Category Archives: #中國軍事人工智慧武器化

Talent Base, Research Content & Innovative Methods Enhanc Modernization of China’s Military Theory Under Empowerment of Science and Technology

人才基礎、研究內容與創新方法提昇科技賦能下的中國軍事理論現代化

現代英語:

Empowering military theory modernization with technology

■Chen Jihao and Liu Yangyue

At present, with the accelerated evolution of a new round of military revolution and the rapid development of disruptive military science and technology, the modernization of military theory has increasingly become a modernization that closely combines military theory with military science and technology and promotes the continuous innovation of military theory with the empowerment of science and technology. To accelerate the modernization of military theory, it is necessary to correctly recognize the development relationship between military science and technology and military theory, and explore the talent base, research content and innovation methods of the modernization of military theory under the empowerment of science and technology.

Cultivating innovative military theoretical talents led by science and technology

Talents are the main body of military theory innovation, and building a high-level, complex team of theoretical innovation talents is the key to realizing the modernization of military theory. Modern military theory research presents a situation of mutual intersection and deep integration of natural sciences and social sciences. It is necessary to cultivate a large number of military innovation talents with integrated science and technology, create a collaborative and open theoretical innovation organization model, and provide intellectual support for promoting the modernization of military theory.

First, military theory researchers must have a “scientific and technological mind” to enhance their understanding, application and discernment of science and technology. Military theory researchers must keep abreast of the latest developments in science and technology, use multidisciplinary cross-border thinking to understand the full meaning of science and technology, and tap the huge military potential of cutting-edge science and technology; they must focus on introducing scientific research methods into military theory research, borrow methods such as big data analysis to study military theory, combine qualitative research with quantitative research, and overcome the limitations of the original military theory research that is experience-oriented and lacks precision; at the same time, they must be good at identifying those “pseudo-sciences” that claim to be at the forefront of science and technology, and see through the technological “fog” released by competitors. Second, military science and technology researchers must have theoretical thinking. Military science and technology researchers should overcome the narrow-minded thinking of “technological determinism”, realize that natural sciences and social sciences are intertwined rather than diametrically opposed, and actively use scientific theories to guide military research. At the same time, they should focus on learning and studying advanced military theories, strengthen their understanding of the war situation and winning mechanism, and deepen their understanding of the application value and development trend of military technology. Thirdly, establish and improve the exchange and cooperation mechanism between theoretical talents and scientific and technological talents. Based on comprehensive research topics, experts from various fields can be widely drawn to form interdisciplinary joint research groups, give full play to their respective strengths, and ignite theoretical innovation sparks in constant cross-collisions. Different types of research units can also select personnel for cross-appointments, so as to encourage theoretical and scientific talents to learn from each other and grow together, open up disciplinary and innovation chains, and enhance the overall effectiveness of theoretical innovation.

Focus on science and technology-led military theory research content

Although there are some universal principles in military theory, the specific content will continue to change with the evolution of the times and practice. In today’s world, a new round of scientific and technological revolution and industrial revolution is advancing by leaps and bounds. The emergence of a series of high-tech technologies and their extensive application in the military field have triggered profound changes in the mechanisms, elements and methods of winning wars, providing new research objects for military theory research.

First, we need to study powerful enemies. The confrontational nature of war determines that military theory research must keep a close eye on the changes of powerful enemies and compete for the commanding heights of military theory. At present, the world’s major powers are stepping up the development of new operational concepts and tactics in response to cutting-edge technologies. Military theory research must adhere to the principle of “you fight yours, I fight mine”, and use the method of “dissecting sparrows” to clarify the opponent’s operational concepts, methods and capabilities. At the same time, we must keep a close eye on changes in science and technology, strengthen the development of new operational concepts, and achieve a transition from follow-up research to synchronization and then to catching up, so as to form an asymmetric balance of power in military theory. Secondly, we must study intelligent warfare. In today’s world, the development of disruptive cutting-edge technologies has promoted the evolution of war forms towards intelligence, and the temporal and spatial characteristics and offensive and defensive modes of war have undergone profound changes. Military theory research should focus on intelligent warfare, accurately grasp the laws and characteristics of intelligent warfare, actively predict the impact of science and technology on future wars, and realize the transformation from passive adaptation to active design of war. Thirdly, we should study new quality combat power. The development of science and technology has given rise to new quality combat power, changed the combination of people and weapons, and directly contributed to the birth of new quality combat power. For example, in the future battlefield, human-machine integrated joint combat actions will become an important combat mode, and it will be possible for a small number of soldiers to lead a large number of “bee swarms”, “fish swarms” and ” ant swarms” to conduct intelligent cluster combat. Military theory research should focus on new types of combat capabilities, seize opportunities in emerging fields, take the initiative, and proactively explore the generation paths and release patterns of new types of combat capabilities. Advanced theories should be used to guide and drive the construction of new types of combat forces in new domains, providing theoretical support for accelerating the incubation and generation of new types of combat capabilities.

Create a military theory research paradigm supported by science and technology

The intelligent science paradigm is called the “fifth paradigm” of scientific research. It is a cross-domain scientific research paradigm supported by artificial intelligence technology, integrating human values ​​​​and knowledge, and characterized by human-machine integration. Entering the era of intelligence, big data and artificial intelligence are developing rapidly, requiring the “intelligent factor” to be organically integrated into the practice of military theoretical research in an all-round way, opening up the “fifth paradigm” of military theoretical research.

First, explore data-centric research methods. Artificial intelligence technology can comprehensively collect battlefield intelligence data on a large scale, efficiently screen and integrate multi-source data, and realize nonlinear coupling and complex correlation of cross-domain and cross-scenario data. We must give full play to the powerful functions of artificial intelligence technology in multi-dimensional data collection and multi-dimensional data processing, open up the data links between military theories, technologies, equipment and other elements, and realize data-centric cross-domain synergy and efficiency among various research elements, and connect the “underlying channel” of the integration of theory and technology. Secondly, innovate the research model of human-machine collaboration. With the continuous improvement of the intelligence level of machines, the research model of ” human-host-machine-slave” has gradually changed to “human-machine integration.” The global knowledge and associative prediction capabilities of artificial intelligence are helping researchers break through the limitations of traditional thinking, eliminate traditional field divisions, and open up a ” brainstorm” in military theory research. We need to explore innovative models for deep integration of humans and machines, establish a dynamic feedback mechanism for positive-sum games, combine researchers’ nonlinear abstract thinking with the powerful computing power of machines, and achieve knowledge integration and communication, dynamic simulation and deduction, forward-looking analysis and decision-making, providing the greatest wisdom increment for military theory research. Secondly, create a “pre-practice” platform for military theory. Practice is the “touchstone” for testing the results of military theory. Only by constantly moving from practice to theory and then to practice can we achieve a spiral rise in military theory. On the one hand, we can use advanced scientific and technological means such as virtual reality technology and artificial intelligence technology to build a virtual experimental platform, simulate and simulate combat scenarios and combat power generation processes through deduction, analysis, evaluation and other means, and test the practicality and operability of conceptual design in a realistic experimental environment, so as to continuously improve and develop military theory; we can also use generative artificial intelligence to generate “semi-factual” combat scenarios, directly display the combat process and results in a visual way, inspire the thinking of military theorists, and shorten the new theory generation cycle. On the other hand, comprehensive live-fire training activities are used to conduct comprehensive combat experiments under the preset future battlefield environment and combat conditions, which complement virtual experiments and provide more reliable pre-practice quantitative data to verify and develop military theories in an environment closer to actual combat.

現代國語:

以科技賦能軍事理論現代化

■陳紀豪 劉楊鉞

當前,隨著新一輪軍事革命的加速演進和顛覆性軍事科技的高速發展,軍事理論現代化日益成為軍事理論與軍事科技緊密結合、以科技賦能推動軍事理論不斷創新的現代化。加速軍事理論現代化,需要正確認識軍事科技與軍事理論的發展關系,探索科技賦能下軍事理論現代化的人才基礎、研究內容與創新方法。

培養科技引領的軍事理論創新人才

人才是軍事理論創新的主體,建立一支高層次複合型的理論創新人才隊伍是實現軍事理論現代化的關鍵。現代軍事理論研究呈現自然科學與社會科學相互交叉、深度融合的局面,需要培養大量理技融合型軍事創新人才,打造協同開放的理論創新組織模式,為推動軍事理論現代化提供智力支持。

首先,軍事理論研究人員要有“科技頭腦”,增強對科技的理解力、運用力和鑑別力。軍事理論研究人員要及時掌握最新的科技發展動態,利用多學科交叉的跨界思維理解科技中蘊含的全部意義,發掘前沿科技的巨大軍事潛力;要注重將科學研究的方法引入軍事理論研究,借鑑大數據分析等方法來研究軍事理論,將定性研究和定量研究結合起來,克服原有軍事理論研究經驗主導和精確性不足的局限;與此同時,還要善於識破那些打著科技前沿名號的“偽科學”,看清競爭對手釋放的科技“迷霧”。其次,軍事科技研究人員要有理論思維。軍事科技研究人員要克服「技術決定論」的狹隘思維,認識到自然科學和社會科學是相互交織而非截然對立的,主動用科學的理論去指導軍事科研,同時注重對先進軍事理論的學習和研究,加強對戰爭形態和製勝機理的認識,深化對軍事技術應用價值和發展趨勢的理解。再次,建立健全理論人才與科技人才的交流合作機制。可綜合性研究課題為牽引,廣泛抽調各領域專家組成跨學科聯合課題研究組,發揮各自特長,在不斷地交叉碰撞之中點燃理論創新火花。不同類型的研究單位還可以互相選派人員進行交叉任職,促使理論人才和科技人才相互借鑑、共同成長,打通學科鏈、創新鏈,提升理論創新整體效能。

聚焦科技主導的軍事理論研究內容

軍事理論中雖然有著一些古今通用的原理,但具體內容會隨著時代和實踐的演進而不斷變化。當今世界,新一輪科技革命和產業革命突飛猛進,一系列高新技術的出現和在軍事領域的廣泛運用,引發戰爭制勝機理、制勝要素和製勝方式的深刻變化,為軍事理論研究提供了新的研究對象。

首先,要研究強敵對手。戰爭的對抗性決定了軍事理論研究必須緊盯強敵之變,爭奪軍事理論制高點。當前,世界主要大國正在針對前沿科技加緊開發新的作戰概念與戰術戰法,軍事理論研究要堅持“你打你的,我打我的”,以“解剖麻雀”的方式把對手的作戰概念、作戰方式和作戰能力搞清楚。同時要緊盯科技之變,加強開發新的作戰概念,實現從跟進研究到同步再到趕超,在軍事理論上形成非對稱制衡優勢。其次,要研究智能化戰爭。當今世界,顛覆性前沿科技的發展助推戰爭形態朝向智慧化演進,戰爭的時空特性和攻防模式已經發生深刻改變。軍事理論研究要聚焦智慧化戰爭,精確掌握智慧化戰爭規律與特點,積極預測科技對未來戰爭的影響,實現從被動適應戰爭轉變為主動設計戰爭。再次,要研究新質戰鬥力。科技的發展催生了新質作戰力量,改變了人和武器的結合方式,直接促成了新質戰鬥力的誕生。例如,未來戰場人機一體的聯合作戰行動將成為重要作戰樣態,極少數士兵帶領數量龐大的「蜂群」「魚群」「蟻群」進行智慧集群作戰成為可能。軍事理論研究要聚焦新質戰鬥力,在新興領域中抓住機遇,下好先手棋、打好主動仗,前瞻探索新質戰鬥力的生成路徑和釋放規律,以先進理論牽引拉動新域新質作戰力量建設,為加速新質戰鬥力的孵化與生成提供理論支撐。

打造科技支撐的軍事理論研究範式

智慧科學範式被稱為科學研究的“第五範式”,是一種以人工智慧技術為支撐,以融入人的價值和知識為手段,以人機共融為特徵的跨領域科學研究規範。進入智能化時代,大數據和人工智慧發展迅速,要求把「智能因子」全方位有機融入軍事理論研究實踐之中,開啟軍事理論研究的「第五範式」。

首先,探索以數據為中心的研究方法。人工智慧技術能夠大幅蒐集戰場情報數據,高效篩选和整合多源數據,實現跨域和跨場景數據非線性耦合和復雜關聯。要充分發揮人工智慧技術多元資料蒐集與多維資料處理的強大功能,打通軍事理論、技術、裝備等各要素之間的資料鏈路,實現各研究要素間以資料為中心的跨域協同增效,貫通理技融合的「底層通道」。其次,創新人機協同的研究模式。隨著機器智慧化程度的不斷提高,「人體主機從」的研究模式逐漸轉變為「人機融合」。人工智慧的全局知識和關聯預測能力正在幫助研究者突破傳統思維局限,消弭傳統領域分割,開啟軍事理論研究的「頭腦風暴」。要探索人機深度融合的創新模式,建立正和博弈的動態回饋機制,將研究者的非線性抽象思維與機器的強大算力優勢結合起來,實現知識整合與貫通、動態模擬與推演、前瞻分析及決策,為軍事理論研究提供最大智慧增量。再次,打造軍事理論「預實踐」平台。實踐是檢驗軍事理論成果的“試金石”,只有不斷地從實踐到理論再到實踐,才能實現軍事理論螺旋式上升。一方面,利用虛擬現實技術、人工智慧技術等先進科技手段建立虛擬實驗平台,透過推演、分析、評估等手段對作戰場景和戰鬥力生成過程進行模擬和模擬,在逼真的實驗環境中檢驗概念設計的實用性和可操作性,從而不斷完善和發展軍事理論;還可以利用生成式人工智慧生成「半事實」的作戰場景,以可視化的方式來直接展現戰鬥過程和結果,啟發軍事理論人員思維,縮短新理論生成週期。另一方面,綜合運用實兵演訓活動,在預設的未來戰場環境和作戰條件之下,進行綜合性作戰實驗,與虛擬實驗相互補充,提供更為可靠的預實踐量化數據,在更為接近實戰化的環境之中驗證與發展軍事理論。

中國原創軍事資源:http://www.81.cn/ll_208543/16361834.html

Xi Jinping’s Thought on Strengthening the Chinese Army丨On Building an Innovative People’s Army: Only Innovators Win

習近平強軍思想丨論建立創新人民軍隊:創新者勝

現代英語:

Only innovators win – on building an innovative people’s army

  1. Why is innovation the core competitiveness of an army?

The 19th CPC National Congress clearly proposed the epoch-making proposition of “building an innovative people’s army”, which is the first time in the history of the Party. From proposing to accelerate the construction of an innovative country to proposing to build an innovative people’s army, our Party has emphasized that innovation should be placed at the core of the overall national development and the overall military construction and development, highlighting the extreme importance and practical urgency of innovation for a strong country and a strong army. Innovation is the soul of a country’s development and progress, and it is also the soul of an army’s development and progress. To grasp innovation is to grasp development, and to plan for innovation is to plan for the future. President Xi Jinping stressed that innovation capability is the core competitiveness of an army, and that we must thoroughly implement the innovation-driven development strategy and increase the contribution of innovation to the growth of combat effectiveness.

The military field is the field with the most innovative vitality and the most need for innovative spirit. Marxism believes that war develops earlier than peace, and the military is in a leading position in many aspects of human activities. Advanced technologies are often first applied to the military field. At the same time, the military field is the field with the most intense competition and confrontation. There is always a life-and-death contest between the enemy and us, between attack and defense, spear and shield, and a war drama of wits and courage. If you are one step ahead of others in innovation, you can control others instead of being controlled by them. As Engels said, “Every great commander in the history of war who has created a new era by adopting new methods of warfare has either invented new material means himself, or has been the first to discover the correct method of applying new material means invented before him.” At the end of the 16th century, the British Navy applied new battleships and innovative naval tactics to defeat the Spanish “Invincible Fleet” in one fell swoop, ushering in an era of maritime hegemony; in the late 19th century and early 20th century, Germany applied the latest achievements of the Second Industrial Revolution to military construction and built the most densely populated railway network in Europe, greatly improving the military’s combat readiness and mobility. History has shown that only innovators can advance, become strong and win. Those who are conservative and complacent will miss precious opportunities and fall into strategic passivity.

Innovation capability is an accelerator for generating and improving combat effectiveness. The core of combat effectiveness is people. If people have strong innovation capability, they can “empower” various elements of combat effectiveness, thereby achieving the upgrade of combat effectiveness and forming the “optimal solution” to defeat the enemy. In the final analysis, the competition in war is the competition of innovation capability of both combatants, and the gap in combat capability is essentially the gap in innovation capability. In 1806, the Prussian army was defeated by the French army led by Napoleon in the Battle of Jena. Clausewitz, who participated in the battle, pointed out in summarizing the reasons for the Prussian army’s defeat that middle and senior officers rarely realized that the characteristics of war had undergone fundamental changes. “The Battle of Jena is not only an example of outdated style, but also an example of extreme lack of imagination caused by sticking to the old ways.” The lack of imagination reflects the shortcomings of innovation. If the innovation ability is improved, it will accelerate the formation of new driving forces for the development of combat effectiveness, maximize the vitality of various elements of combat effectiveness, and promote the geometric growth of combat effectiveness.

Our army has come to where it is today through innovation, and we will also rely on innovation to win the future. In the process of combining Marxist military theory, the practice of China’s revolutionary war and the construction of the people’s army, and the traditional Chinese military tactics, our party has relied on continuous innovation to gradually form a complete set of principles and systems for building and governing the army, created the strategy and tactics of the people’s war, and formed the unique advantages of our army. It can be said that innovation has been deeply integrated into the red blood of the people’s army and has become the most distinctive spiritual endowment of our army. In today’s era, a new round of scientific and technological revolution, industrial revolution, and military revolution are accelerating, providing us with a rare opportunity to catch up with the latecomers, and also putting forward higher requirements for our comprehensive implementation of the innovation-driven development strategy. In the past, the development of our military construction was mainly driven by investment factors, which was necessary under certain historical conditions. However, today, it is difficult to continue to rely on large-scale investment increases, which has limited effects and diminishing marginal utility. To keep up with the pace of world military development, break through the bottleneck constraints of military construction, and comprehensively create new development advantages, what is most needed is innovation, and the fundamental way out lies in innovation. We must start the new engine of innovation-driven development at full speed, make great efforts to grasp theoretical innovation, scientific and technological innovation, scientific management, talent gathering, and practical innovation, and establish a set of new military theories, organizational structures, equipment systems, strategies and tactics, and management models that are adapted to the requirements of informationized warfare and mission fulfillment, promote changes in the quality, efficiency, and driving force of our military construction and develop, truly accelerate, build high quality, and speed up the effective supply of advanced combat capabilities.

  1. Why should we vigorously promote the innovation of Marxist military theory?

In May 1938, the nationwide war of resistance had been going on for 10 months. Facing the massive attack of the Japanese army, the “national destruction theory” and “quick victory theory” were once very popular. Can China achieve the final victory? How can it achieve victory? How will the course of the war develop? These questions troubled people’s minds. At the critical juncture of the survival of the Chinese nation, Comrade Mao Zedong published the famous “On Protracted War”, which was like a ray of light, giving great encouragement and confidence to the anti-Japanese soldiers and civilians who were fighting hard. All problems of the hostility between the two armies depend on war to be solved. A strong army must be guided by scientific theory. President Xi pointed out that we should vigorously promote the innovation of Marxist military theory, accelerate the formation of a military theory system that is contemporary, leading and unique, and provide scientific theoretical support for the practice of strengthening the military.

Scientific military theory is combat effectiveness. Military theory is a rational understanding and knowledge system about war, the army and national defense. Scientific military theory reveals the laws of war, the laws of war guidance and the laws of army building, guides the construction and use of military forces, has a profound impact on the elements of combat effectiveness, and leads the development of military practice. After the end of World War I, British military theorist Fuller proposed the theory of mechanized warfare, but it was not taken seriously. In the early days of World War II, the German army swept across Europe because of the tank cluster and the “blitzkrieg” theory. Although the weapons and equipment of the British and French armies at that time were almost the same as those of the German army, due to the obsolete and rigid combat theories, the British and French coalition forces soon fell into passivity and could only retreat from Dunkirk, and France quickly fell. Looking back at the history of military development, theoretical innovation has played a significant leading role in practical innovation. Mahan’s “sea power” theory, Douhet’s “air supremacy” theory, Tukhachevsky’s “deep and deep operations” theory, Graham’s “high frontier” theory, etc., have all led the military trend, promoted military reforms, and changed the face of war. “Thoughts precede actions, just as lightning precedes thunder.” Advanced military theory is an ideological weapon that correctly guides war. Whoever is one step ahead in military theory innovation is more likely to seize the initiative to win.

The key to the continuous growth and development of the People’s Army is that it always adheres to the guidance of advanced military theory. One of the important reasons why our army can fight and win battles is that it wins in theory and strategy, learns war from war, and explores laws from practice. During the Jinggangshan struggle period, our party developed the strategy and tactics of guerrilla warfare based on the characteristics of the enemy’s strength and our weakness, and preserved and developed itself. During the War of Resistance Against Japanese Aggression , our party implemented the strategic policy of “basically guerrilla warfare, but not relaxing mobile warfare under favorable conditions”, dealt a heavy blow to the Japanese invaders, and strengthened and developed itself. During the Liberation War, our party did not care about the gains and losses of a city or a place, and exchanged space for time, and concentrated superior forces to fight a war of destruction, defeated the Kuomintang army, and ushered in the birth of New China. After Chiang Kai-shek retreated to Taiwan, he reflected on the military competition between the Kuomintang and the Communist Party for decades, saying that the reason why the Communist army was able to win the war was because it emphasized the distinction between the extraordinary and the orthodox, the virtual and the real, and the application of changes, and constantly promoted innovation. In long-term practice, our party has combined the basic principles of Marxism with the practice of China’s revolutionary war and the construction of the people’s army, created Marxist military theoretical achievements with Chinese characteristics, and formed Mao Zedong’s Military Thought , Deng Xiaoping’s Thought on Military Construction in the New Era, Jiang Zemin’s Thought on National Defense and Army Construction, Hu Jintao’s Thought on National Defense and Army Construction, and Xi Jinping’s Thought on Strengthening the Army, providing a scientific guide for winning the victory of China’s revolutionary war and promoting the modernization of national defense and the army.

Knowledge Links

Ten Military Principles

In December 1947, Comrade Mao Zedong put forward ten major military principles in his report “The Current Situation and Our Tasks”, the main contents of which are summarized as follows: (1) First attack the dispersed and isolated enemy, then attack the concentrated and powerful enemy. (2) First capture small cities, medium-sized cities and vast rural areas, then capture large cities. (3) The main goal is to destroy the enemy’s living forces, not to preserve or seize cities and places. ( 4) In every battle, concentrate an absolutely superior force to encircle the enemy on all sides, strive to completely destroy it and not let any escape. (5) Do not fight a battle without preparation or without confidence every battle, we should strive to be prepared and strive to be sure of victory based on the comparison of the enemy’s conditions and ours. (6) Carry forward the style of fighting bravely, fearing no sacrifice, fearing no fatigue, and engaging in continuous fighting. (7) Strive to destroy the enemy in the process of movement. At the same time, focus on positional attack tactics and seize the enemy’s strongholds and cities. (8) In the matter of siege, all enemy strongholds and cities with weak defenses must be seized resolutely. enemy strongholds and cities with moderate defenses and conditions that allow them to be seized must be seized immediately. All enemy strongholds and cities with strong defenses must be seized only when conditions are ripe. (9) Capture all the enemy’s weapons and most of the enemy’s personnel to replenish our own forces. (10) Make good use of the interval between two campaigns to rest and retrain the troops.

New military practice calls for new military theory. Theory comes from practice, and practice is the driving force for the development of theory. Military theory can only maintain strong vitality if it keeps up with the times and responds to practice. In recent years, emerging fields and battlefield space have been continuously expanded, high-tech has penetrated into the military field in many ways, the war form and combat methods have accelerated evolution, and new war and combat theories have emerged in an endless stream. The US military has proposed “network-centric warfare”, “global rapid strike”, and “all-domain warfare”, the Russian military has proposed “non-nuclear containment strategy” and “strategic air and space campaign”, and the Japanese Self-Defense Forces have proposed the “cross-domain defense” theory, etc., all of which are aimed at winning new military advantages through theoretical innovation. The rapid development of the new military revolution in the world and the in-depth advancement of our military strengthening and military rejuvenation practices have put forward urgent requirements for innovation in military theory and provided broad space. Our military construction and development are facing a large number of new situations and new problems, which urgently need to be answered theoretically. Whether it is innovation in military strategy, innovation in military science and technology, or innovation in other aspects of military, they are inseparable from theoretical guidance. It is imperative and urgent to accelerate the modernization of military theory. We must have a broader vision and a longer-term perspective, firmly grasp the issues of war and combat, promote innovation in military theory, and constantly open up new horizons for the development of contemporary Chinese Marxist military theory.

41. Why is science and technology the core combat capability?

In February 2018, a brand-new organization in the Chinese military, the Military Scientific Research Steering Committee of the Central Military Commission, was formally established. Together with the previously established Science and Technology Committee of the Central Military Commission, a new top-level structure for military scientific research work was established. The Academy of Military Sciences has been reorganized and reorganized. With the Academy of Military Sciences as the leader, the military and military scientific research institutions as the backbone, and the scientific research forces of colleges and troops as the auxiliary, our military’s new scientific research system is accelerating to take shape. This series of major measures marks a new step taken by our army on the road to strengthening the military through science and technology, and shows that our party’s understanding of the strategic position of science and technology in national defense and military construction has risen to a new height. President Xi profoundly pointed out that science and technology are the core combat effectiveness, and to promote the modernization of national defense and the military, we must activate the powerful engine of scientific and technological innovation.

Science and technology are the most active and revolutionary factors in military development. Marxism believes that science is a “powerful lever of history” and a “revolutionary force in the highest sense.” Scientific and technological progress not only profoundly changes human production and lifestyle, but also profoundly affects the direction of world military development, and fundamentally promotes the military development process in all aspects. Engels pointed out: “As soon as technological advances can be used for military purposes and have been used for military purposes, they immediately, almost forcibly, and often against the will of the commander, cause changes or even revolutions in the way of combat.” Looking at the world In the history of military development, the main technologies supporting military struggles include bronze smelting and iron casting in the cold weapon age, gunpowder and firearm manufacturing in the hot weapon age, internal combustion engines and electricity in the mechanization age, and computers and communications in the information age. The widespread application of science and technology in the military field will inevitably lead to profound changes in the shape of war and methods of combat. Every major scientific and technological innovation in history has initiated a new military revolution, and every military revolution has pushed military development into a new era.

Science and technology are an important basis for generating and improving combat effectiveness. The basic components of combat effectiveness are people, weapons and equipment, and the combination of people and weapons and equipment. Science and technology are not independent elements of combat effectiveness, but they are always integrated into and condensed into various elements of combat effectiveness in various ways and forms, greatly promoting the generation and improvement of combat effectiveness. From a human perspective, in the development chain of “physical fitness-skill-intelligence” of military personnel, scientific and technological quality increasingly constitutes the most important factor in their overall quality. Without high scientific and technological literacy and military skills, even weapons and equipment cannot be operated. No, let alone being able to fight and win wars. From the perspective of weapons and equipment, it is the physical manifestation of science and technology in the military field. Science and technology have become a “multiplier” for the combat effectiveness of weapons and equipment. From the perspective of the integration of people and weapons and equipment, science and technology have spawned new military theories and prompted the continuous adjustment and reform of the military system. They are the “catalyst” to achieve the optimal combination of people and weapons and equipment. Generally speaking, the development and progress of science and technology is the main force that promotes the demise of the elements of the old combat effectiveness system and the construction of new combat effectiveness system elements, greatly shortening the cycle of generating and improving combat effectiveness, and promoting the leap of new quality combat effectiveness.

Science and technology have an increasing impact on the outcome of modern wars. At present, science and technology are developing faster and faster, and global scientific and technological innovation is unprecedentedly active. Major powers regard seizing scientific and technological advantages as a strategic measure to seek military advantage. The military game between great powers is largely reflected in technological subversion and counter-subversion, raids and counter-raids, offsets and counter-offsets. Once some technologies achieve breakthroughs, their impact will be disruptive, and may even fundamentally change the shape and methods of warfare, and fundamentally change the traditional offensive and defensive pattern of war. We are in a period of historical convergence where the world’s scientific and technological revolution and military revolution are developing rapidly, and the cause of strengthening and rejuvenating the military is in-depth advancement. Technology has never had such a profound impact on the overall national security and military strategy as it does today, and has never had such a profound impact on the construction and development of our military as it does today. We must promote high-level scientific and technological self-reliance and self-reliance, give full play to the strategic supporting role of science and technology in our military construction, put national defense scientific and technological innovation in a more prominent position, adhere to the strategic basis of independent innovation, enhance scientific and technological awareness, innovation, and application capabilities, and strive to Seize the initiative in military development and the right to win future wars.

▶A big country like ours and an army like ours must take the initiative through independent innovation.

▶Real core and key technologies cannot be bought with money. Importing weapons and equipment is unreliable, and importing imitations will not go far.

▶Independent innovation must be fought for, and this battle must be won.

42. How to understand the promotion of a military management revolution centered on effectiveness?

In June 2020, with the approval of the Central Military Commission, the entire military held a strategic management training. This was the first high-level, large-scale training event organized by our military with strategic management as the theme. More than a month later, during the 22nd collective study session of the Political Bureau of the 19th CPC Central Committee, President Xi clearly pointed out that it is necessary to update management concepts, improve strategic literacy, improve systems and mechanisms, smooth strategic management links, and substantively advance military management revolution. Since the 18th National Congress of the Communist Party of China, the Party Central Committee and the Central Military Commission have placed the strengthening of military management in a strategic position, actively built a new military management system, and started a new process of revolution in our military management in the new era.

Whether the army can fight and win wars, management often plays a key role. No matter how good the theoretical guidance of an army is, no matter how good the weapons and equipment are, and no matter how many combatants there are, if the management is in a mess and all the elements cannot integrate and play a role, it will not be able to win the war, and it may even be impossible to win the war. Scientific and efficient management is of great significance for reducing military construction costs, improving military system operation efficiency, and enhancing combat effectiveness. During the Gulf War, the U.S. Department of Defense shipped about 40,000 containers to the frontline armies. Due to imprecise management and inaccurate support, many material categories and recipient information were unknown. More than 20,000 of them had to be reopened and counted until the end of the war. There are still more than 8,000 containers that have not been opened. Modern war practice has fully proved that as the military organizational structure becomes increasingly complex, professional division of labor becomes more refined, and military operations become more systematic, this requires us to pay more attention to the role of management in military operations and construction and improve the professionalization of military management. , refined and scientific level.

The purpose of the military management revolution is to improve the operational efficiency of military systems and the efficiency of the use of national defense resources. Military management is the overall and basic work of national defense and military construction. Its essence is to organically integrate all military units and elements to fundamentally improve the effectiveness of combat effectiveness. Extensive management is a prominent problem that has long restricted the development of our military’s construction. In particular, our military’s construction is at a critical stage of accelerating shifting gears and improving quality and efficiency. In addition, the construction management model has undergone great changes after the reform, and the promotion of efficiency-oriented The core military management revolution and improving the precision-oriented management system are the inevitable choices for strengthening the scientific management of the military. With efficiency as the core, all management practices are inherently required to adhere to quality first, efficiency first, and strive to increase the effective supply of combat effectiveness. To be precision-oriented means to achieve precise planning, precise planning, precise deployment, precise implementation, and precise inspection, and to apply the principle of precision throughout the entire process of all aspects of management. In advancing the reform of military policies and systems, our army has implemented fundamental changes in traditional management methods and proposed reform measures in strategic management, military expenditure management, organizational management, equipment management, material management, and troop education management. The purpose is to form a precise An efficient, comprehensively standardized, and rigidly constrained military management policy system will improve the operational efficiency of the military system, the effectiveness of the use of national defense resources, and the effectiveness of the construction and application of military forces.

Military management must tightly grasp the pivot of strategic management. As the highest-level management of national defense and military construction, strategic management is a macro-management activity that manages the overall situation, long-term management, and major events. It plans and designs the investment of military resources from the top level. Whether strategic management is scientific or not directly affects the quality and efficiency of national defense and military construction. Back then, we achieved “two bombs and one satellite” under very difficult circumstances. We spent much less money than foreign countries, but the efficiency was very high. The important reason was that we gave full play to our country’s institutional advantages and used systems engineering methods to organize In order to carry out this work, a unique strategic management mechanism was explored. Today’s acceleration of national defense and military modernization requires further strengthening of strategic management. A new strategic management system has been established, but the relevant systems and mechanisms are not yet complete. We must adhere to goal orientation, problem orientation, and result orientation, and further open up the strategic management link of “demand-planning-budget-execution-evaluation”. Among them, demand is the driving force, clarifying the direction and requirements of combat capabilities; planning is the leading role, determining construction goals and tasks and resource allocation; budget is the key, and is the “funding version” of the planning plan; execution is the focus, which is the implementation of construction projects and the allocation of resources. The application of input; evaluation is the support and the measurement of construction quality and efficiency. By improving the strategic management link, demand-driven planning and planning-led resource allocation will become rigid constraints on our military’s construction, forming a smooth and efficient strategic management closed loop to promote the high-quality development of our military’s construction.

現代國語:

唯創新者勝-關於建設創新型人民軍隊

39.為什麼說創新是軍隊的核心競爭力?

黨的十九大明確提出「建設創新人民軍隊」的劃時代命題,這在黨的歷史上還是第一次。從提出加速建設創新國家到提出建設創新型人民軍隊,我們黨強調要把創新置於國家發展全局和軍隊建設發展全局的核心位置,凸顯了創新的極端重要性和現實意義。刻不容緩。創新是一個國家發展進步的靈魂,也是一支軍隊發展進步的靈魂。抓創新就是抓發展,謀創新就是謀未來。習近平主席強調,創新能力是軍隊的核心競爭力,必須深入實施創新驅動發展策略,提高創新對戰鬥力成長的貢獻。

軍事領域是最具創新活力、最需要創新精神的領域。馬克思主義認為,戰爭早於和平發展,軍隊在人類活動的許多方面處於主導地位。先進技術往往首先應用於軍事領域。同時,軍事領域又是競爭和對抗最激烈的領域。敵我之間、攻與守、矛與盾之間,始終存在著一場你死我活的較量,一場鬥智的戰爭大戲。如果你在創新上領先別人一步,你就能控制別人而不是被別人控制。正如恩格斯所說:「戰爭史上每一位採用新戰爭方法開創新時代的偉大統帥,要么是他自己發明了新的物質手段,要么是第一個發現了運用前人發明的新物質手段的正確方法。 16世紀末,英國海軍運用新型戰艦和創新海軍戰術,一舉擊敗西班牙“無敵艦隊”,開啟了海上霸權時代; 19世紀末20世紀初,德國將第二次工業革命的最新成果運用到軍事建設中,建造了歐洲人口最密集的鐵路網,大大提高了軍隊的戰備性和機動性。歷史證明,只有創新者才能前進,只有創新者才能強大,只有創新者才能獲勝。保守、自滿的人就會錯失寶貴的機遇,陷入戰略被動。

創新能力是產生和提高戰鬥力的加速器。戰鬥力的核心是人。人如果擁有強大的創新能力,就可以對戰鬥力的各個要素進行“賦能”,從而實現戰鬥力的升級,形成克敵制勝的“最優方案”。戰爭的競爭歸根到底是參戰雙方創新能力的競爭,作戰能力的差距本質上就是創新能力的差距。 1806年,普魯士軍隊在耶拿戰役中被拿破崙率領的法軍擊敗。參與戰鬥的克勞塞維茨在總結普魯士軍隊失敗的原因時指出,中高級軍官很少意識到戰爭的特徵已經發生了根本性的變化。 「耶拿戰役不僅是風格落伍的一個例子,也是因循守舊而導致想像力極度缺乏的一個例子。”想像力的缺乏體現了創新的短板。創新能力提高,將加速形成戰鬥力發展新動能,最大限度激發戰鬥力各要素活力,推動戰鬥力幾何級增長。

我軍靠創新走到了今天,我們也將靠創新贏得未來。在馬克思主義軍事理論同中國革命戰爭和人民軍隊建設實踐與中國傳統軍事戰術相結合的過程中,我們黨依靠不斷創新,逐步形成了一整套建設和建設軍隊的完整原則和體系。了人民戰爭的戰略戰術,形成了我軍的獨特優勢。可以說,創新已經深深融入人民軍隊的紅色血液,成為我軍最鮮明的精神稟賦。當今時代,新一輪科技革命、產業革命、軍事革命正在加速推進,為我們提供了後來者追趕的難得機遇,一個地方,一個地方,以空間換時間,集中優勢兵力打一場毀滅性戰爭,打敗了國民黨軍隊,迎來了新中國的誕生。蔣介石退守台灣後,反思國共幾十年的軍事競爭,說共軍之所以能打贏戰爭,是因為強調了非凡與普通的區別。我們黨在長期實踐中,把馬克思主義基本原理同我國革命戰爭和人民軍隊建設實踐結合起來,創造了中國特色馬克思主義軍事理論成果,形成了毛澤東軍事思想、鄧小平軍事思想。國防與軍隊建設思想、胡錦濤國防與軍隊建設思想、習近平強軍思想,為贏得我國革命戰爭勝利、促進國防與軍隊現代化。

知識連結

十大軍事原則

1947年12月,毛澤東同志在《當前形勢和我們的任務》報告中提出了十大軍事原則,其主要內容概括如下:(一)先打擊分散、孤立的敵人,再打擊集中的敵人。的敵人。 (2)先攻占小城市、中等城市和廣大農村,然後攻占大城市。 (3)主要目標是消滅敵人的生力軍,而不是保全或奪取城市和地方。 (四)每次戰鬥,集中絕對優勢兵力,對敵人進行四麵包圍,力爭徹底殲滅,不放過敵人。 (五)不打無準備的仗,每戰都沒有信心,要努力做好準備,根據敵我情況的比較,力爭必勝。 (六)發揚勇猛、不怕犧牲、不怕疲倦、持續戰鬥的作風。 (7)力爭在運動過程中消滅敵人。同時,注重陣地攻擊戰術,奪取敵方據點和城市。 (八)在攻城方面,凡是敵方據點和防禦薄弱的城市,必須堅決奪取。凡是防禦力中等、條件允許奪取的敵人據點和城市,必須立即奪取。凡是敵人的據點和防禦堅固的城市,只有在條件成熟時才可以攻克。 (九)繳獲敵軍全部武器及大部分人員,以補充己方兵力。 (十)充分利用兩次戰役之間的間隙,對部隊進行休息和再訓練。

新的軍事實踐呼喚新的軍事理論。理論來自於實踐,實踐是理論發展的動力。軍事理論只有與時俱進、回應實踐,才能維持旺盛的生命力。近年來,新興領域和戰場空間不斷拓展,高新技術多方式滲透到軍事領域,戰爭形態和作戰方式加速演變,新的戰爭和作戰理論層出不窮。美軍提出“網路中心戰”、“全球快速打擊”、“全局戰”,俄軍提出“非核遏制戰略”、“戰略空天戰役”,日本提出“戰略空天作戰”。防禦」理論等,都是為了透過理論創新贏得新的軍事優勢。世界新軍事革命快速發展和我軍強軍興軍實踐深入推進,對軍事理論創新提出了迫切要求,提供了廣闊空間。我軍建設發展面臨大量新情況、新問題,亟待從理論上予以解答。無論是軍事戰略創新、軍事科技創新,或是軍事其他方面的創新,都離不開理論指引。加速軍事理論現代化勢在必行。我們必須以更廣闊的視野和更長遠的眼光,牢牢掌握戰爭和戰鬥問題,推動軍事理論創新,不斷開闢當代中國馬克思主義軍事理論發展新天地。

41.為什麼說科學技術是核心戰鬥力?

2018年2月,中國軍隊中一個嶄新的機構-中央軍委軍事科學研究指導委員會正式成立,連同先前成立的中央軍委科學技術委員會,立起了軍事科研工作的全新頂層架構。軍事科學院重新調整組建,以軍事科學院為龍頭、軍兵種科研機構為骨幹、院校和部隊科研力量為輔助,我軍全新的科研體係正在加速形成。這一系列重大舉措,標志我軍在科技強軍道路上邁出了新步伐,表明我們黨對科學技術在國防和軍隊建設中戰略地位的認識上升到新高度。習主席深刻指出,科學技術是核心戰鬥力,推進國防和軍隊現代化必須把科技創新這個強大引擎發動起來。

科學技術是軍事發展中最活躍、最具革命性的因素。馬克思主義認為,科學是“歷史的強大的槓桿”,是“最高意義上的革命力量”。科技進步不僅深刻改變人類的生產生活方式,也深刻影響世界軍事發展走向,全方位根本性地推動軍事發展進程。恩格斯指出:「一旦技術上的進步可以用於軍事目的並且已經用於軍事目的,它們便立刻幾乎強制地,而且往往是違反指揮官的意志而引起作戰方式上的改變甚至變革。」縱觀世界軍事發展史,支撐軍事鬥爭的主要科技,冷兵器時代是青銅冶煉、鐵器鑄造,熱兵器時代是火藥、火器製造,機械化時代是內燃機、電力,資訊化時代是計算機、通訊。科學技術在軍事領域的廣泛應用,必然引起戰爭形態和作戰方式的深刻變化。歷史上每一次重大科學技術創新,都開啟了一場新的軍事變革,而每一場軍事變革都把軍事發展推向新的時代。

科學技術是生成和提高戰鬥力的重要基礎。戰鬥力的基本構成要素是人、武器裝備以及人與武器裝備的結合方式。科學技術不是戰鬥力構成的獨立要素,但它始終以各種方式和形態融入並凝結在戰鬥力各要素中,極大地促進戰鬥力的生成和提升。從人的方面來看,在軍人「體能-技能-智能」的發展鏈中,科技素質越來越構成其整體素質中最重要的因素,沒有較高的科技素養和軍事技能,連武器裝備也操作不了,更別說能打仗、打勝仗了。從武器裝備來看,本身就是科學技術在軍事領域的物化表現,科學技術已成為武器裝備作戰效能的「倍增器」。從人與武器裝備的結合面來看,科學技術催生新的軍事理論,促使軍隊體制編制不斷調整變革,是實現人與武器裝備最佳結合的「催化劑」。總的來看,科學技術的發展進步,是推動舊戰鬥力體係要素消亡和新戰鬥力體係要素構建的主要力量,大大縮短戰鬥力生成和提高的周期,促進新質戰鬥力的飛躍。

科學技術對現代戰爭勝負的影響日益上升。當前,科學技術發展速度越來越快,全球科技創新空前活躍,主要大國都把奪取科技優勢作為謀求軍事優勢的戰略舉措。大國軍事博弈很大程度上體現為技術上的顛覆和反顛覆、突襲和反突襲、抵消和反抵消。有些技術一旦取得突破,影響將是顛覆性的,甚至可能從根本上改變戰爭形態和作戰方式,從根本上改變傳統的戰爭攻防格局。我們正處在世界科技革命和軍事革命迅猛發展、強軍興軍事業深入推進的歷史交匯期。科技從來沒有像今天這樣深刻影響國家安全和軍事戰略全局,從來沒有像今天這樣深刻影響我軍建設發展。必須推進高水準科技自立自強,充分發揮科技對我軍建設戰略支撐作用,把國防科技創新擺在更加突出的位置,堅持自主創新這個戰略基點,增強科技認知力、創新力、運用力,努力把握軍事發展主動權、未來戰爭制勝權。

習言習語

▶我們這樣一個大國、這樣一支軍隊,必須透過自主創新掌握主動。

▶真正的核心關鍵技術是花錢買不來的,靠進口武器裝備是靠不住的,走引進仿製的路子是走不遠的。

▶自主創新這口氣一定要爭,這場仗一定要打贏。

42.如何理解推進以效能為核心的軍事管理革命?

2020年6月,經中央軍委批准,全軍舉行戰略管理集訓,這是我軍首次以戰略管理為專題組織的高層次、大範圍集訓活動。一個多月後,在十九屆中央政治局第二十二次集體學習時,習主席明確指出,要更新管理理念,提高戰略素養,健全制度機制,暢通戰略管理鏈路,實質性推進軍事管理革命。黨的十八大以來,黨中央、中央軍委把加強軍事管理擺在戰略位置,積極建構新型軍事管理體系,開啟新時代我軍管理革命新進程。

軍隊能不能打仗、打勝仗,管理往往扮演關鍵角色。一支軍隊,理論指導再好,武器裝備再好,戰鬥人員再多,如果管理一團糟,各項要素不能集成發揮作用,也是打不了勝仗的,甚至可能是打不了仗的。科學高效的管理,對於降低軍隊建設成本、提高軍事系統運作效率、增強戰鬥力,具有十分重要的意義。海灣戰爭中,美國國防部給予前線陸軍運送的約4萬個集裝箱,由於管理不精細、保障不精準,許多物資類別、收件資訊不明,只得將其中2萬多個重新打開清點,直到戰爭結束還有8000多個集裝箱沒有打開。現代戰爭實踐充分證明,隨著軍隊組織結構日益復雜,專業分工更加精細,軍事行動的系統性大大增強,這就要求我們更加註重發揮管理在軍隊作戰、建設中的作用,提高軍事管理的專業化、精進、科學化程度。

軍事管理革命的目的是提升軍事系統運作效能和國防資源使用效益。軍事管理是國防和軍隊建設的全局性、基礎性工作,其實質就是要把所有軍事單元和要素有機整合起來,從根本上提高戰鬥力的生成效能。管理粗放是長期制約我軍建設發展的一個突出問題,特別是我軍建設正處在換擋加速、提質增效的關鍵階段,加上改革後建設管理模式發生很大變化,推進以效能為核心的軍事管理革命,健全以精準為導向的管理體系,是加強軍隊科學管理的必然選擇。以效能為核心,內在要求一切管理實踐堅持品質第一、效益優先,著力增加戰鬥力有效供給。以精準為導向,就是要做到精準謀劃、精準規劃、精準部署、精準落實、精準檢驗,把精準原則貫穿管理各方面全過程。我軍在推進軍事政策制度改革中,對傳統管理方式實行根本性變革,從戰略管理、軍費管理、組織編制管理、裝備管理、物資管理、部隊教育管理等方面提出改革舉措,目的就是要形成精準高效率、全面規範、剛性約束的軍事管理政策制度,提升軍事系統運作效率、國防資源運用效益及軍事力量建設運用效能。

軍事管理必須緊緊扭轉戰略管理這個樞紐。戰略管理作為國防和軍隊建設最高層次的管理,是管全局、管長遠、管大事的宏觀管理活動,從頂層規劃和設計軍事資源的投向投量。戰略管理是否科學,直接影響國防和軍隊建設品質效益。當年我們在十分困難的情況下搞成了“兩彈一星”,花的錢比外國少得多,效率卻很高,很重要的原因是充分發揮我國的製度優勢,用系統工程的方法組織了這項工作,探索了一套獨具特色的策略管理機制。今天加速國防和軍隊現代化,需要進一步加強戰略管理。新的策略管理體制立起來了,但相關制度機制還不完善,必須堅持目標導向、問題導向、結果導向,進一步打通「需求-規劃-預算-執行-評估」的戰略管理連結。其中,需求是牽引,明確作戰能力指向和要求;規劃是主導,決定建設目標任務和資源配置;預算是關鍵,是規劃計劃的「經費版」;執行是重心,是建設項目的實施和對資源投入的運用;評估是支撐,是對建設品質效益的衡量。透過完善戰略管理鏈路,使需求牽引規劃、規劃主導資源配置成為我軍建設的剛性約束,形成順暢高效的戰略管理閉合迴路,推動我軍建設高質量發展。

中國原創軍事資源:http://www.81.cn/ll_208543/10189839.html?big=fan

http://www.81.cn/zt/2023nzt/qmsrxxgcxjpqjsx/xxwd/16244461.html

Communist Party of China to Accelerate Transformation of Science and Technology Into Combat Power for China’s Military

中國共產黨將加速推進科技向軍隊戰鬥力轉化

來源:解放軍報 作者:賀逸舒 邵龍飛等 責任編輯:王鳳 2022-11-02 09:36:33

現代英語:

The Chinese People’s Revolutionary Military Museum is always crowded with visitors. Among the visitors, a young man stood in front of the display board for a long time.

Looking at the picture of a certain type of satellite on the display board of the “New Era National Defense and Army Construction Achievements Exhibition”, Cao Lu, a researcher at the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was full of pride. Looking at the familiar smiling faces in the photos, Cao Lu recalled the time when satellites were being developed.

They once sat in front of their computers late at night, typing away at code, and they also once looked everywhere for interference factors… The bitter memories become sweeter the more they are savored.

“The times are calling us, and the people are expecting us. Only by being resolute and persevering can we live up to the times and the people.” At this moment, Cao Lu read this sentence from the report of the 20th National Congress of the Communist Party of China again, and his feelings were even more profound. “Fortunately, our generation of young scientific researchers has caught up with a good era! I feel proud to be on the journey of strengthening the army with science and technology.”

The power of youth and the cause of innovation. At the National Defense Science and Technology Innovation Institute of the Academy of Military Science, many young researchers like Cao Lu are brave enough to innovate and endure hardships on the stage of strengthening the military with science and technology, constantly improving the contribution of scientific research results to the growth of combat effectiveness and accelerating the transformation of science and technology into combat effectiveness.

“To thoroughly study, publicize and implement the spirit of the 20th National Congress of the Party, specifically for us young scientific researchers, is to throw ourselves into the era of innovation in national defense science and technology, take root in the front line of scientific research, and become good young people of the new era who have ideals, dare to take responsibility, can endure hardships, and are willing to work hard,” said Cao Lu.

Observation sample Academy of Military Science, National Defense Science and Technology Innovation Institute

Be enterprising and join the era of technological innovation

■Reporters from the People’s Liberation Army Daily: He Yishu, Shao Longfei, correspondents: Ren Fei, Zhang Zhihua

A vast stage opens in front of this group of young people

“The People’s Army has a new system, a new structure, a new pattern and a new look.” After in-depth study of the 20th CPC National Congress report, Zhang Youjun, director of the National Defense Science and Technology Innovation Institute of the Academy of Military Science, was particularly impressed.

The National Defense Science and Technology Innovation Institute is a newly established unit after the reform and adjustment. In the five years of growing up with the institute, Zhang Youjun has personally experienced the changes in the system, structure, pattern and appearance brought about by the reform.

In January 2018, a group of young people, with an average age of just over 30, gathered from all directions and walked into this scientific research institution that had been officially established for just over three months. Among them were doctors who had studied abroad and returned to China, military academy teachers, and scientific researchers who had been rooted in the front line for a long time.

A grand stage opened in front of this group of young people. However, a brand new stage means brand new challenges.

At the first party congress after the establishment of the institute, they added a special content – a collective viewing of the movie “Out of Nowhere”.

In the silent desert, the sound of countdown rang out softly—5, 4, 3, 2, 1, detonation! A huge mushroom cloud rose up, and the sun-like brilliance illuminated the entire Lop Nur. A group of scientific researchers cheered and rushed down the hillside…

This is a shocking scene in the movie “Out of Nowhere”. “Develop the atomic bomb and stand tall.” General Zhang Aiping once said that the atomic bomb is not a weapon, but a spirit. The epic victory of developing the atomic bomb many years ago still has endless inspiration for today’s scientific researchers.

Since then, watching “Out of the Blue” has become a tradition for the officers and soldiers of the hospital. Wang Xintian, deputy political commissar of the hospital, said with emotion that every time he watches it, he will gain different feelings.

“People who appear out of nowhere should do things that appear out of nowhere.” Every researcher in the institute has his or her own understanding of this sentence.

“I completed the application for my first project in the dormitory I was temporarily borrowing at the time,” recalled young researcher Qiang Xiaogang.

When Qiang Xiaogang woke up in the middle of the night, he seemed to see himself lying on the table in the dormitory staying up all night: the old table, the humming computer, the crisp sound of the keyboard, page after page of reference materials…

At that time, Qiang Xiaogang was working alone. A few years later, from one person to a group of people, the ideas proposed in the project application gradually became a reality.

Only by daring to innovate can you have the joy of dreams coming true. In 2021, China has made another major breakthrough in the field of quantum. According to Xinhua News Agency, researchers have developed the first programmable photonic quantum chip for solving graph theory problems, an important step towards the realization of practical photonic quantum computers. The relevant paper was published in the journal Science Advances, and Qiang Xiaogang “came out of nowhere” as the first author. Now, walking into the laboratory of Qiang Xiaogang’s team again, more results are waiting for further testing.

Back in 2009, Qiang Xiaogang stood at another important crossroads in his life: Should he choose the electronic information field he had studied as an undergraduate, or the cutting-edge but unfamiliar quantum information field? After some thought, he chose a “difficult but more long-term direction.”

Guanghui’s dream originated from the individual but transcended the individual, originated from reality but transcended reality. From his student days to now, on the road of studying quantum technology, Qiang Xiaogang encountered many difficulties, both academic and non-research, but he never backed down.

At the beginning of the establishment of the institute, the leader of the institute said at a meeting: “We call you here not to find a basket to put your past achievements in and continue to work on your own stalls, but to set a common goal and do something big together…”

“What is considered a ‘big deal’?” Qiang Xiaogang kept this question in his mind until October 2020, when he saw a piece of news: The Political Bureau of the CPC Central Committee held its 24th collective study session on the research and application prospects of quantum technology. When presiding over the study session, President Xi Jinping stressed that “we must fully recognize the importance and urgency of promoting the development of quantum technology, strengthen strategic planning and system layout for the development of quantum technology, grasp the general trend, and take the initiative.”

Qiang Xiaogang felt a surge of warmth in his heart. The photonic quantum chip technology he was researching was the cutting-edge direction in the field of quantum technology. He was always calm, but now he was no longer calm: “No matter how hard I try, it’s worth it!”

“What I am doing now is what I want to do. When personal ideals and national interests are combined, no matter how hard the work is, it will not feel hard at all,” said Qiang Xiaogang.

In the eyes of researcher Cao Lu, ideals are born naturally on the road of common struggle. “I hope to perfectly concentrate the work results of my colleagues on a satellite to meet the needs of the country to the greatest extent possible.”

After studying the report of the 20th CPC National Congress, Cao Lu has a clearer view of the future direction. “Chairman Xi proposed that we should focus on original and leading scientific research based on the national strategic needs and resolutely win the battle to tackle key core technologies. We have a mission to fulfill and we have no choice but to do it.”

On October 26, young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science discussed research topics. Photo by Li Yichen

“Innovation requires youth. This era especially needs young people like you”

Inside the institute’s office building, blue light strips on the walls extend all the way forward, leading people to the “Two Bombs and One Satellite” Spiritual Culture Museum at the end of the corridor.

“The genes of a unit determine its future.” Lu Zhoulai, the political commissar of the institute, said that they chose to use the “two bombs and one satellite” spirit to build a solid spiritual foundation for this new team.

Red and blue are the two main colors of this exhibition hall.

Red is the color of loyalty. From the heroes of the “two bombs and one satellite” program to the younger generation of scientific researchers, we can see from them what it means that “each generation has its own mission and responsibility.”

Blue is the symbol of science and technology. Over the past five years, a large number of major scientific research results focusing on war preparation and intelligent technology have emerged, demonstrating the era of this new strategic scientific and technological force.

That year, researcher Yao Wen and several other scientific research backbones visited Academician Sun Jiadong, a founding member of the “Two Bombs and One Satellite”. Academician Sun Jiadong told them: “Innovation requires youth, and this era especially needs young people like you.”

The first generation of founders of the institute felt the same way about Sun Lao’s entrustment and expectations. “What is a founder? It is the half buried in the soil,” said Yin Erwei, an associate researcher.

“With people, there will be things to do. If there are no talents, then we will recruit them.” Yin Erwei and his colleagues boldly tried to quickly build a team by jointly training graduate students. In this way, they have grown from the initial five or six people to the only established team in this field in the entire military. Their research results won the first prize of the first “Innovation Cup” National Defense Science and Technology Innovation Competition of the Military Commission Science and Technology Committee.

In Yin Erwei’s opinion, the rapid development of the team is inseparable from the strong support of the institute’s leaders. The party committee of the institute has a slogan: “We must take the initiative to take responsibility for young people who do things.”

Among the many topics in the research institute, there are some technical problems that cannot be found in books. At this time, we must make a choice whether we dare to explore boldly and whether we can innovate.

“If one day, we at the National Defense Science and Technology Innovation Institute are afraid to innovate, that will be our biggest dereliction of duty.” This statement at the Party Committee plenary session set off a “brain storm” among everyone.

The leaders of the institute took the lead in entering the front line of scientific research, raising scientific research funds from various sources, building laboratories, and purchasing experimental equipment; for some key projects with higher risks, leading cadres and project managers took the lead in signing and taking responsibility on the spot; for major activities that require coordination of external resources, leading cadres personally come forward to “cheer up” the scientific researchers.

At that time, in order to apply for scientific research projects, Yin Erwei led the team to stay up many nights with bright lights.

As he led his team to go further and further, Yin Erwei gradually realized that “happiness actually comes from the passion and belief in doing things and starting a business.”

Associate researcher Guo Pengyu spends nearly two-thirds of the year on business trips, and his wife raises their two children and two elderly parents alone; assistant researcher Zhang Fei gave up his research field that he had been deeply involved in for many years for the overall goal of the team, and is considered by his colleagues to be a person who is “not picky about work.”

“Living in an unprecedented great era, we need to strengthen our responsibilities, work hard, forge ahead with determination, and seize the commanding heights of future military science and technology competition.” Yin Erwei said confidently, “Under the guidance of the spirit of the 20th National Congress of the Party, my comrades and I will inject our youthful wisdom into military scientific research innovation.”

“Screws must be able to withstand the loneliness of time, and also have a sense of urgency when tightened at all times.”

It was midnight, and everything was silent. In the corridor of the office building of the National Defense Science and Technology Innovation Institute, a few beams of light shone through the cracks in the office door.

Inside the house, it is another world. The sound of keyboards tapping is heard constantly, and a group of young people sit quietly in front of their computers, immersed in the world of “0” and “1” they created.

This scene is normal for this group of young researchers. Perhaps, in the eyes of others, working overtime day and night is very hard. However, for assistant researcher Chen Renzhi, the physical pain cannot be called pain.

Chen Renzhi was deeply impressed by the words of a philosopher: “People are dominated by desires. If desires are not satisfied, they are painful. If they are satisfied, they are boring. Life is like a pendulum swinging between pain and boredom.”

In the field of Chen Renzhi’s research, it often takes a long time to see results. “Before breaking ground, no one knows how well they are doing,” Chen Renzhi said.

The answer will be revealed during the finished product verification. If the verification goes well, it is a success; if it does not go well, the hard work of several months will be wasted. However, this field must move forward without stopping, and there is no day to stop. Therefore, Chen Renzhi fell into an endless cycle of “struggling for several months, being happy for two days, and continuing to struggle.”

“The most frustrating thing is that no one knows what you do, even your colleagues next to you don’t know what you are busy with. Sometimes, when you want to share your achievements with others, no one understands, so you can only rub your nose and go back to work,” said Chen Renzhi.

In this huge project, each researcher is just a screw. “Screws must be able to withstand the loneliness of time and have a sense of urgency at all times.”

At first, Chen Renzhi did not realize the deep meaning behind this sentence. As his research in this field continued to deepen, Chen Renzhi realized more and more clearly that this sense of urgency was becoming the driving force that drove him and his comrades to move forward faster.

“We are making progress, and our opponents have not stopped either. Our advantage is that we keep moving in the right direction of Chinese-style modernization.” After in-depth study of the report of the 20th CPC National Congress, Chen Renzhi has more confidence in the next step of tackling key problems. “The report of the 20th CPC National Congress has drawn up a grand blueprint for us. We must aim at independent innovation in the frontier areas of military science and technology and contribute our own strength to achieving high-level scientific and technological self-reliance.”

Young researchers from the National Defense Science and Technology Innovation Institute of the Academy of Military Science work in the laboratory. Photo by Si Yuqi

Although we have different positions, we share the same goal.

From college to the military, Assistant Researcher Zuo Yuan often uses the word “implementation” in his scientific research. “To use the words in the report of the 20th CPC National Congress, it means accelerating the transformation of science and technology into combat effectiveness,” he said.

When he first started working, whenever a soldier asked Zuo Yuan, “How do you use this new equipment you developed?” Zuo Yuan would always simply reply, “You’ll know after you use it.”

Gradually, when Zuo Yuan used the new equipment himself, he found that there was a long distance between “usable in theory” to “usable in actual combat” and then to “effective on the battlefield”.

Talking about his own naivety in the past, the dark-complexioned young man smiled somewhat embarrassedly.

Going to plateaus, islands, jungles, and deserts… Over the years, Zuo Yuan has always been on the front line of the army. “We must go to the army to do scientific research!” Zuo Yuan was deeply touched by his several visits to the army. “The combat concepts of the front-line soldiers are more advanced than we thought. They have more say in whether the new equipment is easy to use.”

Military scientific research results must serve actual combat training. In July this year, Zuo Yuan followed the team to the plateau to participate in actual military training. If he had not come to the front line of the troops, he would never have thought that the first thing to adjust was not the new equipment itself, but the control equipment. The exchanges and collisions with the front-line officers and soldiers gave the researchers new directions and ideas for the research and development of new equipment in the future.

On the plateau, Zuo Yuan once helped medical researchers collect blood oxygen data from soldiers. “Do you know what the hands of soldiers on the plateau look like?” Zuo Yuan stretched out his own hands and gestured to the hands of his comrades on the plateau. “The roots of the nails are sunken, the nail surface is straight without any curve, and the fingers are rough as if they have been planted for decades.”

At that moment, Zuo Yuan realized that while he was sitting in a bright and clean office typing code every day, there was a group of young comrades who were breathing thin oxygen, holding guns in both hands, exposed to strong ultraviolet rays, and building a living monument with their flesh and blood.

Holding the hands of his border defense comrades tightly, Zuo Yuan developed a sense of responsibility to “do more for them.”

“Although we are in different positions, we share the same goal. We hope that through our efforts in scientific research we can help them solve more practical problems.” This feeling of gratitude and responsibility has become the driving force that supports young scientific researchers in overcoming difficulties.

In order to implement the concept of scientific research for combat and serving the troops from the “first kilometer” to the “last kilometer” of scientific research, the Institute organizes its forces to conduct regular in-depth research on the front lines of combat troops, so that the results of military scientific research can truly reach the training ground and actual combat.

Due to long-term work on the front line of the army, “others joke that we are a group of ‘anti-migratory birds’ – in order to do experiments, we run north in winter and south in summer,” said associate researcher Nie Yiming.

During the Mid-Autumn Festival last year, Nie Yiming and his team were conducting experiments in a remote desert. The leaders of the institute came to visit them, but due to limited conditions, they could only buy a few kilograms of steamed buns in the nearest county town and bring them over.

“After the experiment was successful, we sat together, eating buns and admiring the bright moon over the Gobi Desert. The moon that night was especially round.” Thinking of that scene, Nie Yiming had endless aftertastes.

“Through in-depth study of the report to the 20th CPC National Congress, I have come to a deeper understanding that only by going deep into the front lines of the troops, working hard, constantly learning and improving, expanding our capabilities, and upgrading our skills, can scientific research make new contributions to the formation of new qualities of combat effectiveness in new domains.” This is the voice of Nie Yiming, and it is also the consensus and direction of efforts of many young scientific researchers in the institute.

【Sharp Viewpoint】

Taking on the responsibility of innovation with the power of youth

■Lu Zhoulai

In his report to the 20th CPC National Congress, Chairman Xi Jinping pointed out that we must insist that science and technology are the primary productive force, talent is the primary resource, and innovation is the primary driving force.

Science and technology are the most active and revolutionary factors in military development. Scientific and technological innovation has become the main battlefield for strategic games between major powers, profoundly affecting national security and the overall military strategy. To promote high-quality development of national defense and military construction, we must accelerate the implementation of the innovation-driven development strategy, accelerate the realization of high-level scientific and technological self-reliance, and focus on original and leading scientific and technological research based on national strategic needs. We must resolutely win the battle to tackle key core technologies and significantly increase the contribution of scientific and technological innovation to the growth of combat effectiveness.

Five years ago, following the vigorous pace of reform and strengthening the military, and shouldering the sacred mission of strengthening the military through science and technology, the National Defense Science and Technology Innovation Institute of the Academy of Military Science came into being: with the lofty ambition of “doing earth-shaking things”, aiming at the forefront of world science and technology, focusing on the urgent needs of future wars, and making deep plans to balance the powerful enemy’s advantage, it has forward-looking arrangements for a series of scientific research directions such as artificial intelligence, unmanned systems, and cutting-edge intersections. This can be said to be in line with the creation of the “two bombs and one satellite” cause that year.

Great undertakings require great spiritual nourishment, and the first driving force requires the first resource drive. More than 60 years ago, a large number of young scientific researchers, including Deng Jiaxian, Zhu Guangya, Yu Min, Sun Jiadong, and Zhou Guangzhao, with their broad love for the motherland and selfless dedication, their determination and hard work to be self-reliant, and their innovative spirit of strong collaboration and courage to climb, firmly took on the responsibility of national defense science and technology innovation and created the world-renowned “two bombs and one satellite” cause. Inspired by the cause of building a strong military in the new era, a large number of outstanding young people with an average age of only 30 years old and doctoral degrees from prestigious universities have gathered at the National Defense Science and Technology Innovation Institute. They have overcome difficulties along the way, focused on key breakthroughs, worked tirelessly to accelerate the advancement of scientific and technological self-reliance, and shed their youthful sweat, demonstrated their youthful strength, and demonstrated their youthful responsibility in innovation and transcendence.

Innovation is endless, and it is time to strive. At present, the world is undergoing a major change that has not been seen in a century, and a new round of scientific and technological revolution and military revolution is changing with each passing day. Facing changes in science and technology, changes in war, and changes in opponents, as an emerging scientific research force full of youthful vitality, the mission of establishing for the country and conducting research for war is extremely glorious, and the stage for striving for youth and pursuing the dream of a strong army is extremely broad. Striving to seize the commanding heights of national defense science and technology innovation and resolutely winning the battle to overcome key core technologies are always realistic issues that we must face and the heavy responsibility of the times that we must shoulder.

President Xi stressed that we should build a large-scale team of young scientific and technological talents, put the policy focus of cultivating national strategic talent on young scientific and technological talents, and support young talents to take the lead and play the leading role. President Xi’s important instructions deeply reveal the growth law of young scientific and technological talents and clearly indicate the direction of scientific and technological talent training. We will bear in mind President Xi’s entrustment, the trust of the Party and the people, vigorously promote the spirit of “two bombs and one satellite” and the spirit of scientists in the new era, and strive to cultivate and train young scientific and technological talents with ideals, courage, hard work and hard work, and bravely take on the responsibility of innovation with the power of youth, so that more new talents can take the lead and play the leading role in more and larger positions and platforms, and use practical actions to learn, publicize and implement the spirit of the 20th National Congress of the Party

現代國語:

中國人民革命軍事博物館,觀展的人絡繹不絕。來來往往的觀眾中,一個年輕的身影在展板前隊列許久。

注視著「新時代國防與軍隊建設成就展」展板上某型衛星的圖片,軍事科學院國防科技創新研究院研究員曹璐的眼裡充滿自豪。看著照片中一張張帶著微笑的熟悉面龐,曹璐想起了研製衛星的那段時光——

他們曾大半夜蓬頭垢面坐在電腦前敲著代碼,也曾四處尋找幹擾因素……記憶中的苦,越品越覺得甘甜。

「時代呼喚著我們,人民期待著我們,唯有矢志不渝、篤行不怠,方能不負時代、不負人民。」此時此刻,再次品讀黨的二十大報告中這句話,曹璐的感受更為深刻,“很幸運,我們這代青年科研人員趕上了一個好時代!奮進在科技強軍征途上,我倍感驕傲自豪。”

青春的力量,創新的事業。在軍事科學院國防科技創新研究院,許許多多和曹璐一樣的年輕科研人員,在科技強軍的舞台上勇於創新、甘於吃苦,不斷提昇科研成果對戰鬥力增長的貢獻率,加速科技向戰鬥力轉化。

「深入學習宣傳貫徹黨的二十大精神,具體到我們青年科研人員來說,就是要投身國防科技創新的時代洪流,紮根科研一線,做有理想、敢擔當、能吃苦、肯奮鬥的新時代好青年。

觀察樣本 軍事科學學院國防科技創新研究院

銳意進取,投身科技創新時代洪流

■解放軍報記者 賀逸舒 邵龍飛 通訊員 任飛 張志華

廣闊的舞台,在這群年輕人面前拉開布

「人民軍隊體制一新、結構一新、格局一新、面貌一新。」深入學習黨的二十大報告,軍事科學院國防科技創新研究院院長張擁軍感觸尤為深刻——

國防科技創新研究院,是改革調整後新成立的單位。跟隨研究院共同成長的這5年,張擁軍親身經歷了改革帶來的體制、結構、格局和麵貌變化。

2018年1月,一群平均年齡30歲出頭的年輕人,從四面八方匯聚到一起,走進這個正式掛牌成立僅3個多月的科研機構。他們中有留學歸國的博士,有教書育人的軍校教員,也有長期紮根一線的科研人員。

廣闊的舞台,在這群年輕人面前拉開布。然而,全新的舞台,意味著全新的挑戰。

建院後第一次黨代會,他們增加了一項專門內容——集體組織觀賞電影《橫空出世》。

寂靜的荒漠,讀秒的聲音輕輕響起--5、4、3、2、1,起爆!巨大的蘑菇雲升騰而起,太陽般的光輝照亮了整個羅布泊,一群科研人員歡呼著從山坡上一擁而下…

這是電影《橫空出世》中震撼人心的一個畫面。 「搞出原子彈、挺直腰桿。」張愛萍將軍曾說,原子彈不是武器,是一種精神。多年前研發原子彈的勝利史詩,對今天的科學研究人員仍有無盡的啟示。

從那以後,觀看《橫空出世》成為該院官兵的傳統。該院副政委王欣田感慨地說,每看一次,都會收獲不同的感動。

「『橫空出世』的人,就要乾『橫空出世』的事。」研究院每名科學研究人員對這句話都有著自己不同的領悟。

「我第一個項目的申請書,還是在當時臨時借用的宿舍裡完成的。」青年研究員強曉剛回憶。

午夜夢回,強曉剛彷彿又看到自己趴在宿舍桌上熬夜的情景:陳舊的桌子,嗡嗡作響的電腦,清脆的鍵盤聲,一頁又一頁的參考資料…

那時,強曉剛是單身一人攻關。幾年過去,從一個人到一群人,項目申請書中提出的構想,逐漸變成現實。

敢於創新,才能擁有夢想成真的喜悅。 2021年,中國在量子領域迎來了另一個重大突破。據新華社報道,研究人員研發出了首款面向圖論問題求解的可編程光量子晶片,邁出了實現實用化光量子計算機的重要一步。相關論文在《科學進展》期刊發表,強曉剛以第一作者的身份「橫空出世」。如今,再次走進強曉剛團隊的實驗室,更多成果等待進一步測試。

時間撥回2009年,強曉剛站在了人生又一個重要的路口前:研究生是選擇本科時的電子資訊方向,還是選擇前沿但陌生的量子資訊方向?經過一番思考,他選擇了一個「雖然充滿困難,但更為長遠的方向」。

光輝的夢想,萌生於個體而又超越了個體,來源於現實而又超越了現實。從學生時代到現在,在鑽研量子技術的道路上,強曉剛遇到了許多困難,有學術上的,也有研究之外的,但他從未退縮。

建院之初,研究院領導在一次會上說:「把你們召集來,不是找個籃子把你們過去的成果裝上,繼續忙自己那一攤,而是要樹個共同目標,一起乾點大事……”

「什麼才算『大事』?」這個問題,強曉剛埋在了心裡。直到2020年10月,他看到一則新聞:中共中央政治局就量子科技研究和應用前景舉行第二十四次集體學習。習主席在主持學習時強調,“要充分認識推動量子科技發展的重要性和緊迫性,加強量子科技發展戰略謀劃和系統佈局,把握大趨勢,下好先手棋。”

強曉剛心中湧起一股熱流。他所研究的光量子晶片技術,正是量子科技領域的前沿方向。向來淡定的他這下子也不淡定了:“再怎麼拼,也值!”

「我現在做的,都是我想做的事。當個人的理想和國家利益結合在一起,再苦也不會覺得苦。」強曉剛說。

在研究員曹璐看來,理想是在共同奮鬥的道路上自然而然誕生的。 “我希望,可以把同事們的工作成果完美地集中在一顆衛星上,最大限度地滿足國家的需求。”

深入學習黨的二十大報告,曹璐愈發明晰了未來的方向。 「習主席提出,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰。我們使命在肩,義不容辭。”

10月26日,軍事科學院國防科技創新研究院的青年科學研究人員探討科研課題。李奕辰 攝

“創新就要年輕,這個時代尤其需要你們這些年輕人”

研究院辦公樓內,牆上藍色的燈帶一路向前延伸,將人引向走廊盡頭的「兩彈一星」精神文化館。

「一支部隊的基因,決定了一支部隊的未來。」該院政委盧週來說,他們選擇用「兩彈一星」精神,為這支新隊伍構築起堅實的精神根基。

紅色與藍色,是這個展館的兩種主色。

紅色,是忠誠的寫照。從「兩彈一星」元勳到年輕一代科研人員,從他們身上可以看到,什麼是「一代人有一代人的使命,一代有一代人的擔當」。

藍色,是科技的象徵。 5年間,一大批聚焦備戰打仗、瞄準智慧科技的重大科研成果噴湧而出,展現了這支新型戰略科技力量的時代擔當。

那一年,研究員姚雯跟其他幾名科研骨幹一起拜訪「兩彈一星」元勳孫家棟院士。孫家棟院士對他們說:“創新就要年輕,這個時代尤其需要你們這些年輕人。”

研究院的第一代創業者,對孫老的囑託和期望感同身受。 「奠基人是什麼?就是埋在土裡那半截。」副研究員印二威說。

「有人,才有事。沒有人才,那我們就去吸納人才。」印二威和同事大膽嘗試,採用聯合培養研究生的方式,快速組建團隊。就這樣,他們從最初的五、六個人,發展到如今成為全軍該領域唯一一支成建制的團隊,研究成果獲得軍委科技委首屆「創新盃」國防科技創新大賽一等獎等獎項。

在印二威看來,團隊的快速發展,離不開院領導的大力支持。研究院黨委有句口號:“要主動為幹事的青年人擔責。”

研究院的眾多課題中,有些技術難題,書本上是找不到答案的。這個時候,敢不敢大膽探索,能不能有所創新,必須做出選擇。

「如果有一天,我們國防科技創新研究院都不敢創新了,那是我們最大的失職。」黨委全會上的一句話,掀起了大家的「頭腦風暴」。

研究院領導帶頭走進科研一線,多方籌措科研經費,修建實驗室,購置實驗設備;一些風險較高的重點項目,領導幹部和項目負責人帶頭簽字,現場擔責;需要協調外部資源的重大活動,領導幹部親自出面,為科研人員「打氣」。

那時候,為了申請科學研究項目,印二威帶領團隊不知熬了多少個燈火通明的夜晚。

帶領自己的團隊越走越遠,印二威逐漸體會到:“幸福感,其實就是來自幹事創業的激情和信仰。”

副研究員郭鵬宇,一年裡有近三分之二時間都在外出差,他的愛人獨自帶著兩個孩子和兩位老人撐起了家;助理研究員張飛,為了團隊的整體目標,放棄了自己深耕多年的研究領域,是同事們眼中「不挑活兒」的人。

「身處前所未有的偉大時代,更需要我們強化擔當,奮發作為,銳意進取,搶佔未來軍事科技競爭的製高點。」印二威信心滿懷地說,「在黨的二十大精神指引下,我和戰友們將把青春智慧融注到軍事科研創新中。

“螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感”

子夜,萬籟俱寂。國防科技創新研究院辦公大樓走廊內,幾束光從辦公室緊閉的門縫中鑽出來。

屋內,是另一個世界。鍵盤的敲擊聲不絕於耳,一群年輕人安靜地坐在電腦前,沉浸在自己創造的「0」與「1」的世界。

這樣的場景,對這群年輕的研究人員來說已是常態。或許,在別人看來,夜以繼日地加班十分辛苦。然而,對助理研究員陳任之來說,身體上的苦,並不能稱之為苦。

陳任之對一位哲學家的話印象深刻:“人受慾望支配,慾望不滿足就痛苦,滿足了就無聊,人生如同鐘擺在痛苦和無聊之間搖擺。”

陳任之研究的領域,往往需要漫長等待才能看見成果。 「在沒有破土之前,誰也不知道自己做得怎麼樣。」陳任之說。

答案,會在成品驗證時揭曉。驗證順利,就是成功;不順利,幾個月的辛苦就付諸東流。而這個領域偏偏必須馬不停蹄地前進,永遠沒有能停下腳步的一天。於是,陳任之陷入了「奮鬥幾個月、開心兩天、繼續奮鬥」的無限循環。

「最鬱悶的是,沒人知道你幹什麼,就連隔壁同事都不清楚你在忙什麼。有時候,想和別人分享成就,也沒有人理解,只能摸摸鼻子,回去繼續幹。」陳任之說。

在這個巨大的工程裡,每位研究人員只是一顆螺絲釘。 “螺絲釘,既要耐得住時間的寂寞,還要有時時擰緊的緊迫感。”

一開始,陳任之並沒有體味到這句話背後的深意。隨著在這一領域研究不斷加深,陳任之愈發清醒地體會到,這種緊迫感正成為驅動他和戰友們加速前進的動力。

「我們在進步,對手也沒有停下來。我們的優勢就是沿著中國式現代化的正確方向不斷走下去。」 深入學習黨的二十大報告,陳任之對下一步的攻關更有信心了, “黨的二十大報告為我們擘畫出了宏偉藍圖,我們要瞄準軍事科技前沿領域自主創新,為實現高水平科技自立自強貢獻自己的力量。”

軍事科學院國防科技創新研究院青年科研人員在實驗室工作。司玉祺 攝

雖然戰位不同,但我們奮鬥的目標一致

從大學校園到步入部隊,助理研究員左源在科學研究工作中常用的一個字是「落地」。 「用黨的二十大報告裡面的話,就是加速科技向戰鬥力轉化。」他說。

工作之初,每逢有部隊官兵問左源:“你們研發的這個新裝備怎麼用?”左源總是簡單地回復一句:“你用一下就知道了。”

漸漸地,當左源自己實地使用新裝備時才發現,從“理論上能用”到“實戰中能用”再到“戰場上好用”,中間隔著很長一段距離。

談到自己當初的幼稚,這個臉色黝黑的年輕人有些不好意思地笑了。

上高原,下海島,闖密林,踏戈壁……這些年來,左源始終奔波於部隊一線。 「我們做科研,一定要到部隊去!」幾次下部隊的經歷,讓左源感觸頗深,「一線部隊官兵的作戰理念,比我們想像中更先進。新裝備好不好用,他們更有話語權。

軍事科研成果必須服務演訓實戰。今年7月,左源跟隨團隊前往高原參加實兵演練。如果不是來到部隊一線,他根本想不到,首先要調整的並非新裝備本身,而是操控設備。與一線官兵的交流碰撞,讓科學研究人員對未來新式裝備的研發有了新的方向與想法。

在高原上,左源曾幫醫學研究人員收集過官兵們的血氧數據。 「你知道高原官兵的手,是什麼樣子的嗎?」說著,左源伸出自己的雙手,比畫著高原上戰友們手的樣子,「指甲根部下陷,甲面平直沒有絲毫弧度,手指粗糙得像種了幾十年地。

那一刻,左源意識到,當他日常坐在窗明幾淨的辦公室敲著代碼時,有這樣一群年輕的戰友,呼吸著微薄的氧氣,雙手持槍暴露在強烈的紫外線中,用血肉之軀築就活的界碑。

緊緊握住邊防戰友們的手,左源產生了一種「想多為他們做些什麼」的責任。

「雖然戰位不同,但我們奮鬥的目標一致。希望透過我們在科研上的努力為他們解決更多實際問題。」這份感動與責任,化為支撐青年科研人員不斷攻堅克難的動力。

為了把科研為戰、服務部隊的理念從科研“最初一公裡”貫注到“最後一公裡”,研究院組織力量常態化深入作戰部隊一線調研,讓軍事科研成果真正走向演訓場、走向實戰。

由於長期奔波在部隊一線,「別人開玩笑說,我們是一群『反候鳥』——為了做實驗,冬天往北跑,夏天往南跑。」副研究員聶一鳴說。

去年中秋節,聶一鳴和團隊正在偏僻的沙漠裡做實驗。研究院領導來慰問,條件有限,只能在最近的縣城買了幾斤包子帶過去。

「實驗成功後,我們圍坐一起,吃著包子,賞著戈壁灘上的明月。那晚的月亮,特別圓。」想起那一幕,聶一鳴回味無窮。

「深入學習黨的二十大報告,我更深切體會到,只有深入部隊一線,埋頭苦幹,不斷學習提高、能力擴容、本領升級,才能使科研工作在新域新質戰鬥力生成上有新的作為。

【銳視點】

以青春之力勇擔創新之責

■盧週來

習主席在黨的二十大報告中深刻指出,必須堅持科技是第一生產力、人才是第一資源、創新是第一動力。

科學技術是軍事發展中最活躍、最具革命性的因素。科技創新成為大國戰略博弈的主戰場,深刻影響國家安全和軍事戰略全局。推動國防和軍隊建設高質量發展,必須加快實施創新驅動發展戰略,加快實現高水平科技自立自強,以國家戰略需求為導向,集聚力量進行原創性引領性科技攻關,堅決打贏關鍵核心技術攻堅戰,大幅提昇科技創新對戰鬥力成長的貢獻率。

5年前,伴隨改革強軍鏗鏘步伐,肩負科技強軍神聖使命,軍事科學院國防科技創新研究院應運而生:胸懷「幹驚天動地事」的遠大志向,瞄準世界科技前沿,聚焦未來戰爭急需,深謀制衡強敵勝勢,前瞻佈局人工智慧、無人系統、前緣交叉等一系列科研方向,與當年開創「兩彈一星」事業可謂一脈相承。

偉大事業需要偉大精神滋養,第一動力需要第一資源驅動。 60多年前,鄧農先、朱光亞、於敏、孫家棟、周光召等一大批年輕科研工作者,以熱愛祖國、無私奉獻的博大情懷,以自力更生、艱苦奮鬥的決心乾勁,以大力協同、勇於登攀的創新銳氣,堅定扛起國防科技創新的責任擔當,開創了舉世矚目的「兩彈一星」事業。在新時代強軍事業感召下,一大批平均年齡僅有30多歲、具有名校博士學歷的優秀青年集聚國防科技創新研究院,一路攻堅克難,聚力攻關突破,為加快推進科技自立自強不懈奮鬥,在創新超越中揮灑青春汗水、展現青春力量、彰顯青春擔當。

創新永無止境,奮鬥正當其時。當前,世界百年未有之大變局正在加速演變,新一輪科技革命和軍事革命日新月異。面對科技之變、戰爭之變、對手之變,作為一支充滿青春活力的新興科研力量,為國而立、因戰而研的使命無比榮光,奮鬥青春、逐夢強軍的舞台無比廣闊。奮力搶佔國防科技創新制高點,堅決打贏關鍵核心技術攻堅戰,始終是我們必須直面的現實課題、必須扛起的時代重任。

習主席強調,要造就規模宏大的青年科技人才隊伍,把培養國家戰略人才力量的政策重點放在青年科技人才上,支持青年人才挑大樑、當主角。習主席的重要指示,深刻揭示了青年科技人才成長規律,鮮明標示了科技人才培養方向。我們將牢記習主席囑托,牢記黨和人民重托,大力弘揚「兩彈一星」精神、新時代科學家精神,致力培養鍛造有理想、敢擔當、能吃苦、肯奮鬥的青年科技人才,以青春之力勇擔創新之責,讓更多新銳英才在更多更大的崗位平台挑大樑、當主角,用實際行動學習宣傳貫徹黨的二十大精神。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/gfjy_index/4924882.html

How Can Chinese Military Research Institutes Achieve “accelerated” Innovation in National Defense Science and Technology?

中國軍事科學研究院所如何實現國防科技創新「加速」?

現代英語:

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

Standing at the forefront of the times, how can military research institutes promote the implementation of the national defense science and technology innovation strategy and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please read the news investigation brought by the PLA Daily reporter from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Defense Science and Technology Innovation: Forging a Powerful Engine to Enhance National Defense Strength

■China National Defense News reporter Pan Di and special correspondent Zhao Jie

At present, a new round of scientific and technological revolution, industrial revolution and military revolution is accelerating, and emerging fields such as space and the Internet will become the focus of future competition. The rapid development of science and technology, the ever-changing weapons and equipment and combat methods have put forward new requirements for military research institutes to conduct full-domain battlefield research.

President Xi Jinping stressed the need to strengthen national defense science and technology innovation and vigorously improve the ability of independent innovation in national defense science and technology when attending the plenary meeting of the PLA and armed police delegation at the first session of the 13th National People’s Congress. Standing at the forefront of the times, how can military research institutes promote the implementation of national defense science and technology innovation strategies and transform scientific research results into real combat effectiveness? How can we achieve the transition from “squatting to running” to “jumping” in scientific and technological innovation and achieve “acceleration” in scientific and technological innovation? Please see the news investigation brought by reporters from the National Defense Engineering Research Institute of the Academy of Military Sciences.

Research direction——

We must work hard to study and strive for the future, and never lose our ambition

In late March, at a research institute of the National Defense Engineering Research Institute, researchers who had completed the experimental content of a project were busy collecting, organizing and analyzing data, which also meant that a forward-looking topic they had been studying had entered the finalization stage.

A few years ago, when the concept of a certain type of weapon was just proposed, researchers were keenly aware that with the continuous development of science and technology, once this type of weapon breaks through the technical barriers and is successfully developed, it will bring new challenges to the construction of national defense projects. Time waits for no one, and they have planned in detail the research direction of the subject and the key issues that need to be solved in combination with the current status of my country’s national defense projects. Today, the project team has basically mastered the damage effect of a certain new type of weapon on the target, and has proposed a new protection concept accordingly.

The successful completion of the project stems from the accurate aiming of the scientific research target, and the establishment of the scientific research direction is due to the keen insight and foresight of the scientific research team. This kind of forward-looking research is not an isolated case in the institute.

Engineer Han Yu recalled that as early as the 1980s, the research staff of the institute proposed the research direction of information warfare in the future war based on the development trend of warfare. After extensive data collection, investigation and understanding of the situation, and analysis of research rules, they outlined a forward-looking development blueprint for this research direction.

Thanks to the long-term research accumulation on informationized combat styles, after the institute formally established the relevant protection research laboratory last year, the laboratory’s researchers have been advancing related scientific research topics in an orderly and intensive manner.

The application and research cycle of a project is long, ranging from a few years to more than ten years, or even longer. If the research topic lacks foresight, the scientific research direction is not closely connected to the battlefield, and the results are difficult to help improve the combat effectiveness of the troops, it will inevitably cause a waste of manpower and material resources. In response to this situation, the institute clearly requires: “For research topics related to national defense projects, if they are not practical and forward-looking, they will not be allowed to be established.”

“Our research results usually have to be tested in the training ground, and the opinions and suggestions from the troops are summarized and collected on the feedback form, which provides an important reference basis for the next step of scientific research.” Wang Mingzhe, an engineer who is about to visit a certain test site, told reporters that in order to make the research topics stand the test of future wars, the researchers of the institute often go to plateaus and islands, and travel all over the country to investigate, inspect and demonstrate.

A few years ago, when conducting research in the army, researchers discovered that the camouflage cloth used by a brigade during a live-fire exercise was not conducive to camouflage and cover in special terrain. In response to the problem, researchers quickly organized a research project and designed a new information-based shielding system and cloth, making battlefield laying more convenient, faster, more confusing and concealed.

“When attending the plenary meeting of the People’s Liberation Army and the Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi stressed the need to pay close attention to the development trends of world military technology and weaponry. Indeed, conducting scientific research is like fighting a war. Only with a forward-looking vision can we win the commanding heights in overcoming difficult problems and seize the initiative for victory.” Speaking of the institute’s project approval standards, researcher Liu Ruichao said with emotion that scientific research in the field of national defense engineering must conform to the latest trends in combat styles and weapon development, and take one step ahead while being down-to-earth.

Scientific research talents——

How can the water be so clear? Because it comes from a source of fresh water.

“Look, these are the cracks that appeared after treatment…” On the afternoon of March 13, a laboratory of the institute was occasionally filled with the sound of machines roaring and explanations of experimental content.

In the laboratory, the reporter saw a soldier with gray hair in military uniform. Researcher Chen Anmin told the reporter that the old man was Gu Jincai, an academician of the Chinese Academy of Engineering, and the voice just heard outside the door was Academician Gu explaining the experiment content to the young backbone.

As an academician, the scientific research tasks are already very busy and there is no need for him to always be on the front line. However, Academician Gu, who is already 80 years old, still insists on patiently and meticulously teaching his apprentices and leading the team.

“Academician Gu and his group of veteran comrades have been working on the front line since the establishment of the unit, providing hands-on training and guidance to scientific researchers. I am especially grateful to the predecessors for their guidance and support in getting to where I am today.” Engineer Ma Dongliang is deeply impressed by the good atmosphere of the institute.

In 2009, Ma Dongliang was assigned to a research institute in the Central Plains. As a new employee, Ma Dongliang, who had not yet understood the content of his job, thought he would be assigned to do some “odd jobs” such as organizing documents. What he did not expect was that he was entrusted with an important task as soon as he arrived at the unit and participated in a major protection research project throughout the process.

“The project team is full of teachers with many books, and I, a ‘rookie’, can complete the project tasks?” Ma Dongliang recalled that he was both excited and terrified at the time. After working in the institute for a long time, he learned that the institute would formulate a capacity improvement plan for each key talent, formulate a targeted training plan for those with development potential, and cultivate a team of key talents through job training, sending students to study, cooperation and exchange, etc.

At the 2017 National Science and Technology Awards Commendation Conference, the project in which Ma Dongliang participated won the second prize of the National Science and Technology Progress Award. What surprised him was that the project leader put him in the position of the seventh author after considering everyone’s contribution, which is not only an honor but also a spur and encouragement for young researchers.

“My contribution to scientific research has not been ignored just because I am young. This is also an important reason why our young backbones stay here to concentrate on scientific research. The evaluation of awards focuses on professional ability and contribution. When evaluating and adjusting positions, it is not based on awards or achievements, but on comprehensive evaluation.” Ma Dongliang told reporters that he is currently working on four projects at the same time, working more than 10 hours a day, and working overtime on weekends is the norm. As he said, this fair competition method and evaluation mechanism make them “excited” and “energized” to do scientific research here.

Like Ma Dongliang, there are many young backbones born in the 1980s who like the talent training atmosphere of the institute and engage in scientific research and have achieved success and development. Some have become senior engineers, and some have served as laboratory leaders. A large number of scientific research backbones have grown rapidly here.

Research conditions——

The phoenix will come to roost when the phoenix tree is lush and leafy.

If information technology is the “multiplier” of combat effectiveness, then scientific research conditions are the “incubator” that gives birth to innovative results.

During the interview at the research institute, the reporter found that the place where the researchers spent the longest time was the test site.

At a test site of the institute, the reporter met Associate Researcher Xu Xiangyun who was preparing the test content. He told the reporter that each research room has several laboratories or test sites built according to the needs of scientific research projects. In addition to purchasing local mature technology products, most of the equipment is independently developed. A new type of test equipment next to him was developed and put into use last year.

At the end of 2012, a new type of weapon was released abroad. According to information obtained by scientific and technological personnel, its attack performance and its destructiveness to protective projects are astonishing, and it is likely to cause many protective projects to lose their due effectiveness.

As it concerns the safety of national defense projects, researchers need to find out the relevant performance of this type of weapon as soon as possible, and to obtain the most accurate information, they need to conduct relevant tests. Because it is a new type of weapon, there is no alternative test method in China, and it often takes 3 years or even longer to apply for the development of test equipment. This practical problem made the researchers of the institute frown. What should they do?

“A special research team composed of academicians and experts will be established to work together to overcome difficulties.” After the researchers reported the situation, the institute also invited experts in related fields from all over the country to discuss the matter. After multiple scientific discussions, they immediately decided to start the development of the test equipment as soon as possible.

In 2015, the Institute developed a certain type of test equipment when most similar test equipment in China could only be used in a fixed manner. With the test equipment, the research team quickly began to apply for a certain evaluation test project. Today, the research team has successfully conducted tests such as weapon power research and target damage, and has proposed new protection concepts and structures accordingly.

“Today, a big challenge facing military research institutions is how to fully mobilize the enthusiasm, initiative and innovation of researchers. We must try our best to provide researchers with advanced research conditions in a timely manner to ensure innovative research.” said the leader of the institute. In recent years, they have successively built an engineering comprehensive demonstration environment laboratory with an area of ​​more than 1,000 square meters and more than 200 sets of equipment and software, as well as dynamic and static load test platforms.

If you want to do your work well, you must first sharpen your tools. At present, while continuing to implement the tasks of scientific research conditions construction, the institute focuses on the current situation at home and abroad and the development trend of related majors, actively plans new scientific research conditions construction projects, and promotes the application of the “Major Underground Engineering Safety” National Key Laboratory. A project aimed at the protection technology research of the world’s cutting-edge weapons will be carried out in the newly built simulation test center…

Accelerate national defense science and technology innovation

■Weidong

At the plenary meeting of the PLA and Armed Police Force delegation at the first session of the 13th National People’s Congress, President Xi Jinping stressed the need to strengthen national defense science and technology innovation, accelerate the construction of a military-civilian integration innovation system, and vigorously improve the independent innovation capabilities of national defense science and technology. This important thought profoundly reveals the objective laws of national defense science and technology development and points out the direction for the prosperity and development of modern military science.

In recent years, as the strategic commanding heights of science and technology have accelerated their development to the deep earth, deep sea and deep space, the forms of war and combat styles have undergone profound changes, and the process of transforming combat theories into battlefield actions and technology into equipment has continued to accelerate, and the cycle has been further shortened. Many military powers have seen the dawn of intelligent military transformation and have launched a new round of military technology innovation.

In the face of the ever-changing technological development, military research institutes must take the lead in the national defense science and technology game, take the opportunity of reshaping the military research system, stand at the overall height of ensuring victory in the informationized war, step up the strategic transformation, and firmly grasp the “bull’s nose” of independent innovation, so as to take the initiative in the grand journey of becoming world-class.

Qian Xuesen once said that national defense science and technology innovation must not be satisfied with “chasing tail” or “looking in the mirror”. Military research institutes should be bold in their ideas, have the courage to emancipate their minds, break the mindset, make macro plans for their long-term development, and optimize the top-level design. At the same time, they should also carry out forward-looking demonstrations of the needs for the development of national defense science and technology innovation, independently and proactively carry out basic, leading, and disruptive innovative technology research, keenly discover new directions and new fields for the generation of new quality combat effectiveness, and strive to stand at the forefront and be at the forefront of the world’s military science and technology competition.

It is the duty of the general to not forget to fight while defending; it is the duty of the soldiers to be well-prepared for training. Focusing on actual combat is both a goal and a guide. Military research institutes should firmly establish the idea of ​​research for combat, implement President Xi’s instructions and requirements of “facing the battlefield, facing the troops, and facing the future”, and follow the requirements of “improving joint combat capabilities and all-domain combat capabilities based on network information systems”. We should strive to conduct research in the way the war is fought and what is needed for the war, focus on improving the contribution rate of military research and innovation to the combat effectiveness of the troops, and continuously provide strong scientific and technological support for strengthening the army.

A first-class army needs first-class scientific research units, and first-class scientific research units need first-class talents. Only when talents emerge in competition can there be a burst of innovative vitality. Military scientific research institutes should always adhere to the awareness of talent cultivation as the main battlefield, highlight the cultivation of creative thinking and innovative capabilities of military scientific researchers, rely on first-class military talents to create first-class military theories and first-class military technology, and implant the winning genes for decoding future wars into the body of the army.

President Xi stressed that we should focus on the coordinated innovation of military and civilian science and technology in key areas. The fields of national defense science and technology and weapons and equipment are the focus of military-civilian integration. As military research institutes, we should focus on meeting national strategic needs, integrating into the national scientific research system, strengthening the coordinated research of major projects, and strengthening the deep integration of industry, academia and research. Relying on the superior resources of the military and the local government, we should strengthen the strategic cooperation between the military and the local government, build a service platform for the joint research and sharing of national defense science and technology achievements, the joint construction and sharing of conditions and facilities, and the connection of common standards between the military and the local government, and form a new situation of open, integrated and innovative development of national defense science and technology.

Stride forward, reshape and reconstruct is not a minor repair, and must not be a small fight. We must seize the opportunity of the start, release the starting momentum, take steps and speed up in key areas, important directions and major tasks, and create new models and set new benchmarks as soon as possible, so as to take the lead in achieving leading results in the world military science and technology competition, occupy a number of strategic commanding heights and winning points, use first-class military technology to create a first-class combat offense and defense system, and gradually achieve the goal of building a first-class army.

(Author’s unit: National Defense Engineering Research Institute, Academy of Military Sciences)

Military scientific and technological innovation should focus on basic scientific research, improve basic scientific research support capabilities, and lay a solid foundation for national defense scientific and technological innovation.

In recent years, we have made great progress in the field of national defense science and technology, but there is still a gap with foreign countries in some key technologies, mainly because the basic research is not solid enough, and there is still room for improvement in professional basic theoretical research, digital military simulation platform development, large-scale distributed numerical computing technology, etc. These factors have restricted the scientific research progress and development in the military field to a certain extent, affecting the emergence and breakthroughs of cutting-edge leading technologies, modern engineering technologies, and disruptive technological innovations.

Basic key technologies cannot be bought, and you will not get far if you rely on buying second-hand technologies from abroad. We should start from the aspects of top-level planning design, scientific research management system, and incentive mechanism for scientific researchers, attach importance to and support basic research work, carry out basic research work in depth, and enhance original innovation capabilities.

Military research institutions must break down the “barriers” between the military and civilian science and technology systems, and focus on collaborative innovation in military and civilian science and technology in key areas.

With the rapid development of high-tech weapons and equipment, the styles and forms of warfare are constantly changing, which puts higher requirements on battlefield construction. We must actively explore many disciplines such as earth sciences, high-tech equipment manufacturing, and automatic control, and study the construction of a full-domain intelligent battlefield.

Based on this, military research units need to cooperate with local governments to jointly carry out in-depth engineering research, integrate high-quality local military resources in the fields of electronic information, drones, artificial intelligence and bionics, and use the best scientific and technological resources in the country to build a modern military force system. For our national defense engineering field, we must attach importance to promoting the application of building information modeling (BIM) in military engineering and realize the informationization and refined management of engineering construction and operation and maintenance.

Innovation-driven development is essentially talent-driven. Whoever possesses first-class innovative talents will have the advantage and dominance in scientific and technological innovation.

At present, the most urgent need for strengthening national defense and military construction is talent; looking to the future, the core of achieving leapfrog development in military construction is still talent. Only by fully driving the talent training engine can we strongly promote independent innovation in national defense science and technology.

Many years of experience in scientific research have made me feel that talent cultivation is a systematic project and strategic task. We need to focus on the overall situation, strengthen top-level design, scientifically set up echelons, and strive to create a vivid situation where outstanding talents emerge and everyone competes to be a “maker” in the military camp. Talent cultivation has its inherent characteristics and laws. It cannot be achieved overnight or in a short period of time. We need to firmly establish a scientific concept of talent cultivation, with the ideological realm and confidence and courage of “success does not have to be mine, but the effort will not be in vain”, and work hard for a long time and continue to relay, so as to turn the talent cultivation blueprint into reality and provide solid talent support for the development of the military through science and technology.

Conducting military scientific research is like fighting a war. Only with a forward-looking vision can you gain the commanding heights in overcoming difficult problems and seize the initiative for victory.

In recent years, national defense science and technology at home and abroad has developed rapidly, the all-round reconnaissance technology integrating land, sea, air and space has been continuously improved, the use of troops and weapons supported by highly information technology on the battlefield and the emergence of new weapons have greatly changed the combat style and characteristics of future wars. Scientific researchers must deeply grasp and base themselves on the characteristics of future wars and carry out innovative scientific research in a targeted manner.

Specifically in the field of national defense engineering research, military researchers must keep up with the forefront of the development of world weapons and equipment and protection technology, and focus on preventing both “hard kill” and “soft kill”; they must pay attention to the protection of key parts as well as the protection of the overall system; they must do a good job in passive protection, and also track and study active protection and new weapon protection technologies, promote disruptive technological innovation, and strive to improve the battlefield survivability and combat support capabilities of national defense engineering.

現代國語:

目前,新一輪科技革命、工業革命、軍事革命正加速推進,太空、網路等新興領域將成為未來競爭的焦點。科學技術日新月異,武器裝備和作戰方式日新月異,對軍事科學研究院所進行全域戰場研究提出了新的要求。

站在時代前沿,軍隊科學研究院所如何推動國防科技創新戰略實施,將科學研究成果轉化為現實戰力?如何實現科技創新從“蹲著跑”到“跳起來”,實現科技創新“加速”?請閱讀解放軍報記者軍事科學院國防工程研究所帶來的新聞調查。

國防科技創新:為提升國防實力鍛造強大引擎

■中國國防報記者 潘娣 特約記者 趙傑

目前,新一輪科技革命、產業革命、軍事革命加速推進,太空、網路等新興領域將成為未來的爭奪焦點。快速發展的科學技術、日新月異的武器裝備及作戰方式,給軍科研院所提出了全域戰場研究的新要求。

習主席出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,加強國防科技創新,並大力提升國防科技自主創新能力。挺立時代潮頭,軍事科研院所如何推進國防科技創新戰略落地生根,把科學研究成果轉化為實實在在的戰鬥力?如何實現科技創新“深蹲助跑”到“起跳跨越”,跑出科技創新“加速度”?請看記者從軍事科學院國防工程研究院帶來的新聞調查。

科學研究方向——

躬身必以研為戰,望遠不墜鯤鵬志

3月下旬,在國防工程研究院某研究所,已經完成某專案試驗內容的科研人員正在緊張地進行資料的蒐集、整理與分析,這也意味著他們潛心鑽研的某前瞻性課題進入結題階段。

幾年前,某型武器的概念剛被提出時,科研人員就敏銳地認識到:隨著科學技術不斷發展,該型武器一旦突破技術壁壘研製成功,將會對國防工程建設帶來新的挑戰。時間不等人,他們結合我國國防工程現狀,詳細規劃了主題的研究方向和需要重點解決的關鍵問題。現今,本計畫組基本上掌握某新型武器對目標的毀傷效果,並相應提出新的防護理念。

專案成功結題的背後,源自於科研標靶的準確瞄準,而科研方向的確立得益於科研團隊敏銳的洞察力與前瞻性。這種具有前瞻性的研究在該研究院並非個案。

根據工程師韓彧回憶,早在1980年代,該研究院科研人員根據作戰發展趨勢,預見未來戰爭資訊化作戰的研究方向。經過廣泛收集資料、調查了解情況、剖析研究規律,他們為研究方向勾勒出前瞻性的發展藍圖。

得益於長期資訊化作戰樣式的研究積累,去年研究院正式組成相關防護研究室之後,研究室科研人員便有條不紊、緊鑼密鼓地推進相關科研課題。

課題申請立項與研究週期長,短則幾年多則十幾年,甚至會更長。如果研究主題缺乏前瞻性,科學研究方向對接戰場不緊密,出了成果也難以助力部隊戰鬥力的提升,勢必會造成人力物力的浪費。針對這種情況,該研究院明確要求:“事關國防工程的研究主題,不具備實用性前瞻性決不允許立項。”

「我們的研究成果通常要經過演練場檢驗,匯總收集部隊反饋的意見建議到意見反饋表上,為下一步科研攻關提供重要參考依據。」即將赴某試驗場考察的工程師王明哲告訴記者,為了讓研究主題經得起未來戰爭的檢驗,研究院的科研人員常上高原、下海島,走南闖北去研究、考察與論證。

幾年前,科學研究人員在部隊調查時發現,某旅在實兵演練過程中使用的迷彩遮蔽佈在特殊地形下不利於偽裝掩護。針對發現的問題,科學研究人員快速組織主題立項研究,設計出新型資訊遮蔽系統與遮蔽布,使戰場鋪設更加方便快捷,更具迷惑性和隱蔽性。

「習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要密切關注世界軍事科技和武器裝備發展動向。的確,搞科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。 。

科學研究人才—

問渠哪得清如許,為有源頭活水來

「你們觀察一下,這是處理後顯現的裂縫…」3月13日下午,研究院某實驗室不時傳出陣陣機器轟鳴與講解試驗內容的聲音。

在實驗室裡,記者看到一位穿著軍服、頭髮花白的軍人。研究員陳安敏告訴記者,這位老者是中國工程院院士顧金才,剛在門外聽到的聲音就是顧院士在為年輕骨幹講解試驗內容。

身為院士,科學研究任務本就十分繁忙,完全不需要一直盯在一線,但已經80歲高齡的顧院士卻仍堅持耐心細緻地教徒弟、帶團隊。

「顧院士那一批老同志自單位成立以來就一直奮戰在一線,手把手地對科研人員進行傳幫帶。我能走到今天特別感謝前輩們的教導和扶持。」工程師馬棟良對研究院良好的氛圍感受頗深。

2009年,馬棟良被分配到地處中原地的某研究所。新到工作單位,還沒了解工作內容的馬棟良以為會被派去幹一些整理文檔的“雜活兒”,讓他沒想到的是,剛到單位就被委以重任,全程參與某重大防護研究課題。

「專案組裡都是著作等身的老師,而我一個『菜鳥』能把專案任務完成好嗎?」馬棟良回想當時的心情既激動又惶恐。他在研究院待久了才知道,原來研究院對每位骨幹人才都會製訂能力提升計劃,對有發展潛力的針對性製訂培養方案,透過崗位鍛鍊、送學培養、合作交流等方式,培養骨幹人才方隊。

在2017年度國家科學技術獎勵表揚大會上,馬棟良參與的這個計畫獲得國家科學技術進步獎二等獎。讓他既驚訝又意外的是,專案組組長綜合考慮每個人的貢獻後,將他放在了第七作者的位置,這對年輕科研人員來說既是榮譽,更是鞭策和激勵。

「並沒有因為年輕就忽略我在科研中的貢獻,這也是我們年輕骨幹留在這裡潛心搞科研的重要原因。評獎看重專業能力與所作所為,在評職調級時不唯獎不唯成果,而是依據綜合性評估。如他所說,這種公平的競爭方式與評價機制,讓他們在這裡搞科研「得勁兒」「有勁兒」。

而和馬棟良一樣,喜歡研究院人才培養氛圍而深耕科研,並取得成就與發展的「80後」年輕骨幹不在少數,有的成為了高級工程師,有的擔任了研究室領導,一大批科研骨幹在這裡快速成長起來。

科學研究條件——

梧桐枝繁葉茂,自有鳳凰來棲

如果資訊科技是戰鬥力的“倍增器”,那麼科研條件就是催生創新成果的“孵化器”。

在研究院採訪的日子裡,記者發現科學研究人員待得最久的地方就是試驗場。

在研究院某試驗場地,記者見到正在準備試驗內容的副研究員徐翔雲,他告訴記者,每個研究室都有幾處根據科研項目需求建造的實驗室或試驗場,除了購置地方技術成熟的產品,大部分是自主研發的設備,他身旁的某新型試驗設備就是去年研發投入使用的。

2012年年底,國外發布了一款新型武器,根據科技人員掌握到的情況,其攻擊性能及其對防護工程的破壞性令人吃驚,很可能會導致許多防護工程失去其應有的效用。

關乎國防工程的安全問題,科學研究人員要盡快摸清該型武器的相關性能,而要掌握到最準確的資料,需要進行相關試驗。由於是新型武器,國內尚未有可以作為替代的試驗手段,而要報項申請研發試驗裝備,往往需要3年甚至更長的時間。這個現實難題讓研究院科研人員皺緊了眉頭,怎麼辦?

「成立由院士專家組成的專題課題攻關小組,群策群力攻堅克難。」科研人員報告情況後,研究院還請來全國相關領域的專家探討,經過多方科學論證,他們當即拍板兒,盡快開展試驗設備的研發。

2015年,在國內大多數同類型試驗裝備只能固定使用的情況下,研究院研發出某型試驗裝備。有了試驗裝備,課題組很快就開始進行某評估試驗課題的申報工作。如今,該研究小組成功進行武器威力研究、目標毀傷情況等試驗,並相應提出新的防護理念和結構。

「如今,軍事科研機構面臨的很大一個難題,就是如何充分調動科研人員的積極性、主動性和創新性。我們要盡力為科研人員及時提供先進的科研條件,保障創新研究。」該研究院領導說。近年來,他們先後建造1000多平方公尺、200餘台(套)設備軟體的工程綜合論證環境實驗室、動載和靜載試驗平台。

工欲善其事,必先利其器。目前,該研究院在持續抓好科研條件建設任務落實的同時,著眼於國內外現狀與相關專業的發展趨勢,積極籌劃新的科研條件建設項目,推動“重大地下工程安全”國家重點試驗室等申報工作。瞄準世界前沿武器的防護技術研究的某個主題將在剛建成的模擬試驗中心開展…

跑出國防科技創新“加速”

■衛東

習主席在出席十三屆全國人大一次會議解放軍和武警部隊代表團全體會議時強調,要加強國防科技創新,加速建立軍民融合創新體系,大力提升國防科技自主創新能力。這一重要思想,深刻揭示了國防科技發展的客觀規律,為繁榮發展現代軍事科學指明了前進方向。

近年來,隨著科技戰略制高點朝向深地、深海、深空加速發展,戰爭形態和作戰樣式深刻嬗變,作戰理論轉化為戰場行動、技術物化為裝備的進程不斷加快,週期進一步縮短。不少軍事強國看到了智慧化軍事變革破曉的訊號,紛紛啟動新一輪軍事技術革新。

軍事競爭唯創新者勝。面對日新月異的科技發展態勢,軍事科研院所必須在國防科技博弈中率先投子佈勢、走開棋路,以軍事科研體系重塑為契機,站在保障打贏資訊化戰爭的全局高度,加緊推進戰略轉型,緊緊扭住自主創新這個“牛鼻子”,才能在邁進世界一流的宏闊征程中下好先手棋,掌握主動權。

錢學森曾說過,國防科技創新絕對不能滿足於「追尾巴」「照鏡子」。軍事科學研究院所應大膽構想,勇於解放思想,破除思維定式,對其長遠發展進行宏觀規劃,優化頂層設計。同時,也應進行前瞻性國防科技發展創新需求論證,自主超前展開基礎性、先導性、顛覆性創新技術研究,敏銳發現新質戰鬥力生成的新方向新領域,努力在世界軍事科技競爭中站上前沿、走在前面。

守不忘戰,將之任也;訓練有備,兵之事也。聚焦實戰是目標,也是牽引。軍事科研院所應牢固樹立研為戰思想,貫徹習主席「面向戰場、面向部隊、面向未來」的指示要求,按照「提高基於網路資訊體系的聯合作戰能力、全域作戰能力」的要求,努力做到仗怎麼打科學研究就怎麼搞,打仗需要什麼科學研究就搞什麼,著力提升軍事科學研究創新對部隊戰鬥力的貢獻率,不斷為強軍興軍提供強而有力的科技支撐。

一流的軍隊需要一流的科學研究單位,一流的科學研究單位需要一流的人才。只有人才競相湧現,才有創新活力迸發。軍事科研院所應始終堅持人才培養的主陣地意識,突顯對軍事科研工作者創造性思維、創新型能力的培養,靠一流軍事人才創造一流軍事理論和一流軍事科技,為軍隊的肌體植入解碼未來戰爭的致勝基因。

習主席強調,要突顯抓好重點領域軍民科技協同創新。國防科技與武器裝備領域是軍民融合的重點,作為軍事科研院所,應注重對接國家戰略需求,融入國家科研體系,加強重大項目協同攻關,強化產研深度融合。依托軍地優勢資源,強化軍地戰略協作,建構國防科技成果共研共享、條件設施共建共用、通用標準軍地銜接的服務平台,形成國防科技開放融合創新發展新局面。

闊步前進,重塑重構不是小修小補,絕不能小打小鬧。必須抓住開局契機,釋放起跑動能,在重點領域、重要方向和重大任務上把步子邁起來、速度提上去,盡快打造新樣板,樹起新標桿,從而在世界軍事科技競爭中率先取得引領性成果,佔據若干戰略制高點、致勝點,以一流軍事科技打造一流作戰攻防體系,逐步實現一流軍隊的建設目標。

(作者單位:軍事科學學院國防工程研究院)

軍事科技創新要聚焦基礎科學研究,提升基礎研究支撐能力,築牢國防科技創新的根基。

近年來,我們在國防科技領域取得非常大的進展,但在一些關鍵技術上和國外仍存在差距,主要是因為基礎性研究不夠紮實,在專業基礎理論研究、數位化軍事模擬平台研發、大型分散式數值計算技術等方面仍有待提升。這些因素都在一定程度上限制了軍事領域的科研進步與發展,影響著前沿引領技術、現代工程技術、顛覆性技術創新等方面的產生與突破。

基礎性關鍵技術絕對買不來,靠從國外買二手技術是走不遠的。若要從規劃頂層設計、研究管理制度、研究人員激勵機制等面向入手,實際重視與扶持基礎研究工作,深入進行基礎研究工作,提升原始創新能力。

軍事科研機構必須破除軍民科技體系之間的“藩籬”,突顯抓好重點領域軍民科技協同創新。

隨著當前高新技術武器裝備迅速發展,戰爭樣式和形態推陳出新,對戰場建設提出了更高要求,要積極探索地球科學、高新技術裝備製造、自動控制等眾多學科,研究全局智能戰場建設。

基於此,軍事科研單位需要和地方協同合作,共同做好深部工程研究,在電子資訊、無人機、人工智慧和仿生技術等高新科技研究方向,整合軍隊地方優質資源,用全國最優質的科技資源建構現代軍事力量體系。對我們國防工程領域而言,要重視推進建築資訊模型(BIM)在軍事工程的應用,實現工程建設與運作維護的資訊化、精細化管理。

創新驅動實質上是人才驅動,誰擁有了一流的創新人才,誰就擁有了科技創新的優勢和主導權。

著眼當下,加強國防和軍隊建設最緊張的就是人才;放眼未來,實現軍隊建設跨越式發展最核心的還是人才。全力驅動人才培養引擎,才能強勢助推國防科技自主創新。

多年的科學研究工作經驗使我感到,人才培育工作是一項系統工程和策略任務,需要著眼全局,加強頂層設計,科學設置梯次,著力形成優秀人才競相湧現、人人爭當軍營「創客」的生動局面。人才培育有其固有的特點和規律,不可能一蹴而就、短期速成,需要牢固樹立科學的人才培養觀,以「功成不必在我,而功力必不唐捐」的思想境界和信心勇氣,久久為功、持續接力,才能把人才培養藍圖變成現實,為科技興軍提供堅實的人才支撐。

搞軍事科研如同打仗,有前瞻性視野才能贏得攻克難題的製高點,把握勝利的主動權。

近年來,國內外國防科技快速發展,陸海空天一體的全方位偵察技術不斷提升,戰場中以高度資訊化技術為支撐的兵力武器運用以及新式武器的問世,大大改變了未來戰爭的作戰樣式和特徵,科學研究人員要深刻掌握並立足未來戰爭特點,有針對性地進行創新性科學研究工作。

具體到國防工程研究領域,軍事科研人員要緊跟世界武器裝備和防護技術發展的前沿,既要注重防“硬殺傷”,也要注重防“軟殺傷”;既要注重對要害部位的防護,也要注重整體系統防護;既要搞好被動防護,也要追蹤研究主動防護和新型武器防護技術,推動顛覆性技術創新,努力提升國防工程戰場生存能力和作戰保障能力。

来源:中国军网综合

作者:潘娣 赵杰等责任编辑:柳晨

2018-05-02 

中國原創軍事資源:https://www.81.cn/2018zt/2018-05/02/content_8020899.htm

China to Accelerate Improvement of Military Force Structure

中國將加速改善軍隊結構

現代英語:

In his report to the 20th CPC National Congress, President Xi Jinping pointed out that we should comprehensively strengthen military governance, consolidate and expand the achievements of national defense and military reform, improve the military force structure, and systematically optimize military policies and systems. Improving the military force structure is an important part of comprehensively strengthening military governance and an inevitable requirement for promoting the modernization of the military’s organizational form in the new era and new journey. At present, the form of war is accelerating its evolution towards information-based and intelligent warfare. To improve the ability to win, it is necessary to further accelerate the improvement of the military force structure and provide strong support for winning military competitive advantages.

Prospective development trend of military force structure

The vigorous development of high-tech groups represented by artificial intelligence is accelerating the development of intelligent warfare. To adapt to the changes in the form of war, the military force structure is accelerating its transformation to an automatic empowerment, dynamic adaptation, and autonomous organization structure.

Transform from a control structure to an automatic empowerment structure. The battlefield environment in the future will be more complex and changeable, and the OODA cycle will be greatly compressed. Striving for time advantage and speed of action, and agile conversion of offensive and defensive situations will become an inevitable requirement for seizing the initiative in combat. In the traditional form of warfare, the military mainly exerts influence internally through management activities such as planning, organization, command, coordination, and control. Practice has proved that the layer-by-layer transmission organizational structure is not only slow in response, but also relatively conservative and rigid, and cannot adapt to the rapidly changing new environment. The future military force structure will accelerate its development in the direction of empowerment, and achieve the purpose of empowering capabilities and energy through more authorization. Compared with the traditional military force structure, it pays more attention to stimulating people’s autonomous capabilities and strives to maximize the talents and potential of individuals within the organization.

Transform from a solidified structure to a dynamic adaptive structure. In the traditional military force structure, the boundaries are fixed and clear, and the organization is stable and orderly. In the form of intelligent warfare, in order to adapt to the complex and changing external environment, the boundaries of the military force structure will gradually open up, and the internal subsystems will support rapid interaction of information, resources, creativity, vitality, etc. without destroying the existing structure, so as to run more smoothly. Compared with the traditional military force structure, the future military force structure must maintain a relatively stable appearance and architecture, and realize the free flow of information and resources within the organization. Through process reengineering, system integration and information openness, the timeliness, flexibility and innovation of the army will be enhanced.

Transformation from manual organization to autonomous organization. In the form of intelligent warfare, the types of combat forces have greatly increased, including multi-domain diversified combat forces from space to deep sea, from aircraft carriers to micro-robots, etc. The complexity of the system has put forward higher requirements on the depth and breadth of decision-makers’ thinking. It is difficult for commanders and staff groups to complete the most reasonable combat organization in a short period of time. Using intelligent command and control systems to organize combat organizations has become the best choice. Thanks to the powerful computing and analysis capabilities of artificial intelligence, the intelligent command and control system can comprehensively evaluate the type characteristics, combat readiness, and scope of application of combat forces according to combat missions and battlefield environment changes, and even combine the ability, quality, personality characteristics, personal experience and other factors of commanders. Through network calculation, it can be deduced that the combat organization with complementary advantages, balanced strength, and optimal efficiency is obtained.

Deeply understand the operation mechanism of military force structure

In the process of integrated development of mechanization, informatization and intelligence, artificial intelligence will be deeply involved in the entire process of military operations, which will have a profound impact on the operating mechanism of the military force structure and give birth to new mechanisms that are very different from traditional operating models.

The “complementary cooperation” operation of human-machine integration. Compared with humans, machines have obvious advantages in storage, computing and other capabilities, and have the characteristics of accuracy, speed, repeatability, and limited intelligence. In the era of intelligence, people’s positioning has gradually shifted to macro-control and indirect participation in combat, focusing on controlling strategic key content and nodes such as the timing of launching a war, scale level, style intensity, process development, and ending time. With the support of big data, network information systems and various algorithms, machines mainly complete activities such as data analysis, quantitative judgment, and trend prediction, quickly generate, optimize and evaluate combat plans, and provide humans with faster, more comprehensive and accurate decision-making assistance. Under normal circumstances, people have the final decision-making power in combat command, but in the near future, it may become a reality for machines to have the final decision-making power.

Intelligent embedded “process specification” operation. It is generally believed that “process specification” refers to the process of standardizing and standardizing the combat command and control process. In the “process specification” model, the subject responsible for specific execution is more likely to carry out activities in accordance with existing specifications and pre-settings. The real role is played by the designer of the process. Algorithms, models and other preset elements are the key to command and control activities. Compared with the traditional structural operation mode, the “process specification” model can enable command and control actions to run in an orderly manner under the established process by internalizing people’s target requirements, work specifications, combat plans, etc. into algorithms, models, and systems in advance. For example, in the intelligent situational awareness system, various tasks such as target search, tracking and positioning, and data collection can be carried out one by one according to the pre-set procedures. Although the relevant subjects involve various fields or departments, the operation of the entire system will be orderly under the unified algorithm specification.

Highly autonomous “results first” operation. “Results first” means that the output results of combat command and control activities are regulated and standardized, but no requirements are made for the process of the activities, that is, “only results, no process”. When the combat mission is too complex and the command and control process is not easy to standardize, it is necessary to formulate detailed and clear institutional norms to fully and accurately describe the final goal. The executors can take the initiative to decide the implementation method by themselves, and the structure will operate faster and more efficiently. Under the conditions of future information and intelligent warfare, the independent operation of unmanned systems, the adaptive organization of military organizations, and the task-based command method based on big data, cloud computing and network information systems have put forward higher requirements for the command and control mode. The “results first” mode is the best choice. In particular, some intelligent weapon platforms in the future will have autonomous decision-making power, and will be able to independently formulate tactical strategies, implement target detection, determine the order of target strikes, and perform a series of combat operations under the guidance of combat objectives set by humans.

Exploring practical paths for innovation in military force structure

Improving the military force structure is a dynamic development process with its own laws and implementation paths, and requires multi-domain advancement and in-depth development.

The size of the army remains stable and the composition of its forces continues to be optimized. Comrade Mao Zedong once pointed out that “any quality is expressed in a certain quantity, and without quantity there is no quality.” In today’s world, the size of the army is still an important indicator for measuring the strength of military power. It is a common practice for military powers to optimize their military forces on the basis of maintaining a certain scale. In recent years, major countries in the world have adjusted the organizational form of their armies, taking the development of new combat forces as an important support for leading the construction of the force system of their troops, adjusting and optimizing the military force system, and seeking new military breakthroughs. With an eye on future wars, military forces should continue to optimize and improve on the basis of maintaining a certain scale, increase the proportion of combat forces in new domains and new qualities, accelerate the development of unmanned intelligent combat forces, further highlight eliteness, strengthen the construction of intelligent logistics support forces, and build a lean, versatile, and efficient combat force structure.

The structure of the military services is cross-domain coordinated and integrated across all domains. As the combat space expands to network, electromagnetic, cognitive and other spaces, the structure of the military services is gradually integrated into an organic whole. In future wars, combat troops will not only need to perform combat missions in the physical space, but also need to deal with threats from network, cognitive and other spaces. The boundaries of operations between the military services will gradually blur. To adapt to this trend, the pace of innovation in the structure of the military services must be accelerated. Foreign militaries believe that the future innovation and development of the military services structure will be promoted in two ways: physical integration and virtual integration. First, a cross-domain combat force covering land, sea, air, space, power grid, and cognitive fields will be established, running through the structural boundaries of different fields, concentrating multi-domain combat capabilities based on a single domain, and generating deep joint combat capabilities. Second, the virtualization of the organization of each military service and the integration of capabilities. A single military service can aggregate the combat capabilities of multiple military services at any time, and achieve cross-domain integration of combat effectiveness while the combat forces are widely dispersed.

The combat force system takes into account specialization and synthesis. The development of future combat forces not only focuses on the subdivision of specialized combat force types, but also emphasizes the deep integration of multiple combat forces. With the expansion of war space and the continuous application of cutting-edge technologies, many new combat forces that adapt to unique combat styles will inevitably appear in various combat domains. The future integrated joint operations require the integration of various combat forces and close coordination between various professions. Therefore, the adjustment of the combat force system needs to start with cross-domain integration, accelerate the integration of combat forces, focus on promoting the integration of combat forces at the strategic, campaign, and tactical levels, the integration of horizontal functional fields, and the integration of combat and non-combat fields, so as to make the combat force system more scientific.

The new and old combat forces are organized into a multi-functional integrated system that enhances each other’s effectiveness. From the perspective of the development trend of world military transformation, although the status and role of new combat forces are constantly strengthening, traditional combat forces still play an important role. In the future, the innovation of military force structure should maximize the system synergy of new and old combat forces by adjusting the structure and optimizing the organization, extending the level of new combat forces downward, accelerating the integration of combat forces in the fields of network, space, cognition, and other fields with traditional combat forces such as land, sea, and air at the campaign and tactical levels, and deploying new combat force units at the campaign level, and dispersing them downward as appropriate, and connecting to the organizational sequence of various military forces at any time according to combat needs. (Tong Yunhe and Yan Xiaofeng)

(Editors: Chen Yu, Tang Song)

現代國語:

習近平主席在黨的二十大報告中指出,要全面加強治軍,鞏固拓展國防和軍事改革成果,完善軍隊結構,系統優化軍事政策和製度。完善軍隊結構,是全面加強軍事治理的重要內容,是新時代新征程推進軍隊組織形態現代化的必然要求。目前,戰爭形態正在加速向資訊化、智慧化戰爭演變。提升打贏能力,要進一步加速軍隊結構完善,為贏得軍事競爭優勢提供強力支撐。

前瞻軍事力量結構編成發展趨勢

以人工智慧為代表的高技術群的蓬勃發展,正推動智慧化戰爭加速走來。適應戰爭形態變化,軍事力量結構正加速轉向自動賦能型、動態適應型、自主編成型結構。

由控制型結構轉換成自動賦能型結構。未來戰場環境更加複雜多變,OODA循環週期大為壓縮,爭取時間優勢與行動速度、靈敏轉換攻防態勢成為奪取作戰主動權的必然要求。傳統戰爭形態下,軍隊主要透過計畫、組織、指揮、協調、控制等管理活動對內施加影響。實務證明,逐層傳遞式組織結構不僅反應速度緩慢,而且相對保守固化,無法適應快速變化的新環境。未來軍事力量結構將加速朝向賦能方向發展,透過更多授權達成賦予能力和能量的目的。其與傳統軍事力量結構相比,更重視激發人的自主能力,力求最大化組織內部個體的才智與潛能。

由固化型結構轉變為動態適應型結構。傳統軍事力量結構中,邊界固定清晰,組織穩定性秩序性強。智慧化戰爭形態下,為適應複雜多變的外部環境,軍事力量結構邊界將逐漸開放,內部各子系統之間在不破壞現有結構的情況下,支持資訊、資源、創意、活力等快速交互,以便運作更加流暢。相較於傳統軍事力量結構,未來軍事力量結構既保持相對穩定的外形和架構,又須實現資訊和資源在組織內部的自由流動,透過流程再造、體系整合和資訊開放,軍隊的時敏性、靈活性和創新性將得到加強。

由人工編成向自主編成轉變。智慧化戰爭形態下,作戰力量種類極大增多,包括從太空到深海、從航空母艦到微型機器人等多域多元化作戰力量,其體系複雜性對決策者思維深度和廣度提出了更高的要求,指揮和參謀群體很難在短時間內完成最合理的作戰編組,借助智慧指揮控制系統來進行作戰編組便成了最優選擇。由於人工智慧的強大運算和分析能力,智慧指揮控制系統能夠根據作戰任務和戰場環境變化,綜合評估作戰力量的類型特徵、戰備狀況、適用範圍,甚至結合指揮人員的能力素質、性格特徵、個人經驗等因素,可透過網算推演得出優勢互補、力量平衡、效能最優的作戰編組。

深度掌握軍事力量結構運作機理

在機械化資訊化智慧化融合發展過程中,人工智慧深度介入軍隊運作全流程,對軍事力量結構運作機制將產生深刻影響,並催生出與傳統運作模式迥異的新機制。

人機融合的「互補合作」式運作。相較於人類,機器的儲存、運算等能力優勢明顯,具有精準性、快速性、重複性、有限智能等特徵。在智慧化時代,人的定位逐漸轉向宏觀控制和間接參與作戰,聚焦戰爭發動時機、規模層次、樣式強度、進程發展、結束時機等戰略性關鍵內容和節點。而機器在大數據、網路資訊系統和各類演算法支撐下,主要完成數據分析、定量判斷、趨勢預測等活動,快速生成、優化和評估作戰計劃,為人類提供更快捷、全面、準確的決策輔助。通常情況下,人具有作戰指揮的最終決策權,但在不遠的將來,機器擁有最終決策權或將成為現實。

智慧內嵌的「流程規範」式運作。一般認為,「流程規範」是指對作戰指揮控制過程進行規範和標準化的過程。在「流程規範」模式中,負責具體執行的主體更多是按照既有規範標準和預先設定展開活動,真正發揮作用的是流程的設計者,算法、模型等預置要素是指揮控制活動的關鍵。相較於傳統結構運作模式,「流程規範」模式透過預先將人的目標要求、工作規範、作戰計畫等內化為演算法、模型、制度,能夠使指揮控制行動在既定流程下有序運作。例如,在智慧化態勢感知系統中,目標搜尋、追蹤定位、資料收集等各項任務可以根據預先設定的程序逐次展開,相關主體雖然涉及各個領域或部門,但在統一演算法規範下整個體系運行將井然有序。

高度自主的「結果優先」式運作。 「結果優先」是指對作戰指揮控制活動的輸出結果進行規範和標準化,但對活動過程不作要求,即「只求結果、不問過程」。當作戰任務過於複雜、指揮控制過程不易進行標準化時,需要透過制定詳盡明確的製度規範以全面準確描述最終目標,執行者可以發揮能動性自行決定實現方式,結構運作更加快捷高效。在未來資訊化智慧化戰爭條件下,無人系統獨立運作、軍隊組織自適應編組以及基於大數據、雲端運算和網路資訊系統的任務式指揮方式等,對指揮控制模式提出了更高的要求,「結果優先」模式便是最佳選擇。特別是未來部分智慧武器平台將具有自主決策權,能夠在人類設定的作戰目標指引下,自主制定戰術策略、實施目標探測、確定目標打擊順序,執行一系列作戰行動。

探索軍事力量結構創新實踐路徑

完善軍事力量結構編成是一個動態的發展過程,有自身的規律與實現路徑,需要多域推進、縱深發展。

軍隊規模保持穩定、力量組成持續優化。毛澤東同誌曾經指出,「任何品質都表現為一定的數量,沒有數量也就沒有質量。」當今世界,軍隊規模仍是衡量軍事力量強弱的重要指標,軍事力量在維持一定規模的基礎上進行優化是軍事強國的通行做法。近年來,世界各主要國家紛紛調整軍隊組織形態,把發展新型作戰力量作為引領部隊力量體系建設的重要支撐,調整優化軍事力量體系,尋求新的軍事突破。著眼於未來戰爭,軍事力量應在保持一定規模基礎上不斷優化完善,增加新域新質作戰力量比重,加快無人智能作戰力量發展,更加突出精銳化,加強智能化後勤保障力量建設,構建精幹、多能、高效的作戰力量結構。

軍兵種結構跨域協同、全域融合。隨著作戰空間向網路、電磁、認知等空間拓展,軍兵種結構也逐漸融為一體有機的整體。未來戰爭,作戰部隊既需要執行物理空間的作戰任務,也需要應對來自網路、認知等空間的威脅,軍兵種之間作戰的界線將逐漸模糊。適應這種趨勢,軍兵種結構創新必須加快腳步。外軍認為,未來的軍兵種結構創新發展將採取實體融合與虛擬整合兩種方式來推進。一是組成覆蓋陸海空天電網以及認知等領域的跨域作戰部隊,貫穿不同領域結構邊界,以單域為基礎集中多域作戰能力,生成深度聯合作戰能力。二是各軍兵種編制虛擬化、能力一體化,單一軍兵種能夠隨時聚合多軍兵種作戰能力,在作戰力量廣域分散的同時實現作戰效能跨域融合。

作戰力量體系兼顧專業化、合成化。未來作戰力量的發展既注重專業化的作戰力量類型細分,也強調多種作戰力量的深度融合。隨著戰爭空間的拓展和前沿技術的不斷應用,在各作戰域內必將出現許多適應獨特作戰樣式的新型作戰力量。而未來的一體化聯合作戰,需要各種作戰力量一體融合,各專業之間密切協同。因此,調整作戰力量體系需要從跨域融合方面入手,加快推進作戰力量一體化,重點推動作戰力量在戰略、戰役、戰術層級的融合,橫向職能領域的融合,作戰與非作戰領域的融合等,使作戰力量體系更科學。

新舊作戰力量編成多能一體、相互增效。從世界軍事變革發展趨勢來看,新型作戰力量的地位作用雖然不斷強化,但傳統作戰力量仍扮演重要角色。未來軍事力量結構創新,要透過調整結構和優化編組等方式最大限度發揮新舊作戰力量的體系合力,向下延伸新型作戰力量層級,加速網絡、太空、認知等領域作戰力量與陸海空等傳統作戰力量在戰役戰術層面的結合,編製戰役級新型作戰力量單元,並視情向下分散​​配屬,根據作戰需要隨時接入各軍種部隊編制序列。 (童蘊河 閔曉峰)

(編按:陳羽、唐宋)

2022年12月15日09:28 |

中國原創軍事資源:https://military.people.com.cn/n1/2022/1215/c1011-32587690888.html

Chinese Military New War Force that Emerges Suddenly the Micro-operation

異軍突起的中國軍隊新戰爭力量微作戰

現代英語:

War is a violent confrontation. With the development of science and technology and the evolution of war forms, the violence of war has gradually reached its peak in the “big” aspect. Nuclear weapons have been able to destroy the earth many times, which in turn limits the actual combat application of nuclear weapons. However, the violence of war is accelerating in the “small” aspect. The emergence and use of micro-combat equipment and micro-combat forces have increasingly changed our cognition of future warfare. Perhaps a mosquito may be a precision strike weapon in the future.

Micro-operation is the abbreviation for using miniaturized weapons and equipment to conduct operations. It is a new product based on the rapid development of science and technology and an important manifestation of the scientific and technological development level of a country and its military. With the rapid development of high technologies such as electronic information technology, nanotechnology, and artificial intelligence technology, more miniaturized, micro-miniaturized, and intelligent weapons and equipment are constantly emerging. The scale of operations has changed from the trend of continuous expansion for thousands of years. Micro-operation has become possible and has become an important development trend of future operations. We must fully recognize the importance of micro-operation, lead the development trend of micro-operation, and seize the initiative in micro-operation.

Micro-operation becomes a new direction of combat development

In the new wave of development of combat methods, micro-combat, with its unique image of being independent and cost-effective, has become a new direction of combat development and has a huge impact on combat development.

The future demand for intelligent warfare will lead to the development of micro-operations. The development of military intelligence has overturned traditional cognition. Its battlefield perception intelligence, autonomous decision-making intelligence, and attack intelligence have undoubtedly become the key to victory. Micro-operations just fit the context of military intelligence development and become a new direction of rapid development driven by the demand for intelligent warfare. Intelligent warfare requires intelligent perception means. The intelligent micro-perception system under micro-operation conditions can provide battlefield intelligence and information that is difficult to obtain with traditional perception equipment. It is reported that the modern new bionic flapping-wing aircraft developed by the University of Toronto in Canada and a company in California, USA, by imitating hummingbirds, has achieved aerial hovering for the first time. In wartime, it can be disguised as a hummingbird and is extremely difficult to be discovered. It has the ability to enter enemy locations and secretly obtain intelligence information. Intelligent warfare is inseparable from intelligent attack methods, and micro-operation provides a wealth of options for this. The “Vector Eagle” multi-mission micro-drone launched by Lockheed Martin of the United States has a total take-off weight of only 1.8 kilograms and a length of about 10 centimeters. It can carry different payloads according to different mission requirements and complete different combat missions such as destruction, interference, and blasting.

Microsystems, micro-bionics, micro-drones and other technologies support the development of micro-warfare. The development of combat forms cannot be separated from the support of technology, and micro-warfare cannot be separated from the support and promotion of the development of microsystems, micro-bionics, micro-drones and other technologies. Microsystems are devices that integrate sensing, driving, execution and signal processing devices in a heterogeneous and heterogeneous manner based on micro-photonics, micro-mechanics, algorithms and architectures to achieve functions. The US DARPA has set up a microsystem technology office to step up the research and development of electronic components based on microelectronics, optoelectronics, micro-electromechanical and micro-energy technologies, integrated technologies based on optoelectronics and magnetism, algorithms and architecture technologies based on programmable architecture, spectrum utilization algorithms, and electronic warfare, as well as technologies such as heat dissipation, safety, self-decomposition, and self-repair. Military bionic technology is also developing from macro to micro. Through micro-bionics, new materials, new equipment, and new tactics urgently needed for micro-combat can be developed. For example, the photon effect of butterfly wing scale powder can be applied to the stealth of micro-weapons and equipment, and the hydrophobic multi-level micro-nano structure of lotus leaves can be used for the drag reduction and self-cleaning of micro-underwater combat systems. Micro-unmanned technology is a miniaturized unmanned combat technology, representing the crystallization of the development frontier and integration of informatization, intelligence, and miniaturization.

The revolution in military effectiveness has raised new questions for micro-operations. Military effectiveness is the best release of efficiency and effectiveness in the new military reform, and micro-operations are the “catalyst” for releasing energy. On the one hand, the economic added value of micro-operations-related technologies is high and can produce a high cost-effectiveness ratio. Due to the use of micro-nano technology, the size of equipment and parts is greatly reduced, and the cost of equipment and parts can be greatly reduced. For example, the chip-level atomic clock will be 100 times smaller than the traditional atomic clock, and the production cost will be greatly reduced; the missile accelerometer and gyroscope manufactured using micro-nano technology are greatly reduced in size, but the price is only 1/50 of the original. On the other hand, micro-operations can achieve combat effects that traditional operations cannot achieve, presenting unique combat results. For example, the VAPR project carried out by the US DARPA aims to develop a revolutionary advanced transient electronic product. In addition to having the basic functions, reliability and durability of traditional electronic products, it starts and stops working through a trigger program. In order to prevent electronic equipment from being left in the battlefield environment for use by the enemy and to prevent the leakage of key technologies, after completing the military mission, this transient electronic product will partially or completely decompose into the surrounding environment.

Micro-operations will have a profound impact on future operations

In the intelligent era of war, the scale of operations has changed from its inherent trend of continuous expansion. Micro-operations, which are based on the use of micro-nano technology and miniaturized equipment, have had a disruptive impact on traditional warfare.

Subverting combat equipment. Micro-combat equipment is highly integrated and miniaturized, with advanced information technology replacing mechanical technology. It is mainly characterized by extremely small size and weight, extremely low energy consumption, extremely fast attack and defense speed, and extremely high combat performance. The millimeter wave radar scanner developed by the Fraunhofer Institute in Germany has an effective range of hundreds of meters, and the printed circuit board is tiny. The entire radar is similar in size to a cigarette box. This has revolutionized the appearance of military radar and will subsequently subvert the traditional combat operation mode of millimeter wave radar. MIT recently launched a new computer chip called “Navion” that can be used for micro-drone navigation. The chip is only 20 square millimeters and consumes only 24 milliwatts of power, which is about one thousandth of the energy consumption of a light bulb. It can be integrated into a nano-drone the size of a fingernail to help with navigation, and use a tiny amount of energy to process camera images in real time at a speed of 171 frames per second and perform inertial measurements. Micro-combat equipment developed through miniaturization, weight reduction, and integration is more concealed and more sudden in attack and defense than ever before, which has brought about subversive changes in its use mode and rules.

Subverting the way of fighting. Micro-warfare uses a large number of intelligent, unmanned, and miniaturized combat equipment, and combat personnel are transferred from the front to the rear; some equipment can even achieve fully autonomous intelligent combat, and “people are not in the loop” will become a new way of fighting. Researchers at the City University of Hong Kong have designed a micro-robot that is expected to transport cells in the human body. Its diameter is 500 to 700 microns, and it has successfully achieved the purpose of controlling the movement of micro-robots through magnetic fields inside complex organisms. If this robot is used as a weapon to attack the enemy’s living forces, it can attack various organs in the enemy’s body, such as the brain, eyes, etc., and can quickly make the enemy lose its combat ability, and its combat is extremely covert and sudden. In addition, Harvard University in the United States has developed a robot named Kilobot with a diameter of about 2.5 cm. It relies on its own vibration to achieve self-movement and can form a “team” with other robots of the same type to collaborate to complete tasks, providing more options for typical “swarm” operations in micro-operations.

Subvert the organizational form of the army. Micro-operation has changed the relationship between weapons and equipment and soldiers, and thus subverted the organizational form of the army. First, the number of front-line combat personnel has been greatly reduced. Traditional combat is mainly in the form of direct combination of people and weapons and equipment, and killing on the front line. However, due to the extremely small size of weapons and equipment in micro-operation, the combat is relatively concealed. Weapon equipment operators can operate and assist in decision-making far away from the battlefield. This form of warfare makes the army form more loosely developed, and the boundaries between the front and rear will be more blurred. According to traditional standards, it is more difficult to define and distinguish combat personnel and support personnel. Secondly, military personnel are showing a trend of becoming more professional, highly educated, and highly intelligent, and the organizational form of the military needs to be adjusted accordingly. Micro-operations involve many high-tech fields, including materials science, engineering mechanics, chemistry, aerodynamics, electronics, cybersecurity and information technology, optoelectronics, micro-nano, artificial intelligence, cloud computing, the Internet of Things, big data, mobile Internet, and quantum, which are all supporting disciplines for micro-operations. The scientific and technological quality requirements for military personnel are not only “broad” but also “deep”. Therefore, the gathering of a large number of high-level talents in the military will become a “new situation”, which will inevitably have a new and significant impact on the organizational form of the military.

Attach great importance to future micro-operations

As the military develops rapidly today, we should fully realize the importance of micro-operations, conduct timely research, drive layout planning with major technological innovation and independent innovation, and take the lead in the field of micro-operations.

Strengthen the basic theoretical tracking of micro-operations and research on applied innovation. Strengthen the basic theoretical research of micro-operations. At present, the micro-operation concepts of developed countries in Europe and the United States are advanced and frequently verified. We should attach importance to the basic theoretical tracking of micro-operations and strive to study and reveal its essence and fill in the gaps. At the same time, we still have a certain emphasis on research and development, but are still insufficient in applied innovative research and transformation of results. We should follow the essential laws of micro-operations, give full play to the role of innovation in driving development, give priority to supporting basic theories, combat experiments, personnel organization, and rear-end support to improve the level of innovation, and use major technological innovations such as artificial intelligence and quantum to consolidate the “foundation” of micro-operations; use independent innovation efforts to narrow the gap in key areas, make up for the “heart, core, and innovation” of micro-operations, and focus on key areas where opponents are holding back and we cannot support them, to ensure leading development.

Vigorously promote the development of micro-operation-related technologies and equipment by taking military-civilian integration as the starting point. Accurately grasp the development direction of micro-operation, take military-civilian integration as the starting point, strengthen the development of related equipment, and form a micro-operation military-civilian integration development organization management system that integrates management, production, learning, and research. Promote the military-civilian sharing of micro-operation technical resources, speed up the formulation of military-civilian compatible micro-operation weapon equipment standards and military-civilian common technical systems, and formulate policies and measures to promote them, so as to reduce the barriers between the military and civilians and ensure the coordinated interaction between military and civilian use. We should speed up the removal of barriers to military-civilian integration in micro-operations-related fields, explore new paths and new models, conduct pilot projects in industries with strong military and civilian versatility and mature technological applications, such as microelectronics and artificial intelligence, and form replicable and popularizable experiences and practices as soon as possible.

Strive to achieve advanced planning and layout of micro-operations. To meet the requirements of future micro-operations, new combat forces can be given micro-operation exercises and experimental tasks, collect relevant data, and provide detailed data to better provide relevant theoretical and practical support for micro-operation planning and layout and pre-practice. Micro-operation-related majors can be created in colleges and universities, and exploration and practice can be strengthened in micro-operation theory research and teaching to provide intellectual support and talent training conditions for micro-operations. We should thoroughly demonstrate the needs of future battlefield construction, continuously improve the construction of battlefield network information system infrastructure, increase mobile communication coverage and bandwidth construction mainly based on satellite communications, and meet the needs of massive information transmission in future micro-operations. We must accelerate the construction of a micro-operation-related standard system and formulate and improve relevant application standards. (Pei Fei, Zhang Dapeng, Li Jinggang)

現代國語:

資料來源:解放軍報 作者:裴飛 張大鵬 李景鋼 責任編輯:喬楠楠 2018-08-30 08:00
編者按

戰爭是暴力的對抗。隨著科技發展和戰爭形態演化,戰爭暴力在「大」的方面漸趨走到極點,核武已經能夠多次摧毀地球,這反過來也限制了核武的實戰應用;戰爭暴力在「小」的方面卻在加速演變,微型作戰裝備和微型作戰力量的出現和使用已日益改變著我們對未來作戰的認知。或許一隻蚊子未來就可能是精確打擊兵器。

微作戰,是指使用微小型化武器裝備進行作戰的簡稱,是基於科技高速發展的新產物,是一個國家和軍隊科技發展水準的重要體現。隨著電子資訊技術、納米技術、人工智慧技術等高技術的飛速發展,更加小型化、微型化、智慧化的武器裝備不斷湧現,作戰規模一改千百年來不斷擴大的趨勢,微作戰成為可能,並且成為未來作戰的重要發展趨勢。我們要充分認識微作戰的重要性,引領微作戰的發展潮流,掌握微作戰的主動權。

微作戰成為作戰發展新方向

在作戰方式發展的新浪潮中,微作戰以其特立獨行、效費比高的獨特形象示人,成為作戰發展新方向,並對作戰發展產生巨大影響。

未來智慧化戰爭需求牽引微作戰發展。軍事智能化發展顛覆了傳統認知,其戰場感知智能化、自主決策智能化、攻擊智能化無疑成為了勝戰的關鍵,而微作戰恰恰契合了軍事智能化發展的脈絡,成為智能化戰爭需求牽引下高速發展的新方向。智慧化戰爭需要智慧化的感知手段,微作戰條件下的智慧化微感知系統能夠提供傳統感知裝備很難獲得的戰場情報和資訊。據悉,加拿大多倫多大學和美國加州某公司通過模仿蜂鳥研製出的現代新型仿生撲翼機首次實現了空中盤旋,戰時可偽裝成蜂鳥極不容易被發現,具備進入敵方場所秘密獲取情報信息的能力。智能化戰爭還離不開智能化的攻擊手段,微作戰為此提供了豐富的選擇,美國洛-馬公司推出的「向量鷹」多任務微型無人機,起飛總重量只有1.8公斤,長度約10釐米,可依不同任務需求搭載不同荷載,完成破壞、幹擾、爆破等不同作戰任務。

微系統、微仿生、微無人等技術支持微作戰發展。作戰形態的發展離不開技術的支撐,微作戰離不開微系統、微仿生、微無人等技術發展的支撐與推動。微系統是在微光電、微機械、演算法與架構等基礎上,把傳感、驅動、執行和訊號處理等裝置採用異構、異質方法整合而實現功能的裝置。美國DARPA專門成立了微系統技術辦公室,加緊研發以微電子、光電子、微機電和微能源技術為主的電子元件,以光電、磁性為主的整合技術;以可編程架構、頻譜利用演算法、電子戰為主的演算法與架構技術;以及散熱、安全、自分解、自我修復等技術。軍事仿生技術也正由宏觀向微觀發展,通過微仿生可研製微作戰急需的新材料、新裝備和新戰法等,譬如將蝴蝶翅膀鱗粉光子效應應用於微小武器裝備的隱身,將荷葉疏水的多級微納結構用於微小水下作戰系統的減阻自潔等。微無人技術是微小型化的無人作戰技術,代表資訊化、智慧化、微小型化發展前沿和融合的結晶。

軍事效能革命為微作戰提出新命題。軍事效能是新軍事變革中效率、效力的最佳釋放,而微作戰則是釋能的「催化劑」。一方面,微作戰相關技術經濟附加價值高,能產生較高的效費比。由於使用微納技術,大幅縮小了裝備和零件的尺寸,還能大幅降低裝備和零件的成本,比如,晶片級原子鐘將比傳統原子鐘體積縮小100倍,生產成本反而大大下降;利用微納技術製造的導彈加速度計和陀螺儀,體積大大縮小,價格卻僅為原來的1/50。另一方面,微作戰能夠實現傳統作戰無法實現的作戰效果,呈現出獨特的作戰結果。例如,美國DARPA開展的VAPR項目,旨在開發一種革命性的先進瞬態電子產品,除具備傳統電子產品的基本功能和可靠性、耐用性外,其通過觸發程序啟停工作,為避免電子設備遺留在戰場環境中為敵方利用,杜絕關鍵技術洩露,在完成軍事任務後,這種瞬態電子產品會部分或完全分解到周圍環境中。

微戰將深刻影響未來作戰

智慧時代的智慧化戰爭,作戰規模一改不斷擴大的固有趨勢,以微納技術和微小型化裝備運用為基本特徵的微作戰,對傳統作戰產生了顛覆性影響。

顛覆作戰裝備。微作戰裝備高度整合、微小型化,以先進的資訊技術取代了機械技術,主要表現在體積重量極小、能源消耗極少、攻防速度極快、作戰性能極高。德國弗勞恩霍夫研究所研發的毫米波雷達掃描儀,作用距離達數百米,而印製電路板尺寸微小,整部雷達大小與煙盒類似,這使軍用雷達面貌發生革命性改變,隨之將顛覆傳統毫米波雷達的作戰運用方式。麻省理工學院近日推出名為「Navion」的新型電腦晶片,可用於微型無人機導航,該晶片只有20平方毫米,功耗僅為24毫瓦,大約是燈泡耗能的千分之一,可以整合到指甲大小的納米無人機中幫助導航,用微量能耗以171幀/秒的速度實時處理相機圖片以及進行慣性測量。透過縮小、減重、整合等研發出的微作戰裝備比以往更具自身隱蔽性和攻防突然性,使其運用模式和規則等產生了顛覆性變化。

顛覆作戰方式。微作戰由於採用大量智慧化、無人化、微小化作戰裝備,作戰人員從前方轉移至後方;有的裝備甚至能夠實現完全自主智慧化作戰,「人不在迴路中」將成為新的作戰方式。香港城市大學研究人員設計出一種微型機器人,預計在人體內運輸細胞,其直徑為500到700微米,成功實現了在復雜生物體內部通過磁場控制微型機器人運動的目的,這種機器人如用作武器對敵方有生力量實施攻擊,可攻擊敵人身體內各器官,譬如大腦、眼睛等,可快速使敵人失去戰鬥能力,而其作戰極具隱蔽性、突然性。此外,美國哈佛大學開發出直徑約為2.5毫米,名為Kilobot的機器人,依靠自身的振動實現自身移動,能夠與其他同種類型的機器人組成一個“團隊”,共同協作完成任務,為微作戰中典型的「蜂群」作戰提供更多選擇。

顛覆軍隊組織形態。微作戰改變了武器裝備與軍人之間的關系,進而顛覆軍隊的組織形態。首先,一線作戰人員大幅減少。傳統作戰是以人和武器裝備直接結合,在前線進行廝殺為主要形式,而微作戰由於武器裝備尺寸極小,作戰相對隱蔽,武器裝備操作人員可在遠離戰場的後方對其進行操作和輔助決策,這樣的戰爭形態使得軍隊形態呈現更加鬆散的發展態勢,前後方界限將更加模糊,按照傳統標準,作戰人員和保障人員更加難以界定和區分。其次,軍隊人員呈現更專業、高學歷、高智力發展趨勢,軍隊組織形態需要因勢調整。微作戰涉及眾多高科技領域,材料學、工程力學、化學、空氣動力學、電子學、網信科技等學科領域及光電子、微納、人工智慧、雲計算、物聯網、大數據、行動互聯網、量子等都是微作戰支撐學科,對軍事人員科技素質要求不僅是“廣”,還要求“深”,為此,大量高水平人才聚集到軍隊將成為“新情況”,必然對軍隊組織形態產生新的重大影響。

高度重視打好未來微作戰

在軍事發展日新月異的今天,我們應充分認識到微作戰的重要性,緊前研究,以重大技術創新和自主創新帶動佈局規劃,在微作戰領域實現領跑。

加強微作戰基礎理論追蹤與應用創新研究。加強微作戰基礎理論研究。當前,歐美發達國家微作戰理念超前,驗證頻繁,我們應重視微作戰基礎理論追蹤並努力研究揭示其本質,填補空白。同時,我們還存在著一定重視研發而在應用創新研究與成果轉化上尚顯不足的情況,應遵循微作戰的本質規律,充分發揮創新驅動發展作用,優先扶持基礎理論、作戰實驗、編制人員、後裝保障等領域提高創新水平,以人工智慧、量子等重大技術創新夯實微作戰的“底子”;以自主創新努力縮小關鍵領域差距,補好微作戰“心、芯、新”的“裡子”,把對手卡脖子、自己不託底的關鍵領域作為主攻方向,確保引領發展。

以軍民融合為抓手大力提升微作戰相關技術與裝備發展。準確掌握微作戰發展方向,以軍民融合為抓手,加強相關裝備發展,形成管、產、學、研相融合的微作戰軍民融合發展組織管理體系。推進微作戰技術資源軍地共享,加緊制定軍民相容的微作戰武器裝備標準和軍地通用的技術體系,制定政策措施推進,以減少軍民之間的隔閡,保證軍用和民用之間的協調互動。加速破除微作戰相關領域軍民融合壁壘,探索新路徑新模式,在微電子、人工智慧等軍地通用性強、技術運用成熟的行業先行試點,盡快形成可複製可推廣的經驗做法。

努力實現微作戰超前規劃和佈局。適應未來微作戰的要求,可賦予新質作戰力量微作戰演訓和實驗任務,採集相關數據,提供翔實數據,更好地為微作戰規劃佈局和預先實踐提供相關理論和實踐支撐。可在院校創設微作戰相關專業,在微作戰理論研究、教學等方面加強探索與實踐,為微作戰提供智力支撐與人才培養條件。應深入做好未來戰場建設需求論證,不斷提升戰場網絡資訊體系基礎設施建設,加大以衛星通訊為主的行動通訊覆蓋及頻寬建設,滿足未來微作戰海量資訊傳輸的需求。要加快構建微作戰相關標準體系,制定完善相關應用標準。 (裴飛、張大鵬、李景鋼)

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4823585888.html

Chinese Military Analysis on the Strategic Application of Intelligent Warfare


中國軍事對智慧戰爭戰略應用的分析

現代英語:

An analysis of the use of strategies in intelligent warfare

■Chen Dongheng, Zhong Ya

Reading Tips: “Warfare is the art of deception”. War is a competition of comprehensive strength. Ancient Chinese military strategists have always attached great importance to “strategizing in the tent and winning thousands of miles away”, and all of them regard strategy as the way to victory. War practice shows that as long as war is a confrontation between humans, smart strategies will not withdraw from the battlefield. Today’s battlefield competition is about intelligent skills, and what is fought is smart strategies.

“The best military is to attack the enemy’s strategy, the next best is to attack the enemy’s alliance, the next best is to attack the enemy’s soldiers, and the worst is to attack the city.” Strategy, as a component of combat power and a weapon to win the war, runs through ancient and modern times and transcends national boundaries, and has an important function of influencing and determining the outcome of the war. Although the role of science and technology is more prominent in intelligent warfare, it does not exclude the use of strategy. With the support and guidance of strategy, the combat system is more efficient. In-depth research and mastery of the use of strategy in intelligent warfare will be more conducive to winning the initiative in intelligent warfare.

The status and role of the use of strategy in intelligent warfare

The essence of strategy lies in the intelligent release of power. Scientific strategy application can often defeat the majority with the minority, the big with the small, and the strong with the weak. The battlefield of intelligent warfare presents more transparency, more extended combat space, more diverse means of confrontation, and more complex winning mechanism. This provides a solid material foundation and technical support for the implementation of strategy, and the status and role of strategy are becoming more and more important.

The internal driving force of the army construction and development planning. Demand is the order of the army, and use is the commander of the weapon. How science and technology are innovated, how weapons and equipment are developed, and how the national defense forces are built are often driven by demand and forward-looking planning. For example, in order to make up for the gap between Russia and the United States in terms of overall air defense and anti-missile strength, Russia used “asymmetric” strategies to focus on penetration technology and developed the “Zircon” and “Dagger” hypersonic missiles before the United States. Facts show that the application of strategies mainly focuses on “Tao” and “Fa”. The more reasonable the design and the more scientific the application, the more it can stimulate the motivation, vitality and potential of innovation and creation, and trigger a revolution in science and technology, weapons and equipment, and military construction and combat methods. Only when intelligent warfare, scientific and technological innovation and weapons and equipment development are closely connected with the needs of scientific war strategies can they adhere to the correct direction and be better transformed into actual combat power.

A multiplier of the actual combat effectiveness of the combat system. In the combat power spectrum, strategy, as an important soft power, has the value and significance of providing scientific methodological guidance, appropriate time and opportunity selection and correct path support for the use of military hard power. For example, Iran once used the “dislocation” tactics to launch a large-scale retaliatory air strike against Israel, first using hundreds of cheap drones to attract the consumption of Israel’s expensive air defense system, and then using more advanced high-value ballistic missiles to penetrate, which improved the hit rate to a certain extent. Facts show that when facing an opponent with superior hard power, if the strategy is used properly, it can also achieve miraculous results; and the same hard power may have very different combat effectiveness when using different strategies and tactics. In intelligent warfare, although the “blade” of military hard power is faster, in order to make it more effective, it still needs to rely on more sophisticated strategic “sword skills”.

Dependent variables of hybrid warfare operations. Strategy can not only empower military hard power, but also has a strong direct combat function, and can even defeat the enemy without fighting by “soft killing”. For example, the United States once spent a lot of money to capture the leader of al-Qaeda, Osama bin Laden, but he seemed to have disappeared from the world, and technical means could not determine his exact hiding place. He was finally tracked down by targeting his messenger through strategic use. The United States’ “live broadcast” “Spear of Poseidon” operation attempted to show the strength of the US military by killing Bin Laden to shock the international community. Intelligent warfare is a hybrid warfare, which has entered a new era of global live broadcast, universal participation, and full coverage. More and more countries are adopting strategic methods to enhance their own confidence and strike the opponent’s will to resist, and the strategic “soft kill” combat function is becoming more and more apparent.

Basic mechanism of intelligent warfare strategy application

Intelligent warfare, high-level development of artificial intelligence, rapid iteration, full spectrum penetration, and high-efficiency release, make the application of strategy have more dimensional support and stronger drive, showing a unique operation mechanism.

Cluster operation of strategy application. The application of strategy is based on the underlying logic of war operation and follows the law of evolution of the subject from individual to team and then to system. From a historical perspective, the application of strategy warfare in the cold weapon era relied more on the wisdom and experience accumulation of generals. Natural factors such as geography and weather are the main grasps of strategy operation. The burning of Red Cliff and borrowing arrows from straw boats are vivid footnotes. In the mechanized era, in order to adapt to the increasingly complex composition of military branches and the needs of fast-paced operations, the “General Staff” of senior military institutions dedicated to war planning services came into being. The “General Staff” in the two world wars is a typical representative. In the information age, the use of war strategies mainly relies on the control of information, and information power has become the main support behind strategic planning. In intelligent warfare, the comprehensiveness of technology application, the systematic nature of force planning, and the platform characteristics of game confrontation are more prominent, and the internal requirements are that the subject of strategy implementation should shift to a more powerful systematic platform.

Algorithm-driven strategy application. Strategy is based on strategy. The essence of planning is calculation, calculation of the world situation, calculation of military situation, calculation of development trend, calculation of strength and weakness, calculation of winning advantage… Whether it is calculation by human brain or machine, calculation by generals or calculation by teams, calculation is always the most critical supporting factor. Generally speaking, whoever has stronger computing power, more precise algorithms, and faster calculations can grab the “calculation” machine and win the victory. In the era of intelligent calculation, artificial intelligence participates in strategic decision-making with human-machine hybrid algorithms or machine algorithms, which greatly enhances the efficiency of calculation. It is based on this that major countries have focused on breakthroughs in artificial intelligence to win the future competition. These artificial intelligences, characterized by strong computing power, have great application potential in simulating battlefield situations, simulating war processes, and assisting decision-making and command. Only by guarding against the opponent’s technical aggression, vigorously improving our computing power, and adding the wings of algorithms to traditional strategies can we be invincible in the strategic game confrontation.

Intelligent support for the use of strategies. In intelligent warfare, strategies are based on the rapid development of artificial intelligence and its extensive military applications. It is a two-way “rush” of human strategic wisdom and “technical” wisdom. Now, the generals’ ingenuity and traditional staff work have become increasingly difficult to adapt to the needs of intelligent warfare. Comprehensive intelligent command and decision-making platforms have become an important support for the implementation of strategies. The command and decision-making system of the US military has developed into a large platform that integrates four-layer structural functions, including “intelligence support, information fusion, mission coordination, autonomous decision-making, action deployment, force allocation, situation adjustment, and real-time tracking”, and has become the brain of its “decision-making center warfare”. The Russian Federation Armed Forces Combat Command Center can dispatch and monitor the training and exercises of the entire army in real time, and undertake combat command tasks in low-intensity small-scale conflicts. It can be seen that intelligent support for strategic planning and strategy implementation has gradually taken shape. Intelligent strategic confrontation has put forward higher requirements for the professional integration of strategic subjects, and promoted the deep integration of human biological intelligence and artificial intelligence, which is “human-like intelligence”.

Main ways to use strategies in intelligent warfare

In intelligent warfare, the era background, supporting conditions, and action mechanisms of strategy application have undergone profound changes. The way of implementing strategies must keep pace with the times, strive to combine traditional strategic advantages with new technologies and new forms of warfare, innovate and expand scientific paths to effectively release strategic energy, and strive to plan quickly, plan carefully, and integrate strategy and attack.

Intelligent technology integration releases energy. That is, make full use of intelligent technology to empower and release energy for strategies. Generally speaking, the effective implementation of strategies is inseparable from accurate information perception, rapid personnel mobilization, and efficient force strikes. The innovative application of artificial intelligence enables people to see farther, hear more closely, know more, and calculate faster, making the army gather and disperse more quickly, move more covertly, and release power more rapidly, which is more conducive to the generation of strategies and the achievement of effectiveness. On the one hand, with the help of the rapidity and autonomy of artificial intelligence, the enemy situation can be quickly grasped through intelligent reconnaissance, the decision-making time can be greatly shortened by using machine algorithms, and the optimal strategy can be selected with the help of simulation deduction; on the other hand, relying on artificial intelligence to release and enhance the efficiency of strategies, modern brain control technology, deep fake technology, information confusion technology, public opinion guidance technology, etc., have greatly expanded the space and means of implementing strategies.

Human-machine complementation releases energy. That is, the strengths and weaknesses of human intelligence and machine intelligence complement each other and enhance efficiency and release energy. The biggest advantage of machine intelligence over human intelligence is that it can fight continuously without being affected by biological factors such as will, emotion, psychology, and physical strength. However, the “meta-intelligence” of human intelligence and its ability to adapt to changes are not possessed by machine intelligence. The two intelligence advantages complement each other and aggregate to form a powerful hybrid intelligence, which strongly supports the use of strategies in war. On the one hand, the “machine brain” safely and efficiently makes up for the shortcomings of the human brain; on the other hand, the human brain responds to special situations on the spot. Facts show that the biggest advantage of human intelligence over machine intelligence is that it can make decisions and deal with different situations on the spot, which just makes up for the shortcomings of machine intelligence. Only by combining the two can we form the optimal solution for intelligent calculation and gather the strongest strategic application.

The platform releases energy as a whole. It is to create a modular intelligent system, an integrated intelligent decision-making command action platform that integrates strategy generation and release. Intelligent warfare, every second counts, improves the time sensitivity of target strikes. The intelligent platform comprehensively uses intelligent computing and command automation technology to efficiently process massive data and complex battlefield situations, creating a “super brain” for commanders. It has significant advantages of good functional connection, high stability, fast operation speed, and high combat efficiency. It is a new quality combat force for strategic planning. Relying on the intelligent command and control system, it can make real-time decisions, form a list of time-sensitive targets, and independently solve the combat units and strike platforms that can be summoned and struck the fastest and best. The hardware and software can accurately strike the targets, and accurate strikes on time-sensitive targets can be achieved in real-time decisions, providing more options for assisting war decision-making and command.

(Author unit: Academy of Military Science)

現代國語:

試析智慧化戰爭的謀略運用

■陳東恆 鐘 婭

閱讀提示 「兵者,詭道也」。戰爭是綜合實力的比拼和競賽。我國古代兵家歷來重視“運籌帷幄之中,決勝千里之外”,無不把謀略視為取勝之道。戰爭實踐表明,只要戰爭是人類的對抗,智慧謀略就不會退出戰場。今天的戰場比拼,打的是智能技能,拼的更是智慧謀略。

「上兵伐謀,其次伐交,其次伐兵,其下攻城。」謀略作為戰鬥力的構件和製勝戰爭的利器,貫穿古今、超越國界,具有影響和決定戰爭勝負的重要功能。智能化戰爭中雖然科技的角色更突顯,但並不排斥謀略的運用,在謀略的支撐和引領推動下,作戰體系反而效率更高。深入研究掌握智慧化戰爭的謀略運用,更有利於贏得智慧化戰爭的主動權。

智慧化戰爭謀略運用的地位作用

謀略的本質在於力量的智慧化釋放。科學的謀略運用常能以少勝多、以小博大、以弱勝強。智慧化戰爭戰場呈現更透明、作戰空間更延展、對抗手段更多樣化、制勝機理更複雜等特點,這為施謀用計提供了堅實物質基礎和技術支撐,謀略的地位作用愈發重要。

軍隊建設發展規劃的內動力。需為軍之令,用為器之帥。科學技術如何創新、武器裝備怎樣發展、國防軍隊怎麼建設,常常由需求牽引、前瞻謀劃。例如,俄羅斯為彌補防空反導整體力量方面與美國的差距,運用「非對稱」謀略在突防技術上發力,先於美國研發出「鋯石」「匕首」高超聲速導彈。事實表明,謀略運用主要著力於“道”和“法”,其設計越合理、運用越科學,越能激發創新創造的動力、活力和潛力,引發科學技術、武器裝備和軍隊建設作戰方式的革命。智慧化戰爭,科技創新和武器裝備開發只有緊密對接科學的戰爭謀略需求,才能堅持正確的方向,更好地轉化為現實的戰鬥力。

作戰體系實戰效能的倍增器。在戰鬥力譜系中,謀略作為重要的軟力量,其存在的價值和意義在於為軍事硬實力運用提供科學的方法論指引、合適的時機場合選擇和正確的路徑支撐。例如,伊朗曾利用「錯置」戰法對以色列發動大規模報復性空襲,先是以數百架廉價無人機吸引消耗以軍昂貴的防空系統,繼而用更先進的高價值彈道導彈突防,一定程度上提高了命中率。事實顯示,面對硬實力佔優的對手,如果謀略運用得當也能收到奇效;而同樣的硬實力運用不同的策略戰法,作戰效能可能大相徑庭。智慧化戰爭,雖然軍事硬實力的「刀鋒」更快,但要使其發揮更大戰鬥效能,還需藉助更高明的謀略「刀法」。

混合戰爭作戰運籌的因變數。謀略不僅能為軍事硬實力賦能,本身還有強大的直接作戰功能,甚至能以「軟殺傷」不戰而屈人之兵。例如,美國曾重金緝拿基地組織頭目本·拉登,但他好像人間蒸發一樣,技術手段無法確定其確切藏身處,最終通過謀略運用盯上其信使才追踪到。而美國「直播」「海神之矛」作戰行動,則企圖透過擊殺賓拉登來展現美軍的強大,以震撼國際社會。智慧化戰爭是混合戰爭,已經進入全球直播、全民參與、全域覆蓋的全新時代,越來越多的國家採取謀略方式增強己方信心、打擊對手抵抗意志,謀略「軟殺傷」的作戰功能越加顯現。

智慧化戰爭謀略運用的基本機理

智慧化戰爭,人工智慧的高階位元發展、快速度迭代、全頻譜滲透、高效能釋放,使謀略運用有了更多維的支撐、更強大的驅動,展現出獨特的運行機理。

謀略運用的集群作業。謀略的運用,既基於戰爭運行的底層邏輯,也遵循施動主體從個體到團隊再到體系的流轉演進規律。從歷史上看,冷兵器時代的謀略戰爭運用,更多靠將帥的智謀和經驗積累,地理、天候等自然因素是謀略運籌的主要抓手,火燒赤壁、草船借箭就是其生動註腳。機械化時代,適應日益復雜的軍兵種構成和快節奏作戰需要,專司戰爭謀劃服務的高級軍事機構“參謀部”便應運而生,兩次世界大戰中“總參謀部”就是其中的典型代表。資訊化時代謀略的戰爭運用,依靠的主要是對資訊的掌控,資訊力成為謀略運籌背後的主要支撐力。智慧化戰爭,技術應用的綜合性、力量運籌的體系性、博弈對抗的平台化特徵更加突出,內在要求謀略的施動主體向功能更強大的體系化平台轉進。

謀略運用的演算法驅動。謀略以謀為關鍵。謀的本質是算,算天下大勢、算軍事態勢、算發展趨勢、算強弱勝勢、算制勝優勢……無論是人腦算還是機器算、將帥算還是團隊算,算始終是最關鍵的支撐要素。一般情況下,誰的算力更強、演算法更精、算計更快,誰就能搶得「算」機、贏得勝算。智能化時代的算,人工智慧以人機混合演算法或機器演算法參與謀略決算,極大增強了算的效率。正是基於此,各主要國家紛紛把贏得未來競爭的成長點聚焦到人工智慧突破上。這些以強算力為特徵的人工智慧,在模擬戰場態勢、模擬戰爭進程、輔助決策指揮上有極大應用潛力。謹防對手技術突襲,大力提高我們的算力,為傳統謀略插上演算法的翅膀,才能在謀略博弈對抗中立於不敗之地。

謀略運用的智慧支撐。智慧化戰爭,謀略基於的是人工智慧迅猛發展及其廣泛軍事應用,是人的謀略之智與「技術」之智的雙向「奔赴」。現在,將帥的神機妙算、傳統的參謀作業,已經越來越難以適應智能化戰爭需要,綜合性的智能化指揮決策平台,成為施謀用計的重要支撐。美軍的指揮決策體系,已經發展成為融「情報保障、資訊融合,任務協調、自主決策,行動展開、力量配屬,態勢調整、實時跟踪」等四層結構功能於一體的大平台,成為其「決策中心戰”的大腦。俄羅斯聯邦武裝力量作戰指揮中心,可即時調度監控全軍訓練演習,並在低強度小規模沖突中擔負作戰指揮任務。可見,智慧支撐謀略運籌、策略實施逐步形成。智慧化謀略對抗,對謀略主體的專業化整合性提出了更高要求,推動人的生物智慧與人工智慧這一「類人智慧」深度融合結合。

智慧化戰爭謀略運用的主要方式

智慧化戰爭,謀略運用的時代背景、支撐條件、作用機理等發生了深刻變化。施謀用計的方式必須與時俱進,努力把傳統謀略優勢與新的技術、新的戰爭形態結合起來,創新拓展有效釋放謀略能量的科學路徑,致力先知快謀、精謀巧打、謀打融合。

智技融合釋能。就是充分利用智慧科技為謀略賦能釋能。通常而言,謀略的有效實施離不開準確的資訊感知、迅捷的人員調動、高效的力量打擊。人工智慧的創新應用,使人看得更遠、聽得更切、知得更多、算得更快,使軍隊集散更迅速、行動更隱蔽、力量釋放更迅猛,更加有利於謀略生成和謀效達成。一方面,借助人工智慧的快速性、自主性,透過智慧偵察迅速掌握敵情,運用機器演算法極大縮短決策時間,借助模擬推演優選謀略方案;另一方面,依靠人工智慧為謀略釋放增效,現代控腦技術、深度偽造技術、資訊迷茫技術、輿論引導技術等,極大拓展了施謀用計的空間與手段。

人機互補釋能。就是人體智能與機器智能長短互補、增效釋能。機器智能與人體智能相比的最大優勢在於,能不受意志、情緒、心理、體力等生物因素的影響連續作戰。而人體智能的「元智能」及其隨機應變的能力則為機器智能所不具備。兩種智能優勢互補聚合形成強大的混合智能,強力支撐謀略的戰爭運用。一方面,「機腦」安全高效補人腦不足;另一方面,人腦臨機應對處置特殊情況。事實表明,人體智慧相比機器智慧的最大優勢在於面對不同情況能臨機決策處置,這恰好彌補了機器智慧的不足。只有把兩者結合起來,才能形成智慧運算最優解,聚成謀略運用最強能。

平台一體釋能。就是打造模塊化的智慧系統,整合謀略生成、釋放的一體化智慧決策指揮行動平台。智慧化戰爭,分秒必爭,提高了目標打擊時敏感性。智慧化平台綜合運用智慧化計算和指揮自動化技術,高效處理海量數據及復雜戰場態勢,為指揮員打造“超強大腦”,具有功能銜接好、穩定程度高、運行速度快、作戰效率高的顯著優勢,是謀略運籌的新質作戰力量。依托智能化指揮控制系統能夠實時決斷,形成時敏目標清單,自主解算能夠最快召喚、最優打擊的作戰單元、打擊平台,軟硬一體對目標進行精確打擊,在實時決斷中實現對時敏目標的精確打擊,為輔助戰爭決策指揮提供了更多選項。

(作者單位:軍事科學院)

中國原創軍事資源:https://www.81.cn/ll_208543/16345416888.html

Chinese Military Weaponization of Artificial Intelligence

中國軍事人工智慧武器化

現代英語:

In April this year, the Center for Strategic and Budgetary Assessments of the United States released a “roadmap” for the development of the platform forces of the future ground forces of the US military. The “roadmap” points out that in the future, human-machine teamwork warfare of ground forces will become the main combat style of future ground forces under the influence of robots, artificial intelligence and augmented technology. We still don’t know when unmanned forces will completely replace manned forces. But what is certain is that the mode of man-machine combination is profoundly affecting the future combat methods, changing the current combat force composition to a large extent, and may become the protagonist in future wars.

Please pay attention to the report of the Liberation Army Daily today:

Artificial intelligence technology will promote the organic integration of unmanned combat platforms and manned combat systems.

How far are we from being the protagonists of the human-machine ensemble?

■Zhou Xiaocheng, Gao Dongming, Yuan Yi

In April this year, the Center for Strategic and Budgetary Assessments of the United States released a “roadmap” for the development of the U.S. military’s future ground force platform forces. The “roadmap” points out that in the future, human-machine teamwork warfare of ground forces will become the main combat style of future ground forces under the influence of robots, artificial intelligence and augmented technology.

We still don’t know when unmanned forces will completely replace manned forces. But what is certain is that the human-machine combination model is profoundly affecting the future combat methods, changing the current combat force composition to a great extent, and may become the protagonist in future wars.

The realization of human-machine teaming has benefited greatly from the rapid development of military artificial intelligence technology. At present, military artificial intelligence technology has become an important driving force for the development of human-machine teaming, promoting its comprehensive application in military fields such as command decision-making, organization and deployment, equipment operation, combat support, military training, and rear support. Human-machine teaming based on military artificial intelligence technology will effectively promote a significant increase in the combat effectiveness of the army, give birth to a new war style, and change the internal mechanism of winning the war.

In the field of information perception and processing, the armies of the United States, Russia and other countries have been equipped with digital individual systems with intelligent information perception and processing capabilities, which help soldiers to accurately grasp complex battlefield situations in real time and quickly and efficiently deal with various problems arising on the battlefield. At the same time, the deployment and application of a series of intelligent unmanned reconnaissance equipment has greatly improved battlefield transparency and greatly shortened the time for information acquisition and processing.

In terms of unmanned combat platform construction, intelligent unmanned combat equipment, mainly intelligent unmanned vehicles, drones and unmanned submarines, has gradually emerged in military applications. Various auxiliary decision-making systems developed based on artificial intelligence technology can build a powerful grid network information system, enhance the ability of intelligence analysis, command and decision-making, and thus greatly improve the command and decision-making efficiency of human-machine combinations.

Human-machine combination usually consists of manned forces and unmanned forces. Among them, manned forces are the command center, and unmanned forces accept the command and control of manned forces and perform combat missions according to the command and control of manned forces. The three basic forms of human-machine combination can be summarized as human-robot combination, human-AI combination and personnel enhancement. The three forms will greatly improve the deployability, lethality and sustainability of future military forces.

Human-robot teaming refers to a partnership between humans and robots, which aims to improve the ability of humans to interact with various types of robot formations to perform specific tasks. In 2017, the U.S. Air Force demonstrated a manned and unmanned aircraft formation in the “Have-Airstriker II” exercise, with unmanned wingmen autonomously performing ground attack missions. Autonomously controlled unmanned wingmen are able to make value judgments based on changes in the battlefield environment, act according to new action plans, and successfully achieve the expected results. In the same year, the French Dassault Aviation Company successfully achieved a flight of hundreds of kilometers between the “Neuron” drone and the “Rafale” fighter, accumulating technical experience for the research and development of unmanned wingmen.

The combination of human and AI is mainly manifested in the weaponization of humans and the humanization of weapons, which are applied in strategic analysis, combat planning and command decision-making. This requires specialized analysis and research related to but different from the combination of human and robot. Last year, Facebook announced its entry into the field of non-invasive brain-computer interface research. The Advanced Research Projects Agency of the U.S. Department of Defense also announced funding for several research institutions to carry out neuroengineering system design projects to develop brain-computer interfaces that can be implanted in the human brain to achieve high-speed communication between humans and machines.

Personnel augmentation aims to enhance the existing combat capabilities of combat personnel by using mechanical, wearable and implantable external forces. For example, the currently developed equipment such as modular and expandable individual protective equipment, enhanced combat helmets, individual exoskeletons and wearable data recorders highlight the concept of people-oriented and achieve the goals of enhancing personnel protection capabilities, improving battlefield perception capabilities and enhancing individual combat effectiveness.

In the future, human-machine combination will change the traditional combat mode, give birth to new combat forces, blur the boundary between war and non-war, and have a profound impact on future wars. Its development trend is mainly concentrated in three aspects:

First, it is developing towards comprehensive multi-mission combat capabilities. With the needs of future operations, human-machine teaming is developing towards comprehensive, multi-mission capabilities such as reconnaissance and strike, command and control, and combat support. Multi-mission requirements will make human-machine teaming a key node in future operations. Improving comprehensive multi-mission combat capabilities is an inevitable trend in the development of human-machine teaming.

The second is to develop in the direction of distributed networking, cross-domain clustering and collaborative operations. Human-machine collaborative combat technology will become a research focus. Relying on artificial intelligence, data fusion and data management and other related technical support, unmanned combat nodes and manned combat nodes will be distributedly networked to achieve cluster combat of human-machine combination, form wide-area combat capabilities, and achieve the purpose of collaborative combat.

The third is to develop in the direction of system, intelligence and module. The system construction is constantly strengthened, and the system combat capability of human-machine combination is improved according to different battlefield environments and combat requirements, the intelligence level of system combat is improved, the autonomy and interaction ability of unmanned forces in performing tasks are improved, and combat tasks that manned forces are unable to perform are completed.

現代國語:

來源:中國軍網綜合 作者:周小程 高冬明 袁 藝 責任編輯:焦國慶 2018-09-21 03:35

今年4月,美國戰略與預算評估中心發布了美軍未來地面部隊平台力量發展的「路線圖」。該「路線圖」指出,未來地面部隊人機組合作戰將在機器人、人工智慧和增強技術的影響下,成為未來地面部隊的主要作戰樣式。無人力量何時會完全取代有人力量,目前我們還不得而知。但可以肯定的是,人機組合的模式正在深刻影響未來作戰方式,在很大程度上改變當前的作戰力量編成,或將成為未來戰爭中的主角。

請關註今日《解放軍報》的報導——

人工智慧技術將推動無人作戰平台與有人作戰系統有機融合——

人機組合唱主角離我們還有多遠

■周小程 高冬明 袁 藝

今年4月,美國戰略與預算評估中心發布了美軍未來地面部隊平台力量發展的「路線圖」。該「路線圖」指出,未來地面部隊人機組合作戰將在機器人、人工智慧和增強技術的影響下,成為未來地面部隊的主要作戰樣式。

無人力量何時會完全取代有人力量,目前我們還不得而知。但可以肯定的是,人機組合的模式正在深刻影響未來作戰方式,在很大程度上改變當前的作戰力量編成,或將成為未來戰爭中的主角。

人機組合的實現在很大程度上得益於軍用人工智慧技術的快速發展。當前,軍用人工智慧技術已成為人機組合力量發展的重要推手,推動其在指揮決策、編成部署、裝備運用、作戰支援、軍事訓練、後裝保障等軍事領域全面應用。基於軍用人工智慧技術的人機組合將有力促進軍隊戰鬥力大幅提升,催生新的戰爭樣式,改變戰爭制勝的內在機理。

在資訊感知與處理領域,美、俄等國的軍隊已裝備了具有智能化信息感知與處理能力的數字化單兵系統,為士兵實時準確地掌握復雜戰場情況,快速高效地處置戰場上出現的各種問題提供了幫助。同時,一系列智慧化無人偵察裝備的部署應用,大大提高了戰場透明度,使資訊取得和處理的時間大大縮短。

在無人作戰平台建設方面,以智慧化無人車、無人機和無人潛航器為主體的智慧化無人作戰裝備逐漸在軍事應用中嶄露頭角。基於人工智慧技術開發的各種輔助決策系統可建立功能強大的柵格化網路資訊體系,增強情報分析、指揮決策的能力,從而大幅提高人機組合的指揮與決策效能。

人機組合通常由有人力量與無人力量構成。其中,有人力量是指揮中樞,無人力量接受有人力量的指揮和控制,根據有人力量的指揮控制執行作戰任務。人機組合的三種基本形式可以概括為人-機器人組合、人-AI組合和人員增強,三種形式將極大地提高未來軍事力量的可部署性、殺傷性和可持續性。

人-機器人組合是指人與機器人之間的合作夥伴關系,旨在提高執行特定任務的人與各型機器人編隊互動的能力。 2017年,美國空軍在「海弗-空襲者Ⅱ」演習中,展示了有人機和無人機編隊,無人僚機自主執行對地攻擊的任務。自主控制的無人僚機能夠根據戰場環境變化做出價值判斷,以新的行動方案開展行動,並成功實現預期結果。同年,法國達梭飛機製造公司成功實現了「神經元」無人機與「陣風」戰鬥機的數百千米飛行,為無人僚機的研究發展積累了技術經驗。

人-AI的組合主要表現為人的武器化和武器的人化,應用於戰略分析、作戰規劃和指揮決策等方面,這需要開展與人-機器人組合相關卻又與之不同的專門分析研究。去年,「臉書」宣布進軍非侵入性的腦機介面研究領域。美國國防部高級研究計劃局也宣布資助多家研究機構,開展神經工程系統設計項目,開發可植入人腦的腦機接口,實現人機間高速通訊。

人員增強旨在利用機械的、可穿戴和可植入的外部力量來增強作戰人員現有的作戰能力。例如目前開發的注入模塊化拓展的單兵防護裝備、增強型戰鬥頭盔、單兵外骨骼和可穿戴數據記錄儀等設備,突出了以人為本的理念,達到了增強人員防護能力、提高戰場感知能力和提升單兵戰鬥力的目標。

未來,人機組合將改變傳統的作戰模式,催生新型作戰力量,模糊戰爭與非戰爭界限,對未來戰爭產生深遠影響。其發展趨勢主要集中在三個方面:

一是向綜合多任務作戰能力方向發展。隨著未來作戰的需要,人機組合正向具備偵察打擊、指揮控制、作戰支援等綜合型、多任務能力方向發展。多任務需求,將使人機組合成為未來作戰的關鍵節點。提升綜合多任務作戰能力是人機組合發展的必然趨勢。

二是向分散式組網、跨域集群和協同作戰方向發展。人機協同作戰技術將成為研究重點,依託人工智慧、數據融合與數據管理等相關技術支撐,由無人作戰節點、有人作戰節點進行分散式組網,實現人機組合的集群作戰,形成廣域的作戰能力,達到協同作戰的目的。

第三是向體系、智能、模塊方向發展。體系化建設不斷加強,針對不同的戰場環境和作戰需求,提高人機組合的體係作戰能力,提升體係作戰的智能化水平,提高無人力量執行任務時的自主性和交互能力,完成有人力量無法勝任的作戰任務。

中國原創軍事資源:http://www.mod.gov.cn/gfbw/tp_214132/jskj/4827888.html