Category Archives: #中國太空軍

Xi Jinping’s Thought on Strengthening the Chinese Army丨On Building an Innovative People’s Army: Only Innovators Win

習近平強軍思想丨論建立創新人民軍隊:創新者勝

現代英語:

Only innovators win – on building an innovative people’s army

  1. Why is innovation the core competitiveness of an army?

The 19th CPC National Congress clearly proposed the epoch-making proposition of “building an innovative people’s army”, which is the first time in the history of the Party. From proposing to accelerate the construction of an innovative country to proposing to build an innovative people’s army, our Party has emphasized that innovation should be placed at the core of the overall national development and the overall military construction and development, highlighting the extreme importance and practical urgency of innovation for a strong country and a strong army. Innovation is the soul of a country’s development and progress, and it is also the soul of an army’s development and progress. To grasp innovation is to grasp development, and to plan for innovation is to plan for the future. President Xi Jinping stressed that innovation capability is the core competitiveness of an army, and that we must thoroughly implement the innovation-driven development strategy and increase the contribution of innovation to the growth of combat effectiveness.

The military field is the field with the most innovative vitality and the most need for innovative spirit. Marxism believes that war develops earlier than peace, and the military is in a leading position in many aspects of human activities. Advanced technologies are often first applied to the military field. At the same time, the military field is the field with the most intense competition and confrontation. There is always a life-and-death contest between the enemy and us, between attack and defense, spear and shield, and a war drama of wits and courage. If you are one step ahead of others in innovation, you can control others instead of being controlled by them. As Engels said, “Every great commander in the history of war who has created a new era by adopting new methods of warfare has either invented new material means himself, or has been the first to discover the correct method of applying new material means invented before him.” At the end of the 16th century, the British Navy applied new battleships and innovative naval tactics to defeat the Spanish “Invincible Fleet” in one fell swoop, ushering in an era of maritime hegemony; in the late 19th century and early 20th century, Germany applied the latest achievements of the Second Industrial Revolution to military construction and built the most densely populated railway network in Europe, greatly improving the military’s combat readiness and mobility. History has shown that only innovators can advance, become strong and win. Those who are conservative and complacent will miss precious opportunities and fall into strategic passivity.

Innovation capability is an accelerator for generating and improving combat effectiveness. The core of combat effectiveness is people. If people have strong innovation capability, they can “empower” various elements of combat effectiveness, thereby achieving the upgrade of combat effectiveness and forming the “optimal solution” to defeat the enemy. In the final analysis, the competition in war is the competition of innovation capability of both combatants, and the gap in combat capability is essentially the gap in innovation capability. In 1806, the Prussian army was defeated by the French army led by Napoleon in the Battle of Jena. Clausewitz, who participated in the battle, pointed out in summarizing the reasons for the Prussian army’s defeat that middle and senior officers rarely realized that the characteristics of war had undergone fundamental changes. “The Battle of Jena is not only an example of outdated style, but also an example of extreme lack of imagination caused by sticking to the old ways.” The lack of imagination reflects the shortcomings of innovation. If the innovation ability is improved, it will accelerate the formation of new driving forces for the development of combat effectiveness, maximize the vitality of various elements of combat effectiveness, and promote the geometric growth of combat effectiveness.

Our army has come to where it is today through innovation, and we will also rely on innovation to win the future. In the process of combining Marxist military theory, the practice of China’s revolutionary war and the construction of the people’s army, and the traditional Chinese military tactics, our party has relied on continuous innovation to gradually form a complete set of principles and systems for building and governing the army, created the strategy and tactics of the people’s war, and formed the unique advantages of our army. It can be said that innovation has been deeply integrated into the red blood of the people’s army and has become the most distinctive spiritual endowment of our army. In today’s era, a new round of scientific and technological revolution, industrial revolution, and military revolution are accelerating, providing us with a rare opportunity to catch up with the latecomers, and also putting forward higher requirements for our comprehensive implementation of the innovation-driven development strategy. In the past, the development of our military construction was mainly driven by investment factors, which was necessary under certain historical conditions. However, today, it is difficult to continue to rely on large-scale investment increases, which has limited effects and diminishing marginal utility. To keep up with the pace of world military development, break through the bottleneck constraints of military construction, and comprehensively create new development advantages, what is most needed is innovation, and the fundamental way out lies in innovation. We must start the new engine of innovation-driven development at full speed, make great efforts to grasp theoretical innovation, scientific and technological innovation, scientific management, talent gathering, and practical innovation, and establish a set of new military theories, organizational structures, equipment systems, strategies and tactics, and management models that are adapted to the requirements of informationized warfare and mission fulfillment, promote changes in the quality, efficiency, and driving force of our military construction and develop, truly accelerate, build high quality, and speed up the effective supply of advanced combat capabilities.

  1. Why should we vigorously promote the innovation of Marxist military theory?

In May 1938, the nationwide war of resistance had been going on for 10 months. Facing the massive attack of the Japanese army, the “national destruction theory” and “quick victory theory” were once very popular. Can China achieve the final victory? How can it achieve victory? How will the course of the war develop? These questions troubled people’s minds. At the critical juncture of the survival of the Chinese nation, Comrade Mao Zedong published the famous “On Protracted War”, which was like a ray of light, giving great encouragement and confidence to the anti-Japanese soldiers and civilians who were fighting hard. All problems of the hostility between the two armies depend on war to be solved. A strong army must be guided by scientific theory. President Xi pointed out that we should vigorously promote the innovation of Marxist military theory, accelerate the formation of a military theory system that is contemporary, leading and unique, and provide scientific theoretical support for the practice of strengthening the military.

Scientific military theory is combat effectiveness. Military theory is a rational understanding and knowledge system about war, the army and national defense. Scientific military theory reveals the laws of war, the laws of war guidance and the laws of army building, guides the construction and use of military forces, has a profound impact on the elements of combat effectiveness, and leads the development of military practice. After the end of World War I, British military theorist Fuller proposed the theory of mechanized warfare, but it was not taken seriously. In the early days of World War II, the German army swept across Europe because of the tank cluster and the “blitzkrieg” theory. Although the weapons and equipment of the British and French armies at that time were almost the same as those of the German army, due to the obsolete and rigid combat theories, the British and French coalition forces soon fell into passivity and could only retreat from Dunkirk, and France quickly fell. Looking back at the history of military development, theoretical innovation has played a significant leading role in practical innovation. Mahan’s “sea power” theory, Douhet’s “air supremacy” theory, Tukhachevsky’s “deep and deep operations” theory, Graham’s “high frontier” theory, etc., have all led the military trend, promoted military reforms, and changed the face of war. “Thoughts precede actions, just as lightning precedes thunder.” Advanced military theory is an ideological weapon that correctly guides war. Whoever is one step ahead in military theory innovation is more likely to seize the initiative to win.

The key to the continuous growth and development of the People’s Army is that it always adheres to the guidance of advanced military theory. One of the important reasons why our army can fight and win battles is that it wins in theory and strategy, learns war from war, and explores laws from practice. During the Jinggangshan struggle period, our party developed the strategy and tactics of guerrilla warfare based on the characteristics of the enemy’s strength and our weakness, and preserved and developed itself. During the War of Resistance Against Japanese Aggression , our party implemented the strategic policy of “basically guerrilla warfare, but not relaxing mobile warfare under favorable conditions”, dealt a heavy blow to the Japanese invaders, and strengthened and developed itself. During the Liberation War, our party did not care about the gains and losses of a city or a place, and exchanged space for time, and concentrated superior forces to fight a war of destruction, defeated the Kuomintang army, and ushered in the birth of New China. After Chiang Kai-shek retreated to Taiwan, he reflected on the military competition between the Kuomintang and the Communist Party for decades, saying that the reason why the Communist army was able to win the war was because it emphasized the distinction between the extraordinary and the orthodox, the virtual and the real, and the application of changes, and constantly promoted innovation. In long-term practice, our party has combined the basic principles of Marxism with the practice of China’s revolutionary war and the construction of the people’s army, created Marxist military theoretical achievements with Chinese characteristics, and formed Mao Zedong’s Military Thought , Deng Xiaoping’s Thought on Military Construction in the New Era, Jiang Zemin’s Thought on National Defense and Army Construction, Hu Jintao’s Thought on National Defense and Army Construction, and Xi Jinping’s Thought on Strengthening the Army, providing a scientific guide for winning the victory of China’s revolutionary war and promoting the modernization of national defense and the army.

Knowledge Links

Ten Military Principles

In December 1947, Comrade Mao Zedong put forward ten major military principles in his report “The Current Situation and Our Tasks”, the main contents of which are summarized as follows: (1) First attack the dispersed and isolated enemy, then attack the concentrated and powerful enemy. (2) First capture small cities, medium-sized cities and vast rural areas, then capture large cities. (3) The main goal is to destroy the enemy’s living forces, not to preserve or seize cities and places. ( 4) In every battle, concentrate an absolutely superior force to encircle the enemy on all sides, strive to completely destroy it and not let any escape. (5) Do not fight a battle without preparation or without confidence every battle, we should strive to be prepared and strive to be sure of victory based on the comparison of the enemy’s conditions and ours. (6) Carry forward the style of fighting bravely, fearing no sacrifice, fearing no fatigue, and engaging in continuous fighting. (7) Strive to destroy the enemy in the process of movement. At the same time, focus on positional attack tactics and seize the enemy’s strongholds and cities. (8) In the matter of siege, all enemy strongholds and cities with weak defenses must be seized resolutely. enemy strongholds and cities with moderate defenses and conditions that allow them to be seized must be seized immediately. All enemy strongholds and cities with strong defenses must be seized only when conditions are ripe. (9) Capture all the enemy’s weapons and most of the enemy’s personnel to replenish our own forces. (10) Make good use of the interval between two campaigns to rest and retrain the troops.

New military practice calls for new military theory. Theory comes from practice, and practice is the driving force for the development of theory. Military theory can only maintain strong vitality if it keeps up with the times and responds to practice. In recent years, emerging fields and battlefield space have been continuously expanded, high-tech has penetrated into the military field in many ways, the war form and combat methods have accelerated evolution, and new war and combat theories have emerged in an endless stream. The US military has proposed “network-centric warfare”, “global rapid strike”, and “all-domain warfare”, the Russian military has proposed “non-nuclear containment strategy” and “strategic air and space campaign”, and the Japanese Self-Defense Forces have proposed the “cross-domain defense” theory, etc., all of which are aimed at winning new military advantages through theoretical innovation. The rapid development of the new military revolution in the world and the in-depth advancement of our military strengthening and military rejuvenation practices have put forward urgent requirements for innovation in military theory and provided broad space. Our military construction and development are facing a large number of new situations and new problems, which urgently need to be answered theoretically. Whether it is innovation in military strategy, innovation in military science and technology, or innovation in other aspects of military, they are inseparable from theoretical guidance. It is imperative and urgent to accelerate the modernization of military theory. We must have a broader vision and a longer-term perspective, firmly grasp the issues of war and combat, promote innovation in military theory, and constantly open up new horizons for the development of contemporary Chinese Marxist military theory.

41. Why is science and technology the core combat capability?

In February 2018, a brand-new organization in the Chinese military, the Military Scientific Research Steering Committee of the Central Military Commission, was formally established. Together with the previously established Science and Technology Committee of the Central Military Commission, a new top-level structure for military scientific research work was established. The Academy of Military Sciences has been reorganized and reorganized. With the Academy of Military Sciences as the leader, the military and military scientific research institutions as the backbone, and the scientific research forces of colleges and troops as the auxiliary, our military’s new scientific research system is accelerating to take shape. This series of major measures marks a new step taken by our army on the road to strengthening the military through science and technology, and shows that our party’s understanding of the strategic position of science and technology in national defense and military construction has risen to a new height. President Xi profoundly pointed out that science and technology are the core combat effectiveness, and to promote the modernization of national defense and the military, we must activate the powerful engine of scientific and technological innovation.

Science and technology are the most active and revolutionary factors in military development. Marxism believes that science is a “powerful lever of history” and a “revolutionary force in the highest sense.” Scientific and technological progress not only profoundly changes human production and lifestyle, but also profoundly affects the direction of world military development, and fundamentally promotes the military development process in all aspects. Engels pointed out: “As soon as technological advances can be used for military purposes and have been used for military purposes, they immediately, almost forcibly, and often against the will of the commander, cause changes or even revolutions in the way of combat.” Looking at the world In the history of military development, the main technologies supporting military struggles include bronze smelting and iron casting in the cold weapon age, gunpowder and firearm manufacturing in the hot weapon age, internal combustion engines and electricity in the mechanization age, and computers and communications in the information age. The widespread application of science and technology in the military field will inevitably lead to profound changes in the shape of war and methods of combat. Every major scientific and technological innovation in history has initiated a new military revolution, and every military revolution has pushed military development into a new era.

Science and technology are an important basis for generating and improving combat effectiveness. The basic components of combat effectiveness are people, weapons and equipment, and the combination of people and weapons and equipment. Science and technology are not independent elements of combat effectiveness, but they are always integrated into and condensed into various elements of combat effectiveness in various ways and forms, greatly promoting the generation and improvement of combat effectiveness. From a human perspective, in the development chain of “physical fitness-skill-intelligence” of military personnel, scientific and technological quality increasingly constitutes the most important factor in their overall quality. Without high scientific and technological literacy and military skills, even weapons and equipment cannot be operated. No, let alone being able to fight and win wars. From the perspective of weapons and equipment, it is the physical manifestation of science and technology in the military field. Science and technology have become a “multiplier” for the combat effectiveness of weapons and equipment. From the perspective of the integration of people and weapons and equipment, science and technology have spawned new military theories and prompted the continuous adjustment and reform of the military system. They are the “catalyst” to achieve the optimal combination of people and weapons and equipment. Generally speaking, the development and progress of science and technology is the main force that promotes the demise of the elements of the old combat effectiveness system and the construction of new combat effectiveness system elements, greatly shortening the cycle of generating and improving combat effectiveness, and promoting the leap of new quality combat effectiveness.

Science and technology have an increasing impact on the outcome of modern wars. At present, science and technology are developing faster and faster, and global scientific and technological innovation is unprecedentedly active. Major powers regard seizing scientific and technological advantages as a strategic measure to seek military advantage. The military game between great powers is largely reflected in technological subversion and counter-subversion, raids and counter-raids, offsets and counter-offsets. Once some technologies achieve breakthroughs, their impact will be disruptive, and may even fundamentally change the shape and methods of warfare, and fundamentally change the traditional offensive and defensive pattern of war. We are in a period of historical convergence where the world’s scientific and technological revolution and military revolution are developing rapidly, and the cause of strengthening and rejuvenating the military is in-depth advancement. Technology has never had such a profound impact on the overall national security and military strategy as it does today, and has never had such a profound impact on the construction and development of our military as it does today. We must promote high-level scientific and technological self-reliance and self-reliance, give full play to the strategic supporting role of science and technology in our military construction, put national defense scientific and technological innovation in a more prominent position, adhere to the strategic basis of independent innovation, enhance scientific and technological awareness, innovation, and application capabilities, and strive to Seize the initiative in military development and the right to win future wars.

▶A big country like ours and an army like ours must take the initiative through independent innovation.

▶Real core and key technologies cannot be bought with money. Importing weapons and equipment is unreliable, and importing imitations will not go far.

▶Independent innovation must be fought for, and this battle must be won.

42. How to understand the promotion of a military management revolution centered on effectiveness?

In June 2020, with the approval of the Central Military Commission, the entire military held a strategic management training. This was the first high-level, large-scale training event organized by our military with strategic management as the theme. More than a month later, during the 22nd collective study session of the Political Bureau of the 19th CPC Central Committee, President Xi clearly pointed out that it is necessary to update management concepts, improve strategic literacy, improve systems and mechanisms, smooth strategic management links, and substantively advance military management revolution. Since the 18th National Congress of the Communist Party of China, the Party Central Committee and the Central Military Commission have placed the strengthening of military management in a strategic position, actively built a new military management system, and started a new process of revolution in our military management in the new era.

Whether the army can fight and win wars, management often plays a key role. No matter how good the theoretical guidance of an army is, no matter how good the weapons and equipment are, and no matter how many combatants there are, if the management is in a mess and all the elements cannot integrate and play a role, it will not be able to win the war, and it may even be impossible to win the war. Scientific and efficient management is of great significance for reducing military construction costs, improving military system operation efficiency, and enhancing combat effectiveness. During the Gulf War, the U.S. Department of Defense shipped about 40,000 containers to the frontline armies. Due to imprecise management and inaccurate support, many material categories and recipient information were unknown. More than 20,000 of them had to be reopened and counted until the end of the war. There are still more than 8,000 containers that have not been opened. Modern war practice has fully proved that as the military organizational structure becomes increasingly complex, professional division of labor becomes more refined, and military operations become more systematic, this requires us to pay more attention to the role of management in military operations and construction and improve the professionalization of military management. , refined and scientific level.

The purpose of the military management revolution is to improve the operational efficiency of military systems and the efficiency of the use of national defense resources. Military management is the overall and basic work of national defense and military construction. Its essence is to organically integrate all military units and elements to fundamentally improve the effectiveness of combat effectiveness. Extensive management is a prominent problem that has long restricted the development of our military’s construction. In particular, our military’s construction is at a critical stage of accelerating shifting gears and improving quality and efficiency. In addition, the construction management model has undergone great changes after the reform, and the promotion of efficiency-oriented The core military management revolution and improving the precision-oriented management system are the inevitable choices for strengthening the scientific management of the military. With efficiency as the core, all management practices are inherently required to adhere to quality first, efficiency first, and strive to increase the effective supply of combat effectiveness. To be precision-oriented means to achieve precise planning, precise planning, precise deployment, precise implementation, and precise inspection, and to apply the principle of precision throughout the entire process of all aspects of management. In advancing the reform of military policies and systems, our army has implemented fundamental changes in traditional management methods and proposed reform measures in strategic management, military expenditure management, organizational management, equipment management, material management, and troop education management. The purpose is to form a precise An efficient, comprehensively standardized, and rigidly constrained military management policy system will improve the operational efficiency of the military system, the effectiveness of the use of national defense resources, and the effectiveness of the construction and application of military forces.

Military management must tightly grasp the pivot of strategic management. As the highest-level management of national defense and military construction, strategic management is a macro-management activity that manages the overall situation, long-term management, and major events. It plans and designs the investment of military resources from the top level. Whether strategic management is scientific or not directly affects the quality and efficiency of national defense and military construction. Back then, we achieved “two bombs and one satellite” under very difficult circumstances. We spent much less money than foreign countries, but the efficiency was very high. The important reason was that we gave full play to our country’s institutional advantages and used systems engineering methods to organize In order to carry out this work, a unique strategic management mechanism was explored. Today’s acceleration of national defense and military modernization requires further strengthening of strategic management. A new strategic management system has been established, but the relevant systems and mechanisms are not yet complete. We must adhere to goal orientation, problem orientation, and result orientation, and further open up the strategic management link of “demand-planning-budget-execution-evaluation”. Among them, demand is the driving force, clarifying the direction and requirements of combat capabilities; planning is the leading role, determining construction goals and tasks and resource allocation; budget is the key, and is the “funding version” of the planning plan; execution is the focus, which is the implementation of construction projects and the allocation of resources. The application of input; evaluation is the support and the measurement of construction quality and efficiency. By improving the strategic management link, demand-driven planning and planning-led resource allocation will become rigid constraints on our military’s construction, forming a smooth and efficient strategic management closed loop to promote the high-quality development of our military’s construction.

現代國語:

唯創新者勝-關於建設創新型人民軍隊

39.為什麼說創新是軍隊的核心競爭力?

黨的十九大明確提出「建設創新人民軍隊」的劃時代命題,這在黨的歷史上還是第一次。從提出加速建設創新國家到提出建設創新型人民軍隊,我們黨強調要把創新置於國家發展全局和軍隊建設發展全局的核心位置,凸顯了創新的極端重要性和現實意義。刻不容緩。創新是一個國家發展進步的靈魂,也是一支軍隊發展進步的靈魂。抓創新就是抓發展,謀創新就是謀未來。習近平主席強調,創新能力是軍隊的核心競爭力,必須深入實施創新驅動發展策略,提高創新對戰鬥力成長的貢獻。

軍事領域是最具創新活力、最需要創新精神的領域。馬克思主義認為,戰爭早於和平發展,軍隊在人類活動的許多方面處於主導地位。先進技術往往首先應用於軍事領域。同時,軍事領域又是競爭和對抗最激烈的領域。敵我之間、攻與守、矛與盾之間,始終存在著一場你死我活的較量,一場鬥智的戰爭大戲。如果你在創新上領先別人一步,你就能控制別人而不是被別人控制。正如恩格斯所說:「戰爭史上每一位採用新戰爭方法開創新時代的偉大統帥,要么是他自己發明了新的物質手段,要么是第一個發現了運用前人發明的新物質手段的正確方法。 16世紀末,英國海軍運用新型戰艦和創新海軍戰術,一舉擊敗西班牙“無敵艦隊”,開啟了海上霸權時代; 19世紀末20世紀初,德國將第二次工業革命的最新成果運用到軍事建設中,建造了歐洲人口最密集的鐵路網,大大提高了軍隊的戰備性和機動性。歷史證明,只有創新者才能前進,只有創新者才能強大,只有創新者才能獲勝。保守、自滿的人就會錯失寶貴的機遇,陷入戰略被動。

創新能力是產生和提高戰鬥力的加速器。戰鬥力的核心是人。人如果擁有強大的創新能力,就可以對戰鬥力的各個要素進行“賦能”,從而實現戰鬥力的升級,形成克敵制勝的“最優方案”。戰爭的競爭歸根到底是參戰雙方創新能力的競爭,作戰能力的差距本質上就是創新能力的差距。 1806年,普魯士軍隊在耶拿戰役中被拿破崙率領的法軍擊敗。參與戰鬥的克勞塞維茨在總結普魯士軍隊失敗的原因時指出,中高級軍官很少意識到戰爭的特徵已經發生了根本性的變化。 「耶拿戰役不僅是風格落伍的一個例子,也是因循守舊而導致想像力極度缺乏的一個例子。”想像力的缺乏體現了創新的短板。創新能力提高,將加速形成戰鬥力發展新動能,最大限度激發戰鬥力各要素活力,推動戰鬥力幾何級增長。

我軍靠創新走到了今天,我們也將靠創新贏得未來。在馬克思主義軍事理論同中國革命戰爭和人民軍隊建設實踐與中國傳統軍事戰術相結合的過程中,我們黨依靠不斷創新,逐步形成了一整套建設和建設軍隊的完整原則和體系。了人民戰爭的戰略戰術,形成了我軍的獨特優勢。可以說,創新已經深深融入人民軍隊的紅色血液,成為我軍最鮮明的精神稟賦。當今時代,新一輪科技革命、產業革命、軍事革命正在加速推進,為我們提供了後來者追趕的難得機遇,一個地方,一個地方,以空間換時間,集中優勢兵力打一場毀滅性戰爭,打敗了國民黨軍隊,迎來了新中國的誕生。蔣介石退守台灣後,反思國共幾十年的軍事競爭,說共軍之所以能打贏戰爭,是因為強調了非凡與普通的區別。我們黨在長期實踐中,把馬克思主義基本原理同我國革命戰爭和人民軍隊建設實踐結合起來,創造了中國特色馬克思主義軍事理論成果,形成了毛澤東軍事思想、鄧小平軍事思想。國防與軍隊建設思想、胡錦濤國防與軍隊建設思想、習近平強軍思想,為贏得我國革命戰爭勝利、促進國防與軍隊現代化。

知識連結

十大軍事原則

1947年12月,毛澤東同志在《當前形勢和我們的任務》報告中提出了十大軍事原則,其主要內容概括如下:(一)先打擊分散、孤立的敵人,再打擊集中的敵人。的敵人。 (2)先攻占小城市、中等城市和廣大農村,然後攻占大城市。 (3)主要目標是消滅敵人的生力軍,而不是保全或奪取城市和地方。 (四)每次戰鬥,集中絕對優勢兵力,對敵人進行四麵包圍,力爭徹底殲滅,不放過敵人。 (五)不打無準備的仗,每戰都沒有信心,要努力做好準備,根據敵我情況的比較,力爭必勝。 (六)發揚勇猛、不怕犧牲、不怕疲倦、持續戰鬥的作風。 (7)力爭在運動過程中消滅敵人。同時,注重陣地攻擊戰術,奪取敵方據點和城市。 (八)在攻城方面,凡是敵方據點和防禦薄弱的城市,必須堅決奪取。凡是防禦力中等、條件允許奪取的敵人據點和城市,必須立即奪取。凡是敵人的據點和防禦堅固的城市,只有在條件成熟時才可以攻克。 (九)繳獲敵軍全部武器及大部分人員,以補充己方兵力。 (十)充分利用兩次戰役之間的間隙,對部隊進行休息和再訓練。

新的軍事實踐呼喚新的軍事理論。理論來自於實踐,實踐是理論發展的動力。軍事理論只有與時俱進、回應實踐,才能維持旺盛的生命力。近年來,新興領域和戰場空間不斷拓展,高新技術多方式滲透到軍事領域,戰爭形態和作戰方式加速演變,新的戰爭和作戰理論層出不窮。美軍提出“網路中心戰”、“全球快速打擊”、“全局戰”,俄軍提出“非核遏制戰略”、“戰略空天戰役”,日本提出“戰略空天作戰”。防禦」理論等,都是為了透過理論創新贏得新的軍事優勢。世界新軍事革命快速發展和我軍強軍興軍實踐深入推進,對軍事理論創新提出了迫切要求,提供了廣闊空間。我軍建設發展面臨大量新情況、新問題,亟待從理論上予以解答。無論是軍事戰略創新、軍事科技創新,或是軍事其他方面的創新,都離不開理論指引。加速軍事理論現代化勢在必行。我們必須以更廣闊的視野和更長遠的眼光,牢牢掌握戰爭和戰鬥問題,推動軍事理論創新,不斷開闢當代中國馬克思主義軍事理論發展新天地。

41.為什麼說科學技術是核心戰鬥力?

2018年2月,中國軍隊中一個嶄新的機構-中央軍委軍事科學研究指導委員會正式成立,連同先前成立的中央軍委科學技術委員會,立起了軍事科研工作的全新頂層架構。軍事科學院重新調整組建,以軍事科學院為龍頭、軍兵種科研機構為骨幹、院校和部隊科研力量為輔助,我軍全新的科研體係正在加速形成。這一系列重大舉措,標志我軍在科技強軍道路上邁出了新步伐,表明我們黨對科學技術在國防和軍隊建設中戰略地位的認識上升到新高度。習主席深刻指出,科學技術是核心戰鬥力,推進國防和軍隊現代化必須把科技創新這個強大引擎發動起來。

科學技術是軍事發展中最活躍、最具革命性的因素。馬克思主義認為,科學是“歷史的強大的槓桿”,是“最高意義上的革命力量”。科技進步不僅深刻改變人類的生產生活方式,也深刻影響世界軍事發展走向,全方位根本性地推動軍事發展進程。恩格斯指出:「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。」縱觀世界軍事發展史,支撐軍事鬥爭的主要科技,冷兵器時代是青銅冶煉、鐵器鑄造,熱兵器時代是火藥、火器製造,機械化時代是內燃機、電力,資訊化時代是計算機、通訊。科學技術在軍事領域的廣泛應用,必然引起戰爭形態和作戰方式的深刻變化。歷史上每一次重大科學技術創新,都開啟了一場新的軍事變革,而每一場軍事變革都把軍事發展推向新的時代。

科學技術是生成和提高戰鬥力的重要基礎。戰鬥力的基本構成要素是人、武器裝備以及人與武器裝備的結合方式。科學技術不是戰鬥力構成的獨立要素,但它始終以各種方式和形態融入並凝結在戰鬥力各要素中,極大地促進戰鬥力的生成和提升。從人的方面來看,在軍人「體能-技能-智能」的發展鏈中,科技素質越來越構成其整體素質中最重要的因素,沒有較高的科技素養和軍事技能,連武器裝備也操作不了,更別說能打仗、打勝仗了。從武器裝備來看,本身就是科學技術在軍事領域的物化表現,科學技術已成為武器裝備作戰效能的「倍增器」。從人與武器裝備的結合面來看,科學技術催生新的軍事理論,促使軍隊體制編制不斷調整變革,是實現人與武器裝備最佳結合的「催化劑」。總的來看,科學技術的發展進步,是推動舊戰鬥力體係要素消亡和新戰鬥力體係要素構建的主要力量,大大縮短戰鬥力生成和提高的周期,促進新質戰鬥力的飛躍。

科學技術對現代戰爭勝負的影響日益上升。當前,科學技術發展速度越來越快,全球科技創新空前活躍,主要大國都把奪取科技優勢作為謀求軍事優勢的戰略舉措。大國軍事博弈很大程度上體現為技術上的顛覆和反顛覆、突襲和反突襲、抵消和反抵消。有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變戰爭形態和作戰方式,從根本上改變傳統的戰爭攻防格局。我們正處在世界科技革命和軍事革命迅猛發展、強軍興軍事業深入推進的歷史交匯期。科技從來沒有像今天這樣深刻影響國家安全和軍事戰略全局,從來沒有像今天這樣深刻影響我軍建設發展。必須推進高水準科技自立自強,充分發揮科技對我軍建設戰略支撐作用,把國防科技創新擺在更加突出的位置,堅持自主創新這個戰略基點,增強科技認知力、創新力、運用力,努力把握軍事發展主動權、未來戰爭制勝權。

習言習語

▶我們這樣一個大國、這樣一支軍隊,必須透過自主創新掌握主動。

▶真正的核心關鍵技術是花錢買不來的,靠進口武器裝備是靠不住的,走引進仿製的路子是走不遠的。

▶自主創新這口氣一定要爭,這場仗一定要打贏。

42.如何理解推進以效能為核心的軍事管理革命?

2020年6月,經中央軍委批准,全軍舉行戰略管理集訓,這是我軍首次以戰略管理為專題組織的高層次、大範圍集訓活動。一個多月後,在十九屆中央政治局第二十二次集體學習時,習主席明確指出,要更新管理理念,提高戰略素養,健全制度機制,暢通戰略管理鏈路,實質性推進軍事管理革命。黨的十八大以來,黨中央、中央軍委把加強軍事管理擺在戰略位置,積極建構新型軍事管理體系,開啟新時代我軍管理革命新進程。

軍隊能不能打仗、打勝仗,管理往往扮演關鍵角色。一支軍隊,理論指導再好,武器裝備再好,戰鬥人員再多,如果管理一團糟,各項要素不能集成發揮作用,也是打不了勝仗的,甚至可能是打不了仗的。科學高效的管理,對於降低軍隊建設成本、提高軍事系統運作效率、增強戰鬥力,具有十分重要的意義。海灣戰爭中,美國國防部給予前線陸軍運送的約4萬個集裝箱,由於管理不精細、保障不精準,許多物資類別、收件資訊不明,只得將其中2萬多個重新打開清點,直到戰爭結束還有8000多個集裝箱沒有打開。現代戰爭實踐充分證明,隨著軍隊組織結構日益復雜,專業分工更加精細,軍事行動的系統性大大增強,這就要求我們更加註重發揮管理在軍隊作戰、建設中的作用,提高軍事管理的專業化、精進、科學化程度。

軍事管理革命的目的是提升軍事系統運作效能和國防資源使用效益。軍事管理是國防和軍隊建設的全局性、基礎性工作,其實質就是要把所有軍事單元和要素有機整合起來,從根本上提高戰鬥力的生成效能。管理粗放是長期制約我軍建設發展的一個突出問題,特別是我軍建設正處在換擋加速、提質增效的關鍵階段,加上改革後建設管理模式發生很大變化,推進以效能為核心的軍事管理革命,健全以精準為導向的管理體系,是加強軍隊科學管理的必然選擇。以效能為核心,內在要求一切管理實踐堅持品質第一、效益優先,著力增加戰鬥力有效供給。以精準為導向,就是要做到精準謀劃、精準規劃、精準部署、精準落實、精準檢驗,把精準原則貫穿管理各方面全過程。我軍在推進軍事政策制度改革中,對傳統管理方式實行根本性變革,從戰略管理、軍費管理、組織編制管理、裝備管理、物資管理、部隊教育管理等方面提出改革舉措,目的就是要形成精準高效率、全面規範、剛性約束的軍事管理政策制度,提升軍事系統運作效率、國防資源運用效益及軍事力量建設運用效能。

軍事管理必須緊緊扭轉戰略管理這個樞紐。戰略管理作為國防和軍隊建設最高層次的管理,是管全局、管長遠、管大事的宏觀管理活動,從頂層規劃和設計軍事資源的投向投量。戰略管理是否科學,直接影響國防和軍隊建設品質效益。當年我們在十分困難的情況下搞成了“兩彈一星”,花的錢比外國少得多,效率卻很高,很重要的原因是充分發揮我國的製度優勢,用系統工程的方法組織了這項工作,探索了一套獨具特色的策略管理機制。今天加速國防和軍隊現代化,需要進一步加強戰略管理。新的策略管理體制立起來了,但相關制度機制還不完善,必須堅持目標導向、問題導向、結果導向,進一步打通「需求-規劃-預算-執行-評估」的戰略管理連結。其中,需求是牽引,明確作戰能力指向和要求;規劃是主導,決定建設目標任務和資源配置;預算是關鍵,是規劃計劃的「經費版」;執行是重心,是建設項目的實施和對資源投入的運用;評估是支撐,是對建設品質效益的衡量。透過完善戰略管理鏈路,使需求牽引規劃、規劃主導資源配置成為我軍建設的剛性約束,形成順暢高效的戰略管理閉合迴路,推動我軍建設高質量發展。

中國原創軍事資源:http://www.81.cn/ll_208543/10189839.html?big=fan

http://www.81.cn/zt/2023nzt/qmsrxxgcxjpqjsx/xxwd/16244461.html

Communist Party of China to Accelerate Transformation of Science and Technology Into Combat Power for China’s Military

中國共產黨將加速推進科技向軍隊戰鬥力轉化

來源:解放軍報 作者:賀逸舒 邵龍飛等 責任編輯:王鳳 2022-11-02 09:36:33

現代英語:

The Chinese People’s Revolutionary Military Museum is always crowded with visitors. Among the visitors, a young man stood in front of the display board for a long time.

Looking at the picture of a certain type of satellite on the display board of the “New Era National Defense and Army Construction Achievements Exhibition”, Cao Lu, a researcher at the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was full of pride. Looking at the familiar smiling faces in the photos, Cao Lu recalled the time when satellites were being developed.

They once sat in front of their computers late at night, typing away at code, and they also once looked everywhere for interference factors… The bitter memories become sweeter the more they are savored.

“The times are calling us, and the people are expecting us. Only by being resolute and persevering can we live up to the times and the people.” At this moment, Cao Lu read this sentence from the report of the 20th National Congress of the Communist Party of China again, and his feelings were even more profound. “Fortunately, our generation of young scientific researchers has caught up with a good era! I feel proud to be on the journey of strengthening the army with science and technology.”

The power of youth and the cause of innovation. At the National Defense Science and Technology Innovation Institute of the Academy of Military Science, many young researchers like Cao Lu are brave enough to innovate and endure hardships on the stage of strengthening the military with science and technology, constantly improving the contribution of scientific research results to the growth of combat effectiveness and accelerating the transformation of science and technology into combat effectiveness.

“To thoroughly study, publicize and implement the spirit of the 20th National Congress of the Party, specifically for us young scientific researchers, is to throw ourselves into the era of innovation in national defense science and technology, take root in the front line of scientific research, and become good young people of the new era who have ideals, dare to take responsibility, can endure hardships, and are willing to work hard,” said Cao Lu.

Observation sample Academy of Military Science, National Defense Science and Technology Innovation Institute

Be enterprising and join the era of technological innovation

■Reporters from the People’s Liberation Army Daily: He Yishu, Shao Longfei, correspondents: Ren Fei, Zhang Zhihua

A vast stage opens in front of this group of young people

“The People’s Army has a new system, a new structure, a new pattern and a new look.” After in-depth study of the 20th CPC National Congress report, Zhang Youjun, director of the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was particularly impressed.

The National Defense Science and Technology Innovation Institute is a newly established unit after the reform and adjustment. In the five years of growing up with the institute, Zhang Youjun has personally experienced the changes in the system, structure, pattern and appearance brought about by the reform.

In January 2018, a group of young people, with an average age of just over 30, gathered from all directions and walked into this scientific research institution that had been officially established for just over three months. Among them were doctors who had studied abroad and returned to China, military academy teachers, and scientific researchers who had been rooted in the front line for a long time.

A grand stage opened in front of this group of young people. However, a brand new stage means brand new challenges.

At the first party congress after the establishment of the institute, they added a special content – a collective viewing of the movie “Out of Nowhere”.

In the silent desert, the sound of countdown rang out softly—5, 4, 3, 2, 1, detonation! A huge mushroom cloud rose up, and the sun-like brilliance illuminated the entire Lop Nur. A group of scientific researchers cheered and rushed down the hillside…

This is a shocking scene in the movie “Out of Nowhere”. “Develop the atomic bomb and stand tall.” General Zhang Aiping once said that the atomic bomb is not a weapon, but a spirit. The epic victory of developing the atomic bomb many years ago still has endless inspiration for today’s scientific researchers.

Since then, watching “Out of the Blue” has become a tradition for the officers and soldiers of the hospital. Wang Xintian, deputy political commissar of the hospital, said with emotion that every time he watches it, he will gain different feelings.

“People who appear out of nowhere should do things that appear out of nowhere.” Every researcher in the institute has his or her own understanding of this sentence.

“I completed the application for my first project in the dormitory I was temporarily borrowing at the time,” recalled young researcher Qiang Xiaogang.

When Qiang Xiaogang woke up in the middle of the night, he seemed to see himself lying on the table in the dormitory staying up all night: the old table, the humming computer, the crisp sound of the keyboard, page after page of reference materials…

At that time, Qiang Xiaogang was working alone. A few years later, from one person to a group of people, the ideas proposed in the project application gradually became a reality.

Only by daring to innovate can you have the joy of dreams coming true. In 2021, China has made another major breakthrough in the field of quantum. According to Xinhua News Agency, researchers have developed the first programmable photonic quantum chip for solving graph theory problems, an important step towards the realization of practical photonic quantum computers. The relevant paper was published in the journal Science Advances, and Qiang Xiaogang “came out of nowhere” as the first author. Now, walking into the laboratory of Qiang Xiaogang’s team again, more results are waiting for further testing.

Back in 2009, Qiang Xiaogang stood at another important crossroads in his life: Should he choose the electronic information field he had studied as an undergraduate, or the cutting-edge but unfamiliar quantum information field? After some thought, he chose a “difficult but more long-term direction.”

Guanghui’s dream originated from the individual but transcended the individual, originated from reality but transcended reality. From his student days to now, on the road of studying quantum technology, Qiang Xiaogang encountered many difficulties, both academic and non-research, but he never backed down.

At the beginning of the establishment of the institute, the leader of the institute said at a meeting: “We call you here not to find a basket to put your past achievements in and continue to work on your own stalls, but to set a common goal and do something big together…”

“What is considered a ‘big deal’?” Qiang Xiaogang kept this question in his mind until October 2020, when he saw a piece of news: The Political Bureau of the CPC Central Committee held its 24th collective study session on the research and application prospects of quantum technology. When presiding over the study session, President Xi Jinping stressed that “we must fully recognize the importance and urgency of promoting the development of quantum technology, strengthen strategic planning and system layout for the development of quantum technology, grasp the general trend, and take the initiative.”

Qiang Xiaogang felt a surge of warmth in his heart. The photonic quantum chip technology he was researching was the cutting-edge direction in the field of quantum technology. He was always calm, but now he was no longer calm: “No matter how hard I try, it’s worth it!”

“What I am doing now is what I want to do. When personal ideals and national interests are combined, no matter how hard the work is, it will not feel hard at all,” said Qiang Xiaogang.

In the eyes of researcher Cao Lu, ideals are born naturally on the road of common struggle. “I hope to perfectly concentrate the work results of my colleagues on a satellite to meet the needs of the country to the greatest extent possible.”

After studying the report of the 20th CPC National Congress, Cao Lu has a clearer view of the future direction. “Chairman Xi proposed that we should focus on original and leading scientific research based on the national strategic needs and resolutely win the battle to tackle key core technologies. We have a mission to fulfill and we have no choice but to do it.”

On October 26, young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science discussed research topics. Photo by Li Yichen

“Innovation requires youth. This era especially needs young people like you”

Inside the institute’s office building, blue light strips on the walls extend all the way forward, leading people to the “Two Bombs and One Satellite” Spiritual Culture Museum at the end of the corridor.

“The genes of a unit determine its future.” Lu Zhoulai, the political commissar of the institute, said that they chose to use the “two bombs and one satellite” spirit to build a solid spiritual foundation for this new team.

Red and blue are the two main colors of this exhibition hall.

Red is the color of loyalty. From the heroes of the “two bombs and one satellite” program to the younger generation of scientific researchers, we can see from them what it means that “each generation has its own mission and responsibility.”

Blue is the symbol of science and technology. Over the past five years, a large number of major scientific research results focusing on war preparation and intelligent technology have emerged, demonstrating the era of this new strategic scientific and technological force.

That year, researcher Yao Wen and several other scientific research backbones visited Academician Sun Jiadong, a founding member of the “Two Bombs and One Satellite”. Academician Sun Jiadong told them: “Innovation requires youth, and this era especially needs young people like you.”

The first generation of founders of the institute felt the same way about Sun Lao’s entrustment and expectations. “What is a founder? It is the half buried in the soil,” said Yin Erwei, an associate researcher.

“With people, there will be things to do. If there are no talents, then we will recruit them.” Yin Erwei and his colleagues boldly tried to quickly build a team by jointly training graduate students. In this way, they have grown from the initial five or six people to the only established team in this field in the entire military. Their research results won the first prize of the first “Innovation Cup” National Defense Science and Technology Innovation Competition of the Military Commission Science and Technology Committee.

In Yin Erwei’s opinion, the rapid development of the team is inseparable from the strong support of the institute’s leaders. The party committee of the institute has a slogan: “We must take the initiative to take responsibility for young people who do things.”

Among the many topics in the research institute, there are some technical problems that cannot be found in books. At this time, we must make a choice whether we dare to explore boldly and whether we can innovate.

“If one day, we at the National Defense Science and Technology Innovation Institute are afraid to innovate, that will be our biggest dereliction of duty.” This statement at the Party Committee plenary session set off a “brain storm” among everyone.

The leaders of the institute took the lead in entering the front line of scientific research, raising scientific research funds from various sources, building laboratories, and purchasing experimental equipment; for some key projects with higher risks, leading cadres and project managers took the lead in signing and taking responsibility on the spot; for major activities that require coordination of external resources, leading cadres personally come forward to “cheer up” the scientific researchers.

At that time, in order to apply for scientific research projects, Yin Erwei led the team to stay up many nights with bright lights.

As he led his team to go further and further, Yin Erwei gradually realized that “happiness actually comes from the passion and belief in doing things and starting a business.”

Associate researcher Guo Pengyu spends nearly two-thirds of the year on business trips, and his wife raises their two children and two elderly parents alone; assistant researcher Zhang Fei gave up his research field that he had been deeply involved in for many years for the overall goal of the team, and is considered by his colleagues to be a person who is “not picky about work.”

“Living in an unprecedented great era, we need to strengthen our responsibilities, work hard, forge ahead with determination, and seize the commanding heights of future military science and technology competition.” Yin Erwei said confidently, “Under the guidance of the spirit of the 20th National Congress of the Party, my comrades and I will inject our youthful wisdom into military scientific research innovation.”

“Screws must be able to withstand the loneliness of time, and also have a sense of urgency when tightened at all times.”

It was midnight, and everything was silent. In the corridor of the office building of the National Defense Science and Technology Innovation Institute, a few beams of light shone through the cracks in the office door.

Inside the house, it is another world. The sound of keyboards tapping is heard constantly, and a group of young people sit quietly in front of their computers, immersed in the world of “0” and “1” they created.

This scene is normal for this group of young researchers. Perhaps, in the eyes of others, working overtime day and night is very hard. However, for assistant researcher Chen Renzhi, the physical pain cannot be called pain.

Chen Renzhi was deeply impressed by the words of a philosopher: “People are dominated by desires. If desires are not satisfied, they are painful. If they are satisfied, they are boring. Life is like a pendulum swinging between pain and boredom.”

In the field of Chen Renzhi’s research, it often takes a long time to see results. “Before breaking ground, no one knows how well they are doing,” Chen Renzhi said.

The answer will be revealed during the finished product verification. If the verification goes well, it is a success; if it does not go well, the hard work of several months will be wasted. However, this field must move forward without stopping, and there is no day to stop. Therefore, Chen Renzhi fell into an endless cycle of “struggling for several months, being happy for two days, and continuing to struggle.”

“The most frustrating thing is that no one knows what you do, even your colleagues next to you don’t know what you are busy with. Sometimes, when you want to share your achievements with others, no one understands, so you can only rub your nose and go back to work,” said Chen Renzhi.

In this huge project, each researcher is just a screw. “Screws must be able to withstand the loneliness of time and have a sense of urgency at all times.”

At first, Chen Renzhi did not realize the deep meaning behind this sentence. As his research in this field continued to deepen, Chen Renzhi realized more and more clearly that this sense of urgency was becoming the driving force that drove him and his comrades to move forward faster.

“We are making progress, and our opponents have not stopped either. Our advantage is that we keep moving in the right direction of Chinese-style modernization.” After in-depth study of the report of the 20th CPC National Congress, Chen Renzhi has more confidence in the next step of tackling key problems. “The report of the 20th CPC National Congress has drawn up a grand blueprint for us. We must aim at independent innovation in the frontier areas of military science and technology and contribute our own strength to achieving high-level scientific and technological self-reliance.”

Young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science work in the laboratory. Photo by Si Yuqi

Although we have different positions, we share the same goal.

From college to the military, Assistant Researcher Zuo Yuan often uses the word “implementation” in his scientific research. “To use the words in the report of the 20th CPC National Congress, it means accelerating the transformation of science and technology into combat effectiveness,” he said.

When he first started working, whenever a soldier asked Zuo Yuan, “How do you use this new equipment you developed?” Zuo Yuan would always simply reply, “You’ll know after you use it.”

Gradually, when Zuo Yuan used the new equipment himself, he found that there was a long distance between “usable in theory” to “usable in actual combat” and then to “effective on the battlefield”.

Talking about his own naivety in the past, the dark-complexioned young man smiled somewhat embarrassedly.

Going to plateaus, islands, jungles, and deserts… Over the years, Zuo Yuan has always been on the front line of the army. “We must go to the army to do scientific research!” Zuo Yuan was deeply touched by his several visits to the army. “The combat concepts of the front-line soldiers are more advanced than we thought. They have more say in whether the new equipment is easy to use.”

Military scientific research results must serve actual combat training. In July this year, Zuo Yuan followed the team to the plateau to participate in actual military training. If he had not come to the front line of the troops, he would never have thought that the first thing to adjust was not the new equipment itself, but the control equipment. The exchanges and collisions with the front-line officers and soldiers gave the researchers new directions and ideas for the research and development of new equipment in the future.

On the plateau, Zuo Yuan once helped medical researchers collect blood oxygen data from soldiers. “Do you know what the hands of soldiers on the plateau look like?” Zuo Yuan stretched out his own hands and gestured to the hands of his comrades on the plateau. “The roots of the nails are sunken, the nail surface is straight without any curve, and the fingers are rough as if they have been planted for decades.”

At that moment, Zuo Yuan realized that while he was sitting in a bright and clean office typing code every day, there was a group of young comrades who were breathing thin oxygen, holding guns in both hands, exposed to strong ultraviolet rays, and building a living monument with their flesh and blood.

Holding the hands of his border defense comrades tightly, Zuo Yuan developed a sense of responsibility to “do more for them.”

“Although we are in different positions, we share the same goal. We hope that through our efforts in scientific research we can help them solve more practical problems.” This feeling of gratitude and responsibility has become the driving force that supports young scientific researchers in overcoming difficulties.

In order to implement the concept of scientific research for combat and serving the troops from the “first kilometer” to the “last kilometer” of scientific research, the Institute organizes its forces to conduct regular in-depth research on the front lines of combat troops, so that the results of military scientific research can truly reach the training ground and actual combat.

Due to long-term work on the front line of the army, “others joke that we are a group of ‘anti-migratory birds’ – in order to do experiments, we run north in winter and south in summer,” said associate researcher Nie Yiming.

During the Mid-Autumn Festival last year, Nie Yiming and his team were conducting experiments in a remote desert. The leaders of the institute came to visit them, but due to limited conditions, they could only buy a few kilograms of steamed buns in the nearest county town and bring them over.

“After the experiment was successful, we sat together, eating buns and admiring the bright moon over the Gobi Desert. The moon that night was especially round.” Thinking of that scene, Nie Yiming had endless aftertastes.

“Through in-depth study of the report to the 20th CPC National Congress, I have come to a deeper understanding that only by going deep into the front lines of the troops, working hard, constantly learning and improving, expanding our capabilities, and upgrading our skills, can scientific research make new contributions to the formation of new qualities of combat effectiveness in new domains.” This is the voice of Nie Yiming, and it is also the consensus and direction of efforts of many young scientific researchers in the institute.

【Sharp Viewpoint】

Taking on the responsibility of innovation with the power of youth

■Lu Zhoulai

In his report to the 20th CPC National Congress, Chairman Xi Jinping pointed out that we must insist that science and technology are the primary productive force, talent is the primary resource, and innovation is the primary driving force.

Science and technology are the most active and revolutionary factors in military development. Scientific and technological innovation has become the main battlefield for strategic games between major powers, profoundly affecting national security and the overall military strategy. To promote high-quality development of national defense and military construction, we must accelerate the implementation of the innovation-driven development strategy, accelerate the realization of high-level scientific and technological self-reliance, and focus on original and leading scientific and technological research based on national strategic needs. We must resolutely win the battle to tackle key core technologies and significantly increase the contribution of scientific and technological innovation to the growth of combat effectiveness.

Five years ago, following the vigorous pace of reform and strengthening the military, and shouldering the sacred mission of strengthening the military through science and technology, the National Defense Science and Technology Innovation Institute of the Academy of Military Science came into being: with the lofty ambition of “doing earth-shaking things”, aiming at the forefront of world science and technology, focusing on the urgent needs of future wars, and making deep plans to balance the powerful enemy’s advantage, it has forward-looking arrangements for a series of scientific research directions such as artificial intelligence, unmanned systems, and cutting-edge intersections. This can be said to be in line with the creation of the “two bombs and one satellite” cause that year.

Great undertakings require great spiritual nourishment, and the first driving force requires the first resource drive. More than 60 years ago, a large number of young scientific researchers, including Deng Jiaxian, Zhu Guangya, Yu Min, Sun Jiadong, and Zhou Guangzhao, with their broad love for the motherland and selfless dedication, their determination and hard work to be self-reliant, and their innovative spirit of strong collaboration and courage to climb, firmly took on the responsibility of national defense science and technology innovation and created the world-renowned “two bombs and one satellite” cause. Inspired by the cause of building a strong military in the new era, a large number of outstanding young people with an average age of only 30 years old and doctoral degrees from prestigious universities have gathered at the National Defense Science and Technology Innovation Institute. They have overcome difficulties along the way, focused on key breakthroughs, worked tirelessly to accelerate the advancement of scientific and technological self-reliance, and shed their youthful sweat, demonstrated their youthful strength, and demonstrated their youthful responsibility in innovation and transcendence.

Innovation is endless, and it is time to strive. At present, the world is undergoing a major change that has not been seen in a century, and a new round of scientific and technological revolution and military revolution is changing with each passing day. Facing changes in science and technology, changes in war, and changes in opponents, as an emerging scientific research force full of youthful vitality, the mission of establishing for the country and conducting research for war is extremely glorious, and the stage for striving for youth and pursuing the dream of a strong army is extremely broad. Striving to seize the commanding heights of national defense science and technology innovation and resolutely winning the battle to overcome key core technologies are always realistic issues that we must face and the heavy responsibility of the times that we must shoulder.

President Xi stressed that we should build a large-scale team of young scientific and technological talents, put the policy focus of cultivating national strategic talent on young scientific and technological talents, and support young talents to take the lead and play the leading role. President Xi’s important instructions deeply reveal the growth law of young scientific and technological talents and clearly indicate the direction of scientific and technological talent training. We will bear in mind President Xi’s entrustment, the trust of the Party and the people, vigorously promote the spirit of “two bombs and one satellite” and the spirit of scientists in the new era, and strive to cultivate and train young scientific and technological talents with ideals, courage, hard work and hard work, and bravely take on the responsibility of innovation with the power of youth, so that more new talents can take the lead and play the leading role in more and larger positions and platforms, and use practical actions to learn, publicize and implement the spirit of the 20th National Congress of the Party

現代國語:

中國人民革命軍事博物館,觀展的人絡繹不絕。來來往往的觀眾中,一個年輕的身影在展板前隊列許久。

注視著「新時代國防與軍隊建設成就展」展板上某型衛星的圖片,軍事科學院國防科技創新研究院研究員曹璐的眼裡充滿自豪。看著照片中一張張帶著微笑的熟悉面龐,曹璐想起了研製衛星的那段時光——

他們曾大半夜蓬頭垢面坐在電腦前敲著代碼,也曾四處尋找幹擾因素……記憶中的苦,越品越覺得甘甜。

「時代呼喚著我們,人民期待著我們,唯有矢志不渝、篤行不怠,方能不負時代、不負人民。」此時此刻,再次品讀黨的二十大報告中這句話,曹璐的感受更為深刻,“很幸運,我們這代青年科研人員趕上了一個好時代!奮進在科技強軍征途上,我倍感驕傲自豪。”

青春的力量,創新的事業。在軍事科學院國防科技創新研究院,許許多多和曹璐一樣的年輕科研人員,在科技強軍的舞台上勇於創新、甘於吃苦,不斷提昇科研成果對戰鬥力增長的貢獻率,加速科技向戰鬥力轉化。

「深入學習宣傳貫徹黨的二十大精神,具體到我們青年科研人員來說,就是要投身國防科技創新的時代洪流,紮根科研一線,做有理想、敢擔當、能吃苦、肯奮鬥的新時代好青年。

觀察樣本 軍事科學學院國防科技創新研究院

銳意進取,投身科技創新時代洪流

■解放軍報記者 賀逸舒 邵龍飛 通訊員 任飛 張志華

廣闊的舞台,在這群年輕人面前拉開布

「人民軍隊體制一新、結構一新、格局一新、面貌一新。」深入學習黨的二十大報告,軍事科學院國防科技創新研究院院長張擁軍感觸尤為深刻——

國防科技創新研究院,是改革調整後新成立的單位。跟隨研究院共同成長的這5年,張擁軍親身經歷了改革帶來的體制、結構、格局和麵貌變化。

2018年1月,一群平均年齡30歲出頭的年輕人,從四面八方匯聚到一起,走進這個正式掛牌成立僅3個多月的科研機構。他們中有留學歸國的博士,有教書育人的軍校教員,也有長期紮根一線的科研人員。

廣闊的舞台,在這群年輕人面前拉開布。然而,全新的舞台,意味著全新的挑戰。

建院後第一次黨代會,他們增加了一項專門內容——集體組織觀賞電影《橫空出世》。

寂靜的荒漠,讀秒的聲音輕輕響起--5、4、3、2、1,起爆!巨大的蘑菇雲升騰而起,太陽般的光輝照亮了整個羅布泊,一群科研人員歡呼著從山坡上一擁而下…

這是電影《橫空出世》中震撼人心的一個畫面。 「搞出原子彈、挺直腰桿。」張愛萍將軍曾說,原子彈不是武器,是一種精神。多年前研發原子彈的勝利史詩,對今天的科學研究人員仍有無盡的啟示。

從那以後,觀看《橫空出世》成為該院官兵的傳統。該院副政委王欣田感慨地說,每看一次,都會收獲不同的感動。

「『橫空出世』的人,就要乾『橫空出世』的事。」研究院每名科學研究人員對這句話都有著自己不同的領悟。

「我第一個項目的申請書,還是在當時臨時借用的宿舍裡完成的。」青年研究員強曉剛回憶。

午夜夢回,強曉剛彷彿又看到自己趴在宿舍桌上熬夜的情景:陳舊的桌子,嗡嗡作響的電腦,清脆的鍵盤聲,一頁又一頁的參考資料…

那時,強曉剛是單身一人攻關。幾年過去,從一個人到一群人,項目申請書中提出的構想,逐漸變成現實。

敢於創新,才能擁有夢想成真的喜悅。 2021年,中國在量子領域迎來了另一個重大突破。據新華社報道,研究人員研發出了首款面向圖論問題求解的可編程光量子晶片,邁出了實現實用化光量子計算機的重要一步。相關論文在《科學進展》期刊發表,強曉剛以第一作者的身份「橫空出世」。如今,再次走進強曉剛團隊的實驗室,更多成果等待進一步測試。

時間撥回2009年,強曉剛站在了人生又一個重要的路口前:研究生是選擇本科時的電子資訊方向,還是選擇前沿但陌生的量子資訊方向?經過一番思考,他選擇了一個「雖然充滿困難,但更為長遠的方向」。

光輝的夢想,萌生於個體而又超越了個體,來源於現實而又超越了現實。從學生時代到現在,在鑽研量子技術的道路上,強曉剛遇到了許多困難,有學術上的,也有研究之外的,但他從未退縮。

建院之初,研究院領導在一次會上說:「把你們召集來,不是找個籃子把你們過去的成果裝上,繼續忙自己那一攤,而是要樹個共同目標,一起乾點大事……”

「什麼才算『大事』?」這個問題,強曉剛埋在了心裡。直到2020年10月,他看到一則新聞:中共中央政治局就量子科技研究和應用前景舉行第二十四次集體學習。習主席在主持學習時強調,“要充分認識推動量子科技發展的重要性和緊迫性,加強量子科技發展戰略謀劃和系統佈局,把握大趨勢,下好先手棋。”

強曉剛心中湧起一股熱流。他所研究的光量子晶片技術,正是量子科技領域的前沿方向。向來淡定的他這下子也不淡定了:“再怎麼拼,也值!”

「我現在做的,都是我想做的事。當個人的理想和國家利益結合在一起,再苦也不會覺得苦。」強曉剛說。

在研究員曹璐看來,理想是在共同奮鬥的道路上自然而然誕生的。 “我希望,可以把同事們的工作成果完美地集中在一顆衛星上,最大限度地滿足國家的需求。”

深入學習黨的二十大報告,曹璐愈發明晰了未來的方向。 「習主席提出,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰。我們使命在肩,義不容辭。”

10月26日,軍事科學院國防科技創新研究院的青年科學研究人員探討科研課題。李奕辰 攝

“創新就要年輕,這個時代尤其需要你們這些年輕人”

研究院辦公樓內,牆上藍色的燈帶一路向前延伸,將人引向走廊盡頭的「兩彈一星」精神文化館。

「一支部隊的基因,決定了一支部隊的未來。」該院政委盧週來說,他們選擇用「兩彈一星」精神,為這支新隊伍構築起堅實的精神根基。

紅色與藍色,是這個展館的兩種主色。

紅色,是忠誠的寫照。從「兩彈一星」元勳到年輕一代科研人員,從他們身上可以看到,什麼是「一代人有一代人的使命,一代有一代人的擔當」。

藍色,是科技的象徵。 5年間,一大批聚焦備戰打仗、瞄準智慧科技的重大科研成果噴湧而出,展現了這支新型戰略科技力量的時代擔當。

那一年,研究員姚雯跟其他幾名科研骨幹一起拜訪「兩彈一星」元勳孫家棟院士。孫家棟院士對他們說:“創新就要年輕,這個時代尤其需要你們這些年輕人。”

研究院的第一代創業者,對孫老的囑託和期望感同身受。 「奠基人是什麼?就是埋在土裡那半截。」副研究員印二威說。

「有人,才有事。沒有人才,那我們就去吸納人才。」印二威和同事大膽嘗試,採用聯合培養研究生的方式,快速組建團隊。就這樣,他們從最初的五、六個人,發展到如今成為全軍該領域唯一一支成建制的團隊,研究成果獲得軍委科技委首屆「創新盃」國防科技創新大賽一等獎等獎項。

在印二威看來,團隊的快速發展,離不開院領導的大力支持。研究院黨委有句口號:“要主動為幹事的青年人擔責。”

研究院的眾多課題中,有些技術難題,書本上是找不到答案的。這個時候,敢不敢大膽探索,能不能有所創新,必須做出選擇。

「如果有一天,我們國防科技創新研究院都不敢創新了,那是我們最大的失職。」黨委全會上的一句話,掀起了大家的「頭腦風暴」。

研究院領導帶頭走進科研一線,多方籌措科研經費,修建實驗室,購置實驗設備;一些風險較高的重點項目,領導幹部和項目負責人帶頭簽字,現場擔責;需要協調外部資源的重大活動,領導幹部親自出面,為科研人員「打氣」。

那時候,為了申請科學研究項目,印二威帶領團隊不知熬了多少個燈火通明的夜晚。

帶領自己的團隊越走越遠,印二威逐漸體會到:“幸福感,其實就是來自幹事創業的激情和信仰。”

副研究員郭鵬宇,一年裡有近三分之二時間都在外出差,他的愛人獨自帶著兩個孩子和兩位老人撐起了家;助理研究員張飛,為了團隊的整體目標,放棄了自己深耕多年的研究領域,是同事們眼中「不挑活兒」的人。

「身處前所未有的偉大時代,更需要我們強化擔當,奮發作為,銳意進取,搶佔未來軍事科技競爭的製高點。」印二威信心滿懷地說,「在黨的二十大精神指引下,我和戰友們將把青春智慧融注到軍事科研創新中。

“螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感”

子夜,萬籟俱寂。國防科技創新研究院辦公大樓走廊內,幾束光從辦公室緊閉的門縫中鑽出來。

屋內,是另一個世界。鍵盤的敲擊聲不絕於耳,一群年輕人安靜地坐在電腦前,沉浸在自己創造的「0」與「1」的世界。

這樣的場景,對這群年輕的研究人員來說已是常態。或許,在別人看來,夜以繼日地加班十分辛苦。然而,對助理研究員陳任之來說,身體上的苦,並不能稱之為苦。

陳任之對一位哲學家的話印象深刻:“人受慾望支配,慾望不滿足就痛苦,滿足了就無聊,人生如同鐘擺在痛苦和無聊之間搖擺。”

陳任之研究的領域,往往需要漫長等待才能看見成果。 「在沒有破土之前,誰也不知道自己做得怎麼樣。」陳任之說。

答案,會在成品驗證時揭曉。驗證順利,就是成功;不順利,幾個月的辛苦就付諸東流。而這個領域偏偏必須馬不停蹄地前進,永遠沒有能停下腳步的一天。於是,陳任之陷入了「奮鬥幾個月、開心兩天、繼續奮鬥」的無限循環。

「最鬱悶的是,沒人知道你幹什麼,就連隔壁同事都不清楚你在忙什麼。有時候,想和別人分享成就,也沒有人理解,只能摸摸鼻子,回去繼續幹。」陳任之說。

在這個巨大的工程裡,每位研究人員只是一顆螺絲釘。 “螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感。”

一開始,陳任之並沒有體味到這句話背後的深意。隨著在這一領域研究不斷加深,陳任之愈發清醒地體會到,這種緊迫感正成為驅動他和戰友們加速前進的動力。

「我們在進步,對手也沒有停下來。我們的優勢就是沿著中國式現代化的正確方向不斷走下去。」 深入學習黨的二十大報告,陳任之對下一步的攻關更有信心了, “黨的二十大報告為我們擘畫出了宏偉藍圖,我們要瞄準軍事科技前沿領域自主創新,為實現高水平科技自立自強貢獻自己的力量。”

軍事科學院國防科技創新研究院青年科研人員在實驗室工作。司玉祺 攝

雖然戰位不同,但我們奮鬥的目標一致

從大學校園到步入部隊,助理研究員左源在科學研究工作中常用的一個字是「落地」。 「用黨的二十大報告裡面的話,就是加速科技向戰鬥力轉化。」他說。

工作之初,每逢有部隊官兵問左源:“你們研發的這個新裝備怎麼用?”左源總是簡單地回復一句:“你用一下就知道了。”

漸漸地,當左源自己實地使用新裝備時才發現,從“理論上能用”到“實戰中能用”再到“戰場上好用”,中間隔著很長一段距離。

談到自己當初的幼稚,這個臉色黝黑的年輕人有些不好意思地笑了。

上高原,下海島,闖密林,踏戈壁……這些年來,左源始終奔波於部隊一線。 「我們做科研,一定要到部隊去!」幾次下部隊的經歷,讓左源感觸頗深,「一線部隊官兵的作戰理念,比我們想像中更先進。新裝備好不好用,他們更有話語權。

軍事科研成果必須服務演訓實戰。今年7月,左源跟隨團隊前往高原參加實兵演練。如果不是來到部隊一線,他根本想不到,首先要調整的並非新裝備本身,而是操控設備。與一線官兵的交流碰撞,讓科學研究人員對未來新式裝備的研發有了新的方向與想法。

在高原上,左源曾幫醫學研究人員收集過官兵們的血氧數據。 「你知道高原官兵的手,是什麼樣子的嗎?」說著,左源伸出自己的雙手,比畫著高原上戰友們手的樣子,「指甲根部下陷,甲面平直沒有絲毫弧度,手指粗糙得像種了幾十年地。

那一刻,左源意識到,當他日常坐在窗明幾淨的辦公室敲著代碼時,有這樣一群年輕的戰友,呼吸著微薄的氧氣,雙手持槍暴露在強烈的紫外線中,用血肉之軀築就活的界碑。

緊緊握住邊防戰友們的手,左源產生了一種「想多為他們做些什麼」的責任。

「雖然戰位不同,但我們奮鬥的目標一致。希望透過我們在科研上的努力為他們解決更多實際問題。」這份感動與責任,化為支撐青年科研人員不斷攻堅克難的動力。

為了把科研為戰、服務部隊的理念從科研“最初一公裡”貫注到“最後一公裡”,研究院組織力量常態化深入作戰部隊一線調研,讓軍事科研成果真正走向演訓場、走向實戰。

由於長期奔波在部隊一線,「別人開玩笑說,我們是一群『反候鳥』——為了做實驗,冬天往北跑,夏天往南跑。」副研究員聶一鳴說。

去年中秋節,聶一鳴和團隊正在偏僻的沙漠裡做實驗。研究院領導來慰問,條件有限,只能在最近的縣城買了幾斤包子帶過去。

「實驗成功後,我們圍坐一起,吃著包子,賞著戈壁灘上的明月。那晚的月亮,特別圓。」想起那一幕,聶一鳴回味無窮。

「深入學習黨的二十大報告,我更深切體會到,只有深入部隊一線,埋頭苦幹,不斷學習提高、能力擴容、本領升級,才能使科研工作在新域新質戰鬥力生成上有新的作為。

【銳視點】

以青春之力勇擔創新之責

■盧週來

習主席在黨的二十大報告中深刻指出,必須堅持科技是第一生產力、人才是第一資源、創新是第一動力。

科學技術是軍事發展中最活躍、最具革命性的因素。科技創新成為大國戰略博弈的主戰場,深刻影響國家安全和軍事戰略全局。推動國防和軍隊建設高質量發展,必須加快實施創新驅動發展戰略,加快實現高水平科技自立自強,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰,大幅提昇科技創新對戰鬥力成長的貢獻率。

5年前,伴隨改革強軍鏗鏘步伐,肩負科技強軍神聖使命,軍事科學院國防科技創新研究院應運而生:胸懷「幹驚天動地事」的遠大志向,瞄準世界科技前沿,聚焦未來戰爭急需,深謀制衡強敵勝勢,前瞻佈局人工智慧、無人系統、前緣交叉等一系列科研方向,與當年開創「兩彈一星」事業可謂一脈相承。

偉大事業需要偉大精神滋養,第一動力需要第一資源驅動。 60多年前,鄧農先、朱光亞、於敏、孫家棟、周光召等一大批年輕科研工作者,以熱愛祖國、無私奉獻的博大情懷,以自力更生、艱苦奮鬥的決心乾勁,以大力協同、勇於登攀的創新銳氣,堅定扛起國防科技創新的責任擔當,開創了舉世矚目的「兩彈一星」事業。在新時代強軍事業感召下,一大批平均年齡僅有30多歲、具有名校博士學歷的優秀青年集聚國防科技創新研究院,一路攻堅克難,聚力攻關突破,為加快推進科技自立自強不懈奮鬥,在創新超越中揮灑青春汗水、展現青春力量、彰顯青春擔當。

創新永無止境,奮鬥正當其時。當前,世界百年未有之大變局正在加速演變,新一輪科技革命和軍事革命日新月異。面對科技之變、戰爭之變、對手之變,作為一支充滿青春活力的新興科研力量,為國而立、因戰而研的使命無比榮光,奮鬥青春、逐夢強軍的舞台無比廣闊。奮力搶佔國防科技創新制高點,堅決打贏關鍵核心技術攻堅戰,始終是我們必須直面的現實課題、必須扛起的時代重任。

習主席強調,要造就規模宏大的青年科技人才隊伍,把培養國家戰略人才力量的政策重點放在青年科技人才上,支持青年人才挑大樑、當主角。習主席的重要指示,深刻揭示了青年科技人才成長規律,鮮明標示了科技人才培養方向。我們將牢記習主席囑托,牢記黨和人民重托,大力弘揚「兩彈一星」精神、新時代科學家精神,致力培養鍛造有理想、敢擔當、能吃苦、肯奮鬥的青年科技人才,以青春之力勇擔創新之責,讓更多新銳英才在更多更大的崗位平台挑大樑、當主角,用實際行動學習宣傳貫徹黨的二十大精神。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/4924882.html

How Can Chinese Military Research Institutes Achieve “accelerated” Innovation in National Defense Science and Technology?

中國軍事科學研究院所如何實現國防科技創新「加速」?

現代英語:

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

Standing at the forefront of the times, how can military research institutes promote the implementation of the national defense science and technology innovation strategy and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please read the news investigation brought by the PLA Daily reporter from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Defense Science and Technology Innovation: Forging a Powerful Engine to Enhance National Defense Strength

■China National Defense News reporter Pan Di and special correspondent Zhao Jie

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

President Xi Jinping stressed the need to strengthen national defense science and technology innovation and vigorously improve the ability of independent innovation in national defense science and technology when attending the plenary meeting of the PLA and armed police delegation at the first session of the 13th National People’s Congress. Standing at the forefront of the times, how can military research institutes promote the implementation of national defense science and technology innovation strategies and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please see the news investigation brought by reporters from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Research direction——

We must work hard to study and strive for the future, and never lose our ambition

In late March, at a research institute of the National Defense Engineering Research Institute, researchers who had completed the experimental content of a project were busy collecting, organizing and analyzing data, which also meant that a forward-looking topic they had been studying had entered the finalization stage.

A few years ago, when the concept of a certain type of weapon was just proposed, researchers were keenly aware that with the continuous development of science and technology, once this type of weapon breaks through the technical barriers and is successfully developed, it will bring new challenges to the construction of national defense projects. Time waits for no one, and they have planned in detail the research direction of the subject and the key issues that need to be solved in combination with the current status of my country’s national defense projects. Today, the project team has basically mastered the damage effect of a certain new type of weapon on the target, and has proposed a new protection concept accordingly.

The successful completion of the project stems from the accurate aiming of the scientific research target, and the establishment of the scientific research direction is due to the keen insight and foresight of the scientific research team. This kind of forward-looking research is not an isolated case in the institute.

Engineer Han Yu recalled that as early as the 1980s, the research staff of the institute proposed the research direction of information warfare in the future war based on the development trend of warfare. After extensive data collection, investigation and understanding of the situation, and analysis of research rules, they outlined a forward-looking development blueprint for this research direction.

Thanks to the long-term research accumulation on informationized combat styles, after the institute formally established the relevant protection research laboratory last year, the laboratory’s researchers have been advancing related scientific research topics in an orderly and intensive manner.

The application and research cycle of a project is long, ranging from a few years to more than ten years, or even longer. If the research topic lacks foresight, the scientific research direction is not closely connected to the battlefield, and the results are difficult to help improve the combat effectiveness of the troops, it will inevitably cause a waste of manpower and material resources. In response to this situation, the institute clearly requires: “For research topics related to national defense projects, if they are not practical and forward-looking, they will not be allowed to be established.”

“Our research results usually have to be tested in the training ground, and the opinions and suggestions from the troops are summarized and collected on the feedback form, which provides an important reference basis for the next step of scientific research.” Wang Mingzhe, an engineer who is about to visit a certain test site, told reporters that in order to make the research topics stand the test of future wars, the researchers of the institute often go to plateaus and islands, and travel all over the country to investigate, inspect and demonstrate.

A few years ago, when conducting research in the army, researchers discovered that the camouflage cloth used by a brigade during a live-fire exercise was not conducive to camouflage and cover in special terrain. In response to the problem, researchers quickly organized a research project and designed a new information-based shielding system and cloth, making battlefield laying more convenient, faster, more confusing and concealed.

“When attending the plenary meeting of the People’s Liberation Army and the Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi stressed the need to pay close attention to the development trends of world military technology and weaponry. Indeed, conducting scientific research is like fighting a war. Only with a forward-looking vision can we win the commanding heights in overcoming difficult problems and seize the initiative for victory.” Speaking of the institute’s project approval standards, researcher Liu Ruichao said with emotion that scientific research in the field of national defense engineering must conform to the latest trends in combat styles and weapon development, and take one step ahead while being down-to-earth.

Scientific research talents——

How can the water be so clear? Because it comes from a source of fresh water.

“Look, these are the cracks that appeared after treatment…” On the afternoon of March 13, a laboratory of the institute was occasionally filled with the sound of machines roaring and explanations of experimental content.

In the laboratory, the reporter saw a soldier with gray hair in military uniform. Researcher Chen Anmin told the reporter that the old man was Gu Jincai, an academician of the Chinese Academy of Engineering, and the voice just heard outside the door was Academician Gu explaining the experiment content to the young backbone.

As an academician, the scientific research tasks are already very busy and there is no need for him to always be on the front line. However, Academician Gu, who is already 80 years old, still insists on patiently and meticulously teaching his apprentices and leading the team.

“Academician Gu and his group of veteran comrades have been working on the front line since the establishment of the unit, providing hands-on training and guidance to scientific researchers. I am especially grateful to the predecessors for their guidance and support in getting to where I am today.” Engineer Ma Dongliang is deeply impressed by the good atmosphere of the institute.

In 2009, Ma Dongliang was assigned to a research institute in the Central Plains. As a new employee, Ma Dongliang, who had not yet understood the content of his job, thought he would be assigned to do some “odd jobs” such as organizing documents. What he did not expect was that he was entrusted with an important task as soon as he arrived at the unit and participated in a major protection research project throughout the process.

“The project team is full of teachers with many books, and I, a ‘rookie’, can complete the project tasks?” Ma Dongliang recalled that he was both excited and terrified at the time. After working in the institute for a long time, he learned that the institute would formulate a capacity improvement plan for each key talent, formulate a targeted training plan for those with development potential, and cultivate a team of key talents through job training, sending students to study, cooperation and exchange, etc.

At the 2017 National Science and Technology Awards Commendation Conference, the project in which Ma Dongliang participated won the second prize of the National Science and Technology Progress Award. What surprised him was that the project leader put him in the position of the seventh author after considering everyone’s contribution, which is not only an honor but also a spur and encouragement for young researchers.

“My contribution to scientific research has not been ignored just because I am young. This is also an important reason why our young backbones stay here to concentrate on scientific research. The evaluation of awards focuses on professional ability and contribution. When evaluating and adjusting positions, it is not based on awards or achievements, but on comprehensive evaluation.” Ma Dongliang told reporters that he is currently working on four projects at the same time, working more than 10 hours a day, and working overtime on weekends is the norm. As he said, this fair competition method and evaluation mechanism make them “excited” and “energized” to do scientific research here.

Like Ma Dongliang, there are many young backbones born in the 1980s who like the talent training atmosphere of the institute and engage in scientific research and have achieved success and development. Some have become senior engineers, and some have served as laboratory leaders. A large number of scientific research backbones have grown rapidly here.

Research conditions——

The phoenix will come to roost when the phoenix tree is lush and leafy.

If information technology is the “multiplier” of combat effectiveness, then scientific research conditions are the “incubator” that gives birth to innovative results.

During the interview at the research institute, the reporter found that the place where the researchers spent the longest time was the test site.

At a test site of the institute, the reporter met Associate Researcher Xu Xiangyun who was preparing the test content. He told the reporter that each research room has several laboratories or test sites built according to the needs of scientific research projects. In addition to purchasing local mature technology products, most of the equipment is independently developed. A new type of test equipment next to him was developed and put into use last year.

At the end of 2012, a new type of weapon was released abroad. According to information obtained by scientific and technological personnel, its attack performance and its destructiveness to protective projects are astonishing, and it is likely to cause many protective projects to lose their due effectiveness.

As it concerns the safety of national defense projects, researchers need to find out the relevant performance of this type of weapon as soon as possible, and to obtain the most accurate information, they need to conduct relevant tests. Because it is a new type of weapon, there is no alternative test method in China, and it often takes 3 years or even longer to apply for the development of test equipment. This practical problem made the researchers of the institute frown. What should they do?

“A special research team composed of academicians and experts will be established to work together to overcome difficulties.” After the researchers reported the situation, the institute also invited experts in related fields from all over the country to discuss the matter. After multiple scientific discussions, they immediately decided to start the development of the test equipment as soon as possible.

In 2015, the Institute developed a certain type of test equipment when most similar test equipment in China could only be used in a fixed manner. With the test equipment, the research team quickly began to apply for a certain evaluation test project. Today, the research team has successfully conducted tests such as weapon power research and target damage, and has proposed new protection concepts and structures accordingly.

“Today, a big challenge facing military research institutions is how to fully mobilize the enthusiasm, initiative and innovation of researchers. We must try our best to provide researchers with advanced research conditions in a timely manner to ensure innovative research.” said the leader of the institute. In recent years, they have successively built an engineering comprehensive demonstration environment laboratory with an area of ​​more than 1,000 square meters and more than 200 sets of equipment and software, as well as dynamic and static load test platforms.

If you want to do your work well, you must first sharpen your tools. At present, while continuing to implement the tasks of scientific research conditions construction, the institute focuses on the current situation at home and abroad and the development trend of related majors, actively plans new scientific research conditions construction projects, and promotes the application of the “Major Underground Engineering Safety” National Key Laboratory. A project aimed at the protection technology research of the world’s cutting-edge weapons will be carried out in the newly built simulation test center…

Accelerate national defense science and technology innovation

■Weidong

At the plenary meeting of the PLA and Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi Jinping stressed the need to strengthen national defense science and technology innovation, accelerate the construction of a military-civilian integration innovation system, and vigorously improve the independent innovation capabilities of national defense science and technology. This important thought profoundly reveals the objective laws of national defense science and technology development and points out the direction for the prosperity and development of modern military science.

In recent years, as the strategic commanding heights of science and technology have accelerated their development to the deep earth, deep sea and deep space, the forms of war and combat styles have undergone profound changes, and the process of transforming combat theories into battlefield actions and technology into equipment has continued to accelerate, and the cycle has been further shortened. Many military powers have seen the dawn of intelligent military transformation and have launched a new round of military technology innovation.

In the face of the ever-changing technological development, military research institutes must take the lead in the national defense science and technology game, take the opportunity of reshaping the military research system, stand at the overall height of ensuring victory in the informationized war, step up the strategic transformation, and firmly grasp the “bull’s nose” of independent innovation, so as to take the initiative in the grand journey of becoming world-class.

Qian Xuesen once said that national defense science and technology innovation must not be satisfied with “chasing tail” or “looking in the mirror”. Military research institutes should be bold in their ideas, have the courage to emancipate their minds, break the mindset, make macro plans for their long-term development, and optimize the top-level design. At the same time, they should also carry out forward-looking demonstrations of the needs for the development of national defense science and technology innovation, independently and proactively carry out basic, leading, and disruptive innovative technology research, keenly discover new directions and new fields for the generation of new quality combat effectiveness, and strive to stand at the forefront and be at the forefront of the world’s military science and technology competition.

It is the duty of the general to not forget to fight while defending; it is the duty of the soldiers to be well-prepared for training. Focusing on actual combat is both a goal and a guide. Military research institutes should firmly establish the idea of ​​research for combat, implement President Xi’s instructions and requirements of “facing the battlefield, facing the troops, and facing the future”, and follow the requirements of “improving joint combat capabilities and all-domain combat capabilities based on network information systems”. We should strive to conduct research in the way the war is fought and what is needed for the war, focus on improving the contribution rate of military research and innovation to the combat effectiveness of the troops, and continuously provide strong scientific and technological support for strengthening the army.

A first-class army needs first-class scientific research units, and first-class scientific research units need first-class talents. Only when talents emerge in competition can there be a burst of innovative vitality. Military scientific research institutes should always adhere to the awareness of talent cultivation as the main battlefield, highlight the cultivation of creative thinking and innovative capabilities of military scientific researchers, rely on first-class military talents to create first-class military theories and first-class military technology, and implant the winning genes for decoding future wars into the body of the army.

President Xi stressed that we should focus on the coordinated innovation of military and civilian science and technology in key areas. The fields of national defense science and technology and weapons and equipment are the focus of military-civilian integration. As military research institutes, we should focus on meeting national strategic needs, integrating into the national scientific research system, strengthening the coordinated research of major projects, and strengthening the deep integration of industry, academia and research. Relying on the superior resources of the military and the local government, we should strengthen the strategic cooperation between the military and the local government, build a service platform for the joint research and sharing of national defense science and technology achievements, the joint construction and sharing of conditions and facilities, and the connection of common standards between the military and the local government, and form a new situation of open, integrated and innovative development of national defense science and technology.

Stride forward, reshape and reconstruct is not a minor repair, and must not be a small fight. We must seize the opportunity of the start, release the starting momentum, take steps and speed up in key areas, important directions and major tasks, and create new models and set new benchmarks as soon as possible, so as to take the lead in achieving leading results in the world military science and technology competition, occupy a number of strategic commanding heights and winning points, use first-class military technology to create a first-class combat offense and defense system, and gradually achieve the goal of building a first-class army.

(Author’s unit: National Defense Engineering Research Institute, Academy of Military Sciences)

Military scientific and technological innovation should focus on basic scientific research, improve basic scientific research support capabilities, and lay a solid foundation for national defense scientific and technological innovation.

In recent years, we have made great progress in the field of national defense science and technology, but there is still a gap with foreign countries in some key technologies, mainly because the basic research is not solid enough, and there is still room for improvement in professional basic theoretical research, digital military simulation platform development, large-scale distributed numerical computing technology, etc. These factors have restricted the scientific research progress and development in the military field to a certain extent, affecting the emergence and breakthroughs of cutting-edge leading technologies, modern engineering technologies, and disruptive technological innovations.

Basic key technologies cannot be bought, and you will not get far if you rely on buying second-hand technologies from abroad. We should start from the aspects of top-level planning design, scientific research management system, and incentive mechanism for scientific researchers, attach importance to and support basic research work, carry out basic research work in depth, and enhance original innovation capabilities.

Military research institutions must break down the “barriers” between the military and civilian science and technology systems, and focus on collaborative innovation in military and civilian science and technology in key areas.

With the rapid development of high-tech weapons and equipment, the styles and forms of warfare are constantly changing, which puts higher requirements on battlefield construction. We must actively explore many disciplines such as earth sciences, high-tech equipment manufacturing, and automatic control, and study the construction of a full-domain intelligent battlefield.

Based on this, military research units need to cooperate with local governments to jointly carry out in-depth engineering research, integrate high-quality local military resources in the fields of electronic information, drones, artificial intelligence and bionics, and use the best scientific and technological resources in the country to build a modern military force system. For our national defense engineering field, we must attach importance to promoting the application of building information modeling (BIM) in military engineering and realize the informationization and refined management of engineering construction and operation and maintenance.

Innovation-driven development is essentially talent-driven. Whoever possesses first-class innovative talents will have the advantage and dominance in scientific and technological innovation.

At present, the most urgent need for strengthening national defense and military construction is talent; looking to the future, the core of achieving leapfrog development in military construction is still talent. Only by fully driving the talent training engine can we strongly promote independent innovation in national defense science and technology.

Many years of experience in scientific research have made me feel that talent cultivation is a systematic project and strategic task. We need to focus on the overall situation, strengthen top-level design, scientifically set up echelons, and strive to create a vivid situation where outstanding talents emerge and everyone competes to be a “maker” in the military camp. Talent cultivation has its inherent characteristics and laws. It cannot be achieved overnight or in a short period of time. We need to firmly establish a scientific concept of talent cultivation, with the ideological realm and confidence and courage of “success does not have to be mine, but the effort will not be in vain”, and work hard for a long time and continue to relay, so as to turn the talent cultivation blueprint into reality and provide solid talent support for the development of the military through science and technology.

Conducting military scientific research is like fighting a war. Only with a forward-looking vision can you gain the commanding heights in overcoming difficult problems and seize the initiative for victory.

In recent years, national defense science and technology at home and abroad has developed rapidly, the all-round reconnaissance technology integrating land, sea, air and space has been continuously improved, the use of troops and weapons supported by highly information technology on the battlefield and the emergence of new weapons have greatly changed the combat style and characteristics of future wars. Scientific researchers must deeply grasp and base themselves on the characteristics of future wars and carry out innovative scientific research in a targeted manner.

Specifically in the field of national defense engineering research, military researchers must keep up with the forefront of the development of world weapons and equipment and protection technology, and focus on preventing both “hard kill” and “soft kill”; they must pay attention to the protection of key parts as well as the protection of the overall system; they must do a good job in passive protection, and also track and study active protection and new weapon protection technologies, promote disruptive technological innovation, and strive to improve the battlefield survivability and combat support capabilities of national defense engineering.

現代國語:

目前,新一輪科技革命、工業革命、軍事革命正加速推進,太空、網路等新興領域將成為未來競爭的焦點。科學技術日新月異,武器裝備和作戰方式日新月異,對軍事科學研究院所進行全域戰場研究提出了新的要求。

站在時代前沿,軍隊科學研究院所如何推動國防科技創新戰略實施,將科學研究成果轉化為現實戰力?如何實現科技創新從“蹲著跑”到“跳起來”,實現科技創新“加速”?請閱讀解放軍報記者軍事科學院國防工程研究所帶來的新聞調查。

國防科技創新:為提升國防實力鍛造強大引擎

■中國國防報記者 潘娣 特約記者 趙傑

目前,新一輪科技革命、產業革命、軍事革命加速推進,太空、網路等新興領域將成為未來的爭奪焦點。快速發展的科學技術、日新月異的武器裝備及作戰方式,給軍科研院所提出了全域戰場研究的新要求。

習主席出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,加強國防科技創新,並大力提升國防科技自主創新能力。挺立時代潮頭,軍事科研院所如何推進國防科技創新戰略落地生根,把科學研究成果轉化為實實在在的戰鬥力?如何實現科技創新“深蹲助跑”到“起跳跨越”,跑出科技創新“加速度”?請看記者從軍事科學院國防工程研究院帶來的新聞調查。

科學研究方向——

躬身必以研為戰,望遠不墜鯤鵬志

3月下旬,在國防工程研究院某研究所,已經完成某專案試驗內容的科研人員正在緊張地進行資料的蒐集、整理與分析,這也意味著他們潛心鑽研的某前瞻性課題進入結題階段。

幾年前,某型武器的概念剛被提出時,科研人員就敏銳地認識到:隨著科學技術不斷發展,該型武器一旦突破技術壁壘研製成功,將會對國防工程建設帶來新的挑戰。時間不等人,他們結合我國國防工程現狀,詳細規劃了主題的研究方向和需要重點解決的關鍵問題。現今,本計畫組基本上掌握某新型武器對目標的毀傷效果,並相應提出新的防護理念。

專案成功結題的背後,源自於科研標靶的準確瞄準,而科研方向的確立得益於科研團隊敏銳的洞察力與前瞻性。這種具有前瞻性的研究在該研究院並非個案。

根據工程師韓彧回憶,早在1980年代,該研究院科研人員根據作戰發展趨勢,預見未來戰爭資訊化作戰的研究方向。經過廣泛收集資料、調查了解情況、剖析研究規律,他們為研究方向勾勒出前瞻性的發展藍圖。

得益於長期資訊化作戰樣式的研究積累,去年研究院正式組成相關防護研究室之後,研究室科研人員便有條不紊、緊鑼密鼓地推進相關科研課題。

課題申請立項與研究週期長,短則幾年多則十幾年,甚至會更長。如果研究主題缺乏前瞻性,科學研究方向對接戰場不緊密,出了成果也難以助力部隊戰鬥力的提升,勢必會造成人力物力的浪費。針對這種情況,該研究院明確要求:“事關國防工程的研究主題,不具備實用性前瞻性決不允許立項。”

「我們的研究成果通常要經過演練場檢驗,匯總收集部隊反饋的意見建議到意見反饋表上,為下一步科研攻關提供重要參考依據。」即將赴某試驗場考察的工程師王明哲告訴記者,為了讓研究主題經得起未來戰爭的檢驗,研究院的科研人員常上高原、下海島,走南闖北去研究、考察與論證。

幾年前,科學研究人員在部隊調查時發現,某旅在實兵演練過程中使用的迷彩遮蔽佈在特殊地形下不利於偽裝掩護。針對發現的問題,科學研究人員快速組織主題立項研究,設計出新型資訊遮蔽系統與遮蔽布,使戰場鋪設更加方便快捷,更具迷惑性和隱蔽性。

「習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要密切關注世界軍事科技和武器裝備發展動向。的確,搞科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。 。

科學研究人才—

問渠哪得清如許,為有源頭活水來

「你們觀察一下,這是處理後顯現的裂縫…」3月13日下午,研究院某實驗室不時傳出陣陣機器轟鳴與講解試驗內容的聲音。

在實驗室裡,記者看到一位穿著軍服、頭髮花白的軍人。研究員陳安敏告訴記者,這位老者是中國工程院院士顧金才,剛在門外聽到的聲音就是顧院士在為年輕骨幹講解試驗內容。

身為院士,科學研究任務本就十分繁忙,完全不需要一直盯在一線,但已經80歲高齡的顧院士卻仍堅持耐心細緻地教徒弟、帶團隊。

「顧院士那一批老同志自單位成立以來就一直奮戰在一線,手把手地對科研人員進行傳幫帶。我能走到今天特別感謝前輩們的教導和扶持。」工程師馬棟良對研究院良好的氛圍感受頗深。

2009年,馬棟良被分配到地處中原地的某研究所。新到工作單位,還沒了解工作內容的馬棟良以為會被派去幹一些整理文檔的“雜活兒”,讓他沒想到的是,剛到單位就被委以重任,全程參與某重大防護研究課題。

「專案組裡都是著作等身的老師,而我一個『菜鳥』能把專案任務完成好嗎?」馬棟良回想當時的心情既激動又惶恐。他在研究院待久了才知道,原來研究院對每位骨幹人才都會製訂能力提升計劃,對有發展潛力的針對性製訂培養方案,透過崗位鍛鍊、送學培養、合作交流等方式,培養骨幹人才方隊。

在2017年度國家科學技術獎勵表揚大會上,馬棟良參與的這個計畫獲得國家科學技術進步獎二等獎。讓他既驚訝又意外的是,專案組組長綜合考慮每個人的貢獻後,將他放在了第七作者的位置,這對年輕科研人員來說既是榮譽,更是鞭策和激勵。

「並沒有因為年輕就忽略我在科研中的貢獻,這也是我們年輕骨幹留在這裡潛心搞科研的重要原因。評獎看重專業能力與所作所為,在評職調級時不唯獎不唯成果,而是依據綜合性評估。如他所說,這種公平的競爭方式與評價機制,讓他們在這裡搞科研「得勁兒」「有勁兒」。

而和馬棟良一樣,喜歡研究院人才培養氛圍而深耕科研,並取得成就與發展的「80後」年輕骨幹不在少數,有的成為了高級工程師,有的擔任了研究室領導,一大批科研骨幹在這裡快速成長起來。

科學研究條件——

梧桐枝繁葉茂,自有鳳凰來棲

如果資訊科技是戰鬥力的“倍增器”,那麼科研條件就是催生創新成果的“孵化器”。

在研究院採訪的日子裡,記者發現科學研究人員待得最久的地方就是試驗場。

在研究院某試驗場地,記者見到正在準備試驗內容的副研究員徐翔雲,他告訴記者,每個研究室都有幾處根據科研項目需求建造的實驗室或試驗場,除了購置地方技術成熟的產品,大部分是自主研發的設備,他身旁的某新型試驗設備就是去年研發投入使用的。

2012年年底,國外發布了一款新型武器,根據科技人員掌握到的情況,其攻擊性能及其對防護工程的破壞性令人吃驚,很可能會導致許多防護工程失去其應有的效用。

關乎國防工程的安全問題,科學研究人員要盡快摸清該型武器的相關性能,而要掌握到最準確的資料,需要進行相關試驗。由於是新型武器,國內尚未有可以作為替代的試驗手段,而要報項申請研發試驗裝備,往往需要3年甚至更長的時間。這個現實難題讓研究院科研人員皺緊了眉頭,怎麼辦?

「成立由院士專家組成的專題課題攻關小組,群策群力攻堅克難。」科研人員報告情況後,研究院還請來全國相關領域的專家探討,經過多方科學論證,他們當即拍板兒,盡快開展試驗設備的研發。

2015年,在國內大多數同類型試驗裝備只能固定使用的情況下,研究院研發出某型試驗裝備。有了試驗裝備,課題組很快就開始進行某評估試驗課題的申報工作。如今,該研究小組成功進行武器威力研究、目標毀傷情況等試驗,並相應提出新的防護理念和結構。

「如今,軍事科研機構面臨的很大一個難題,就是如何充分調動科研人員的積極性、主動性和創新性。我們要盡力為科研人員及時提供先進的科研條件,保障創新研究。」該研究院領導說。近年來,他們先後建造1000多平方公尺、200餘台(套)設備軟體的工程綜合論證環境實驗室、動載和靜載試驗平台。

工欲善其事,必先利其器。目前,該研究院在持續抓好科研條件建設任務落實的同時,著眼於國內外現狀與相關專業的發展趨勢,積極籌劃新的科研條件建設項目,推動“重大地下工程安全”國家重點試驗室等申報工作。瞄準世界前沿武器的防護技術研究的某個主題將在剛建成的模擬試驗中心開展…

跑出國防科技創新“加速”

■衛東

習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要加強國防科技創新,加速建立軍民融合創新體系,大力提升國防科技自主創新能力。這一重要思想,深刻揭示了國防科技發展的客觀規律,為繁榮發展現代軍事科學指明了前進方向。

近年來,隨著科技戰略制高點朝向深地、深海、深空加速發展,戰爭形態和作戰樣式深刻嬗變,作戰理論轉化為戰場行動、技術物化為裝備的進程不斷加快,週期進一步縮短。不少軍事強國看到了智慧化軍事變革破曉的訊號,紛紛啟動新一輪軍事技術革新。

軍事競爭唯創新者勝。面對日新月異的科技發展態勢,軍事科研院所必須在國防科技博弈中率先投子佈勢、走開棋路,以軍事科研體系重塑為契機,站在保障打贏資訊化戰爭的全局高度,加緊推進戰略轉型,緊緊扭住自主創新這個“牛鼻子”,才能在邁進世界一流的宏闊征程中下好先手棋,掌握主動權。

錢學森曾說過,國防科技創新絕對不能滿足於「追尾巴」「照鏡子」。軍事科學研究院所應大膽構想,勇於解放思想,破除思維定式,對其長遠發展進行宏觀規劃,優化頂層設計。同時,也應進行前瞻性國防科技發展創新需求論證,自主超前展開基礎性、先導性、顛覆性創新技術研究,敏銳發現新質戰鬥力生成的新方向新領域,努力在世界軍事科技競爭中站上前沿、走在前面。

守不忘戰,將之任也;訓練有備,兵之事也。聚焦實戰是目標,也是牽引。軍事科研院所應牢固樹立研為戰思想,貫徹習主席「面向戰場、面向部隊、面向未來」的指示要求,按照「提高基於網路資訊體系的聯合作戰能力、全域作戰能力」的要求,努力做到仗怎麼打科學研究就怎麼搞,打仗需要什麼科學研究就搞什麼,著力提升軍事科學研究創新對部隊戰鬥力的貢獻率,不斷為強軍興軍提供強而有力的科技支撐。

一流的軍隊需要一流的科學研究單位,一流的科學研究單位需要一流的人才。只有人才競相湧現,才有創新活力迸發。軍事科研院所應始終堅持人才培養的主陣地意識,突顯對軍事科研工作者創造性思維、創新型能力的培養,靠一流軍事人才創造一流軍事理論和一流軍事科技,為軍隊的肌體植入解碼未來戰爭的致勝基因。

習主席強調,要突顯抓好重點領域軍民科技協同創新。國防科技與武器裝備領域是軍民融合的重點,作為軍事科研院所,應注重對接國家戰略需求,融入國家科研體系,加強重大項目協同攻關,強化產研深度融合。依托軍地優勢資源,強化軍地戰略協作,建構國防科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成國防科技開放融合創新發展新局面。

闊步前進,重塑重構不是小修小補,絕不能小打小鬧。必須抓住開局契機,釋放起跑動能,在重點領域、重要方向和重大任務上把步子邁起來、速度提上去,盡快打造新樣板,樹起新標桿,從而在世界軍事科技競爭中率先取得引領性成果,佔據若干戰略制高點、致勝點,以一流軍事科技打造一流作戰攻防體系,逐步實現一流軍隊的建設目標。

(作者單位:軍事科學學院國防工程研究院)

軍事科技創新要聚焦基礎科學研究,提升基礎研究支撐能力,築牢國防科技創新的根基。

近年來,我們在國防科技領域取得非常大的進展,但在一些關鍵技術上和國外仍存在差距,主要是因為基礎性研究不夠紮實,在專業基礎理論研究、數位化軍事模擬平台研發、大型分散式數值計算技術等方面仍有待提升。這些因素都在一定程度上限制了軍事領域的科研進步與發展,影響著前沿引領技術、現代工程技術、顛覆性技術創新等方面的產生與突破。

基礎性關鍵技術絕對買不來,靠從國外買二手技術是走不遠的。若要從規劃頂層設計、研究管理制度、研究人員激勵機制等面向入手,實際重視與扶持基礎研究工作,深入進行基礎研究工作,提升原始創新能力。

軍事科研機構必須破除軍民科技體系之間的“藩籬”,突顯抓好重點領域軍民科技協同創新。

隨著當前高新技術武器裝備迅速發展,戰爭樣式和形態推陳出新,對戰場建設提出了更高要求,要積極探索地球科學、高新技術裝備製造、自動控制等眾多學科,研究全局智能戰場建設。

基於此,軍事科研單位需要和地方協同合作,共同做好深部工程研究,在電子資訊、無人機、人工智慧和仿生技術等高新科技研究方向,整合軍隊地方優質資源,用全國最優質的科技資源建構現代軍事力量體系。對我們國防工程領域而言,要重視推進建築資訊模型(BIM)在軍事工程的應用,實現工程建設與運作維護的資訊化、精細化管理。

創新驅動實質上是人才驅動,誰擁有了一流的創新人才,誰就擁有了科技創新的優勢和主導權。

著眼當下,加強國防和軍隊建設最緊張的就是人才;放眼未來,實現軍隊建設跨越式發展最核心的還是人才。全力驅動人才培養引擎,才能強勢助推國防科技自主創新。

多年的科學研究工作經驗使我感到,人才培育工作是一項系統工程和策略任務,需要著眼全局,加強頂層設計,科學設置梯次,著力形成優秀人才競相湧現、人人爭當軍營「創客」的生動局面。人才培育有其固有的特點和規律,不可能一蹴而就、短期速成,需要牢固樹立科學的人才培養觀,以「功成不必在我,而功力必不唐捐」的思想境界和信心勇氣,久久為功、持續接力,才能把人才培養藍圖變成現實,為科技興軍提供堅實的人才支撐。

搞軍事科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。

近年來,國內外國防科技快速發展,陸海空天一體的全方位偵察技術不斷提升,戰場中以高度資訊化技術為支撐的兵力武器運用以及新式武器的問世,大大改變了未來戰爭的作戰樣式和特徵,科學研究人員要深刻掌握並立足未來戰爭特點,有針對性地進行創新性科學研究工作。

具體到國防工程研究領域,軍事科研人員要緊跟世界武器裝備和防護技術發展的前沿,既要注重防“硬殺傷”,也要注重防“軟殺傷”;既要注重對要害部位的防護,也要注重整體系統防護;既要搞好被動防護,也要追蹤研究主動防護和新型武器防護技術,推動顛覆性技術創新,努力提升國防工程戰場生存能力和作戰保障能力。

来源:中国军网综合

作者:潘娣 赵杰等责任编辑:柳晨

2018-05-02 

中國原創軍事資源:https://www.81.cn/2018zt/2018-05/02/content_8020899.htm

Accelerate Innovation & Development of Chinese National Defence Science and Technology Support Modernization of China’s Military

加速國防科技創新發展支撐軍隊現代化

2023年11月26日07:00

現代英語:

President Xi Jinping emphasized that military scientific research has a strong exploratory nature, and innovation must be placed in a more prominent position, strategic planning and top-level design must be done well, innovation in military theory, innovation in national defense science and technology, and innovation in organizational models of military scientific research must be strengthened, and The engine of military scientific research and innovation is running at full speed. This important statement by President Xi profoundly reveals the importance of national defense scientific and technological innovation and is the fundamental guideline for promoting the development of national defense scientific and technological innovation under the new situation. We must launch the engine of innovation and development of national defense science and technology at full speed, promote the high-quality development of national defense science and technology, and provide strong material and technical support to achieve the centenary goal of the founding of the army and comprehensively build a world-class army.

Strengthen basic research towards the development frontier

At present, a new round of scientific and technological revolution and industrial transformation are taking place, and the world’s new military revolution is accelerating, ushering in the era of moving from informatization to intelligence, which will inevitably bring about major evolutions in the form of war, major adjustments in military strategies, The combat methods have undergone major changes and the combat forces have undergone a major transformation. To promote the innovative development of national defense science and technology, we must adhere to the forefront of the world’s military science and technology development, the major needs of building a strong military, and the future battlefield, conscientiously explore the winning mechanism of future wars, continuously increase the contribution rate of national defense science and technology to war preparation, deterrence and victory, and seize the future military Injecting strong momentum into the commanding heights of competitive strategy.

Aim at the forefront of the world’s military science and technology, keep up with the world’s new military revolution, especially the development direction of military science and technology, seize the opportunities arising from the new round of scientific and technological revolution and industrial revolution, strive to narrow the gap in key areas, and measure innovation by obtaining comparative advantages. The fundamental standards for development are to select the breakthrough points and focus points of scientific and technological innovation, strengthen forward-looking planning and design, allocate limited resources to major technological research, concentrate superior forces, vigorously conquer key technologies in the military field, and master a number of independent intellectual property rights. core technology. From structural design to force ratio to scientific research projects, we should seize the main research areas, reflect the development frontier, form overall advantages, and actively seek strategic initiative and military advantages.

With the continuous development of science and technology, the characteristics of multi-disciplinary professional cross-clustering and multi-field technology integration have become increasingly prominent. Big crossover, big integration, and big breakthroughs have become the basic laws of the development of modern military science. To promote the innovative development of national defense science and technology, we must strive to improve technological cognition, dare to explore new paths in construction ideas and technological paths, open up channels for transforming technological chains into industrial chains, and enhance national strategic capabilities and weapons and equipment development capabilities. It is necessary to follow the essential requirements and inherent laws of national defense science and technology, stand in the context of the national innovation system and military-civilian integrated collaborative innovation, accelerate the establishment of a strategic, basic, cutting-edge, and open scientific research and innovation platform, and promote the direction of national defense science and technology. Military theory and military technology are closely integrated, basic research and applied research promote each other, and independent innovation and absorption and reference are emphasized simultaneously. Adapt to the requirements of national defense science and technology innovation and development, do a good job in basic management, and establish a basic supporting management mechanism to ensure the development of national defense science and technology innovation; strengthen project management, and strive to form a classified, efficient, flexible, adaptive, and sustainable management mechanism and work process; Broaden technology transformation channels, establish and improve policy systems and mechanisms for the transformation and application of national defense scientific and technological achievements, and promote the rapid transformation and application of national defense scientific and technological innovation achievements.

Practice has proved that basic research is the key to how high and how far national defense science and technology innovation can “jump” and “run”. Therefore, we must focus on innovative basic and applied basic research, build a rich scientific reserve, correctly grasp the relationship between basic research and technology application, and provide strong support for promoting the innovative development of national defense science and technology. First, basic research should be regarded as the leading project to promote the innovation and development of national defense science and technology, and be placed in a strategic position of priority development. Sufficient and stable funding investment should be maintained, advance layout and priority support should be provided in several major areas, and new concepts, new principles, and New methods, striving to achieve major breakthroughs in basic, cutting-edge and strategic fields. Second, we must adhere to the use of systems engineering thinking and methods, correctly understand and scientifically guide basic research and technology application practices, not only promote the transformation and application of scientific and technological achievements, but also cultivate new technological growth points to form “basic research, development and application, and achievement transformation”. , a closed link to integrated application and re-innovation. Third, we must open up channels for the transformation of national defense scientific and technological achievements as soon as possible, and promote scientific research achievements to take root in building a world-class army and serving in war preparations. Actively explore scientific research collaboration in the form of technology groups, project groups, etc., strengthen military-civilian communication and collaboration, smooth channels for technical needs, and promote the transformation of scientific and technological achievements as soon as possible.

Establish scientific research as a battle orientation and win the future through innovation

Focusing on actual combat is the core goal of military construction. We must regard the fundamental traction of adhering to combat needs as an important guiding principle for the innovative development of national defense science and technology. We must always aim at the innovative development of military theory and military science and technology for tomorrow’s war, and explore the formation of military theories that keep pace with the development of the times and the country. A national defense science and technology innovation system that is adapted to security needs and meets future combat requirements.

To promote the innovative development of national defense science and technology, we must firmly establish the fundamental orientation of scientific research for warfare, conduct in-depth research on the characteristics, combat styles, operational focus and winning mechanisms under informationized conditions, persist in guiding basic research and exploration of strategic frontier technologies based on operational needs, and further improve Scientific research projects focus on systems and mechanisms such as preparation for war. At the same time, we must keep a close eye on future combat opponents, accurately grasp the evolution of war forms and the development trends of world military science and technology, constantly update ideas and concepts, and scientifically plan today’s preparations, design tomorrow’s wars, and win on future battlefields. .

Combat effectiveness has always been the decisive factor in the success or failure of the army, and combat effectiveness standards are the only fundamental standards for military construction. The rapid development of high-tech with information technology as the core has resulted in unprecedented profound changes in the complexity of offensive and defensive warfare mechanisms, and has had an unprecedented profound impact on the generation and improvement of combat effectiveness. Therefore, we must regard independent innovation as an important factor, component and way of realizing the transformation of the combat effectiveness generation model, be good at discovering the potential driving force of new technologies for the development of combat effectiveness, and promote the development of national defense science and technology innovation in the great practice of comprehensively realizing the goal of strengthening the military.

In order to adapt to the requirements of winning informationized and intelligent wars and focus on effectively fulfilling missions and tasks, it is necessary to adhere to the strategic basis of independent innovation, improve the scientific research collaborative innovation mechanism, create an integrated innovation platform, and comprehensively promote the development of national defense science and technology innovation. First, we should regard the weak links of national defense science and technology as the main direction of promoting independent innovation, and at the same time increase the intensity of original innovation, focus on mastering key core technologies in some important fields and technological frontiers, and strive to build a system that can continuously increase national defense science and technology reserves and A national defense science and technology innovation system that can enable rapid transformation. Correctly handle the relationship between key technologies and general technologies, general technologies and special technologies, traditional technologies and high and new technologies, achieve overall consideration and rational layout, and achieve mutual support and coordinated development of various technologies and disciplines. Second, we must grasp the needs for the development of national defense science and technology innovation, focus on solving problems in the science and technology management system, demand generation mechanism, scientific research planning system, etc., improve the overall effectiveness of scientific research, and create strong vitality to promote independent innovation. Vigorously promote the sharing of basic technical resources between the military and civilians, and establish and improve military-civilian standardization coordination mechanisms and technical service mechanisms. Third, we must improve the scientific and technological collaborative innovation policy and system of universities, scientific research institutes, enterprises, and governments, maximize the advantages of all aspects, strive to create an integrated innovation platform, and form an overall synergy to promote collaborative innovation of national defense science and technology.

Implement the strategy of strengthening the army with talents in the new era to unleash creative vitality

Promoting the innovation and development of national defense science and technology ultimately depends on high-level talents. Without a strong team of national defense science and technology talents, independent innovation will be water without a source and a tree without roots. Therefore, we must actively adapt to the requirements of national defense science and technology innovation and development, and vigorously build a systematic and high-level talent training platform to allow more high-quality and professional talents to emerge.

Firmly establish the concept of “talents are the first resource”, insist on cultivating talents as a major political task, and use the insight to recognize talents, the true love for talents, the methods of gathering talents, the courage to use talents, and the mind to accommodate talents, Boldly use strategic scientists to support young scientific and technological talents to take on important roles and assume important responsibilities, and continuously strengthen the team of leading scientific and technological talents and first-class innovation teams. We must adhere to the joint efforts of major national defense science and technology construction projects and talent construction projects, boldly select, use and temper various talents in the practice of major projects and major tasks, cultivate and create a new generation of scientific and technological talents and leading talents, and build the field of national defense science and technology and equipment into a national It is a highland for innovative talents and a fertile ground for talents to grow and prosper, forming a vivid situation in which the creative vitality of national defense science and technology talents bursts out. Clarify the evaluation methods and standards for national defense scientific and technological talents, improve the differentiated evaluation and policy support mechanism for national defense scientific and technological talents, and build an evaluation system that conforms to the laws of national defense science and technology and the laws of talent growth. Reform the science and technology management and personnel system, let scientific research management keep up with the pace of scientific and technological innovation, truly free up hands and feet, free up time and build a platform for scientific researchers, and hand over the stage of scientific research and innovation to them with confidence, so that they can play the leading role in scientific research and innovation. , sing a big show.

A scientific and fair evaluation mechanism plays a fundamental role in stimulating innovation. Practice has proved that any major breakthrough in the field of basic research is inseparable from long-term accumulation and repeated failures. This is an inevitable law of scientific development. Therefore, in the process of scientific research and production of national defense technology and weapons and equipment, we must not only encourage scientific researchers to have fantastic ideas, but also tolerate their failures in exploration and practice. It is advocated that the implementation of various scientific research plans should not be based on the number of papers and patents as project goals, but should focus on the acquisition of original results and allow a certain failure rate. Conduct peer evaluation of basic and cutting-edge technology research, highlight medium- and long-term goal orientation and original value, strive to create a fair competition environment that encourages innovation, and make great efforts to activate the “pool of spring water” for the innovation and development of national defense science and technology.

Comprehensively implement the strategy of strengthening the military with talents in the new era, further enhance the vitality of talent team building, maximize the innovation power of national defense science and technology talents, and fully mobilize their enthusiasm, initiative and creativity. Follow the growth rules of high-quality and professional military personnel, create an environment that recognizes, loves, respects, and utilizes talents, formulates policies and systems that combine competition incentives and advocating cooperation, promotes the orderly flow and rational distribution of human resources, and serves local talents to serve national defense Build a good platform for science and technology construction, and strive to create a good situation where people can make the best use of their talents, fully display their talents, and make full use of their talents.

(The author is a researcher and doctoral supervisor at the Institute of Systems Engineering, Academy of Military Sciences)

(Editors: Wang Zifeng, Song Meiqi)

現代國語:

習近平主席強調指出,軍事科學研究具有很強的探索性,要把創新擺在更加突出的位置,做好戰略謀劃和頂層設計,加強軍事理論創新、國防科技創新、軍事科研工作組織模式創新,把軍事科研創新的引擎全速發動。習主席的這一重要論述,深刻揭示了國防科技創新的重要性,是新形勢下推動國防科技創新發展的根本遵循。我們要全速發動國防科技創新發展的引擎,促進國防科技高品質發展,為實現建軍一百年奮鬥目標、全面建成世界一流軍隊提供強而有力的物質技術支撐。

面向發展前沿 加強基礎研究

當前,新一輪科技革命和產業變革正孕育興起,世界新軍事革命加速推進,拉開了從資訊化向智慧化邁進的時代大幕,必將帶來戰爭形態大演進、軍事戰略大調整、作戰方式大嬗變、作戰力量大轉型。推進國防科技創新發展,必須堅持面向世界軍事科技發展前沿,面向強軍實踐重大需求,面向未來戰場,認真探索未來戰爭制勝機理,不斷提高國防科技對備戰懾戰勝戰的貢獻率,為搶佔未來軍事競爭戰略制高點注入強勁動能。

瞄準世界軍事科技前沿,緊跟世界新軍事革命特別是軍事科技發展方向,緊緊抓住新一輪科技革命和產業革命正在興起的機遇,努力縮小關鍵領域的差距,以取得比較優勢作為衡量創新發展的根本標準,選準科技創新的突破口和著力點,加強前瞻謀劃設計,把有限的資源配置到重大技術攻關上,集中優勢力量,大力攻克軍事領域的關鍵技術,掌握一批擁有自主知識產權的核心技術。從結構設計到力量配比再到科研項目,都應抓住主要研究領域,體現發展前沿,形成整體優勢,積極謀求戰略主動和軍事優勢。

隨著科學技術不斷發展,多學科專業交叉群集、多領域技術融合整合的特徵日益凸顯,大交叉、大融合、大突破已成為現代軍事科學發展的基本規律。推進國防科技創新發展,要努力提陞技術認知能力,在建設思路、技術路徑上敢於蹚新路,打通技術鏈轉化為產業鏈的通道,提升國家戰略能力和武器裝備發展實力。要遵循國防科技的本質要求與內在規律,站在國家創新大體系、軍民一體化協同創新的大背景下,加速建立戰略性、基礎性、前沿性、開放性的科學研究創新平台,推動國防科技向軍事理論與軍事技術緊密結合、基礎研究與應用研究相互促進、自主創新與吸收借鑒並重舉轉變。適應國防科技創新發展要求,搞好基礎管理,配套建立確保國防科技創新發展的基礎支撐性管理機制﹔加強項目管理,努力形成分類分級、高效靈活、自適應、可持續的管理機制和工作流程﹔拓寬技術轉化管道,建立並改善國防科技成果轉化應用政策制度機制,推動國防科技創新成果快速轉化應用。

實踐証明,國防科技創新能「跳」多高、「跑」多遠,基礎研究是關鍵。因此,要著力抓好創新性基礎與應用基礎研究,搞好豐厚的科學儲備,正確掌握基礎研究與技術應用的關系,為推動國防科技創新發展提供強力支撐。一要把基礎研究作為推動國防科技創新發展的先導工程,放在優先發展的戰略位置來抓,保持足夠、穩定的經費投入,在若干重大領域提前佈局與優先支持,探索新概念、新原理、新方法,力爭在基礎性、前衛性、戰略性領域取得重大突破。二要堅持運用系統工程的思維與方法,正確認識與科學指導基礎研究與技術應用實踐,既要促進科技成果轉化運用,又要培育新的技術成長點,形成「基礎研究、開發應用、成果轉化,到整合應用再創新」的閉合鏈路。三要盡快打通國防科技成果轉化的管道,促進科學研究成果在建設世界一流軍隊和服務備戰打仗中落地生根。積極探索以技術群、項目群等形式開展科研協作攻關,加強軍地溝通協作,暢通技術需求通道,促進科技成果盡快實現轉型。

樹立科研為戰導向 以創新制勝未來

聚焦實戰是軍隊建設的核心目標,必須把堅持作戰需求的根本牽引作為國防科技創新發展的重要指導原則,始終瞄準明天的戰爭創新發展軍事理論和軍事科技,探索形成與時代發展同步伐、與國家安全需求相適應、滿足未來作戰要求的國防科技創新體系。

推進國防科技創新發展,必須穩固確立科研為戰的根本導向,深入研究資訊化條件下的作戰特點、作戰樣式、作戰重心和製勝機理,堅持以作戰需求牽引基礎研究和戰略前沿技術探索,進一步完善科學研究項目聚焦於備戰打仗等製度機制,同時要緊盯未來作戰對手,準確掌握戰爭形態演變趨勢、世界軍事科技發展趨勢,不斷更新思想觀念,科學籌劃今天的備戰、設計明天的戰爭、制勝未來的戰場。

戰鬥力始終是軍隊興衰成敗的決定性因素,戰鬥力標準是軍隊建設唯一的根本的標準。以資訊科技為核心的高新技術迅猛發展,戰爭攻防作戰機理的複雜程度發生了前所未有的深刻變化,對於戰鬥力的生成和提高產生了前所未有的深刻影響。因此,必須把自主創新作為戰鬥力生成模式轉變的重要因素、構成要素和實現途徑,善於發現新技術對戰鬥力發展的潛在推動力,在全面實現強軍目標的偉大實踐中促進國防科技創新發展。

為適應打贏資訊化與智慧化戰爭要求,著眼有效履行使命任務,就要堅持自主創新的戰略基點,完善科研協同創新機制,打造融合創新平台,全面推進國防科技創新發展。一要把國防科技的薄弱環節作為推進自主創新的主攻方向,同時加大原始性創新力度,著力在一些重要領域和科技前沿掌握關鍵核心技術,努力構建既能使國防科學技術儲備不斷增加、又能使之快速轉化的國防科技創新體系。正確處理重點技術與一般技術、一般技術與專用技術、傳統技術與高新技術的關系,做到統籌兼顧、合理佈局,實現各類技術、各類學科相互支撐、協調發展。二要掌握國防科技創新發展的需求,重點解決科技管理體制、需求生成機制、科學研究計畫體係等面向問題,提昇科研整體效益,形成推動自主創新的強大活力。大力推動技術基礎資源軍民共用分享,建立完善軍民標準化協調機制與技術服務機制。三要健全大學、科研院所、企業、政府的科技協同創新政策制度,最大限度發揮各方面的優勢,著力打造融合創新平台,形成推動國防科技協同創新的整體合力。

實施新時代人才強軍戰略 讓創造活力競相迸發

推進國防科技創新發展,歸根結底要靠高水準人才,如果沒有強大的國防科技人才隊伍,自主創新就是無源之水、無本之木。因此,必須積極適應國防科技創新發展要求,大力打造體系化、高層次的人才培養平台,讓更多高素質、專業化人才競相湧現。

穩固樹立「人才是第一資源」的觀念,堅持把培養人才作為一項重大的政治任務,以識才的慧眼、愛才的真情、聚才的方法、用才的膽略、容才的胸懷,大膽運用策略科學家,支持青年科技人才挑起大樑、擔重任,不斷壯大科技領軍人才隊伍和一流創新團隊。堅持國防科技重大建設工程和人才建設工程一起抓,在重大工程和重大任務實踐中大膽選拔、使用、錘煉各種人才,培養造就新一代科技帥才和領軍人才,把國防科技和裝備領域打造成國家創新人才的高地、人才成長興業的沃土,形成國防科技人才創造活力競相迸發的生動局面。明確國防科技人才的評價方式與標準,完善國防科技人才差異化評價與政策支援機制,建構符合國防科技規律和人才成長規律的評價體系。改革科技管理與人事制度,讓科學研究管理跟上科技創新的步伐,真正為科研人員放開手腳、騰出時間、搭建平台,把科研創新的舞台放心交給他們,讓他們在科研創新中當主角、唱大戲。

科學公平的評價機制對於激勵創新具有根本性的作用。實踐証明,任何一個基礎研究領域的重大突破都離不開長期的積累和多次的失敗,這是科學發展的必然規律。因此,在國防科技和武器裝備科學研究生產過程中,既要鼓勵科學研究人員有奇思妙想,又要寬容其在探索實踐中的失敗。提倡各類科學研究計劃的實施不以論文、專利數量為項目目標,注重原創成果的取得,允許一定的失敗比例。對基礎和前沿技術研究實行同行評價,突顯中長期目標導向和原創價值,著力營造激勵創新的公平競爭環境,下大力氣激活國防科技創新發展的「一池春水」。

全面貫徹實施新時代人才強軍戰略,進一步增強人才隊伍建設活力,最大限度激發國防科技人才的創新動力、充分調動他們的積極性、主動性和創造性。遵循高素質、專業化軍事人才成長規律,營造識才愛才敬才用才的環境,制定競爭激勵和崇尚合作相結合的政策制度,促進人才資源有序流動、合理佈局,為地方人才服務國防科技建設搭建好平台,著力形成人盡其才、盡展其才、才盡其用的良好局面。

(作者係軍事科學院系統工程研究院研究員、博士生導師)

(責編:王之鋒、宋美琪)

中國原創軍事資源:https://military.people.com.cn/BIG5/n1/2023/1126/c1011-40125888.html

Chinese Military intelligence is Profoundly Affecting Future Operations

中國軍事情報正在深刻影響未來的行動

資料來源:新華社 作者:林娟娟 張元濤 王 巍 責任編輯:喬楠楠

2019-09-10

現代英語:

In today’s era, military intelligence is becoming a powerful driving force for a new round of military reforms after mechanization and informatization, profoundly affecting the future combat victory mechanism, combat rules, and combat methods, and increasingly pushing war into the era of intelligence. The impact of military intelligence on future combat is mainly reflected in four aspects.

First, “intelligence” will become the dominant factor in determining the outcome of future operations. Mechanized warfare can be seen as platform-centric warfare, where energy is the dominant force. Energy is used to achieve the mobility of combat platforms and firepower strikes on targets, to achieve the combat purpose of destroying the enemy, and to pursue the use of objects to carry energy and release energy. Informationized warfare can be seen as network-centric warfare, where information is the dominant force. Information does not replace energy, but through precise positioning of time and space, it multiplies the combat effectiveness of energy, thus becoming the dominant force in war, and pursues the use of networks to gather energy and release energy. Intelligent warfare can be seen as cognitive-centric warfare, in which the dominant force is “intelligence”. The combat space is further extended from the physical domain and information domain to the cognitive domain, social domain, and biological domain. The battlefield situation is more complex. War is a systemic confrontation across domains, and it pursues more empowerment and release of power with intelligence.

Second, intelligent unmanned equipment will become the main combat equipment in future operations. The development of intelligent technology has gradually separated people from weapons and equipment. Unmanned systems have shifted from assisting people in combat to replacing people in combat, completing many high-risk combat operations that are not suitable for people to perform. Intelligent combat has increasingly distinctive characteristics of “unmanned platforms, manned systems, unmanned combat, and manned command”. On the Syrian battlefield, the Russian military remotely controlled 10 combat robots to kill more than 70 Islamic State militants with “zero casualties” and seize the 754.5 high ground, becoming the first ground combat operation in military history with robots as the main force. It is expected that by 2025, the proportion of intelligent unmanned equipment in the Russian military’s weapons and equipment will reach more than 30%. The U.S. military predicts that by 2030, intelligent unmanned equipment will be able to perform tasks autonomously, and 60% of ground combat platforms will achieve unmanned intelligence. A large number of drones, unmanned ships/boats, and unmanned vehicles will become the main equipment for both sides on the intelligent battlefield, carrying out various traditional/untraditional military tasks and implementing self-organized and systematic operations.

Third, human-machine collaborative combat will become the main mode of action in future combat. Human-machine collaborative combat is a mode of combat in which manned and unmanned equipment joint formations implement coordinated attacks in a networked confrontation environment. Among them, human soldiers with battlefield decision-making and tactical control capabilities serve as the “command back end”, and intelligent unmanned equipment carrying guided weapons or various intelligence, reconnaissance and surveillance sensors serve as the “weapon front end”. With the support of information networks, human soldiers and intelligent unmanned equipment work closely together to complete actions such as situation perception, tactical decision-making, firepower guidance, weapon launch and damage assessment. According to the U.S. Army Research Laboratory, before 2035, human-machine collaborative combat will mainly take the form of autonomous combat with humans in the loop; before 2050, authorized autonomous or fully autonomous combat with humans outside the loop will be achieved, officially kicking off intelligent warfare dominated by machines.

Fourth, autonomous swarm combat will become an important attack style in future combat. The technical inspiration of swarm combat comes from the bionics research on bees. The division of labor within the bee colony is clear, there is a rich and interesting information exchange language between individuals, and the social behavior is rich, so the cluster is also called a “bee colony.” Swarm combat is an intelligent combat style that relies on artificial intelligence, data chain integration, cloud computing and other technical support, and launches dozens or even hundreds of drones at the same time. They form precise formations and precise division of labor, and perform multiple tasks and multi-target strikes at the same time. Compared with traditional combat, swarm combat has incomparable advantages and is a subversion of traditional combat styles and combat rules. After hundreds of simulation tests, the U.S. Navy found that even an advanced air defense system like the Aegis air defense system has difficulty in allocating firepower when dealing with drone swarm attacks, resulting in some drones being able to avoid interception and successfully launch attacks on ships. Data shows that when a swarm of 8 drones is used to attack ships, an average of 2.8 drones can avoid the Aegis interception system; when the number of drones increases to dozens, the number of drones that successfully avoid the interception system and achieve penetration is greater. These simulation tests fully prove that the effect of drone swarm operations is significant and poses a huge threat to the current defense system. At the same time, it also indicates that swarm-type autonomous operations will inevitably become an important offensive combat style on the future intelligent battlefield.

現代國語:

當今時代,軍事智能化正成為繼機械化、資訊化之後推動新一輪軍事變革的強大動力,深刻影響著未來作戰制勝機理、作戰規則及作戰方式方法等,日益推動戰爭步入智能化時代。軍事智能化對未來作戰的影響趨勢主要體現在4個面向。

一是「智能力」將成為決定未來作戰勝負的主導因素。機械化戰爭可視為平台中心戰,主導力量是能量,透過能量實現作戰平台的機動性和對目標的火力打擊,達到毀傷敵方的作戰目的,追求以物載能、以物釋能。資訊化戰爭可看作是網絡中心戰,主導力量是資訊力,訊息並沒有取代能量,而是透過對時空的精準定位,使能量的作戰效能成倍提升,從而成為戰爭的主導力量,追求以網聚能、以網釋能。智能化戰爭可以看作是認知中心戰,主導力量是“智能力”,作戰空間從物理域、信息域進一步向認知域、社會域和生物域延拓,戰場態勢更為錯綜復雜,戰爭是各作戰域跨域融合的體系對抗,更追求以智賦能、以智釋能。

二是智慧無人裝備將成為未來作戰的主體主戰裝備。智慧技術的發展,使人與武器裝備逐漸實現脫離,無人系統從輔助人作戰轉向代替人作戰,完成諸多不適合人去執行的高危險作戰行動,智能化作戰越來越具有「平台無人、體係有人,作戰無人、指揮有人」的鮮明特徵。在敘利亞戰場上,俄軍遙控指揮10支戰鬥機器人以「零傷亡」擊斃70多名伊斯蘭國武裝分子並奪取754.5高地,成為軍事史上首例以機器人為主力的地面作戰行動。預計2025年,俄軍武器裝備中智慧無人裝備的比例將達到30%以上。美軍預測2030年前,智慧無人裝備將能夠自主執行任務,60%的地面作戰平台將實現無人智慧化。大量無人機、無人船/艇和無人車等裝備,將成為智慧化戰場上對抗雙方的主體裝備,遂行各類傳統/非傳統軍事任務,並實施自組織和體系化作戰。

三是人機協同作戰將成為未來作戰的主要行動方式。人機協同作戰是在網絡化對抗環境下,有人與無人裝備聯合編隊實施協同攻擊的作戰方式。其中,具備戰場決策及戰術控制能力的人類士兵作為“指揮後端”,攜帶制導武器或各類情報、偵察和監視傳感器的智能無人裝備作為“武器前端”,在信息網絡的支持下,人類士兵與智慧無人裝備通過密切協同,共同完成態勢感知、戰術決策、火力引導、武器發射及毀傷評估等行動。根據美國陸軍研究實驗室的觀點,2035年前,人機協同作戰主要採取人在迴路的監督自主式作戰;2050年前,將實現人在迴路外的授權自主或完全自主式作戰,正式拉開機器主戰的智慧化戰爭序幕。

四是集群自主作戰將成為未來作戰的重要攻擊樣式。集群作戰的技術靈感源自於對蜜蜂的仿生研究。蜂群內部分工明確,個體間存在豐富有趣的資訊交流語言,社會行為豐富,所以集群又被稱為「蜂群」。集群作戰是依託人工智慧、數據鏈整合以及雲計算等技術支撐,同時發射數十乃至成百架以上無人機,由其自行精準編隊、精確分工,同時執行多種任務及多目標打擊的智能化作戰樣式。與傳統作戰相比,集群作戰具有無可比擬的優勢,是對傳統作戰樣式和作戰規則的顛覆。美海軍經過數百次模擬試驗後發現,即使先進如「宙斯盾」防空系統,在應對無人機集群攻擊時,也難以合理分配火力,導致部分無人機能夠避開攔截對艦艇成功發動攻擊。數據表明,當使用由8架無人機組成的集群向艦艇發動攻擊時,平均有2.8架無人機可避開「宙斯盾」攔截系統;當無人機數量增至幾十架時,成功避開攔截系統實現突防的無人機數量更多。這些模擬試驗充分證明,無人機集群作戰的效果顯著,對當前防禦體系構成巨大威脅,同時也預示,集群式自主作戰必將成為未來智慧化戰場上重要的進攻作戰樣式。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4850888.html?

Chinese Military Big Data: An Accelerator of Military Intelligence Transformation

中國軍事大數據:軍事情報轉型的加速器

來源:解放軍報 作者:宋元剛、邵龍飛、特約通訊員 王涵 主編:吳行健

現代英語:

In order to thoroughly implement President Xi’s decision to “promote the implementation of the national big data strategy” and accelerate the development of military intelligence, our military has begun to take active actions. The innovative application of military big data will surely stimulate data vitality, release data value, and produce a multiplier effect like never before, so as to open the door to future victory.

In order to actively adapt to the new situation and new requirements, promote the deep integration of big data and national defense construction, and promote exchanges and cooperation among experts in the field of military big data research, the Second Military Big Data Forum, hosted by the Academy of Military Sciences and themed “Military Big Data Promotes the Development of Military Intelligence”, was held in Beijing from August 22 to 23 this year. More than 500 leaders, experts and representatives from the Central Military Commission, various theater commands, various services, the Academy of Military Sciences, the National Defense University, the National University of Defense Technology and other units participated in the discussion and exchange on the frontier, common and hot issues of the development of military big data.

During the forum, our reporter interviewed Researcher Liu Linshan, Director of the Military Science Information Research Center of the Academy of Military Sciences, Researcher Lu Bin, Deputy Director, and Associate Researcher Luo Wei, Director of a research laboratory, on topics related to military big data. 

Military big data is highly confrontational

Reporter: my country is currently vigorously promoting the implementation of the national big data strategy. Big data is being widely used in many fields such as economy, politics, security and social management, reflecting unprecedented great value. So, compared with civilian big data, what are the connotations and characteristics of military big data?

Liu Linshan: With the development of big data technology and applications, military big data has broken through the concept of military data in the past and has become a general term for a series of activities based on massive military data resources, with data intelligent processing and analysis technology as the core, and driven by the extensive application needs in the military field. In view of the particularity of military activities, in addition to the typical characteristics of civilian big data such as large data scale, multiple content types, high processing speed, and low value density, military big data also has the characteristics of “one super, one high, and one strong”.

“One super” means super complexity. It means that the data comes from multiple spaces such as land, sea, air, space, electricity, and the Internet. The information dimension is higher, the unstructured characteristics are more obvious, and the data relationship is more complex. “One high” means high security, which means that the threats faced are complex, including enemy reconnaissance and theft, leakage of confidentiality by one’s own side, system vulnerabilities, and attacks by the enemy’s “soft” and “hard” means, etc., and the risk of weakening or losing availability is greater. “One strong” means strong confrontation, which means that the game confrontation between information acquisition and anti-acquisition means, the widespread existence of data fog disguise and deception, and the intricate interweaving of true and false data, which requires extremely high ability to distinguish the authenticity of data.

Lv Bin: Here we need to emphasize the “strong confrontational” characteristics of military big data. Since military big data is data in a confrontational environment, the data quality is poor, the value density is low, and it is usually uncertain, incomplete, and false. We know that artificial intelligence at this stage is mainly based on data-driven machine learning. Machine learning requires sample data, but the current war is small sample data, and future wars may not even have sample data. In addition, the characteristic of military operations is “man in the loop”, and human activities are difficult to learn and predict using classic big data methods. This makes military big data much more difficult than civilian big data in dealing with problems such as small sample data learning, game under incomplete and uncertain information, and scene modeling and understanding in complex environments. The challenges encountered are much greater, and new theories, new methods, and new technologies must be adopted to solve them.

Military big data and military intelligence complement each other

Reporter: The report of the 19th CPC National Congress emphasized the need to “accelerate the development of military intelligence and improve joint combat capabilities and all-domain combat capabilities based on network information systems.” How should we understand the relationship between military big data and military intelligence?

Liu Linshan: Looking back at the development of artificial intelligence, since it was first proposed at the Dartmouth Conference in 1956, it has experienced three climaxes and two troughs: the reasoning period, the knowledge period, and the learning period. Scientists have tried to “manufacture” human intelligence through logical reasoning, expert systems, etc., but the failure of the development of Japanese intelligent computers and the decline of the Encyclopedia of Human Common Sense Knowledge at Stanford University in the United States have made these paths unsustainable. The emergence of big data has provided a new path for the development of artificial intelligence, and people have begun to shift from how to “manufacture” intelligence to how to “learn” intelligence. Different from the traditional hope of achieving reasoning and learning through rules, logic and knowledge, through machine learning, we can gain insight into the hidden laws of massive data from big data, and effectively realize data-driven artificial intelligence. In March 2016, the “AlphaGo” Go robot developed by Google was able to defeat the world champion Lee Sedol based on the deep learning of neural networks based on 30 million chess records. In addition, the development of big data technology can also make up for the shortcomings of artificial intelligence in algorithms and computing power, and significantly improve its transferability and interpretability. It can be said that big data is the enabling factor of the new generation of artificial intelligence and is crucial to promoting the development of artificial intelligence.

Lv Bin: At present, artificial intelligence technology is accelerating its penetration into the military field. Military intelligence has become the core driving force of a new round of military reforms, profoundly changing the winning mechanism, force structure and combat methods of future wars. Military intelligence is not just a simple superposition of artificial intelligence and military, but also a systematic description of the coordinated operation of people, equipment and combat methods under a new combat form. The key to the operation of the system is inseparable from the efficient acquisition, integration, analysis and interaction of data. In the future, with the full penetration of data into the military field, deep interaction between man and machine, and the deep combination of machine intelligence and human wisdom, autonomous perception, autonomous analysis, autonomous decision-making and autonomous strikes centered on data and centered on data analysis and processing will be realized.

Luo Wei: We should also look at the relationship between the two from the perspective of the historical stage of our military construction and development. At present, our military has made significant progress in the transformation of military reforms with Chinese characteristics, but the task of mechanization construction has not been completed, and the level of informatization needs to be improved urgently. The development of military intelligence must not be a “castle in the air”. It must be built on the basis of mechanization and informatization, and at the same time, it must also focus on using intelligence to drive mechanization and informatization construction. The integrated development of the “three transformations” will be a significant feature of our military construction and development at present and in the future. Through the comprehensive sharing and efficient interaction of various types of data, the information data flow of the integration of the “three transformations” will be opened up, which will help to build the underlying channel of the integration of the “three transformations” and effectively enhance the quality and efficiency of the development of military intelligence.

Major military powers are rushing to build military big data

Reporter: Accelerating the development of military intelligence has become a common practice for the world’s military powers to seize the commanding heights of future military competition. So what is the progress of these countries in promoting the construction of military big data and the development of military intelligence? Please give a brief introduction.

Liu Linshan: Winning by technology has always been the main means for Western countries to seek advantages in the world. With the advent of the era of big data and artificial intelligence, major Western countries regard it as a “battlefield” and have successively introduced a series of strategic measures to strengthen overall planning. As early as March 2012, the US government issued the “Big Data Research and Development Program Initiative”, which advocated the joint efforts of six government departments and agencies including the Department of Defense to jointly promote the development of big data collection, storage, management and analysis technologies. In 2016, the “National Artificial Intelligence Research and Development Strategic Plan” was formulated to clarify the investment direction and focus of the United States in the field of artificial intelligence. In 2018, the “Department of Defense Artificial Intelligence Strategy” was issued, which proposed artificial intelligence development goals and measures, and unified planning and deployment of military applications of artificial intelligence. This year, a new version of the “Department of Defense Cloud Strategy” was formulated to accelerate the development of big data and artificial intelligence technologies and promote data sharing through unified supervision of the US military’s cloud construction. In order to coordinate the development of artificial intelligence technology and combat applications of the US military, the US Department of Defense has also established a joint artificial intelligence center to integrate relevant resources and plan investments. With the launch of the US Department of Defense’s “Military Cloud” 2.0 system, the US military has acquired data processing capabilities such as high-speed battlefield video processing, voice recognition, complex electromagnetic environment perception, and decryption, reducing processing time to one thousandth of traditional methods. Russia has formulated the “Russian Federation Science and Technology Development Strategy”, which prioritizes big data, machine learning, and artificial intelligence in scientific and technological innovation, and the Russian military has formulated the “Military Robot Technology and Application Development Plan”. The United Kingdom has listed big data, robots, and autonomous systems as eight priority development technologies, and the military has set up a special artificial intelligence laboratory to focus on the research of artificial intelligence and defense data science. France’s digital roadmap clearly states that big data is a strategic high-tech that must be strongly supported in the future. The military has formulated the “Artificial Intelligence and Innovation Roadmap”, which lists intelligence, decision-making, human-machine collaboration, robots, and cyber warfare as key development areas.

Luo Wei: In addition to strategic layout, major Western countries have continued to increase their research and development efforts in big data and artificial intelligence technologies to accelerate the transformation of technological achievements into combat capabilities. Since 2012, the US Department of Defense and its subordinate departments have implemented a series of big data research and development projects represented by the “X Data” project and the “Insight” project, mainly involving big data analysis and mining, rule discovery, data-driven model calculation, data visualization and other fields. Among them, the “X Data” project aims to develop new computing technologies and open source software tools for big data processing and analysis; the “Insight” project aims to integrate massive data from various sensors to form a comprehensive battlefield situation, quickly identify the source and degree of threats, and enhance the decision-making ability of troop commanders and staff. While continuing to promote technological development, some of the US military’s achievements have begun to form combat capabilities, among which the most typical is the “Algorithm Warfare” project. The project was launched in April 2017 and aims to use artificial intelligence algorithms to find targets of interest from massive video data. The relevant achievements have been deployed to multiple US military departments since December of that year, and their video intelligence analysis and processing capabilities have been improved.

Big data will play a vital role in future wars

Reporter: At present, military high-tech with information technology as the core is changing with each passing day, which is driving the evolution of war into information warfare, and intelligent warfare is beginning to emerge. So what role will big data play in future information and intelligent warfare? Please briefly explain.

Liu Linshan: In the future, both the continuously developing information warfare and the rapidly advancing intelligent warfare will be driven by data, which is mainly reflected in the following three aspects:

First, the understanding of battlefield situation depends on the collection and processing of massive data. Whoever can penetrate the “fog of war” and more accurately and comprehensively understand the enemy’s situation and the combat environment will be able to seize the initiative in the war. On the battlefield of the future, data is the basis for restoring the battlefield situation and forming the enemy’s situation. It not only includes the results of our own reconnaissance, surveillance, and intelligence activities, but also includes massive geographic information data, human social culture data, and social media data. At present, it is not easy to comprehensively collect and process this data, because with the continuous acceleration of the development of networked informatization in the whole society and the increasing popularity of various digital devices, the amount of data in the whole society continues to grow exponentially. Statistics show that in 2013, the total amount of data in human society was about 4.4 trillion GB, and by 2020, this number will grow to 44 trillion GB. With such a large amount of data, without the support of advanced big data collection and processing technology, the value of the data cannot be reflected, and the overall picture of the battlefield cannot be recognized.

Secondly, the realization of combat functions depends on the analysis, distribution and utilization of data. Combat functions usually include intelligence, command and control, firepower strikes, battlefield mobility, combat support, etc. Among them, the intelligence function focuses on collecting, compiling and pushing data, command and control focuses on integrating, processing and distributing data, and firepower strikes, battlefield mobility and combat support generate new status data while utilizing data. It can be said that the performance of combat functions and the implementation of combat operations are the process of data recycling. The smoother and faster the data circulation of one party is, the more significant the combat effect of that party will be.

Third, the evolution of joint operations depends largely on the level of data sharing. The U.S. military is currently evolving from joint operations to multi-domain operations, which is manifested in the development of the coordination of combat capabilities between military services to the aggregation of combat capabilities in various combat domains, thereby achieving a closer and more precise use of forces across military services on the basis of lower-level forces. The premise for achieving this goal is to use the “cloud” as a means to achieve the sharing of all combat data.

Lü Bin: As the role of data in future wars becomes more and more obvious, the characteristics of data weaponization will also become increasingly apparent. “Data warfare” in which one side prevents the opponent from obtaining its own data, prevents the opponent from forming a comprehensive situation, or creates and spreads false data, misleads the judgment of the opponent’s intelligent system, and hinders the opponent’s combat function will become an important combat style.

Actively embrace the era of military big data

Reporter: When it comes to future intelligent warfare, its important feature is that the tempo of confrontation has significantly accelerated. The winning factor has changed from being able to win to being fast. Whoever seizes the initiative will have the initiative in the war. As we welcome the arrival of the era of military big data, how should we understand its key role in future intelligent warfare?

Liu Linshan: The key to winning by speed is how to shorten the “OODA loop” chain as soon as possible. From the perspective of “observation”, big data technology can effectively help commanders fully grasp the situation, capture subtle changes, and discover major signs. From the perspective of “judgment”, the use of big data technology to analyze the correlation of multi-source data can accurately judge the battlefield situation, break the “battlefield fog”, and significantly enhance the commander’s judgment and acumen. From the perspective of “decision-making”, the real-time fusion processing and visualization of data such as enemy situation, our situation and battlefield environment can help commanders accurately control the battlefield situation in real time, make decisions quickly, adjust deployments quickly, and gain the speed advantage of planning and decision-making. From the perspective of “action”, based on real-time online big data analysis, commanders can accurately plan tasks, calculate troops and firepower, and accurately issue combat orders, so as to dynamically and efficiently control troop actions and accurately evaluate combat effectiveness.

Lu Bin: In addition to bringing revolutionary impact to command and control efficiency, big data will also accelerate the transformation of combat command system and lead the transformation of command decision-making mode. The first is the flattening of command system. Under the big data environment, information systems are seamlessly connected, cloud computing provides powerful computing power, blockchain technology improves system security, and the command structure can be changed from “tree-like” to “net-like”, providing a material basis for streamlining command structure and realizing flat command. The second is the jointness of military systems. Based on the highly shared data pool of big data, various types of data are integrated to ensure the consistency of information acquisition. Unified network infrastructure, consistent data structure and data exchange standards ensure effective interconnection and interoperability between various forces and elements, creating conditions for the formation of an integrated joint combat system. The third is the simplification of troop organization. The collection and processing of massive intelligence information is transmitted to the cloud through the information system network for processing, which can free commanders from heavy information processing and realize the streamlined action organization with efficient operation under the support of a large system.

Luo Wei: Military big data also plays an important enabling role in improving the level of equipment intelligence, promoting the birth of intelligent weapons and equipment, and improving intelligent support capabilities. As the “oil” of the new era, big data will be the life source and aorta of intelligent equipment. The rapid acquisition, fine processing and precise distribution of data based on super computing power are multipliers for the combat effectiveness of intelligent equipment. With the gradual breakthrough of key technologies, data equipment closely combined with data resources, computing resources, big data management and analysis systems will appear on the battlefield in the future, including giant platforms used to support military combat command, equipment management, and logistics distribution, as well as small and medium-sized data equipment based on aircraft carriers, aircraft, ships, submarines, vehicles, etc., and also micro-data equipment embedded in unmanned combat, single-soldier combat, and precision guidance systems. These data equipment will play the role of “smart engine” in future intelligent combat, training, logistics support and other operations. At the same time, it should be emphasized that big data going to the battlefield may change equipment and the form of war, but it cannot change the decisive factors of war. In the era of intelligent warfare, the key factor that determines the outcome of war is still people. Big data and artificial intelligence technology cannot completely replace people, and cannot change the decisive position of people in war.

現代國語:

編者按為深入貫徹習主席所做的「推動實施國家大數據戰略」決策部署,加速軍事智能化發展,我軍上下已開始積極行動起來,軍事大數據的創新應用必將前所未有地激發數據活力、釋放資料價值、產生倍增效應,以開啟未來制勝之門。

為積極適應新情勢新要求,推動大數據與國防建設深度融合,促進軍事大數據研究領域專家交流合作,由軍事科學院主辦、主題為「軍事大數據推動軍事智慧化發展」的第二屆軍事大數據論壇,於今年8月22日至23日在京舉行。來自軍委機關、各戰區、各軍兵種、軍事科學院、國防大學、國防科技大學等單位的500餘名領導、專家和代表參加,圍繞軍事大數據發展的前沿、共性、熱點問題進行了探討交流。

論壇期間,本報記者就軍事大數據的相關議題,訪問了軍事科學資訊研究中心主任劉林山研究員、副主任呂彬研究員、某研究室主任羅威副研究員。

軍事大數據具有強烈對抗性

記者:我國目前正大力推動實施國家大數據戰略。大數據正廣泛應用於經濟、政治、安全和社會管理等許多領域,體現出前所未有的巨大價值。那麼,與民用大數據相比,軍事大數據有著怎樣的內涵特徵?

劉林山:隨著大數據技術與應用的發展,軍事大數據已突破過去軍事數據的概念範疇,成為以海量軍事數據資源為基礎、以數據智能處理分析技術為核心、以軍事領域廣泛應用需求為牽引的一系列活動的統稱。鑑於軍事活動的特殊性,軍事大數據除具有民用大數據典型的資料規模大、內容種類多、處理速度高、價值密度低等特徵外,還具有「一超一高一強」的特性。

「一超」即超複雜性。指資料來源於陸、海、空、天、電、網等多個空間,資訊維度較高,非結構化特徵較明顯,資料關係較複雜。 「一高」即高安全性,指面臨的威脅複雜,包括敵方的偵察竊取,己方洩密失密、系統漏洞,遭敵「軟」「硬」手段打擊等,可用性削弱或喪失風險更大。 「一強」即強對抗性,指資訊獲取與反獲取手段的博弈對抗、資料迷霧偽裝欺騙現象普遍存在,真假資料錯綜複雜,對資料真偽辨別能力要求極高。

呂彬:在這裡需要突顯軍事大數據「強對抗性」的特徵。由於軍事大數據是對抗環境下的數據,數據品質差,價值密度低,通常具有不確定性、不完全性和虛假欺騙性。我們知道,現階段的人工智慧主要是建立在數據驅動的機器學習之上的。而機器學習需要樣本數據,但目前戰爭是小樣本數據,未來戰爭甚至沒有樣本數據。此外,軍事行動的特點是“人在迴路”,人的活動很難用大數據經典方法學習預測。這就使得軍事大數據在應對小樣本資料學習、不完全不確定資訊下的博弈、複雜環境下的場景建模與理解等問題方面,比民用大數據要困難得多,遇到的挑戰要大多,必須採用新的理論、新的方法、新的技術去解決。

軍事大數據與軍事智慧化相輔相成

記者:黨的十九大報告強調,要「加速軍事智慧化發展,提升基於網路資訊體系的聯合作戰能力、全域作戰能力」。對於軍事大數據與軍事智能化的關係,該怎麼理解?

劉林山:回顧人工智慧的發展歷程,自1956年達特茅斯會議首次提出以來,經歷了推理期、知識期、學習期三次高潮和兩次低潮。科學家曾試圖透過邏輯推理、專家系統等方式來「製造」人類智能,但日本智能計算機的研發失敗、美國史丹佛大學人類常識知識百科全書的沒落等,使得這些路徑難以為繼。而大數據的出現,為人工智慧的發展提供了一條新道路,人們開始從如何「製造」智能轉向如何「學習」智能。與傳統的希望透過規則、邏輯和知識來實現推理學習不同,透過機器學習,從大數據中去洞悉海量資料隱藏的規律,可有效實現資料驅動下的人工智慧。 2016年3月,Google公司開發的「阿爾法狗」圍棋機器人之所以能擊敗世界冠軍李世石,正是基於對3000萬盤棋譜數據的神經網路深度學習。除此之外,大數據技術的發展還可以彌補人工智慧在演算法、算力方面的不足,顯著提高其可遷移性和可解釋性。可以說,大數據是新一代人工智慧的賦能要素,對於推動人工智慧發展至關重要。

呂彬:目前,人工智慧技術正加速滲透到軍事領域。軍事智慧化已成為新一輪軍事變革的核心驅動力,深刻改變未來戰爭的致勝機理、力量結構和作戰方式。軍事智慧化不僅是人工智慧與軍事的簡單疊加,也是人、裝備和作戰方式在新的作戰形態下協同運作的體系化描述。體系運作的關鍵離不開資料的高效獲取、融合、研判、互動。未來,隨著數據向軍事領域全方位滲透,人機深度交互,機器智能與人類智慧深度結合,將實現以數據為中心、以分析處理數據為中樞的自主感知、自主分析、自主決策、自主打擊。

羅威:我們也要站在我軍建設發展所處歷史階段來看兩者之間的關係。目前我軍中國特色軍事變革取得重大進展,但機械化建設任務尚未完成,資訊化程度亟待提升。軍事智慧化發展絕不能是“空中樓閣”,要建立在機械化和資訊化的基礎上,同時也要注重用智慧化來牽引機械化和資訊化建設。這「三化」融合發展,將是當前及今後一段時期我軍建設發展的顯著特徵。透過各類數據的全面共享和高效交互,打通「三化」融合的資訊資料流,有助於建構「三化」融合的底層通道,實際增強軍事智能化發展的品質效益。

主要軍事強國紛紛搶灘軍事大數據建設

記者:加速推動軍事智慧化發展,目前已成為世界軍事強國搶佔未來軍事競爭制高點的共同做法。那麼這些國家在推動軍事大數據建設與軍事智慧化發展的進展如何?請簡單介紹一下。

劉林山:科技制勝一直是西方國家在世界上尋求優勢的主要手段。隨著大數據和人工智慧時代的到來,西方各主要國家將其視為“兵家必爭之地”,先後出台一系列戰略舉措,強化統籌佈局。美國政府早在2012年3月就發布了《大數據研究與發展計畫倡議》,倡議聯合國防部在內的6個政府部門和機構,共同推動大數據收集、儲存、管理、分析技術的發展。 2016年制定《國家人工智慧研發戰略規劃》,明確美國在人工智慧領域的投資方向與重點。 2018年發布《國防部人工智慧戰略》,提出人工智慧發展目標和舉措,對人工智慧的軍事應用進行了統一規劃和部署。今年制定新版《國防部雲端戰略》,透過對美軍雲建設的統一監管,加速大數據與人工智慧技術發展,促進資料共享。為統籌美軍人工智慧技術發展與作戰運用,美國防部也特別成立了聯合人工智慧中心,整合相關資源與計畫投資。隨著美國防部「軍事雲」2.0系統上線運行,美軍已具備高速戰場視訊處理、語音辨識、複雜電磁環境感知、解密等資料處理能力,使處理時間縮短到傳統方法的數千分之一。俄羅斯制定了《俄羅斯聯邦科技發展戰略》,將大數據、機器學習和人工智慧作為科技創新優先方向,俄羅斯軍隊則制定了《軍用機器人技術和應用發展規劃》。英國將大數據、機器人和自主系統列入八項優先發展技術,軍方專門組成了人工智慧實驗室,聚焦人工智慧和國防數據科學的研究。法國的數位化路線圖明確大數據是未來必須大力支持的戰略性高新技術,軍方制定有《人工智慧與創新路線圖》,將情報、決策、人機協同、機器人與網路戰列為重點發展領域。

羅威:除了戰略佈局之外,西方主要國家還持續加強數據和人工智慧技術的研發力度,加速技術成果轉化為作戰能力。自2012年以來,美國防部及其所屬各部門就實施了以「X數據」項目、「洞察」項目為代表的一系列大數據研發項目,主要涉及大數據分析挖掘、規則發現、數據驅動模型計算、數據視覺化等領域。這其中,「X數據」專案旨在為大數據處理和分析開發新型運算技術和開源軟體工具;「洞察」專案旨在融合來自各類感測器的大量數據,形成全面戰場態勢,快速識別威脅來源和威脅程度,增強部隊指揮和參謀人員的決策能力。在持續推進技術發展的同時,美軍部分成果開始形成作戰能力,其中最為典型的就是「演算法戰」計畫。該計畫於2017年4月啟動,旨在採用人工智慧演算法從大量的視訊資料中發現感興趣的目標,相關成果從當年12月開始陸續部署美軍多個部門,其視訊情報分析處理能力得到提升。

大數據在未來戰爭中將扮演重要角色

記者:目前,以資訊科技為核心的軍事高新科技日新月異,正推動戰爭形態朝向資訊化戰爭演變,智慧化戰爭初露端倪。那麼在未來資訊化、智慧化戰爭中,大數據將扮演什麼樣的角色?請簡要說明一下。

劉林山:未來,無論是持續發展的資訊化戰爭形態,或是迅速推進的智慧化戰爭形態,都是由數據驅動的,主要表現在三個方面:

首先,戰場態勢的理解依賴於海量資料的收集、處理。誰能穿透“戰爭迷霧”,更準確、全面地洞悉敵我態勢和作戰環境,誰就能在戰爭中搶佔先機。在未來戰場上,資料就是還原戰場情況、形成敵我態勢的基礎,它不但包括己方偵察、監視、情報活動的成果,也包括海量的地理資訊資料、人類社會文化資料、社群媒體資料。目前,要全面收集、處理這些數據並不容易,因為隨著全社會網路化資訊化發展的持續加速,各類數位設備的日益普及,全社會數據量持續呈現指數級增長。有統計數據表明,在2013年,人類社會的數據總量約為4.4兆GB,到2020年,這一數字將增長到44兆GB。如此之大的數據量,如果沒有先進的大數據收集、處理技術支持,數據的價值就無從體現,戰場的全貌也就無從認知。

其次,作戰功能的實現取決於資料的分析、分發和利用。作戰功能通常包括情報、指揮控制、火力打擊、戰場機動、作戰保障等。這其中,情報功能著重於收集、整編、推播數據,指揮控制著重於融合、處理、分發數據,而火力打擊、戰場機動、作戰保障在利用數據的同時,也產生新的狀態數據。可以說,作戰功能的發揮、作戰行動的實施就是資料循環利用的過程。哪一方的資料循環得越順暢、越快速,哪一方的作戰效果就越顯著。

其三,聯合作戰樣式的演進在很大程度上取決於資料共享程度。當前美軍正由聯合作戰向多域作戰方向演進,表現為從軍兵種間作戰能力協同向各作戰域作戰能力聚合的方向發展,從而在更低層級部隊基礎上實現跨越軍兵種的更緊密、更精確的力量運用。達成此目標的前提,就是以「雲」為手段,實現所有作戰資料的共享。

呂彬:由於數據在未來戰爭中的作用愈發明顯,數據武器化的特性也將日益顯露。一方防止對手獲取己方數據、阻止對手形成全面態勢,或製造散佈虛假數據、誤導對手智能係統的判斷、阻礙對手作戰功能實現的“數據戰”,將成為重要的作戰樣式。

主動擁抱軍事大數據時代

記者:提到未來智慧化戰爭,其重要特徵就是對抗節奏明顯加快,制勝機理由以能製勝轉變為以快制勝,誰掌握了先機,誰就掌握了戰爭的主動權。我們迎接軍事大數據時代的到來,該如何認識其在未來智慧化戰爭中的關鍵角色?

劉林山:以快速致勝的關鍵,在於如何盡快縮短「OODA環」循環鏈。從「觀察」環節來看,大數據技術能有效幫助指揮員全面掌握狀況、捕捉細微變化、發現重大徵候。從“判斷”環節看,運用大數據技術對多來源數據關聯分析,可以準確研判戰場形勢、破除“戰場迷霧”,顯著增強指揮員的判斷力和敏銳性。從「決策」環節來看,敵情、我情和戰場環境等數據的即時融合處理和視覺化展示,能夠幫助指揮官即時準確掌控戰場態勢,快速作出決策、快速調整部署,贏得籌劃決策的速度優勢。從「行動」環節來看,基於即時線上大數據分析,指揮員能夠精準規劃任務、精細運算兵力火力、精確下達作戰指令,從而動態高效調控部隊行動、準確評估作戰效果。

呂彬:大數據除了為指揮控制效能帶來革命性影響外,還將加速作戰指揮體系變革、引領指揮決策模式轉變。首先是指揮體系扁平化。大數據環境下,資訊系統無縫鏈接,雲端運算提供強大運算能力,區塊鏈技術提升系統安全性,指揮結構可由“樹狀”變為“網狀”,為精簡指揮結構、實現扁平化指揮提供了物質基礎。其次是軍兵種體系聯合化。基於大數據高度共享的資料池,將各類資料融合在一起,確保取得資訊的一致性。統一的網路基礎設施、一致的資料結構與資料交換標準,確保各力量、各要素之間有效互聯互通互通,為形成一體化聯合作戰體系創造條件。第三是部隊編組精簡化。海量情報資訊的收集、處理透過資訊系統網路傳輸至雲端進行處理,能夠使指揮人員從繁重的資訊處理中解放出來,實現大體系支撐下高效運作的精簡化行動編組。

羅威:軍事大數據在提高裝備智慧化水準、催生智慧化武器裝備和提高智慧化保障能力等方面也具有重要的賦能作用。作為新時代的“石油”,大數據將是智慧化裝備的生命源泉和大動脈,基於超強算力的數據快速獲取、精細處理和精準分發是智能化裝備作戰效能發揮的倍增器。隨著關鍵技術的逐步突破,未來戰場將出現由資料資源、運算資源、大數據管理與分析系統等緊密結合的資料裝備,既包括用於支撐軍兵種作戰指揮、裝備管理、後勤配給的巨型平台,也包括以航空母艦、飛機、艦艇、潛艦、車輛等為載體的中小型資料裝備,還包括嵌入無人作戰、單兵作戰、精確導引系統的微小型資料裝備。這些資料裝備,將在未來智慧化作戰、訓練、後勤保障等行動中發揮「智慧引擎」作用。同時要強調的是,大數據走向戰場可能改變裝備,可能改變戰爭形態,但不可能改變戰爭的決定因素。智慧化戰爭時代,決定戰爭勝負的關鍵因素仍是人。大數據和人工智慧技術不可能完全取代人,不能改變人在戰爭中的決定性地位。

中國原創軍事資源:https://www.81.cn/2019zt/2019-09/06/content_9623888.htm

Chinese Warfare Planning: Artificial Intelligence Will Change the Mechanism of Winning Future Wars

中國戰爭規劃:人工智慧將改變未來戰爭的勝利機制

中國軍網 國防網 // 2024年5月2日 星期四

現代英語:

Artificial intelligence technology is an important support for improving strategic capabilities in emerging fields. In recent years, it has developed rapidly and has been widely used in the military field, constantly giving rise to new asymmetric advantages, and profoundly changing the basic form, combat methods and winning mechanisms of future wars. We should have a deep understanding of artificial intelligence as a revolutionary technological driving force, accurately recognize changes, respond to changes scientifically, and actively seek changes, strive to explore ways to win future wars, and gain the initiative in the accelerating intelligent war.

Information mechanism

Knowing yourself and the enemy will ensure victory in every battle. Quickly and effectively mastering all-round information is the primary prerequisite for winning a war. Artificial intelligence can realize intelligent perception of battlefield situations, intelligent analysis of massive data, and intelligent processing of multiple information, and can form a “transparent” advantage on the battlefield.

Autonomous implementation of battlefield perception. By embedding intelligent modules into the wartime reconnaissance system, various reconnaissance node units can realize random networking, ad hoc coordination, and organic integration, and can autonomously capture battlefield information in all directions and dimensions, build a relatively “transparent” digital battlefield environment and combat situation, and then dispel the “fog” of war and present the combat scene in a panoramic manner.

Accurately identify massive amounts of data. Relying on intelligent technologies such as precise sensing technology and analytical recognition technology, it accurately judges, analyzes, compares, and integrates diversified voice, text, pictures, videos, and other data to obtain faster, more complete, more accurate, and deeper battlefield situation results, far exceeding the speed and accuracy of human brain processing.

Efficient response to key information. Based on intelligent technology groups such as combat cloud, big data, and the Internet of Things, it can quickly discover large quantities of non-standardized and heterogeneous intelligence data, autonomously discover symptoms, identify intentions, analyze trends, find patterns, and respond to commanders’ needs for key information in real time and accurately.

Synchronous sharing of integrated situation. The intelligent control system can optimize and integrate various reconnaissance and surveillance systems distributed in different spaces and frequency domains such as land, sea, air, space and radio networks, and play an important hub role in sharing information and unified cognition, building a situation based on “one picture”, “one network” and “one chain”, so that all combat units can synchronously share the required information from different spaces, distances and frequencies in all domains and at all times, realizing intelligent sharing.

Decision-making mechanism

Those who can plan for victory before the battle have made more calculations. Scientific and accurate decision-making is a prerequisite for winning a war. Artificial intelligence can conduct dynamic battlefield simulation and deduction, quickly give feasible decisions, greatly shorten the decision-making cycle of combat planning, and form a decision-making advantage.

Intelligent strategic situation analysis. The decision-making support system that incorporates artificial intelligence technology has functions such as information collection, query management, data processing, and correlation analysis. It can effectively break through the limitations of human analysis capabilities, maximize the separation of false and true, correlation verification, and link thinking, and automatically conduct big data analysis such as enemy situation, our situation, and battlefield environment, forming comparative data on related forces and weapons, which can efficiently assist combat command and help commanders quickly make combat decisions.

Intelligent optimization of combat plans. Relying on the intelligent combat simulation system, it automatically generates multiple sets of intuitive plans and programs based on the pre-input combat missions and strike target information, comprehensively evaluates their advantages and disadvantages and potential risks, and selects the plan that is most conducive to realizing the commander’s intention for the commander to make the final decision. After receiving the combat missions and target requirements from the superior, each combat unit will further screen the battlefield target information in combination with the tasks and requirements of its own level, and independently formulate the best plan and program at its own level to maximize combat effectiveness.

Intelligent prediction of decision-making effectiveness. The intelligent decision-making auxiliary system relies on intelligent technologies such as big data, high-performance computing, and neural network algorithms to give the command and control system a more advanced “brain-like” ability, which can think more rationally about unexpected situations on the battlefield and quickly come to a relatively objective combat result.

Power control mechanism

The dominant position is to control power by taking advantage of the situation. Seizing control power is the key factor to win the war. Artificial intelligence can “transplant” part of human intelligence to weapons, making the combination of humans and weapon systems more and more close. The deep interaction between humans and machines has changed the traditional control elements, endowed new control connotations, and can help gain new control advantages.

The dominance of the domain is expanding to the high frontier. In the future, highly intelligent unmanned systems will be able to carry out a variety of combat missions even in harsh conditions such as high temperature, extreme cold, high pressure, lack of oxygen, toxicity, radiation, and in extreme environments such as extreme height, extreme distance, extreme depth, extreme micro, extreme darkness, and extreme brightness. The competition for dominance of the combat domain and combat space will extend to the high frontier, the far frontier, and the deep frontier.

The right to control information is expanding to multiple means. The traditional way to seize the right to control information is to control the channels of information acquisition, processing, and distribution by attacking the enemy’s reconnaissance and early warning system and destroying its command and control system. However, information warfare under the guidance of artificial intelligence uses information itself as “ammunition”, and the means to seize the right to control information are more diverse.

The network control power is expanding to distributed. The network information system built based on intelligent technology provides a ubiquitous network “cloud” to aggregate battlefield resources of various terminals and provide services, which can realize modular organization and automatic reorganization of combat forces. The traditional purpose of disconnecting the network and destroying the chain by striking key nodes will no longer be achieved. It is inevitable to respond to the “decentralized” battlefield with an intelligent distributed strike mode.

The power to control the brain is expanding to new dimensions. Brain-like technology and simulation technology are gradually militarized, forming new areas of competition and confrontation. The focus has shifted from focusing on confrontation in the physical and information domains to focusing more on influencing and controlling the opponent’s psychology. Technologies such as virtual reality and audio-visual synthesis can confuse the real with the fake. “Core attack” can quietly change the enemy’s command and control system algorithm. “Brain control” can directly control the enemy’s decision-making. By controlling and influencing the enemy’s psychology, thinking, and will, the goal of stopping and winning the war can be achieved at the lowest cost.

Mechanism of action

The key to victory in war is speed. Taking unexpected actions against the enemy is the key to victory in war. Artificial intelligence can improve the intelligence level of weapons and equipment, command and control systems, and action decisions, making mobile response capabilities faster and joint strike capabilities more accurate, creating a super action advantage.

The speed of action is “killed in seconds”. The intelligent combat system can see, hear, understand, learn and think, effectively shortening the “OODA” cycle. Once an “opportunity” is found, it will use intelligently controlled hypersonic weapons, kinetic weapons, laser weapons, etc. to quickly “kill” the target at a long distance.

Action style is “unmanned”. “Unmanned + intelligent” is the future development direction of weapons and equipment. Low-cost unmanned vehicles, drones, unmanned submarines and other unmanned autonomous equipment, with the support of cluster autonomous decision-making systems, can plan the task division of each unit according to combat targets, and unmanned devices can accurately dock, autonomously combine, and covertly penetrate to carry out cluster saturation attacks on the enemy.

The action space is “blurred”. In future wars, using interference means to carry out soft strikes on the enemy’s intelligent combat systems and intelligent weapons, and using intelligent weapons to delay or influence the enemy’s decision-making and psychology will become the key to victory. Most of these actions are completed unconsciously or silently, presenting a “blurred” state where the enemy and us are invisible, the boundaries between the front and the rear are unclear, and the visible and invisible are difficult to distinguish.

The action deployment is “stealth”. The intelligent command system and weapon equipment have bionic and stealth properties. As long as they are deployed in advance in possible combat areas during peacetime preparations or training exercises, they can be hidden and dormant and ready for combat. Once they are activated in time in wartime, they can launch a sudden attack on the enemy, which will help to quickly seize the initiative in the war.

System Mechanism

Five things and seven strategies determine victory or defeat. Future wars will be full-domain, full-system, full-element, full-process system confrontations, and a stable and efficient combat system is the basic support for winning the war. With the continuous expansion of the application of artificial intelligence in the military field, the combat system is becoming more and more intelligent, and the full-domain integrated combat system will produce a strong system advantage.

There are more means of “detection”. Intelligent combat clusters rely on network information systems to connect with various large sensors, electronic warfare systems and other human-machine interaction platforms, use the detection and perception equipment of each combat unit to obtain battlefield data, give play to the self-organizing characteristics of intelligent groups, strengthen real-time detection and support for joint combat systems and back-end intelligence analysis, and can achieve full-domain detection, joint early warning, and coordinated verification, forming a multi-dimensional, full-domain coverage of large-area joint detection intelligence system.

The scope of “control” is wider. The use of intelligent unmanned combat platforms can break through the logical limits of human thinking, the physiological limits of the senses, and the physical limits of existence, and replace humans to enter traditional life restricted areas such as the deep sea, space, polar regions, and strong radiation areas, and stay there for a long time to implement “unconventional warfare”, thereby further expanding the combat space and having the ability to continuously repel opponents in a wider range of fields.

The speed of “fighting” is faster. With the support of intelligent network information system, the intelligence chain, command chain and killing chain are seamlessly connected, the speed of information transmission, decision-making speed and action speed are accelerated simultaneously, and the intelligent combat units can be flexibly organized, autonomously coordinated and quickly strike. All of these make the time utilization efficiency extremely high and the battlefield response speed extremely fast.

The “evaluation” is more accurate. Using intelligent technologies such as experiential interactive learning and brain-like behavioral systems, the intelligent combat evaluation system can autonomously complete the collection, aggregation, grading and classification of multi-means action effect evaluation information, accurately perceive battlefield actions based on big data and panoramic images, dynamically identify combat processes and correct defects, predict complex battlefield changes, and make comprehensive plans and flexibly respond.

The “security” is more efficient. The widespread application of intelligent comprehensive security systems represented by equipment maintenance expert systems and intelligent sensing equipment can efficiently respond to security needs in various domains, intelligently plan security resources, and ensure that the “cloud” aggregates various battlefield resources, effectively improving the comprehensive security capabilities of the networked battlefield.

(Author’s unit: Henan Provincial Military Region)

現代國語漢語:

人工智慧技術是提高新興領域戰略能力的重要支撐,近年來獲得快速發展並廣泛運用於軍事領域,不斷催生新的非對稱優勢,深刻改變未來戰爭的基本形態、作戰方式和製勝機理。應該深刻認識人工智慧這一革命性技術動力,準確識變、科學應變、主動求變,努力探尋制勝未來戰爭之道,在加速來臨的智能化戰爭中贏得主動。

資訊機理

知彼知己,百戰不殆。快速有效地掌握全方位資訊是戰爭制勝的首要前提。人工智慧可實現戰場態勢智慧感知、大量數據智慧分析、多元資訊智慧處理,能夠形成戰場「透明」優勢。

戰場感知自主實施。將智慧模塊嵌入戰時偵察系統,各類偵察節點單元可以實現隨機組網、臨機協同、有機整合,能夠全方位、多維度自主捕獲戰場信息,構建相對“透明”的數字化戰場環境和作戰態勢,進而撥開戰爭“迷霧”,全景式呈現作戰場景。

海量數據精準識別。依托精準感知技術和分析識別技術等智慧化科技,精準判讀、分析、比對、融合多元化的語音、文字、圖片、影片等數據,從而獲取更快、更全、更準、更深的戰場態勢結果,遠超人腦處理的速度和精確度。

關鍵資訊高效響應。基於作戰雲、大數據、物聯網等智慧化技術群,能夠從大批量、非標準化、異構化的情報數據中快速發掘,自主發現徵候、識別意圖、研判趨勢、找到規律,實時精準地響應指揮員對關鍵資訊的需求。

融合態勢同步共用。智慧化控制系統能夠將分佈在陸海空天電網等不同空間、不同頻域的各種偵察監視系統優化整合,並發揮共享信息和統一認知的重要樞紐作用,構建形成基於“一幅圖”“一張網」「一條鏈」的態勢,使各作戰單元全局全頻全時從不同空間、不同距離、不同頻率同步共享所需信息,實現智慧共享。

決策機理

夫未戰而廟算勝者,得算多也。科學準確決策是戰爭制勝的先決條件。人工智慧可進行動態戰場模擬推演,快速給出可行決策,大幅縮短作戰籌劃決策週期,能夠形成決策優勢。

戰略形勢智能研判。融入人工智慧技術的決策輔助系統,具備資訊收集、查詢管理、數據處理、關聯分析等功能,可有效突破人類分析能力的限制,最大限度去偽存真、關聯印證、連結思考,自動進行敵情、我情和戰場環境等大數據分析,形成相關兵力、兵器等對比數據,能夠有效率地輔助作戰指揮,幫助指揮員快速定下作戰決心。

作戰方案智能優選。依托智能化作戰模擬系統,根據預先輸入的作戰任務和打擊目標訊息,自動產生多套形象直觀的方案和計劃,綜合評估其優缺點及潛在風險,優選出最有利於實現指揮員意圖的方案,供指揮員作出最後決斷。各作戰單元接到上級作戰任務和目標需求後,結合本級任務和要求,進一步對戰場目標資訊進行甄別篩選,自主訂定本級最優方案和計畫,實現作戰效能最大化。

決策效能智能預測。智慧化輔助決策系統依賴大數據、高效能計算、神經網絡演算法等智慧化技術,賦予指揮控制系統更高階的「類腦」能力,可以更理性地思考戰場上出現的意外情況,快速得出相對客觀的交戰結果。

制權機理

勢者,因利而製權也。奪取制權是贏得戰爭制勝優勢的關鍵因素。人工智慧可將人的部分智慧「移植」到武器上,使得人與武器系統結合越來越緊密,人機一體深度互動改變了傳統的製權要素,賦予新的製權內涵,能夠助力獲得新的製權優勢。

制域權向高邊疆拓展。未來高度智慧化的無人系統,即使在高溫、極寒、高壓、缺氧、有毒、輻射等惡劣條件下,在極高、極遠、極深、極微、極黑、極亮等極端環境中,仍然可以遂行多種作戰任務,作戰領域和作戰空間的製權之爭向高邊疆、遠邊疆、深邊疆延伸。

制資訊權向多手段拓展。傳統的奪取制資訊權,是透過打擊敵偵察預警體系、破壞其指揮控制系統等手段實現對資訊取得、處理、分發等途徑的控制,而人工智慧主導下的資訊作戰則是將資訊本身作為「彈藥”,奪取制資訊權的手段更加多樣。

製網權向分散式拓展。基於智慧科技構建的網絡資訊體系,提供泛在網絡「雲」以聚合各類終端的戰場資源並提供服務,能夠實現作戰力量模塊化編組、自動化重組,傳統的通過打擊關鍵節點,達成斷網毀鏈的目的將很難再實現,必然是以智慧化分散式打擊模式來應對「去中心化」的戰場。

制腦權向新維域拓展。類腦技術、模擬技術等逐步軍事化,形成了新的博弈和對抗領域,重心由注重物理域、資訊域對抗向更加註重影響和控制對手心理轉變,虛擬現實、聲像合成等技術能夠以假亂真, 「攻芯戰」能夠悄無聲息地改變敵方指揮控制系統演算法,「控腦戰」能夠直接控制敵方決策,透過控制和影響敵方的心理、思維、意誌等,能夠以最小代價實現止戰、勝戰之目的。

行動機理

兵之情主速,乘人之不及。採取敵方意料不到的行動是戰爭制勝的關鍵要害。人工智慧可提高武器裝備、指控系統、行動決策等方面的智慧化程度,使機動反應能力更快、聯合打擊能力更準,創造出超強的行動優勢。

行動速度「秒殺化」。智慧化作戰系統看得見、聽得懂、能學習、會思考,有效縮短了“OODA”循環週期,一旦發現“有機可乘”,便運用智能化控制的超高聲速武器、動能武器、激光武器等,對目標進行遠距離快速「秒殺」。

行動樣式“無人化”。 「無人+智慧」是未來武器裝備發展方向。低成本的無人車、無人機、無人潛航器等無人自主裝備,在集群自主決策系統支援下,可針對作戰目標規劃各單元的任務分工,無人器之間精準對接、自主組合、隱蔽突防,對敵進行集群飽和攻擊。

行動空間「模糊化」。未來戰爭中,利用乾擾手段對敵方的智慧化作戰系統和智慧武器實施軟打擊,利用智慧武器遲滯或影響敵方人員的決策和心理將成為製勝關鍵。這些行動大都是在不知不覺或無聲無息中完成的,呈現敵我雙方不見人影、前方後方界限不清、有形無形難以辨別的「模糊」狀態。

行動布勢「隱身化」。智慧化指揮系統和武器裝備具有生物仿生和隱身性能。只要在平時備戰或訓練演習時提前佈設在可能交戰地域,潛伏預置、休眠待戰,戰時一旦需要適時激活,對敵實施猝然打擊,有助於快速掌握戰爭主動權。

體系機理

五事七計知勝負。未來戰爭是全領域、全系統、全要素、全流程的體系對抗,穩定高效的作戰體係是戰爭制勝的基礎支撐。隨著人工智慧在軍事領域應用不斷拓展,作戰體系智慧化程度越來越高,全域融合的作戰體係將產生強大的體系優勢。

「偵」的手段更多。智慧化作戰集群依托網絡資訊體係與各類大型傳感器、電子戰系統及其他人機交互平台進行連接,運用各作戰單元自身檢測感知設備獲取戰場數據,發揮智能群體自組織特性,強化對聯合作戰體系及後端情報分析的即時偵監支持,能夠實現全局偵搜、聯合預警、協同印證,形成多維一體、全局覆蓋的大區域聯合偵察情報體系。

「控」的領域更廣。運用智慧化無人作戰平台,能夠突破人類思維的邏輯極限、感官的生理極限和存在的物理極限,並代替人類進入深海、太空、極地、強輻射地域等傳統的生命禁區,並長時間置身其中實施“非常規作戰”,從而使作戰空間進一步拓展,具備在更廣的領域持續懾拒對手的實力。

「打」的速度更快。在智慧化網路資訊體系支撐下,情報鏈、指揮鏈、殺傷鏈無縫連接,資訊傳輸速度、決策速度與行動速度同步加快,智慧化作戰單元能夠靈活編組、自主協同、快速打擊。這些都使得時間利用效率極高、戰場反應速度極快。

「評」的精度更準。運用經驗式互動學習、類腦行為體係等智慧化科技,智慧化作戰評估系統能夠自主完成多手段行動效果評估資訊的擷取匯聚、分級分類,基於大數據和全景圖精準感知戰場行動,動態識別作戰過程並糾正缺陷問題,預判複雜戰場變化,綜合規劃、靈活應對。

「保」的效率更高。以裝備維修專家系統、智慧化感知設備為代表的智慧化綜合保障系統的廣泛應用,能夠高效響應各域保障需求,智慧規劃保障資源,保障「雲」聚合各類戰場資源,有效提升網絡化戰場綜合保障能力。

(作者單位:河南省軍區)

中國原創軍事資源:https://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-05-02&paperNumber=03&articleid=930888

Understanding Chinese Military Information Support Force

了解中國軍事資訊保障部隊

現代英語翻譯:

On April 19, 2024, the founding ceremony of the Chinese People’s Liberation Army Information Support Force was grandly held in the Beijing Bayi Building. Xi Jinping, General Secretary of the CPC Central Committee, President of the State, and Chairman of the Central Military Commission, awarded the military flag to the Information Support Force and delivered a speech. What kind of force is the information support force? What is the structure and layout of the new military service? What tasks does it perform? In response to these issues, the editor has compiled some official information, let’s study together.

What kind of force is the Information Support Force? The adjustment and establishment of the information support force is a major decision made by the CPC Central Committee and the Central Military Commission based on the overall cause of strengthening the military . It is a strategic measure to build a new type of military structure and layout and improve the modern military force system with Chinese characteristics. It has important and far-reaching significance for accelerating the modernization of national defense and the army and effectively fulfilling the mission and tasks of the people’s army in the new era.The information support force is a newly created strategic branch of the military. It is the key support for the overall construction and use of network information systems . It plays an important role and has heavy responsibilities in promoting the high-quality development of our military and winning modern wars.

What is the structural layout of the new military services?After this reform, the Chinese People’s Liberation Army has generally formed a new military structure layout, including the army, navy, air force, rocket force and other services under the leadership and command of the Central Military Commission , as well as military aerospace forces, cyberspace forces, information support forces, and joint logistics support forces .

The main responsibilities of the four independent arms

Military aerospace forces: responsible for space strategic support missions, improving our military’s space situational awareness, space target monitoring and space information transmission capabilities.

Cyberspace Forces: Responsible for cyberspace strategic support tasks, improving our military’s cyberspace situational awareness, cyber attack defense and cyberspace combat capabilities.

Information support forces: Coordinate the construction and use of network information systems to improve our military’s ability to obtain, transmit, process and utilize information. Enhance situational awareness, command and control, and coordinated combat capabilities, so that our military has informationized combat advantages. Strengthen information protection, ensure information security, and improve our military’s ability to resist network attacks.

Joint Logistics Support Force: Responsible for logistics support tasks, improving our military’s logistics support capabilities and wartime logistics support capabilities. Strengthen capabilities in material supply, medical rescue, engineering support, etc. to ensure that our military can win the battle.

What are the significance and requirements of building a modern information support force?In his speech, Xi Jinping emphasized that the information support force is a newly created strategic branch of the military. It is a key support for the overall construction and use of network information systems. It plays an important role and has heavy responsibilities in promoting the high-quality development of our military and winning modern wars. The following picture will help you understand the role and requirements of modern information support forces.

現代國語:

中國軍事資源:https//www.81it.com/2024/0520/14988.html

What is China’s Organizational Form of the Military in the Era of Intelligence?

智能化時代中國軍隊的組織形態是什麼?

中國軍網 國防部網 // 2019年4月18日 星期四

現代英語:

The organizational form of the military in the intelligent era is a military organizational form in which the military organizational system, scale structure, force composition and operation mode have the characteristics of the intelligent era, meet the requirements of intelligent warfare, and have an intelligent external manifestation and internal operation state. Since the 21st century, the armies of some developed countries have set off a new wave of intelligent military revolution in order to maintain their military leadership, and the war form has begun to accelerate from informationization to intelligence. The battlefield space has expanded from the traditional physical domain to the ubiquitous cognitive domain and the broad-spectrum social domain, and the combat style has extended to unmanned combat, distributed combat and multi-domain combat. Close coupling of man and machine and flexible and autonomous combat have become the future trend, and the control of intelligence has evolved into the core control of battlefield competition. The world military competition around intelligence has begun, and it is urgent to adapt the organizational form of the military to it, calling for a new round of changes in the organizational form of the military.

The army will be streamlined. With the development of unmanned weapons and equipment based on artificial intelligence and its derivative technologies, the material basis of war and the face of combat forces will change greatly. Unmanned combat forces such as unmanned armored forces, unmanned fleets, and drone forces will soon enter the historical stage and dominate the battlefield in the future. It can be foreseen that an operator of an unmanned force can control several, dozens, or even hundreds of unmanned combat units to perform tasks that were originally completed by a unit, fleet, or fleet. The number of front-line combat personnel will drop significantly, while the number of personnel in the rear who are concerned about how to develop, use, and ensure intelligent equipment will increase sharply. At the same time, the evolution of intelligent technology will enable weapons and equipment to develop from passive use to active learning and deep learning. Autonomous planning, automatic updating, free action, and even self-repair will become the norm. The demand for personnel at all levels and types of combat command, construction management, and comprehensive support will be significantly reduced, further weakening the overall size of the army. Some traditional large-scale troops are facing “collective unemployment.” The ratio of combat personnel to weapons has undergone a historic reversal, with the proportion of combat personnel dropping significantly and the proportion of intelligent unmanned systems rising significantly. The overall appearance of the military will change to an intelligence-intensive, human-machine integrated type, and the weapons and equipment system will evolve from “firepower + information” to “firepower + intelligence”.

Integration of force structure. In the era of mechanized warfare, the prominent features of the military organization are the separation of services and self-development. The battlefield unfolds in the three domains of land, sea and air, and the boundaries of the services are clear. In the era of information warfare, the performance of weapons and equipment has been greatly improved. Each service has broken the original boundaries and gradually extended to other battlefields, ending the pattern of the three services monopolizing land warfare, sea warfare and air warfare respectively. The characteristics of the services have weakened, requiring unprecedented joint combat force systems. In the era of intelligent warfare, the winning mechanism has evolved from the precise release of information-controlled power to cognitive warfare, will warfare, swarm warfare, wolf pack warfare, etc. controlled by intelligence. “Unmanned, invisible, and silent” combat will become the main mode of war. The combination of people and land, sea and air equipment will give way to the combination of people and intelligent machines. The military structure has developed from the “land, sea and air” field organization to the “unmanned + manned” integrated force model divided by combat subjects. The fundamental change in combat style and the full-domain combat capability of weapons and equipment have brought subversive impacts on the traditional combat force organization structure, shaking the foundation of the existence of the services. The services are more integrated and will eventually achieve “integration”. At the same time, the boundaries of traditional battlefields are becoming increasingly blurred, the effects of war expansion are becoming more obvious, the degree of military-civilian integration is deepening, and more and more “soldiers without uniforms” are performing military tasks, which has a profound impact on the composition of traditional armies. The army’s organizational structure is rapidly developing towards a cross-border, cross-domain, and cross-generational mixed organization model.

Flexible command system. Intelligent warfare has the characteristics of “human-machine integration, using speed to defeat slowness”. The situation on the intelligent battlefield is more complex, with all-dimensional and all-domain “hard kill” and “soft confrontation” intertwined and iterated. Multi-type and multi-channel battlefield information converges to form massive data, which poses severe challenges and higher requirements for the construction and operation of the command system. In terms of the establishment of the command system, the command chain evolves to the three levels of “strategic command organization-functional command organization-intelligent combat force”; the command organization personnel are more capable, and the staff seats will be replaced by “cloud brain” and “digital staff”. Commanders will mainly rely on intelligent command systems to analyze information, implement communication control, and process various types of intelligence. With the help of intelligent decision-making technologies such as intelligent recognition of graphic image processing, decision-making “optimization” algorithms, and deep neural networks, the quality of command decisions will be improved, and the shortest “decision-response” cycle will be achieved. In terms of the operation mode of the command system, more attention will be paid to following the human-machine interaction mode, and expanding the application and development of independent and autonomous command decisions by machines. We will promote the intelligence of command and control, use artificial intelligence to obtain useful, orderly, timely and accurate battlefield information data, greatly shorten the operational cycle of operational conception, task allocation, target attack, damage assessment, etc., and ensure that commanders can think more rationally about unexpected situations on the battlefield and deal with battlefield situations, so that they can achieve the operational cycle characteristics of “man out of the loop”. In terms of the configuration of command system authority, commanders are required to actively delegate “power” and let machines replace humans to perform some command and decision-making functions. Some decision-making functions are embedded in machines through implanted programs, and machines are allowed to make autonomous decisions, while retaining the final decision-making power of humans on major matters.

Autonomous combat formation. In the era of information warfare, the external characteristics of combat formations are modularization and “plug and play”, and the formation of troops is quite different from combat formations. In the era of intelligent warfare, combat missions, combat targets, combat space, and combat styles are mixed and varied. The combat effectiveness is determined by the degree of integration between man and machine, requiring combat formations to be more flexible, elastic, and have autonomous adaptability. The emergence of intelligent unmanned forces provides the prerequisite for realizing the autonomous adaptability of combat formations. In 2015, the French army conducted a demonstration and verification of the “neuron” UAV, realizing autonomous formation flight. Several “neurons” can accept the command and control of a “Rafale” fighter at the same time, solving the formation control, information fusion, inter-machine data communication, and tactical decision-making technologies. It is not difficult to speculate that in the future, unmanned forces may have hundreds or thousands of unmanned combat units. Different combat units may have multiple functions such as “reconnaissance, control, attack, and evaluation”, and may also have multi-dimensional combat capabilities such as land, sea, air, space, network, and electricity. By differentiating these combat units into “machine-machine formations” and “man-machine formations”, they can perform tasks in different fields. At the same time, through preset rules, these combat units can also be autonomously organized according to changes in tasks, thereby achieving autonomous adaptability and flexible organization of combat units, and generating diversified combat capabilities that traditional forces do not have.

現代國語:

楊 震 蔣 艷

智能化時代軍隊組織形態,是軍隊組織體制、規模結構、力量編成和運行模式具備智能化時代特徵、符合智能化戰爭要求,具有智能化外在表現形式及內在運作狀態的一種軍隊組織形態。自21世紀以來,一些已開發國家軍隊為維持軍事領先優勢,掀起了新一輪智慧化軍事革命浪潮,戰爭形態開始由資訊化加速向智慧轉型。戰場空間從傳統物理域向泛在認知域、廣譜社會域拓展,作戰樣式向無人作戰、分散式作戰和多域作戰延伸,人機緊密耦合、靈活自主作戰成為未來趨勢,制智權演化為戰場爭奪的核心製權。圍繞智慧化的世界軍事競爭已拉開序幕,迫切要求軍隊組織形態與之相適應,呼喚新一輪軍隊組織形態變革。

軍隊規模精乾化。隨著基於人工智慧及其衍生技術的無人化武器裝備發展,戰爭的物質基礎和作戰力量面貌將發生極大變化。無人裝甲部隊、無人艦隊、無人機部隊等無人作戰部隊即將登上歷史舞台,成為未來戰場主宰。可以預見,無人部隊的一名操作手即可控制數個、數十個、甚至成百上千個無人作戰單元,去執行原來由一支部隊、機群或艦隊完成的任務,一線作戰人員規模將大幅下降,而後方圍繞如何發展、如何運用、如何保障智慧裝備的人員將急劇增加。同時,智慧技術的進化將使武器裝備從被動使用向主動學習、深度學習發展,自主規劃、自動更新、自由行動甚至自我修復成為常態,各級各類作戰指揮、建設管理、綜合保障等人員需求明顯減少,進一步削弱了軍隊整體規模,部分傳統規模化部隊面臨「集體失業」。戰鬥人員與武器編配比例出現歷史性逆轉,戰鬥人員比例大幅下降,而智慧化無人系統的比例大幅上升。軍隊整體面貌將向智力密集、人機融合型轉變,武器裝備體係由「火力+資訊」向「火力+智慧」方向演進。

力量結構一體化。機械化戰爭時代,軍隊組織形態的顯著特徵是軍種分立、自我發展,戰場在陸、海、空三域展開,軍種界限分明;資訊化戰爭時代,武器裝備性能極大提升,各軍種打破原有界限,逐漸向其他戰場延伸拓展,結束了三軍分別壟斷陸戰、海戰和空戰的格局,軍種特性弱化,要求作戰力量體系空前聯合化;智能化戰爭時代,制勝機理由信息控制的力量精確釋放演進到由智慧控制的認知戰、意志戰、蜂群戰、狼戰等,「無人、無形、無聲」作戰將成為戰爭主要模式,人與陸海空裝備組合將讓位給人與智慧機器組合,軍隊結構由「陸、海、空」領域編成向按作戰主體劃分的「無人+有人」一體化力量模式發展。作戰樣式的根本改變和武器裝備的全域作戰能力,對傳統作戰力量編成結構帶來顛覆性影響,動搖了軍種存在的根基,軍種更加一體化,終將實現「合而為一」。同時,傳統戰場邊界日益模糊,戰爭外擴效益明顯,軍民一體化程度加深,越來越多「不穿軍裝的戰士」執行軍事任務,對傳統軍隊構成帶來深刻影響,軍隊編成結構向著跨界、跨域、跨世代混合編組模式快速發展。

指揮體制靈活化。智慧化戰爭具有「人機融合,以快製慢」特點,智慧化戰場態勢更加複雜,全維全局「硬殺傷」「軟對抗」交織迭代,多類型多通路戰場資訊交匯形成海量數據,對指揮體制的建構及運作提出了嚴峻挑戰和更高要求。在指揮體制編制上,指揮鏈向「戰略指揮機構─職能指揮機構─智慧作戰力量」三級演進;指揮機構人員更加精幹,參謀席位將被「雲端大腦」「數位參謀」取代。指揮人員將主要依托智能化指揮系統進行資訊分析、實施通訊控制、處理各類情報,借助圖形影像處理智慧識別、決策「尋優」演算法以及深度神經網路等智慧決策技術提升指揮決策質量,實現最短“決策—反應”週期。在指揮體制運作模式上,更重視遵循人機互動模式,拓展機器獨立自主指揮決策的應用與開發。推進指揮控制智能化,利用人工智慧手段取得有用、有序、及時、準確的戰場資訊數據,大幅壓縮作戰構想、任務分配、目標打擊、毀傷評估等作戰週期,確保指揮官更理性地思考戰場上出現的意外情況,處置戰場態勢,使其實現「人在迴路外」的作戰循環特性。在指揮體制權限配置上,要求指揮官主動放“權”,讓機器代替人類進行一部分指揮決策職能,將部分決策職能通過植入程序嵌入機器,交由機器進行自主決策,保留重大事項的人類最終決策權。

作戰編組自主化。在資訊化戰爭時代,作戰編組的外部特徵是模組化、“即插即用”,部隊編成與作戰編組差異較大。智慧化戰爭時代,作戰任務、作戰對象、作戰空間、作戰樣式混合多變,作戰效能由人與機器的融合程度所決定,要求作戰編組更加靈活、富於彈性、具備自主適應能力。智慧化無人部隊的產生,為實現作戰編組的自主適應提供了前提。 2015年,法軍進行了「神經元」無人機展示驗證,實現了自主編隊飛行,數架「神經元」可同時接受1架「陣風」戰鬥機的指揮控制,解決了編隊控制、資訊融合、機間數據通訊以及戰術決策等技術。不難推測,未來無人部隊可擁有數百上千個無人作戰單元,不同的作戰單元可具備「偵、控、打、評」等多種功能,還可具備陸、海、空、天、網、電等多維作戰能力,將這些作戰單元進行差異化“機機編組”“人機編組”,就能執行不同領域任務。同時,透過預設規則,這些作戰單元還可根據任務變化臨機自主編組,從而實現作戰單元自主適應、彈性編組,產生傳統部隊所不具備的多樣化作戰能力。

中國軍事資源:https://www.81.cn/jfjbmap/content/2019-04/18/content_231980.htm

Chinese Military “new domains” and “new quality combat space force”?

中國軍隊的「新領域」與「新素質作戰太空軍」?

現代英語:

The report of the 20th CPC National Congress proposed to increase the proportion of new-domain and new-quality combat forces. In today’s world, the war situation is accelerating its evolution towards intelligence, and a large number of advanced technologies are widely used in the military field. New-domain and new-quality combat forces have become the commanding heights of strategic competition among major powers and the key force to win the future. Developing new-domain and new-quality combat forces has become a priority option for the world’s military powers. Understanding what is “new” about new-domain and new-quality combat forces is of great value in clarifying ideas, building scientifically, and improving quality and efficiency.

New developments in space

The space domain is the attribute embodiment of the environment that combat forces rely on and the scope of influence. With the expansion of the scope of human activities and the development of national interests, the current military struggle space has exceeded the traditional land, territorial waters and airspace, and has continuously expanded to the deep sea, space, electromagnetic and other fields, and new domains and new types of combat forces have also emerged.

The scope of action has entered social cognition. The scope of action of new-domain and new-quality combat forces has expanded from the traditional physical domain to the social domain and cognitive domain. In the era of intelligence, disruptive technologies represented by artificial intelligence are accelerating the expansion of the scope of influence of combat forces. The rapid application of technologies such as biological cross-fertilization, brain science, and human-computer interface has promoted the deep penetration and high integration of intelligent network systems and human social activities. New situations and new means such as “intelligent deep forgery” and “fabrication of information manholes” have surfaced in large numbers, and the struggle in the social domain and cognitive domain has gradually evolved into a new domain and new “trend” for power games.

The activity space is more three-dimensional and diversified. Driven by advanced technology, new domain and new quality combat forces have broken through the traditional space of land, sea, air and space, and the scope of activities is more three-dimensional and diversified. The deep sea, space, underground, polar regions, etc. have become new territories for the competition of new domain and new quality combat forces, and have grown into a “new sector” for leveraging the combat space. In 2018, the U.S. Department of Defense issued the “National Defense Space Strategy”. Against the background of the establishment of an independent space force and space command in the United States, its space force has evolved into a synonym for comprehensive space capabilities that integrate military, political, economic, and diplomatic capabilities.

Battlefield dimensions emphasize high-level multi-dimensionality. New domain and new quality combat forces often achieve performance aggregation through high-level multi-dimensional deployment, which is very different from the battlefield deployment of conventional forces. With the extension of battlefield dimensions such as network and electromagnetic, the matrix distribution of new domain and new quality combat forces has broken through the traditional three-dimensional limitations and expanded to a high-level space of high-dimensional, full-dimensional, and large-scale joint. At the end of 2019, the US military launched the concept of “all-domain operations”, integrating space, network, electromagnetic and missile defense capabilities, claiming to compete with competitors in all possible conflict dimensions.

Winning mechanism highlights new changes

The winning mechanism contains the mechanism and principle of seizing the right to occupy and winning. At present, the winning mechanism of intelligent high-end warfare is undergoing profound changes. The new domain and new quality combat force is precisely the “blade” that conforms to the evolution of the war form and conforms to the winning mechanism of intelligent high-end warfare.

The focus of force confrontation is on dimensionality reduction and intelligence control. For new domain and new quality combat forces, data drive is the driving force of power, breaking the network chain is the focus of action, and dimensionality reduction and intelligence control is the focus of confrontation. New domain and new quality combat forces confront based on advanced algorithms and intelligent models, effectively drive key nodes such as cloud, terminal, and library of intelligent combat systems, and form intelligent advantages based on data resources. At the same time, focus on attacking weak links such as the enemy’s data chain system and mobile communication network, cut off the enemy’s cross-domain actions, and block its energy release.

The action path tends to be compound and iterative. Conventional combat forces generally achieve the expected effect through the superposition and accumulation of soft kill and hard destruction, while new domain and new quality combat forces use compound iteration of action effects as an effective path for efficient energy release. In the process of action, it not only emphasizes the role of new forces and new means such as hypersonic, long-range precision, laser electromagnetic and high-power microwave, but also focuses on multi-domain effects such as comprehensive algorithm control, network point paralysis, electromagnetic confrontation, psychological offense and defense, and public opinion building, so as to achieve cross-domain release of combat effects, multi-domain resonance and iterative efficiency enhancement.

The game mode focuses on gray over-limit. Traditional combat forces often pursue the direct effect of damage and destruction, while new domain and new quality combat forces pay more attention to gray over-limit battlefield games. The essence is to effectively reduce domains and control intelligence through non-military destruction, unconventional warfare and non-physical destruction in more fields, wider dimensions and wider ranges based on intelligent means and intelligent tools. It is reported that the US military has developed more than 2,000 computer virus weapons such as Stuxnet, Flame, and Shute, and has successfully used them in battlefields such as Syria and Iran. At present, the US military is striving to use projects such as the “National Cyber ​​​​Range” to continue to consolidate its dominant position.

New mutations emerge in science and technology

Science and technology have always been the most dynamic and revolutionary factor in military development. Entering the new century, leading, cutting-edge, and disruptive technologies have shown a “spurting” growth and have become an important variable in promoting the development of new domains and new types of combat forces.

Mutations come from emerging technologies. Advanced technologies play a vital role in driving the development of combat forces. The core technologies that support new-domain and new-quality combat forces have been rapidly transformed from traditional categories to emerging fields. In today’s world, intelligent technology has made new progress, unmanned system technology has entered an explosive period, space confrontation technology has flourished, network combat technology has advanced in depth, new concept weapons technology has attracted much attention, and fusion technology has given birth to disruptive innovation. As the key to changing the rules of the war game, new-domain and new-quality combat forces must firmly grasp the “key to victory” of emerging technologies.

Mutations present cluster effects. Breakthroughs in advanced science and technology often have a decisive impact on the development of new domains and new types of combat forces. In the era of intelligence, the science and technology system is more complex and systematic, and the role of core and key technologies emphasizes cluster effects and overall emergence. At present, the world’s military science and technology presents an all-round, multi-domain, and deep-level development trend. Various professional directions are accelerating through multi-point breakthroughs, multi-party penetration, and deep integration. The key technologies that support new domains and new types of combat forces are also undergoing a transformation from single competition to cluster promotion.

Mutation favors integration and crossover. Advanced science and technology have a subversive effect of changing the rules of engagement and breaking the conventional path in promoting the development of new domain and new quality combat forces. Today, the development of cutting-edge technology is shifting from conventional disciplines to cutting-edge crossovers. Big crossovers, big integrations, and big breakthroughs have become the general trend. The world’s military powers have increased their investment in artificial intelligence, biological crossovers, advanced computing, hypersonics, and other directions, and have used integration and crossover as an effective way to innovate cutting-edge technologies, competing for the strategic commanding heights of the development of new domain and new quality combat forces.

New modes for weapons and equipment

Weapons and equipment have always been an effective carrier for combat forces to exert their effectiveness. The weapons and equipment of new-domain and new-quality combat forces have the characteristics of new technology, new functions, and new modes. They can effectively exert new-domain and new-quality combat capabilities, create a window of advantage, paralyze the opponent’s system, and form a shock effect.

Platform equipment focuses on intelligent unmanned. At present, the platform equipment of new domain and new quality combat forces has broken through the conventional manned control mode and accelerated the transformation to intelligent unmanned form. In recent years, based on the rapid application of intelligent unmanned technology, the full spectrum of unmanned platforms, intelligent equipment and unmanned swarms have experienced explosive growth. The US military’s “Global Hawk” and “Predator” drones have been put into actual combat in large numbers. The F-35 and the unmanned version of the F-16 continue to strengthen manned and unmanned collaboration through the “Loyal Wingman” program. The US military plans that drones will account for 90% of its air force aircraft equipment in the future.

The weapon system highlights heterogeneity and versatility. The integration of various types of data links, standards and waveforms provides a richer set of technical integration tools for the weapon systems of new-domain and new-quality combat forces. The weapon systems of new-domain and new-quality combat forces have changed the fixed state of individual operation and static combination, and put more emphasis on heterogeneous hinges and data conversion based on network information systems to quickly build cross-domain and cross-dimensional wide-area distributed weapon systems. In 2017, the US military proposed the concept of “mosaic warfare”, envisioning the use of dynamic distribution technology to transform the previously centralized and static weapon systems into heterogeneous and multi-functional ones.

The equipment system is more flexible and open. The equipment system of the new domain and new quality combat force has changed the structural mode of element series connection and unit parallel connection, becoming more flexible and open. With the help of “decentralized” design, the new domain and new quality combat force distributes the key functions of the equipment system nodes to each unit module, which can effectively avoid the passive situation of paralysis as a whole once a certain type or some key equipment is hit. In recent years, the US military has actively promoted the test and verification of “sewing” new electronic system integration technology, which is to accelerate the development of new information fusion and interoperability technologies.

New forms of force formation

Force organization is a form of deployment of combat forces, which directly affects the role and effectiveness of combat forces. New-domain and new-type combat forces have the characteristics of new force platforms, wide range of areas involved, innovative combat mechanisms, and sudden technological development. Force organization is significantly different from traditional forces.

The integration of elements emphasizes dynamic reconstruction. New-domain and new-quality combat forces have realized the dynamic reconstruction and cross-domain integration of combat elements, and promoted the transformation of combat elements from static matching to dynamic reconstruction. Based on the support of intelligent network information system, new-domain and new-quality combat forces can give full play to the derivative effectiveness of intelligent technology, and build a fusion iterative update mechanism of system elements based on autonomous and intelligent battlefield real-time command and control. Through heterogeneous functional elements and unit modules, iterative updates of system elements, reorganization and optimization of system structure, and evolutionary improvement of system capabilities can be achieved.

The unit architecture relies on cross-domain networking. The new domain and new quality combat force has achieved a leap from intra-domain combination to multi-domain aggregation of the unit architecture. Using advanced information network technology and based on mutually cooperative functional nodes, the new domain and new quality combat force can build a distributed “kill network” with good resilience to achieve wide-area configuration, cross-domain networking and multi-domain aggregation of combat units and basic modules. In the U.S. Army’s “Convergence Plan 2020” exercise, the “Firestorm” artificial intelligence-assisted decision-making system was able to achieve target input for the cutting-edge “Gray Eagle” drone within 20 seconds, and connect with attack weapons such as glide guided bombs, helicopters, and ground artillery.

The formation structure emphasizes human-machine hybrid. The new domain and new quality combat force has realized the transformation of the formation structure from manned to man-machine hybrid. The application of a large number of unmanned platforms and unmanned combat clusters enables the new domain and new quality combat force to rely on the intelligent combat system to form a heterogeneous and diverse open hybrid formation. Based on artificial intelligence and machine learning technology, various unmanned system platforms can autonomously build links and networks to generate multiple sets of combination plans. With the help of auxiliary decision-making tools, commanders can quickly select the best man-machine hybrid formation to achieve intelligent decision-making and unexpected victory.

現代國語:

黨的二十大報告提出,增加新域新質作戰力量比重。當今世界,戰爭形態加速向智慧化演變,大量先進科技在軍事領域廣泛應用,新域新質作戰力量已成為大國戰略競爭的製高點和製勝未來的關鍵力量。發展新域新質作戰力量已成為世界軍事強國的優先選項。認清新域新質作戰力量到底「新」在哪裡,對於釐清思緒、科學抓建、提升質效具有重要價值。

空間領域出現新拓展

空間領域是作戰力量環境依賴和影響範圍的屬性體現。隨著人類活動範圍的擴大和國家利益的發展,當前軍事鬥爭空間已經超越傳統的領陸、領海和領空,不斷向深海、太空、電磁等領域拓展,新域新質作戰力量也隨之應運而生。

作用領域進入社會認知。新域新質作戰力量的作用領域已由傳統的物理域擴展進入社會域、認知域。智慧化時代,以人工智慧為代表的顛覆性技術加速擴展作戰力量的影響領域。生物交叉、類腦科學和人機介面等技術的快速應用,促使智慧化網絡體係與人類社會活動深度滲透、高度融合。 「智慧深度偽造」「編制資訊繭房」等新情況、新手段大量浮出水面,社會域、認知域的鬥爭已逐漸演變為力量博弈的新領域和新「風口」。

活動空間更加立體多元。在先進技術推動下,新域新質作戰力量已突破陸、海、空、天等傳統空間,活動範圍更加立體多元。深海、太空、地下、極地等都已成為新域新質作戰力量角逐比拼的新領地,並成長為撬動作戰空間的「新版塊」。 2018年,美國國防部發布《國防太空戰略》,在美國成立獨立太空軍和太空司令部的背景下,其太空力量已經演變成為集軍事、政治、經濟、外交等於一體的太空綜合能力代名詞。

戰場維度強調高階多維。新域新質作戰力量往往透過高層的多維布勢實現效能聚合,與常規力量的戰場部署表現出極大不同。隨著網絡、電磁等戰場維度的延展,新域新質作戰力量的矩陣分佈已突破傳統的三維限制,擴展到高立體、全維度、大聯合的高階空間。 2019年底,美軍推出「全域作戰」概念,將太空、網路、電磁和導彈防禦等能力整合,聲稱要與競爭對手在所有可能的沖突維度展開競爭。

制勝機理突顯新變化

制勝機理蘊含著搶佔制權、奪取勝利的機制和原理。當前,智慧化高端戰爭的製勝機理正在發生深刻改變,新域新質作戰力量恰恰正是順應戰爭形態演變、契合智能化高端戰爭制勝機理的「刀鋒」。

力量對抗聚焦降維制智。對新域新質作戰力量來說,數據驅動是力量的動力來源,破擊網鍊是作用的著力處,降維制智是對抗的聚焦點。新域新質作戰力量基於先進演算法和智慧模型對抗,有效驅動智慧化作戰體系雲、端、庫等關鍵節點,形成基於數據資源的智慧優勢。同時,注重打擊敵方數據鏈體系和行動通訊網等弱點,切斷敵跨域行動,阻隔其能量釋放。

作用路徑傾向複合迭代。常規作戰力量一般透過軟殺傷和硬摧毀的疊加累積達成預期效果,新域新質作戰力量則將作用效果的複合迭代作為高效釋能的有效路徑。作用過程中,其不僅強調發揮高超聲速、遠程精確、雷射電磁和高功率微波等新力量、新手段的作用,而且注重綜合演算法控制、網點毀癱、電磁對抗、心理攻防和輿論造勢等多域效果,以實現作戰效果的跨域釋放、多域共振和迭代增效。

博弈方式註重灰色超限。傳統作戰力量常常追求毀傷破壞的直接作用,新域新質作戰力量更重視灰色超限的戰場賽局。實質是基於智慧手段和智慧工具,在更多領域、更寬維度和更廣範圍,通過非軍事破壞、非常規作戰和非物理摧毀等作用方式,有效降域制智。據悉,美軍已研發出震網、火焰、舒特等2,000多種電腦病毒武器,並在敘利亞、伊朗等戰場成功使用。目前,美軍正力求藉助「國家網絡靶場」等項目,持續鞏固其優勢地位。

科學技術湧現新突變

科學技術一直以來都是軍事發展中最活躍、最具革命性的因素。進入新世紀,先導性、前衛性、顛覆性技術呈現「井噴式」成長,並成為推動新域新質作戰力量發展的重要變數。

突變源於新興科技。先進科技對作戰力量的產生發展具有至關重要的驅動作用,而支撐新域新質作戰力量的核心技術已由傳統範疇加速向新興領域轉變。當今世界,智慧技術取得新進展,無人系統技術進入爆發期,空間對抗技術蓬勃興起,網絡作戰技術向縱深推進,新概念武器技術備受關注,融合技術催生顛覆性創新。新域新質作戰力量作為改變戰爭遊戲規則的關鍵,必須緊緊扭住新興科技這把「勝利之鑰」。

突變呈現集群效應。先進科技的突破往往對新域新質作戰力量的發展有決定性影響。在智慧化時代,科技體系的複雜程度更高、系統性更強,核心和關鍵技術的作用發揮更加強調集群效應和整體湧現。當前,世界軍事科技呈現全方位、多領域、深層次的發展態勢,各專業方向透過多點突破、多方滲透和深度融合等方式加速推進,支撐新域新質作戰力量的關鍵技術也正在經歷由單項比拼向集群推動轉換。

突變青睞融合交叉。先進科技對於推動新域新質作戰力量發展,具有改變交戰規則、打破常規路徑的顛覆性效果。如今,前沿技術的發展正由常規學科延伸向前沿交叉轉移,大交叉、大融合、大突破已成為大勢所趨。世界軍事強國紛紛在人工智慧、生物交叉、先進計算、高超音波等方向加大投入,並將融合交叉作為前沿技術創新的有效途徑,爭相搶佔新域新質作戰力量發展的戰略制高點。

武器裝備呈現新模態

武器裝備一直以來都是作戰力量發揮效用的有效載體。新域新質作戰力量的武器裝備具有技術新、功能新、模態新等特點,可有效發揮新域新質作戰能力,創設優勢窗口,毀癱對方體系,形成震懾效應。

平台裝備側重於智慧無人。當前,新域新質作戰力量的平台裝備已經突破有人為主的常規操控模式,加速向智慧化無人形態轉變。近年來,基於智慧化無人技術的快速應用,全譜係無人平台、智慧裝備和無人蜂群迎來爆發性成長。美軍「全球鷹」「掠食者」等無人機已大量投入實戰,F-35與無人版F-16通過「忠誠僚機」計畫不斷強化有人無人協同。美軍規劃未來無人機將佔到其空軍飛機裝備量的90%。

武器系統突顯異構多能。多種類型的數據鏈、標準和波形的整合,為新域新質作戰力量的武器系統提供了更豐富的技術整合工具。新域新質作戰力量的武器系統改變了個體運行、靜態組合的固定狀態,更加強調基於網絡資訊體系的異構鉸鍊和數據轉換,以快速構建跨領域、穿維度的廣域分散式武器系統。 2017年,美軍提出「馬賽克戰」概念,設想藉助動態分佈技術將以往集中靜態的武器系統變得異構且多能。

裝備體系更彈性開放。新域新質作戰力量的裝備體系改變了要素串聯、單元並聯的結構化模式,變得更有彈性開放。透過「去中心化」設計,新域新質作戰力量將裝備體系節點的關鍵功能分散至各單元模塊,可有效避免一旦某類或某些重點裝備遭到打擊,整體陷入癱瘓的被動局面。近幾年,美軍積極推進「縫合」全新電子系統整合技術的試驗驗證,就是要加速研發新型資訊融合與互通技術。

力量編組顯現新樣態

力量編組是作戰力量編配的形式體現,直接影響作戰力量的角色發揮與效能釋放。新域新質作戰力量具有力量平台新生性、涉及領域廣泛性、作戰機理創新性和技術發展突變性等特徵,力量編組與傳統力量相比有著明顯不同。

要素融合強調動態重構。新域新質作戰力量實現了作戰要素的動態重構與跨域融合,推動了作戰要素由靜態搭配向動態重構的轉變。基於智慧化網絡資訊體系的支撐,新域新質作戰力量可充分發揮智慧技術的衍生效能,基於自主化、智慧化的戰場實時指揮控制,構建一種體係要素的融合式迭代更新機制。透過異構的功能要素和單元模塊,實現體係要素的迭代更新、體系結構的重組優化和體系能力的演進提升。

單元架構借助跨域組網。新域新質作戰力量實現了單元架構由域內組合向多域聚合躍升。利用先進的資訊網絡技術,基於相互協作的功能節點,新域新質作戰力量可構建具有良好韌性的分佈式“殺傷網”,以實現作戰單元和基本模塊的廣域配置、跨域組網和多域聚合。在美陸軍「融合計畫2020」演習中,「火焰風暴」人工智慧輔助決策系統能夠在20秒鐘內實現前沿「灰鷹」無人機的目標輸入,並與滑翔導引炸彈、直升機、地面火砲等攻擊武器連接起來。

編組構成講求人機混合。新域新質作戰力量實現了編組構成由有人為主向人機混合轉變。大量無人平台和無人作戰集群的應用,使得新域新質作戰力量能夠依托智能化作戰體系,形成異構多樣的開放式混合編組。各類無人系統平台基於人工智慧與機器學習技術,自主建鏈組網,產生多套組合方案。指揮員借助輔助決策工具,可快速選定最優的人機混合編組,以實現智慧決策、出奇制勝。

來源:解放軍報 作者:劉海江 責任編輯:劉上靖 2022-11-29

中國國防部原文資源:http://www.mod.gov.cn/gfbw/jmsd/4927208.html?big=fan