Tag Archives: intelligentization

Accelerate Development of Chinese National Defense Science and Technology Innovation to Help Modernization of China’s Military

加速發展國防科技創新 協助軍隊現代化

現代英語:

President Xi Jinping stressed that military scientific research is highly exploratory, and innovation should be placed in a more prominent position, strategic planning and top-level design should be done well, military theory innovation, national defense science and technology innovation, and innovation in the organizational model of military scientific research should be strengthened, and the engine of military scientific research innovation should be started at full speed. This important statement by President Xi profoundly reveals the importance of national defense science and technology innovation, and is the fundamental principle for promoting the development of national defense science and technology innovation under the new situation. We must start the engine of national defense science and technology innovation at full speed, promote the high-quality development of national defense science and technology, and provide strong material and technical support for achieving the goal of the 100th anniversary of the founding of the army and building a world-class army in an all-round way.

Strengthen basic research towards the forefront of development

At present, a new round of scientific and technological revolution and industrial transformation is emerging, and the world’s new military revolution is accelerating, opening the curtain of the era from informatization to intelligence, which will inevitably bring about a major evolution of war forms, major adjustments in military strategy, major changes in combat methods, and major transformation of combat forces. To promote the development of national defense science and technology innovation, we must adhere to the forefront of world military science and technology development, face the major needs of strengthening the military practice, face the future battlefield, earnestly explore the winning mechanism of future wars, and continuously improve the contribution rate of national defense science and technology to preparing for war, deterring war and winning war, and inject strong momentum into seizing the strategic commanding heights of future military competition.

We should aim at the forefront of world military science and technology, keep up with the direction of the world’s new military revolution, especially the development of military science and technology, firmly grasp the opportunities of the new round of scientific and technological revolution and industrial revolution, strive to narrow the gap in key areas, take comparative advantage as the fundamental standard for measuring innovation and development, select the breakthrough and focus of scientific and technological innovation, strengthen forward-looking planning and design, allocate limited resources to major technical breakthroughs, concentrate superior forces, vigorously overcome key technologies in the military field, and master a number of core technologies with independent intellectual property rights. From structural design to force allocation to scientific research projects, we should seize the main research areas, reflect the development frontier, form overall advantages, and actively seek strategic initiative and military advantages.

With the continuous development of science and technology, the characteristics of multi-disciplinary professional cross-clustering and multi-field technology integration are becoming increasingly prominent. Great cross-integration, great integration and great breakthroughs have become the basic laws of the development of modern military science. To promote the development of national defense science and technology innovation, we must strive to improve our technical cognition ability, dare to blaze new trails in construction ideas and technical paths, open up the channel for the transformation of technology chain into industrial chain, and enhance the national strategic capabilities and weapons and equipment development strength. We must follow the essential requirements and inherent laws of national defense science and technology, stand against the backdrop of the national innovation system and military-civilian integrated collaborative innovation, accelerate the establishment of strategic, basic, cutting-edge and open scientific research and innovation platforms, and promote the transformation of national defense science and technology to the close integration of military theory and military technology, the mutual promotion of basic research and applied research, and the equal emphasis on independent innovation and absorption and reference. Adapt to the requirements of national defense science and technology innovation and development, do a good job in basic management, and establish a supporting basic support management mechanism to ensure the development of national defense science and technology innovation; strengthen project management, and strive to form a classified, efficient, flexible, adaptive and sustainable management mechanism and work process; broaden the channels for technology transformation, establish and improve the policy and institutional mechanisms for the transformation and application of national defense science and technology achievements, and promote the rapid transformation and application of national defense science and technology innovation achievements.

Practice has proved that basic research is the key to how high and how far national defense science and technology innovation can “jump”. Therefore, we must focus on innovative basic and applied basic research, make good scientific reserves, correctly grasp the relationship between basic research and technological application, and provide strong support for promoting the development of national defense science and technology innovation. First, we must take basic research as a leading project to promote the development of national defense science and technology innovation, put it in a strategic position of priority development, maintain sufficient and stable funding, make early arrangements and give priority support in several major fields, explore new concepts, new principles, and new methods, and strive to make major breakthroughs in basic, cutting-edge, and strategic fields. Second, we must persist in using the thinking and methods of systems engineering, correctly understand and scientifically guide basic research and technology application practices, promote the transformation and application of scientific and technological achievements, and cultivate new technological growth points to form a closed link of “basic research, development and application, transformation of achievements, and integrated application and re-innovation”. Third, we must open up channels for the transformation of national defense science and technology achievements as soon as possible, and promote scientific research achievements to take root in building a world-class military and serving and preparing for war. Actively explore scientific research collaboration in the form of technology groups and project groups, strengthen communication and cooperation between the military and local governments, open up channels for technological needs, and promote the transformation of scientific and technological achievements as soon as possible.

Establish a scientific research orientation and win the future with innovation

Focusing on actual combat is the core goal of military construction. We must adhere to the fundamental guidance of combat needs as an important guiding principle for the development of national defense science and technology innovation. We must always aim at tomorrow’s wars to innovate and develop military theories and military technology, and explore and form a national defense science and technology innovation system that keeps pace with the development of the times, adapts to national security needs, and meets future combat requirements.

To promote the innovation and development of national defense science and technology, we must firmly establish the fundamental orientation of scientific research for warfare, conduct in-depth research on combat characteristics, combat styles, combat focus and winning mechanisms under information conditions, insist on using combat needs to guide basic research and strategic frontier technology exploration, and further improve the institutional mechanisms for scientific research projects to focus on preparing for war. At the same time, we must keep a close eye on future combat opponents, accurately grasp the evolution trends of war forms and the development trends of world military science and technology, constantly update our ideas, scientifically plan today’s preparations, design tomorrow’s wars, and win future battlefields.

Combat effectiveness has always been the decisive factor in the success or failure of the military, and the combat effectiveness standard is the only fundamental standard for military construction. With the rapid development of high-tech with information technology as the core, the complexity of the offensive and defensive combat mechanism of war has undergone unprecedented profound changes, which has had an unprecedented profound impact on the generation and improvement of combat effectiveness. Therefore, it is necessary to take independent innovation as an important factor, component and implementation method for the transformation of combat effectiveness generation mode, be good at discovering the potential driving force of new technologies on combat effectiveness development, and promote the development of national defense science and technology innovation in the great practice of fully realizing the goal of strengthening the military.

In order to adapt to the requirements of winning information and intelligent wars and effectively fulfill the mission, we must adhere to the strategic basis of independent innovation, improve the mechanism of scientific research collaborative innovation, build a fusion innovation platform, and comprehensively promote the development of national defense science and technology innovation. First, we must take the weak links of national defense science and technology as the main direction of promoting independent innovation, and at the same time increase the original innovation efforts, focus on mastering key core technologies in some important fields and scientific and technological frontiers, and strive to build a national defense science and technology innovation system that can not only increase the national defense science and technology reserves, but also enable them to be rapidly transformed. Correctly handle the relationship between key technologies and general technologies, general technologies and special technologies, traditional technologies and high-tech technologies, and achieve overall planning and reasonable layout to achieve mutual support and coordinated development of various technologies and disciplines. Second, we must grasp the needs of national defense science and technology innovation and development, focus on solving problems in the science and technology management system, demand generation mechanism, scientific research plan system, etc., improve the overall benefits of scientific research, and form a strong vitality to promote independent innovation. Vigorously promote the sharing of technical basic resources between the military and civilians, and establish and improve the military-civilian standardization coordination mechanism and technical service mechanism. Third, we must improve the science and technology collaborative innovation policy system of universities, research institutes, enterprises, and governments, maximize the advantages of all aspects, focus on building a fusion innovation platform, and form an overall synergy to promote national defense science and technology collaborative innovation.

Implementing the strategy of strengthening the military with talents in the new era to unleash creative vitality

To promote the development of national defense science and technology innovation, it is ultimately necessary to rely on high-level talents. Without a strong team of national defense science and technology talents, independent innovation is like water without a source and a tree without roots. Therefore, it is necessary to actively adapt to the requirements of national defense science and technology innovation and development, vigorously build a systematic and high-level talent training platform, and allow more high-quality and professional talents to emerge.

We should firmly establish the concept that “talent is the first resource”, insist on cultivating talents as a major political task, and boldly use strategic scientists with the wisdom to identify talents, the sincerity to love talents, the methods to gather talents, the courage to use talents, and the mind to tolerate talents, support young scientific and technological talents to take the lead and shoulder important responsibilities, and continuously expand the ranks of leading scientific and technological talents and first-class innovation teams. We should adhere to the major national defense science and technology construction projects and talent construction projects together, boldly select, use, and temper various talents in the practice of major projects and major tasks, cultivate and bring up a new generation of scientific and technological leaders and leading talents, and build the field of national defense science and technology and equipment into a highland for national innovative talents and a fertile ground for talent growth and development, forming a vivid situation in which the creative vitality of national defense science and technology talents competes. We should clarify the evaluation methods and standards for national defense science and technology talents, improve the differentiated evaluation and policy support mechanism for national defense science and technology talents, and build an evaluation system that conforms to the laws of national defense science and technology and the laws of talent growth. Reform the science and technology management and personnel systems, let scientific research management keep pace with scientific and technological innovation, truly free up time for scientific researchers, build platforms, and hand over the stage for scientific research and innovation to them with confidence, allowing them to play the leading role and play a big role in scientific research and innovation.

A scientific and fair evaluation mechanism plays a fundamental role in stimulating innovation. Practice has proved that any major breakthrough in the field of basic research is inseparable from long-term accumulation and repeated failures, which is an inevitable law of scientific development. Therefore, in the process of national defense science and technology and weapon equipment research and production, we should encourage researchers to have wonderful ideas and tolerate their failures in exploration and practice. It is advocated that the implementation of various scientific research plans should not be based on the number of papers and patents as project goals, but should focus on the achievement of original results and allow a certain proportion of failures. Peer evaluation should be implemented for basic and cutting-edge technology research, highlighting the medium- and long-term goal orientation and original value, focusing on creating a fair competition environment that encourages innovation, and making great efforts to activate the “spring water” of national defense science and technology innovation and development.

We will fully implement the strategy of strengthening the military with talents in the new era, further enhance the vitality of talent team building, maximize the innovative power of national defense science and technology talents, and fully mobilize their enthusiasm, initiative and creativity. We will follow the growth rules of high-quality and professional military talents, create an environment for identifying, loving, respecting and using talents, formulate policies and systems that combine competitive incentives with advocating cooperation, promote the orderly flow and reasonable layout of talent resources, build a good platform for local talents to serve national defense science and technology construction, and strive to create a good situation in which people can use their talents to the fullest, display their talents to the fullest, and use their talents to the fullest.

(The author is a researcher and doctoral supervisor at the Institute of Systems Engineering, Academy of Military Sciences)

(Editors: Wang Zifeng, Song Meiqi)

現代國語:

習近平主席強調指出,軍事科學研究具有很強的探索性,要把創新擺在更加突出的位置,做好戰略規劃和頂層設計,加強軍事理論創新、國防科技創新、軍事科研工作組織模式創新,把軍事科研創新的引擎全速發動。習主席的這一重要論述,深刻揭示了國防科技創新的重要性,是新形勢下推動國防科技創新發展的根本遵循。我們要全速發動國防科技創新發展的引擎,促進國防科技高品質發展,為實現建軍一百年奮鬥目標、全面建成世界級軍隊提供強而有力的物質技術支撐。

面向發展前沿 加強基礎研究

目前,新一輪科技革命與產業變革正孕育興起,世界新軍事革命加速推進,拉開了從資訊化邁向智慧化的時代大幕,必將帶來戰爭形態大演進、軍事戰略大調整、作戰方式大嬗變、作戰力量大轉型。推動國防科技創新發展,必須堅持面向世界軍事科技發展前沿,面向強軍實踐重大需求,面向未來戰場,認真探索未來戰爭制勝機理,不斷提高國防科技對備戰懾戰勝戰的貢獻率,為搶佔未來軍事競爭策略制高點注入強勁動能。

瞄準世界軍事科技前沿,緊跟世界新軍事革命特別是軍事科技發展方向,緊緊抓住新一輪科技革命和產業革命正在興起的機遇,努力縮小關鍵領域的差距,以取得比較優勢作為衡量創新發展的根本標準,選準科技創新的突破口和著力點,加強前瞻謀劃設計,把有限的資源配置到重大技術攻關上,集中優勢力量,大力攻克軍事領域的關鍵技術,掌握一批擁有自主智慧財產權的核心技術。從結構設計到力量配比再到科研項目,都應抓住主要研究領域,體現發展前沿,形成整體優勢,積極謀求戰略主動與軍事優勢。

隨著科學技術不斷發展,多學科專業交叉群集、多領域技術融合整合的特徵日益凸顯,大交叉、大融合、大突破已成為現代軍事科學發展的基本法則。推動國防科技創新發展,要努力提陞技術認知能力,在建立想法、技術路徑上敢於蹚新路,打通技術鏈轉化為產業鏈的通道,提升國家戰略能力與武器裝備發展實力。要遵循國防科技的本質要求和內在規律,站在國家創新大體系、軍民一體化協同創新的大背景下,加速建立戰略性、基礎性、前沿性、開放性的科學研究創新平台,推動國防科技向軍事理論與軍事技術緊密結合、基礎研究與應用研究相互促進、自主創新與吸收借鏡並重視並舉轉變。適應國防科技創新發展要求,搞好基礎管理,配套建立確保國防科技創新發展的基礎支撐性管理機制;加強專案管理,努力形成分類分級、高效靈活、自適應、可持續的管理機制和工作流程;拓寬技術轉化管道,建立並改善國防科技成果轉化應用政策制度機制,推動國防科技創新成果快速轉化應用。

實務證明,國防科技創新能「跳」多高、「跑」多遠,基礎研究是關鍵。因此,要著力抓好創新性基礎與應用基礎研究,搞好豐厚的科學儲備,正確掌握基礎研究與技術應用的關係,為推動國防科技創新發展提供強力支撐。一要把基礎研究作為推動國防科技創新發展的先導工程,放在優先發展的戰略位置來抓,保持足夠、穩定的經費投入,在若干重大領域提前佈局與優先支持,探索新概念、新原理、新方法,力爭在基礎、前衛、策略領域取得重大突破。二要堅持運用系統工程的思維和方法,正確認識和科學指導基礎研究與技術應用實踐,既要促進科技成果轉化運用,又要培育新的技術增長點,形成“基礎研究、開發應用、成果轉化,到整合應用再創新」的閉合鏈路。三要盡快打通國防科技成果轉化的管道,促進科研成果在建設世界一流軍隊和服務備戰打仗中落地生根。積極探索以技術群、專案群等形式進行科研協作攻關,加強軍地溝通協作,暢通技術需求通道,促進科技成果盡快轉換。

樹立科研為戰導向 以創新制勝未來

聚焦實戰是軍隊建設的核心目標,必須把堅持作戰需求的根本牽引作為國防科技創新發展的重要指導原則,始終瞄準明天的戰爭創新發展軍事理論和軍事科技,探索形成與時代發展同步伐、與國家安全需求相適應、滿足未來作戰需求的國防科技創新體系。

推動國防科技創新發展,必須穩固確立科研為戰的根本導向,深入研究資訊化條件下的作戰特徵、作戰樣式、作戰重心和製勝機理,堅持以作戰需求牽引基礎研究和戰略前沿技術探索,進一步完善科學研究計畫聚焦於備戰打仗等製度機制,同時要緊盯未來作戰對手,準確掌握戰爭形態演變趨勢、世界軍事科技發展趨勢,不斷更新思想觀念,科學籌劃今天的備戰、設計明天的戰爭、制勝未來的戰場。

戰鬥力始終是軍隊興衰成敗的決定性因素,戰鬥力標準是軍隊建立唯一的根本的標準。以資訊科技為核心的高新科技快速發展,戰爭攻防作戰機理的複雜程度發生了前所未有的深刻變化,對於戰鬥力的生成與提升產生了前所未有的深刻影響。因此,必須把自主創新視為戰鬥力生成模式轉變的重要因素、構成要素和實現途徑,善於發現新技術對戰鬥力發展的潛在推動力,在全面實現強軍目標的偉大實踐中促進國防科技創新發展。

為適應打贏資訊化與智慧化戰爭要求,著眼有效履行使命任務,就要堅持自主創新的戰略基點,完善科學研究協同創新機制,打造融合創新平台,全面推進國防科技創新發展。一要把國防科技的薄弱環節作為推進自主創新的主攻方向,同時加大原始性創新力度,著力在一些重要領域和科技前沿掌握關鍵核心技術,努力建構既能使國防科學技術儲備不斷增加、又能使之快速轉化的國防科技創新體系。正確處理重點技術與一般技術、一般技術與專用技術、傳統技術與高新技術的關係,做到統籌兼顧、合理佈局,實現各類技術、各類學科相互支撐、協調發展。二要掌握國防科技創新發展的需求,重點在於解決科技管理體制、需求生成機制、科學研究計畫體係等面向問題,提昇科研整體效益,形成推動自主創新的強大活力。大力推動技術基礎資源軍民共用分享,建立完善軍民標準化協調機制與技術服務機制。三要健全大學、科研院所、企業、政府的科技協同創新政策制度,最大限度發揮各方面的優勢,著力打造融合創新平台,形成推動國防科技協同創新的整體合力。

實施新時代人才強軍策略 讓創造活力競相迸發

推動國防科技創新發展,歸根究底要靠高水準人才,如果沒有強大的國防科技人才隊伍,自主創新就是無源之水、無本之木。因此,必須積極適應國防科技創新發展要求,大力打造體系化、高階的人才培育平台,讓更多高素質、專業化人才競相湧現。

牢固樹立「人才是第一資源」的觀念,堅持把培養人才作為一項重大的政治任務,以識才的慧眼、愛才的真情、聚才的方法、用才的膽略、容才的胸懷,大膽運用戰略科學家,支持青年科技人才挑起大樑、擔重任,不斷壯大科技領軍人才隊伍和一流創新團隊。堅持國防科技重大建設工程和人才建設工程一起抓,在重大工程和重大任務實踐中大膽選拔、使用、錘煉各種人才,培養造就新一代科技帥才和領軍人才,把國防科技和裝備領域打造成國家創新人才的高地、人才成長興業的沃土,形成國防科技人才創造活力競相迸發的鮮明局面。明確國防科技人才的評估方式與標準,完善國防科技人才差異化評估與政策支援機制,建構符合國防科技規律與人才成長規律的評估體系。改革科技管理與人事制度,讓科學研究管理跟上科技創新的步伐,真正為科研人員放開手腳、騰出時間、搭建平台,把科研創新的舞台放心交給他們,讓他們在科研創新中當主角、唱大戲。

科學公平的評估機制對於激勵創新具有根本性的作用。實務證明,任何一個基礎研究領域的重大突破都離不開長期的累積和多次的失敗,這是科學發展的必然規律。因此,在國防科技和武器裝備科學研究生產過程中,既要鼓勵科學研究人員有奇思妙想,也要寬容其在探索實踐中的失敗。提倡各類科學研究計畫的實施不以論文、專利數量為專案目標,著重原創成果的取得,允許一定的失敗比例。對基礎和前沿技術研究實行同行評價,突顯中長期目標導向和原創價值,著力營造激勵創新的公平競爭環境,下大力氣激活國防科技創新發展的「一池春水」。

全面貫徹實施新時代人才強軍戰略,進一步增強人才隊伍建設活力,最大限度激發國防科技人才的創新動力、充分調動他們的積極性、主動性和創造性。遵循高素質、專業化軍事人才成長規律,營造識才愛才敬才用才的環境,制定競爭激勵和崇尚合作相結合的政策制度,促進人才資源有序流動、合理佈局,為地方人才服務國防科技建設搭建好平台,著力形成人盡其才、盡展其才、才盡其用的良好局面。

(作者係軍事科學院系統工程研究院研究員、博士生導師)

(編按:王之鋒、宋美琪)

中國原創軍事資源:

Communist Party of China to Accelerate Transformation of Science and Technology Into Combat Power for China’s Military

中國共產黨將加速推進科技向軍隊戰鬥力轉化

來源:解放軍報 作者:賀逸舒 邵龍飛等 責任編輯:王鳳 2022-11-02 09:36:33

現代英語:

The Chinese People’s Revolutionary Military Museum is always crowded with visitors. Among the visitors, a young man stood in front of the display board for a long time.

Looking at the picture of a certain type of satellite on the display board of the “New Era National Defense and Army Construction Achievements Exhibition”, Cao Lu, a researcher at the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was full of pride. Looking at the familiar smiling faces in the photos, Cao Lu recalled the time when satellites were being developed.

They once sat in front of their computers late at night, typing away at code, and they also once looked everywhere for interference factors… The bitter memories become sweeter the more they are savored.

“The times are calling us, and the people are expecting us. Only by being resolute and persevering can we live up to the times and the people.” At this moment, Cao Lu read this sentence from the report of the 20th National Congress of the Communist Party of China again, and his feelings were even more profound. “Fortunately, our generation of young scientific researchers has caught up with a good era! I feel proud to be on the journey of strengthening the army with science and technology.”

The power of youth and the cause of innovation. At the National Defense Science and Technology Innovation Institute of the Academy of Military Science, many young researchers like Cao Lu are brave enough to innovate and endure hardships on the stage of strengthening the military with science and technology, constantly improving the contribution of scientific research results to the growth of combat effectiveness and accelerating the transformation of science and technology into combat effectiveness.

“To thoroughly study, publicize and implement the spirit of the 20th National Congress of the Party, specifically for us young scientific researchers, is to throw ourselves into the era of innovation in national defense science and technology, take root in the front line of scientific research, and become good young people of the new era who have ideals, dare to take responsibility, can endure hardships, and are willing to work hard,” said Cao Lu.

Observation sample Academy of Military Science, National Defense Science and Technology Innovation Institute

Be enterprising and join the era of technological innovation

■Reporters from the People’s Liberation Army Daily: He Yishu, Shao Longfei, correspondents: Ren Fei, Zhang Zhihua

A vast stage opens in front of this group of young people

“The People’s Army has a new system, a new structure, a new pattern and a new look.” After in-depth study of the 20th CPC National Congress report, Zhang Youjun, director of the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was particularly impressed.

The National Defense Science and Technology Innovation Institute is a newly established unit after the reform and adjustment. In the five years of growing up with the institute, Zhang Youjun has personally experienced the changes in the system, structure, pattern and appearance brought about by the reform.

In January 2018, a group of young people, with an average age of just over 30, gathered from all directions and walked into this scientific research institution that had been officially established for just over three months. Among them were doctors who had studied abroad and returned to China, military academy teachers, and scientific researchers who had been rooted in the front line for a long time.

A grand stage opened in front of this group of young people. However, a brand new stage means brand new challenges.

At the first party congress after the establishment of the institute, they added a special content – a collective viewing of the movie “Out of Nowhere”.

In the silent desert, the sound of countdown rang out softly—5, 4, 3, 2, 1, detonation! A huge mushroom cloud rose up, and the sun-like brilliance illuminated the entire Lop Nur. A group of scientific researchers cheered and rushed down the hillside…

This is a shocking scene in the movie “Out of Nowhere”. “Develop the atomic bomb and stand tall.” General Zhang Aiping once said that the atomic bomb is not a weapon, but a spirit. The epic victory of developing the atomic bomb many years ago still has endless inspiration for today’s scientific researchers.

Since then, watching “Out of the Blue” has become a tradition for the officers and soldiers of the hospital. Wang Xintian, deputy political commissar of the hospital, said with emotion that every time he watches it, he will gain different feelings.

“People who appear out of nowhere should do things that appear out of nowhere.” Every researcher in the institute has his or her own understanding of this sentence.

“I completed the application for my first project in the dormitory I was temporarily borrowing at the time,” recalled young researcher Qiang Xiaogang.

When Qiang Xiaogang woke up in the middle of the night, he seemed to see himself lying on the table in the dormitory staying up all night: the old table, the humming computer, the crisp sound of the keyboard, page after page of reference materials…

At that time, Qiang Xiaogang was working alone. A few years later, from one person to a group of people, the ideas proposed in the project application gradually became a reality.

Only by daring to innovate can you have the joy of dreams coming true. In 2021, China has made another major breakthrough in the field of quantum. According to Xinhua News Agency, researchers have developed the first programmable photonic quantum chip for solving graph theory problems, an important step towards the realization of practical photonic quantum computers. The relevant paper was published in the journal Science Advances, and Qiang Xiaogang “came out of nowhere” as the first author. Now, walking into the laboratory of Qiang Xiaogang’s team again, more results are waiting for further testing.

Back in 2009, Qiang Xiaogang stood at another important crossroads in his life: Should he choose the electronic information field he had studied as an undergraduate, or the cutting-edge but unfamiliar quantum information field? After some thought, he chose a “difficult but more long-term direction.”

Guanghui’s dream originated from the individual but transcended the individual, originated from reality but transcended reality. From his student days to now, on the road of studying quantum technology, Qiang Xiaogang encountered many difficulties, both academic and non-research, but he never backed down.

At the beginning of the establishment of the institute, the leader of the institute said at a meeting: “We call you here not to find a basket to put your past achievements in and continue to work on your own stalls, but to set a common goal and do something big together…”

“What is considered a ‘big deal’?” Qiang Xiaogang kept this question in his mind until October 2020, when he saw a piece of news: The Political Bureau of the CPC Central Committee held its 24th collective study session on the research and application prospects of quantum technology. When presiding over the study session, President Xi Jinping stressed that “we must fully recognize the importance and urgency of promoting the development of quantum technology, strengthen strategic planning and system layout for the development of quantum technology, grasp the general trend, and take the initiative.”

Qiang Xiaogang felt a surge of warmth in his heart. The photonic quantum chip technology he was researching was the cutting-edge direction in the field of quantum technology. He was always calm, but now he was no longer calm: “No matter how hard I try, it’s worth it!”

“What I am doing now is what I want to do. When personal ideals and national interests are combined, no matter how hard the work is, it will not feel hard at all,” said Qiang Xiaogang.

In the eyes of researcher Cao Lu, ideals are born naturally on the road of common struggle. “I hope to perfectly concentrate the work results of my colleagues on a satellite to meet the needs of the country to the greatest extent possible.”

After studying the report of the 20th CPC National Congress, Cao Lu has a clearer view of the future direction. “Chairman Xi proposed that we should focus on original and leading scientific research based on the national strategic needs and resolutely win the battle to tackle key core technologies. We have a mission to fulfill and we have no choice but to do it.”

On October 26, young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science discussed research topics. Photo by Li Yichen

“Innovation requires youth. This era especially needs young people like you”

Inside the institute’s office building, blue light strips on the walls extend all the way forward, leading people to the “Two Bombs and One Satellite” Spiritual Culture Museum at the end of the corridor.

“The genes of a unit determine its future.” Lu Zhoulai, the political commissar of the institute, said that they chose to use the “two bombs and one satellite” spirit to build a solid spiritual foundation for this new team.

Red and blue are the two main colors of this exhibition hall.

Red is the color of loyalty. From the heroes of the “two bombs and one satellite” program to the younger generation of scientific researchers, we can see from them what it means that “each generation has its own mission and responsibility.”

Blue is the symbol of science and technology. Over the past five years, a large number of major scientific research results focusing on war preparation and intelligent technology have emerged, demonstrating the era of this new strategic scientific and technological force.

That year, researcher Yao Wen and several other scientific research backbones visited Academician Sun Jiadong, a founding member of the “Two Bombs and One Satellite”. Academician Sun Jiadong told them: “Innovation requires youth, and this era especially needs young people like you.”

The first generation of founders of the institute felt the same way about Sun Lao’s entrustment and expectations. “What is a founder? It is the half buried in the soil,” said Yin Erwei, an associate researcher.

“With people, there will be things to do. If there are no talents, then we will recruit them.” Yin Erwei and his colleagues boldly tried to quickly build a team by jointly training graduate students. In this way, they have grown from the initial five or six people to the only established team in this field in the entire military. Their research results won the first prize of the first “Innovation Cup” National Defense Science and Technology Innovation Competition of the Military Commission Science and Technology Committee.

In Yin Erwei’s opinion, the rapid development of the team is inseparable from the strong support of the institute’s leaders. The party committee of the institute has a slogan: “We must take the initiative to take responsibility for young people who do things.”

Among the many topics in the research institute, there are some technical problems that cannot be found in books. At this time, we must make a choice whether we dare to explore boldly and whether we can innovate.

“If one day, we at the National Defense Science and Technology Innovation Institute are afraid to innovate, that will be our biggest dereliction of duty.” This statement at the Party Committee plenary session set off a “brain storm” among everyone.

The leaders of the institute took the lead in entering the front line of scientific research, raising scientific research funds from various sources, building laboratories, and purchasing experimental equipment; for some key projects with higher risks, leading cadres and project managers took the lead in signing and taking responsibility on the spot; for major activities that require coordination of external resources, leading cadres personally come forward to “cheer up” the scientific researchers.

At that time, in order to apply for scientific research projects, Yin Erwei led the team to stay up many nights with bright lights.

As he led his team to go further and further, Yin Erwei gradually realized that “happiness actually comes from the passion and belief in doing things and starting a business.”

Associate researcher Guo Pengyu spends nearly two-thirds of the year on business trips, and his wife raises their two children and two elderly parents alone; assistant researcher Zhang Fei gave up his research field that he had been deeply involved in for many years for the overall goal of the team, and is considered by his colleagues to be a person who is “not picky about work.”

“Living in an unprecedented great era, we need to strengthen our responsibilities, work hard, forge ahead with determination, and seize the commanding heights of future military science and technology competition.” Yin Erwei said confidently, “Under the guidance of the spirit of the 20th National Congress of the Party, my comrades and I will inject our youthful wisdom into military scientific research innovation.”

“Screws must be able to withstand the loneliness of time, and also have a sense of urgency when tightened at all times.”

It was midnight, and everything was silent. In the corridor of the office building of the National Defense Science and Technology Innovation Institute, a few beams of light shone through the cracks in the office door.

Inside the house, it is another world. The sound of keyboards tapping is heard constantly, and a group of young people sit quietly in front of their computers, immersed in the world of “0” and “1” they created.

This scene is normal for this group of young researchers. Perhaps, in the eyes of others, working overtime day and night is very hard. However, for assistant researcher Chen Renzhi, the physical pain cannot be called pain.

Chen Renzhi was deeply impressed by the words of a philosopher: “People are dominated by desires. If desires are not satisfied, they are painful. If they are satisfied, they are boring. Life is like a pendulum swinging between pain and boredom.”

In the field of Chen Renzhi’s research, it often takes a long time to see results. “Before breaking ground, no one knows how well they are doing,” Chen Renzhi said.

The answer will be revealed during the finished product verification. If the verification goes well, it is a success; if it does not go well, the hard work of several months will be wasted. However, this field must move forward without stopping, and there is no day to stop. Therefore, Chen Renzhi fell into an endless cycle of “struggling for several months, being happy for two days, and continuing to struggle.”

“The most frustrating thing is that no one knows what you do, even your colleagues next to you don’t know what you are busy with. Sometimes, when you want to share your achievements with others, no one understands, so you can only rub your nose and go back to work,” said Chen Renzhi.

In this huge project, each researcher is just a screw. “Screws must be able to withstand the loneliness of time and have a sense of urgency at all times.”

At first, Chen Renzhi did not realize the deep meaning behind this sentence. As his research in this field continued to deepen, Chen Renzhi realized more and more clearly that this sense of urgency was becoming the driving force that drove him and his comrades to move forward faster.

“We are making progress, and our opponents have not stopped either. Our advantage is that we keep moving in the right direction of Chinese-style modernization.” After in-depth study of the report of the 20th CPC National Congress, Chen Renzhi has more confidence in the next step of tackling key problems. “The report of the 20th CPC National Congress has drawn up a grand blueprint for us. We must aim at independent innovation in the frontier areas of military science and technology and contribute our own strength to achieving high-level scientific and technological self-reliance.”

Young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science work in the laboratory. Photo by Si Yuqi

Although we have different positions, we share the same goal.

From college to the military, Assistant Researcher Zuo Yuan often uses the word “implementation” in his scientific research. “To use the words in the report of the 20th CPC National Congress, it means accelerating the transformation of science and technology into combat effectiveness,” he said.

When he first started working, whenever a soldier asked Zuo Yuan, “How do you use this new equipment you developed?” Zuo Yuan would always simply reply, “You’ll know after you use it.”

Gradually, when Zuo Yuan used the new equipment himself, he found that there was a long distance between “usable in theory” to “usable in actual combat” and then to “effective on the battlefield”.

Talking about his own naivety in the past, the dark-complexioned young man smiled somewhat embarrassedly.

Going to plateaus, islands, jungles, and deserts… Over the years, Zuo Yuan has always been on the front line of the army. “We must go to the army to do scientific research!” Zuo Yuan was deeply touched by his several visits to the army. “The combat concepts of the front-line soldiers are more advanced than we thought. They have more say in whether the new equipment is easy to use.”

Military scientific research results must serve actual combat training. In July this year, Zuo Yuan followed the team to the plateau to participate in actual military training. If he had not come to the front line of the troops, he would never have thought that the first thing to adjust was not the new equipment itself, but the control equipment. The exchanges and collisions with the front-line officers and soldiers gave the researchers new directions and ideas for the research and development of new equipment in the future.

On the plateau, Zuo Yuan once helped medical researchers collect blood oxygen data from soldiers. “Do you know what the hands of soldiers on the plateau look like?” Zuo Yuan stretched out his own hands and gestured to the hands of his comrades on the plateau. “The roots of the nails are sunken, the nail surface is straight without any curve, and the fingers are rough as if they have been planted for decades.”

At that moment, Zuo Yuan realized that while he was sitting in a bright and clean office typing code every day, there was a group of young comrades who were breathing thin oxygen, holding guns in both hands, exposed to strong ultraviolet rays, and building a living monument with their flesh and blood.

Holding the hands of his border defense comrades tightly, Zuo Yuan developed a sense of responsibility to “do more for them.”

“Although we are in different positions, we share the same goal. We hope that through our efforts in scientific research we can help them solve more practical problems.” This feeling of gratitude and responsibility has become the driving force that supports young scientific researchers in overcoming difficulties.

In order to implement the concept of scientific research for combat and serving the troops from the “first kilometer” to the “last kilometer” of scientific research, the Institute organizes its forces to conduct regular in-depth research on the front lines of combat troops, so that the results of military scientific research can truly reach the training ground and actual combat.

Due to long-term work on the front line of the army, “others joke that we are a group of ‘anti-migratory birds’ – in order to do experiments, we run north in winter and south in summer,” said associate researcher Nie Yiming.

During the Mid-Autumn Festival last year, Nie Yiming and his team were conducting experiments in a remote desert. The leaders of the institute came to visit them, but due to limited conditions, they could only buy a few kilograms of steamed buns in the nearest county town and bring them over.

“After the experiment was successful, we sat together, eating buns and admiring the bright moon over the Gobi Desert. The moon that night was especially round.” Thinking of that scene, Nie Yiming had endless aftertastes.

“Through in-depth study of the report to the 20th CPC National Congress, I have come to a deeper understanding that only by going deep into the front lines of the troops, working hard, constantly learning and improving, expanding our capabilities, and upgrading our skills, can scientific research make new contributions to the formation of new qualities of combat effectiveness in new domains.” This is the voice of Nie Yiming, and it is also the consensus and direction of efforts of many young scientific researchers in the institute.

【Sharp Viewpoint】

Taking on the responsibility of innovation with the power of youth

■Lu Zhoulai

In his report to the 20th CPC National Congress, Chairman Xi Jinping pointed out that we must insist that science and technology are the primary productive force, talent is the primary resource, and innovation is the primary driving force.

Science and technology are the most active and revolutionary factors in military development. Scientific and technological innovation has become the main battlefield for strategic games between major powers, profoundly affecting national security and the overall military strategy. To promote high-quality development of national defense and military construction, we must accelerate the implementation of the innovation-driven development strategy, accelerate the realization of high-level scientific and technological self-reliance, and focus on original and leading scientific and technological research based on national strategic needs. We must resolutely win the battle to tackle key core technologies and significantly increase the contribution of scientific and technological innovation to the growth of combat effectiveness.

Five years ago, following the vigorous pace of reform and strengthening the military, and shouldering the sacred mission of strengthening the military through science and technology, the National Defense Science and Technology Innovation Institute of the Academy of Military Science came into being: with the lofty ambition of “doing earth-shaking things”, aiming at the forefront of world science and technology, focusing on the urgent needs of future wars, and making deep plans to balance the powerful enemy’s advantage, it has forward-looking arrangements for a series of scientific research directions such as artificial intelligence, unmanned systems, and cutting-edge intersections. This can be said to be in line with the creation of the “two bombs and one satellite” cause that year.

Great undertakings require great spiritual nourishment, and the first driving force requires the first resource drive. More than 60 years ago, a large number of young scientific researchers, including Deng Jiaxian, Zhu Guangya, Yu Min, Sun Jiadong, and Zhou Guangzhao, with their broad love for the motherland and selfless dedication, their determination and hard work to be self-reliant, and their innovative spirit of strong collaboration and courage to climb, firmly took on the responsibility of national defense science and technology innovation and created the world-renowned “two bombs and one satellite” cause. Inspired by the cause of building a strong military in the new era, a large number of outstanding young people with an average age of only 30 years old and doctoral degrees from prestigious universities have gathered at the National Defense Science and Technology Innovation Institute. They have overcome difficulties along the way, focused on key breakthroughs, worked tirelessly to accelerate the advancement of scientific and technological self-reliance, and shed their youthful sweat, demonstrated their youthful strength, and demonstrated their youthful responsibility in innovation and transcendence.

Innovation is endless, and it is time to strive. At present, the world is undergoing a major change that has not been seen in a century, and a new round of scientific and technological revolution and military revolution is changing with each passing day. Facing changes in science and technology, changes in war, and changes in opponents, as an emerging scientific research force full of youthful vitality, the mission of establishing for the country and conducting research for war is extremely glorious, and the stage for striving for youth and pursuing the dream of a strong army is extremely broad. Striving to seize the commanding heights of national defense science and technology innovation and resolutely winning the battle to overcome key core technologies are always realistic issues that we must face and the heavy responsibility of the times that we must shoulder.

President Xi stressed that we should build a large-scale team of young scientific and technological talents, put the policy focus of cultivating national strategic talent on young scientific and technological talents, and support young talents to take the lead and play the leading role. President Xi’s important instructions deeply reveal the growth law of young scientific and technological talents and clearly indicate the direction of scientific and technological talent training. We will bear in mind President Xi’s entrustment, the trust of the Party and the people, vigorously promote the spirit of “two bombs and one satellite” and the spirit of scientists in the new era, and strive to cultivate and train young scientific and technological talents with ideals, courage, hard work and hard work, and bravely take on the responsibility of innovation with the power of youth, so that more new talents can take the lead and play the leading role in more and larger positions and platforms, and use practical actions to learn, publicize and implement the spirit of the 20th National Congress of the Party

現代國語:

中國人民革命軍事博物館,觀展的人絡繹不絕。來來往往的觀眾中,一個年輕的身影在展板前隊列許久。

注視著「新時代國防與軍隊建設成就展」展板上某型衛星的圖片,軍事科學院國防科技創新研究院研究員曹璐的眼裡充滿自豪。看著照片中一張張帶著微笑的熟悉面龐,曹璐想起了研製衛星的那段時光——

他們曾大半夜蓬頭垢面坐在電腦前敲著代碼,也曾四處尋找幹擾因素……記憶中的苦,越品越覺得甘甜。

「時代呼喚著我們,人民期待著我們,唯有矢志不渝、篤行不怠,方能不負時代、不負人民。」此時此刻,再次品讀黨的二十大報告中這句話,曹璐的感受更為深刻,“很幸運,我們這代青年科研人員趕上了一個好時代!奮進在科技強軍征途上,我倍感驕傲自豪。”

青春的力量,創新的事業。在軍事科學院國防科技創新研究院,許許多多和曹璐一樣的年輕科研人員,在科技強軍的舞台上勇於創新、甘於吃苦,不斷提昇科研成果對戰鬥力增長的貢獻率,加速科技向戰鬥力轉化。

「深入學習宣傳貫徹黨的二十大精神,具體到我們青年科研人員來說,就是要投身國防科技創新的時代洪流,紮根科研一線,做有理想、敢擔當、能吃苦、肯奮鬥的新時代好青年。

觀察樣本 軍事科學學院國防科技創新研究院

銳意進取,投身科技創新時代洪流

■解放軍報記者 賀逸舒 邵龍飛 通訊員 任飛 張志華

廣闊的舞台,在這群年輕人面前拉開布

「人民軍隊體制一新、結構一新、格局一新、面貌一新。」深入學習黨的二十大報告,軍事科學院國防科技創新研究院院長張擁軍感觸尤為深刻——

國防科技創新研究院,是改革調整後新成立的單位。跟隨研究院共同成長的這5年,張擁軍親身經歷了改革帶來的體制、結構、格局和麵貌變化。

2018年1月,一群平均年齡30歲出頭的年輕人,從四面八方匯聚到一起,走進這個正式掛牌成立僅3個多月的科研機構。他們中有留學歸國的博士,有教書育人的軍校教員,也有長期紮根一線的科研人員。

廣闊的舞台,在這群年輕人面前拉開布。然而,全新的舞台,意味著全新的挑戰。

建院後第一次黨代會,他們增加了一項專門內容——集體組織觀賞電影《橫空出世》。

寂靜的荒漠,讀秒的聲音輕輕響起--5、4、3、2、1,起爆!巨大的蘑菇雲升騰而起,太陽般的光輝照亮了整個羅布泊,一群科研人員歡呼著從山坡上一擁而下…

這是電影《橫空出世》中震撼人心的一個畫面。 「搞出原子彈、挺直腰桿。」張愛萍將軍曾說,原子彈不是武器,是一種精神。多年前研發原子彈的勝利史詩,對今天的科學研究人員仍有無盡的啟示。

從那以後,觀看《橫空出世》成為該院官兵的傳統。該院副政委王欣田感慨地說,每看一次,都會收獲不同的感動。

「『橫空出世』的人,就要乾『橫空出世』的事。」研究院每名科學研究人員對這句話都有著自己不同的領悟。

「我第一個項目的申請書,還是在當時臨時借用的宿舍裡完成的。」青年研究員強曉剛回憶。

午夜夢回,強曉剛彷彿又看到自己趴在宿舍桌上熬夜的情景:陳舊的桌子,嗡嗡作響的電腦,清脆的鍵盤聲,一頁又一頁的參考資料…

那時,強曉剛是單身一人攻關。幾年過去,從一個人到一群人,項目申請書中提出的構想,逐漸變成現實。

敢於創新,才能擁有夢想成真的喜悅。 2021年,中國在量子領域迎來了另一個重大突破。據新華社報道,研究人員研發出了首款面向圖論問題求解的可編程光量子晶片,邁出了實現實用化光量子計算機的重要一步。相關論文在《科學進展》期刊發表,強曉剛以第一作者的身份「橫空出世」。如今,再次走進強曉剛團隊的實驗室,更多成果等待進一步測試。

時間撥回2009年,強曉剛站在了人生又一個重要的路口前:研究生是選擇本科時的電子資訊方向,還是選擇前沿但陌生的量子資訊方向?經過一番思考,他選擇了一個「雖然充滿困難,但更為長遠的方向」。

光輝的夢想,萌生於個體而又超越了個體,來源於現實而又超越了現實。從學生時代到現在,在鑽研量子技術的道路上,強曉剛遇到了許多困難,有學術上的,也有研究之外的,但他從未退縮。

建院之初,研究院領導在一次會上說:「把你們召集來,不是找個籃子把你們過去的成果裝上,繼續忙自己那一攤,而是要樹個共同目標,一起乾點大事……”

「什麼才算『大事』?」這個問題,強曉剛埋在了心裡。直到2020年10月,他看到一則新聞:中共中央政治局就量子科技研究和應用前景舉行第二十四次集體學習。習主席在主持學習時強調,“要充分認識推動量子科技發展的重要性和緊迫性,加強量子科技發展戰略謀劃和系統佈局,把握大趨勢,下好先手棋。”

強曉剛心中湧起一股熱流。他所研究的光量子晶片技術,正是量子科技領域的前沿方向。向來淡定的他這下子也不淡定了:“再怎麼拼,也值!”

「我現在做的,都是我想做的事。當個人的理想和國家利益結合在一起,再苦也不會覺得苦。」強曉剛說。

在研究員曹璐看來,理想是在共同奮鬥的道路上自然而然誕生的。 “我希望,可以把同事們的工作成果完美地集中在一顆衛星上,最大限度地滿足國家的需求。”

深入學習黨的二十大報告,曹璐愈發明晰了未來的方向。 「習主席提出,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰。我們使命在肩,義不容辭。”

10月26日,軍事科學院國防科技創新研究院的青年科學研究人員探討科研課題。李奕辰 攝

“創新就要年輕,這個時代尤其需要你們這些年輕人”

研究院辦公樓內,牆上藍色的燈帶一路向前延伸,將人引向走廊盡頭的「兩彈一星」精神文化館。

「一支部隊的基因,決定了一支部隊的未來。」該院政委盧週來說,他們選擇用「兩彈一星」精神,為這支新隊伍構築起堅實的精神根基。

紅色與藍色,是這個展館的兩種主色。

紅色,是忠誠的寫照。從「兩彈一星」元勳到年輕一代科研人員,從他們身上可以看到,什麼是「一代人有一代人的使命,一代有一代人的擔當」。

藍色,是科技的象徵。 5年間,一大批聚焦備戰打仗、瞄準智慧科技的重大科研成果噴湧而出,展現了這支新型戰略科技力量的時代擔當。

那一年,研究員姚雯跟其他幾名科研骨幹一起拜訪「兩彈一星」元勳孫家棟院士。孫家棟院士對他們說:“創新就要年輕,這個時代尤其需要你們這些年輕人。”

研究院的第一代創業者,對孫老的囑託和期望感同身受。 「奠基人是什麼?就是埋在土裡那半截。」副研究員印二威說。

「有人,才有事。沒有人才,那我們就去吸納人才。」印二威和同事大膽嘗試,採用聯合培養研究生的方式,快速組建團隊。就這樣,他們從最初的五、六個人,發展到如今成為全軍該領域唯一一支成建制的團隊,研究成果獲得軍委科技委首屆「創新盃」國防科技創新大賽一等獎等獎項。

在印二威看來,團隊的快速發展,離不開院領導的大力支持。研究院黨委有句口號:“要主動為幹事的青年人擔責。”

研究院的眾多課題中,有些技術難題,書本上是找不到答案的。這個時候,敢不敢大膽探索,能不能有所創新,必須做出選擇。

「如果有一天,我們國防科技創新研究院都不敢創新了,那是我們最大的失職。」黨委全會上的一句話,掀起了大家的「頭腦風暴」。

研究院領導帶頭走進科研一線,多方籌措科研經費,修建實驗室,購置實驗設備;一些風險較高的重點項目,領導幹部和項目負責人帶頭簽字,現場擔責;需要協調外部資源的重大活動,領導幹部親自出面,為科研人員「打氣」。

那時候,為了申請科學研究項目,印二威帶領團隊不知熬了多少個燈火通明的夜晚。

帶領自己的團隊越走越遠,印二威逐漸體會到:“幸福感,其實就是來自幹事創業的激情和信仰。”

副研究員郭鵬宇,一年裡有近三分之二時間都在外出差,他的愛人獨自帶著兩個孩子和兩位老人撐起了家;助理研究員張飛,為了團隊的整體目標,放棄了自己深耕多年的研究領域,是同事們眼中「不挑活兒」的人。

「身處前所未有的偉大時代,更需要我們強化擔當,奮發作為,銳意進取,搶佔未來軍事科技競爭的製高點。」印二威信心滿懷地說,「在黨的二十大精神指引下,我和戰友們將把青春智慧融注到軍事科研創新中。

“螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感”

子夜,萬籟俱寂。國防科技創新研究院辦公大樓走廊內,幾束光從辦公室緊閉的門縫中鑽出來。

屋內,是另一個世界。鍵盤的敲擊聲不絕於耳,一群年輕人安靜地坐在電腦前,沉浸在自己創造的「0」與「1」的世界。

這樣的場景,對這群年輕的研究人員來說已是常態。或許,在別人看來,夜以繼日地加班十分辛苦。然而,對助理研究員陳任之來說,身體上的苦,並不能稱之為苦。

陳任之對一位哲學家的話印象深刻:“人受慾望支配,慾望不滿足就痛苦,滿足了就無聊,人生如同鐘擺在痛苦和無聊之間搖擺。”

陳任之研究的領域,往往需要漫長等待才能看見成果。 「在沒有破土之前,誰也不知道自己做得怎麼樣。」陳任之說。

答案,會在成品驗證時揭曉。驗證順利,就是成功;不順利,幾個月的辛苦就付諸東流。而這個領域偏偏必須馬不停蹄地前進,永遠沒有能停下腳步的一天。於是,陳任之陷入了「奮鬥幾個月、開心兩天、繼續奮鬥」的無限循環。

「最鬱悶的是,沒人知道你幹什麼,就連隔壁同事都不清楚你在忙什麼。有時候,想和別人分享成就,也沒有人理解,只能摸摸鼻子,回去繼續幹。」陳任之說。

在這個巨大的工程裡,每位研究人員只是一顆螺絲釘。 “螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感。”

一開始,陳任之並沒有體味到這句話背後的深意。隨著在這一領域研究不斷加深,陳任之愈發清醒地體會到,這種緊迫感正成為驅動他和戰友們加速前進的動力。

「我們在進步,對手也沒有停下來。我們的優勢就是沿著中國式現代化的正確方向不斷走下去。」 深入學習黨的二十大報告,陳任之對下一步的攻關更有信心了, “黨的二十大報告為我們擘畫出了宏偉藍圖,我們要瞄準軍事科技前沿領域自主創新,為實現高水平科技自立自強貢獻自己的力量。”

軍事科學院國防科技創新研究院青年科研人員在實驗室工作。司玉祺 攝

雖然戰位不同,但我們奮鬥的目標一致

從大學校園到步入部隊,助理研究員左源在科學研究工作中常用的一個字是「落地」。 「用黨的二十大報告裡面的話,就是加速科技向戰鬥力轉化。」他說。

工作之初,每逢有部隊官兵問左源:“你們研發的這個新裝備怎麼用?”左源總是簡單地回復一句:“你用一下就知道了。”

漸漸地,當左源自己實地使用新裝備時才發現,從“理論上能用”到“實戰中能用”再到“戰場上好用”,中間隔著很長一段距離。

談到自己當初的幼稚,這個臉色黝黑的年輕人有些不好意思地笑了。

上高原,下海島,闖密林,踏戈壁……這些年來,左源始終奔波於部隊一線。 「我們做科研,一定要到部隊去!」幾次下部隊的經歷,讓左源感觸頗深,「一線部隊官兵的作戰理念,比我們想像中更先進。新裝備好不好用,他們更有話語權。

軍事科研成果必須服務演訓實戰。今年7月,左源跟隨團隊前往高原參加實兵演練。如果不是來到部隊一線,他根本想不到,首先要調整的並非新裝備本身,而是操控設備。與一線官兵的交流碰撞,讓科學研究人員對未來新式裝備的研發有了新的方向與想法。

在高原上,左源曾幫醫學研究人員收集過官兵們的血氧數據。 「你知道高原官兵的手,是什麼樣子的嗎?」說著,左源伸出自己的雙手,比畫著高原上戰友們手的樣子,「指甲根部下陷,甲面平直沒有絲毫弧度,手指粗糙得像種了幾十年地。

那一刻,左源意識到,當他日常坐在窗明幾淨的辦公室敲著代碼時,有這樣一群年輕的戰友,呼吸著微薄的氧氣,雙手持槍暴露在強烈的紫外線中,用血肉之軀築就活的界碑。

緊緊握住邊防戰友們的手,左源產生了一種「想多為他們做些什麼」的責任。

「雖然戰位不同,但我們奮鬥的目標一致。希望透過我們在科研上的努力為他們解決更多實際問題。」這份感動與責任,化為支撐青年科研人員不斷攻堅克難的動力。

為了把科研為戰、服務部隊的理念從科研“最初一公裡”貫注到“最後一公裡”,研究院組織力量常態化深入作戰部隊一線調研,讓軍事科研成果真正走向演訓場、走向實戰。

由於長期奔波在部隊一線,「別人開玩笑說,我們是一群『反候鳥』——為了做實驗,冬天往北跑,夏天往南跑。」副研究員聶一鳴說。

去年中秋節,聶一鳴和團隊正在偏僻的沙漠裡做實驗。研究院領導來慰問,條件有限,只能在最近的縣城買了幾斤包子帶過去。

「實驗成功後,我們圍坐一起,吃著包子,賞著戈壁灘上的明月。那晚的月亮,特別圓。」想起那一幕,聶一鳴回味無窮。

「深入學習黨的二十大報告,我更深切體會到,只有深入部隊一線,埋頭苦幹,不斷學習提高、能力擴容、本領升級,才能使科研工作在新域新質戰鬥力生成上有新的作為。

【銳視點】

以青春之力勇擔創新之責

■盧週來

習主席在黨的二十大報告中深刻指出,必須堅持科技是第一生產力、人才是第一資源、創新是第一動力。

科學技術是軍事發展中最活躍、最具革命性的因素。科技創新成為大國戰略博弈的主戰場,深刻影響國家安全和軍事戰略全局。推動國防和軍隊建設高質量發展,必須加快實施創新驅動發展戰略,加快實現高水平科技自立自強,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰,大幅提昇科技創新對戰鬥力成長的貢獻率。

5年前,伴隨改革強軍鏗鏘步伐,肩負科技強軍神聖使命,軍事科學院國防科技創新研究院應運而生:胸懷「幹驚天動地事」的遠大志向,瞄準世界科技前沿,聚焦未來戰爭急需,深謀制衡強敵勝勢,前瞻佈局人工智慧、無人系統、前緣交叉等一系列科研方向,與當年開創「兩彈一星」事業可謂一脈相承。

偉大事業需要偉大精神滋養,第一動力需要第一資源驅動。 60多年前,鄧農先、朱光亞、於敏、孫家棟、周光召等一大批年輕科研工作者,以熱愛祖國、無私奉獻的博大情懷,以自力更生、艱苦奮鬥的決心乾勁,以大力協同、勇於登攀的創新銳氣,堅定扛起國防科技創新的責任擔當,開創了舉世矚目的「兩彈一星」事業。在新時代強軍事業感召下,一大批平均年齡僅有30多歲、具有名校博士學歷的優秀青年集聚國防科技創新研究院,一路攻堅克難,聚力攻關突破,為加快推進科技自立自強不懈奮鬥,在創新超越中揮灑青春汗水、展現青春力量、彰顯青春擔當。

創新永無止境,奮鬥正當其時。當前,世界百年未有之大變局正在加速演變,新一輪科技革命和軍事革命日新月異。面對科技之變、戰爭之變、對手之變,作為一支充滿青春活力的新興科研力量,為國而立、因戰而研的使命無比榮光,奮鬥青春、逐夢強軍的舞台無比廣闊。奮力搶佔國防科技創新制高點,堅決打贏關鍵核心技術攻堅戰,始終是我們必須直面的現實課題、必須扛起的時代重任。

習主席強調,要造就規模宏大的青年科技人才隊伍,把培養國家戰略人才力量的政策重點放在青年科技人才上,支持青年人才挑大樑、當主角。習主席的重要指示,深刻揭示了青年科技人才成長規律,鮮明標示了科技人才培養方向。我們將牢記習主席囑托,牢記黨和人民重托,大力弘揚「兩彈一星」精神、新時代科學家精神,致力培養鍛造有理想、敢擔當、能吃苦、肯奮鬥的青年科技人才,以青春之力勇擔創新之責,讓更多新銳英才在更多更大的崗位平台挑大樑、當主角,用實際行動學習宣傳貫徹黨的二十大精神。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/4924882.html

How Can Chinese Military Research Institutes Achieve “accelerated” Innovation in National Defense Science and Technology?

中國軍事科學研究院所如何實現國防科技創新「加速」?

現代英語:

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

Standing at the forefront of the times, how can military research institutes promote the implementation of the national defense science and technology innovation strategy and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please read the news investigation brought by the PLA Daily reporter from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Defense Science and Technology Innovation: Forging a Powerful Engine to Enhance National Defense Strength

■China National Defense News reporter Pan Di and special correspondent Zhao Jie

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

President Xi Jinping stressed the need to strengthen national defense science and technology innovation and vigorously improve the ability of independent innovation in national defense science and technology when attending the plenary meeting of the PLA and armed police delegation at the first session of the 13th National People’s Congress. Standing at the forefront of the times, how can military research institutes promote the implementation of national defense science and technology innovation strategies and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please see the news investigation brought by reporters from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Research direction——

We must work hard to study and strive for the future, and never lose our ambition

In late March, at a research institute of the National Defense Engineering Research Institute, researchers who had completed the experimental content of a project were busy collecting, organizing and analyzing data, which also meant that a forward-looking topic they had been studying had entered the finalization stage.

A few years ago, when the concept of a certain type of weapon was just proposed, researchers were keenly aware that with the continuous development of science and technology, once this type of weapon breaks through the technical barriers and is successfully developed, it will bring new challenges to the construction of national defense projects. Time waits for no one, and they have planned in detail the research direction of the subject and the key issues that need to be solved in combination with the current status of my country’s national defense projects. Today, the project team has basically mastered the damage effect of a certain new type of weapon on the target, and has proposed a new protection concept accordingly.

The successful completion of the project stems from the accurate aiming of the scientific research target, and the establishment of the scientific research direction is due to the keen insight and foresight of the scientific research team. This kind of forward-looking research is not an isolated case in the institute.

Engineer Han Yu recalled that as early as the 1980s, the research staff of the institute proposed the research direction of information warfare in the future war based on the development trend of warfare. After extensive data collection, investigation and understanding of the situation, and analysis of research rules, they outlined a forward-looking development blueprint for this research direction.

Thanks to the long-term research accumulation on informationized combat styles, after the institute formally established the relevant protection research laboratory last year, the laboratory’s researchers have been advancing related scientific research topics in an orderly and intensive manner.

The application and research cycle of a project is long, ranging from a few years to more than ten years, or even longer. If the research topic lacks foresight, the scientific research direction is not closely connected to the battlefield, and the results are difficult to help improve the combat effectiveness of the troops, it will inevitably cause a waste of manpower and material resources. In response to this situation, the institute clearly requires: “For research topics related to national defense projects, if they are not practical and forward-looking, they will not be allowed to be established.”

“Our research results usually have to be tested in the training ground, and the opinions and suggestions from the troops are summarized and collected on the feedback form, which provides an important reference basis for the next step of scientific research.” Wang Mingzhe, an engineer who is about to visit a certain test site, told reporters that in order to make the research topics stand the test of future wars, the researchers of the institute often go to plateaus and islands, and travel all over the country to investigate, inspect and demonstrate.

A few years ago, when conducting research in the army, researchers discovered that the camouflage cloth used by a brigade during a live-fire exercise was not conducive to camouflage and cover in special terrain. In response to the problem, researchers quickly organized a research project and designed a new information-based shielding system and cloth, making battlefield laying more convenient, faster, more confusing and concealed.

“When attending the plenary meeting of the People’s Liberation Army and the Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi stressed the need to pay close attention to the development trends of world military technology and weaponry. Indeed, conducting scientific research is like fighting a war. Only with a forward-looking vision can we win the commanding heights in overcoming difficult problems and seize the initiative for victory.” Speaking of the institute’s project approval standards, researcher Liu Ruichao said with emotion that scientific research in the field of national defense engineering must conform to the latest trends in combat styles and weapon development, and take one step ahead while being down-to-earth.

Scientific research talents——

How can the water be so clear? Because it comes from a source of fresh water.

“Look, these are the cracks that appeared after treatment…” On the afternoon of March 13, a laboratory of the institute was occasionally filled with the sound of machines roaring and explanations of experimental content.

In the laboratory, the reporter saw a soldier with gray hair in military uniform. Researcher Chen Anmin told the reporter that the old man was Gu Jincai, an academician of the Chinese Academy of Engineering, and the voice just heard outside the door was Academician Gu explaining the experiment content to the young backbone.

As an academician, the scientific research tasks are already very busy and there is no need for him to always be on the front line. However, Academician Gu, who is already 80 years old, still insists on patiently and meticulously teaching his apprentices and leading the team.

“Academician Gu and his group of veteran comrades have been working on the front line since the establishment of the unit, providing hands-on training and guidance to scientific researchers. I am especially grateful to the predecessors for their guidance and support in getting to where I am today.” Engineer Ma Dongliang is deeply impressed by the good atmosphere of the institute.

In 2009, Ma Dongliang was assigned to a research institute in the Central Plains. As a new employee, Ma Dongliang, who had not yet understood the content of his job, thought he would be assigned to do some “odd jobs” such as organizing documents. What he did not expect was that he was entrusted with an important task as soon as he arrived at the unit and participated in a major protection research project throughout the process.

“The project team is full of teachers with many books, and I, a ‘rookie’, can complete the project tasks?” Ma Dongliang recalled that he was both excited and terrified at the time. After working in the institute for a long time, he learned that the institute would formulate a capacity improvement plan for each key talent, formulate a targeted training plan for those with development potential, and cultivate a team of key talents through job training, sending students to study, cooperation and exchange, etc.

At the 2017 National Science and Technology Awards Commendation Conference, the project in which Ma Dongliang participated won the second prize of the National Science and Technology Progress Award. What surprised him was that the project leader put him in the position of the seventh author after considering everyone’s contribution, which is not only an honor but also a spur and encouragement for young researchers.

“My contribution to scientific research has not been ignored just because I am young. This is also an important reason why our young backbones stay here to concentrate on scientific research. The evaluation of awards focuses on professional ability and contribution. When evaluating and adjusting positions, it is not based on awards or achievements, but on comprehensive evaluation.” Ma Dongliang told reporters that he is currently working on four projects at the same time, working more than 10 hours a day, and working overtime on weekends is the norm. As he said, this fair competition method and evaluation mechanism make them “excited” and “energized” to do scientific research here.

Like Ma Dongliang, there are many young backbones born in the 1980s who like the talent training atmosphere of the institute and engage in scientific research and have achieved success and development. Some have become senior engineers, and some have served as laboratory leaders. A large number of scientific research backbones have grown rapidly here.

Research conditions——

The phoenix will come to roost when the phoenix tree is lush and leafy.

If information technology is the “multiplier” of combat effectiveness, then scientific research conditions are the “incubator” that gives birth to innovative results.

During the interview at the research institute, the reporter found that the place where the researchers spent the longest time was the test site.

At a test site of the institute, the reporter met Associate Researcher Xu Xiangyun who was preparing the test content. He told the reporter that each research room has several laboratories or test sites built according to the needs of scientific research projects. In addition to purchasing local mature technology products, most of the equipment is independently developed. A new type of test equipment next to him was developed and put into use last year.

At the end of 2012, a new type of weapon was released abroad. According to information obtained by scientific and technological personnel, its attack performance and its destructiveness to protective projects are astonishing, and it is likely to cause many protective projects to lose their due effectiveness.

As it concerns the safety of national defense projects, researchers need to find out the relevant performance of this type of weapon as soon as possible, and to obtain the most accurate information, they need to conduct relevant tests. Because it is a new type of weapon, there is no alternative test method in China, and it often takes 3 years or even longer to apply for the development of test equipment. This practical problem made the researchers of the institute frown. What should they do?

“A special research team composed of academicians and experts will be established to work together to overcome difficulties.” After the researchers reported the situation, the institute also invited experts in related fields from all over the country to discuss the matter. After multiple scientific discussions, they immediately decided to start the development of the test equipment as soon as possible.

In 2015, the Institute developed a certain type of test equipment when most similar test equipment in China could only be used in a fixed manner. With the test equipment, the research team quickly began to apply for a certain evaluation test project. Today, the research team has successfully conducted tests such as weapon power research and target damage, and has proposed new protection concepts and structures accordingly.

“Today, a big challenge facing military research institutions is how to fully mobilize the enthusiasm, initiative and innovation of researchers. We must try our best to provide researchers with advanced research conditions in a timely manner to ensure innovative research.” said the leader of the institute. In recent years, they have successively built an engineering comprehensive demonstration environment laboratory with an area of ​​more than 1,000 square meters and more than 200 sets of equipment and software, as well as dynamic and static load test platforms.

If you want to do your work well, you must first sharpen your tools. At present, while continuing to implement the tasks of scientific research conditions construction, the institute focuses on the current situation at home and abroad and the development trend of related majors, actively plans new scientific research conditions construction projects, and promotes the application of the “Major Underground Engineering Safety” National Key Laboratory. A project aimed at the protection technology research of the world’s cutting-edge weapons will be carried out in the newly built simulation test center…

Accelerate national defense science and technology innovation

■Weidong

At the plenary meeting of the PLA and Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi Jinping stressed the need to strengthen national defense science and technology innovation, accelerate the construction of a military-civilian integration innovation system, and vigorously improve the independent innovation capabilities of national defense science and technology. This important thought profoundly reveals the objective laws of national defense science and technology development and points out the direction for the prosperity and development of modern military science.

In recent years, as the strategic commanding heights of science and technology have accelerated their development to the deep earth, deep sea and deep space, the forms of war and combat styles have undergone profound changes, and the process of transforming combat theories into battlefield actions and technology into equipment has continued to accelerate, and the cycle has been further shortened. Many military powers have seen the dawn of intelligent military transformation and have launched a new round of military technology innovation.

In the face of the ever-changing technological development, military research institutes must take the lead in the national defense science and technology game, take the opportunity of reshaping the military research system, stand at the overall height of ensuring victory in the informationized war, step up the strategic transformation, and firmly grasp the “bull’s nose” of independent innovation, so as to take the initiative in the grand journey of becoming world-class.

Qian Xuesen once said that national defense science and technology innovation must not be satisfied with “chasing tail” or “looking in the mirror”. Military research institutes should be bold in their ideas, have the courage to emancipate their minds, break the mindset, make macro plans for their long-term development, and optimize the top-level design. At the same time, they should also carry out forward-looking demonstrations of the needs for the development of national defense science and technology innovation, independently and proactively carry out basic, leading, and disruptive innovative technology research, keenly discover new directions and new fields for the generation of new quality combat effectiveness, and strive to stand at the forefront and be at the forefront of the world’s military science and technology competition.

It is the duty of the general to not forget to fight while defending; it is the duty of the soldiers to be well-prepared for training. Focusing on actual combat is both a goal and a guide. Military research institutes should firmly establish the idea of ​​research for combat, implement President Xi’s instructions and requirements of “facing the battlefield, facing the troops, and facing the future”, and follow the requirements of “improving joint combat capabilities and all-domain combat capabilities based on network information systems”. We should strive to conduct research in the way the war is fought and what is needed for the war, focus on improving the contribution rate of military research and innovation to the combat effectiveness of the troops, and continuously provide strong scientific and technological support for strengthening the army.

A first-class army needs first-class scientific research units, and first-class scientific research units need first-class talents. Only when talents emerge in competition can there be a burst of innovative vitality. Military scientific research institutes should always adhere to the awareness of talent cultivation as the main battlefield, highlight the cultivation of creative thinking and innovative capabilities of military scientific researchers, rely on first-class military talents to create first-class military theories and first-class military technology, and implant the winning genes for decoding future wars into the body of the army.

President Xi stressed that we should focus on the coordinated innovation of military and civilian science and technology in key areas. The fields of national defense science and technology and weapons and equipment are the focus of military-civilian integration. As military research institutes, we should focus on meeting national strategic needs, integrating into the national scientific research system, strengthening the coordinated research of major projects, and strengthening the deep integration of industry, academia and research. Relying on the superior resources of the military and the local government, we should strengthen the strategic cooperation between the military and the local government, build a service platform for the joint research and sharing of national defense science and technology achievements, the joint construction and sharing of conditions and facilities, and the connection of common standards between the military and the local government, and form a new situation of open, integrated and innovative development of national defense science and technology.

Stride forward, reshape and reconstruct is not a minor repair, and must not be a small fight. We must seize the opportunity of the start, release the starting momentum, take steps and speed up in key areas, important directions and major tasks, and create new models and set new benchmarks as soon as possible, so as to take the lead in achieving leading results in the world military science and technology competition, occupy a number of strategic commanding heights and winning points, use first-class military technology to create a first-class combat offense and defense system, and gradually achieve the goal of building a first-class army.

(Author’s unit: National Defense Engineering Research Institute, Academy of Military Sciences)

Military scientific and technological innovation should focus on basic scientific research, improve basic scientific research support capabilities, and lay a solid foundation for national defense scientific and technological innovation.

In recent years, we have made great progress in the field of national defense science and technology, but there is still a gap with foreign countries in some key technologies, mainly because the basic research is not solid enough, and there is still room for improvement in professional basic theoretical research, digital military simulation platform development, large-scale distributed numerical computing technology, etc. These factors have restricted the scientific research progress and development in the military field to a certain extent, affecting the emergence and breakthroughs of cutting-edge leading technologies, modern engineering technologies, and disruptive technological innovations.

Basic key technologies cannot be bought, and you will not get far if you rely on buying second-hand technologies from abroad. We should start from the aspects of top-level planning design, scientific research management system, and incentive mechanism for scientific researchers, attach importance to and support basic research work, carry out basic research work in depth, and enhance original innovation capabilities.

Military research institutions must break down the “barriers” between the military and civilian science and technology systems, and focus on collaborative innovation in military and civilian science and technology in key areas.

With the rapid development of high-tech weapons and equipment, the styles and forms of warfare are constantly changing, which puts higher requirements on battlefield construction. We must actively explore many disciplines such as earth sciences, high-tech equipment manufacturing, and automatic control, and study the construction of a full-domain intelligent battlefield.

Based on this, military research units need to cooperate with local governments to jointly carry out in-depth engineering research, integrate high-quality local military resources in the fields of electronic information, drones, artificial intelligence and bionics, and use the best scientific and technological resources in the country to build a modern military force system. For our national defense engineering field, we must attach importance to promoting the application of building information modeling (BIM) in military engineering and realize the informationization and refined management of engineering construction and operation and maintenance.

Innovation-driven development is essentially talent-driven. Whoever possesses first-class innovative talents will have the advantage and dominance in scientific and technological innovation.

At present, the most urgent need for strengthening national defense and military construction is talent; looking to the future, the core of achieving leapfrog development in military construction is still talent. Only by fully driving the talent training engine can we strongly promote independent innovation in national defense science and technology.

Many years of experience in scientific research have made me feel that talent cultivation is a systematic project and strategic task. We need to focus on the overall situation, strengthen top-level design, scientifically set up echelons, and strive to create a vivid situation where outstanding talents emerge and everyone competes to be a “maker” in the military camp. Talent cultivation has its inherent characteristics and laws. It cannot be achieved overnight or in a short period of time. We need to firmly establish a scientific concept of talent cultivation, with the ideological realm and confidence and courage of “success does not have to be mine, but the effort will not be in vain”, and work hard for a long time and continue to relay, so as to turn the talent cultivation blueprint into reality and provide solid talent support for the development of the military through science and technology.

Conducting military scientific research is like fighting a war. Only with a forward-looking vision can you gain the commanding heights in overcoming difficult problems and seize the initiative for victory.

In recent years, national defense science and technology at home and abroad has developed rapidly, the all-round reconnaissance technology integrating land, sea, air and space has been continuously improved, the use of troops and weapons supported by highly information technology on the battlefield and the emergence of new weapons have greatly changed the combat style and characteristics of future wars. Scientific researchers must deeply grasp and base themselves on the characteristics of future wars and carry out innovative scientific research in a targeted manner.

Specifically in the field of national defense engineering research, military researchers must keep up with the forefront of the development of world weapons and equipment and protection technology, and focus on preventing both “hard kill” and “soft kill”; they must pay attention to the protection of key parts as well as the protection of the overall system; they must do a good job in passive protection, and also track and study active protection and new weapon protection technologies, promote disruptive technological innovation, and strive to improve the battlefield survivability and combat support capabilities of national defense engineering.

現代國語:

目前,新一輪科技革命、工業革命、軍事革命正加速推進,太空、網路等新興領域將成為未來競爭的焦點。科學技術日新月異,武器裝備和作戰方式日新月異,對軍事科學研究院所進行全域戰場研究提出了新的要求。

站在時代前沿,軍隊科學研究院所如何推動國防科技創新戰略實施,將科學研究成果轉化為現實戰力?如何實現科技創新從“蹲著跑”到“跳起來”,實現科技創新“加速”?請閱讀解放軍報記者軍事科學院國防工程研究所帶來的新聞調查。

國防科技創新:為提升國防實力鍛造強大引擎

■中國國防報記者 潘娣 特約記者 趙傑

目前,新一輪科技革命、產業革命、軍事革命加速推進,太空、網路等新興領域將成為未來的爭奪焦點。快速發展的科學技術、日新月異的武器裝備及作戰方式,給軍科研院所提出了全域戰場研究的新要求。

習主席出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,加強國防科技創新,並大力提升國防科技自主創新能力。挺立時代潮頭,軍事科研院所如何推進國防科技創新戰略落地生根,把科學研究成果轉化為實實在在的戰鬥力?如何實現科技創新“深蹲助跑”到“起跳跨越”,跑出科技創新“加速度”?請看記者從軍事科學院國防工程研究院帶來的新聞調查。

科學研究方向——

躬身必以研為戰,望遠不墜鯤鵬志

3月下旬,在國防工程研究院某研究所,已經完成某專案試驗內容的科研人員正在緊張地進行資料的蒐集、整理與分析,這也意味著他們潛心鑽研的某前瞻性課題進入結題階段。

幾年前,某型武器的概念剛被提出時,科研人員就敏銳地認識到:隨著科學技術不斷發展,該型武器一旦突破技術壁壘研製成功,將會對國防工程建設帶來新的挑戰。時間不等人,他們結合我國國防工程現狀,詳細規劃了主題的研究方向和需要重點解決的關鍵問題。現今,本計畫組基本上掌握某新型武器對目標的毀傷效果,並相應提出新的防護理念。

專案成功結題的背後,源自於科研標靶的準確瞄準,而科研方向的確立得益於科研團隊敏銳的洞察力與前瞻性。這種具有前瞻性的研究在該研究院並非個案。

根據工程師韓彧回憶,早在1980年代,該研究院科研人員根據作戰發展趨勢,預見未來戰爭資訊化作戰的研究方向。經過廣泛收集資料、調查了解情況、剖析研究規律,他們為研究方向勾勒出前瞻性的發展藍圖。

得益於長期資訊化作戰樣式的研究積累,去年研究院正式組成相關防護研究室之後,研究室科研人員便有條不紊、緊鑼密鼓地推進相關科研課題。

課題申請立項與研究週期長,短則幾年多則十幾年,甚至會更長。如果研究主題缺乏前瞻性,科學研究方向對接戰場不緊密,出了成果也難以助力部隊戰鬥力的提升,勢必會造成人力物力的浪費。針對這種情況,該研究院明確要求:“事關國防工程的研究主題,不具備實用性前瞻性決不允許立項。”

「我們的研究成果通常要經過演練場檢驗,匯總收集部隊反饋的意見建議到意見反饋表上,為下一步科研攻關提供重要參考依據。」即將赴某試驗場考察的工程師王明哲告訴記者,為了讓研究主題經得起未來戰爭的檢驗,研究院的科研人員常上高原、下海島,走南闖北去研究、考察與論證。

幾年前,科學研究人員在部隊調查時發現,某旅在實兵演練過程中使用的迷彩遮蔽佈在特殊地形下不利於偽裝掩護。針對發現的問題,科學研究人員快速組織主題立項研究,設計出新型資訊遮蔽系統與遮蔽布,使戰場鋪設更加方便快捷,更具迷惑性和隱蔽性。

「習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要密切關注世界軍事科技和武器裝備發展動向。的確,搞科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。 。

科學研究人才—

問渠哪得清如許,為有源頭活水來

「你們觀察一下,這是處理後顯現的裂縫…」3月13日下午,研究院某實驗室不時傳出陣陣機器轟鳴與講解試驗內容的聲音。

在實驗室裡,記者看到一位穿著軍服、頭髮花白的軍人。研究員陳安敏告訴記者,這位老者是中國工程院院士顧金才,剛在門外聽到的聲音就是顧院士在為年輕骨幹講解試驗內容。

身為院士,科學研究任務本就十分繁忙,完全不需要一直盯在一線,但已經80歲高齡的顧院士卻仍堅持耐心細緻地教徒弟、帶團隊。

「顧院士那一批老同志自單位成立以來就一直奮戰在一線,手把手地對科研人員進行傳幫帶。我能走到今天特別感謝前輩們的教導和扶持。」工程師馬棟良對研究院良好的氛圍感受頗深。

2009年,馬棟良被分配到地處中原地的某研究所。新到工作單位,還沒了解工作內容的馬棟良以為會被派去幹一些整理文檔的“雜活兒”,讓他沒想到的是,剛到單位就被委以重任,全程參與某重大防護研究課題。

「專案組裡都是著作等身的老師,而我一個『菜鳥』能把專案任務完成好嗎?」馬棟良回想當時的心情既激動又惶恐。他在研究院待久了才知道,原來研究院對每位骨幹人才都會製訂能力提升計劃,對有發展潛力的針對性製訂培養方案,透過崗位鍛鍊、送學培養、合作交流等方式,培養骨幹人才方隊。

在2017年度國家科學技術獎勵表揚大會上,馬棟良參與的這個計畫獲得國家科學技術進步獎二等獎。讓他既驚訝又意外的是,專案組組長綜合考慮每個人的貢獻後,將他放在了第七作者的位置,這對年輕科研人員來說既是榮譽,更是鞭策和激勵。

「並沒有因為年輕就忽略我在科研中的貢獻,這也是我們年輕骨幹留在這裡潛心搞科研的重要原因。評獎看重專業能力與所作所為,在評職調級時不唯獎不唯成果,而是依據綜合性評估。如他所說,這種公平的競爭方式與評價機制,讓他們在這裡搞科研「得勁兒」「有勁兒」。

而和馬棟良一樣,喜歡研究院人才培養氛圍而深耕科研,並取得成就與發展的「80後」年輕骨幹不在少數,有的成為了高級工程師,有的擔任了研究室領導,一大批科研骨幹在這裡快速成長起來。

科學研究條件——

梧桐枝繁葉茂,自有鳳凰來棲

如果資訊科技是戰鬥力的“倍增器”,那麼科研條件就是催生創新成果的“孵化器”。

在研究院採訪的日子裡,記者發現科學研究人員待得最久的地方就是試驗場。

在研究院某試驗場地,記者見到正在準備試驗內容的副研究員徐翔雲,他告訴記者,每個研究室都有幾處根據科研項目需求建造的實驗室或試驗場,除了購置地方技術成熟的產品,大部分是自主研發的設備,他身旁的某新型試驗設備就是去年研發投入使用的。

2012年年底,國外發布了一款新型武器,根據科技人員掌握到的情況,其攻擊性能及其對防護工程的破壞性令人吃驚,很可能會導致許多防護工程失去其應有的效用。

關乎國防工程的安全問題,科學研究人員要盡快摸清該型武器的相關性能,而要掌握到最準確的資料,需要進行相關試驗。由於是新型武器,國內尚未有可以作為替代的試驗手段,而要報項申請研發試驗裝備,往往需要3年甚至更長的時間。這個現實難題讓研究院科研人員皺緊了眉頭,怎麼辦?

「成立由院士專家組成的專題課題攻關小組,群策群力攻堅克難。」科研人員報告情況後,研究院還請來全國相關領域的專家探討,經過多方科學論證,他們當即拍板兒,盡快開展試驗設備的研發。

2015年,在國內大多數同類型試驗裝備只能固定使用的情況下,研究院研發出某型試驗裝備。有了試驗裝備,課題組很快就開始進行某評估試驗課題的申報工作。如今,該研究小組成功進行武器威力研究、目標毀傷情況等試驗,並相應提出新的防護理念和結構。

「如今,軍事科研機構面臨的很大一個難題,就是如何充分調動科研人員的積極性、主動性和創新性。我們要盡力為科研人員及時提供先進的科研條件,保障創新研究。」該研究院領導說。近年來,他們先後建造1000多平方公尺、200餘台(套)設備軟體的工程綜合論證環境實驗室、動載和靜載試驗平台。

工欲善其事,必先利其器。目前,該研究院在持續抓好科研條件建設任務落實的同時,著眼於國內外現狀與相關專業的發展趨勢,積極籌劃新的科研條件建設項目,推動“重大地下工程安全”國家重點試驗室等申報工作。瞄準世界前沿武器的防護技術研究的某個主題將在剛建成的模擬試驗中心開展…

跑出國防科技創新“加速”

■衛東

習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要加強國防科技創新,加速建立軍民融合創新體系,大力提升國防科技自主創新能力。這一重要思想,深刻揭示了國防科技發展的客觀規律,為繁榮發展現代軍事科學指明了前進方向。

近年來,隨著科技戰略制高點朝向深地、深海、深空加速發展,戰爭形態和作戰樣式深刻嬗變,作戰理論轉化為戰場行動、技術物化為裝備的進程不斷加快,週期進一步縮短。不少軍事強國看到了智慧化軍事變革破曉的訊號,紛紛啟動新一輪軍事技術革新。

軍事競爭唯創新者勝。面對日新月異的科技發展態勢,軍事科研院所必須在國防科技博弈中率先投子佈勢、走開棋路,以軍事科研體系重塑為契機,站在保障打贏資訊化戰爭的全局高度,加緊推進戰略轉型,緊緊扭住自主創新這個“牛鼻子”,才能在邁進世界一流的宏闊征程中下好先手棋,掌握主動權。

錢學森曾說過,國防科技創新絕對不能滿足於「追尾巴」「照鏡子」。軍事科學研究院所應大膽構想,勇於解放思想,破除思維定式,對其長遠發展進行宏觀規劃,優化頂層設計。同時,也應進行前瞻性國防科技發展創新需求論證,自主超前展開基礎性、先導性、顛覆性創新技術研究,敏銳發現新質戰鬥力生成的新方向新領域,努力在世界軍事科技競爭中站上前沿、走在前面。

守不忘戰,將之任也;訓練有備,兵之事也。聚焦實戰是目標,也是牽引。軍事科研院所應牢固樹立研為戰思想,貫徹習主席「面向戰場、面向部隊、面向未來」的指示要求,按照「提高基於網路資訊體系的聯合作戰能力、全域作戰能力」的要求,努力做到仗怎麼打科學研究就怎麼搞,打仗需要什麼科學研究就搞什麼,著力提升軍事科學研究創新對部隊戰鬥力的貢獻率,不斷為強軍興軍提供強而有力的科技支撐。

一流的軍隊需要一流的科學研究單位,一流的科學研究單位需要一流的人才。只有人才競相湧現,才有創新活力迸發。軍事科研院所應始終堅持人才培養的主陣地意識,突顯對軍事科研工作者創造性思維、創新型能力的培養,靠一流軍事人才創造一流軍事理論和一流軍事科技,為軍隊的肌體植入解碼未來戰爭的致勝基因。

習主席強調,要突顯抓好重點領域軍民科技協同創新。國防科技與武器裝備領域是軍民融合的重點,作為軍事科研院所,應注重對接國家戰略需求,融入國家科研體系,加強重大項目協同攻關,強化產研深度融合。依托軍地優勢資源,強化軍地戰略協作,建構國防科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成國防科技開放融合創新發展新局面。

闊步前進,重塑重構不是小修小補,絕不能小打小鬧。必須抓住開局契機,釋放起跑動能,在重點領域、重要方向和重大任務上把步子邁起來、速度提上去,盡快打造新樣板,樹起新標桿,從而在世界軍事科技競爭中率先取得引領性成果,佔據若干戰略制高點、致勝點,以一流軍事科技打造一流作戰攻防體系,逐步實現一流軍隊的建設目標。

(作者單位:軍事科學學院國防工程研究院)

軍事科技創新要聚焦基礎科學研究,提升基礎研究支撐能力,築牢國防科技創新的根基。

近年來,我們在國防科技領域取得非常大的進展,但在一些關鍵技術上和國外仍存在差距,主要是因為基礎性研究不夠紮實,在專業基礎理論研究、數位化軍事模擬平台研發、大型分散式數值計算技術等方面仍有待提升。這些因素都在一定程度上限制了軍事領域的科研進步與發展,影響著前沿引領技術、現代工程技術、顛覆性技術創新等方面的產生與突破。

基礎性關鍵技術絕對買不來,靠從國外買二手技術是走不遠的。若要從規劃頂層設計、研究管理制度、研究人員激勵機制等面向入手,實際重視與扶持基礎研究工作,深入進行基礎研究工作,提升原始創新能力。

軍事科研機構必須破除軍民科技體系之間的“藩籬”,突顯抓好重點領域軍民科技協同創新。

隨著當前高新技術武器裝備迅速發展,戰爭樣式和形態推陳出新,對戰場建設提出了更高要求,要積極探索地球科學、高新技術裝備製造、自動控制等眾多學科,研究全局智能戰場建設。

基於此,軍事科研單位需要和地方協同合作,共同做好深部工程研究,在電子資訊、無人機、人工智慧和仿生技術等高新科技研究方向,整合軍隊地方優質資源,用全國最優質的科技資源建構現代軍事力量體系。對我們國防工程領域而言,要重視推進建築資訊模型(BIM)在軍事工程的應用,實現工程建設與運作維護的資訊化、精細化管理。

創新驅動實質上是人才驅動,誰擁有了一流的創新人才,誰就擁有了科技創新的優勢和主導權。

著眼當下,加強國防和軍隊建設最緊張的就是人才;放眼未來,實現軍隊建設跨越式發展最核心的還是人才。全力驅動人才培養引擎,才能強勢助推國防科技自主創新。

多年的科學研究工作經驗使我感到,人才培育工作是一項系統工程和策略任務,需要著眼全局,加強頂層設計,科學設置梯次,著力形成優秀人才競相湧現、人人爭當軍營「創客」的生動局面。人才培育有其固有的特點和規律,不可能一蹴而就、短期速成,需要牢固樹立科學的人才培養觀,以「功成不必在我,而功力必不唐捐」的思想境界和信心勇氣,久久為功、持續接力,才能把人才培養藍圖變成現實,為科技興軍提供堅實的人才支撐。

搞軍事科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。

近年來,國內外國防科技快速發展,陸海空天一體的全方位偵察技術不斷提升,戰場中以高度資訊化技術為支撐的兵力武器運用以及新式武器的問世,大大改變了未來戰爭的作戰樣式和特徵,科學研究人員要深刻掌握並立足未來戰爭特點,有針對性地進行創新性科學研究工作。

具體到國防工程研究領域,軍事科研人員要緊跟世界武器裝備和防護技術發展的前沿,既要注重防“硬殺傷”,也要注重防“軟殺傷”;既要注重對要害部位的防護,也要注重整體系統防護;既要搞好被動防護,也要追蹤研究主動防護和新型武器防護技術,推動顛覆性技術創新,努力提升國防工程戰場生存能力和作戰保障能力。

来源:中国军网综合

作者:潘娣 赵杰等责任编辑:柳晨

2018-05-02 

中國原創軍事資源:https://www.81.cn/2018zt/2018-05/02/content_8020899.htm

Chinese Military Simulation Technology—— Knocking on the door of Russian “war design”

中國軍事模擬技術—敲開俄羅斯「戰爭設計」之門

中國軍網 國防部網 // 2018年8月24日 星期五

現代英語:

Recently, the Russian Ministry of Defense announced the establishment of the “Era Military Innovation Technology Park”, which focuses on scientific research, testing and simulation of advanced weapons, military and special equipment. Coincidentally, the US military is also stepping up the development of the “Soldiers Build Intelligence System Military Training Support” project, hoping to better assist officers and soldiers in conducting military intelligence training by providing equipment, simulators and simulation modeling services. The frequently mentioned military simulation technology has attracted attention from all parties. With the rapid development of cloud computing, big data, artificial intelligence and other technologies, military simulation technology has made significant progress in equipment construction, military exercises, combat training and logistics support. At present, major military powers have recognized the huge application prospects of simulation technology in the military field and regard it as an “advanced intelligence contest” in modern warfare.

The “virtual battlefield” can also deploy troops

Once upon a time, we all “learned about war from war”. The emergence of military simulation technology has allowed us to learn about future wars from the “virtual battlefield”.

Simulation technology mainly relies on computer and other equipment platforms, and uses mathematical models to conduct scientific research, analysis, evaluation and decision-making on issues that need to be studied. Military simulation systems are simulation systems built specifically for military applications. They can conduct quantitative analysis of combat elements such as land, sea, air, space, electricity, and the Internet, the performance of weapons and equipment, and combat operations, and then accurately simulate the battlefield environment, present relevant battlefield situations, and achieve effectiveness evaluation of the combat system and command decision-making assistance.

At present, military simulation systems have become an effective means of studying future wars, designing weapons and equipment, and supporting the evaluation of tactics, and they run through the entire process of weapons and equipment development and testing. In recent years, military simulation technology has been increasingly regarded as a multiplier for improving combat effectiveness and one of the key technologies for national defense security and troop construction and development.

The United States has always listed modeling and simulation as an important key defense technology. As early as 1992, the United States announced the “Defense Modeling and Simulation Initiative” and established a special Defense Modeling and Simulation Office. The United States also specifically listed the “integrated simulation environment” as one of the seven driving technologies to maintain the US military advantage. At the same time, European countries attach great importance to the development of military simulation technology, and strive to continuously improve simulation methods in the process of developing a new generation of weapon systems, thereby improving the comprehensive effectiveness of weapon equipment construction and development.

In fact, military simulation technology has allowed people to fully learn about future wars in experiments. Before the outbreak of the Gulf War, the US Department of Defense used military simulation technology to analyze and determine the direct consequences of Iraq igniting all oil wells in Kuwait, which had a profound impact on the US military’s formulation of the Gulf War combat plan. In the integrated ballistic missile defense system project carried out by the US military, modeling and simulation methods are specifically used to conduct a preliminary assessment of the ballistic missile defense system. At the end of 2017, the US Department of Defense’s Advanced Research Projects Agency invested 12.8 million US dollars specifically for the construction of virtual simulation space battlefields. The US Army also spent 57 million US dollars to develop the Army Infantry Training System – this immersive military virtual simulation training system can provide soldiers with a more realistic battlefield combat simulation environment.

A brainstorming session to plan operations

From artillery simulation, aircraft simulation, missile simulation to today’s various types of weapon system equipment simulation and combat simulation, while simulation technology continues to meet the needs of military applications, it is also rapidly developing in the direction of virtualization, networking, intelligence, collaboration and universalization. In order to continuously improve military simulation calculation methods and improve simulation technology, people are constantly launching a “brainstorming” to plan operations.

Mathematical modeling algorithm. Mathematical model is the basis of simulation. To carry out simulation, we must first build a mathematical model of the object to be simulated. At the same time, the correctness and accuracy of the mathematical model directly affect the credibility of the simulation calculation results. In recent years, the rapid development of artificial intelligence technology has provided new ideas for mathematical modeling. Introducing artificial intelligence to build mathematical models can not only effectively improve the realism, reliability and accuracy of simulation models, but also further improve the efficiency of modeling and simulation.

Virtual reality technology. With virtual reality technology, people can interact with objects in a virtual simulation environment through related equipment, thereby creating an effect of “immersion” in the real environment. The augmented reality technology that has emerged in recent years has further increased the user’s perception of the virtual simulation system, and can superimpose virtual objects, scenes, and information generated by the military simulation system onto the real scene. The U.S. Army is currently relying on virtual reality and augmented reality technologies to develop the future overall training environment to achieve seamless, mixed immersive combat training.

Network grid technology. The realization of military simulation is inseparable from the strong support of computers, local area networks, software engineering and other technologies. The distributed interactive simulation that integrates simulation equipment or systems of different types in different locations into a whole provides a more realistic application environment for military simulation. In recent years, grid technology that can realize the rapid transmission of various types of information and resource sharing has become a research hotspot for military simulation. The US Department of Defense has begun to use the “Global Information Grid” plan to establish a military grid that communicates various information elements on the battlefield and realizes the dynamic sharing and collaborative application of various military network resources.

Winning the war before it starts

The future information warfare is an integrated war that is carried out simultaneously in multiple dimensions such as land, sea, air, space, electricity, and the Internet. Not only is the battle structure complex and the weapons and equipment diverse, but it also places higher demands on the combatants and the use of tactics. Only by building a “virtual battlefield” for future wars with the help of military simulation technology and realizing the scientific coordination of factors such as the scale of war, the course of war, war investment, the number of combatants and weapons and equipment, the targets of attack and the intensity of attack, can we be sure of victory before the war begins.

In the field of combat experiments, the U.S. military has fully reduced the losses caused by improper combat plans and action plans through a large number of computer simulation evaluations and iterative optimizations. The Russian military’s combat regulations and tactics are also “optimal battlefield solutions” obtained through scientific deduction and simulation calculation using mathematical models. Through military simulation analysis and evaluation, battlefield commanders and fighters can quickly understand the trend of war simulations and carry out effective responses according to various changes in the “virtual battlefield”, thereby effectively improving the effectiveness of combat experiments.

In the field of military training, individual soldier training can be carried out through an immersive virtual simulation training environment, which can be as close to the battlefield environment as possible and effectively improve the training effect. In recent years, the US Army has specially opened a “simulated immersion” training course in the “Advanced Course for Officers”. Through the implementation of virtual simulation military training, the organization and implementation of training are not restricted by time and weather conditions. The distributed training simulation system can even enable trainees in different locations to participate in the training together. By modeling and simulating the specific battlefield environment, tactical background and enemy forces, the military training system can also provide trainees with a more realistic battlefield perception.

In the field of equipment demonstration, the technical support of simulation systems is required throughout the life cycle of weapons and equipment development. At present, the United States has extensively adopted simulation technology in new weapon system development projects to fully support the development and testing, live-fire evaluation and combat testing of weapons and equipment. The U.S. Missile Defense Agency has further explored effective measures to deal with incoming missile threats through missile threat target modeling and simulation. The U.S. Navy simulates the operation of ship systems and crew members through mission analysis simulation software, and obtains simulation results for determining and optimizing the number of crew members. In the future, military simulation technology may become a new technological highland for the world’s major military powers to compete.

現代國語:

日前,俄羅斯國防部宣布組成“時代軍事創新科技園區”,重點進行先進武器、軍事和特殊裝備的科學研究、試驗以及模擬模擬。無獨有偶,美軍也在加緊研發「士兵建構情報系統軍隊訓練保障」項目,希望透過提供設備、模擬器與模擬建模等服務,更好地輔助官兵進行軍事情報訓練。這其中常提及的軍用模擬技術,引起各方注意。伴隨著雲端運算、大數據、人工智慧等技術的快速發展,軍事模擬技術在裝備建設、軍事演習、作戰訓練與後勤支援等領域相繼取得重大進展。目前,各軍事大國紛紛體認到模擬技術在軍事領域的巨大應用前景,將其視為現代戰爭的「超前智慧較量」。

「虛擬戰場」也能排兵布陣

曾幾何時,我們都是「從戰爭中學習戰爭」。軍用模擬技術的出現,開始讓我們從「虛擬戰場」學習未來戰爭。

模擬技術主要藉助電腦等設備平台,利用數學模型對需要研究的問題進行科學的研究、分析、評估與決策。軍用模擬系統是專門針對軍事應用建構的模擬模擬系統,可對陸、海、空、天、電、網等作戰元素、武器裝備性能以及作戰行動進行量化分析,進而精確模擬戰場環境、呈現相關戰場態勢,實現作戰體系的效能評估與指揮決策輔助。

目前,軍用模擬系統已成為研究未來戰爭、設計武器裝備、支撐戰法評估的有效手段,並貫穿武器裝備研發、試驗的整個過程。近年來,軍用模擬技術越來越被視為提升作戰效能的倍增器,是國防安全與部隊建設發展的關鍵技術之一。

美國一直將建模與模擬列為重要的國防關鍵技術。早在1992年,美國就宣布了“國防建模與模擬倡議”,並專門成立國防建模與模擬辦公室。美國也專門將「綜合模擬環境」列為保持美國軍事優勢的七大推動技術之一。同時,歐洲各國高度重視軍用模擬技術發展,力求在新一代武器系統研發過程中不斷完善模擬方法,進而提升武器裝備建設發展的綜合效能。

事實上,軍用模擬技術已經讓人們在實驗中充分學習了未來戰爭。在海灣戰爭爆發前,美國國防部就藉助軍用模擬技術,分析研判伊拉克點燃科威特境內全部油井的直接後果,對美軍制定海灣戰爭作戰方案產生了深遠影響。在美軍進行的一體化彈道飛彈防禦系統專案中,就專門採用建模模擬方法​​對彈道飛彈防禦系統進行預先評估。 2017年底,美國國防部高級研究計畫局投資1,280萬美元,專門用於虛擬模擬太空戰場建設。美國陸軍也耗資5,700萬美元研發陸軍步兵訓練系統-這款沉浸式軍事虛擬模擬訓練系統,能為士兵提供更真實的戰場作戰模擬環境。

掀起策劃作戰的“腦力激盪”

從火砲仿真、飛行器仿真、飛彈仿真到現今的各式武器系統裝備仿真以及作戰仿真,仿真技術在不斷滿足軍事應用需求的同時,自身也朝向虛擬化、網路化、智慧化、協同化與普適化方向迅速發展。為不斷完善軍用模擬計算方法、改進模擬技術手段,人們正不斷掀起謀劃作戰的「腦力激盪」。

數學建模演算法。數學模型是進行模擬的基礎,要進行模擬模擬,必須先建構被模擬物件的數學模型。同時,數學模型的正確與否以及精確度高低直接影響模擬計算結果的可信度。近年來,人工智慧技術的快速發展,為數學建模提供了新思路。引進人工智慧建構數學模型,不僅能有效改善模擬模型的逼真性、可靠性與精確性,也進一步提升了建模與模擬的效率。

虛擬實境技術。採用虛擬實境技術,人們可透過相關設備與虛擬模擬環境中的物件進行交互,進而產生「沉浸」於真實環境的效果。近年來興起的擴增實境技術,進一步增加了使用者對虛擬模擬系統的感知程度,能將軍用模擬系統產生的虛擬物件、場景和資訊疊加到真實場景中。美國陸軍目前就依賴虛擬實境和擴增實境技術開發未來整體訓練環境,實現無縫、混合的沉浸式作戰訓練。

網路網格技術。軍用仿真的實現離不開電腦、區域網路、軟體工程等技術的強大支撐,將分散於不同地點、不同類型的仿真設備或系統集成為一個整體的分散式交互仿真,為軍用仿真提供了更逼真的應用環境。近年來,可實現各類資訊快速傳輸和資源共享的網格技術成為軍用模擬的研究熱點。美國國防部已開始借助「全球資訊網格」計劃,建立起溝通戰場各類資訊要素的軍事網格,實現各類軍事網路資源的動態共享與協同應用。

在戰爭開始前穩操勝券

未來的資訊化戰爭是陸、海、空、天、電、網等多維空間同時展開的一體化戰爭,不僅戰役結構複雜、武器裝備多樣,對參戰人員和戰術運用也提出了更高要求。借助軍事模擬技術建構未來戰爭的“虛擬戰場”,實現對戰爭規模、戰爭進程、戰爭投入、作戰人員與武器裝備數量、打擊目標與打擊強度等要素的科學統籌,才能在戰爭開始之前穩操勝券。

在作戰實驗領域,美軍透過大量的電腦模擬評估和迭代優化,充分減少了因作戰方案和行動計畫不當而造成的損失。俄軍的作戰條令和戰法也都是運用數學模型進行科學推導、模擬計算得出的「戰場最優解」。透過軍用模擬分析與評估,戰場指戰員可以快速了解戰爭推演趨勢,在「虛擬戰場」中根據各種情況變化開展有效應對,進而有力提升作戰試驗效果。

在軍事訓練領域,透過沉浸式虛擬模擬訓練環境實施單兵訓練,能最大限度地貼近戰場環境,並有力提升訓練效果。近年來,美國陸軍已經在“軍官高級教程”中專門開設了“模擬沉浸”訓練課程。透過進行虛擬模擬軍事訓練,訓練的組織與實施不受時間和氣象條件限制,分散式訓練模擬系統甚至能使不同地點的參訓人員共同參與訓練。透過對具體戰場環境、戰術背景和敵方兵力進行建模和仿真,軍事訓練系統也能為訓練人員提供更逼真的戰場感知。

在裝備論證領域,武器裝備研發的全生命週期都需要模擬系統的技術支援。目前,美國在新型武器系統研發專案中大量採用模擬技術,全面支援武器裝備的開發測試、實彈評估測試和作戰測試。美國飛彈防禦局透過飛彈威脅目標建模與仿真,進一步探索出應對來襲飛彈威脅的有效措施。美國海軍則透過任務分析仿真軟體,對船艦系統和艦員的操作進行仿真,得出確定和優化艦員數量的仿真結果。未來,軍用模擬技術或將成為世界各軍事大國角逐的科技新高地。

製圖:陳 晨

中國原創軍事資源:https://www.81.cn/jfjbmap/content/2018-08/24/content_214234888.htm

China’s Military Looking at the Generation of New Quality Combat Power from the Perspective of Intelligent Victory

從智勝視角看中國軍隊新型優質戰鬥力生成

現代英語:

Intelligent victory is a distinct feature of the times in the “quality” of new quality combat power. With the development of science and technology and the evolution of war forms, intelligent joint operations based on “energy mobility and information interconnection”, supported by “network communication and distributed cloud”, with “data computing and model algorithms” as the core, and “cross-domain command and multi-domain operations” as the path, gradually outline a vivid scene of the application of new quality combat power. The intelligent trend of new quality combat power will trigger a chain breakthrough in the military field and become a key variable in changing the rules of war. To enhance new quality combat power and win future wars, we should “knock on the door” of intelligent operations and explore methods and paths to iteratively generate new quality combat power of intelligent joint operations.

Analyzing the characteristics of new quality combat power based on intelligent winning mechanism

Throughout human history, the mechanisms for winning wars have all left clear marks of the era of technological development. To understand and grasp the new quality of combat power of intelligent joint combat, we should keep up with the development of war forms and analyze its key characteristics.

The battlefield environment is distributed in multiple domains. The battlefield environment is the space for the use of new-quality combat power and the space-time framework for understanding the new-quality combat power of intelligent joint operations. Since the emergence of war, the space-time of war has undergone multiple leaps, including plane, three-dimensional, and invisible space. At present, combat confrontation is unfolding in a fusion space with dimensions including physical domain, information domain, and even biological domain and social domain. In intelligent joint operations, the status of virtual space rises and gradually integrates deeply with physical space. Invisible confrontations such as network, intelligence, and psychology constitute a new space. Establishing a virtual battlefield, realizing virtual-real interaction, and achieving virtual-real control have become new driving forces for joint operations.

Multiple integration of constituent elements. Constituent elements are the inherent characteristics of new-quality combat power and the basic elements of new-quality combat power of intelligent joint operations. Mechanized joint operations are platform-centric operations, with firepower and mobility as the dominant forces. The combination of people, mechanized equipment, and tactics is more of a superposition and accumulation, with the goal of carrying energy with objects and releasing energy with objects. Informatized joint operations are network-centric operations, with information power as the dominant force. The combination of network information, people, informationized equipment, and tactics is more of a linkage and interconnection, with the goal of gathering energy with the network and releasing energy with the network. The dominant force of intelligent joint operations is intelligence. The combat elements of cloud, network, people, equipment, and tactics are integrated through models, algorithms, and data to form a complex system with agile reorganization and autonomous adaptation, realizing the control of energy with intelligence and the control of energy with intelligence.

The mode of action is multi-functional and parallel. The mode of action is the energy release path of the new quality combat power and the key to analyzing the new quality combat power of intelligent joint operations. The use of system architecture and distributed coordination in joint operations has made distributed parallelism emerge in war. In joint operations, the speed of information sharing, mobile response, firepower strikes, and command and control decision-making has been greatly accelerated, and the effectiveness of different combat units can act in parallel. In recent local conflicts and military operations, the granularity of command and operations has become smaller and smaller, but the control range, combat effectiveness, and confrontation intensity have increased exponentially, which is the best example of multi-functional parallelism.

Evaluation and feedback from multiple perspectives. Evaluation and feedback is the iterative starting point for the evolution and improvement of new-quality combat power, the dynamic basis for promoting the development of new-quality combat power in intelligent joint combat, and an easily overlooked link in the generation of new-quality combat power. The high-precision and fast-paced characteristics of intelligent joint combat make multi-perspective evaluation and feedback a rigid need. Among them, the cloud-network-group-end link perspective can review the operating status of cloud platforms, networks, “swarms”, terminals, etc.; the manned and unmanned interaction perspective can judge the technical mechanisms of different interaction stages; the multi-domain aggregated space-time perspective is conducive to comprehensive evaluation and understanding of battlefield situations.

Reconstructing the new quality combat power generation model with system concept

At present, technologies such as artificial intelligence and cloud computing are constantly driving the transformation of the basic elements of joint operations. There is a new trend of development from separation to integration, from single equipment to clusters, and from physical to virtual-real interaction between functional modules such as intelligence, command and control, firepower, and network and electronics. The traditional combat capability generation model is no longer able to adapt to the development, and a new quality combat capability generation model should be reconstructed with new thinking.

Create an intelligent warfare system. Outdated military needs will not produce the best system for future warfare. Concept scenarios should be derived from intelligent technology, linking interactive intelligent components with existing personnel, equipment, tactics, etc. to form an intelligent combat system that includes perception, decision-making, offense and defense, support, and virtual-real interaction. An unchanging combat system will also be difficult to adapt to the rapid evolution of the war situation. An innovation chain of rapid iteration and leapfrogging should be formed to run through the entire process of generating new quality combat power and promote the evolution of the combat system from low-level to high-level.

Build agile combat units. The combat system is a high-intensity confrontation system. The faster the iteration speed in peacetime and the more advanced the construction level, the stronger the survivability in wartime. To build an intelligent joint combat system, we should start with cultivating the initiative and creativity of all individuals to form an agile team that can respond quickly and actively deal with battlefield uncertainties. Military training should fully absorb the lessons learned from recent local wars, change the traditional mode of large-scale linear deployment and group operations, highlight the distributed combat exercises of “breaking the whole into parts”, enhance the system’s anti-destruction ability, and improve stability.

Promote disruptive technological transformation. One of the secrets to the success of military revolution is the “surging” transformation of science and technology to the military. We should focus on advancing the basis of combat readiness with scientific and technological progress, transfer and transform the latest scientific achievements such as game theory, complex system science, and software definition, upgrade and transform the basic platforms of combat software and hardware, and explore the mechanism of system victory with innovative thinking, paradigms, and tools. At the same time, we should accelerate the extension of mature technologies such as mobile Internet and cloud computing to the combat system, accelerate the application of new materials, new energy, and advanced manufacturing to combat platforms, and improve the level of unmanned, bionic, and clustered intelligent combat.

Seek asymmetric checks and balances. Since the 20th century, “selective disclosure” and “cost imposition” have led opponents in the wrong direction and disrupted the rhythm, becoming common means in major countries’ military competition. Simply “fighting hard” according to the discourse system and method system dominated by others is often difficult to play one’s own advantages, and may even fall into the trap set by opponents. We should focus on leveraging our strengths and avoiding our weaknesses, scientifically choose our own combat effectiveness development path, and achieve misaligned competition. We should jump out of the leader’s preset, dynamically benchmark, and iteratively develop. Strengthen criticism and falsification to prevent being confused and misled by opponents.

Promoting the iterative development of new quality combat capabilities through continuous evolution

Whoever can take the lead in building new quality combat capability will gain the upper hand. The intelligent joint combat system is a complex and huge system that is constantly evolving. Its elements are constantly expanding and its environment spans multiple domains. It should follow the mechanism of continuous evolution and improvement, and within the scope of strategic management, take demand as the goal, efficiency as the key, and precision as the guide to promote the iterative development of new quality combat capability.

The generation link is included in strategic management. Intelligent joint operations are the new frontier for advancing war preparations and should be promoted in a coordinated manner according to the strategic management link. In the demand link, we should fully consider the gap between capabilities and needs, and scientifically justify the direction and amount of investment in construction resources; in the planning and budgeting link, we should follow the principle of matching goals and tasks with actual resources, focus on efficiency and implement budget control; in the execution and evaluation link, we should not only promote the top-level institutions to relay and coordinate operations vertically, but also regulate, supervise, and correct each field according to their responsibilities one by one.

The generation process establishes a positive cycle. Intelligent joint operations are in an era of change in which science and technology are developing from information networks to artificial intelligence, combat styles are changing from network-centric warfare to cross-domain autonomous parallel operations, and political, economic, diplomatic and military means are integrated and used. The generation process of new quality combat power should establish a positive cycle of iterative development and continuous evolution. It is necessary to pay attention to the balanced development of the capabilities of each system, as well as to clarify the levels and weights, and gradually achieve the best system and the strongest capabilities through hierarchical modeling and positive cycles.

The output of the generation is closely focused on the game confrontation. Only by keeping a close eye on the military game process can the construction of new quality combat power be targeted and in the right direction. We should focus on system competition, form a system of troops, seek system advantages, produce system results, and strengthen system capabilities in combat theory, equipment development, military training, etc., and avoid shortcomings. We should seek asymmetric checks and balances, neither closed and rigid, nor copy and paste, follow the trend, lead opponents in the key areas of building new quality combat power of intelligent joint operations, and create new advantages to check and balance powerful enemies in the process of actively responding to changes and seeking changes.

The generation efficiency is embedded in the inspection and evaluation. The generation efficiency of the new quality combat capability of intelligent joint operations should be included in the inspection and evaluation system. By analyzing strategic tasks to set operational requirements and new quality combat capability indicators, simulating and deducing the effectiveness of the use of new quality combat capability scenarios through major exercise activities, and testing and measuring new quality combat capability indicators through the design of evaluation model algorithms, evaluation and feedback can be used to support the construction of new quality combat capability of intelligent joint operations.

(Author’s unit: Strategic Assessment and Consulting Center, Academy of Military Science)

現代國語:

從智慧制勝角度看新質戰鬥力生成

■張宏昌 閻 魁 史 霞

引言

智能製勝,是新質戰鬥力「質」中鮮明的時代特徵。隨著科技發展與戰爭形態演變,以“能量機動和信息互聯”為基礎、“網絡通信和分佈式雲”為支撐、“數據計算和模型算法”為內核、“跨域指揮和多域行動”為途徑的智慧化聯合作戰,逐漸勾勒出新質戰鬥力應用的鮮活場景。新質戰鬥力的智慧化趨勢,將引發軍事領域的鍊式突破,成為改變戰爭規則的關鍵變數。提升新質戰鬥力、打贏未來戰爭,應該向智能化作戰“叩門”,探索迭代生成智能化聯合作戰新質戰鬥力的方法路徑。

按智能製勝機理解析新質戰鬥力特徵

縱觀人類史,戰爭制勝機理無不鮮明留下科技發展的時代烙印。認識掌握智慧化聯合作戰新質戰鬥力,應緊跟戰爭形態發展,解析其關鍵特徵。

戰場環境多域分佈。戰場環境是新質戰鬥力的運用空間,是認識智慧化聯合作戰新質戰鬥力的時空框架。自戰爭產生以來,戰爭時空經歷了平面、立體、無形空間等多次飛躍。目前,作戰對抗在包含物理域、資訊域甚至生物域、社會域等維度的融合空間展開。智能化聯合作戰,虛擬空間地位上升並逐漸與物理空間深度融合一體,網電、情報、心理等無形對抗構成全新空間,建立虛擬戰場、實現虛實互動、達成以虛制實成為聯合作戰新的發力端。

構成要素多元整合。構成要素是新質戰鬥力的內涵特徵,是智慧化聯合作戰新質戰鬥力的基礎元素。機械化聯合作戰是平台中心戰,主導力量是火力和機動力,人、機械化裝備、戰法的組合方式更多是疊加累積,目的是實現以物載能、以物釋能。資訊化聯合作戰是網絡中心戰,主導力量是資訊力,網絡資訊、人、資訊化裝備、戰法的組合方式更多是鏈接貫通,目的是實現以網聚能、以網釋能。智能化聯合作戰的主導力量是智力,作戰要素雲、網、人、裝備、戰法通過模型、算法、數據多元整合,構成敏捷重組、自主適應的復雜系統,實現以智蠅能、以智制能。

作用方式多能並行。作用方式是新質戰鬥力的釋能途徑,也是解析智能化聯合作戰新質戰鬥力的關鍵所在。體系架構、分佈協同在聯合作戰中的使用,使分佈並行在戰爭中嶄露頭角。聯合作戰中,資訊共享、機動反應、火力打擊、指控決策速度皆大幅加快,不同作戰單元效能可並行作用。在近年來的局部沖突和軍事行動中,指揮和作戰的顆粒度越來越小,但控制範圍、作戰效能、對抗烈度卻成倍增加,就是多能並行的最好例證。

評估反饋多層視角。評估回饋是新質戰鬥力演進提升的迭代起點,是推進智慧化聯合作戰新質戰鬥力發展的動態基礎,也是新質戰鬥力生成中易被忽視的環節。智慧化聯合作戰高精度、快節奏的特徵,讓多層視角評估回饋成為剛需。其中,雲網群端的鏈接視角,可以審視雲平台、網絡、「蜂群」、終端等運行狀況;有人無人的交互視角,能夠判斷不同交互階段技術機制;多域聚合的時空視角,有助於綜合評估認識戰場態勢。

用系統理念重構新質戰鬥力生成模式

目前,人工智慧、雲端計算等技術不斷催生聯合作戰基本要素發生嬗變。情報、指控、火力、網電等功能模塊之間,呈現由分離向融合、單裝向集群、實物為主向虛實互動發展的新趨勢。傳統作戰能力生成模式已難以適應發展,應以新思維重構新質戰鬥力生成模式。

創建智慧化戰爭體系。過時的軍事需求,孕育不出適應未來戰爭的最優體系。應以智慧科技為原點衍生概念場景,連結互動智慧零件和現有人員、裝備、戰法等,形成包含感知、決策、攻防、保障及虛實互動的智慧化作戰體系。一成不變的作戰體系,也難以適應戰爭形態的快速演變。應形成快速迭代、跨越提升的創新鏈,貫穿新質戰鬥力生成全過程,推動作戰體係從低階向高階演化。

打造敏捷性作戰單位。作戰體係是高強度的對抗系統,平時的迭代速度越迅速,建設水準越先進,戰時的生存能力就越強。打造智慧化聯合作戰體系,應以培育所有個體的主動性、創造性為起點,形成能夠快速響應,積極應對戰場不確定性的敏捷團隊。軍事訓練應充分汲取近期局部戰爭中的經驗教訓,改變大規模線式部署、集團作戰的傳統模式,突顯「化整為零」的分散式作戰演訓,增強體系抗毀性,提高穩定性。

推動顛覆性科技轉型。軍事革命的成功密碼之一,是科技向軍事的「浪湧」轉化。應著眼科技進步前移作戰準備基點,遷移轉化博弈論、複雜系統科學、軟件定義等最新科學成果,升級改造作戰軟硬體基礎平台,以創新思維、範式、工具,探尋體系製勝的機理。同時,加速移動互聯、雲端計算等成熟技術向作戰體系延伸,加速新材料、新能源、先進製造等向作戰平台應用,提高無人化、仿生化、群聚化智慧作戰水準。

謀求非對稱制衡優勢。 20世紀以來,「選擇性揭露」「成本強加」等將對手方向帶偏、節奏帶亂,成為大國軍事競爭中的慣用手段。單純依照他人主導的話語體系、方法體系“硬拼”,往往難以發揮自身優勢,甚至還會掉入對手預設的陷阱。應注重揚長避短,科學選擇自身戰鬥力發展路徑,實現錯位競爭。應跳出引領者預設,動態對標、迭代發展。強化批判證偽,防範被對手迷惑誤導。

以持續演化推動新質戰鬥力迭代發展

誰能在新質戰鬥力建設上領先一步,誰就能贏得制勝先機。智能化聯合作戰體係是一個不斷演進的復雜巨系統,其要素不斷拓展、環境跨越多域,應按照持續演化改進的機制,在戰略管理範疇內以需求為目標、以效能為關鍵、以精準為導向,推動新質戰鬥力迭代發展。

生成鏈路納入戰略管理。智慧化聯合作戰是推進戰爭準備的新前沿,應依照戰略管理連結統籌推進。需求環節,充分考慮能力與需求差距,科學論證建設資源投向投量;規劃及預算環節,依目標任務與現實資源匹配原則,著眼效益抓好預算控制執行;執行及評量環節,縱向上既要推進頂層機構接力協同作業,橫向再要調控、監督、糾偏各領域依職責逐一落實。

生成過程建立正向循環。智慧化聯合作戰處於科學技術由資訊網絡向人工智慧發展、作戰樣式由網絡中心戰向跨域自主並行作戰轉變、政治經濟外交與軍事手段融合運用的變革時代,新質戰鬥力生成過程應建立迭代發展、持續演進的正向循環。既注重各系統能力的均衡發展,也要劃清層次、釐清權重,透過分級建模、正向循環,逐步實現體系最優、能力最強。

生成輸出緊盯博弈對抗。只有緊盯軍事博弈過程,新質戰鬥力建設才能有的放矢、找準方向。應著眼體系競爭,在作戰理論、設備發展、軍訓等方面成體係用兵、謀體系優勢、出體系成果、強體系能力,避免短板缺項。要謀求非對稱制衡,既不封閉僵化,也不照抄照搬、跟風炒作,在智能化聯合作戰新質戰鬥力建設的關鍵領域領先對手,在主動應變求變中打造制衡強敵的新優勢。

產生效能嵌入檢驗評估。智慧化聯合作戰新質戰鬥力生成效能應納入檢驗評估體系。通過分析戰略任務設定作戰需求和新質戰鬥力指標、通過重大演訓活動模擬推演新質戰鬥力運用場景實效、通過設計評價模型算法檢驗度量新質戰鬥力指標,以評估反饋支撐智能化聯合作戰新質戰鬥力建設。

(作者單位:軍事科學院戰略評估諮詢中心)

來源:解放軍報 作者:張宏昌 閆魁 史霞 責任編輯:葉夢圓 2024-07-16 09

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/16324777888.html

China’s Artificial Intelligence Opens the Door to Intelligent Warfare Operational Success for the Military

中國人工智慧為軍隊開啟智慧戰爭作戰成功之門

現代英語:

At the beginning of 2017, Master, known as the evolved version of “AlphaGo”, swept Ke Jie, Park Tinghuan, Iyama Yuta and other top Go players on the Go online platform, winning 60 consecutive games, setting off a “Master storm” and causing many people to worry. What humans are worried about is not that Go, known as the “last bastion of human wisdom”, will be conquered by artificial intelligence, but that artificial intelligence has subverted Go today, what will it subvert tomorrow? This is the concern that hangs in people’s minds.

Master’s consecutive victories over human masters are similar to the nature of computers proving the four-color theorem. They are all victories of computing power and algorithms. There is no need to worry too much that they will dominate and enslave humans. However, artificial intelligence is developing rapidly, and it is generally believed that strong artificial intelligence will come sooner or later. Nowadays, artificial intelligence has penetrated into every corner of life. It is not uncommon to use artificial intelligence in war. Since the arrival of the artificial intelligence era is inevitable, how we use it in future wars will become the key to victory. Whether artificial intelligence brings threats or development to mankind depends on how to use it. “The fake horse is not good at running, but it can reach a thousand miles; the fake boat is not good at sailing, but it can cross the river.” The integration of war technology and artificial intelligence may be the way of the future.

Development History of Artificial Intelligence

Artificial Intelligence Opens the Door to Intelligent Warfare

Master’s 60-game winning streak makes us think about how artificial intelligence will change our lives. Perhaps the following life scenarios will gradually become a reality:

When driving, you tell the location and the autopilot system takes you to your destination;

In hospitals, you see tug-trailer robots from the United States transporting medical equipment and “Big White” robots caring for patients;

After get off work, you press the “Go Home Mode” on your phone, and when you open the door, you find that the curtains are closed, the temperature is right, the lights are soft, the water is hot, and there is a cute home robot greeting you.

In fact, you can also use an unmanned aerial vehicle to carry a diamond ring and propose to your beloved…

We have been looking forward to this day for a long time.

The era of great development of artificial intelligence is here!

As early as shortly after the first computer came out, scientists predicted that the era of artificial intelligence would come. In 1997, when Deep Blue defeated Kasparov, this beautiful scene seemed just around the corner. However, in the second half of the 20th century, artificial intelligence research fell into a cold winter due to the failure of several attempts at technological innovation. The most recent cold winter, from the end of the 20th century to the first decade of the 21st century, was caused by the bottleneck encountered in the research of neural networks.

In recent years, everyone can clearly feel that the theoretical research and perceptible products of artificial intelligence seem to have suddenly “exploded” in a blowout manner: wearable devices have appeared in large numbers, intelligent robots have appeared frequently, the accuracy of machine face recognition exceeds that of the naked eye, companies such as Apple and BMW have worked together to develop driverless cars, and the United States and Europe have successively established projects to tackle the human brain…

The explosion of artificial intelligence projects is not a coincidence, but a leap forward after more than 10 years of silence. Ray Kurzweil, an American scientist who successfully predicted that robots will defeat human chess players, has predicted that the wonderful intersection point when artificial intelligence surpasses the sum of human wisdom will be in 2045.

So, how big an impact will this wave of artificial intelligence explosion have, how long will the impact last, and to what extent will it change human life?

From weak artificial intelligence to strong artificial intelligence. After Deep Blue dominated the chess field in 1997, artificial intelligence did not change the world as expected, and Deep Blue disappeared after more than 10 years of silence. Artificial intelligence has also remained at the stage of weak artificial intelligence and has not made any breakthroughs. This period of nearly 20 years has become the longest artificial intelligence winter to date. Some people joked that the greatest achievement in the field of artificial intelligence in the past 20 years is that Spielberg made the science fiction movie “Artificial Intelligence” that has captivated the world. Spielberg put all the rich fantasies of human beings about the future world into the movie world he created. Subsequently, a series of movies about artificial intelligence such as “Robot Butler”, “Super Hacker” and “Ex Machina” came into being. Artificial intelligence has begun to enter all aspects of human life. The use of artificial intelligence in industries such as medicine, education, services, manufacturing, and even in the military field has become common, which makes many military enthusiasts think about what artificial intelligence means to the military field and where it will go in the future?

“AlphaGo” only represents the latest achievements of artificial intelligence in the fields of deep learning of machines based on neural networks, high-performance computing and big data technology, and is a weak artificial intelligence. However, some military experts predict that the application of strong artificial intelligence in the future will bring about huge changes, just like the entry of big data five years ago. In the military field where competition and game are more intense, artificial intelligence has been increasingly moving towards the battlefield since the emergence of computers in the last century, promoting the advent of the era of intelligent warfare.

Artificial intelligence is taking big steps onto the battlefield

Artificial intelligence is an important branch of modern information technology. The world’s first programmable “Giant” computer was born in Britain during World War II. Its purpose was to help the British army decipher German codes. In recent years, artificial intelligence has been increasingly used on the battlefield, profoundly changing the face of war. In summary, the application of artificial intelligence in the military field is mainly reflected in the following five aspects:

Intelligent perception and information processing. The rapid development of micro-electromechanical systems, wireless sensor network technology, and cloud computing technology has further developed battlefield perception methods in the direction of intelligent perception and information fusion processing. The U.S. military, Russian military, French military, German military, etc. are all equipped with digital soldier systems with intelligent information perception and processing capabilities, such as the U.S. military’s “Night Warrior” and the Russian military’s “Warrior”. In fiscal year 2015, the U.S. Department of Defense’s Advanced Research Projects Agency added research and development projects such as the “cerebral cortex processor”. This processor simulates the structure of the human cerebral cortex to solve problems such as real-time control of high-speed moving objects. In the future, its application will greatly improve the autonomous action capabilities of robots and drones.

Intelligent command and control assists decision-making. The military of various countries develops various military information systems in order to build a powerful grid network information system and improve intelligent evaluation and decision-making assistance capabilities. The command and control automation systems of major military powers are constantly developing, pursuing stronger information and decision-making advantages than their opponents. In recent years, the US military has established a cyber command to vigorously strengthen its network attack and defense capabilities, focusing on the development of intelligent diagnostic information systems for network intrusions based on cloud computing, big data analysis and other technologies, which can automatically diagnose the source of network intrusions, the degree of damage to one’s own network and data recovery capabilities.

Unmanned military platforms. Western countries began to attach importance to the research and development and application of small drones, remote-controlled unmanned vehicles and unmanned boats during World War I. At present, the armies of more than 70 countries in the world are developing unmanned system platforms. The US military has equipped more than 7,000 drones, and more than 12,000 ground wheeled (or tracked) robots have been put into use on the battlefields of Iraq and Afghanistan. In the near future, the US military will achieve that ground robots account for one-third of its ground forces, and the carrier-based X-47B drone will account for one-third of the total number of carrier-based aircraft, further promoting the coordinated training and exercise between manned and unmanned platforms.

Bionic robots. Since the 21st century, robot technology has developed rapidly. Various bionic robots such as humanoid robots, robot fish, and robot insects have been continuously introduced and have been increasingly used in the military field. For example, the US military once tested a “big dog” robot on the battlefield in Afghanistan to help soldiers with accompanying support. The US Department of Defense upgraded it in 2013, increasing its load capacity to 200 kilograms, running speed to 12 kilometers per hour, bulletproof and silent. The Russian army recently plans to step up the development of humanoid robots that can drive vehicles and form a robot unit that can fight side by side with human soldiers.

Expanding people’s physical skills and intelligence. The cross-integration of information technology, new material technology and biotechnology will further expand people’s physical strength, skills and intelligence. For example, foreign militaries are developing mechanical exoskeletons to create “mech warriors” with doubled physical strength; and by implanting bioinformatics chips to improve people’s memory and reaction ability, so that human soldiers can better adapt to the highly informationized combat environment in the future.

Artificial intelligence will drive a new round of military reforms

When new military technologies, operational concepts, and organizational structures interact to significantly enhance military combat capabilities, it will trigger new military changes. The increasingly widespread application of artificial intelligence in the military field is becoming an important driver of military change, giving rise to new war styles and changing the internal mechanism of winning wars.

It brings a new impact on the concept of war. The history of human warfare has gone through the era of cold weapons, the era of hot weapons, the era of mechanization, and the era of informatization. The development of artificial intelligence has accelerated the arrival of the intelligent era. Can intelligence be divided into high-level intelligence and low-level intelligence? Do armies with high-level intelligence have an overwhelming advantage over low-level intelligence armies? If the “mechanization” of people and the “humanization” of machines are two inevitable development trends, does it go against the traditional ethics of war for robots that can think to fight instead of humans? Artificial intelligence has unprecedentedly improved battlefield perception and information processing capabilities. Does the “fog” of war still exist on the high-tech battlefield? To understand these issues, the military field must have a brainstorming session.

It brings new inspiration to theoretical innovation. The material and technological basis of war is constantly updated, opening up new space for innovation in strategic theories and operational concepts, and constantly giving birth to new disruptive technologies in the field of artificial intelligence; the combined application of precision strike ammunition, unmanned equipment and network information systems has given birth to new intelligent combat theories such as “distributed lethality”, “mothership theory”, “combat cloud” and “swarm tactics”; relying on one’s own information advantage and decision-making advantage, how to cut off and delay the opponent’s information and decision-making loop in a decentralized battlefield network has become a core issue that must be solved to win in intelligent warfare.

Future Trends in Military Applications of Artificial Intelligence

With the development and application of strategic frontier technology fields such as information technology, nanotechnology, biotechnology, new materials technology, and new energy technology, artificial intelligence-related technologies will continue to mature and play an increasingly important role in the military field.

Artificial intelligence technology and equipment continue to make breakthroughs. Major countries have elevated artificial intelligence to the level of national strategy. The Office of the Chief Scientist of the U.S. Air Force has issued the “Unmanned Systems Horizon” technology assessment and forecast report for 2035, which believes that the automation, autonomy and remote control performance of various unmanned systems and combat platforms in the future will continue to make breakthroughs with the advancement of technology. In particular, with the advancement of technologies such as super-large-scale computing, quantum computing, cloud computing, big data, and brain-like chips, artificial intelligence information processing and control technology will be greatly developed, profoundly changing the proportion of artificial intelligence technology in modern warfare.

Artificial intelligence has given rise to the vigorous development of new combat forces. The widespread application of artificial intelligence systems and combat platforms will make artificial intelligence, as an important combat element, permeate the entire process of war and combat preparation, and further enrich the connotation of new combat forces. With the application of drone formations, unmanned submarine formations, battlefield robot soldier formations, and coordinated formations of unmanned and manned combat units on the battlefield, various types of “mixed” new combat forces will continue to emerge. With the construction and application of military Internet of Things, military big data, and cloud computing technology in the military field, artificial intelligence combat forces such as “cloud brain”, “digital staff”, and “virtual warehousing” for information support, command and control, effect evaluation, and logistics support will play an increasingly important role in future wars.

Artificial intelligence is constantly evolving and upgrading through actual combat applications. Artificial intelligence systems and combat platforms, which are supported by information technology, are different from the research and development model of traditional mechanized weapons and equipment. Mechanized weapons and equipment are generally put into use after the technology matures until they are scrapped and eliminated, and have a certain service life; artificial intelligence systems are developed in the mode of system prototype-practical training-evolutionary upgrade. Artificial intelligence systems often use continuous evolution to improve their intelligence level according to different versions. The evolution direction of artificial intelligence is always towards high-level intelligence. This law of development of artificial intelligence systems and combat platforms has revolutionary significance for military training and combat capability improvement. In recent years, the United States and its allies have continued to organize activities such as the “Schriever” space (network) exercise and the “Lockton” cybersecurity exercise, which are repeated tests and upgrades of their artificial intelligence information systems. In the future, upgrading training of artificial intelligence systems and various unmanned combat platforms through continuous confrontation exercises will be an important way to improve combat effectiveness.

Artificial Intelligence Helps Build Smart National Defense

Data is called a strategic resource in the information age. The emergence of artificial intelligence provides methods and means for humans to deeply mine the wisdom resources of data information, and is leading and reshaping the development trend of the world’s new military transformation. Facing the booming wave of artificial intelligence, how to meet challenges, seize opportunities, accelerate the construction of military informatization, and enhance the core military capabilities to win modern wars are the contemporary issues that our army must answer to achieve the goal of strengthening the army. On the one hand, our army must keep a clear mind and make prudent judgments. We must not be frightened by the seemingly powerful and mysterious appearance of artificial intelligence, nor blindly applaud it, nor be indifferent and lose the opportunity for development, and be attacked by opponents due to lack of technical cognition. Breakthroughs in individual technical fields of artificial intelligence are nothing more than an extension of human intelligence, but they cannot replace the dominant position of human intelligence. People are still the core element of all elements of combat effectiveness, and people’s subjective initiative is still the key to determining the outcome of intelligent warfare. On the other hand, our army should implement the military-civilian integration development strategy and the innovation-driven development strategy, grasp the trend of the times, highlight the characteristics of our army, keep a close eye on the opponent’s layout, boldly absorb and apply the relevant technological achievements of artificial intelligence to promote the information construction of the army, and try to apply artificial intelligence technology to achieve transformation and upgrading in platform construction, logistics support, military training, national defense mobilization and other fields. Actively develop countermeasures against the opponent’s military application of artificial intelligence, and explore the winning mechanism of the game with strong enemies in the field of artificial intelligence in practice.

Related links

The military application of artificial intelligence in the United States, Russia and other countries

United States: In July 2016, the U.S. Marine Corps tested the Modular Advanced Armed Robotic System (MAARS), which uses sensors and cameras to control gun-wielding robots based on artificial intelligence. The “Army Global Military Command and Control System” developed by the U.S. Army has been equipped with Army Aviation Force transport helicopters, allowing helicopter pilots to maintain contact with frontline soldiers and command ground forces.

Russia: The “Wolf-2” mobile robot system being developed by the Russian Strategic Missile Forces uses a tracked chassis and can be controlled via radio channels within a range of 5 kilometers. The shooting accuracy is guaranteed by a thermal imager, ballistic computer, laser rangefinder and gyro stabilizer, and it can hit the target at a speed of 35 kilometers per hour.

Israel: The robot “Dogo” developed by the company is an automatically armed tactical combat robot, which comes with a standard Glock 26 9mm caliber pistol. It can be said to be a little devil.

The arrival of the “Master” makes the combat style develop towards unmanned

The Go account Master has challenged the world’s top players on two major Go platforms, Yicheng Go and Tencent Go, and won 60 consecutive games, which has attracted great attention from the world on artificial intelligence. Few people thought that in the field of Go, machines did not experience a period of “stalemate” with humans, but directly left in the dust.

Engels once said that the application of cutting-edge technology began in the military field. Military struggle is a comprehensive contest covering multiple dimensions, multiple fields, full time domain and high intensity, and the addition of artificial intelligence will accelerate the pace of military reform in various countries like a catalyst. Looking at the entire process of the two industrial revolutions and the two world wars, we will find that there is an inevitable connection between “technology” and “war”. Technology will trigger war, and war in turn will promote the development of technology. At this stage, all countries have made great progress in the development of information and intelligent weapons and equipment, and various precise positioning, precise strike, and precise evaluation weapon systems have emerged in an endless stream. However, humans have not yet been separated from the weapon system, and a large part of the operations still need to be completed manually. The combination of artificial intelligence and weapons and equipment means that in the future, from searching and discovering targets, to threat assessment, to locking and destroying, and then to effect evaluation, this series of processes does not require human participation at all. Machines can help us make decisions and achieve unmanned development of combat styles.

Master quietly disappeared after winning 60 games in a row, but discussions about the future of artificial intelligence are still endless: Will it take away human jobs, or will it be an extension of human functions? Will it eventually surpass human intelligence, or will it merge with humans? The answers to these questions are not as simple as either one or the other. Solving them will accompany the future development of artificial intelligence. In 1997, “Deep Blue” defeated Kasparov, making more use of computer computing expertise such as hardware acceleration and brute force computing. AlphaGo uses new artificial intelligence technologies such as neural networks, deep learning, and Monte Carlo tree search, and its strength has already made a substantial leap. These new technologies make artificial intelligence more competent for tasks such as voice and image recognition and evaluation and analysis, and are therefore an important development direction.

Although the dust has settled on this round of the Go “man-machine battle”, the thoughts it has triggered in various fields are very worthy of study. Among them, “‘man-machine battle’ is the best pre-practice of war” is particularly worthy of serious study in the military field. Whether in the era of cold weapons or the mechanized era, fighting on the front line relies on “human wave tactics”, and solving problems requires “concentrating superior forces”. Informatized warfare no longer uses “human wave tactics”, and the scene of large-scale fighting is difficult to reproduce, but as far as the entire war is concerned, the use of troops is not necessarily less, on the contrary, it may be more, but the number of troops used at the forefront has been greatly reduced, and the position of the troops has undergone a major shift. In the unmanned, networked and non-contact combat mode of future wars, there will be more participants, and sometimes you cannot know who the opponent is or where he is hiding.

Although the competition field and the battlefield have different operating rules, many of the winning mechanisms are the same. In the past, we could only learn about war in war, but now we can learn about war in a computer-simulated, near-actual combat environment, and deduce the offensive and defensive modes and development trends of future wars. “AlphaGo” can easily collect the chess games of many Go masters, but in the military field, it is extremely difficult to obtain relevant data on your opponent’s training, exercises, and even combat! Future wars are carried out with the support of information systems. Only by solving the core problem of human-machine integration can we take the initiative on the battlefield and win the final victory in modern warfare. (Zhu Qichao, Wang Jingling, Li Daguang)

現代國語:

寫在前面

2017年伊始,被稱為進化版“阿爾法狗”的Master在圍棋網絡平台橫掃柯潔、樸廷桓、井山裕太等圍棋界頂尖高手,豪取60連勝,掀起一股“Master風暴”,也引起了很多人的擔憂。人類擔心的不是圍棋這塊被稱為「人類智慧的最後堡壘」的領域被人工智慧攻克,而是擔心人工智慧今天顛覆了圍棋,明天還會顛覆什麼?這是橫亙在人們心頭的顧慮。

Master連勝人類高手,與電腦證明四色定理性質相似,都是算力與演算法的勝利,不用過度擔憂它們會主宰人類、奴役人類。但人工智慧發展日新月異,大家普遍認為強人工智慧降臨是遲早的事。如今,人工智慧已經滲入生活的各個角落。在戰爭中運用人工智慧的情況也並不罕見,既然人工智慧時代的到來已經無法避免,那麼未來戰爭中我們如何運用它將會成為致勝關鍵。人工智慧帶給人類的是威脅還是發展,關鍵在於如何利用,「假輿馬者,非利足也,而致千里;假舟楫者,非能水也,而絕江河。」戰爭技術與人工智慧融合,也許是未來之路。

人工智慧發展歷程

人工智慧叩開智慧化戰爭大門

Master的60連勝讓人思考人工智慧會為我們的生活帶來如何的改變。或許,以下這些生活場景將陸續變成現實:

開車時,你說出地點,自動駕駛系統將你帶到目的地;

在醫院,你看到來自美國的拖車機器人在運送醫療器材和「大白」機器人在照顧病人;

下班後,你按下手機上的“回家模式”,推開家門你發現,窗簾已經拉上,溫度適宜,燈光柔和,熱水燒好,還有可愛的家居機器人跟你問好賣萌;

其實,你還可以使用無人飛行器,載著鑽戒,向心愛的她求婚…

這一天,我們期待已久。

人工智慧大發展時期來了!

早在第一台電腦問世後不久,就有科學家預言,人工智慧的時代必將來臨。 1997年,當「深藍」戰勝了卡斯帕羅夫之後,這美好的情景似乎更是指日可待。但在20世紀後半葉,人工智慧研究卻因為數次技術革新嘗試的失敗而陷入寒冬。最近的一個寒冬期,從20世紀末到21世紀的頭10年,是因為神經網路的研究遭遇瓶頸而帶來的。

近年來,大家都能明顯地感覺到,人工智慧的理論研究和可感知產品似乎突然井噴式地「爆發」了:可穿戴設備扎堆出現,智慧機器人頻頻亮相,機器的人臉辨識準確率超過肉眼,蘋果和寶馬等公司齊發力無人駕駛汽車,美國、歐洲先後設立人類大腦攻關計畫…

人工智慧計畫的大爆發,並不是巧合,而是在經歷了10餘年的沉寂後迎來的飛躍式發展。成功預言機器人必將會戰勝人類棋手的美國科學家雷‧庫茲韋爾又預言:人工智慧超越人類智慧能總和的那個奇妙交點,就在2045年。

那麼,這一波人工智慧的爆發會有多大影響,影響的時間會持續多久,又會在多大程度上改變人類的生活呢?

從弱人工智慧到強人工智慧。 1997年「深藍」在西洋棋領域稱霸以後,人工智慧沒有像預想的那樣改天換地,而「深藍」則在沉寂了10多年,銷聲匿跡。人工智慧也一直停留在弱人工智慧的階段,遲遲沒有突破,這段跨度近20年的時間,成為了迄今為止最長的一次人工智慧寒冬。有人戲談,這20年裡面人工智慧領域最大的成就,就是史匹柏拍出了《人工智慧》這部讓全世界傾倒的科幻電影,史匹柏把人類對於未來世界的豐富幻想傾盡所能地放入了自己製造的電影世界。隨之,《機器管家》《超級駭客》《機械姬》等一系列講述人工智慧的電影應運而生。人工智慧開始進入人類生活的各個層面,醫療、教育、服務、製造等產業,甚至軍事領域的人工智慧運用也變得普遍起來,這讓許多軍事愛好者思考,人工智慧對於軍事領域究竟意味著什麼,未來將走向何方?

「阿爾法狗」只代表了人工智慧在基於神經網路的機器深度學習、高效能運算和大數據技術等領域的最新成就,屬弱人工智慧。但有軍事專家預言,未來強人工智慧的運用就會如同5年前大數據的進入一樣,帶來巨大的改變。在競爭與博弈更為激烈的軍事領域,人工智慧自上個世紀隨著電腦的出現已經越來越多地走向戰場,推動著智慧化戰爭時代的來臨。

人工智慧正大踏步走上戰場

人工智慧是現代資訊科技的重要分支,世界上第一台可編程的「巨人」電腦誕生於二戰期間的英國,其目的就是為了幫助英軍破解德軍密碼。近年來,人工智慧越來越多地走上戰場,深刻改變戰爭面貌。總結來看,人工智慧在軍事領域的應用主要表現在以下5個面向:

智慧化感知與資訊處理。微機電系統、無線感測器網路技術、雲端運算技術的快速發展,使得戰場感知手段進一步朝著智慧感知與資訊融合處理的方向發展。美軍、俄軍、法軍、德軍等均裝備了具有智慧化訊息感知與處理能力的數位化士兵系統,如美軍的「奈特勇士」、俄軍的「戰士」等。美國國防部高級研究計畫局2015財年中新增了「大腦皮質處理器」等研發項目,該處理器透過模擬人類大腦皮質結構,解決高速運動物體的即時控制等難題,未來投入應用將大幅提高機器人、無人機等的自主行動能力。

智能化指揮控制輔助決策。各國軍隊透過開發各種軍事資訊系統,目的是建構功能強大的柵格化網路資訊體系,提升智慧化評估和輔助決策能力。各軍事大國不斷發展的指揮控制自動化系統,追求比對手更強的資訊優勢與決策優勢。近年來,美軍建立網路司令部,大力加強網路攻防能力,專注於雲端運算、大數據分析等技術研發針對網路入侵的智慧診斷資訊系統,能夠自動診斷網路入侵來源、己方網路受損程度與資料恢復能力。

無人化軍用平台。西方國家在一戰期間就開始重視小型無人機、遙控無人車和無人艇的研發應用。目前世界上已有70多個國家軍隊在發展無人系統平台。美軍已裝備的無人機達7,000多架,在伊拉克、阿富汗戰場上投入運用的地面輪式(或履帶式)機器人超過12,000個。美軍近期將實現地面機器人佔地面兵力的三分之一,艦載型X-47B無人機將佔艦載機總量的三分之一,進一步推進有人平台與無人平台之間的協同編組演訓。

仿生機器人。自21世紀以來,機器人技術呈現井噴式發展,類人機器人、機器魚、機器昆蟲等各種仿生機器人不斷問世,並在軍事領域有了越來越多的應用。例如美軍曾在阿富汗戰場上試驗了一款「大狗」機器人,幫助戰士實施伴隨保障。美國防部於2013年升級,提升負重至200公斤、奔跑時速每小時12公里、防彈和靜音效果。俄羅斯軍隊近來計畫加緊研發可以駕駛車輛的類人機器人、組成可與人類戰士並肩戰鬥的機器人部隊。

擴展人的體能技能和智能。資訊科技、新材料科技和生物科技的交叉融合使得人的體能、技能和智慧將進一步擴展。例如,外軍正透過研發機械外骨骼,來打造體力倍增的「機甲戰士」;透過生物資訊晶片的植入來提升人的記憶力與反應能力,以使人類戰士更能適應未來高度資訊化的作戰環境。

人工智慧將推動新一輪軍事變革

當新的軍事技術、作戰理念和組織編成相互作用顯著提升軍事作戰能力時,將促進新的軍事變革的發生。人工智慧在軍事領域越來越廣泛的應用,正成為軍事變革的重要推手,催生新的戰爭樣式,改變戰爭制勝的內在機制。

對於戰爭觀念帶來新的衝擊。人類戰爭史經歷了冷兵器時代、熱兵器時代、機械化時代、資訊時代,人工智慧的發展使得智慧化時代加速到來。智能是否可分為高階智能和低階智能?擁有高階智慧化程度的軍隊對於低階智慧化的軍隊是否具有壓倒性優勢?如果人的「機器化」和機器的「人化」是兩個必然的發展趨勢,會思考的機器人取代人類拼殺是否有違傳統的戰爭倫理?人工智慧使得戰場感知能力和資訊處理能力空前提高,在高技術化的戰場上戰爭的「迷霧」是否仍舊存在?對於這些問題的理解,要求軍事領域必須來一場腦力激盪。

對於理論創新帶來新的啟發。戰爭的物質技術基礎不斷更新,為戰略理論和作戰概念創新開闢了新的空間,不斷催生人工智慧領域新的顛覆性技術;精確打擊彈藥、無人化裝備與網路資訊體系的組合應用,催生了“分散式殺傷”“母艦理論」「作戰雲」「蜂群戰術」等新的智能化作戰理論;憑藉己方的信息優勢和決策優勢,如何在去中心化的戰場網絡中切斷和遲滯對手的信息與決策迴路,成為智能化戰爭制勝必須解決的核心問題。

人工智慧軍事應用的未來趨勢

隨著資訊科技、奈米技術、生物技術、新材料技術、新能源技術等戰略前沿技術領域的發展應用,必將繼續推動人工智慧相關技術日益成熟,在軍事領域扮演越來越重要的角色。

人工智慧技術與裝備不斷取得突破。主要國家紛紛將人工智慧提升到國家戰略高度,美空軍首席科學家辦公室頒布2035年的《無人系統地平線》技術評估與預測報告,認為未來各類無人系統與作戰平台的自動化、自主性和遠端遙控性能將隨著技術的進步而不斷取得突破。尤其隨著超大規模運算、量子運算、雲端運算、大數據、類腦晶片等技術的進步,將使得人工智慧的資訊處理與控制技術獲得極大發展,深刻改變現代戰爭人工智慧的技術比重。

人工智慧催生新型作戰力量蓬勃發展。人工智慧系統與作戰平台的廣泛應用,將使人工智慧作為重要的作戰要素滲透於戰爭與作戰準備的整個流程,進一步豐富新型作戰力量的內涵。隨著無人機編組、無人潛航器編組、戰場機器人士兵編組以及無人與有人作戰單元的協同編組走向戰場應用,各類「混搭式」新型作戰力量將持續出現。隨著軍事物聯網、軍用大數據、雲端運算技術在軍事領域的建置運用,用於資訊支援、指揮控制、效果評估、後勤支援的「雲端大腦」、「數位參謀」、「虛擬倉儲」等人工智慧作戰力量將在未來戰爭中發揮越來越重要的作用。

人工智慧透過實戰應用不斷演化升級。以資訊科技為核心支撐的人工智慧系統與作戰平台,與傳統機械化武器裝備的發展發展模式不同。機械化武器裝備一般在技術成熟後投入使用直到報廢淘汰,有著一定的使用壽命;人工智慧系統則是按照系統原型-實踐訓練-演化升級的模式發展,人工智慧的系統往往按照不同版本用不斷演化的方式提升其智能化水準。人工智慧的演化方向總是朝著高階智慧不斷升級,人工智慧系統與作戰平台的這種發展法則對於軍事訓練和作戰能力提升具有革命性意義。美國及其盟友近年來持續組織「施里弗」太空(網路)演習、「鎖頓」網路安全演習等活動,就是其人工智慧資訊系統的反覆測試與升級演化。未來,透過持續的對抗演習對人工智慧系統和各類無人化作戰平台的升級訓練,將是戰鬥力提升的重要方式。

人工智慧助力智慧國防建設

數據被稱為資訊時代的戰略資源,人工智慧的出現,為人類深度挖掘數據資訊的智慧資源提供了方法手段,正在引領並重塑世界新軍事變革的發展態勢。面對人工智慧蓬勃發展的浪潮,如何迎接挑戰,把握機遇,加速推進軍隊資訊化建設,提升打贏現代戰爭的核心軍事能力,是我軍實現強軍目標必須回答的時代議題。一方面,我軍要保持清醒頭腦、審慎研判,既不能被人工智慧看似強大神秘的表象所嚇倒,也不能盲目叫好,更不能無動於衷而喪失發展的機遇,由於缺乏技術認知力而被對手造成技術突襲。人工智慧個別技術領域的突破,不過是人類智能的延伸,卻不能取代人類智能的支配地位,人仍是戰鬥力各要素中的核心要素,人的主觀能動性仍是決定智能化戰爭勝負的關鍵。另一方面,我軍應貫徹軍民融合發展戰略、創新驅動發展戰略,掌握時代趨勢,彰顯我軍特色,緊盯對手佈局,大膽吸收應用人工智慧相關技術成果助推軍隊資訊建設,在平台建設、後勤保障、軍事訓練、國防動員等領域嘗試應用人工智慧技術實現轉型升級,積極發展針對對手人工智慧軍事應用的反製手段,在實踐中探索人工智慧領域與強敵博弈的致勝機制。

相關連結

美俄等國人工智慧在軍事上的運用

美國:2016年7月,美國海軍陸戰隊測試模組化先進武裝機器人系統(MAARS),利用感測器和攝影機基於人工智慧控制持槍機器人。美國陸軍開發的“陸軍全球軍事指揮控制系統”,目前已經裝備陸軍航空部隊運輸直升機,可使直升機駕駛員與前線士兵保持聯絡,並指揮地面部隊。

俄羅斯:俄羅斯戰略飛彈部隊正在研發的「狼式—2」移動式機器人系統使用履帶式底盤,可在5公里範圍內透過無線電頻道控制,由熱成像儀、彈道電腦、雷射測距儀和陀螺穩定器保證射擊精度,能夠在時速35公里的情況下擊中目標。

以色列:研發的機器人「多戈」自動武裝戰術作戰機器人,自備一支標準格洛克26型9毫米口徑手槍,堪稱人小鬼大。

「大師」來襲,讓作戰樣式向無人發展

圍棋帳號Master(大師),連續在弈城圍棋、騰訊圍棋兩大圍棋平台中,挑戰世界頂尖棋手,取得60連勝,引發全球對人工智慧的高度關注。幾乎沒有多少人想到,在圍棋領域機器沒有經歷與人類「相持」的時期,直接就絕塵而去。

恩格斯曾說過,尖端科技的應用最早是從軍事領域開始。軍事鬥爭是涵蓋多維度、多領域、全時域、高強度的綜合較量,而人工智慧的加入將如催化劑般加快各國軍事變革步伐。縱觀兩次工業革命和兩次世界大戰的整個過程,我們會發現「科技」和「戰爭」存在著必然的聯繫。科技會觸發戰爭,戰爭反過來推動科技的發展。現階段各國在武器裝備資訊化、智慧化發展方面都取得長足進步,各種精確定位、精確打擊、精確評估武器系統層出不窮。但是人類還未能從武器系統中分離出來,很大部分操作依然需要人工完成。人工智慧與武器裝備結合就意味著以後,從搜尋發現目標,到威脅評估,到鎖定摧毀,再到效果評估,這一系列過程完全不需要人類參與,機器就能幫我們作決定,做到作戰樣式無人發展。

Master取得60連勝後悄悄消失,但人工智慧何去何從的探討仍不絕於耳:它會搶了人類飯碗,還是作為人類功能的延伸?它終將超越人類智慧,還是會與人類融合?這些問題的答案,不是非此即彼那麼簡單。對於它們的求解,將伴隨著人工智慧未來的發展。 1997年「深藍」擊敗卡斯帕羅夫,更多發揮了硬體加速、暴力計算等電腦運算特長。而AlphaGo使用神經網路、深度學習、蒙地卡羅樹搜尋法等人工智慧新技術,實力早有實質飛躍。這類新技術讓人工智慧更加勝任語音和影像辨識以及評估分析等工作,因此是重要發展方向。

這一輪的圍棋「人機大戰」雖然塵埃落定,但它在各領域引發的思考卻非常值得研究。其中,「『人機大戰』是戰爭最好的預實踐」特別值得軍事領域認真研究。不管是冷兵器時代,還是機械化時代,在前方打仗靠的是“人海戰術”,解決問題需要“集中優勢兵力”。資訊化戰爭不再打“人海戰術”,大兵團廝殺的場景難於再現,但就整個戰爭而言,用兵並不見得少,相反有可能還多,只不過是用在最前沿的兵大大減少了,用兵的位置發生了乾坤大挪移。未來戰爭無人、網路化和非接觸的作戰模式,參與者會變得更多,有時你無法知道對手是誰、藏在哪裡。

賽場和戰場雖然有不同的運作法則,但制勝機制很多則是相通的。過去,我們只能在戰爭中學習戰爭,現在可以在電腦模擬的近似實戰環境下學習戰爭,推演未來戰爭的攻防模式和發展趨勢。 「阿爾法狗」可以輕易蒐集獲得眾多圍棋高手的棋局,但在軍事領域,你想要獲得對手訓練、演習乃至作戰方面的相關數據,難上加難!未來戰爭是在資訊體系支撐下進行的,只有解決好人機融合這一核心問題,才能佔據戰場的主動,贏得現代戰爭最後的勝利。 (朱啟超、王婧凌、李大光)

中國原創軍事資源:https://military.people.com.cn/n1/2017/0123/c1011-29044316888.html