Recently, the Russian Ministry of Defense announced the establishment of the “Era Military Innovation Technology Park”, which focuses on scientific research, testing and simulation of advanced weapons, military and special equipment. Coincidentally, the US military is also stepping up the development of the “Soldiers Build Intelligence System Military Training Support” project, hoping to better assist officers and soldiers in conducting military intelligence training by providing equipment, simulators and simulation modeling services. The frequently mentioned military simulation technology has attracted attention from all parties. With the rapid development of cloud computing, big data, artificial intelligence and other technologies, military simulation technology has made significant progress in equipment construction, military exercises, combat training and logistics support. At present, major military powers have recognized the huge application prospects of simulation technology in the military field and regard it as an “advanced intelligence contest” in modern warfare.
The “virtual battlefield” can also deploy troops
Once upon a time, we all “learned about war from war”. The emergence of military simulation technology has allowed us to learn about future wars from the “virtual battlefield”.
Simulation technology mainly relies on computer and other equipment platforms, and uses mathematical models to conduct scientific research, analysis, evaluation and decision-making on issues that need to be studied. Military simulation systems are simulation systems built specifically for military applications. They can conduct quantitative analysis of combat elements such as land, sea, air, space, electricity, and the Internet, the performance of weapons and equipment, and combat operations, and then accurately simulate the battlefield environment, present relevant battlefield situations, and achieve effectiveness evaluation of the combat system and command decision-making assistance.
At present, military simulation systems have become an effective means of studying future wars, designing weapons and equipment, and supporting the evaluation of tactics, and they run through the entire process of weapons and equipment development and testing. In recent years, military simulation technology has been increasingly regarded as a multiplier for improving combat effectiveness and one of the key technologies for national defense security and troop construction and development.
The United States has always listed modeling and simulation as an important key defense technology. As early as 1992, the United States announced the “Defense Modeling and Simulation Initiative” and established a special Defense Modeling and Simulation Office. The United States also specifically listed the “integrated simulation environment” as one of the seven driving technologies to maintain the US military advantage. At the same time, European countries attach great importance to the development of military simulation technology, and strive to continuously improve simulation methods in the process of developing a new generation of weapon systems, thereby improving the comprehensive effectiveness of weapon equipment construction and development.
In fact, military simulation technology has allowed people to fully learn about future wars in experiments. Before the outbreak of the Gulf War, the US Department of Defense used military simulation technology to analyze and determine the direct consequences of Iraq igniting all oil wells in Kuwait, which had a profound impact on the US military’s formulation of the Gulf War combat plan. In the integrated ballistic missile defense system project carried out by the US military, modeling and simulation methods are specifically used to conduct a preliminary assessment of the ballistic missile defense system. At the end of 2017, the US Department of Defense’s Advanced Research Projects Agency invested 12.8 million US dollars specifically for the construction of virtual simulation space battlefields. The US Army also spent 57 million US dollars to develop the Army Infantry Training System – this immersive military virtual simulation training system can provide soldiers with a more realistic battlefield combat simulation environment.
A brainstorming session to plan operations
From artillery simulation, aircraft simulation, missile simulation to today’s various types of weapon system equipment simulation and combat simulation, while simulation technology continues to meet the needs of military applications, it is also rapidly developing in the direction of virtualization, networking, intelligence, collaboration and universalization. In order to continuously improve military simulation calculation methods and improve simulation technology, people are constantly launching a “brainstorming” to plan operations.
Mathematical modeling algorithm. Mathematical model is the basis of simulation. To carry out simulation, we must first build a mathematical model of the object to be simulated. At the same time, the correctness and accuracy of the mathematical model directly affect the credibility of the simulation calculation results. In recent years, the rapid development of artificial intelligence technology has provided new ideas for mathematical modeling. Introducing artificial intelligence to build mathematical models can not only effectively improve the realism, reliability and accuracy of simulation models, but also further improve the efficiency of modeling and simulation.
Virtual reality technology. With virtual reality technology, people can interact with objects in a virtual simulation environment through related equipment, thereby creating an effect of “immersion” in the real environment. The augmented reality technology that has emerged in recent years has further increased the user’s perception of the virtual simulation system, and can superimpose virtual objects, scenes, and information generated by the military simulation system onto the real scene. The U.S. Army is currently relying on virtual reality and augmented reality technologies to develop the future overall training environment to achieve seamless, mixed immersive combat training.
Network grid technology. The realization of military simulation is inseparable from the strong support of computers, local area networks, software engineering and other technologies. The distributed interactive simulation that integrates simulation equipment or systems of different types in different locations into a whole provides a more realistic application environment for military simulation. In recent years, grid technology that can realize the rapid transmission of various types of information and resource sharing has become a research hotspot for military simulation. The US Department of Defense has begun to use the “Global Information Grid” plan to establish a military grid that communicates various information elements on the battlefield and realizes the dynamic sharing and collaborative application of various military network resources.
Winning the war before it starts
The future information warfare is an integrated war that is carried out simultaneously in multiple dimensions such as land, sea, air, space, electricity, and the Internet. Not only is the battle structure complex and the weapons and equipment diverse, but it also places higher demands on the combatants and the use of tactics. Only by building a “virtual battlefield” for future wars with the help of military simulation technology and realizing the scientific coordination of factors such as the scale of war, the course of war, war investment, the number of combatants and weapons and equipment, the targets of attack and the intensity of attack, can we be sure of victory before the war begins.
In the field of combat experiments, the U.S. military has fully reduced the losses caused by improper combat plans and action plans through a large number of computer simulation evaluations and iterative optimizations. The Russian military’s combat regulations and tactics are also “optimal battlefield solutions” obtained through scientific deduction and simulation calculation using mathematical models. Through military simulation analysis and evaluation, battlefield commanders and fighters can quickly understand the trend of war simulations and carry out effective responses according to various changes in the “virtual battlefield”, thereby effectively improving the effectiveness of combat experiments.
In the field of military training, individual soldier training can be carried out through an immersive virtual simulation training environment, which can be as close to the battlefield environment as possible and effectively improve the training effect. In recent years, the US Army has specially opened a “simulated immersion” training course in the “Advanced Course for Officers”. Through the implementation of virtual simulation military training, the organization and implementation of training are not restricted by time and weather conditions. The distributed training simulation system can even enable trainees in different locations to participate in the training together. By modeling and simulating the specific battlefield environment, tactical background and enemy forces, the military training system can also provide trainees with a more realistic battlefield perception.
In the field of equipment demonstration, the technical support of simulation systems is required throughout the life cycle of weapons and equipment development. At present, the United States has extensively adopted simulation technology in new weapon system development projects to fully support the development and testing, live-fire evaluation and combat testing of weapons and equipment. The U.S. Missile Defense Agency has further explored effective measures to deal with incoming missile threats through missile threat target modeling and simulation. The U.S. Navy simulates the operation of ship systems and crew members through mission analysis simulation software, and obtains simulation results for determining and optimizing the number of crew members. In the future, military simulation technology may become a new technological highland for the world’s major military powers to compete.
Intelligent victory is a distinct feature of the times in the “quality” of new quality combat power. With the development of science and technology and the evolution of war forms, intelligent joint operations based on “energy mobility and information interconnection”, supported by “network communication and distributed cloud”, with “data computing and model algorithms” as the core, and “cross-domain command and multi-domain operations” as the path, gradually outline a vivid scene of the application of new quality combat power. The intelligent trend of new quality combat power will trigger a chain breakthrough in the military field and become a key variable in changing the rules of war. To enhance new quality combat power and win future wars, we should “knock on the door” of intelligent operations and explore methods and paths to iteratively generate new quality combat power of intelligent joint operations.
Analyzing the characteristics of new quality combat power based on intelligent winning mechanism
Throughout human history, the mechanisms for winning wars have all left clear marks of the era of technological development. To understand and grasp the new quality of combat power of intelligent joint combat, we should keep up with the development of war forms and analyze its key characteristics.
The battlefield environment is distributed in multiple domains. The battlefield environment is the space for the use of new-quality combat power and the space-time framework for understanding the new-quality combat power of intelligent joint operations. Since the emergence of war, the space-time of war has undergone multiple leaps, including plane, three-dimensional, and invisible space. At present, combat confrontation is unfolding in a fusion space with dimensions including physical domain, information domain, and even biological domain and social domain. In intelligent joint operations, the status of virtual space rises and gradually integrates deeply with physical space. Invisible confrontations such as network, intelligence, and psychology constitute a new space. Establishing a virtual battlefield, realizing virtual-real interaction, and achieving virtual-real control have become new driving forces for joint operations.
Multiple integration of constituent elements. Constituent elements are the inherent characteristics of new-quality combat power and the basic elements of new-quality combat power of intelligent joint operations. Mechanized joint operations are platform-centric operations, with firepower and mobility as the dominant forces. The combination of people, mechanized equipment, and tactics is more of a superposition and accumulation, with the goal of carrying energy with objects and releasing energy with objects. Informatized joint operations are network-centric operations, with information power as the dominant force. The combination of network information, people, informationized equipment, and tactics is more of a linkage and interconnection, with the goal of gathering energy with the network and releasing energy with the network. The dominant force of intelligent joint operations is intelligence. The combat elements of cloud, network, people, equipment, and tactics are integrated through models, algorithms, and data to form a complex system with agile reorganization and autonomous adaptation, realizing the control of energy with intelligence and the control of energy with intelligence.
The mode of action is multi-functional and parallel. The mode of action is the energy release path of the new quality combat power and the key to analyzing the new quality combat power of intelligent joint operations. The use of system architecture and distributed coordination in joint operations has made distributed parallelism emerge in war. In joint operations, the speed of information sharing, mobile response, firepower strikes, and command and control decision-making has been greatly accelerated, and the effectiveness of different combat units can act in parallel. In recent local conflicts and military operations, the granularity of command and operations has become smaller and smaller, but the control range, combat effectiveness, and confrontation intensity have increased exponentially, which is the best example of multi-functional parallelism.
Evaluation and feedback from multiple perspectives. Evaluation and feedback is the iterative starting point for the evolution and improvement of new-quality combat power, the dynamic basis for promoting the development of new-quality combat power in intelligent joint combat, and an easily overlooked link in the generation of new-quality combat power. The high-precision and fast-paced characteristics of intelligent joint combat make multi-perspective evaluation and feedback a rigid need. Among them, the cloud-network-group-end link perspective can review the operating status of cloud platforms, networks, “swarms”, terminals, etc.; the manned and unmanned interaction perspective can judge the technical mechanisms of different interaction stages; the multi-domain aggregated space-time perspective is conducive to comprehensive evaluation and understanding of battlefield situations.
Reconstructing the new quality combat power generation model with system concept
At present, technologies such as artificial intelligence and cloud computing are constantly driving the transformation of the basic elements of joint operations. There is a new trend of development from separation to integration, from single equipment to clusters, and from physical to virtual-real interaction between functional modules such as intelligence, command and control, firepower, and network and electronics. The traditional combat capability generation model is no longer able to adapt to the development, and a new quality combat capability generation model should be reconstructed with new thinking.
Create an intelligent warfare system. Outdated military needs will not produce the best system for future warfare. Concept scenarios should be derived from intelligent technology, linking interactive intelligent components with existing personnel, equipment, tactics, etc. to form an intelligent combat system that includes perception, decision-making, offense and defense, support, and virtual-real interaction. An unchanging combat system will also be difficult to adapt to the rapid evolution of the war situation. An innovation chain of rapid iteration and leapfrogging should be formed to run through the entire process of generating new quality combat power and promote the evolution of the combat system from low-level to high-level.
Build agile combat units. The combat system is a high-intensity confrontation system. The faster the iteration speed in peacetime and the more advanced the construction level, the stronger the survivability in wartime. To build an intelligent joint combat system, we should start with cultivating the initiative and creativity of all individuals to form an agile team that can respond quickly and actively deal with battlefield uncertainties. Military training should fully absorb the lessons learned from recent local wars, change the traditional mode of large-scale linear deployment and group operations, highlight the distributed combat exercises of “breaking the whole into parts”, enhance the system’s anti-destruction ability, and improve stability.
Promote disruptive technological transformation. One of the secrets to the success of military revolution is the “surging” transformation of science and technology to the military. We should focus on advancing the basis of combat readiness with scientific and technological progress, transfer and transform the latest scientific achievements such as game theory, complex system science, and software definition, upgrade and transform the basic platforms of combat software and hardware, and explore the mechanism of system victory with innovative thinking, paradigms, and tools. At the same time, we should accelerate the extension of mature technologies such as mobile Internet and cloud computing to the combat system, accelerate the application of new materials, new energy, and advanced manufacturing to combat platforms, and improve the level of unmanned, bionic, and clustered intelligent combat.
Seek asymmetric checks and balances. Since the 20th century, “selective disclosure” and “cost imposition” have led opponents in the wrong direction and disrupted the rhythm, becoming common means in major countries’ military competition. Simply “fighting hard” according to the discourse system and method system dominated by others is often difficult to play one’s own advantages, and may even fall into the trap set by opponents. We should focus on leveraging our strengths and avoiding our weaknesses, scientifically choose our own combat effectiveness development path, and achieve misaligned competition. We should jump out of the leader’s preset, dynamically benchmark, and iteratively develop. Strengthen criticism and falsification to prevent being confused and misled by opponents.
Promoting the iterative development of new quality combat capabilities through continuous evolution
Whoever can take the lead in building new quality combat capability will gain the upper hand. The intelligent joint combat system is a complex and huge system that is constantly evolving. Its elements are constantly expanding and its environment spans multiple domains. It should follow the mechanism of continuous evolution and improvement, and within the scope of strategic management, take demand as the goal, efficiency as the key, and precision as the guide to promote the iterative development of new quality combat capability.
The generation link is included in strategic management. Intelligent joint operations are the new frontier for advancing war preparations and should be promoted in a coordinated manner according to the strategic management link. In the demand link, we should fully consider the gap between capabilities and needs, and scientifically justify the direction and amount of investment in construction resources; in the planning and budgeting link, we should follow the principle of matching goals and tasks with actual resources, focus on efficiency and implement budget control; in the execution and evaluation link, we should not only promote the top-level institutions to relay and coordinate operations vertically, but also regulate, supervise, and correct each field according to their responsibilities one by one.
The generation process establishes a positive cycle. Intelligent joint operations are in an era of change in which science and technology are developing from information networks to artificial intelligence, combat styles are changing from network-centric warfare to cross-domain autonomous parallel operations, and political, economic, diplomatic and military means are integrated and used. The generation process of new quality combat power should establish a positive cycle of iterative development and continuous evolution. It is necessary to pay attention to the balanced development of the capabilities of each system, as well as to clarify the levels and weights, and gradually achieve the best system and the strongest capabilities through hierarchical modeling and positive cycles.
The output of the generation is closely focused on the game confrontation. Only by keeping a close eye on the military game process can the construction of new quality combat power be targeted and in the right direction. We should focus on system competition, form a system of troops, seek system advantages, produce system results, and strengthen system capabilities in combat theory, equipment development, military training, etc., and avoid shortcomings. We should seek asymmetric checks and balances, neither closed and rigid, nor copy and paste, follow the trend, lead opponents in the key areas of building new quality combat power of intelligent joint operations, and create new advantages to check and balance powerful enemies in the process of actively responding to changes and seeking changes.
The generation efficiency is embedded in the inspection and evaluation. The generation efficiency of the new quality combat capability of intelligent joint operations should be included in the inspection and evaluation system. By analyzing strategic tasks to set operational requirements and new quality combat capability indicators, simulating and deducing the effectiveness of the use of new quality combat capability scenarios through major exercise activities, and testing and measuring new quality combat capability indicators through the design of evaluation model algorithms, evaluation and feedback can be used to support the construction of new quality combat capability of intelligent joint operations.
(Author’s unit: Strategic Assessment and Consulting Center, Academy of Military Science)
At the beginning of 2017, Master, known as the evolved version of “AlphaGo”, swept Ke Jie, Park Tinghuan, Iyama Yuta and other top Go players on the Go online platform, winning 60 consecutive games, setting off a “Master storm” and causing many people to worry. What humans are worried about is not that Go, known as the “last bastion of human wisdom”, will be conquered by artificial intelligence, but that artificial intelligence has subverted Go today, what will it subvert tomorrow? This is the concern that hangs in people’s minds.
Master’s consecutive victories over human masters are similar to the nature of computers proving the four-color theorem. They are all victories of computing power and algorithms. There is no need to worry too much that they will dominate and enslave humans. However, artificial intelligence is developing rapidly, and it is generally believed that strong artificial intelligence will come sooner or later. Nowadays, artificial intelligence has penetrated into every corner of life. It is not uncommon to use artificial intelligence in war. Since the arrival of the artificial intelligence era is inevitable, how we use it in future wars will become the key to victory. Whether artificial intelligence brings threats or development to mankind depends on how to use it. “The fake horse is not good at running, but it can reach a thousand miles; the fake boat is not good at sailing, but it can cross the river.” The integration of war technology and artificial intelligence may be the way of the future.
Development History of Artificial Intelligence
Artificial Intelligence Opens the Door to Intelligent Warfare
Master’s 60-game winning streak makes us think about how artificial intelligence will change our lives. Perhaps the following life scenarios will gradually become a reality:
When driving, you tell the location and the autopilot system takes you to your destination;
In hospitals, you see tug-trailer robots from the United States transporting medical equipment and “Big White” robots caring for patients;
After get off work, you press the “Go Home Mode” on your phone, and when you open the door, you find that the curtains are closed, the temperature is right, the lights are soft, the water is hot, and there is a cute home robot greeting you.
In fact, you can also use an unmanned aerial vehicle to carry a diamond ring and propose to your beloved…
We have been looking forward to this day for a long time.
The era of great development of artificial intelligence is here!
As early as shortly after the first computer came out, scientists predicted that the era of artificial intelligence would come. In 1997, when Deep Blue defeated Kasparov, this beautiful scene seemed just around the corner. However, in the second half of the 20th century, artificial intelligence research fell into a cold winter due to the failure of several attempts at technological innovation. The most recent cold winter, from the end of the 20th century to the first decade of the 21st century, was caused by the bottleneck encountered in the research of neural networks.
In recent years, everyone can clearly feel that the theoretical research and perceptible products of artificial intelligence seem to have suddenly “exploded” in a blowout manner: wearable devices have appeared in large numbers, intelligent robots have appeared frequently, the accuracy of machine face recognition exceeds that of the naked eye, companies such as Apple and BMW have worked together to develop driverless cars, and the United States and Europe have successively established projects to tackle the human brain…
The explosion of artificial intelligence projects is not a coincidence, but a leap forward after more than 10 years of silence. Ray Kurzweil, an American scientist who successfully predicted that robots will defeat human chess players, has predicted that the wonderful intersection point when artificial intelligence surpasses the sum of human wisdom will be in 2045.
So, how big an impact will this wave of artificial intelligence explosion have, how long will the impact last, and to what extent will it change human life?
From weak artificial intelligence to strong artificial intelligence. After Deep Blue dominated the chess field in 1997, artificial intelligence did not change the world as expected, and Deep Blue disappeared after more than 10 years of silence. Artificial intelligence has also remained at the stage of weak artificial intelligence and has not made any breakthroughs. This period of nearly 20 years has become the longest artificial intelligence winter to date. Some people joked that the greatest achievement in the field of artificial intelligence in the past 20 years is that Spielberg made the science fiction movie “Artificial Intelligence” that has captivated the world. Spielberg put all the rich fantasies of human beings about the future world into the movie world he created. Subsequently, a series of movies about artificial intelligence such as “Robot Butler”, “Super Hacker” and “Ex Machina” came into being. Artificial intelligence has begun to enter all aspects of human life. The use of artificial intelligence in industries such as medicine, education, services, manufacturing, and even in the military field has become common, which makes many military enthusiasts think about what artificial intelligence means to the military field and where it will go in the future?
“AlphaGo” only represents the latest achievements of artificial intelligence in the fields of deep learning of machines based on neural networks, high-performance computing and big data technology, and is a weak artificial intelligence. However, some military experts predict that the application of strong artificial intelligence in the future will bring about huge changes, just like the entry of big data five years ago. In the military field where competition and game are more intense, artificial intelligence has been increasingly moving towards the battlefield since the emergence of computers in the last century, promoting the advent of the era of intelligent warfare.
Artificial intelligence is taking big steps onto the battlefield
Artificial intelligence is an important branch of modern information technology. The world’s first programmable “Giant” computer was born in Britain during World War II. Its purpose was to help the British army decipher German codes. In recent years, artificial intelligence has been increasingly used on the battlefield, profoundly changing the face of war. In summary, the application of artificial intelligence in the military field is mainly reflected in the following five aspects:
Intelligent perception and information processing. The rapid development of micro-electromechanical systems, wireless sensor network technology, and cloud computing technology has further developed battlefield perception methods in the direction of intelligent perception and information fusion processing. The U.S. military, Russian military, French military, German military, etc. are all equipped with digital soldier systems with intelligent information perception and processing capabilities, such as the U.S. military’s “Night Warrior” and the Russian military’s “Warrior”. In fiscal year 2015, the U.S. Department of Defense’s Advanced Research Projects Agency added research and development projects such as the “cerebral cortex processor”. This processor simulates the structure of the human cerebral cortex to solve problems such as real-time control of high-speed moving objects. In the future, its application will greatly improve the autonomous action capabilities of robots and drones.
Intelligent command and control assists decision-making. The military of various countries develops various military information systems in order to build a powerful grid network information system and improve intelligent evaluation and decision-making assistance capabilities. The command and control automation systems of major military powers are constantly developing, pursuing stronger information and decision-making advantages than their opponents. In recent years, the US military has established a cyber command to vigorously strengthen its network attack and defense capabilities, focusing on the development of intelligent diagnostic information systems for network intrusions based on cloud computing, big data analysis and other technologies, which can automatically diagnose the source of network intrusions, the degree of damage to one’s own network and data recovery capabilities.
Unmanned military platforms. Western countries began to attach importance to the research and development and application of small drones, remote-controlled unmanned vehicles and unmanned boats during World War I. At present, the armies of more than 70 countries in the world are developing unmanned system platforms. The US military has equipped more than 7,000 drones, and more than 12,000 ground wheeled (or tracked) robots have been put into use on the battlefields of Iraq and Afghanistan. In the near future, the US military will achieve that ground robots account for one-third of its ground forces, and the carrier-based X-47B drone will account for one-third of the total number of carrier-based aircraft, further promoting the coordinated training and exercise between manned and unmanned platforms.
Bionic robots. Since the 21st century, robot technology has developed rapidly. Various bionic robots such as humanoid robots, robot fish, and robot insects have been continuously introduced and have been increasingly used in the military field. For example, the US military once tested a “big dog” robot on the battlefield in Afghanistan to help soldiers with accompanying support. The US Department of Defense upgraded it in 2013, increasing its load capacity to 200 kilograms, running speed to 12 kilometers per hour, bulletproof and silent. The Russian army recently plans to step up the development of humanoid robots that can drive vehicles and form a robot unit that can fight side by side with human soldiers.
Expanding people’s physical skills and intelligence. The cross-integration of information technology, new material technology and biotechnology will further expand people’s physical strength, skills and intelligence. For example, foreign militaries are developing mechanical exoskeletons to create “mech warriors” with doubled physical strength; and by implanting bioinformatics chips to improve people’s memory and reaction ability, so that human soldiers can better adapt to the highly informationized combat environment in the future.
Artificial intelligence will drive a new round of military reforms
When new military technologies, operational concepts, and organizational structures interact to significantly enhance military combat capabilities, it will trigger new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, giving rise to new war styles and changing the internal mechanism of winning wars.
It brings a new impact on the concept of war. The history of human warfare has gone through the era of cold weapons, the era of hot weapons, the era of mechanization, and the era of informatization. The development of artificial intelligence has accelerated the arrival of the intelligent era. Can intelligence be divided into high-level intelligence and low-level intelligence? Do armies with high-level intelligence have an overwhelming advantage over low-level intelligence armies? If the “mechanization” of people and the “humanization” of machines are two inevitable development trends, does it go against the traditional ethics of war for robots that can think to fight instead of humans? Artificial intelligence has unprecedentedly improved battlefield perception and information processing capabilities. Does the “fog” of war still exist on the high-tech battlefield? To understand these issues, the military field must have a brainstorming session.
It brings new inspiration to theoretical innovation. The material and technological basis of war is constantly updated, opening up new space for innovation in strategic theories and operational concepts, and constantly giving birth to new disruptive technologies in the field of artificial intelligence; the combined application of precision strike ammunition, unmanned equipment and network information systems has given birth to new intelligent combat theories such as “distributed lethality”, “mothership theory”, “combat cloud” and “swarm tactics”; relying on one’s own information advantage and decision-making advantage, how to cut off and delay the opponent’s information and decision-making loop in a decentralized battlefield network has become a core issue that must be solved to win in intelligent warfare.
Future Trends in Military Applications of Artificial Intelligence
With the development and application of strategic frontier technology fields such as information technology, nanotechnology, biotechnology, new materials technology, and new energy technology, artificial intelligence-related technologies will continue to mature and play an increasingly important role in the military field.
Artificial intelligence technology and equipment continue to make breakthroughs. Major countries have elevated artificial intelligence to the level of national strategy. The Office of the Chief Scientist of the U.S. Air Force has issued the “Unmanned Systems Horizon” technology assessment and forecast report for 2035, which believes that the automation, autonomy and remote control performance of various unmanned systems and combat platforms in the future will continue to make breakthroughs with the advancement of technology. In particular, with the advancement of technologies such as super-large-scale computing, quantum computing, cloud computing, big data, and brain-like chips, artificial intelligence information processing and control technology will be greatly developed, profoundly changing the proportion of artificial intelligence technology in modern warfare.
Artificial intelligence has given rise to the vigorous development of new combat forces. The widespread application of artificial intelligence systems and combat platforms will make artificial intelligence, as an important combat element, permeate the entire process of war and combat preparation, and further enrich the connotation of new combat forces. With the application of drone formations, unmanned submarine formations, battlefield robot soldier formations, and coordinated formations of unmanned and manned combat units on the battlefield, various types of “mixed” new combat forces will continue to emerge. With the construction and application of military Internet of Things, military big data, and cloud computing technology in the military field, artificial intelligence combat forces such as “cloud brain”, “digital staff”, and “virtual warehousing” for information support, command and control, effect evaluation, and logistics support will play an increasingly important role in future wars.
Artificial intelligence is constantly evolving and upgrading through actual combat applications. Artificial intelligence systems and combat platforms, which are supported by information technology, are different from the research and development model of traditional mechanized weapons and equipment. Mechanized weapons and equipment are generally put into use after the technology matures until they are scrapped and eliminated, and have a certain service life; artificial intelligence systems are developed in the mode of system prototype-practical training-evolutionary upgrade. Artificial intelligence systems often use continuous evolution to improve their intelligence level according to different versions. The evolution direction of artificial intelligence is always towards high-level intelligence. This law of development of artificial intelligence systems and combat platforms has revolutionary significance for military training and combat capability improvement. In recent years, the United States and its allies have continued to organize activities such as the “Schriever” space (network) exercise and the “Lockton” cybersecurity exercise, which are repeated tests and upgrades of their artificial intelligence information systems. In the future, upgrading training of artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will be an important way to improve combat effectiveness.
Artificial Intelligence Helps Build Smart National Defense
Data is called a strategic resource in the information age. The emergence of artificial intelligence provides methods and means for humans to deeply mine the wisdom resources of data information, and is leading and reshaping the development trend of the world’s new military transformation. Facing the booming wave of artificial intelligence, how to meet challenges, seize opportunities, accelerate the construction of military informatization, and enhance the core military capabilities to win modern wars are the contemporary issues that our army must answer to achieve the goal of strengthening the army. On the one hand, our army must keep a clear mind and make prudent judgments. We must not be frightened by the seemingly powerful and mysterious appearance of artificial intelligence, nor blindly applaud it, nor be indifferent and lose the opportunity for development, and be attacked by opponents due to lack of technical cognition. Breakthroughs in individual technical fields of artificial intelligence are nothing more than an extension of human intelligence, but they cannot replace the dominant position of human intelligence. People are still the core element of all elements of combat effectiveness, and people’s subjective initiative is still the key to determining the outcome of intelligent warfare. On the other hand, our army should implement the military-civilian integration development strategy and the innovation-driven development strategy, grasp the trend of the times, highlight the characteristics of our army, keep a close eye on the opponent’s layout, boldly absorb and apply the relevant technological achievements of artificial intelligence to promote the information construction of the army, and try to apply artificial intelligence technology to achieve transformation and upgrading in platform construction, logistics support, military training, national defense mobilization and other fields. Actively develop countermeasures against the opponent’s military application of artificial intelligence, and explore the winning mechanism of the game with strong enemies in the field of artificial intelligence in practice.
Related links
The military application of artificial intelligence in the United States, Russia and other countries
United States: In July 2016, the U.S. Marine Corps tested the Modular Advanced Armed Robotic System (MAARS), which uses sensors and cameras to control gun-wielding robots based on artificial intelligence. The “Army Global Military Command and Control System” developed by the U.S. Army has been equipped with Army Aviation Force transport helicopters, allowing helicopter pilots to maintain contact with frontline soldiers and command ground forces.
Russia: The “Wolf-2” mobile robot system being developed by the Russian Strategic Missile Forces uses a tracked chassis and can be controlled via radio channels within a range of 5 kilometers. The shooting accuracy is guaranteed by a thermal imager, ballistic computer, laser rangefinder and gyro stabilizer, and it can hit the target at a speed of 35 kilometers per hour.
Israel: The robot “Dogo” developed by the company is an automatically armed tactical combat robot, which comes with a standard Glock 26 9mm caliber pistol. It can be said to be a little devil.
The arrival of the “Master” makes the combat style develop towards unmanned
The Go account Master has challenged the world’s top players on two major Go platforms, Yicheng Go and Tencent Go, and won 60 consecutive games, which has attracted great attention from the world on artificial intelligence. Few people thought that in the field of Go, machines did not experience a period of “stalemate” with humans, but directly left in the dust.
Engels once said that the application of cutting-edge technology began in the military field. Military struggle is a comprehensive contest covering multiple dimensions, multiple fields, full time domain and high intensity, and the addition of artificial intelligence will accelerate the pace of military reform in various countries like a catalyst. Looking at the entire process of the two industrial revolutions and the two world wars, we will find that there is an inevitable connection between “technology” and “war”. Technology will trigger war, and war in turn will promote the development of technology. At this stage, all countries have made great progress in the development of information and intelligent weapons and equipment, and various precise positioning, precise strike, and precise evaluation weapon systems have emerged in an endless stream. However, humans have not yet been separated from the weapon system, and a large part of the operations still need to be completed manually. The combination of artificial intelligence and weapons and equipment means that in the future, from searching and discovering targets, to threat assessment, to locking and destroying, and then to effect evaluation, this series of processes does not require human participation at all. Machines can help us make decisions and achieve unmanned development of combat styles.
Master quietly disappeared after winning 60 games in a row, but discussions about the future of artificial intelligence are still endless: Will it take away human jobs, or will it be an extension of human functions? Will it eventually surpass human intelligence, or will it merge with humans? The answers to these questions are not as simple as either one or the other. Solving them will accompany the future development of artificial intelligence. In 1997, “Deep Blue” defeated Kasparov, making more use of computer computing expertise such as hardware acceleration and brute force computing. AlphaGo uses new artificial intelligence technologies such as neural networks, deep learning, and Monte Carlo tree search, and its strength has already made a substantial leap. These new technologies make artificial intelligence more competent for tasks such as voice and image recognition and evaluation and analysis, and are therefore an important development direction.
Although the dust has settled on this round of the Go “man-machine battle”, the thoughts it has triggered in various fields are very worthy of study. Among them, “‘man-machine battle’ is the best pre-practice of war” is particularly worthy of serious study in the military field. Whether in the era of cold weapons or the mechanized era, fighting on the front line relies on “human wave tactics”, and solving problems requires “concentrating superior forces”. Informatized warfare no longer uses “human wave tactics”, and the scene of large-scale fighting is difficult to reproduce, but as far as the entire war is concerned, the use of troops is not necessarily less, on the contrary, it may be more, but the number of troops used at the forefront has been greatly reduced, and the position of the troops has undergone a major shift. In the unmanned, networked and non-contact combat mode of future wars, there will be more participants, and sometimes you cannot know who the opponent is or where he is hiding.
Although the competition field and the battlefield have different operating rules, many of the winning mechanisms are the same. In the past, we could only learn about war in war, but now we can learn about war in a computer-simulated, near-actual combat environment, and deduce the offensive and defensive modes and development trends of future wars. “AlphaGo” can easily collect the chess games of many Go masters, but in the military field, it is extremely difficult to obtain relevant data on your opponent’s training, exercises, and even combat! Future wars are carried out with the support of information systems. Only by solving the core problem of human-machine integration can we take the initiative on the battlefield and win the final victory in modern warfare. (Zhu Qichao, Wang Jingling, Li Daguang)