Tag Archives: #quantum computing warfare

Chinese Military Research Application of Quantum Technology for Warfare Uses

中國軍方研究量子技術在戰爭中的應用

現代英語:

Quantum technology is considered one of the world-changing technologies of the 21st century and is a cutting-edge field of scientific and technological development, encompassing multiple aspects such as quantum communication, quantum computing, and quantum detection. In recent years, significant progress has been made in the preparation of quantum entangled states, the realization of quantum communication, and quantum computing. The latest advancements in quantum technology have brought revolutionary changes to the military field, and major military forces worldwide are paying close attention to its development and application. To this end, the National Strategy Research Institute of Shanghai Jiao Tong University has conducted a special study on the application of quantum technology in the military field. Excerpts of some of the research results are presented below:

I. Some major applications of quantum technology in the military field

1. Encrypted communication

Quantum communication technology utilizes the quantum entanglement effect for information transmission, offering unparalleled confidentiality compared to traditional communication methods. Quantum key distribution (QKD) is a secure communication technology based on the principles of quantum mechanics, ensuring the security of information during transmission. The U.S. military has been operating an experimental quantum key distribution network since 2003, and the White House and the Pentagon have also installed and are using quantum communication systems.

Research on the application of quantum technology in the military field 2.png

2. Navigation and Positioning

Quantum positioning technology is an emerging navigation and positioning technology that utilizes quantum accelerators and quantum gyroscopes to provide high-precision, lightweight navigation devices. These devices do not require periodic position correction via navigation satellites, significantly improving the autonomous navigation capabilities of military platforms. For example, the Royal Navy found that its submarine’s quantum navigation system had a positioning error of only 1 meter over 24 hours during testing.

Research on the application of quantum technology in the military field 3.png

Scientists are testing quantum gyroscopes.

3. Intelligence reconnaissance

Quantum imaging technology has important applications in military intelligence reconnaissance. It can simultaneously detect and identify multiple targets, offering advantages such as high imaging speed, anti-jamming capabilities, and anti-radiation properties. Furthermore, quantum imaging can precisely track and monitor moving targets, improving the efficiency and accuracy of intelligence gathering.

4. Data Processing

Quantum computing boasts the advantage of parallel processing, enabling the rapid aggregation and analysis of massive amounts of battlefield data. Following the laws of quantum mechanics, quantum computers utilize physical properties such as quantum superposition and entanglement, using qubits (quantum bits) composed of microscopic particles as their basic units, and achieving computational processing through the controlled evolution of quantum states. This will drive the real-time and efficient connection of battlefield IoT and various information terminals, realizing the intelligent and networked upgrade of the battlefield.

5. Battlefield decision support

Quantum technology can enhance the confidentiality of military network information, improve the accuracy of military navigation and positioning, and enable the efficient processing of massive amounts of intelligence, thus providing strong support for battlefield decision-making. The ultrafast computing power of quantum computers can help analyze complex battlefield situations, provide more accurate battlefield simulations and predictions, and assist commanders in making more informed strategic decisions.

The application of quantum technology in the military field will have a significant impact on the future form of warfare and combat methods. As quantum technology continues to develop and mature, its application in the military will become increasingly widespread, providing strong technical support for improving military operational efficiency, ensuring information security, and enhancing battlefield command capabilities.

II. Application Prospects of Quantum Technology in the Civilian Field

1. Quantum communication

Quantum communication is an important application area of ​​quantum technology, utilizing quantum entanglement and the no-cloning principle to achieve secure information transmission. Quantum key distribution (QKD) is a secure communication technology based on quantum mechanics principles, ensuring the security of information during transmission. Through quantum communication, metropolitan quantum communication networks, intercity quantum networks, and even long-distance quantum communication via satellite relay can be realized, providing secure data and information transmission for fields such as finance and government.

2. Quantum computing

Quantum computing leverages the superposition and entanglement properties of qubits to significantly surpass the computational capabilities of traditional computers for specific problems. Quantum computers have potential applications in areas such as cryptography, optimization problems, drug discovery, and materials science. For example, quantum factorization algorithms can break the widely used RSA encryption system, while quantum search algorithms can provide exponential speedups in areas such as database queries.

Research on the application of quantum technology in the military field 4.jpg

The same superconducting quantum computer as the “Zu Chongzhi” series

3. Quantum precision measurement

Quantum precision measurement leverages the hypersensitivity of quantum states to achieve measurement accuracy surpassing classical methods. This can be applied to gravitational wave detection, geophysics, biology, and other scientific fields, as well as improving the accuracy and reliability of navigation systems. For example, new approaches to gravitational wave detection can be achieved through quantum entangled light sources and precise optical clocks, or quantum mechanical nonlocality tests can be conducted over distances on the order of light seconds between the Earth and the Moon.

4. Quantum Simulation

Quantum simulators can simulate complex quantum systems, providing new tools for research in fields such as physics, chemistry, and materials science. Through quantum simulators, scientists can explore complex phenomena such as high-temperature superconductivity and quantum phase transitions, accelerating the development of new materials and drugs.

5. Quantum Networks

Quantum networks combine quantum communication and quantum computing, enabling the efficient transmission and processing of quantum information. The development of quantum networks will drive the formation of a quantum internet, providing a new platform for applications such as information security, telemedicine, and intelligent transportation.

6. Quantum Imaging

Quantum imaging technology utilizes the principles of quantum entanglement and quantum interference to achieve high-resolution imaging in low-light or high-noise environments. This has important applications in fields such as medical imaging, night vision systems, and remote sensing.

7. Quantum Sensing

Quantum sensors utilize the properties of quantum states to achieve extremely high-precision measurements of physical quantities. Quantum sensing technology can be applied to fields such as precision measurement, environmental monitoring, and geological exploration, improving the accuracy and reliability of measurements.

現代國語:

量子技術被認為是21世紀改變世界的技術之一,也是科技發展的前沿領域,涉及量子通訊、量子計算和量子探測等多個面向。近年來,量子糾纏態的製備、量子通訊的實現和量子計算等方面取得了顯著的進展,量子技術的最新進展為軍事領域帶來了革命性的變革可能,世界主要軍事力量高度關注量子技術的發展與應用。為此,上海交通大學國家戰略研究院對量子技術在軍事領域的應用進行了專題研究,現在將部分研究成果摘錄如下:

一、量子技術在軍事領域的一些主要應用方向

1.加密通信

量子通訊技術利用量子糾纏效應進行資訊傳遞,具有傳統通訊方式無法比擬的保密性。量子金鑰分發(QKD)是一種基於量子力學原理的安全通訊技術,能夠保證資訊在傳輸過程中的安全性。美軍自2003年起開始運行實驗性量子金鑰分發網絡,而白宮和五角大廈也已安裝使用量子通訊系統。

量子技術在軍事領域的應用研究2.png

2.導航定位

量子定位技術是近年來新興的導航定位技術,利用量子加速器和量子陀螺儀,可以提供高精度、重量輕的導航設備。這些設備無需定期通過導航衛星校正位置,大大提高了軍事平台的自主導航能力。例如,英國皇家海軍在測試潛水艇的量子導航系統時發現,其在24小時內的定位誤差僅1公尺。

量子技術在軍事領域的應用研究3.png

科學家在測試測試量子陀螺儀

3.情報偵察

量子成像技術在軍事情報偵察領域有重要應用。量子成像技術可以同時對多個目標進行探測識別,具有成像速度快、抗干擾、反輻射等優勢。此外,量子成像還可以對動態目標進行精確追蹤監視,並提高情報收集的效率和準確性。

4.數據處理

量子運算具有平行運算優勢,能夠實現對戰場海量資料的快速匯聚與分析計算。量子電腦遵循量子力學規律,利用量子疊加和糾纏等物理特性,以微觀粒子構成的量子位元為基本單元,透過量子態的受控演化實現計算處理。這將推動戰場物聯網及各類資訊終端即時高效連接,實現戰場智慧化、網路化升級。

5.戰場決策支持

量子技術可增強軍事網路資訊保密性,提高軍事導航定位精度,實現大量情報高效處理,進而為戰場決策提供強而有力的支援。量子電腦的超快運算能力可以幫助分析複雜的戰場情況,提供更精確的戰場模擬和預測,輔助指揮官做出更明智的戰略決策。

量子科技在軍事領域的應用將對未來戰爭形態和作戰方式產生重要影響。隨著量子技術的不斷發展和成熟,其在軍事領域的應用將越來越廣泛,為提高軍事作戰效率、保障資訊安全和提升戰場指揮能力提供強大的技術支援。

二、量子技術在民用領域的應用前景

1.量子通信

量子通訊是量子技術的一個重要應用領域,它利用量子糾纏和量子不可複製原理來實現資訊的安全傳輸。量子金鑰分發(QKD)是一種基於量子力學原理的安全通訊技術,能夠保證資訊在傳輸過程中的安全性。透過量子通信,可以實現城域量子通訊網路、城際量子網絡,甚至透過衛星中轉實現遠距離量子通信,為金融、政務等領域提供資料和資訊的安全傳輸。

2.量子計算

量子運算利用量子位元的疊加和糾纏特性,能夠在特定問題上大幅超越傳統電腦的運算能力。量子電腦在破解密碼、最佳化問題、藥物發現、材料科學等領域具有潛在的應用價值。例如,量子因數分解演算法可以破解目前廣泛使用的RSA加密體系,而量子搜尋演算法則能夠在資料庫查詢等方面提供指數級的加速。

量子技術在軍事領域的應用研究4.jpg

「祖沖之號」同款超導量子計算機

3.量子精密測量

量子精密測量利用量子態的超敏感性來實現超越經典方法的測量精度。這可以應用於重力波探測、地球物理學、生物學和其他科學領域,以及提高導航系統的精度和可靠性。例如,透過量子糾纏光源和精準的光鐘,可以實現重力波探測的新途徑,或在地球和月球之間進行光秒量級距離的量子力學非定域性檢驗。

4.量子模擬

量子模擬器可以模擬複雜的量子系統,為物理學、化學和材料科學等領域的研究提供新的工具。透過量子模擬器,科學家可以探索高溫超導、量子相變等複雜現象,加速新材料和藥物的開發。

5.量子網絡

量子網路結合了量子通訊和量子運算,可以實現量子資訊的高效傳輸和處理。量子網路的發展將推動量子網路的形成,為資訊安全、遠距醫療、智慧交通等應用提供新的平台。

6.量子成像

量子成像技術利用量子糾纏和量子乾涉原理,可以在低光照或高雜訊環境下實現高解析度成像。這在醫學影像、夜視系統、遙感偵測等領域有重要應用。

7.量子感測

量子感測器利用量子態的特性來實現對物理量的極高精度測量。量子感測技術可應用於精密測量、環境監測、地質探勘等領域,提升測量的準確性與可靠性。

中國原創軍事資源:https://niss.sjtu.edu.cn/web/main/cgcp/600ad41bb50841d2bb9283642a4d14d888e

The Chinese Communist Party’s Application of Quantum Technology in Warfare

中國共產黨在戰爭中應用量子技術

現代英語:

On November 1, 2022, Huawei, a major Chinese mobile phone manufacturer, announced its patent for a superconducting quantum chip, stating that the invention reduced crosstalk between quantum bits. Huawei has been investing in quantum chip research and development for more than 5 years and has published a number of quantum technology patents. In addition, it is rumored that the Chinese quantum computer “Wukong” will be unveiled soon, and the first quantum chip production line is being rushed to completion, using the “NDPT-100 non-destructive probe electrical measurement platform” developed by Origin Quantum in Hefei to improve yield. At the same time, the University of Science and Technology of China also announced on November 20 that it has achieved quantum storage of photons in the communication band, which can be directly connected to the existing fiber optic network, and may be able to build a long-distance, large-scale fiber optic quantum network in the future. [1]

On the other hand, the U.S. Department of Defense released the 2022 China Military Power Report on November 29, pointing out that the CCP discussed a new core operational concept in 2021—”Multi-Domain Precision Warfare”—using big data and artificial intelligence technologies to identify vulnerabilities in the opponent’s combat system and then carry out precise strikes. At the same time, the CCP has also acquired emerging technologies for both military and civilian use through its military-civilian integration strategy, such as artificial intelligence, autonomous systems, quantum technology, biotechnology, and advanced materials. [2]

Although quantum technology is still in the “proof of concept” (POC) stage and will take a considerable amount of time before it can be put into practical use, China’s quantum technology continues to make progress despite the strong technological blockade by the United States, and its application in combat may be prioritized, which deserves our special attention.II. Safety ImplicationsI. The CCP will take the lead in establishing a global quantum communication network.Quantum technology[3] is mainly divided into three major fields: quantum computing, quantum communication and quantum sensing.[4]

China’s quantum communication technology currently holds a leading position in the world and may be the first to complete industrialization.[5] Following the opening of the world’s first quantum communication network, the Hefei Metropolitan Area Quantum Communication Experimental Demonstration Network, in 2012, China successfully launched the world’s first quantum satellite, Micius, in 2016.

Subsequently, it achieved three major technological breakthroughs: quantum key distribution (QKD) between satellite and ground, quantum teleportation between ground and satellite, and quantum entanglement key distribution over a thousand kilometers. In 2017, the CCP opened the Beijing-Shanghai quantum communication line, which is more than 2,000 kilometers long. With the connection between the satellite “Micius” and the Beijing-Shanghai quantum communication line, the world’s first intercontinental (Beijing-Vienna) quantum communication video call was completed through the collaboration between Austrian scholar Anton Zeilinger[6] and Chinese quantum expert Pan Jianwei.The successful distribution of “space-to-ground quantum key” enables the CCP to use “low orbit satellites” (LEO) as relay stations to share keys between any two locations in the world.

If further combined with ground fiber optic quantum communication networks, a quantum communication network covering the whole world can be established. Currently, the CCP is planning to build a “national quantum internet” with a length of 35,000 kilometers, extending to Urumqi in Xinjiang and Lhasa in Tibet. In addition to ensuring that the content of messages is not intercepted or eavesdropped on, [7] “Quantum Digital Signature” (QDS) and “Quantum Secure Identification” (QSI) can also improve communication security. In military applications, in addition to ensuring the security of military communications, quantum communication networks can also be used as military 6G technology to assist quantum communication between space, special forces and different military branches, and solve the problem of underwater communication being susceptible to interference, thereby improving underwater combat capabilities. [8]

II. China’s quantum computing technology will accelerate the realization of unmanned intelligent warfare.The global quantum computing market is currently led by the United States and China, which are driving the development of related system software and algorithms. There are multiple technical approaches, with superconductivity and “ion trap” technology being the most advanced. On May 8, 2020, the CCP unveiled the superconducting quantum computer prototype “Zu Chongzhi”; on December 4 of the same year, it announced the successful construction of the photonic quantum computer prototype “Jiuzhang”. Currently, it is using ion trap technology to improve the computing power of photonic quantum chips. [9]

Quantum computers can combine artificial intelligence and big data analysis to process large amounts of information quickly, and are mainly used in chemical analogy, system optimization, password cracking, machine learning and other fields. In the military, in addition to being able to quickly crack public key cryptography and improve network combat capabilities,[10] quantum computing can also be used in battlefield simulation, wireless spectrum analysis, logistics management, energy management and other fields. It can also optimize existing combat command, deployment, decision-making, war game simulation, system verification, predictive analysis and other fields, and significantly shorten the time for weapon design and manufacturing, new material development and military battery research and development. Quantum edge computing can be applied to the collaborative operations of unmanned vehicles or unmanned weapons (see attached table). In addition, if the CCP can establish a battlefield “Internet of Military Things” (IoMT), it can realize precise, fast and highly complex unmanned intelligent operations in advance.

III. Quantum radar and quantum navigation capabilities will reverse the course of war.Quantum sensing technology uses quantum measurement of physical properties such as magnetic fields, electric fields, and gravity, which can greatly improve the accuracy of existing measurements. The main types include quantum radar, quantum navigation, and quantum imaging. Quantum sensing technology can identify targets in complex environments such as high noise, low light, and underwater, and the advantages of current ballistic missiles, stealth aircraft, and underwater nuclear submarines will no longer exist. [11]

In 2017, the CCP claimed that its “quantum imaging technology” (QI) could enable spy satellites to track US B-2 bombers and identify stealth fighters at night. [12]

China Electronics Technology Group Corporation (CETC) showcased the world’s first single-photon quantum radar prototype at the 2018 Zhuhai Airshow and recently claimed that it had completed a target detection test at a range of 100 kilometers in a real atmospheric environment, implying that its quantum radar was about to be launched. [13]

In addition, quantum positioning, timing and navigation (PNT) systems based on high-precision quantum clocks determine the coordinates of ground users by obtaining the time difference between the transmission of entangled photon pairs between the satellite and the ground through quantum satellites. [14]

Since it does not rely on the Global Positioning System (GPS), infrared or radar navigation, quantum navigation can not only greatly enhance the existing Global Navigation Satellite System (GNSS), but also function in environments where GPS cannot work, such as underwater, underground or in environments severely interfered with by electromagnetic waves. Once it is put into practical use, the CCP’s quantum navigation technology will improve the hit rate of its various weapons.

3. Trend Analysis

I. The CCP may be developing “quantum warfare”.Although the CCP acknowledges that its quantum technology still has many shortcomings and that it will take a considerable amount of time before it is commercialized, it has already identified quantum technology as a key technology for breaking through the US’s technological encirclement and establishing itself as a technologically powerful nation. The “second quantum revolution” will overturn existing technological, economic, and military models. It is conceivable that the CCP will continue to invest heavily in quantum technology development through a nationwide system. Under this general direction, the quantum industry and quantum military applications will be accelerated. In the future, as existing computers move towards miniaturization, cloud computing, and edge computing, quantum computers or quantum sensors may be deployed on smaller weapons and equipment, such as satellites, drones, or individual soldier mobile phones, and even for “quantum warfare” (see attached diagram).

II. Taiwan may need to develop quantum defense capabilities in advance.China’s quantum communication technology is currently ranked first in the world, and its quantum computing and quantum sensing technologies are ranked second in the world. Therefore, if China uses quantum technology to fight against us, our country may not have any ability to retaliate. In March 2022, China established a quantum national team, selected 17 industry-academia-research teams, and pointed out the development direction of quantum technology in the next 5 years. [15]

However, its plans are mostly biased towards the technological and economic aspects, and there are no defense measures against the Chinese Communist Party’s possible future attacks on us, such as password cracking, quantum navigation, quantum radar, and even quantum network warfare, quantum space warfare and quantum underwater warfare. Perhaps the Chinese Academy of Sciences should join the quantum national team in advance and cooperate with private industry-academia-research personnel to think about how to defend against the Chinese Communist Party’s future quantum warfare.Appendix: Examples of Military Applications of Quantum Technology

 fieldPossible applications
Quantum CommunicationQuantum key distribution ( QKD )Quantum communication technology is the most mature and is already commercially available.Long -distance quantum communication can be achieved through repeaters such as satellites.
Post-quantum cryptographyUsed to defend against attacks from quantum computersThe United States expects to complete standardization in 2023-2024.
Quantum Communication NetworkQuantum networks: quantum-secure direct communication in space, special forces, and between different military branches → military 6GQuantum digital signature ( QDS )Quantum Identity Recognition ( QSI )Quantum cryptography technology that requires specific locations to transmit and receive: military satellite communicationsQuantum clocks enable more precise time synchronization: C4ISR collaborative action
Quantum computingQuantum simulationBattlefield    simulation, weapon development, simulation and verification
Quantum optimizationOptimize    current operational deployments, exercises, system verification, predictive analysis, etc.Cracking    existing passwords
Big Data Analytics/Machine LearningWireless    spectrum analysis, logistics management, energy managementDecision    Analysis and Reference
Edge computingConsistency of action of unmanned    vehicles or unmanned weapons within the same time period   Cooperative operations between different military branches
Quantum sensingQuantum positioning, navigation, and timing ( PNT )High -precision quantum clockQuantum inertial navigation and quantum-enhanced navigation can be deployed on autonomous unmanned vehicles or missiles.Quantum navigation that does not rely on a global satellite navigation system
Quantum intelligence surveillanceSurface and subsurface monitoring: Quantum sensing technology deployed on low-Earth orbit satellites and unmanned vehicles
Quantum imaging: quantum 3D cameras, quantum gas sensors, low signal-to-noise ratio battlefield vision equipment, quantum rangefinders, quantum ghost imaging, etc.
Quantum Underwater WarfareQuantum inertial navigation can be applied to large submarines and underwater vehicles.Quantum magnetometers can assist in mapping the seabed, detecting underwater mines, and, in conjunction with other sensors, perform underwater detection and analysis.
Quantum radar and quantum laser radar, etc.Quantum laser radar: Short-range target illumination, applicable to anti-drone surveillance, short-range air defense, and small satellite detection in space.Quantum -enhanced radar: A high-precision, low-noise quantum radar that can be used to detect small, slow-moving objects such as drones.
otherCombat Applications Quantum electronic warfareSmaller general-purpose quantum antennas and array-type quantum radio frequency sensorsQuantum computing and quantum clocks can enhance the capabilities of existing electronic warfare systems.Quantum electronic warfare can interfere with, deceive, and obstruct the enemy.
Quantum Space WarfareDeployment and development of technologies such as quantum radar, quantum electronic warfare, quantum sensing, and quantum communication on low-Earth orbit satellites
Biochemical Simulation and DetectionAt least 200 qubits and more logic bits are required for simulation.It can be installed on drones and ground vehicles for detecting biochemical toxins in the environment.
quantum materialsDeveloping new military materials for camouflage, stealth, and high-temperature resistance by utilizing quantum properties such as superconductivity and topology.

Source: Table compiled by author Wang Xiuwen based on the literature. Michal Krelina, “Quantum Technology for Military Application,” EPJ Quantum Technology, (2021) 8:24,

Wang Xu Wen

https://reurl.cc/DXYWaj.

現代國語:

壹、新聞重點

2022年11月1日,中共手機大廠「華為」公司公布其「超導量子晶片」專利,指出該項發明降低了量子比特串擾。「華為」投入量子晶片研發超過5年,已公開多項量子技術專利。此外,據聞中共量子電腦「悟空」即將公開,第一條量子晶片產線正加緊趕工,並採用合肥「本源量子」公司研發的「NDPT-100無損探針電學測量平台」來提高良率。同時,中國科學技術大學也在11月20日宣布已實現通訊波段光子之量子存儲,可直接對接現行的光纖網路,未來可能建構出長距離、大尺度的光纖量子網。 [1]

另一方面,美國國防部11月29日公布《2022年中國軍力報告》(2022 China Military Power Report),指出中共在2021年曾討論新核心作戰概念──「多領域精確作戰」(Multi-Domain Precision Warfare),以大數據和人工智慧等技術,找出對手作戰系統之脆弱點後予以精準打擊。同時,中共也透過軍民融合戰略取得軍民兩用的新興技術,如:人工智慧、自主系統、量子技術、生物技術、先進材料等。[2]

儘管量子技術目前仍處於「概念驗證」(Proof of Concept, POC)階段,距離實用化尚需相當的時間,但是中共量子技術在美國強力的科技圍堵下仍持續進展,且作戰應用可能優先落實,值得我國特別注意。

貳、安全意涵

一、中共將率先建立全球量子通訊網

量子技術 [3]主要分為「量子計算」、「量子通訊」、「量子感測」三大領域,[4] 中共量子通訊技術目前持世界牛耳,且可能最先完成產業化。[5] 繼2012年開通全球第一個量子通訊網路「合肥城域量子通信試驗示範網」之後,中共2016年成功發射全球第一顆量子衛星「墨子號」,其後陸續達成「星地(衛星─地面)量子密鑰分發」(Quantum Key Distribution, QKD)、「地星(地面─衛星)量子隱形傳態」及「千公里級量子糾纏密鑰分發」三大技術突破。2017年,中共開通全長2,000餘公里的量子通訊線路「京滬幹線」,並在「墨子號」與「京滬幹線」之星地鏈結下,透過奧地利學者柴林格(Anton Zeilinger)[6] 和中國量子專家潘建偉之師徒合作,完成全球首次跨洲(北京─維也納)量子通訊之視訊通話。

「星地量子密鑰」分發成功,使中共能以「低軌衛星」(LEO)為中繼站,進行全球任意兩個地點之間的密鑰共享。若進一步結合地面光纖量子通訊網路,可建立覆蓋全球的量子通訊網。目前中共正計畫建構長達35,000公里的「全國量子互聯網」,範圍擴及新疆烏魯木齊和西藏拉薩。量子通訊除可確保訊息內容不被半途截取或竊聽之外,[7] 「量子數位簽名」(Quantum Digital Signature, QDS)和「量子身份識別」(Quantum Secure Identification, QSI)也可提高通訊安全。在軍事應用上,量子通訊網除了保障軍事通訊安全之外,也可作為軍用6G技術協助太空、特種部隊及不同軍種之間的量子通訊,並解決水下通訊易受到干擾之問題,提高水下作戰能力。 [8]

二、中共量子計算技術將加速無人智慧化戰爭之實現

全球量子計算市場目前以美國和中國為兩大領先者,推動相關系統軟體和演算法之發展,並有多種技術途徑,以超導和「離子陷阱」(Ion Trap)技術之發展較為超前。2020年5月8日,中共公開超導量子電腦原型機「祖沖之號」;同年12月4日又宣布光子量子電腦原型機「九章」建構成功,目前正運用離子陷阱技術提升光量子晶片之計算能力。 [9]

量子電腦可結合人工智慧和大數據分析,快速處理大量資訊,主要應用在化學類比、系統優化、密碼破解、機器學習等方面。在軍事上,量子計算除了可快速破解公鑰密碼、提高網路作戰能力之外,[10] 還可運用於戰場模擬、無線頻譜分析、後勤管理、能源管理等,也可優化現有的作戰指揮、部署、決策、兵棋推演、系統驗證、預測分析等,並大幅縮短武器設計製造、新材料開發、軍用電池研發之時間;量子邊緣運算則可應用於無人載具或無人武器之協同作戰(參見附表)。此外,中共若能建立戰場「軍事物聯網」(Internet of Military Things, IoMT),可提早實現精準快速且高度複雜的無人智慧化作戰。

三、量子雷達及量子導航等能力將扭轉戰爭態勢

量子感測技術是以量子測量磁場、電場、重力等物理性質,可大幅提昇現有測量之精度,主要有:量子雷達、量子導航、量子成像等。量子感測技術可在高噪音、光線微弱、水下等複雜環境中辨識出目標,現行彈道飛彈、隱形飛機、水下核潛艦等武器優勢將不復存在。[11]

中共2017年宣稱,其「量子成像技術」(Quantum Imaging,QI)已可使間諜衛星在夜間追蹤美國B-2轟炸機和辨識隱形戰機。[12] 「中國電科集團」則在2018年珠海航展中展示全球第一台單光子量子雷達樣機,最近更宣稱已在真實大氣環境下完成百公里級的目標探測試驗,暗指其量子雷達即將問世。 [13]

此外,以高精度量子時鐘為基礎的量子定位、授時和導航(PNT)系統,是透過量子衛星取得衛星與地面間傳遞糾纏光子對之時間差,來確定地面用戶座標。[14] 由於不依賴全球定位系統(GPS)、紅外線或雷達導航,量子導航除了可大幅增強現行全球衛星導航系統(GNSS)之外,在GPS無法作用之環境如:水下、地表下或被電磁波嚴重干擾之環境中也能發揮功能。一旦進入實用化,中共量子導航技術將提高其各種武器之命中率。

參、趨勢研判

一、中共或將發展出「量子戰爭」(Quantum Warfare)

雖然中共亦承認自身的量子技術仍有許多「短板」,且量子技術距離市場化仍需要不短的時間,但是量子技術已被中共視為突破美國科技圍堵、建立科技強國之關鍵技術。「第二次量子革命」將翻轉現有的科技、經濟和作戰模式,可以想見,中共未來仍將以舉國體制,加碼投入各種資源發展量子技術。在此大方向之下,量子產業及量子軍事應用都將加速落實。未來,隨著搭配現有電腦朝小型化、雲端化、邊緣運算方向發展,量子電腦或量子感測器可能部署在更小型的武器裝備上,如:衛星、無人機或單兵手機等,甚至進行「量子戰爭」(參見附圖)。

二、我國恐需預先發展量子防禦能力

中共量子通訊技術目前位居世界第一、量子計算和量子感測技術均居世界第二。因此,中共若將量子技術用於對我作戰,我國恐無任何還擊能力。我國在2022年3月成立量子國家隊,選出17個產學研團隊,並指出未來5年量子科技發展方向。[15] 但是,其規劃多半偏向科技面和經濟面,對於中共未來可能對我進行的密碼破解、量子導航、量子雷達,甚至量子網路戰、量子太空戰和量子水下戰等,沒有任何防禦對策。或許中科院應優先且早期加入量子國家隊,和民間產學研人士合作,共思如何防禦中共未來的量子作戰。

附表、量子技術軍事應用之例

 領域可能應用
量子通訊量子密鑰分發(QKD)ž 是量子通訊技術中最為成熟者,已可商用ž 透過衛星等中繼器,可進行遠距離量子通訊
後量子密碼ž 用於防禦量子電腦之攻擊ž 美國預計2023-2024年完成標準化
量子通訊網ž 量子網絡:太空、特種部隊、不同軍種間的量子安全直接通訊→軍用6Gž 量子數位簽名(QDS)ž 量子身份識別(QSI)ž 特定位置才能收發的量子密碼技術:軍事衛星通信ž 量子時鐘更精確的時間同步:C4ISR協同行動
量子計算量子模擬ž   戰場模擬、武器之開發、模擬和驗證
量子優化ž   優化現行作戰部署、演習、系統驗證、預測分析等ž   破解現有密碼
大數據分析∕機器學習ž   無線頻譜分析、後勤管理、能源管理ž   決策分析及參考
邊緣運算ž   無人載具或無人武器同一時間內之行動一致性ž   不同軍種之協同作戰
量子感測量子定位、導航及定時(PNT)ž 高精度量子時鐘ž 量子慣性導航、量子增強導航,可部署在自主無人載具或飛彈上ž 不需要依賴全球衛星導航系統之量子導航
量子情監偵ž 地表與地下監測:部署於低軌衛星、無人載具之量子感測技術
ž 量子成像:量子3D相機、量子氣體感測器、低信噪比之戰場視覺裝備、量子測距儀、量子鬼成像等
量子水下作戰ž 量子慣性導航可應用於大型潛艦和水下載具ž 量子磁力計可協助繪製海底地圖、探測水下水雷,配合其他感測器進行水下探測和分析
量子雷達與量子雷射雷達等ž 量子雷射雷達:短距離之目標照明,可運用於反無人機監視、短程防空、太空之小衛星探測ž 量子增強雷達:高精度低噪音量子雷達,可用於探測無人機等小型慢速移動物體
其他作戰應用 量子電子戰ž 更小型的通用量子天線、陣列式量子射頻感測器ž 量子計算及量子時鐘可增強現有的電子戰系統能力ž 量子電子作戰可對敵進行干擾、欺騙和阻攔
量子太空戰ž 量子雷達、量子電子戰、量子感測、量子通訊等技術在低軌衛星之部署和研發
生化模擬與檢測ž 至少需要200個以上的量子比特和更多的邏輯比特數量才可進行模擬ž 可安裝在無人機和地面車輛上,用於檢測環境中的生化毒物等
量子材料利用超導、拓樸等量子特性開發偽裝、隱形、耐高溫等新軍用材料

中國原創軍事資源:https://indsr.org.tw/respublicationcon?uid=12&resid=1928&pid=3582

Chinese Military & the Emerging Potential of Quantum Computing in Unconventional Warfare

中國軍事與量子運算在非常規戰爭中的新興潛力

現代英語:

The following article is from Zhuanzhi Intelligent Defense , authored by Zhuanzhi Defense.

Quantum computing represents a paradigm shift in computing technology, promising to revolutionize various industries, including national security and defense. While the capabilities of quantum computing remain largely theoretical, significant progress is underway. Experiments by companies like Google and IBM have demonstrated early instances of quantum supremacy, where quantum computers outperform classical systems in specific tasks. These breakthroughs suggest that quantum computing is not only imminent but is considered an inevitable advancement, and stakeholders should prepare now.

Unlike classical computers, which rely on binary bits (1s and 0s) to process information in a linear or symmetric manner, quantum computers utilize qubits, or “qubits,” which can exist in multiple states simultaneously. This may be a difficult concept to grasp, but this capability enables quantum computers to perform complex calculations at unprecedented speeds, solving problems that even the most powerful supercomputers currently cannot. As irregular warfare and gray-zone conflicts increasingly rely on advanced technologies, the application of quantum computing in these areas has the potential to pose new threats, but also new strategic advantages. Quantum computing may fundamentally change the way conflicts are managed and resolved in the 21st century.

Understanding Quantum Computing

Classical computing, the backbone of today’s digital infrastructure, operates on a binary system where data is represented by “bits” of “0” or “1”. These bits are processed sequentially, and classical computers execute tasks step by step. While powerful, this approach faces significant limitations when dealing with complex problems requiring vast amounts of computational resources. Quantum computing, however, utilizes the principles of quantum mechanics, allowing qubits (also known as “qubits”) to exist in multiple states simultaneously through a phenomenon called superposition. Essentially, classical bits must choose between 0 and 1, while qubits can represent both states at the same time. Entanglement, another quantum property, connects qubits so that the state of one qubit directly influences the state of another, regardless of distance.

To better understand the power of quantum computing, it’s helpful to intuitively see how it solves problems compared to classical computing. The podcast “Ask A Spaceman” uses a very relatable analogy to illustrate this. Imagine you have a complex task that requires searching through a vast number of possibilities, like finding a mouse hiding somewhere in a huge mansion. What better way to find the mouse than with a cat? In this scenario, a classical computer is like a cat, methodically searching room by room. The cat can only stay in one room at a time, and it must explore each room sequentially until it finds the mouse. If the mansion is large, this process is extremely time-consuming. Now imagine a quantum computer as a cat with a unique ability: it can be in every room of the mansion simultaneously. You could call it a “q cat.” This “q cat” doesn’t need to search room by room; instead, it can examine every possible location in the mansion at the same time. The mouse’s location can be found almost instantly, without the need for methodical exploration of each room. This analogy captures the essence of quantum computing: the ability to perform multiple computations simultaneously. By utilizing the principles of superposition and entanglement, quantum computers can solve problems several times faster than classical computers.

The impact of quantum computing on irregular warfare

As quantum computing moves from theoretical research into practical applications, it has the potential to dramatically alter the landscape of irregular warfare and gray-zone conflicts. For example, adversaries possessing quantum-enhanced decryption capabilities could intercept and decrypt military communications, weakening security operations and exposing critical intelligence. Similarly, quantum-based data processing allows adversaries to analyze massive amounts of intercepted data in real time, uncovering patterns of action or vulnerabilities. With the continued development of quantum computing, the ability to rapidly process and analyze massive amounts of data could shift the balance of power, introducing previously unimaginable new methods of conflict. The promise of quantum computing lies not only in strengthening existing strategies but also in its potential to create new methods of engagement, forcing state and non-state actors to rethink their modus operandi. Understanding the potential applications of quantum computing in irregular warfare is crucial for predicting future threats and developing effective countermeasures, especially when adversaries attempt to exploit these technologies for their own strategic gain.

Feasible applications of quantum computing in irregular warfare

The following section explores some of the most viable applications of quantum computing in irregular warfare, highlighting how this emerging technology can enhance strategic capabilities and provide a competitive advantage in increasingly complex and unpredictable conflict environments.

  • Enhanced cryptographic capabilities

One of the most anticipated applications of quantum computing is its ability to break traditional cryptographic systems. Classical encryption, the foundation for secure communications and intelligence, relies on the computational difficulty of factoring large prime numbers, a method easily cracked by quantum algorithms like the Shor algorithm. This will have profound implications, as state and non-state actors could potentially intercept and decrypt sensitive communications, disrupting operations on multiple levels. This emerging threat has sparked a global race in “post-quantum cryptography” to develop encryption methods resistant to quantum attacks. This arms race between offensive quantum decryption capabilities and defensive quantum-resistant encryption is expected to be a decisive aspect of the future conflict landscape. As the U.S. and our adversaries develop increasingly sophisticated tools, the stakes for national security, espionage, and the protection of critical infrastructure are higher than ever.

  • Optimize actions and decisions

The potential of quantum computing in optimizing complex operations is particularly relevant to the logistical and decision-making needs of irregular warfare. Quantum algorithms can process massive datasets simultaneously, thus simplifying logistics, resource allocation, and strategic planning. Just as the advent of radar during World War II revolutionized military operations, providing near real-time intelligence on enemy movements and fundamentally altering the nature and outcome of battles, quantum computing could also transform modern conflict by enabling predictive conflict management. This involves simultaneously analyzing geopolitical, economic, and social variables to predict potential conflict zones or flashpoints. A study published in *Stability* within the *International Journal of Security and Development* demonstrates the feasibility and added value of machine learning in conflict prediction, primarily using classical computational methods. However, the principles explored in this study can be directly applied to quantum computing, offering a glimpse into how advanced quantum algorithms can enhance predictive conflict management. This capability will enable military and intelligence agencies to preemptively deploy resources and personnel, reducing reaction time and managing conflict in a more proactive manner. As these technologies advance, quantum-enhanced decision-making processes could allow operators to navigate the unpredictability of conflicts with greater confidence and precision.

  • Simulation and Modeling: The ability to simulate and model complex battlefield environments is another key area where quantum computing promises to have a significant impact. Traditional simulation methods often struggle to capture the unpredictability inherent in conflicts employing decentralized and variable tactics. Quantum-enhanced war games can revolutionize this process, enabling military strategists to run countless potential scenarios in parallel, exploring not only known strategies but also new and unforeseen outcomes. These simulations will provide unprecedented insights into adversary behavior, operational risks, and tactical opportunities, leading to more effective strategic planning. Beyond battlefield tactics, quantum computing can also simulate highly interconnected cyber-physical systems, such as power grids, transportation networks, and communication infrastructure. This helps identify vulnerabilities caused by unconventional threats like cyberattacks or sabotage and predict cascading failures. This ability to test the resilience of critical infrastructure in real time will provide decision-makers with actionable insights to mitigate risks and strengthen defenses, ensuring operational stability even under mixed or gray zone pressures.
  • Influence operations and information warfare

Quantum computing’s unparalleled data processing capabilities can significantly enhance influence operations and information warfare, which are central to modern irregular warfare and gray-zone conflicts. Quantum computing can analyze massive amounts of social media and information network data to identify patterns, trends, and anomalies that may indicate an adversary’s attempts to manipulate public opinion or spread disinformation. Beyond identifying these activities, quantum-enhanced disinformation countermeasures can go even further. By simulating how disinformation spreads in networks, quantum computers can generate counter-narratives on a massive scale in real time, dismantling adversary influence operations before they gain traction. This would mark a significant advancement in countering cognitive warfare tactics and information manipulation.

  • Addressing hybrid threats

Hybrid threats, often combining conventional warfare, cyberattacks, misinformation, and irregular tactics, are particularly challenging to address due to their multifaceted nature. Quantum computing offers a powerful solution through quantum-enhanced human topography mapping—a capability distinct from battlefield simulation. Unlike simulations that primarily focus on operational and tactical scenarios, human topography mapping centers on the socio-political and economic environment at the time of conflict. This speculative yet feasible application can rapidly analyze large datasets, such as demographic sentiment, resource distribution, and political instability, to identify patterns and trends indicating social unrest, insurgency, or emerging cross-regional conflicts.

For example, quantum-enhanced systems can integrate data from social media, economic reports, and historical conflict patterns to map areas of escalating tensions and predict where hybrid threats are most likely to occur. By providing a nuanced understanding of the human environment, military and intelligence organizations can develop tailored strategies to mitigate risks before they escalate. This capability will complement battlefield simulations, addressing the broader contextual factors driving conflict and providing a more comprehensive approach to addressing hybrid threats. These advances in human topography mapping, along with the continued development of quantum computing, could transform how policymakers navigate the complexities of gray zone conflicts, where the lines between peace and war are intentionally blurred.

Future Applications

While many of the potential uses of quantum computing in irregular warfare are near-term viability, some speculative ideas push the boundaries of current technology. These unconventional concepts offer glimpses into how quantum computing could radically alter future conflicts, introducing capabilities currently unattainable but potentially becoming a reality as technology advances.

  • Quantum autonomous systems

One of the most intriguing yet fascinating applications of quantum computing in irregular warfare is the development of quantum-driven artificial intelligence (AI)-controlled autonomous systems. Unlike current AI models that rely on the limitations of classical computing, quantum AI can process and adapt to massive amounts of battlefield data in real time. This will enable autonomous drones or ground systems to operate with unprecedented agility, making decisions faster and more accurately in highly dynamic and unpredictable operational environments. These systems can evolve and learn in ways that current machine learning models cannot match, leading to a new generation of adaptive warfare technologies. Such quantum-driven autonomous systems could alter the balance of power in conflict zones, creating advantages where rapid adaptability is crucial. Furthermore, these systems can operate across decentralized networks, coordinating seamlessly without continuous human intervention, further enhancing their effectiveness in conflict scenarios.

  • Quantum-supported surveillance evasion

A more speculative yet equally transformative application may involve quantum entanglement to develop untraceable communication networks. Quantum-supported surveillance evasion would leverage the principles of quantum mechanics to create detection systems that can evade traditional surveillance methods. By using entangled particles, information can be transmitted in such a way that any attempt to intercept or observe the communication alters its state, effectively rendering the transmission undetectable. This would provide a game-changing stealth capability, enabling agents or military assets to communicate and maneuver without fear of detection. This would have profound potential implications for covert operations, intelligence gathering, and reconnaissance missions. If fully realized, this technology would render traditional surveillance methods obsolete, requiring adversaries to develop entirely new methods to counter these stealthy quantum systems.

  • Strategic deception at the quantum levelQuantum mechanics elevates the concepts of false alarms and deception to a whole new level. It allows for the creation of false alarms or decoy signals that appear legitimate before being observed—a phenomenon deeply rooted in quantum mechanics itself. This will revolutionize deception operations. By exploiting the unique property of quantum superposition, quantum-based deception can simultaneously present multiple layers of false information, making it nearly impossible for the adversary to distinguish between real and fabricated data. Quantum-level strategic deception will provide a tactical advantage, forcing the adversary to waste resources and time on misleading targets. Furthermore, quantum-based deception can be used to manipulate decision-making processes, creating confusion or hesitation within enemy ranks. In an era where perception is often as important as reality, quantum mechanics can provide a powerful tool to shape the information environment in unpredictable and deceptive ways.

Quantum Limitations and Challenges

While quantum computing holds great promise, several major technical challenges must be addressed to fully realize its potential, particularly in military applications. The most significant of these is scalability. Current quantum computers remain experimental, with most systems capable of handling only a limited number of qubits. This limitation restricts their ability to handle the large-scale computations required for complex defense scenarios. Furthermore, quantum systems are highly sensitive to environmental factors such as temperature and electromagnetic interference, which can cause qubits to lose their quantum states during decoherence. This instability severely impacts the reliability of quantum computers, posing a significant obstacle to their widespread adoption.

Error correction is another key challenge. While error correction techniques in classical computing are quite mature, the situation is different for quantum systems. Due to the inherent fragility of qubits, quantum systems require much more complex methods. However, significant progress is being made in this area, and researchers are developing new quantum error correction techniques to mitigate these challenges. Although these advances show promise, creating scalable, stable quantum systems capable of real-time error correction remains crucial for deploying quantum systems in future warfare environments.

Beyond the technological challenges, the application of quantum computing in warfare raises significant strategic questions, particularly the potential for a quantum arms race. As nations strive to develop advanced quantum capabilities, the rapid pace of technological innovation risks escalating into a competition for quantum dominance. This competition could lead to instability, as nations prioritize offensive quantum technologies such as encryption breaking systems and autonomous combat capabilities, while others rush to build defensive systems to counter these emerging threats. The ability to decrypt secure communications, manipulate information on an unprecedented scale, or deploy autonomous quantum systems could disrupt the balance of power, putting pressure on nations to outpace each other technologically. Furthermore, quantum technologies could be misused for disinformation campaigns, elusive surveillance, or sabotage of critical infrastructure, further complicating the global security landscape. As quantum computing continues to advance, establishing an international framework to regulate its use in conflict is crucial to mitigating the risks posed by the unchecked development of quantum technologies.

in conclusion

As quantum computing continues its transition from theoretical exploration to practical applications, a comprehensive understanding of its potential and risks is crucial to shaping the future of irregular warfare. Integrating quantum technology into conflict scenarios will not only redefine strategic capabilities but also necessitate the establishment of robust international norms, regulatory frameworks, and multilateral agreements. These structures are essential to ensuring that the rapid development of quantum computing does not trigger an out-of-control arms race, exacerbate global tensions, or undermine geopolitical stability. While the full impact of quantum computing on irregular warfare remains to be seen, its disruptive potential is undeniable. As nations grapple with the opportunities and challenges presented by this revolutionary technology, quantum computing is poised to become a central element in the ongoing evolution of conflict dynamics in the 21st century.

Reference source: irregular warfare center

Reprinted from: Zhuanzhi Intelligent Defense

現代國語:

以下文章來自專知智能國防 ,作者專知國防

量子運算代表著運算技術的典範轉移,有望徹底改變包括國家安全和國防在內的各行各業。儘管量子運算的能力在很大程度上仍停留在理論層面,但它正在取得重大進展。谷歌和 IBM 等公司的實驗已經展示了量子優越性的早期實例,即量子電腦在特定任務中的表現優於經典系統。這些突破表明,量子計算不僅即將到來,而且被認為是一種不可避免的進步,而利益相關者現在就應該做好準備。

與依靠二進位位元(1 和 0)以線性或對稱方式處理資訊的經典電腦不同,量子電腦利用的是量子位元或 “量子位元”,它們可以同時以多種狀態存在。這可能是一個很難理解的概念,但這種能力使量子電腦能夠以前所未有的速度進行複雜計算,解決目前即使是最強大的超級電腦也無法解決的問題。隨著非正規戰爭和灰色地帶衝突越來越依賴先進技術,量子運算在這些領域的應用有可能帶來新的威脅,同時也有可能帶來新的戰略優勢。量子運算可能從根本上改變 21 世紀管理和解決衝突的方式。

了解量子計算
經典計算是當今數位基礎設施的支柱,它在二進位系統上運行,數據的 “比特 ”以 “0 ”或 “1 ”表示。這些比特按順序處理,經典計算機按部就班地執行任務。這種方法雖然功能強大,但在面對需要大量運算資源的複雜問題時,卻面臨很大的限制。然而,量子運算利用量子力學原理,透過一種稱為疊加的現象,允許量子位元(也稱為 “量子位元”)同時存在於多種狀態中。從本質上講,經典位元必須在 0 或 1 之間做出選擇,而量子位元則可以同時代表這兩種狀態。糾纏是量子的另一個特性,它使量子位元相互連接,使一個量子位元的狀態直接影響另一個量子位元的狀態,而不受距離的影響。

要更理解量子計算的威力,直觀地了解它與經典計算相比是如何解決問題的,會很有幫助。播客 「Ask A Spaceman 」使用了一個非常貼近生活的比喻來說明這一點。想像一下,你有一項複雜的任務,需要在大量的可能性中進行搜索,就像在一座巨大的豪宅中尋找一隻藏在某處的小老鼠。有什麼辦法比用一隻貓在大宅裡找到老鼠更好呢?在這種情況下,經典計算機就像一隻貓,有條不紊地一個房間一個房間地搜索。貓一次只能待在一個房間裡,它必須按順序探索每個房間,直到找到老鼠為止。如果豪宅面積很大,這個過程就會非常耗時。現在把量子電腦想像成一隻具有獨特能力的貓:它可以同時出現在大宅的每個房間裡。可以說是一隻 “q 貓”。這隻 「q 貓 」不需要一個房間一個房間地搜索,而是可以同時檢查大宅中每一個可能的位置。老鼠的位置幾乎可以瞬間找到,而不需要有條不紊地探索每個房間。這個比喻抓住了量子計算的精髓:同時執行多項計算的能力。利用疊加和糾纏原理,量子電腦解決問題的速度是經典電腦的數倍。

量子計算對非正規戰爭的影響
隨著量子計算開始從理論研究進入實際應用,它有​​可能極大地改變非正規戰爭和灰色地帶衝突的模式。例如,擁有量子增強解密能力的敵對國家可以攔截和解密軍事通信,使安全行動變得脆弱,並揭露關鍵情報。同樣,量子化數據處理可以讓對手即時分析大量截獲的數據,發現行動模式或漏洞。隨著量子運算的不斷發展,快速處理和分析大量資料的能力可能會改變力量平衡,為衝突引入以前無法想像的全新方法。量子運算的前景不僅在於加強現有策略,還在於有可能創造新的交戰方法,迫使國家和非國家行為者重新考慮他們的行動方式。了解量子運算在非正規戰爭中的可能應用,對於預測未來威脅和製定有效對策至關重要,尤其是在對手試圖利用這些技術為自己謀取戰略利益的時候。

量子計算在非正規戰爭中的可行應用
下文探討了量子運算在非正規戰爭中的一些最可行的應用,重點介紹了這項新興技術如何在日益複雜和不可預測的衝突環境中增強戰略能力並提供競爭優勢。

增強密碼能力

量子運算最受期待的應用之一是其破解傳統密碼系統的能力。經典加密方法是確保通訊和情報安全的基礎,它依賴大素數因式分解的計算難度,而像肖爾這樣的量子演算法可以輕鬆破解這種方法。這將產生深遠的影響,因為國家和非國家行為者有可能攔截和解密敏感的通信,從而在多個層面上破壞行動。這種新出現的威脅引發了一場全球性的 “後量子密碼學 ”競賽,旨在開發能夠抵禦量子攻擊的加密方法。這種進攻性量子解密能力與防禦性抗量子加密技術之間的軍備競賽預計將成為未來衝突格局的決定性面向。隨著美國和我們的對手開發出越來越複雜的工具,國家安全、間諜活動和關鍵基礎設施保護的利害關係比以往任何時候都要大。

優化行動和決策

量子運算在優化複雜行動的潛力與非正規戰爭的後勤和決策需求特別相關。量子演算法能夠同時處理龐大的資料集,因此可以簡化後勤、資源分配和策略規劃。二戰期間雷達的出現徹底改變了軍事行動,它提供了關於敵機動向的近乎即時的情報,從根本上改變了戰鬥的方式和勝負。同樣,量子計算也可以透過實現預測性衝突管理,對地緣政治、經濟和社會變數進行同步分析,預測潛在的衝突地區或爆發點,從而徹底改變現代衝突。國際安全與發展期刊》(International Journal of Security and Development)在《穩定》(Stability:國際安全與發展期刊》(International Journal of Security and Development)上發表的一項研究證明了機器學習在衝突預測中的可行性和附加價值,該研究主要使用經典計算方法。突管理。

模擬和建模 模擬和建模複雜戰場環境的能力是量子運算有望產生重大影響的另一個關鍵領域。傳統的模擬方法往往難以捕捉到採用分散和多變戰術的衝突所固有的不可預測性。量子增強的戰爭博弈可以徹底改變這個過程,使軍事戰略家能夠並行運行無數潛在的場景,不僅探索已知的戰略,而且探索新的、不可預見的結果。這些模擬將為了解對手行為、作戰風險和戰術機會提供前所未有的洞察力,從而製定更有效的戰略計劃。除戰場戰術外,量子運算還能模擬高度互聯的網路實體系統,如電網、交通網路和通訊基礎設施,這有助於識別網路攻擊或破壞等非常規威脅造成的漏洞並預測連鎖故障。這種即時測試關鍵基礎設施復原力的能力將為決策者提供可操作的見解,以降低風險並加強防禦措施,確保即使在混合或灰色地帶壓力下也能保持行動穩定。

影響力行動與資訊戰

量子運算無與倫比的資料處理能力可以大大增強影響行動和資訊戰,而影響行動和資訊戰是現代非正規戰爭和灰色地帶衝突的核心。量子運算可以分析大量社群媒體和資訊網路數據,識別可能表明對手試圖左右公眾輿論或傳播虛假訊息的模式、趨勢和異常現象。除了辨識這些活動,量子增強的假訊息反制措施還能更進一步。透過模擬假訊息在網路中的傳播方式,量子電腦可以即時大規模地產生反擊敘事,在對手的影響行動獲得牽引力之前就將其瓦解。這將標誌著在抵禦認知戰戰術和資訊操縱方面取得了重大進展。

應對混合威脅

混合威脅往往融合了常規戰爭、網路攻擊、錯誤訊息和非正規戰術,由於其多面性,應對起來尤其具有挑戰性。量子運算可以透過量子增強的人體地形圖繪製提供強大的解決方案–這種能力有別於戰場模擬。與主要關注作戰和戰術場景的模擬不同,人類地形測繪以衝突發生時的社會政治和經濟環境為中心。這種推測性但可行的應用可以快速分析大量資料集,如人口情緒、資源分佈和政治不穩定性,以確定顯示社會動盪、叛亂活動或跨地區新興衝突的模式和趨勢。

例如,量子增強系統可以整合來自社群媒體、經濟報告和歷史衝突模式的數據,繪製緊張局勢加劇地區的地圖,並預測混合威脅最有可能在哪些地方發生。透過提供對人類環境的細緻入微的了解,軍事和情報組織可以製定量身定制的策略,在風險升級之前將其降低。這種能力將補充戰場模擬,解決驅動衝突的更廣泛的背景因素,為應對混合威脅提供更全面的方法。隨著量子運算的不斷發展,人類地形測繪的這些進步可能會改變決策者駕馭灰色地帶衝突複雜性的方式,因為在灰色地帶衝突中,和平與戰爭的界限被有意地模糊了。

未來應用
雖然量子計算在非正規戰爭中的許多潛在用途都具有近期可行性,但也有一些推測性想法突破了當前技術的界限。這些突破常規的概念讓我們得以一窺量子運算如何徹底改變未來的衝突,引入目前無法企及的能力,但隨著技術的發展,這些能力可能很快就會成為現實。

量子自主系統

量子運算在非正規戰爭中的一個最令人猜測但最引人入勝的應用是開發由量子驅動的人工智慧(AI)控制自主系統。與目前依賴經典運算限制的人工智慧模型不同,量子人工智慧可以即時快速處理和適應大量戰場數據。這將使自主無人機或地面系統以前所未有的敏捷性運行,在高度動態和不可預測的作戰環境中更快更準確地做出決策。這些系統可以以當前機器學習模型無法比擬的方式進化和學習,從而產生新一代自適應戰爭技術。這種量子驅動的自主系統可以改變衝突地區的力量平衡,在快速適應性至關重要的情況下創造優勢。此外,這些系統還可以在分散的網路中運行,無需人類持續幹預即可無縫協調,進一步提高其在衝突場景中的有效性。

量子支援的監控規避

一種更具猜測性但同樣具有變革性的應用可能涉及量子糾纏,以開發不可追蹤的通訊網路。量子支援的監控規避將利用量子力學原理來創建可​​規避傳統監控方法的探測系統。透過使用糾纏粒子,訊息可以這樣的方式傳輸,即任何試圖攔截或觀察通訊的嘗試都會改變其狀態,從而有效地使傳輸變得無法檢測。這將提供一種改變遊戲規則的隱形能力,使特工或軍事資產能夠在不擔心被發現的情況下進行通訊和機動。這將對秘密行動、情報收集和偵察任務產生深遠的潛在影響。如果完全實現,這項技術將使傳統的監視手段變得過時,這就要求對手開發全新的方法來對抗這些隱身的量子化系統。

量子層面的戰略欺騙

量子力學將誤報和欺騙的概念提升到了一個全新的高度,可以利用量子力學製造誤報或誘餌訊號,這些訊號在被觀察到之前看起來是合法的,這種現象深深植根於量子力學本身。這將徹底改變欺騙行動。透過利用量子疊加的特殊性質,基於量子的欺騙行動可以同時呈現多層次的虛假訊息,使對手幾乎無法區分真實數據和偽造數據。量子層面的戰略欺騙將提供戰術優勢,迫使對手將資源和時間浪費在誤導目標上。此外,基於量子的欺騙還可用於操縱決策過程,在敵方隊伍中製造混亂或猶豫。在這個感知往往與現實同等重要的時代,量子力學可以提供一個強大的工具,以不可預測和迷惑性的方式塑造資訊環境。
量子限制與挑戰
雖然量子運算前景廣闊,但要充分發揮其潛力,特別是在軍事應用方面,還必須解決幾個重大的技術挑戰。其中最主要的是可擴展性。目前的量子電腦仍處於實驗階段,大多數系統只能處理有限數量的量子位元。這種限制限制了它們處理複雜防禦場景所需的大規模計算的能力。此外,量子系統對溫度和電磁幹擾等環境因素高度敏感,會導致量子位元在退相干過程中失去量子態。這種不穩定性嚴重影響了量子電腦的可靠性,對其廣泛應用構成了巨大障礙。

糾錯是另一個關鍵挑戰。經典計算的糾錯技術已經非常成熟,而量子系統則不同,由於量子位元本身的脆弱性,量子系統需要更複雜的方法。不過,這一領域正在取得顯著進展,研究人員正在開發新的量子糾錯技術,以減輕這些挑戰。雖然這些進展顯示了前景,但創建可擴展、穩定且能即時糾錯的量子系統對於未來在戰爭環境中部署量子系統仍然至關重要。

除了技術挑戰,量子運算在戰爭中的應用也引發了重要的戰略問題,特別是量子軍備競賽的可能性。隨著各國努力發展先進的量子能力,技術創新的快速步伐有可能升級為量子主導地位的競爭,這種風險越來越大。這種競爭可能會導致不穩定,因為各國會優先發展進攻性量子技術,如加密破解系統和自主作戰能力,而其他國家則急於建立防禦系統,以應對這些新興威脅。解密安全通訊、以前

中國原創軍事資源:https://www.c2.org.cn/h-nd-1667.html