A Look at Chinese Intelligent Warfare | “Order Dispatch”: A New Style of Precision Strike

中國情報戰概覽 | 「命令派遣」:一種新型的精確打擊方式

現代英語:

“Order Dispatch”: Precise Targeting of New Patterns

  introduction

  As Lenin said, “Without understanding the times, one cannot understand war.” In recent years, the widespread application of information and intelligent technologies in the military field has promoted the deep integration of technology and tactics. Relying on intelligent network information systems, it has given rise to “order-based” precision strikes. Commanders and command organs can generate strike requirements in a formatted manner according to combat missions. The decision-making system intelligently matches strike platforms, autonomously plans action paths, and scientifically selects strike methods based on personalized requirements such as strike time, operational space, and damage indicators, thereby rapidly and accurately releasing strike effectiveness.

  The operational characteristics of “order dispatch” type precision strike

  As the informatization and intelligence of weapons and ammunition continue to improve, the cost of modern warfare is also constantly increasing. How to achieve the highest cost-effectiveness ratio with limited strike resources and maximize combat effectiveness has become a central issue for commanders and command organs in operational planning. “Order-based” precision strikes can provide a “feasible solution” for this.

  Real-time, precise, and targeted strikes. Modern warfare places greater emphasis on structurally disrupting enemy operational systems, achieving operational objectives through the rapid and precise release of combat effectiveness. This requires commanders and command organs to seize fleeting “windows of opportunity” to strike high-value, nodal, and critical targets within an enemy’s operational system before the enemy can react. The traditional “detection-guided-strike-assessment” operational loop is time-consuming and ineffective. Therefore, “order-based” precision strikes rely on advanced intelligent network information systems, without pre-determining strike platforms. Target lists are released in real-time, and auxiliary decision-making systems rapidly assess the strike performance of various weapon platforms and the expected damage to targets. Tasks are autonomously allocated to strike platforms, rapidly linking and controlling multi-domain firepower, autonomously closing the kill chain, and conducting rapid strikes against key targets.

  Multi-domain coordinated strike. The advantage of modern precision strike over traditional firepower lies in its information-based and intelligent combat system. It requires no human intervention and autonomously completes tasks such as reconnaissance, control, strike, and assessment based on a closed strike chain. This not only saves strike costs and reduces resource waste but also enables adaptive coordination based on unified operational standards. Therefore, “order-based” precision strikes require firepower forces distributed across various operational domains to establish a unified standard grid. Once a demand is issued from one point, multiple points can respond and coordinate globally, flexibly concentrating forces and firepower, using multiple means to rapidly and multi-domain convergence, and determining the strike direction, sequence, and method for each strike platform while on the move. Through system integration, time is effectively saved, enabling multi-domain precision strikes against key enemy nodes and critical parts of core targets, fully leveraging the combined power of the integrated combat effectiveness of various operational units.

  The key to victory lies in swift and decisive action. Modern warfare is a “hybrid war” conducted simultaneously across multiple domains, where the interplay and confrontation of new domains and new types of forces, such as information, aerospace, and artificial intelligence, are becoming increasingly pronounced. This necessitates that both sides be able to detect and act faster than the enemy, crippling their operational systems and reducing their operational efficiency. On the one hand, it is crucial to pinpoint key nodes in the enemy’s system and launch timely and precise strikes; on the other hand, it is essential to conceal one’s own intentions and strike forces, striking swiftly and unexpectedly. “Order-based” precision strikes perfectly meet these two requirements. Supported by network information systems, they intelligently integrate firepower from various domains, achieving multi-source information perception, data interconnection, and multi-domain coordinated strikes. This enables seamless and high-speed operation of “target perception—decision and command—firepower strike—damage assessment,” resulting in a high degree of information and firepower integration and the rapid achievement of operational objectives.

  The system of “order dispatch” type precision strike

  ”Order dispatch” precision strikes compress action time and improve strike effectiveness by building an efficient closed strike chain, enabling various fire strike platforms to better integrate into the joint fire strike system and provide rapid and accurate battlefield fire support. Its key lies in the “network” and its focus is on the “four” systems.

  Multi-domain platform access network. Supported by information and intelligent technologies, an integrated information network system with satellite communication as the backbone is established. Firepower strike platforms distributed across multiple domain battlefields are integrated into the combat network to create a battlefield “cloud.” Different combat modules are distinguished, and “sub-network clouds” such as “reconnaissance, control, strike, and assessment” are established. Relying on an integrated communication network, the “sub-network clouds” are linked to the “cloud.” This can enhance the firepower strike platform’s capabilities in all domains, all times, on the move, autonomous networking, and spectrum planning, and realize network interconnection between firepower platforms, domain combat systems, and joint combat systems, as well as the interconnection and interoperability of internal strike forces.

  Joint reconnaissance and sensing system. This system leverages various reconnaissance and surveillance forces within the joint operations system to achieve all-weather, multi-directional, and high-precision battlefield awareness of the operational area. This requires constructing a ubiquitous, multi-dimensional reconnaissance and sensing force system encompassing physical and logical spaces, tangible and intangible spaces. It involves widely deploying intelligent sensing devices to form an intelligence data “cloud.” Through this intelligence data “cloud,” the system analyzes the enemy situation, identifies key points in the enemy’s operational system and time-sensitive targets, updates reconnaissance information in real time, and displays target dynamics.

  Intelligent Command and Decision-Making System. Relying on a new command and control system with certain intelligent control capabilities, this system constructs various planning and analysis models, expands functions such as intelligent intelligence processing, intelligent mission planning, automatic command generation, and precise action control, and expands and improves databases such as target feature database, decision-making knowledge base, and action plan database. It strengthens the system support capabilities for mission planning, action decision-making, and control during combat organization and implementation, enhances planning and decision-making and combat action control capabilities, clarifies “how to fight, where to fight, and who will fight,” and achieves precise “order dispatch.”

  Distributed fire strike system. Relying on intelligent network information systems, on the one hand, it integrates multi-dimensional fire strike platforms across land, sea, air, and space, enhancing functions such as intelligent target identification and remote-controlled strike, enabling various combat modes such as remote-controlled operations, manned-unmanned collaborative operations, and flexible mobile operations; on the other hand, it can construct a low-cost fire strike platform mainly composed of low-altitude and ultra-low-altitude unmanned strike platforms such as racing drones and loitering munitions. By adding different functional combat payloads, it can closely coordinate with high-end fire strike platforms to carry out tasks such as battlefield guidance, precision strikes, and fire assessment, efficiently completing “orders”.

  Autonomous Damage Assessment System. This system, built upon reconnaissance and surveillance capabilities within the joint operations system, autonomously assesses the effectiveness of attacks on targets after the firepower platform has completed its strike. It conducts real-time, dynamic, objective, and systematic analysis and evaluation of the target’s external condition and degree of functional loss, and promptly transmits relevant information back to decision-making and command centers at all levels via video images. The assessment centers then determine “how well it went” and whether the expected damage requirements were met. If not, operational actions can be adjusted in a timely manner for supplementary strikes, providing strong support for maximizing operational effectiveness.

  The planning and implementation of “order dispatch” style precision strikes

  The “order dispatch” style of precision strike is similar to the operation of ride-hailing services. Through a series of processes such as formatted “order” generation, intelligent target matching, and autonomous route planning, it autonomously completes the “OODA” combat cycle, making its actions more efficient, its strikes more precise, and its collaboration closer.

  Real-time reporting of firepower requirements allows combat units to submit orders on demand. Reconnaissance elements distributed across different operational areas and multi-dimensional battlefield spaces are acquired through radar, optical, infrared, and technical reconnaissance methods, forming battlefield target intelligence information across a wide area and multiple sources. This information is transmitted to the battlefield information network via intelligence links, and is constantly relayed to combat units. Combat units then perform correlation processing, multi-source comparison and verification, and comprehensively compile battlefield target information to generate precise mission orders. Combat units analyze target value and connect to the decision-making platform as needed, constructing a closed-loop strike chain based on these orders, and submitting mission orders in real time, achieving dynamic optimization and precise adaptation.

  The decision-making center intelligently “dispatches” fire support missions, differentiating them from actual fire strike missions. Through the battlefield information network and relying on an intelligent mission planning system, the center can automatically analyze the mission “order” information data submitted by combat units. Based on the nature, coordinates, movement status, and threat level of battlefield targets, it automatically generates mission requirements such as the type and quantity of ammunition needed for fire strike operations, the strike method, and damage indicators, forming a fire support mission “order.” By intelligently matching the optimal fire support platform and connecting link nodes as needed, the center conducts intelligent command-based “order dispatch,” delivering the orders instantly to the standby fire support platforms.

  Optimal target matching is performed continuously, and firepower platforms swiftly “accept orders.” Multiple firepower platforms distributed across the battlefield respond rapidly to these orders via the battlefield information network. The platforms autonomously establish links with combat units, mutually verifying their identities before directly establishing a guided strike chain. They coordinate firepower strikes, adjusting strike methods and firing parameters in a timely manner based on target damage and battlefield target dynamics before conducting further strikes until the assigned mission is completed. Firepower platforms consistently adhere to the principle of “strike-relocate-strike-relocate,” completing strike missions and rapidly relocating to new positions, maintaining a state of constant readiness and receiving orders online in real time. After the mission concludes, the guided strike chain between the firepower platform and the combat unit is automatically terminated.

  Multi-source damage information acquisition and real-time assessment by the evaluation center. Utilizing a comprehensive range of long-range, intelligent, and information-based reconnaissance methods, including satellite, radar, and drone reconnaissance, multi-domain, three-dimensional reconnaissance is conducted to acquire real-time target fire damage information, providing accurate assessments for precision fire strikes. A comprehensive assessment of damage effects is performed, quantitatively and qualitatively evaluating the strike results, distinguishing between physical, functional, and systemic damage states, and promptly feeding back to the decision-making center. Based on the damage assessment results, timely adjustment suggestions are made to modify fire strike plans, optimize operational actions, and achieve precise control of fire strikes. This facilitates commanders’ accurate control of the operational process and efficient command and control of fire strike effectiveness.

現代國語:

「訂單派單」:精確打擊新樣式

引言

列寧說過,「不理解時代,就不能理解戰爭」。近年來,資訊化智慧化技術在軍事領域的廣泛運用,促進了技術與戰術深度融合,依托智能化網路資訊體系,催生出「訂單派單」式精確打擊。指揮及指揮機關可依據作戰任務格式化產生打擊清單需求,決策系統依據打擊時間、作戰空間、毀傷指標等個人化需求智慧匹配打擊平台、自主規劃行動路徑、科學選擇打擊方式,進而快速精準釋放打擊效能。

「訂單派單」式精準打擊的作戰特點

隨著武器彈藥資訊化智慧化程度不斷提升,現代作戰成本也不斷提高。如何運用有限打擊資源打出最高效費比,實現作戰效能最大化,已成為指揮員及指揮機關作戰籌劃的中心問題,「訂單派單」式精準打擊可為此提供「可行解」。

即時聚優精確釋能。現代作戰更強調對敵作戰體系進行結構性打擊破壞,透過快速且精準地釋放作戰效能來實現作戰目的。這就要求指揮官及指揮機關能夠抓住稍縱即逝時機的“窗口”,在敵未做出反應之時對其作戰體系內高價值、節點性、關鍵性目標實施打擊。傳統的「發現—引導—打擊—評估」的作戰環路耗時長,作戰效果不佳。因此,「訂單派單」式精確打擊,需要依托先進的智慧化網路資訊體系,不預先確定打擊平台,即時發布打擊目標清單,由輔助決策系統對各種武器平台的打擊性能與目標打擊毀傷預期等進行快速評估,自主分配打擊平台任務,快速連結調控多領域火力打擊力量,自主閉合殺傷鏈,對關鍵目標實施快速打擊。

多域聚能協同打擊。現代作戰精準打擊較以往火力打擊的優勢在於資訊化智能化的作戰體系,不需人工介入,依托閉合打擊鏈自主完成「偵、控、打、評」等任務,不僅能夠節省打擊成本,減少資源浪費,還能夠實現基於統一作戰標準的自適應協同。因此,「訂單派單」式精確打擊,需要分佈在各作戰領域的火力打擊力量能夠建立統一標準網格,只要一點發出需求,就能夠多點響應、全局聯動,靈活集中兵力、火力,多手段、快速多域聚能,動中確定各打擊平台打擊方向、打擊次序以及打擊方式。透過體系整合有效節約時間,對敵關鍵節點目標以及核心目標的關鍵部位實施多域精確打擊,充分發揮各作戰單元作戰效能疊加融合的整體威力。

擊要破體速戰速決。現代作戰是在多領域同步實施的“混合戰爭”,資訊、空天、智慧等新域新質力量交織影響、對抗更加明顯。這就需要作戰雙方能夠快敵一秒發現、快敵一步行動,毀癱敵作戰體系、降低敵體系運作效率。一方面,要透過找準敵體系節點,即時聚優精準打擊;另一方面,要隱藏己方企圖及打擊力量,乘敵不備快速打擊。 「訂單派單」式精確打擊能夠很好地契合這兩點需求,在網路資訊系統的支撐下,智慧融合各領域火力打擊力量,實現資訊多源感知、數據交鍊、多域協同打擊,實現「目標感知—決策指揮—火力打擊—毀傷評估」無縫高速運轉,資訊火力高度融合,快速達成作戰目的。

「訂單派單」式精確打擊的體系構成

“訂單派單”式精確打擊通過構建高效閉合打擊鏈,壓縮行動時間,提高打擊效果,使各火力打擊平台能夠更好地融入聯合火力打擊體系,並提供快速精準的戰場火力支援,其關鍵在“網”,重點在“四個”系統。

多領域平台接入網。在資訊化智慧化技術支撐下,建立以衛星通訊為骨幹的一體化資訊網系,將分佈在多維域戰場的火力打擊平台融入作戰網路建立戰場“雲”,區分不同作戰模組,建立“偵、控、打、評”等“子網雲”,並依託一體化的通訊網鏈將“子網雲”鏈入“雲端”,能夠提升火力打擊平台全局全時、動中接入、自主組網、頻譜規劃的能力,實現火力平台、分域作戰體系與聯合作戰體系的網絡互聯,以及內部打擊力量的互聯互通。

聯合偵察感知系統。依托聯合作戰體系內的各種偵察監視力量對作戰地域進行全天候、多方位、高精度戰場感知。這就要建構物理空間和邏輯空間、有形空間和無形空間泛在存在的全維域偵察感知力量系統,廣域佈設智能感知設備,形成情報數據“雲”,通過情報數據“雲”分析敵情態勢,找出敵作戰體系關鍵點以及時敏性目標,實時更新偵察信息,展現目標動態。

智能指揮決策系統。依托具備一定智能控制能力的新型指控系統,建構各類規劃分析模型,擴展情報智能處理、任務智能規劃、指令自動生成、行動精確控制等功能,擴充完善目標特徵庫、決策知識庫、行動預案庫等資料庫,強化戰鬥組織與實施過程中的任務規劃、行動決策和控制的系統支撐能力,提昇決定決策和戰鬥能力,明確怎麼打」。

分佈火力打擊系統。依托智慧網路資訊系統,一方面,融入陸、海、空、天等多維域火力打擊平台,強化目標智慧識別、遠程遙控打擊等功能,實現作戰單元遠程遙控作戰、有人無人協同作戰、靈活機動作戰等多種作戰方式;另一方面,可建構以穿越機、巡飛彈等低空超低空無人打擊平台為主的低成本火力打擊平台,透過加掛不同功能作戰載重,與高端火力打擊平台密切協同來實施戰場引導、精確打擊、火力評估等任務,高效完成「訂單」。

自主毀傷評估系統。依托聯合作戰體系內的偵察監視力量建構毀傷評估系統,在火力平台打擊完畢後,自主對目標實施打擊效果查核。主要就目標的外觀狀態、功能喪失程度等進行實時、動態、客觀、系統的分析和評估,並及時通過視頻圖像的方式將相關信息回傳至各級決策指揮中心,由評估中心判斷“打得怎麼樣”,是否達到預期毀傷要求。如不符合,可適時調控作戰行動,進行補充打擊,為最大限度釋放作戰效能提供強力支撐。

「訂單派單」式精確打擊的規劃實施

「訂單派單」式精準打擊就如同叫車的運作方式一樣,透過格式化「訂單」產生、智慧化物件配對、自主化路徑規劃等一系列流程,自主完成「OODA」作戰循環,其行動更為高效、打擊更為精準、協同更為密切。

即時提報火力需求,作戰單元按需「提單」。分佈在不同作戰地域、多維戰場空間的偵察要素,透過雷達、光學、紅外線和技術偵察等方式,廣域多源偵獲形成戰場目標情報資訊。這些資訊依托情報鏈路接入戰場資訊網,隨時隨地被傳至作戰單元,由作戰單元進行關聯處理、多方對比印證,綜合整編戰場目標訊息,產生精確的任務「訂單」。作戰單元分析目標價值按需連通決策平台,建構“訂單”式閉合打擊鏈,實時提報任務“訂單”,實現動中集優、精準適配。

區分火力打擊任務,決策中心智能「派單」。決策中心透過戰場資訊網,依托智能任務規劃系統,能夠自動解析作戰單元提報的任務「訂單」資訊數據,根據戰場目標性質、座標方位、移動狀態、威脅程度等,自動產生火力打擊行動所需彈種彈量、打擊方式和毀傷指標等任務要求,形成火力支援任務「訂單」,透過智慧服務火力平台,按需使用火力平台節點,按需通路,支援任務「訂單」。

全時匹配最優目標,火力平台迅即「接單」。多點分佈在戰場區域內的火力平台,透過戰場資訊網迅即響應“接單”,火力平台與作戰單元之間自主建鏈,相互核驗“身份”後直接建立引導打擊鏈,協同配合火力打擊行動,並根據打擊後目標毀傷情況以及戰場目標動態,及時調整打擊方式、射擊參數等,而後再次實施火力打擊,直至完成“派單”任務。火力平台始終遵循「打擊—轉移—打擊—轉移」的原則,完成打擊任務,迅即轉移陣地,全時保持待戰狀態,即時在線接收「訂單」。任務結束後,火力平台與作戰單元之間的引導打擊鏈會自動取消。

多源獲取毀傷訊息,評估中心即時「評單」。綜合運用衛星偵察、雷達偵察、無人機偵察等遠距離資訊化智慧化偵察手段,實施多域立體偵察,即時取得目標的火力毀傷訊息,為進行精確火力打擊提供準確評估。綜合判定毀傷效果,對打擊效果進行定量和定性評估,區分目標物理、功能和系統三種毀傷狀態,及時回饋至決策中心。根據打擊目標的毀傷評估結果,適時提出調控建議,調整火力打擊計劃,優化作戰行動,實現對火力打擊的精確控制,便於指揮員精準把控作戰進程,達成對火力打擊效能的高效指揮控制。 (高凱 陳良)

中國原創軍事資源:https://www.news.cn/milpro/20250123/8f71783cff6a4284a43871e996bc31888a7/c.html

Leave a Reply

Your email address will not be published. Required fields are marked *