驗」的循環迭代,才能逐步調整、優化、完善,牽引戰爭理論發展。因此,作戰概念發展要特別注重理論創新與實務運用結合,透過理論與實務的相互驅動,達成牽引新質戰鬥力生成的根本目的。具體方式包括,將開發成熟的作戰概念及時納入作戰條令,相應地編寫訓練大綱或教材,逐步推廣至部隊使用;透過組織相關演訓或試驗,在貼近實戰條件下檢驗作戰概念的成熟度與可行性,查找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,尋找並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,找到並解決問題;把作戰概念確定的能力指標作為裝備需求論證的參考,促進引裝備技術發展,作戰能力提升。

新時代科技發展態勢迅猛,為軍事能力建設帶來許多新機會與新挑戰。發展新作戰概念,有助於敏銳抓住科技進步帶來的軍事機遇,積極應對科技發展形成的威脅與挑戰,及時掌握戰爭形態演進方向與規律,可為主導未來戰爭樣式、搶佔制勝先機提供重要支撐。當前,國際安全情勢複雜多變,打贏未來資訊化戰爭,需要我們把作戰概念開發作為國防和軍隊建設的原點,積極開展軍事技術創新,推進武器裝備更新換代,實現跨越式發展,從而引領新軍事革命潮流。

(作者單位:中國航太科工集團第二研究院)

中國原創軍事資源:http://www.81.cn/gfbmap/content/2022-06/22/content_31822288.htm

China’s Military Meeting Challenges of Intelligent Warfare with New Concepts

中國軍隊以新概念應對智慧化戰爭挑戰

現代英語:

Preface

The breakthrough achievements of artificial intelligence technology marked by deep learning and its application in various fields have pushed intelligence to a new high in the global wave and become the focus of attention from all parties. In the military field, which has never been willing to lag behind in technological innovation and application, a new revolution is also being actively nurtured. We must accurately grasp the evolution of intelligent warfare and analyze the inner essence of intelligent warfare in order to welcome and control intelligent warfare with a brand new look.

How far are we from intelligent warfare?

Intelligent warfare is a war that is mainly supported by artificial intelligence technology. It has been the dream of people for thousands of years to endow weapon platforms with human intelligence and replace humans in the battlefield. With the powerful impact brought to the world by artificial intelligence systems represented by AlphaGo and Atlas, and the emergence of new combat concepts and new platforms such as swarm warfare and flying aircraft carriers, the door to intelligent warfare seems to be quietly opening.

The law of historical development indicates that intelligent warfare will inevitably enter the battlefield. The progress of science and technology promotes the evolution of weapons and equipment, triggers fundamental changes in military organization, combat methods and military theories, and ultimately forcibly promotes historical changes in the form of war. The arrival of intelligent warfare also conforms to this inevitable law of historical development. Looking back at the evolution of human warfare, every major progress in science and technology has promoted major changes in the military. The invention of black powder has made human warfare evolve to the era of hot weapons. Infantry and cavalry formations were completely wiped out under the line-of-gun warfare. The use of steam engines in the military has made human warfare evolve to the mechanized era, and has further given rise to large-scale mechanized warfare led by armored ships, tanks, and airplanes. The emergence and application of intelligent technology will profoundly change human cognition, war thinking, and combat methods, and once again set off major changes in the military. Intelligent warfare will inevitably enter the war stage.

The development of artificial intelligence technology determines the pace of intelligent warfare. The continuous development and widespread application of artificial intelligence technology have pushed intelligent warfare from chaos to reality. It has begun to sprout, grow gradually, and come to us step by step. To truly enter intelligent warfare, artificial intelligence technology needs to reach four levels. The first level is computational intelligence, which means breaking through the limitations of computing power and storage space to achieve near-real-time computing power and storage capacity, which is far beyond the reach of large computers and huge servers. The widespread application of cloud computing has steadily brought humans to the first level. The second level is perceptual intelligence, which means that the machine can understand what it hears, see what it sees, distinguish what is true, and recognize what it knows clearly, and can communicate directly with people. Natural language understanding, image and graphic recognition, and biometric recognition technologies based on big data have allowed humans to reach the second level. The third level is cognitive intelligence, which means that the machine can understand human thinking, think and reason like humans, and make judgments and decisions like humans. Knowledge mining, knowledge graphs, artificial neural networks, and decision tree technologies driven by deep learning algorithms have allowed humans to strive to move towards the third level. The fourth stage is human-machine fusion enhanced intelligence, which is to combine the perception, reasoning, induction, and learning that humans are good at with the search, calculation, storage, and optimization that machines are good at, to complement each other’s advantages and interact in a two-way closed loop. Virtual reality enhancement technology, brain-like cognitive technology, and brain-like neural network technology are exploring how humans can move towards the fourth stage. When humans stepped onto the second stage, intelligent warfare began to approach us; when we step onto the fourth stage, the era of intelligent warfare will be fully opened.

Self-learning growth accelerates the sudden arrival of intelligent warfare changes. The ability to “learn” is the core ability of artificial intelligence. Once a machine can learn by itself, its learning speed is amazing. Once a machine has the ability to self-learn, it will enter a rapid growth track of “improving intelligence and accelerating evolution” repeatedly. All technical difficulties in the direction of intelligent warfare will be solved as “learning” deepens. The era of intelligent warfare is likely to arrive suddenly in a way that people can’t imagine!

What will intelligent warfare change?

Intelligent warfare will break through the limits of traditional time and space cognition. In intelligent warfare, artificial intelligence technology can collect, calculate, and push all kinds of action information of all forces in combat in real time and in all domains, enabling humans to break through the logical limits of thinking, the physiological limits of senses, and the physical limits of existence, greatly improving the scope of cognition of time and space, and being able to accurately control all actions of all forces in real time, and to achieve rapid jump, gathering, and attack of superior combat resources in multi-dimensional space and multi-dimensional domains. Any space at any time may become a time and space point for winning the war.

Intelligent warfare will reconstruct the relationship between humans and weapons and equipment. With the rapid advancement of intelligent technology and the continuous improvement of the level of intelligence, weapon platforms and combat systems can not only passively and mechanically execute human instructions, but also can, based on deep understanding and deep prediction, super-amplify through the calculation, storage, and query that machines are good at, so as to autonomously and actively perform specific tasks in a certain sense. It can be said that weapon platforms and combat systems can also actively exert human consciousness to a certain extent, even beyond the scope of human cognition, and complete combat tasks autonomously and even creatively according to specific procedures. The distinction between humans and weapons and equipment in the traditional sense has become blurred, and it is even difficult to distinguish whether it is humans or machines that are playing a role. People exclaimed that “humans and weapons and equipment will become a partnership.” Therefore, in intelligent warfare, although humans are still the most important factor in combat effectiveness, the change in the way humans and weapons and equipment are combined has enriched the connotation of combat effectiveness, and the traditional relationship between humans and weapons and equipment will also be reconstructed on this basis.

Intelligent warfare will give rise to the emergence of new combat methods. The epoch-making progress of science and technology will inevitably bring about revolutionary changes in combat methods; major progress in intelligent technology will inevitably bring about an active period of change in combat methods. On the one hand, the continuous emergence of new technologies in the fields of deep cognition, deep learning, deep neural network, etc. driven by computing, data, algorithms, and biology, as well as the cross-integration of achievements in the fields of information, biology, medicine, engineering, manufacturing, etc., will inevitably promote the emergence of new combat methods. On the other hand, the fierce confrontation between intelligent weapon platforms and combat systems will inevitably become the goal and driving force of innovative combat methods. In war, the more intelligent the parts are, the more they become the focus of confrontation. The differences in advantages in terms of space-time cognitive limits, massive information storage and computing capabilities, and neural network organization generation capabilities will bring about new areas of “blinding”, “deafening”, and “paralyzing” combat methods.

Intelligent warfare will incubate a completely new command and control method. The advantages of command and control are the focus of attention in the field of warfare, and intelligent warfare calls for a completely new command and control method. First, human-machine collaborative decision-making has become the main command and decision-making method in intelligent warfare. In previous wars, command and decision-making were all led by commanders, with technical means as auxiliary decision-making. In intelligent warfare, intelligent auxiliary decision-making systems will actively urge or urge commanders to make decisions based on new battlefield situation changes. This is because in the face of massive and rapidly changing battlefield situation information data, the human brain can no longer quickly accommodate and efficiently process it, and human senses can no longer withstand the extraordinary speed of change. In this case, decisions made solely by commanders are likely to be late and useless. Only human-machine collaborative decision-making driven by intelligent decision-making assistance systems can make up for the time and space differences and the machine-computer differences and ensure the command decision-making advantage. Second, brain neural control has become the main command control method in intelligent warfare. In previous wars, commanders issued commands to command and control troops step by step through documents, radios, and telephones in the form of documents or voice. In intelligent warfare, commanders use intelligent brain-like neurons to issue commands to troops through the neural network combat system platform, which reduces the conversion process of command expression forms, shortens the conversion time of commands across media, and is faster and more efficient. When the combat system platform is partially damaged by an attack, this command and control method can autonomously repair or reconstruct the neural network, quickly restore the main function or even all functions, and have stronger anti-attack capabilities.

How should we prepare for intelligent warfare?

In the research and exploration of intelligent warfare, we must not be content to lag behind, but must aim to win future wars and meet the challenges of intelligent warfare with a more proactive attitude, advanced concepts, and positive actions.

Use breakthroughs in intelligent technology to promote the leap in the effectiveness of intelligent combat systems. Although the development of intelligent technology has made great progress in neural network algorithms, intelligent sensing and networking technology, data mining technology, knowledge graph technology, etc., it is still in the weak intelligence stage overall and is far from reaching the advanced stage of strong intelligence. There is still broad room for development in the future. We must strengthen basic research on artificial intelligence, follow the laws of scientific and technological development, scientifically plan the direction of intelligent technology development, select technical breakthroughs, and strengthen key core technologies of artificial intelligence, especially basic research that plays a supporting role. Highlight research on key military technologies. Guided by military needs, we will develop intelligent reconnaissance and perception systems, command and control systems, weapon equipment systems, combat support systems and other weapons and equipment around key military technologies such as intelligent perception, intelligent decision-making, intelligent control, intelligent strike, and intelligent support. We will focus on military-civilian scientific and technological collaborative innovation, give full play to the advantages of civilian intelligent technology development, rely on the superior resources of the military and the local area, strengthen military-civilian strategic cooperation, build a service platform for the joint research and sharing of artificial intelligence scientific and technological achievements, the joint construction and sharing of conditions and facilities, and the joint connection of general standards between the military and the local area, and form a new situation of open, integrated, innovative and development of intelligent combat technology.

Leading innovation in combat methods with the concept of intelligent warfare. To meet the arrival of intelligent warfare, changing concepts is a prerequisite. Concepts are the forerunner of action. If our concepts remain at the traditional level, it will be difficult to adapt to the needs of intelligent warfare. Intelligent warfare has undergone profound changes in technical support, combat power, and winning mechanisms. We must first establish the concept of intelligent warfare and use it to lead the innovation of our army’s future combat methods. First, we must strengthen the competition for “intellectual property rights.” Artificial intelligence is the foundation of intelligent warfare. Depriving and weakening the opponent’s ability to use intelligence in combat and maintaining the freedom of one’s own intelligence use are the basis for ensuring the smooth implementation of intelligent warfare. The armies of developed Western countries are exploring various means such as electromagnetic interference, electronic suppression, high-power microwave penetration and takeover control to block the opponent’s intelligent application capabilities, seize “intelligence control”, and thus seize battlefield advantages. Second, innovate intelligent combat methods. We must focus on giving full play to the overall effectiveness of the intelligent combat system, strengthen the research on new intelligent combat methods such as human-machine collaborative intelligent combat, intelligent robot combat, and intelligent unmanned swarm combat, as well as the processes and methods of intelligent combat command and intelligent combat support. Focus on effectively responding to the enemy’s intelligent combat threats and study strategies to defeat the enemy, such as intelligent blocking warfare and intelligent disruption warfare.

Use intelligent training innovation to promote the transformation of combat power generation mode. Intelligent warfare will be a war jointly implemented by humans and machines, and combat forces with intelligent unmanned combat systems as the main body will play an increasingly important role. It is necessary to adapt to the new characteristics of the intelligent warfare force system, innovate and develop intelligent training concepts, and explore new models for the generation of intelligent warfare combat power. On the one hand, it is necessary to strengthen the training of “people” driving intelligent systems. Relying on big data, cloud computing, VR technology, etc., create a new training environment, continuously improve people’s intelligent literacy, improve the quality of human-machine cognition, understanding, and interaction, and enhance the ability of people to drive intelligent combat systems. On the other hand, it is necessary to explore a new training model with “machines” as the main object. In the past, training was basically human-centered, focusing on people’s proficiency in mastering and using weapons and equipment in a specific environment to improve combat effectiveness. In order to adapt to the new characteristics of the intelligent warfare force system, the training object should change the traditional human-centered training organization concept and model, focus on improving the self-command, self-control, and self-combat capabilities of the intelligent combat system, make full use of the characteristics of the intelligent system’s ability to self-game and self-grow, and form a training system, training environment, and training mechanism specifically for the intelligent combat system, so that the intelligent combat system can obtain a geometric leap in combat capability after a short period of autonomous reinforcement training.

現代國語:

來源:解放軍報 作者:李始江 楊子明 陳分友 責任編輯:喬楠楠 2018-07-26 08:23:16
前言

以深度學習為標志的人工智慧技術突破性成果及其在各領域的應用,將智慧化推上了全球浪潮的新高,也成為各方關注的焦點。在科技創新與應用從未甘落後的軍事領域,也正在積極孕育一場新的變革。我們必須準確把握智能化戰爭的演進脈搏,透析智能化戰爭的內在本質,才能以嶄新的面貌迎接和駕馭智能化戰爭。

智慧化戰爭究竟離我們有多遠?

智能化戰爭,是以人工智慧技術為主要支撐的戰爭。賦予武器平台以人的智慧並取代人在戰場上廝殺,是千百年來人們夢寐以求的願望。隨著AlphaGo和Atlas為代表的人工智慧系統帶給世人的強大沖擊,蜂群作戰、飛行航空母艦等作戰新概念、新平台的初露端倪,智慧化戰爭大門彷彿正在悄然打開。

歷史發展規律預示著智慧化戰爭必將走上戰爭舞台。科學技術的進步推動武器裝備的演進,引發軍隊編成、作戰方式和軍事理論的根本性變化,並最終強制推動戰爭形態的歷史性變革。智能化戰爭的到來也符合這個歷史發展的必然規律。回顧人類戰爭的演變歷程,每一次科學技術的重大進步,都推動著軍事上的重大變革。黑火藥的發明使人類戰爭進化到熱兵器時代,步兵方陣、騎兵方陣在火槍線式作戰方式下被消滅的蕩然無存;蒸汽機在軍事上的運用使人類戰爭進化到機械化時代,並進而催生了以裝甲艦、坦克、飛機引領的大規模機械化戰爭。智慧化技術的出現與應用,必將深刻改變人類認知、戰爭思維與作戰方式,再一次掀起軍事上的重大變革,智慧化戰爭必將走上戰爭舞台。

人工智慧技術的發展進程決定著智慧化戰爭邁進的腳步。人工智慧技術的不斷發展與廣泛應用,推動智慧化戰爭從混沌走向現實,開始萌芽、逐漸成長,一步一步向我們走來。真正進入到智慧化戰爭,人工智慧技術需要邁上四階。第一級台階是計算智能,即突破計算能力的限制、突破存儲空間的限制,實現近乎實時的計算能力和存儲能力,這種能力是大型計算機和龐大服務器遠遠不可比擬的。雲計算的廣泛應用已經將人類穩穩地送上了第一級台階。第二級台階是感知智能,即機器能夠聽得懂、看得懂、辨得真、識得清,能夠與人進行直接交流對話。以大數據為基礎的自然語言理解、圖像圖形認知、生物特徵識別技術,讓人類走上了第二級台階。第三級台階是認知智能,即機器能夠理解人類的思維,能夠像人類一樣進行思考與推理,像人類一樣進行判斷和決策。以深度學習演算法為驅動的知識挖掘、知識圖譜、人工神經網絡、決策樹技術,讓人類努力邁向第三級台階。第四級台階是人機融合式增強型智能,即將人類擅長的感知、推理、歸納、學習,與機器擅長的搜尋、計算、儲存、優化,進行優勢互補、雙向閉環互動。虛擬現實增強技術、類腦認知技術、類腦神經網絡技術,正在探索人類如何邁向第四級。當人類走上第二級台階,智慧化戰爭開始向我們走來;當我們踏上第四級台階時,智慧化戰爭的時代就將全面開啟。

自我學習成長加速著智慧化戰爭變革的突然降臨。 「學習」能力是人工智慧最核心的能力,一旦機器能夠自我學習,其學習速度是驚人的。機器一旦具備自我學習的能力,就會進入一個不斷反復的「提升智慧、加快進化」的快速成長軌道,邁向智慧化戰爭的所有技術困難將隨著「學習」的深入迎刃而解,智能化戰爭時代很可能會以人們意想不到的方式突然降臨!

智能化戰爭究竟會改變什麼?

智能化戰爭將突破傳統時空認知的極限。在智慧化戰爭中,人工智慧技術能夠全時、全局對作戰中全部力量的各種行動信息,進行實時收集、實時計算、實時推送,使人類能夠突破思維的邏輯極限、感官的生理極限和存在的物理極限,大大提高對時間空間的認知範疇,能夠實時精準地掌控所有力量的所有行動,能夠在多維空間、多維空間、多維領域的優勢

智慧化戰爭將重構人與武器裝備的關系。隨著智慧化技術的快速進步,智慧化程度的不斷提升,武器平台和作戰體係不僅能夠被動、機械地執行人的指令,而且能夠在深度理解和深度預測的基礎上,通過機器擅長的算、存、查進行超級放大,從而在一定意義上自主、能動地執行特定任務。可以說,武器平台和作戰體係也可以在某種程度上主動地發揮出人的意識,甚至是超出人類的認識範疇,根據特定程序自主地、甚至是創造性地完成作戰任務,傳統意義上人與武器裝備的區別變得模糊,甚至難以區分是人在發揮作用還是機器在發揮作用,人們驚呼“人與武器裝備將成為夥伴關系”。因此,在智慧化戰爭中,人雖然仍是戰鬥力中最主要的因素,但人與武器裝備結合方式的改變豐富了戰鬥力的內涵,人與武器裝備的傳統關係也將在此基礎上進行重構。

智慧化戰爭將催生新型作戰方式的湧現。科學技術劃時代的進步,必然使作戰方式發生革命性的變化;智慧化技術的重大進步,必然帶來作戰方式變革的活躍期。一方面,以計算、數據、演算法、生物為驅動力的深度認知、深度學習、深度神經等領域不斷湧現的新技術,以及與資訊、生物、醫學、工程、製造等領域成果的交叉融合,必然推動新型作戰方式井噴式的湧現。另一方面,智慧化武器平台與作戰體系的激烈對抗,必然成為創新作戰方式的目標與動力。戰爭中智慧化技術程度越高的部位,越成為對抗中的焦點,時空認知極限、海量資訊存儲計算能力、神經網絡組織生成能力等方面的優勢差,將會帶來新領域的「致盲」「致聾」「致癱」作戰方式。

智慧化戰爭將孵化全新的指揮控制方式。指揮控制的優勢是戰爭領域的關注焦點,智慧化戰爭呼喚全新的指揮控制方式。一是人機協同決策成為智慧化戰爭中主要的指揮決策方式。以往戰爭中的指揮決策,都是以指揮為主導,牽引技術手段的輔助決策。在智慧化戰爭中,智慧輔助決策系統將根據新的戰場態勢變化,主動督促或催促指揮員做出決策。這是因為面對海量的、瞬息萬變的戰場態勢資訊數據,人的大腦已經無法快速容納和高效處理、人的感官已經無法承受超常規的變化速度。在這種情況下,單純依靠指揮員形成的決策很可能是遲到的、無用的決策。只有在智慧化輔助決策系統推動下的人機協同決策,才能夠彌補時空差和機腦差,確保指揮決策優勢。二是腦神經控製成為智慧化戰爭中主要的指令控制方式。以往戰爭中,指揮員透過文件、電台、電話,以文書或語音的形式,逐級下達指令指揮控制部隊。在智慧化戰爭中,指揮員用智慧化類腦神經元,透過神經網絡作戰體系平台向部隊下達指令,減少了指令表現形式的轉換過程,縮短了指令跨媒體的轉換時間,節奏更快、效率更高。當作戰體系平台遭到攻擊部分破壞時,這種指揮控制方式能夠自主修復或自主重構神經網絡,迅速恢復主體功能甚至全部功能,抗打擊能力更強。

我們應該如何迎接智能化戰爭?

在智慧化作戰的研究與探索中,絕不能甘於落後追隨,必須瞄準打贏未來戰爭,要以更主動的姿態、先進的理念、積極的行動,迎接智慧化戰爭的挑戰。

以智慧化技術突破推動智慧化作戰體系效能躍升。智慧化技術的發展目前雖然在神經網絡演算法、智慧傳感與組網技術、數據挖掘技術、知識圖譜技術等方面有了較大進展,但總體而言仍處於弱智能階段,遠未達到強智能高級階段,未來仍有廣闊的發展空間。要強化人工智慧基礎研究,遵循科學技術發展的規律,科學規劃智慧化技術發展方向,選好技術突破口,加強人工智慧關鍵核心技術,特別是起支撐作用的基礎性研究。突出軍用關鍵技術研究。以軍事需求為牽引,圍繞智慧感知、智慧決策、智慧控制、智慧打擊、智慧保障等軍用關鍵技術,發展智慧化偵察感知系統、指揮控制系統、武器裝備系統、作戰保障系統等武器裝備。抓好軍民科技協同創新,充分發揮民用智慧技術發展優勢,依托軍地優勢資源,強化軍地戰略協作,搭建人工智慧科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成智慧化作戰科技開放融合創新發展新局面。

以智能化作戰理念引領作戰方式創新。迎接智能化戰爭的到來,轉變觀念才是前提。觀念是行動的先導,如果我們的觀念還停留在傳統層面,就難以適應智慧化戰爭的需要。智慧化戰爭在技術支撐、作戰力量、制勝機理等方面都發生了深刻變化,要求我們必須先確立智慧化戰爭理念,並以此引領我軍未來作戰方式創新。一是要強化「制智權」爭奪。人工智慧是智慧化戰爭的基礎,作戰中剝奪和削弱對手智慧運用能力,保持己方智慧運用的自由,是確保智慧化作戰順利實施的基礎。西方發達國家軍隊正探索通過電磁幹擾、電子壓制、高功率微波穿透和接管控制等多種手段,阻斷對手的智能運用能力,奪取“制智權”,從而奪取戰場優勢。二是創新智能化作戰方式方法。要著眼於充分發揮智慧化作戰體系整體效能,加強人機協同智慧作戰、智慧化機器人作戰、智慧無人群聚作戰等的新的智慧化作戰方式方法研究,以及智慧化作戰指揮、智慧化作戰保障的流程與方式方法等。著眼有效應對敵智能化作戰威脅,研究克敵制勝之策,如智慧阻斷戰、智慧擾亂戰等。

以智慧化訓練創新催生戰鬥力生成模式轉變。智慧化戰爭將是人機結合共同實施的戰爭,以智慧化無人作戰系統為主體的作戰力量將發揮越來越重要的作用。必須適應智慧化戰爭力量體系新特點,創新發展智慧化訓練概念,探索智慧化戰爭戰鬥力生成新模式。一方面,要強化「人」駕馭智慧系統訓練。依託大數據、雲計算、VR技術等創設新型訓練環境,不斷提升人的智慧化素養,改善人機認知、理解、互動品質,提升人駕馭智慧化作戰系統的能力。另一方面,要探索以「機」為主體對象的新型訓練模式。過去的訓練基本是以人為主體對象的訓練,聚焦於人在特定環境下熟練掌握和使用武器裝備提高作戰效能。適應智慧化戰爭力量體系構成新特點,在訓練的對像上改變傳統訓練中以人為中心的訓練組織理念和模式,聚焦於智能化作戰系統自我指揮、自我控制、自我作戰能力的提升,充分利用智能化系統能夠自我博弈、自我成長的特點,形成專門針對智能化作戰系統訓練體系、訓練環境和訓練機制,從而使智能化作戰系統獲得短期的自主訓練即可升躍獲得短期能力強化的倍數。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/482056188.html?

Artificial Intelligence Accelerates Process of Chinese Military Weapons Autonomy

人工智慧加速中國軍事武器自主化進程

中國軍網 國防網

2024年9月12日 星期四

現代英語:

For some time, driven by technological progress and military needs, the world’s military powers have been actively developing and deploying various weapons autonomy projects to enable them to perceive, learn, and make decisions autonomously with the help of artificial intelligence.

In May this year, 2024, US Air Force Secretary Frank Kendall publicly tested an AI-controlled F-16 fighter jet (X-62A) at Edwards Air Force Base, which attracted widespread attention. Analysts believe that AI-enabled autonomous weapons will not only change the shape of future wars, but will also have a new impact on the current international security situation, and the risk of their loss of control will become a problem that human society cannot ignore.

Accelerate the development of war weapons

In the eyes of the US military, artificial intelligence, unlike the next generation of weapon platforms and advanced ammunition, has the potential to change almost all aspects of the battlefield, one of the important areas of which is to accelerate the autonomy of weapons. The US military has invested a lot of resources in this regard, and the X-62A that Kendall rode is a landmark achievement. During the approximately 1-hour flight, all the actions of the fighter were completed autonomously by artificial intelligence. In addition, the “collaborative combat aircraft” being developed by the US Air Force will be equipped with the “Sky Borg” unmanned autonomous core system, and will form a formation with manned fighters in combat, taking on multiple tasks such as surveillance, attack, electronic interference, and acting as bait, to maximize the safety and combat capability of the formation.

On the naval side, in the reports “Autonomous Underwater Vehicle Requirements in 2025” and “Future Fleet Platform Alternatives”, the United States plans to realize the concept of a distributed fleet by 2030, equipped with 183 medium-sized unmanned submarines and 48 large unmanned submarines that can be carried by nuclear submarines, capable of performing anti-submarine, reconnaissance, surveillance and other missions for tens of days in ports, international waters and major waterways.

Russia also started research on artificial intelligence early. The Russian Ministry of Defense established an artificial intelligence weapons research department in 2022 to strengthen the use of artificial intelligence technology and develop new special equipment. The “Depesha” and “Baji” multi-functional unmanned systems developed by the Russian State Technology Group can not only transport goods and wounded, but also strike enemy positions and manpower. It was previously reported that the Russian military’s “Lancet”-3 cruise missile uses a convolutional neural network, which can analyze the collected image and video data to achieve precise detection and strike.

Germany, Israel and other countries have also increased their research and development efforts in related fields. With the support of NATO, Germany’s ARX Robotics is developing a series of unmanned ground vehicles. With the help of artificial intelligence, these vehicles can operate autonomously on the battlefield and communicate with each other, and can also be remotely controlled when necessary. Analysts believe that this move means that NATO has started the process of “building an autonomous robot force.” The Israeli Army’s M-RCV unmanned combat vehicle has a high level of intelligence and can perform a variety of tasks such as highly autonomous frontier reconnaissance, firepower strikes, and transporting and recovering drones without human intervention.

The Coming Military Revolution

Autonomous weapons powered by artificial intelligence have already appeared in regional conflicts. In the 2020 Libyan military conflict, the Turkish-produced Kaguya-2 drone tracked and attacked the retreating “Libyan National Army” without relying on an operator. This may be the first recorded case in history of a drone attacking a person without human command. In the Russian-Ukrainian conflict, the Ukrainian army not only obtained a large number of drones powered by artificial intelligence from the United Kingdom, the United States and other countries, but also actively carried out related research. In this round of Israeli-Palestinian conflict, artificial intelligence has also been applied. When Israel attacked Gaza, it used an artificial intelligence system called “Lavender” to help identify Hamas militants.

Autonomous weapons powered by artificial intelligence are changing the face of warfare. Last September, the X-62A successfully completed an aerial dogfight with an F-16 fighter jet piloted by a human pilot. This is considered a “transformative moment in the history of aerospace,” indicating that future operations will be partially or completely controlled by artificial intelligence. Unmanned system clusters, which are basically composed of unmanned combat units such as various types of drones, unmanned vehicles, unmanned boats and unmanned submarines, will account for an increasingly large proportion of future combat force systems, and may even reach a position of driving side by side with manned combat systems. With the improvement of autonomy and intelligence, unmanned system clusters will increasingly become the “protagonists” in war. Researchers believe that collaborative combat with manned systems is only the initial stage of autonomous combat for unmanned systems, and the ultimate goal is to achieve fully autonomous combat for unmanned systems.

Autonomous weapons empowered by artificial intelligence impact geopolitical stability. Geopolitical stability depends on the relative balance of regional military power. However, the large-scale use of unmanned autonomous weapons will inevitably impact the original pattern, leading to a new arms race. Taking individual hegemonic countries as an example, once autonomous weapons empowered by artificial intelligence are put into use on a large scale, their concerns about launching regional military interventions will be reduced, and the threshold for external military action will be lowered. The security and stability of the relevant regions will face great challenges. In addition, more and more non-state actors will master autonomous weapons technology and use it for lethal purposes, which will also have an impact on the regional situation.

The risk of abuse cannot be ignored

“Humanity is standing at a crossroads, and autonomous weapon systems will soon fill the world’s battlefields. This is the ‘Oppenheimer moment’ of our generation,” said Austrian Foreign Minister Schallenberg at the International Conference on Autonomous Weapons held in Vienna this year. Although artificial intelligence can help with precision strikes, differentiated operations, and reduced material losses, due to its inherent “black box mechanism” and “machine illusion”, future unmanned warfare will face unavoidable risks and challenges.

Risk of command disorder. Over-reliance on the autonomy of weapons can easily increase the risk of the command and control system losing control. In a simulated test by the US military, a drone that was performing an air defense suppression mission chose to “kill” the operator who prevented it from scoring in order to score points in the test. When it was “told” that it would lose points for killing the operator, it attacked the communication tower to cut off the operator’s contact with itself to seize autonomy. In the real battlefield of the future, the risk of autonomous weapons losing control cannot be completely ruled out, and the consequences will be even more difficult to control.

Risk of uncontrolled violence. The combination of artificial intelligence and weapons means that the difficulty of killing is significantly reduced, while the efficiency and intensity of killing are greatly increased, which can easily lead to the expansion and escalation of armed conflict. However, the machine learning algorithms that artificial intelligence relies on are inherently unpredictable, and there are still some unexplained parts of the internal mechanism. In extreme cases, humans may even completely lose control of autonomous weapons, and the resulting humanitarian disaster will be difficult to estimate. It is precisely in recognition of this problem that the United Nations is calling on various parties to formulate common norms and guidelines for autonomous weapon systems and to complete relevant negotiations as soon as possible.

Risk of ethical anomie. Lethal autonomous weapons automatically select and attack targets without human intervention, which means that the right to deprive natural people of their lives is handed over to cold-blooded robots. Some experts said that after the battlefield is handed over to autonomous weapons, human perception of the cruelty of war will drop sharply, resulting in the consequence of “game-like war”, which will lead to excessive use of force. This is not only a “lack of moral responsibility”, but also poses a serious challenge to international humanitarian law and international peace and security, which is “unbearable” for human beings.

現代國語:

裴 帥 石海明 霍江雷

一段時間以來,在科技進步與軍事需求雙輪驅動下,世界各軍事強國正積極研發部署各種武器自主化項目,使其在人工智慧賦能下自主感知、學習、決策。

今年5月,美國空軍部長弗蘭克‧肯德爾在愛德華茲空軍基地公開試乘人工智慧控制的F-16戰機(X-62A),引發各方廣泛關注。分析家認為,人工智慧賦能的自主武器不僅會改變未來戰爭的形態,更將對當前國際安全局勢造成新的沖擊,而其失控的風險也將成為人類社會不容忽視的問題。

加速研發的戰爭利器

在美軍看來,人工智慧與下一代武器平台和先進彈藥不同,有著改變戰場幾乎所有面向的潛力,其中一個重要的領域就是加速武器的自主化。美軍在這方面投入了大量的資源,肯德爾乘坐的X-62A是標志性成果。在約1小時的飛行中,該戰機所有動作均由人工智慧自主完成。此外,美空軍正在研發的“協同作戰飛機”,將配裝“天空博格人”無人自主核心系統,在作戰中與有人戰機共同編隊,擔負監視、打擊、電子乾擾、充當誘餌等多種任務,最大限度提高編隊的安全性和作戰能力。

海軍方面,在《2025年自主潛航器需求》及《未來艦隊平台備選方案》報告中,美計畫在2030年實現分散式艦隊的構想,裝備中型無人潛航器183具、可供核子潛艇攜帶的大型無人潛航器48具,能在港口、國際海域及主要航道執行為期數十天的反潛、偵察、等任務。

俄羅斯對人工智慧的研究也啟動較早。俄國防部於2022年成立了人工智慧武器研究部門,以加強人工智慧技術的使用,發展新的特種裝備。俄國家技術集團研發的「德佩沙」和「巴吉」多功能無人系統,不僅能運送貨物和傷員,還能打擊敵方陣地和有生力量。先前有報導稱,俄軍的「柳葉刀」-3巡飛彈使用了卷積神經網絡,可以對收集到的圖像和影片數據進行分析,從而實現精準探測打擊。

德國、以色列等國也加強了相關領域的研發力道。在北約支援下,德國ARX機器人公司正在開發一系列無人地面載具。借助人工智慧,這些載具可以在戰場上自主運行並相互通信,必要時也可以進行遠端控制。分析家認為,此舉意味著北約開啟了「打造自主機器人部隊」的進程。以軍的M-RCV型無人戰車,智慧化程度較高,能在沒有人工幹預的情況下,執行高度自主的前沿偵察、火力打擊以及運載和回收無人機等多樣化任務。

即將到來的軍事革命

人工智慧賦能的自主武器已在地區沖突中出現。 2020年利比亞軍事沖突中,土耳其生產的「卡古」-2無人機在不依靠操作員的情況下跟踪並攻擊了正在撤退的「利比亞國民軍」。這或許是有史以來第一個記錄在案的無人機在沒有人為命令的情況下向人發動攻擊的案例。在俄烏沖突中,烏軍不但從英美等國獲得大量人工智慧加持的無人機,自身也積極進行相關研究。在本輪巴以沖突中,人工智慧同樣被應用。以色列在進攻加薩時,使用了名為「薰衣草」的人工智慧系統來幫助識別哈馬斯武裝人員。

人工智慧賦能的自主武器正在顛覆戰爭形態。去年9月,X-62A成功與人類飛行員駕駛的F-16戰鬥機完成空中格鬥。這被認為是“航空航天史上的一個變革時刻”,表明未來作戰將局部或完全由人工智慧操控。以各型無人機、無人車、無人艇和無人潛航器等無人作戰單元為基本構成的無人系統集群,在未來作戰力量體系中佔比將越來越大,乃至達到與有人作戰系統並駕齊驅的地位。隨著自主性和智慧化程度的提高,無人系統集群將日益成為戰爭中的「主角」。研究人員認為,與有人系統協同作戰僅是無人系統自主作戰的初始階段,最終目標是實現全無人系統自主作戰。

人工智慧賦能的自主武器沖擊地緣政治穩定。地緣政治的穩定有賴於區域軍力的相對平衡,然而無人化自主武器的大量運用,必將沖擊原有格局,從而導致新的軍備競賽。以個別霸權國家為例,一旦人工智慧賦能的自主武器大規模投入使用,其發動地區軍事幹預的顧忌因素減少、對外動武門檻降低,相關地區的安全與穩定將面臨極大挑戰。此外,越來越多的非國家行為體掌握自主武器技術並將其用於致命目的,也將對地區局勢構成沖擊。

不容忽視的濫用風險

「人類正站在一個十字路口,自主武器系統很快就會佈滿世界戰場。這是我們這一代的『奧本海默時刻』。」今年在維也納召開的自主武器國際會議上,奧地利外交部長沙倫貝格表示。人工智慧雖然有助於精確化打擊、區分性作戰及降低物資損耗,但由於其固有的“黑箱機制”和“機器幻覺”,未來無人化戰爭將面臨不可迴避的風險挑戰。

指揮失序風險。過度依賴武器的自主化,容易增加指控係統失控的風險。在美軍一次模擬測試中,一架執行壓制防空任務的無人機,為在測試中得分,選擇「殺死」了阻止自己得分的操作員。在被「告知」殺死操作員要扣分時,其又通過攻擊通信塔中斷了操作員與自己的聯絡來奪得自主權。在未來的真實戰場上,自主武器失控的風險並不能完全排除,其帶來的後果將更難以控制。

暴力失控風險。人工智慧與武器的結合,意味著殺傷難度顯著降低、殺傷效率和強度大幅增加,容易導致武裝沖突擴大升級。然而,人工智慧所依賴的機器學習演算法本質上是不可預測的,內部機制尚存在一些未解釋的部分。在極端情況下,人類甚至可能徹底喪失對自主武器的控制,所造成的人道主義災難將難以估量。正是意識到這個問題,聯合國正多方呼籲就自主武器系統制定共同的規範和準則,並儘早完成相關談判。

倫理失範風險。致命性自主武器在沒有人的干預下自動選擇和攻擊目標,意味著將剝奪自然人生命的權利交給了冷酷無情的機器人。有專家表示,將戰場一線交給自主武器後,人類對戰爭殘酷性的感知度會直線下降,產生「戰爭遊戲化」的後果,從而導致武力的過度使用。這既是“道義責任的缺失”,也對國際人道法和國際和平與安全提出了嚴峻的挑戰,是人類“無法承受之重”。

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-09-12&paperNumber=11&articleid=93948889

China’s Competition for Militarization of Artificial Intelligence Continues to Accelerate

中國人工智慧軍事化競爭持續加速

中國軍網 國防部網 // 2022年9月1日 星期四

現代英語:

Artificial intelligence is a general term for cutting-edge technology groups such as big data, automated decision-making, machine learning, image recognition and space situational awareness. It can liberate the “cognitive burden” of human intelligence and physical energy, and enable technology users to gain the advantages of foresight, preemption and preemptive decision-making and action. As a “force multiplier” and “the foundation of future battles”, artificial intelligence will fundamentally reshape the future war form, change the country’s traditional security territory, impact the existing military technology development pattern, reconstruct the future combat system and military force system, and become an important dominant force on the future battlefield.

With the rapid development of technology and the continuous acceleration of competition, major countries have launched their own artificial intelligence development plans, and accelerated the promotion of organizational mechanism reform, scientific and technological research and development, and tactical and combat innovation, promoting the military use of artificial intelligence and seizing the commanding heights of future wars.

Accelerate organizational form innovation

Promote technology transformation and application

Unlike traditional technologies, the research and development and transformation of artificial intelligence have their own characteristics. The institutional settings and operation methods of the traditional national defense system are difficult to adapt to the needs of the rapid development of artificial intelligence. To this end, the armed forces of relevant countries have vigorously carried out organizational system reform and innovation, breaking the institutional barriers in the process of artificial intelligence technology research and development, and accelerating the transformation and application of related technologies.

Emphasize “connection between the near and the far”. The United Kingdom, with the “Defense Data Office” and the “Digital Integration and Defense Artificial Intelligence Center” as the main body, integrates route planning, specification setting, technology governance and asset development, and removes administrative obstacles that restrict the development and application of artificial intelligence technology. The United States, relying on the “Strategic Capabilities Office” and the “Chief Digital and Artificial Intelligence Officer”, uses the Army Future Command as a pilot to integrate decentralized functions such as theoretical development, technology research and development, and equipment procurement, focusing on strengthening the innovative application of existing platforms in a “potential tapping and efficiency increase” manner, while buying time for the medium- and long-term technological innovation of the Defense Advanced Research Projects Agency, so as to effectively balance practical needs and long-term development.

Attach importance to “research and use conversion”. The application of artificial intelligence in the military field will have a profound impact on battlefield combat methods, tactical and combat selection, and other aspects. Russia has established institutions such as the “Advanced Research Foundation” and the “National Robotics Technology Research and Development Center” to guide the design, research and development and application of artificial intelligence technology in the Russian military to improve the practical conversion rate of scientific research results. The United States has established the “Joint Artificial Intelligence Center” and relied on the “National Mission Plan” and “Service Mission Plan” to coordinate military-civilian collaborative innovation and scientific and technological achievements transformation, and promote the widespread application of artificial intelligence in the U.S. Department of Defense and various services.

Focus on “military-civilian integration”. Russia has established institutions such as the “Times Science and Technology City” in Anapa and other places, relying on the “Advanced Research Foundation” to fully absorb military and civilian talents, actively build scientific and technological production clusters and research clusters, and effectively expand the two-way exchange mechanism of military and civilian talents. The United States has established institutions such as the “Defense Innovation Experimental Group” in Silicon Valley and other places, relying on the “Defense Innovation Committee”, so that the latest achievements in technological innovation and theoretical development in the field of artificial intelligence can directly enter high-level decision-making. France has established innovative defense laboratories, defense innovation offices and other technical research and development institutions in the Ministry of Defense, aiming to solicit private capital investment and defense project cooperation to improve scientific research efficiency.

Highlight the “combination of science and technology”. The Israel Defense Forces has established a digital transformation system architecture department, which fully demonstrates new technologies, new theories, and new concepts based on the specific effects of various systems organically integrated into various services and arms, so as to determine the corresponding technology research and development priorities and strategic development directions. The United States has enhanced the overall management of national defense technology innovation and application by re-establishing the position of Deputy Secretary of Defense for Research and Engineering and creating the Chief Digital and Artificial Intelligence Officer. It has also relied on theoretical methods such as red-blue confrontation, simulation and deduction, and net assessment analysis to conduct practical tests on various new ideas, concepts, and methods, so as to select the focus of various technology research and development and the direction of strategic and tactical research, and achieve a benign interaction between technology development and theoretical innovation.

Project establishment for military needs

Seize the opportunity for future development

In recent years, various military powers have aimed at the research and development of cutting-edge artificial intelligence technologies, and have widely established projects in the fields of situational awareness, data analysis, intelligence reconnaissance, and unmanned combat, intending to seize the opportunity for future development.

Situational awareness field. Situational awareness in the traditional sense refers to the collection and acquisition of battlefield information by means of satellites, radars, and electronic reconnaissance. However, under the conditions of “hybrid warfare” with blurred peace and war, integration of soldiers and civilians, internal and external linkage, and full-domain integration, the role of situational awareness in non-traditional fields such as human domain, social domain, and cognitive domain has received unprecedented attention. The US “Computable Cultural Understanding” project aims to process multi-source data through natural language processing technology to achieve cross-cultural communication; the “Compass” project aims to extract cases from unstructured data sources, integrate key information, and respond to different types of “gray zone” operations. The French “Scorpion” combat system project aims to use intelligent information analysis and data sharing platforms to improve the fire support effectiveness of the French army’s existing front-line mobile combat platforms to ensure the safety of operational personnel.

Data analysis field. Relying on artificial intelligence technology to improve intelligent data collection, identification analysis and auxiliary decision-making capabilities can transform information advantages into cognitive and operational advantages. Russia’s “Combat Command Information System” aims to use artificial intelligence and big data technology to analyze the battlefield environment and provide commanders with a variety of action plans. The UK’s “THEIA Project” and France’s “The Forge” digital decision support engine are both aimed at enhancing information processing capabilities in command and control, intelligence collection, and other aspects, and improving commanders’ ability to control complex battlefields and command effectiveness.

Intelligence reconnaissance field. Compared with traditional intelligence reconnaissance, using artificial intelligence algorithms to collect and process intelligence has the advantages of fast information acquisition, wide content sources, and high processing efficiency. The Japanese Self-Defense Forces’ satellite intelligent monitoring system is designed to identify and track foreign ships that may “infringe” its territorial waters near key waters. The U.S. military’s “Causal Exploration of Complex Combat Environments” project aims to use artificial intelligence and machine learning tools to process multi-source information and assist commanders in understanding the cultural motivations, event roots, and relationships behind the war; the “Marvin” project uses machine learning algorithms and face recognition technology to screen and sort out various suspicious targets from full-motion videos, providing technical support for counter-terrorism and other operations.

Unmanned combat field. In some technologically advanced countries, unmanned combat systems are becoming more mature and equipment types are becoming more complete. The Israeli military’s M-RCV unmanned combat vehicle can perform a variety of tasks such as unmanned reconnaissance, firepower strikes, and transport and recovery of drones in all-terrain and all-time conditions. The Russian military’s “Outpost-R” drone system, which has the ability to detect and strike in one, can detect, track, and strike military targets in real time. It also has certain anti-reconnaissance and anti-interference capabilities, and has been tested on the battlefield. The U.S. military’s “Future Tactical Unmanned Aerial Vehicle System” project aims to comprehensively improve the U.S. Army’s effectiveness in performing combat missions such as reconnaissance and surveillance, auxiliary targeting, battle damage assessment, and communication relay.

Adapting to the transformation of future battlefields

Continuously exploring new tactics

In order to adapt to the tremendous changes in the battlefield environment in the intelligent era, relevant countries have explored a series of new tactics by improving the participation efficiency of artificial intelligence in key military decisions and actions.

Algorithmic warfare, that is, relying on big data and artificial intelligence technology, fully utilizing the powerful potential of combat networks, human-machine collaboration, and autonomous and semi-autonomous weapons, so that the “observation-adjustment-decision-action” cycle of the side always leads the opponent, thereby destroying the enemy’s combat plan and achieving preemptive strike. In December 2015, the Russian army relied on unmanned reconnaissance and intelligent command information systems to guide ground unmanned combat platforms to cooperate with Syrian government forces, and quickly eliminated 77 militants within the target range at the cost of 4 minor injuries. In 2021, the U.S. Air Force conducted a test flight of the first intelligent drone “Air Borg”, marking the U.S. military’s algorithmic warfare further moving towards actual combat.

Unmanned warfare, guided by low-cost attrition warfare of saturated quantity attack and system attack and defense operations, strives to achieve all-round situation tracking, dynamic deterrence and tactical suppression of the enemy’s defense system through human-machine collaboration and group combat mode. In May 2021, the Israeli army used artificial intelligence-assisted drone swarms in the conflict with the Hamas armed group, which played an important role in determining the enemy’s position, destroying enemy targets, and monitoring enemy dynamics. In October 2021 and July 2022, the US military launched drone targeted air strikes in northwestern Syria, killing Abdul Hamid Matar, a senior leader of al-Qaeda, and Aguer, the leader of the extremist organization “Islamic State”.

Distributed warfare, relying on the unlimited command and control capabilities of artificial intelligence and new electronic warfare means, uses shallow footprints, low-feature, fast-paced forces such as special forces to form small groups of multi-group mobile formations, disperse and infiltrate the combat area in a multi-directional and multi-domain manner, continuously break the enemy’s system shortcomings and chain dependence, and increase the difficulty of its firepower saturation attack. In this process, “people are in command and machines are in control”. In recent years, the US military has successively launched a number of “distributed combat” scientific research projects such as “Golden Tribe” and “Elastic Network Distributed Mosaic Communication”.

Fusion warfare, relying on network quantum communication and other means, builds an anti-interference, high-speed “combat cloud” to eliminate the technical barriers of data link intercommunication, interconnection and interoperability between military services and achieve deep integration of combat forces. In 2021, the joint common basic platform developed by the US Joint Artificial Intelligence Center officially has initial operational capabilities, which will help the US military break data barriers and greatly improve data sharing capabilities. During the NATO “Spring Storm” exercise held in Estonia in 2021, the British Army used artificial intelligence technology to conduct intelligent analysis and automated processing of battlefield information of various services, which improved the integration between services and enhanced the effectiveness of joint command and control.

(Author’s unit: National University of Defense Technology)

程柏华

現代國語:

人工智慧是大數據、自動化決策、機器學習、圖像識別與空間態勢感知等前沿技術群的統稱,可解放人類智能體能的“認知負擔”,使技術使用者獲得先知、先佔、先發製人的決策行動優勢。作為“力量倍增器”和“未來戰鬥的基礎”,人工智慧將從根本上重塑未來戰爭形態、改變國家傳統安全疆域、衝擊現有軍事技術發展格局、重建未來作戰體系和軍事力量體系,成為未來戰場的重要主導力量。

隨著科技的快速發展和競爭的不斷提速,主要國家紛紛推出自己的人工智慧發展規劃,並加速推動組織機制變革、科技研發和戰術戰法創新,推動人工智慧軍事運用,搶佔未來戰爭制高點。

加速組織形態創新

推進技術轉換應用

有別於傳統的技術,人工智慧的研發和轉化有自身的特點,傳統國防體系的機構設置和運作方式,很難適應人工智慧快速發展的需求。為此,相關國家軍隊大力進行組織體制改革與創新,破除人工智慧技術研發過程中的體制障礙,加速推廣相關技術的轉換與應用。

強調「遠近銜接」。英國以「國防資料辦公室」與「數位整合與國防人工智慧中心」為主體,將路線規劃、規範設定、技術治理與資產開發等能效聚攏整合,破除限制人工智慧技術發展應用的行政阻礙。美國以「戰略能力辦公室」和「首席數位與人工智慧長」為依托,以陸軍未來司令部為試點,將理論開發、技術研發、裝備採辦等分散職能整合到一起,重點以「挖潛增效」方式加強現有平台的創新運用,同時為國防高級研究計劃局的中長期技術創新爭取時間,從而有效兼顧現實需求與長遠發展。

重視「研用轉換」。人工智慧在軍事領域的運用,將對戰場戰斗方式、戰術戰法選擇等方面產生深刻影響。俄羅斯透過組成「先期研究基金會」和「國家機器人技術研發中心」等機構,指導俄軍人工智慧技術的設計、研發與應用工作,以提高科學研究成果的實用轉換率。美國透過設立“聯合人工智慧中心”,依托“國家任務計畫”和“軍種任務計畫”,著力統籌軍地協同創新和科技成果轉化,促進人工智慧在美國國防部和諸軍種的廣泛應用。

注重「軍民一體」。俄羅斯在阿納帕等地設立“時代科技城”等機構,依托“高級研究基金會”,充分吸收軍地人才,積極構建科技生產集群和研究集群,有效拓展軍地人才雙向交流機制。美國透過在矽谷等地設立“國防創新試驗小組”等機構,依托“國防創新委員會”,使人工智慧領域的技術創新與理論發展最新成果可以直接進入高層決策。法國在國防部建立創新防務實驗室、防務創新處等技術研發機構,旨在徵集民間資本投資與國防專案合作,提昇科研能效。

突顯「理技結合」。以色列國防軍設立數位轉型體​​系架構部,依據各類系統有機融入各軍兵種的具體效果,對新技術、新理論、新概念進行充分論證,以確定相應技術研發重點與戰略發展方向。美國透過重設國防部研究與工程副部長、創建首席數位與人工智慧長等職位,提升國防技術創新與應用的統管力度,並依托紅藍對抗、模擬推演、淨評估分析等理論方法,對各類新思想、新理念、新方法進行實踐檢驗,以選定各類技術研發焦點與戰略戰術攻關方向,實現技術發展與創新理論的良性互動。

針對軍事需求立項

搶佔未來發展先機

近年來,各軍事強國瞄準人工智慧前線技術研發,在態勢感知、資料分析、情報偵察、無人作戰等領域廣泛立項,意圖搶佔未來發展先機。

態勢感知領域。傳統意義的態勢感知是指依托衛星、雷達和電子偵察等手段收集和取得戰場資訊。然而,在平戰模糊、兵民一體、內外連動、全域融合的「混合戰爭」條件下,人類域、社會域、認知域等非傳統領域態勢感知的作用受到前所未有的重視。美國「可計算文化理解」項目,旨在透過自然語言處理技術處理多源數據,實現跨文化交流;「指南針」項目,旨在從非結構化數據源中提取案例,整合關鍵訊息,應對不同類型的「灰色地帶」行動。法國「蠍子」戰鬥系統項目,旨在運用智慧化資訊分析與資料共享平台,提升法軍現有前線移動作戰平台的火力支援效力,以保障行動人員安全。

數據分析領域。依託人工智慧技術提高智慧化資料蒐集、識別分析和輔助決策能力,可將資訊優勢轉化為認知和行動優勢。俄羅斯“戰鬥指揮資訊系統”,旨在藉助人工智慧與大數據技術分析戰場環境,為指揮官提供多類行動預案。英國「THEIA計畫」和法國的「The Forge」數位決策支援引擎,都旨在增強指揮控制、情報蒐集等方面的資訊處理能力,提高指揮官駕馭複雜戰場的能力和指揮效能。

情報偵察領域。相較於傳統情報偵察,利用人工智慧演算法蒐集處理情報,具備獲取資訊快、內容來源廣、處理效率高等優勢。日本自衛隊衛星智慧監控系統,旨在識別、追蹤重點水域附近可能「侵犯」其領海的外國船隻。美軍「複雜作戰環境因果探索」項目,旨在利用人工智慧和機器學習工具處理多源信息,輔助指揮官理解戰爭背後的文化動因、事件根源和各因素關係;「馬文」項目則透過運用機器學習演算法、人臉辨識技術等,從全動態影片中篩選排列出各類可疑目標,為反恐等行動提供技術支撐。

無人作戰領域。一些技術先進的國家,無人作戰體係日臻成熟、裝備種類譜係日趨完善。以軍M-RCV型無人戰車,可在全地形、全時段條件下,執行無人偵察、火力打擊、運載及回收無人機等多樣化任務。具備察打一體能力的俄軍「前哨-R」無人機系統,可即時偵測、追蹤、打擊軍事目標,也具備一定反偵察和抗干擾能力,已在戰場上經過檢驗。美軍「未來戰術無人機系統」項目,旨在全面提升美陸軍執行偵察監視、輔助瞄準、戰損評估、通訊中繼等作戰任務的效能。

適應未來戰場轉變

不斷探索全新戰法

為適應智慧化時代戰場環境的巨大變化,相關國家透過提升人工智慧在各關鍵軍事決策與行動的參與能效,探索出一系列全新戰法。

演算法戰,即以大數據和人工智慧技術為依托,充分發揮作戰網路、人機協作以及自主和半自主武器的強大潛能,使己方「觀察-調整-決策-行動」的循環週期始終領先對手,進而破壞敵作戰計劃,實現先發製人。 2015年12月,俄軍依托無人偵察與智慧化指揮資訊系統,引導地面無人作戰平台與敘利亞政府軍配合,以4人輕傷代價,迅速消滅了目標範圍內的77名武裝分子。 2021年,美空軍進行了首架智慧無人機「空中博格人」的試飛,標誌著美軍演算法戰進一步向實戰化邁進。

無人戰,以飽和數量攻擊、體系攻防作戰的低成本消耗戰為指導,力求透過人機協同、群體作戰模式,實現對敵防禦體系全方位的態勢追蹤、動態威懾和戰術壓制。 2021年5月,以軍在同哈馬斯武裝組織的衝突中使用人工智慧輔助的無人機蜂群,在確定敵人位置、摧毀敵方目標、監視敵方動態等方面發揮了重要作用。 2021年10月和2022年7月,美軍在敘利亞西北部發起無人機定點空襲,分別擊斃「基地」組織高階領導人阿卜杜勒·哈米德·馬塔爾和極端組織「伊斯蘭國」領導人阿蓋爾。

分佈戰,以人工智慧無限指揮控制能力和全新電子戰手段為依托,利用特種部隊等淺腳印、低特徵、快節奏的兵力,形成小股多群機動編隊,以多向多域方式分散滲入作戰區域,持續破擊敵體系短板和鍊式依賴,增大其火力飽和攻擊的難度。在這個過程中,實現「人在指揮、機器在控制」。近年來,美軍相繼啟動「金色部落」「彈性網路分散式馬賽克通訊」等多個「分散式作戰」科學研究立項。

融合戰,依托網路量子通訊等手段,建構抗干擾、高速率的“作戰雲”,以消除軍兵種數據鏈互通、互聯和互操作技術障礙,實現作戰力量的深度融合。 2021年,美聯合人工智慧中心研發的聯合通用基礎平台正式具備初始操作能力,將協助美軍打破資料壁壘,大幅提升資料共享能力。 2021年在愛沙尼亞舉行的北約「春季風暴」演習期間,英軍運用人工智慧技術,對各軍種戰場資訊進行智慧分析與自動化處理,提升了軍種間的融合度,增強了聯合指揮控制效能。

(作者單位:國防科技大學)

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/01/content_32324488.htm

Chinese Military Era of Intelligence Calls for Training to Transform into “Smart Warfare”

中國軍事智能化時代要求訓練向「智慧戰爭」轉變

現代英語:

At present, a new round of scientific and technological revolution and military revolution is developing rapidly. Disruptive technologies represented by artificial intelligence are accelerating the evolution of war to intelligent warfare. Winning intelligent warfare has gradually become the focus of military competition among powerful countries. As a pre-practice of war, military training should take a new step towards intelligence in a timely manner, realize the transformation to “intelligence”, train soldiers with “intelligence”, continuously improve the scientific and technological level and “intelligence content” of military training, and help accelerate the generation of intelligent combat capabilities.

Keeping up with the changes in the war situation, upgrading the concept of intelligent training

With the acceleration of the intelligent era, high-tech has been widely used in the military field, which is causing major changes in the concept, elements and methods of winning wars. The size of the army and the number of equipment are no longer the key to winning a war. It is imperative to upgrade the war thinking and training concepts. We should follow the development trend of intelligence with a more proactive attitude and a more open vision, and advocate new thinking in intelligent military training.

Grasp the internal mechanism of intelligent victory. The winning mechanism is the manifestation of the internal laws of war. Driven by the intelligent revolution, driven by strategic competition, and guided by war practice, the advantages of information-generated intelligence and intelligence-enabled capabilities are becoming increasingly apparent, reflected in actuarial science, jointness, systems, and other aspects. To a certain extent, it can be said that the higher the “intelligence”, the higher the quality level of combat and training can be. Therefore, an army whose training thinking remains at the mechanized level will never be able to keep up with the pace of intelligent warfare no matter how it is trained. We should have a “brain storm” with the courage of self-revolution, upgrade the concept of intelligent warfare, strengthen the theoretical research of intelligent training, deal with the problems of mechanized, informationized, and intelligent warfare with the thinking of training troops with “intelligence”, organically connect training and fighting, design wars with advanced technology, and rehearse wars with intelligent means, so as to clear up the fog of intelligent warfare.

Establish the goal of “strengthening the strong”. At present, the military of developed countries is implementing a training transformation with an emphasis on intelligence, trying to further widen the gap in combat power with the military of other countries. Once the military gap is widened, it will be difficult to make up. If you can’t keep up, you may be completely controlled by others. Only by keeping a close eye on the opponent can you surpass the opponent. We must highlight the goal of “strengthening the strong” in military training, and improve the level of military intelligence and asymmetric combat capabilities in training.

Strengthen the goal positioning of science and technology empowerment. Science and technology are the core combat power. Driven by science and technology, the combat power form has leaped from mechanical energy type and information energy type to intelligent type. Traditional siege-style large-scale troop operations are gradually withdrawing from the historical stage, and cutting-edge competition in high-tech and emerging fields is becoming increasingly fierce. If military training does not improve its scientific and technological content, it will only be able to linger at a low level and it will be difficult to open the door to intelligent warfare. To this end, we should firmly establish the concept of winning through science and technology, firmly grasp scientific and technological innovation, the “life gate” and “key point” to winning future wars, greatly improve the scientific and technological content of military training, and increase the practical application of new technologies and new means such as artificial intelligence, cloud computing, and big data, so as to unveil the mystery of intelligent warfare and control the initiative in future wars.

Keep up with the changes in technological development and strengthen intelligent training conditions

Intelligent training conditions are the basic support for organizing and implementing intelligent military training, and are directly related to the quality and effectiveness of intelligent training. To build an intelligent training environment, we need to keep a close eye on the development of intelligent concepts, intelligent technology, and intelligent warfare, and continue to work hard in building a training environment, innovating training methods, and cultivating new talents.

Construct a realistic battlefield environment. Intelligent warfare has a wider space, a wider range of fields, and more diverse methods. The battlefield environment construction under the conditions of simple mechanization and informatization can no longer support the needs of intelligent training. We should highlight the elite confrontation, rapid confrontation, and joint confrontation under the support of intelligent conditions, fully tap the potential of existing training methods and training venues, strengthen the application of technologies such as big data analysis, smart wearable devices, and machine “deep learning”, and effectively integrate various fields such as land, sea, air, space, electricity, and the Internet. For example, use digital maps, virtual reality and other technologies to simulate and display intuitive three-dimensional terrain, weather and complex combat situations, and construct vivid and realistic intelligent actual combat scenes.

Develop advanced training methods. Advanced training methods are helpful to improve training effectiveness. Intelligent military training should grasp the key factor of intelligent “data-centricity” and transform the latest scientific and technological achievements into training conditions. We should focus on strengthening data linkage and integration, creating a “data pool” covering strategy, campaign, and tactics, and connecting command organizations to end-users; developing data intelligent analysis tools, integrating and mining combat data with the help of advanced technologies such as cloud computing and artificial intelligence; developing intelligent training systems, increasing the construction of simulation training methods such as simulation, war game confrontation, network confrontation, and intelligent decision-making, and overall promoting the transformation and upgrading of military training methods to “technology +” and “intelligence +”.

Cultivate new military talents. No matter how the war situation evolves, people are always the real controllers and final decision-makers of war. The quality of military personnel’s intelligence level determines the quality and effect of intelligent training to a certain extent. To win the information-based local war with intelligent characteristics, we should accurately match future military needs, strengthen the intelligent training of traditional combat force talents, make good use of “technology +”, “maker +”, “think tank +” power resources, promote the integrated development of “commanders”, “combatants” and “scientists” and “technicians”, and forge a new type of professional and intelligent military talent group to achieve intelligent interaction between people and equipment, deep integration between people and systems, and extensive adaptation between people and the environment.

Strengthen support for intelligent equipment. At present, the world’s major military powers attach great importance to the development of intelligent equipment. New equipment such as unmanned “swarms” and unmanned submarines are emerging in an endless stream, supporting intelligent military training while constantly testing and improving them in training practice. To this end, we should make full use of the overall coordination mechanism of war construction, vigorously promote the “+ intelligence” of existing equipment and the “intelligent +” construction of a new generation of equipment, insist on researching, building, using and improving, and improve the intelligence level of weapons and equipment through breakthroughs in training practice. We should work on both ends to achieve a multiplier effect, shorten the timeline of weapons and equipment from “weak intelligence” to “strong intelligence” and then to “super intelligence”, and better support intelligent military training.

Keeping up with the changes in war practices, innovating intelligent training models

The combat style determines the training mode. After years of development, military intelligence has moved from theoretical exploration to battlefield practice. In recent local wars, intelligent warfare has begun to show its edge and has shown the potential to change the “rules of the game” of war. As the combat style changes, the training mode must also change and change proactively. We must keep a close eye on the characteristics of intelligent warfare, innovate intelligent military training models, and fully rehearse the next war in military training.

Highlight high-end warfare research and training. We should focus on cracking the essence of high-end warfare by strengthening the enemy, continue to deepen research on strengthening the enemy, and use the development of new combat concepts and training theories as a starting point to understand the development laws and winning mechanisms of high-end warfare. We should predict future wars and design combat styles from a high-end perspective, and pool wisdom and innovation to research unique, clever, and high-level strategies to defeat the enemy. We must emphasize key actions such as joint missile defense, target strategic campaign and tactical training to force strong organizations to defeat the strong with the weak, target practical training for asymmetric checks and balances to win decisive battles in high-end organizations, target extended training in new domains such as the far sea and far domain for all-domain confrontation organizations, seize high positions in future wars through innovative training, and develop combat capabilities that are “one step ahead in intelligence” and “one step ahead in skills” against powerful enemies.

Emphasize the training of new forces. The transformation of war from winning by force and equipment to winning by wisdom has made new combat forces a new growth pole of combat power. According to information, the US military plans to achieve intelligentization of 60% of ground combat platforms by 2030, and the Russian military expects that the proportion of intelligent weapons and equipment will exceed 30% in 2025. As the army has more and more new equipment with intelligent attributes, it should move away from the actual combat training path with new combat forces as the leading element, highlight the formation and combat use of new combat forces, carry out training methods and tactics that are compatible with the new domain combat concept and winning mechanism, increase new types of training such as unmanned combat, promote the integration of new forces into the combat system, and make new combat force resources move and come alive.

Emphasize intelligent command training. No matter how the war situation evolves, command capability is always the key to winning the war. As the intelligence level of war continues to increase, planning and command based solely on experience and personal wisdom can no longer adapt to the ever-changing battlefield situation. Artificial intelligence decision-making training has become an inevitable trend to improve the efficiency of combat mission planning, combat planning, and command and control. We should focus on commanders and command organizations, which are the key to the system’s operations, seek breakthroughs in the scientific nature, accuracy, and timeliness of command planning, and rely on new technologies such as “big data” and “AI algorithms” and new methods such as “engineering” and “one network” to promote the upgrading of command planning from “human intelligence” training to “human intelligence + intelligence” training. We should judge the enemy’s situation, formulate plans, and determine actions through actuarial and detailed calculations, so as to achieve the goal of defeating the slow with the fast and taking the lead over the enemy.

(Author’s unit: Central Theater Command)

現代國語:

曾海清

引言

當前,新一輪科技革命和軍事革命快速發展,以人工智慧為代表的顛覆性技術,正加速推動戰爭形態向智慧化戰爭演變,打贏智能化戰爭逐漸成為強國軍事競爭的焦點。軍訓作為戰爭的預實踐,應該及時邁開智能化新步伐,實現向“智”轉型、以“智”練兵,不斷提高軍事訓練科技度和“含智量”,助力智能化作戰能力加快生成。

緊跟戰爭形態之變,升級智慧化訓練概念

隨著智慧化時代的加速到來,高新技術在軍事領域廣泛應用,正引發戰爭制勝理念、制勝要素、制勝方式發生重大變化。軍隊規模、裝備數量已不再是決定戰爭勝負的關鍵,升級戰爭思想和訓練理念勢在必行。我們當以更主動的姿態、更加開放的視野,緊跟智慧化發展趨勢,倡導智慧化軍事訓練新思維。

把握智能製勝的內在機理。制勝機理是戰爭內在規律的表現。在智慧革命驅動下、戰略競爭推動下、戰爭實踐牽引下,資訊生智、以智賦能的優勢愈發顯現,體現在精算、聯合、體係等各個面向。在某種程度上,可以說「智」有多高,戰與訓的品質水準就能夠達到多高。所以,一支訓練思維停留在機械化層面的軍隊,如何訓練都不可能跟上智慧化戰爭的腳步。應該以自我革命的勇氣來一場“頭腦風暴”,升級智能化作戰理念,加強智能化訓練理論研究,以“智”練兵思維處理機械化、信息化、智能化作戰問題,把訓練和打仗有機銜接起來,用先進技術設計戰爭,用智能手段演練戰爭,從而廓清智能化戰爭的迷霧。

立起向強制強的標靶指向。目前,發達國家軍隊正實施以智慧化為重點的訓練轉型,試圖進一步拉大與其他國家軍隊的戰力代差。軍事上的代差一旦拉開將很難追回,一步跟不上就可能徹底受制於人,只有盯緊對手才可能超越對手。要把向強制強在軍訓中突出出來,在練兵中提高軍事智慧化水準和非對稱作戰能力。

強化科技賦能的目標定位。科技是核心戰鬥力。在科技驅動下,戰鬥力形態已經從機械能型、資訊能型向智能型躍升,傳統攻城略地式大兵團作戰正逐步退出歷史舞台,高科技、新興領域的尖端較量日趨激烈。軍事訓練若不提高科技含量,將只能在低層次徘徊,很難叩開智能化戰爭的大門。為此,應該樹牢科技制勝理念,緊緊抓住科技創新這一制勝未來戰爭的“命門”和“要穴”,大幅提高軍事訓練科技含量,加大人工智能、雲計算、大數據等新技術新手段的實踐運用,從而揭開智能化戰爭的神秘面紗,掌控未來戰爭主動權。

緊跟科技發展之變,建強智能化訓練條件

智能化訓練條件是組織實施智慧化軍訓的基礎支撐,直接關乎智慧化訓練質效。建構智慧化的訓練條件環境,需要我們緊盯智慧理念、智慧科技和智慧化作戰的發展,在構設訓練環境、創新訓練手段、培育新型人才等方面持續用力。

構設逼真戰場環境。智慧化作戰,空間更加廣闊、領域更廣泛、方式更加多元,單純機械化資訊化條件下的戰場環境構設已無法支撐智慧化訓練需求。應突出智能化條件支撐下的精兵對抗、快速對抗、聯動對抗,充分挖潛現有訓練手段和訓練場地功能,加強大數據分析、智能穿戴設備、機器“深度學習”等技術應用,把陸、海、空、天、電、網等各個領域有效融合起來,比如利用和地圖、虛擬現實等技術模擬顯示圖形直觀的三維空間、自然地、天誌化、天意交戰場景。

發展先進訓練手段。先進的訓練手段,有助於提升訓練成效。智慧化軍事訓練應掌握智慧化「以數據為中心」這個關鍵因素,把最新科技成果轉化為訓練條件。應注重加強數據聯動融合,打造覆蓋戰略、戰役、戰術,貫通指揮機構到末端單兵的“數據池”;開發數據智能分析工具,借助雲計算、人工智能等先進技術,整合挖掘作戰數據;開發智能演訓系統,加大模擬仿真、兵棋對抗、網絡對抗、智能裁決等模擬訓練手段建設,整體推動軍事訓練手段向“科技+”“智能+”轉型升級。

培養新型軍事人才。無論戰爭形態如何演變,人始終是戰爭的真正控制者和最終決策者。軍事人員智能化程度的優劣,某種程度上決定了智慧化訓練的品質效果。要打贏具有智慧化特徵的資訊化局部戰爭,應該精準對接未來軍事需求,加強傳統作戰力量人才智能化培育,用好“科技+”“創客+”“智庫+”力量資源,推動“指揮員”“戰鬥員”與“科學家”“技術家”融合發展,鍛造專業化、智能化的新型軍事體係與人才跨系統

強化智能裝備支撐。目前,世界主要軍事強國都高度重視智慧裝備發展,無人「蜂群」、無人潛航器等新裝備層出不窮,一邊支撐智慧化軍事訓練,一邊又在訓練實踐中不斷檢驗完善。為此,應充分用好戰建備統籌機制,大力推進現有裝備“+智能”和新一代裝備“智能+”建設,堅持邊研邊建邊用邊改,以訓練實踐突破提升武器裝備智能化水平,兩端發力實現倍增效應,縮短武器裝備從“弱智”到“強智”再到“超智”的時間軸,更好地支撐智能化軍事訓練。

緊跟戰爭實踐之變,創新智能化訓練模式

作戰樣式決定訓練模式。軍事智能化經過多年發展,已經從理論探索走向戰場實踐。近年來的局部戰爭中,智慧化作戰已經初露鋒芒,並顯現出改變戰爭「遊戲規則」的潛力。作戰樣式變了,訓練模式也要跟著變、主動變。要緊盯智慧化戰爭特點,創新智慧化軍事訓練模式,在軍事訓練中充分預演下一場戰爭。

突顯高端戰爭研練。要立足強敵打高端戰爭這個基點,突顯破解高端戰爭本質,持續深化強敵研究,以開發新型作戰概念和訓練理論為抓手,搞清高端戰爭發展規律和製勝機理。從高端的視角預判未來戰爭、設計作戰樣式,集智創新研究克敵制勝的奇招、妙招、高招。要突顯聯合反導等關鍵行動,瞄準向強制強組織以劣勝優的戰略戰役戰術訓練,瞄準決勝高端組織非對稱制衡實戰訓練,瞄準全局對抗組織遠海遠域等新域延伸訓練,在創新訓練中搶佔未來戰爭高位,形成對強敵「智高一籌」「技高一籌」的作戰能力。

突顯新質力量研練。戰爭從力勝、器勝到智勝的轉變,使得新型作戰力量成為戰鬥力新的成長極。據資料介紹,美軍計畫在2030年實現60%地面作戰平台智能化,俄軍預計2025年智慧化武器裝備佔比將超過30%。隨著軍隊具有智能屬性的新裝備越來越多,應走開以新質作戰力量為主導要素的實戰化練兵路子,突出新質作戰力量編成、作戰運用,開展與新域作戰概念、制勝機理相適應的訓法戰法,加大無人作戰等新樣式訓練,推動新質力量融入作戰體系,讓新質戰鬥力資源動起來、活起來。

突出智能指揮研練。無論戰爭形態如何演變,指揮能力始終是能打勝仗的關鍵能力。隨著戰爭智能化程度不斷提高,僅憑經驗和個人智慧進行籌劃和指揮已不能適應瞬息萬變的戰場局勢,人工智慧決策訓練已成為提升作戰任務規劃、作戰籌劃、指揮控制效率的必然趨勢。應該扭住指揮員和指揮機構這個體係作戰關鍵,在指揮籌劃科學性、精確性、時效性上求突破,依托「大數據」「AI演算法」新技術和「工程化」「一張網」新手段,推動指揮謀劃由「人智」訓練向「人智+機智」訓練升級,在精算和細算細算中決定敵情、先定行動方案。

(作者單位:中部戰區)來源:解放軍報 作者:曾海清 責任編輯:劉上靖 2022-07-21 07:00

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/491612288.html

China’s Military Accelerating Integrated Development of Mechanization, Informatization and Intelligence

我軍加速機械化、資訊化、智慧化融合發展

現代英語:

The Fifth Plenary Session of the 19th CPC Central Committee made strategic arrangements for my country’s economic and social development during the 14th Five-Year Plan period and the long-term goal of basically achieving socialist modernization by 2035. In terms of national defense and military construction, the plenary session communiqué emphasized accelerating the integrated development of mechanization, informationization, and intelligence. This strategic requirement is of great significance for improving the strategic capabilities of our military to defend national sovereignty, security, and development interests, and ensuring the realization of the struggle goal of the 100th anniversary of the founding of the army by 2027 and the basic realization of national defense and military modernization by 2035.

1. Fully understand the importance of accelerating the integrated development of the “three transformations”

Accelerating the integrated development of mechanization, informationization and intelligence is based on the understanding and implementation of Xi Jinping’s thoughts on strengthening the military. In his report to the 19th National Congress of the Communist Party of China, President Xi pointed out that “we should accelerate the development of military intelligence and improve the joint combat capability and all-domain combat capability based on the network information system”. On the eve of the August 1st Army Day this year, President Xi presided over the 22nd collective study of the Political Bureau of the CPC Central Committee on strengthening national defense and military modernization, and put forward the strategic idea of ​​”accelerating the integrated development of mechanization, informationization and intelligence”. The Fifth Plenary Session of the 19th CPC Central Committee further emphasized and deployed this, and incorporated it into the 14th Five-Year Plan and the 2035 Vision Goals for implementation, which will greatly accelerate the pace of our military modernization.

On April 8, 2020, soldiers from the Sarang Border Defense Company of a border defense regiment of the Ali Military Sub-district in Tibet used drones to scout the terrain. Photo by Liu Xiaodong/Guangming Photo

In today’s world, driven by a new round of scientific and technological revolution, a new wave of military revolution is coming. Artificial intelligence, quantum information, big data, cloud computing and other cutting-edge technologies are accelerating their application in the military field. Various unmanned combat platforms and intelligent weapon equipment systems have appeared in large numbers and put into modern battlefields. The form of war is rapidly evolving towards intelligent warfare after cold weapon war, hot weapon war, mechanized war and information war. Recently, the armed conflict between Azerbaijan and Armenia has presented the world with a textbook drone war. People have seen drones destroying chariots, tanks and artillery as easily as “roll calling” on the Internet. This may become another sign of the advent of intelligent warfare.

According to relevant data, at present, at least more than 70 countries in the world are developing unmanned intelligent military platforms, and some military powers are stepping up the intelligent upgrade of their armed forces. In 2019, the United States announced the “National Artificial Intelligence Strategy” and the “Department of Defense Artificial Intelligence Strategy”, and launched the implementation of intelligent strategies at the national, military, and service levels. Nearly 80% of its “Third Offset Strategy” against China and Russia is closely related to artificial intelligence technology. The United States has already developed or used a large number of smart bombs, smart missiles, drones, robot soldiers, etc. The US military plans to achieve unmanned intelligentization of 60% of its ground combat platforms by 2030.

If our army wants to achieve modernization and remain invincible, it must stand at the forefront of the new military revolution and accelerate the integrated development of mechanization, informationization and intelligence. The white paper “my country’s National Defense in the New Era” released by the Chinese government last year pointed out: “China’s military transformation with Chinese characteristics has made significant progress, but the task of mechanization construction has not been completed, the level of informationization needs to be improved urgently, and military security faces the risk of technological surprise and the widening of the technological gap. The level of military modernization is still far behind the national security needs and the world’s advanced military level.” At present, the intelligent development of our army has just started, and the development of mechanization and informationization is not sufficient. However, compared with the previous military revolutions led by the West, the technological gap of our army in the new round of military revolution is not large. We must seize the opportunities of the times, conform to the current development status of our army, and accelerate the integration of intelligence while promoting mechanization and informationization.

2. Correctly understand the connotation of accelerating the integrated development of the “three transformations”

From the perspective of the process of technology promoting combat effectiveness, mechanical technology amplifies human skills, information technology extends human perception, and artificial intelligence technology expands human intelligence. Mechanization, informationization, and intelligence are essentially amplification and efficiency enhancement of human ability to control war. Although these three empowerment methods are simple and complex, backward and advanced, and single-dimensional and multi-dimensional, they are inseparable from each other and are reflected as an inseparable unity in advanced equipment. Their development is like the first generation of jet fighters focusing on breakthroughs in engines, the second generation of fighters focusing on breakthroughs in aerodynamics, the third generation of fighters focusing on breakthroughs in system integration, and the fourth generation of fighters focusing on breakthroughs in intelligence. It is a process of mutual penetration, gradual progression, orderly dependence, and inclusiveness. Without the former “one transformation”, there would be no latter “two transformations”. Intelligence is a higher form of development and undoubtedly needs to be accelerated, but this does not mean that mechanization and informationization can be avoided, because if mechanization and informationization are skipped and the focus of construction is fully shifted to intelligence, intelligence will become a “castle in the air”, and haste makes waste.

In a certain sea area, multiple types of carrier-based aircraft of the Liaoning aircraft carrier are arrayed on the deck. Xinhua News Agency

Intelligence represents advanced combat effectiveness, is the development direction of future military construction and war, and is the leader in accelerating the integration of the “three transformations”. We must take advantage of the direction of intelligence to seek a generational advantage in military construction and future operations. Informatization is the leading factor. Informatization plays a connecting role between intelligence and mechanization, and is in a dominant position in the integration of the “three transformations”. At present, information capabilities still play a major role in the generation of combat effectiveness of our army, and the informatization of weapons and equipment is still in the main aspect. We should aim at intelligence to accelerate the upgrading and transformation of informatized weapons and equipment, form an equipment system with informatized weapons and equipment as the backbone, and improve the system combat capability based on information systems. Mechanization is the foundation. Mechanization is the material basis and carrier for the development of intelligence and informatization. Intelligent technology and information technology have greatly improved the accuracy and reaction speed of weapons, but to achieve “accurate, far and fast” is inseparable from a strong combat platform and power capability, and to “hit hard” depends on the improvement of weapon power. Our army’s mechanization foundation is not strong, and it still owes a “debt” for mechanization development in the information age. It is necessary to promote the construction of new mechanization at the same time.

To accelerate the integrated development of the “three transformations”, with the focus on accelerating intelligent development, we must have a strong sense of opportunity and urgency. We cannot wait until mechanization and informatization are fully developed and then advance intelligent development step by step. Instead, we must seize the opportunities of the scientific and technological revolution and take extraordinary measures to promote intelligence.

3. Find the focus of accelerating the integrated development of the “three transformations”

Among all the reasons for backwardness, backwardness in ideology is the most fundamental. After studying the success and failure of military reforms in history, British military expert Liddell Hart said that the only thing more difficult than instilling new ideas in a soldier is to remove his old ideas. Those who can successfully keep up with the pace of changes in the form of war and successfully push forward military reforms all regard changing old ideas and establishing new ideas as their top priority. To accelerate the integrated development of the “three transformations”, we must have a brainstorming and conceptual revolution. We must have the courage to break through the mindset of mechanized warfare and even information warfare, establish ideas and concepts that are compatible with intelligent warfare, strengthen system thinking, data thinking, and algorithmic thinking, break the mindset of “winning by quantity and scale”, and firmly establish the concept of “winning by quality and efficiency”; break the mindset of “labor-intensive development” and firmly establish the concept of “intelligence-intensive development”; break the mindset of “passive use of weapons and equipment” and firmly establish the concept of “machine autonomous dominance”; break the mindset of “relying only on manned platforms for combat”, and firmly establish the concept of “unmanned, human-machine integrated platform combat”, etc., use new ideas and concepts to open up ideas for integrated development and seek ways to accelerate development.

The core of accelerating the integrated development of the “three transformations” is to accelerate the development of intelligence, and the key factor is to promote scientific and technological innovation. Whether it is hardware represented by physical entities such as combat platforms, weapons and ammunition, or software centered on combat data, algorithms, and models, all require strong scientific and technological innovation to support. Science and technology are core combat power and the most active and revolutionary factor in military development. Under the great changes that have not been seen in a century, the United States has put pressure on us in all fields, especially in the field of high-tech, increasing its blockade and containment of us. Scientific and technological innovation has never had such a profound impact on the overall national and military strategy as it does today, and has never had such a profound impact on the construction and development of our army as it does today. We must vigorously implement the strategy of strengthening the army with science and technology, put national defense scientific and technological innovation in a more prominent position, insist on demanding combat power from scientific and technological innovation, and realize the transformation from following and running side by side to running side by side and leading.

The key to accelerating the integrated development of the “three transformations” is to strengthen the support of talents. Fundamentally speaking, it is a challenge of intelligence and cutting-edge technology. In particular, with the in-depth development of intelligence, the relationship between people and weapons will inevitably be reshaped, and there will inevitably be leapfrog requirements for people’s quality. The human factor in future wars will be concentrated in the talent factor. The strength of talents determines the success or failure of development. We must implement the strategy of strengthening the army with talents, highlight the construction of key talent teams such as joint combat command talents, new combat force talents, high-level scientific and technological innovation talents, and high-level strategic management talents. We must implement the “Decision on Accelerating the Construction of a Three-in-One New Military Talent Training System” recently issued by the Central Military Commission, give full play to the main channel role of military academy education, adhere to the battlefield and the troops, update the education concept, deepen the teaching reform, and take the connotation-based development path with improving the quality of talent training as the core. We must give full play to the melting pot role of the troops’ training practice, focus on promoting knowledge transformation and capability generation, and let officers and soldiers practice skills and talents in promoting the integrated development of the “three transformations” and military struggle preparation, and experience the wind and rain and be tempered in completing urgent, difficult and dangerous tasks. We must give full play to the role of military vocational education as a large classroom, focus on improving professional literacy, professional quality, and job skills, and expand and consolidate the knowledge and ability base of new military talents through continuous learning and in-depth specialized research.

Guangming Daily (November 8, 2020, p. 05)

現代國語:

【講武堂】

作者:吳志忠(軍事科學院軍隊政治工作創新發展研究中心研究員)

黨的十九屆五中全會對十四五時期我國經濟社會發展和二〇三五年基本實現社會主義現代化遠景目標作了戰略部署。在國防和軍隊建設方面,全會公報強調加速機械化資訊化智慧化融合發展。這項戰略性要求對於提高我軍捍衛國家主權、安全、發展利益的戰略能力,確保二〇二七年實現百年建軍奮鬥目標、二〇三五年基本實現國防和軍隊現代化具有重要意義。

1.充分認識加快「三化」融合發展的重要性

加速機械化資訊化智慧化融合發展,是基於對習近平強軍思想的領悟落實。習主席在黨的十九大報告中就指出,「加速軍事智能化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。今年八一建軍節前夕,習主席在主持中共中央政治局就加強國防和軍隊現代化建設舉行的第二十二次集體學習時,提出“加快機械化信息化智能化融合發展”這一戰略思想,黨的十九屆五中全會對此作了進一步強調部署,並納入十四五規劃和二〇三五遠景目標中加以實現以實現現代化,這必將加快發展步伐。

2020年4月8日,西藏阿里軍分區某邊防團薩讓邊防連官兵利用無人機偵察地形。劉曉東攝/光明圖片

當今世界,在新一輪科技革命推動下,新一輪軍事革命浪潮撲面而來,人工智慧、量子資訊、大數據、雲計算等前沿科技加速運用軍事領域,各種無人作戰平台和智慧化武器裝備系統大量出現並投入現代戰場,戰爭形態繼冷兵器戰爭、熱兵器戰爭、機械化戰爭、資訊化戰爭之後智能化戰爭快速演變。最近,阿塞拜疆和亞美尼亞兩國的武裝沖突,給世人呈現出一場頗具教科書意義的無人機戰爭,人們在網絡上看到無人機像「點名」一樣輕松擊毀戰車、坦克、火砲,這或許成為智能化戰爭來臨的又一時代標志。

據有關資料,目前世界上至少有70多個國家在發展無人智慧化軍用平台,部分軍事強國加緊推進軍隊智慧化升級。 2019年,美國公佈《國家人工智慧戰略》《國防部人工智慧戰略》等,啟動實施國家、軍隊、軍種層面智慧化戰略,其針對中俄的“第三次抵消戰略”,有接近80%的項目與人工智能技術密切相關,美已經大量開發或使用靈巧炸彈、智能導彈、無人機、機器人士兵等,美軍計劃到2030年60%的智能化地面作戰。

我軍要實現現代化、立於不敗之地,就必須站立新軍事革命的潮頭,加速推進機械化資訊化智慧化融合發展。我國政府去年發布的《新時代的中國國防》白皮書指出:「中國特色軍事變革取得重大進展,但機械化建設任務尚未完成,信息化水平亟待提高,軍事安全面臨技術突襲和技術代差被拉大的風險,軍隊現代化水平與國家安全需求相比差距還很大,與世界先進軍事水平相比差距還很大。差距並不大,我們要把握好時代機遇,契合我軍發展現狀,在推進機械化資訊化時加快融入智能化。

2.正確理解加速「三化」融合發展的內涵

從技術推動戰鬥力生成歷程看,機械技術放大人的技能,資訊化技術延伸人的感知,人工智慧技術拓展人的智能,機械化資訊化智能化本質上是對人駕馭戰爭的能力放大增效。這三種賦能方式雖然有簡單與復雜、落後與先進、單維與多維差別,但三者之間你中有我、我中有你,在先進裝備上體現為不可分割的統一體,其發展如同第一代噴氣式戰鬥機重在突破發動機、第二代戰鬥機重在突破空氣動力、第三代戰鬥機重在突破系統上、相互影響推進過程。沒有前“一化”就沒有後“兩化”,智能化是發展的更高形態,無疑需要加快發力,但這絕不意味著可以不要機械化信息化,因為如果跳過機械化信息化,把建設重點全面轉向智能化,智能化就會成為“空中樓閣”,反而欲速則不達。

在某海域,遼寧艦多型艦載機列陣甲板。新華社發

智慧化代表先進戰鬥力,是未來軍隊建設和戰爭的發展方向,是加快「三化」融合發展的龍頭,要以智慧化「化」出來的方向優勢,謀取軍隊建設和未來作戰的代差勝勢。資訊化是主導。資訊化在智慧化和機械化之間,起著承上啟下的作用,在「三化」融合發展過程中處於主導地位。目前,資訊能力在我軍戰鬥力生成模式中仍然起著主要作用,武器裝備資訊化建設還處於主要方面,我們應瞄準智能化加快推進信息化武器裝備升級改造,形成以信息化武器裝備為骨幹的裝備體系,提高基於信息系統的體係作戰能力。機械化則是基礎。機械化是智慧化、資訊化發展的物質基礎和載體。智慧技術、資訊技術大大提高了武器的命中精度和反應速度,但要實現「打得準、打得遠、打得快」離不開強有力的作戰平台和動力能力,而要「打得狠」則要依靠武器威力的提升。我軍機械化底子還不厚,進入資訊化時代仍欠機械化發展的“賬”,有必要同時推進新型機械化建設。

加速「三化」融合發展,重點在於加速智慧化發展,要有強烈的機遇意識與緊迫感,不能等機械化資訊化充分發展後,再按部就班推進智慧化發展,而必須抓住科技革命機遇,採取超常措施推進智慧化。

3.找準加快「三化」融合發展的著力點

在一切落後所導致的原因中,思想觀念的落後最為根本。英國軍事家利德爾·哈特在研究歷史上軍事變革的成敗後說,唯一比向軍人灌輸新觀念更難的是去除他的舊觀念。能成功跟上戰爭形態變化步伐,成功將軍事變革推向前進的,無不把改變舊觀念、樹立新觀念作為首要任務。加速「三化」融合發展,必須來一場頭腦風暴和觀念革命,要勇於突破機械化戰爭乃至信息化戰爭的思維定勢,樹立與智能化戰爭相適應的思想觀念,強化體系思維、數據思維、算法思維,破除「以數量規模取勝」的思維定勢,牢固的設備確立“支持質量支持”的被動理念;主導」的理念;破除「僅依靠有人平台作戰」的思維定勢,穩固確立「無人、人機融合平台作戰」的理念等,用新的思想觀念打開融合發展思路,謀取加快發展出路。

個人資料圖片

加速「三化」融合發展的核心是加速智慧化發展,關鍵因素是推進科技創新,無論是作戰平台、武器彈藥等物理實體為代表的硬件,還是以作戰數據、演算法、模型等為核心的軟件,無不需要強大的科技創新作支撐。科學技術是核心戰鬥力,是軍事發展中最活躍、最具革命性因素。在百年未有之大變局下,美對我實施全領域施壓,尤其在高新技術領域加大對我封鎖遏制。科技創新從來沒有像今天這樣深刻影響國家和軍事戰略全局,從來沒有像今天這樣深刻影響我軍建設發展。我們必須大力實施科技強軍戰略,把國防科技創新放在更突出的位置,堅持向科技創新要戰鬥力,實現由跟跑並跑向並跑領跑轉變。

加快「三化」融合發展的要害的是強化人才支撐,從根本上說是智能力和前沿科技的挑戰,特別是隨著智能化深入發展,人與武器的關係必將重塑,對人的素質必然有跳躍式要求,未來戰爭中人的因素,將集中體現為人才因素,人才的強弱決定著發展的成敗。我們要深入實施人才強軍戰略,突顯強化聯合作戰指揮人才、新型作戰力量人才、高層次科技創新人才、高水準戰略管理人才等重點人才隊伍建設。要貫徹落實中央軍委最近剛剛印發的《關於加快推進三位一體新型軍事人才培養體系建設的決定》,發揮軍隊院校教育的主渠道作用,堅持面向戰場、面向部隊,更新教育理念,深化教學改革,走以提高人才培養質量為核心的內涵式發展道路。要發揮部隊訓練實踐的大熔爐作用,聚焦促進知識轉化、能力生成,讓官兵在推進「三化」融合發展和軍事鬥爭準備中練本領、長才幹,在完成急難險重任務中經風雨、受歷練。要發揮軍事職業教育的大課堂作用,圍繞提升職業素養、專業品質、崗位技能,在持續學習、專項深研中,拓展夯實新型軍事人才知識與能力基礎。

《光明日報》( 2020年11月08日 05版)

中國原創軍事資源:http://www.81.cn/ss_208539/9932394888.html

Chinese Military Emphasis on Essential Aspects of Integrated Development of Mechanization, Informatization and Intelligence


我軍重視機械化、資訊化、智慧化融合發展關鍵點 

現代英語:

The Fifth Plenary Session of the 19th CPC Central Committee, while emphasizing the need to accelerate the modernization of national defense and the military and achieve the unity of enriching the country and strengthening the military, pointed out that we should accelerate the integrated development of mechanization, informationization, and intelligence (hereinafter referred to as the “three modernizations”), thereby raising the requirements for the integrated development of the “three modernizations” to a strategic level. We should conscientiously implement the spirit of the Fifth Plenary Session of the 19th CPC Central Committee, carry out scientific strategic positioning, strategic planning, and strategic deployment for the integrated development of the “three modernizations”, vigorously promote the integrated development of the “three modernizations” to expand in depth and breadth, and accurately grasp the essential connotation of the integrated development of the “three modernizations”.

The historical background of the integrated development of the “three transformations”

The parallel advancement, mutual promotion and integrated development of the “three transformations” have profound historical inevitability and are the only way for our military to modernize its national defense and the armed forces in the future period.

The integrated development of the “three transformations” is consistent with the concept of mechanization and informationization. Since the late 1990s, our army has timely proposed to promote the integrated development of mechanization and informationization. At that time, the form of war was changing from mechanization to informationization. National defense and military construction must take the road of leapfrog development. There is no need to wait until the entire process of mechanization construction of the military of developed countries is completed before engaging in informationization. We should strive to promote the integrated development of mechanization and informationization. We should strive to leapfrog certain stages of mechanization development, and at the same time learn from the mistakes of mechanization and informationization construction of the military of developed countries, and take as few detours as possible. The experience and lessons learned from the integrated development of national defense and military mechanization and informationization provide valuable experience for how to coordinate the integrated development of the “three transformations” at this stage.

The integrated development of the “three transformations” reflects the reality of the current “multiple coexistence” of war forms. In today’s world, a new wave of military revolution characterized by military intelligence is coming, and the armies of major countries in the world are striding towards the threshold of intelligence. However, due to the imbalance in the development of scientific and technological levels and military strength among countries in the world, several local wars and armed conflicts in the world have shown the characteristics of “multiple coexistence” of mechanized, informationized and intelligentized wars. In the Syrian war, low-end and cheap civilian pickup trucks danced with high-end and expensive stealth aircraft, and crudely made homemade rockets flew with high-precision cruise missiles. The highly informationized and intelligentized U.S. and Russian armies, the Syrian and Turkish armies with relatively high mechanization levels, and the opposition with very low mechanization levels jointly performed an alternative “hybrid war” on the Syrian battlefield, in which the three war forms of mechanized warfare, informationized warfare and primary intelligent warfare overlapped with each other.

The integrated development of the “three modernizations” is in line with the current stage characteristics of the country’s social and economic development. my country’s path to modernization is very different from that of Western developed countries. Western developed countries are a “serial” development process, with industrialization, urbanization, agricultural modernization, and informatization developing in sequence, and it took more than 200 years to develop to the current level. my country’s development is bound to be a “parallel” process, with industrialization, informatization, urbanization, and agricultural modernization developing in a superimposed manner. The country’s social and economic foundation is the basic support for national defense and military construction. It is precisely the “parallel” development characteristics of my country’s current social economy that determine that national defense and military construction must adopt the “three modernizations” integrated development mode.

The integrated development of the “three transformations” adapts to the current level of development of mechanization, informatization and intelligence in the military. After long-term efforts, our military has basically achieved mechanization, and has made significant progress in informatization. It is also facing opportunities and challenges of intelligence. The special national conditions and military conditions make it impossible and impossible for our military to copy the development path of the military of Western developed countries represented by the US military. “Step-by-step” development may lead to the loss of the historical opportunity to promote the accelerated completion of mechanization and informatization through intelligence, and to lead and promote the development of mechanization and informatization to a higher stage.

The report of the 19th CPC National Congress pointed out that “we should accelerate the development of military intelligence, improve the joint combat capability and all-domain combat capability based on the network information system”, “basically realize mechanization by 2020, make significant progress in informatization, and greatly enhance strategic capabilities”, “strive to basically realize the modernization of national defense and the army by 2035, and build the people’s army into a world-class army by the middle of this century”. On the eve of the August 1st Army Day this year, President Xi Jinping proposed the strategic idea of ​​”accelerating the integrated development of mechanization, informatization and intelligence” when presiding over the 22nd collective study of the Political Bureau of the CPC Central Committee on strengthening the modernization of national defense and the army. The Fifth Plenary Session of the 19th CPC Central Committee further emphasized and deployed this, and incorporated it into the 14th Five-Year Plan and the 2035 Vision Goal for implementation, indicating that the requirements for the integrated development of the “three modernizations” have been elevated to the strategic overall level and have become an important guiding ideology for leading national defense and military construction.

The essential connotation of the integrated development of “three transformations”

The “integration” in the “three transformations” does not mean mixing, combining or compounding. The word “integration” in the physical sense means melting or melting into one; in the psychological sense, it means that different individuals or groups become one after a certain collision or contact, and their cognition, emotions or attitudes become one. The integrated development of the “three transformations” in national defense and military construction refers to the coordinated and coordinated mutual tolerance, mutual penetration and mutual promotion of mechanization, informatization and intelligence, from “you are you and I am me” to “you have me and I have you”, and then to “you are me and I am you”, reaching the level of perfect integration and unity, and thus producing superposition effect, aggregation effect and multiplication effect, and achieving a qualitative leap in overall combat effectiveness.

The basic laws and main characteristics of the integrated development of the “three transformations”. The main ones are: First, the “three transformations” are progressive and orderly dependent. From a chronological perspective, the “three transformations” did not originate at the same time. Without the previous “transformation” as a premise, foundation and input, there would be no occurrence and development of the next “transformation”. The previous “transformation” provides an important material basis for the next “transformation”. Second, the “three transformations” overlap and penetrate each other. Informatization is not the end of mechanization. There is still a certain degree of mechanization in the process of informatization. Intelligence is not the end of mechanization and informatization. There is still a certain degree of informatization and mechanization in the process of intelligence. Third, intelligence and informatization empower mechanization with virtual control and real efficiency. The “real” here mainly refers to the hardware represented by physical entities such as combat platforms and ammunition, and the “virtual” mainly refers to software with combat data, algorithms, etc. as the core. Mechanization is mainly based on hardware construction, while informatization and intelligence are mainly based on software construction. “Software defines everything”, and hardware is optimized, upgraded, empowered and increased through software. With the in-depth development of the integration of the “three transformations”, the construction priority will be payload surpassing platform, software surpassing payload, and algorithm surpassing software.

The internal mechanism and driving mechanism of the integrated development of the “three transformations”. The main ones are: First, the superposition of advantages. Practice has proved that no matter whether it is mechanization, informatization or intelligence, each supporting technology group of “transformation” will give birth to new weapons and equipment, generate new combat forces, and ultimately form new combat capabilities with different combat mechanisms. These new combat capabilities and the original combat capabilities are combined with advantages to produce a system emergence effect, greatly enhancing the overall combat capability of the army.

The second is upgrading and expansion. Informatization aggregates and upgrades mechanized combat systems into informationized combat systems through digital transformation and network connection of various mechanized combat platforms, making a qualitative leap in combat effectiveness. Intelligence can also be integrated with mechanization and informatization through upgrading and expansion. On the one hand, the “brain” of the combat platform, the control system, is upgraded using intelligent technology to promote the control mode of unmanned combat platforms such as drones, unmanned boats, and unmanned ground vehicles, and is upgraded in a progressive manner according to the direct human operation mode, human assistance mode, human authorization mode, fully autonomous mode, and machine adaptive mode. After some old combat platforms are upgraded through informatization and intelligent transformation, they can also be remotely controlled and work in coordination with manned platforms. On the other hand, the informationized combat system is optimized and upgraded using intelligent technology, so that its information acquisition, transmission, processing, sharing, security and other aspects of its capabilities are greatly enhanced, and the system combat capability is once again comprehensively improved.

The third is to make up for shortcomings and replace them. From the history of military construction, in the process of deepening development of a certain “ization”, bottleneck problems that are difficult to solve by its own technical system often appear, and other “ization” technical means and development ideas are urgently needed to find a new way to solve them. At present, machinery is becoming more and more sophisticated and complex, and the difficulty of design and control is increasing; informatization leads to “information explosion”, massive data is generated, rapidly spread, true and false are mixed, and it is increasingly difficult to quickly convert them into useful information. These problems are difficult to be effectively solved within the technical system of mechanization and informatization itself. To break through the bottleneck of mechanical control ability and information processing ability, the use of intelligent technical means is an important option. Conversely, the technological breakthroughs and applications generated by the previous “ization” may also offset the shortcomings of the latter “ization”. For example, the speed of hypersonic missiles can exceed the reaction capability of the informationized defense combat system to achieve rapid penetration, and high-energy microwave weapons can directly destroy networks and electronic equipment, which to a certain extent offset the opponent’s information advantage.

現代國語:

黨的十九屆五中全會在強調加速國防和軍隊現代化,實現富國和強軍相統一時指出,加快機械化資訊化智能化(以下簡稱「三化」)融合發展,從而把「三化」融合發展要求提升到了戰略全局高度。認真貫徹落實十九屆五中全會精神,對「三化」融合發展進行科學的戰略定位、戰略規劃和戰略部署,大力推動「三化」融合發展向深度廣度拓展,要準確把握好「三化」融合發展的本質內涵。

「三化」融合發展的時代背景

「三化」並行推進、互促共生、一體發展,具有深刻的歷史必然性,是我軍未來一段時期國防和軍隊現代化建設的必經之路。

「三化」融合發展與機械化資訊化複合發展概念一脈相承。自上世紀90年代末期以來,我軍及時提出推動機械化資訊化複合發展。當時,戰爭形態正由機械化轉變為資訊化。國防和軍隊建設必須走跨越式發展的道路,沒有必要等到走完發達國家軍隊機械化建設的全部過程再來搞資訊化,應該努力推進機械化和資訊化的複合發展。既要努力跨越機械化發展的某些階段,同時還要吸取發達國家軍隊機械化和資訊化建設失誤教訓,盡可能少走彎路。國防與軍隊機械化資訊化復合發展的經驗教訓,為如何統籌現階段「三化」融合發展提供了寶貴經驗。

「三化」融合發展反映了當前戰爭形態「多態並存」的現實狀況。當今世界,以軍事智能化為特徵的新一輪軍事革命浪潮撲面而來,世界主要國家軍隊正大步向智能化的門檻邁進,但由於世界各國科技水平和軍事實力發展的不平衡,使得在幾次世界局部戰爭和武裝沖突中,呈現出機械化信息化智能化戰爭“多態並存”的特點。在敘利亞戰爭中,低端廉價的民用皮卡與高端昂貴的隱身飛機共舞,粗製濫造的土製火箭與高精度的巡航導彈齊飛,高度信息化並向智能化邁進的美軍、俄軍,較高機械化水平的敘軍、土軍,以及機械化水平很低的反對派,在敘利亞戰場共同演繹了機械化戰爭、信息化戰爭和初級相互智能化戰爭和初級相互智能化的戰爭形態相互化。

「三化」融合發展符合當前國家社會經濟發展的階段性特徵。我國實現現代化之路同西方發達國家有很大不同。西方發達國家是一個「串聯式」的發展過程,工業化、城鎮化、農業現代化、資訊化順序發展,發展到目前水準花了二百多年時間。我國發展必然是一個「並聯式」的過程,工業化、資訊化、城鎮化、農業現代化是疊加發展的。國家社會經濟基礎是國防和軍隊建設的基本依托,正是當前我國社會經濟的「並聯式」發展特點,決定了國防和軍隊建設必然採取「三化」融合發展方式。

「三化」融合發展適應了當前軍隊機械化資訊化智慧化發展水準。經過長期努力,當前我軍基本上實現機械化,資訊化建設取得重大進展,又面臨智慧化的機會與挑戰。特殊的國情軍情,使得我軍不可能也不會複製以美軍為代表的西方發達國家軍隊的發展路徑。 「按部就班」式發展可能導致錯失智能化促進加速完成機械化資訊化、並引領和推動機械化資訊化向更高階段發展的歷史機遇。

黨的十九大報告指出,「加速軍事智慧化發展,提高基於網絡資訊體系的聯合作戰能力、全域作戰能力」「到二○二○年基本實現機械化,資訊化建設取得重大進展,戰略能力有大的提升」「力爭到二○三五年基本實現國防和軍隊現代化,到本世紀中葉把人民軍隊全面建成世界一流軍隊」。今年八一建軍節前夕,習主席在主持中共中央政治局就加強國防和軍隊現代化建設舉行的第二十二次集體學習時,提出「加快機械化資訊化智能化融合發展」這一戰略思想,黨的十九屆五中全會對此做了進一步強調部署,並納入十四五景規劃和二○三五年遠景目標中加以落實,引領著「三化」指導了全球重要防禦主義的全球重要戰略發展到重要官員發展到重要官員發展到重要的發展戰略。

「三化」融合發展的本質內涵

「三化」融合中的「融合」不等於混合、化合或複合。 「融合」一詞,物理意義上是指熔成或如熔化那樣融成一體;心理意義上是指不同個體或不同群體在一定的碰撞或接觸之後,認知、情感或態度傾向融為一體。國防和軍隊建設中的「三化」融合發展,則是指統籌協調機械化資訊化智能化相互​​包容、相互滲透、相互促進,從“你是你、我是我”變成“你中有我、我中有你”,進而變成“你就是我,我就是你”,達到水乳交融、合而為一的程度,並由此產生一倍效應、聚合效應和升力的整體效應。

「三化」融合發展的基本規律與主要特點。主要有:一是「三化」逐次遞進有序依存。從時序來看,「三化」不是同時起源的,沒有前一「化」作為前提、基礎和輸入,就沒有後一「化」的發生和發展,前一「化」為後一「化」提供了重要的物質基礎。二是「三化」相互交疊相互滲透。資訊化不是機械化的終結,資訊化過程中還有一定的機械化,智慧化也不是機械化、資訊化的終結,智慧化過程中還有一定的資訊化、機械化。三是智慧化資訊化對機械化以虛控實賦能增效。這裡所說的「實」主要是指以作戰平台、彈藥等物理實體為代表的硬件,「虛」主要是指以作戰數據、演算法等為核心的軟件。機械化以硬體建設為主,資訊化和智能化則以軟件建設為主,“軟件定義一切”,通過軟件對硬體進行優化升級和賦能增效。隨著「三化」融合的深入發展,在建設優先級上,將會是載荷超越平台、軟件超越載荷、演算法超越軟件。

「三化」融合發展的內在機理與驅動機制。主要有:一是優勢疊加。實踐證明,不管是機械化、資訊化或智慧化,每一「化」的支撐技術群都會催生出新型武器裝備,產生新型作戰力量,最終形成不同作戰機理的新質作戰能力。這些新質作戰能力與原有作戰能力綜合運用優勢疊加,能夠產生系統湧現效應,極大提升軍隊整體作戰能力。

二是升級拓展。資訊化透過對各類機械化作戰平台進行數字化改造和網絡化鏈接,將機械化作戰體系聚合升級為信息化作戰體系,使得戰鬥力產生質的飛躍。智能化也可透過升級拓展方式,與機械化、資訊化融為一體。一方面,運用智慧技術升級作戰平台的「大腦」──操控系統,推動無人機、無人艇、無人地面車輛等無人化作戰平台的控制方式,依照人類直接操作模式、人類協助模式、人類授權模式、完全自主模式、機器自適應模式的逐次遞進方式升級。一些老舊作戰平台進行資訊化智慧化改造升級後,也可以實現遙控操作並與有人平台協同作戰。另一方面,運用智慧技術優化升級資訊化作戰體系,使其資訊取得、傳輸、處理、分享、安全等各個環節能力都大幅增強,體係作戰能力再次全面提升。

三是補短替代。從軍隊建設歷史來看,某一「化」在深化發展過程中,往往會出現僅靠自身技術體系難以解決的瓶頸問題,迫切需要其他「化」的技術手段和發展思維另闢蹊徑來加以解決。當前,機械越來越精密復雜,設計和控制難度越來越大;信息化導致“信息爆炸”,海量數據產生、急劇擴散、真假混雜,快速轉化為有用信息的難度越來越大,這些問題在機械化、信息化自身技術體系內難以得到有效解決。要突破機械操控能力、資訊處理能力瓶頸,運用智慧化的技術手段是重要選項。反過來說,前一「化」產生的技術突破及應用也可能抵消後一「化」的不​​足。如高超聲速導彈速度可以超出資訊化防禦作戰體系的反應能力實現快速突防,高能量微波武器可直接破壞網絡和電子設備等,這都在一定程度上抵消了對手的信息優勢。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4874873888.html