Technology and war are always intertwined. While technological innovation is constantly changing the face of war, it has not changed the violent nature and coercive purpose of war. In recent years, with the rapid development and application of artificial intelligence technology, people have never stopped debating the impact of artificial intelligence on war. Compared with artificial intelligence (AI), general artificial intelligence (AGI) has a higher level of intelligence and is considered to be a form of intelligence equivalent to human intelligence. How will the emergence of AGI affect war? Will it change the violence and coercive nature of war? This article will discuss this issue with you with a series of thoughts.
Is AGI just an enabling technology?
Many people believe that although large models and generative artificial intelligence show the strong military application potential of AGI in the future, they are only an enabling technology after all, that is, they can only enable and optimize weapons and equipment, make existing equipment more intelligent, and improve combat efficiency, and it is difficult to bring about a real military revolution. Just like “cyber warfare weapons” were also highly expected by many countries when they first appeared, but now it seems a bit exaggerated.
The disruptive nature of AGI is actually completely different. It brings huge changes to the battlefield with a reaction speed and knowledge breadth far exceeding that of humans. More importantly, it has brought about huge disruptive results by promoting the rapid advancement of science and technology. On the battlefield of the future, autonomous weapons will be endowed with advanced intelligence by AGI, their performance will be generally enhanced, and they will become “strong at attack and difficult to defend” with their speed and cluster advantages. By then, the highly intelligent autonomous weapons that some scientists have predicted will become a reality, and AGI will play a key role in this. At present, the military application areas of artificial intelligence include autonomous weapons, intelligence analysis, intelligent decision-making, intelligent training, intelligent support, etc. These applications are difficult to simply summarize as “empowerment”. Moreover, AGI has a fast development speed and a short iteration cycle, and is in a state of continuous evolution. In future operations, AGI needs to be a priority, and special attention should be paid to the possible changes it brings.
Will AGI make war disappear?
Historian Geoffrey Blainey believes that “wars always occur because of misjudgments of each other’s strength or will”, and with the application of AGI in the military field, misjudgments will become less and less. Therefore, some scholars speculate that wars will decrease or disappear. In fact, relying on AGI can indeed reduce a large number of misjudgments, but even so, it is impossible to eliminate all uncertainties, because one of the characteristics of war is uncertainty. Moreover, not all wars are caused by misjudgments. Moreover, the inherent unpredictability and inexplicability of AGI, as well as people’s lack of experience in using AGI, will bring new uncertainties, making people fall into a thicker “fog of artificial intelligence”.
There are also rational problems with AGI algorithms. Some scholars believe that AGI’s mining and accurate prediction of important intelligence will have a dual impact. In actual operation, AGI does make fewer mistakes than humans, which can improve the accuracy of intelligence and help reduce misjudgments; but sometimes it may also make humans blindly confident and stimulate them to take risks. The offensive advantage brought by AGI leads to the best defense strategy being “preemptive strike”, which breaks the balance between offense and defense, triggers a new security dilemma, and increases the risk of war.
AGI has the characteristics of strong versatility and can be easily combined with weapons and equipment. Unlike nuclear, biological and chemical technologies, it has a low threshold for use and is particularly easy to spread. Due to the technological gap between countries, people are likely to use immature AGI weapons on the battlefield, which brings huge risks. For example, the application of drones in the latest local war practices has stimulated many small and medium-sized countries to start purchasing drones in large quantities. The low-cost equipment and technology brought by AGI are very likely to stimulate the occurrence of a new arms race.
Will AGI be the ultimate deterrent?
Deterrence is the ability to maintain a certain capability to intimidate an adversary from taking actions that go beyond its own interests. When deterrence is too strong to be used, it is the ultimate deterrence, such as the nuclear deterrence of mutually assured destruction. But what ultimately determines the outcome is “human nature,” which is the key that will never be missing in war.
Without the various trade-offs of “humanity”, will AGI become a formidable deterrent? AGI is fast but lacks empathy, is resolute in execution, and has an extremely compressed gaming space. AGI is a key factor on future battlefields, but it is difficult to accurately evaluate due to lack of practical experience, and it is easy to overestimate the opponent’s capabilities. In addition, in terms of autonomous weapon control, whether humans are in the loop and supervise the entire process, or are humans outside the loop and completely let go, this undoubtedly requires deep thought. Can the firing control of intelligent weapons be handed over to AGI? If not, the deterrent effect will be greatly reduced; if so, can the life and death of humans really be decided by machines that have nothing to do with them? In research at Cornell University, large war game simulation models often “suddenly use nuclear attacks” to escalate wars, even if they are in a neutral state.
Perhaps one day in the future, AGI will surpass humans in capabilities. Will we be unable to supervise and control it? Geoffrey Hinton, who proposed the concept of deep learning, said that he has never seen a case where something with a higher level of intelligence was controlled by something with a lower level of intelligence. Some research teams believe that humans may not be able to supervise super artificial intelligence. In the face of powerful AGI in the future, can we really control them? This is a question worth pondering.
Will AGI change the nature of war?
With the widespread use of AGI, will battlefields filled with violence and blood disappear? Some people say that AI warfare is far beyond the capabilities of humans and will push humans out of the battlefield. When AI turns war into a war fought entirely by autonomous robots, is it still a “violent and bloody war”? When opponents of unequal capabilities confront each other, the weak may not have the opportunity to act at all. Can wars be ended before the war through war games? Will AGI change the nature of war? Is an “unmanned” “war” still a war?
Yuval Noah Harari, author of Sapiens: A Brief History of Humankind, said that all human behavior is mediated by language and affects our history. The Big Language Model is a typical AGI. The biggest difference between it and other inventions is that it can create new ideas and culture. “Artificial intelligence that can tell stories will change the course of human history.” When AGI touches the control of language, the entire civilization system built by humans may be subverted, and it does not even need to generate consciousness in this process. Like Plato’s “Allegory of the Cave”, will humans worship AGI as a new “god”?
AGI establishes a close relationship with humans through human language and changes human perceptions, making it difficult for humans to distinguish and discern, thus posing the danger of the will to war being controlled by people with ulterior motives. Harari said that computers do not need to send out killer robots. If necessary, they will let humans pull the trigger themselves. AGI accurately creates and polishes situation information and controls battlefield cognition through deep fakes. It can use drones to fake battlefield situations and build public opinion before the war. This has been seen in recent local wars. The cost of war will be greatly reduced, leading to the emergence of a new form of war. Will small and weak countries still have a chance? Can the will to war be changed without bloodshed? Is “force” no longer a necessary condition for defining war?
The form of war may be changed, but the essence remains. Whether war is “bloody” or not, it will still force the enemy to obey its will and bring a lot of “collateral damage”, but the way of confrontation may be completely different. The essence of war lies in the “human nature” deep in the heart, and “human nature” is determined by culture, history, behavior and values, etc. It is difficult to completely replicate it with some artificial intelligence technology, so we cannot outsource all ethical, political and decision-making issues to artificial intelligence, and we cannot expect artificial intelligence to automatically generate “human nature”. Artificial intelligence technology may be abused due to passionate impulses, so it must be under human control. Since artificial intelligence is trained by humans, it will not always be free of bias, so they cannot be completely separated from human supervision. In the future, artificial intelligence can become a creative tool or partner to enhance “tactical imagination”, but it must be “aligned” with human values. These issues need to be constantly thought about and understood in practice.
Will AGI revolutionize the theory of war?
Most subject knowledge is expressed in natural language. The large language model, which is a collection of human writings, can connect language writings that are difficult to be compatible with scientific research. For example, some people input classical masterpieces and even philosophy, history, politics, economics, etc. into the large language model for analysis and reconstruction. It is found that it can not only conduct a comprehensive analysis of all scholars’ views, but also put forward its “own views” without losing originality. Therefore, some people say that it is also possible to re-analyze and interpret war theories through AGI, stimulate human innovation, and drive major evolution and reconstruction of war theories and systems? Perhaps there will be certain improvements and developments in theory, but war science is not only theoretical, but also practical, but practicality and reality are what AGI cannot do at all. Can the classic war theory really be reinterpreted? If so, what is the meaning of the theory?
In short, AGI’s subversion of the concept of war will far exceed “mechanization” and “informatization”. People should boldly embrace the arrival of AGI, but also be cautious. Understand the concept so as not to be ignorant; conduct in-depth research so as not to fall behind; strengthen supervision so as not to be negligent. How to learn to cooperate with AGI and guard against AGI technology raids by opponents is what we need to pay attention to first in the future. (Rong Ming and Hu Xiaofeng)
Afterword
Looking to the future with an open mind
Futurist Roy Amara has a famous assertion that people tend to overestimate the short-term benefits of a technology but underestimate its long-term impact, which is later called “Amara’s Law”. This law emphasizes the nonlinear characteristics of technological development, that is, the actual impact of technology often takes a longer time scale to fully manifest, reflecting the pulse and trend of technological development and embodying human acceptance and longing for technology.
At present, in the process of the development of artificial intelligence from weak artificial intelligence to strong artificial intelligence, and from special artificial intelligence to general artificial intelligence, every time people think that they have completed 90% of the journey, looking back, they may have only completed less than 10% of the journey. The driving role of the scientific and technological revolution in the military revolution is becoming more and more prominent, especially the multi-faceted penetration of high-tech represented by artificial intelligence technology into the military field, which has led to profound changes in the mechanism, elements and methods of winning wars.
In the foreseeable future, intelligent technologies such as AGI will not stop iterating, and the cross-evolution of intelligent technologies and their enabling applications in the military field will become more diversified, perhaps going beyond the boundaries of human cognition of existing war forms. The development of science and technology is unstoppable and unstoppable. Whoever can see the trend and future of science and technology, the potential and power of science and technology with a keen eye and a clear mind, and see through the “fog of war”, will be more likely to seize the initiative to win.
This reminds us that we should have a broader perspective and thinking when exploring the development of future war forms, so that we can get closer to the underestimated reality. Where is AGI going? Where is intelligent warfare going? This is a test of human wisdom.
Cognitive domain warfare refers to the important form of public opinion propaganda, psychological attack and defense, winning people’s hearts, subverting confidence, influencing beliefs, fighting for thinking, and ideological struggle, guided by modern cognitive theory and science, calling on multi-domain means such as public opinion, psychology, and law, and using multi-dimensional technologies such as modern networks, media, text, pictures, videos, and numbers, aiming to fight for people’s initiative in thinking, beliefs, values, personal attitudes, emotions, identification, and judgment tendencies. Cognitive domain warfare is a complex collection of traditional public opinion warfare, psychological warfare, legal warfare, trade warfare, diplomatic warfare, scientific and technological warfare, ideological warfare, and other multi-domain warfare.
At present, cognitive domain warfare has become an important support for countries to carry out military struggles and struggles in other fields. Language confrontation driven by cognitive domain goals has become an important form of cognitive domain warfare and deserves high attention.
Language confrontation: a new area for exerting influence on combat targets
Cognitive domain operations are a result of the development of contemporary cognitive science research. They are an emerging field of operations that emerged after people actively explored the cognitive activities of the brain to gain a more complex, abstract and thorough understanding of the brain. They are also a high-end form of influence in language confrontation that targets the advanced, deep and hidden activities of the audience’s brain. Whether it is the object of information action, the producer of information, the information content itself or the channel of information, cognitive domain operations are all permeated with cognitive characteristics, and always emphasize taking action at the cognitive level.
In terms of the recipients of information, this cognition targets the deep cognitive aspects of the opponent’s audience, including its people, military, military commanders or important leaders, important figures in the political and business circles, and even directly includes the leaders of the other country or specific important generals of the army, etc. It can also be a specific group of people or the public. It can involve the cognitive preferences, cognitive shortcomings, cognitive habits, cognitive biases, and cognitive misunderstandings of individuals or groups; it can also be the beliefs, values, political identity, national identity, social and cultural identity, and emotional attitudes of individuals and groups.
From the perspective of the distributor and content of information, it should be infused with the cognitive design and arrangement of the information producer, which includes the unique cognition of the text, such as the discourse mode of the text, the narrative mode of the text, the observation perspective of things, the cognitive focus and depth of the narrative, the organization form of the sentence, the value concept and other tendencies of the sentence, the acceptability of the concept of the sentence to the other party, etc.
In terms of the channels for information issuance and dissemination, the form of text is closer to multimedia and multimodal forms, closer to the needs of cyberspace, closer to the advantages of contemporary smart phones, and closer to the characteristics of the current emerging media era, that is, it is more in line with the cognitive characteristics, cognitive habits and cognitive tendencies accepted by the audience. The dissemination form of text fully considers the cognitive effects in international communication, especially cross-cultural, cross-linguistic, cross-media and cross-group cognitive communication. In this way, the text will better influence the audience from a cognitive level.
Language confrontation responds to changes in combat styles and generates new tactics
Throughout human history, it is not difficult to find that the style of military struggle has been constantly changing. From the initial physical struggle with cold weapons to the contest of hot weapons and mechanical forces, and then to the balance and counter-balance of information capabilities under high-tech warfare conditions, in recent years, it has developed towards the intelligent decision-making competition in the direction of intelligence and unmanned. Each change has brought profound changes in tactics. In the current transitional stage of coexistence of mechanization, informatization and intelligence, people not only pay attention to the competition for dominance in the physical and information domains of the battlefield, but also pay more attention to the control of the cognitive domain that affects the main body of war, that is, the competition in the fields of thinking, cognitive patterns and styles, values, emotional attitudes, cultural models, communication patterns, psychological strengths and weaknesses, cognitive preferences, cultural and knowledge maps, and ideological identity of the personnel on both sides of the war. The latter involves the basic situation of social personnel and social existence, that is, the emerging field of cognitive domain warfare, and its tactics have strong particularity.
Flexibility of topics: Cognitive domain operations can select many topics in the cognitive domain and carry out flexible and flexible combat operations. According to the current situation and needs, topics can be selected from the relatively macroscopic strategic level (such as the ideology and system of the opponent’s entire society, etc.), the mesoscopic campaign level (such as social problems in the local field or direction of the opponent’s society: social welfare policy or environmental protection policy, etc.), and very microscopic tactical issues in society (such as the unfairness, injustice, and non-beautiful side of society reflected by a certain person or a specific event). Macro, meso, and micro cognitive domain issues are interconnected and transformed into each other. It is very likely that a microscopic topic will also become a major macroscopic strategic topic. The raising of issues depends on the relationship with the entire military operation. Cognitive domain operations should be subject to the overall combat operations and serve the needs of the macroscopic political and diplomatic situation. More importantly, topics should be prepared in peacetime, and data on various topics should be collected in peacetime, especially paying attention to various important data in the real society. Once needed, these data can be quickly transformed into arrows, bullets, and shells shot at the enemy’s cognitive domain, and even become strategic weapons that affect the overall situation.
Controllability of the operational level: The important design of cognitive operations is that it can be controlled and regulated as a whole at the operational level, and can be upgraded or reduced in dimension according to changes in the situation. If it is necessary at the strategic level, the commander can open the strategic level design and force investment; if it is necessary at the campaign level, it can also be controlled at the corresponding campaign level; if it is only necessary at the level of specific small problems, it can also be controlled at the corresponding niche local level, so that the entire action serves the needs of the overall combat operation. The strategic campaign tactics here refer more to operational design and force investment. Since the battlefield situation may change rapidly, some issues may also change at the level, with strategic issues affecting the effects of the campaign and tactical levels; some issues, due to the particularity of tactical issues, become campaign and strategic level issues that affect the overall situation.
Dominance of emerging media: The main influence channel of cognitive domain has shifted from traditional paper media and print media to emerging media. Traditional media mainly rely on single media, such as newspapers, magazines, books, flyers, posters, etc. to convey information; the emergence of television in the later period brought three-dimensional media. In the Internet era, especially the Internet 2.0 era and the birth of smart communication devices, people rely more on multi-media, multi-modal, short videos and short texts to convey information. The introduction of various advanced devices such as smart phones, smart tablets, smart players, and the birth of various emerging social software and tools have made emerging media the main tool for people to communicate and exchange. Emerging media, emerging social software and tools have become an important space for various forces to play games and struggle in social security, public opinion security, ideological security, social security and political security. Internet security, especially whether the security of new social media, emerging social software and tools can be mastered, is, to some extent, the key to whether a country’s cognitive domain can be secure. Information in emerging media tools and new media space has become the main battlefield, main position and main space for competition in cognitive operations of various countries. It is worth pointing out that ideas and theories that influence people’s cognition will become the most influential weapons at all levels of cognitive domain operations.
Language confrontation adapts to the intelligent era, cognitive computing enhances new computing power
In the era of artificial intelligence, based on the substantial improvement in big data analysis and application, supercomputing capabilities, intelligent computing capabilities, natural language processing capabilities, smartphone communication capabilities, and new generation network communication capabilities, humans have begun to accurately model and analyze language culture, psychological cognition, group emotions, and social behavior for the entire society, the entire network domain, local groups, local different groups, and specific individuals. In particular, people have a deep understanding and grasp of brain cognition, human brain thinking, thinking patterns, habitual preferences, image schemas, cognitive frameworks, and even neural networks, human-computer collaboration, and brain control technology. As long as there is enough diverse dynamic data, people can calculate and simulate all people’s psychological activities, emotional activities, cognitive activities, social opinions, and behavioral patterns. Through deep calculations, actuarial calculations, and clever calculations, people’s cognitive world can be accurately grasped, and a fine and profound control of people’s cognitive domain can be formed. This aspect also presents the following characteristics:
The dimensionality of computation: As an emerging field, all aspects of the cognitive domain can be digitized and made fully computable for all aspects of the entire process and all individuals. This can be achieved by widely collecting various types of information and then sorting out the information to form big data on the diverse factors of the opponent’s subjects. This will allow various computations to be conducted on the entire population, groups, between groups, and between individual data. As a result, all kinds of activities based on thinking, psychology, emotion, speech, behavior, etc. that were previously impossible to achieve can be completed, displayed, and accurately grasped through computation.
Cognitive nature of computation: computation in the cognitive domain reflects a strong cognitive nature. It can reveal more of the connections between things, events, and people that are difficult to observe with the naked eye. It can reveal the clustering and hierarchical relationships between concepts in the same event framework, and reflect the deep cognitive connections between concepts, whether explicit or implicit, direct or indirect. It reveals the complex conceptual network system between concepts, allowing people to see a deep cognitive world that completely transcends ordinary naked eye observation.
Intelligence of computation: The computation in cognitive domain also reflects strong intelligence. This intelligence is manifested in the fact that intelligent conclusions can be drawn through computation. For example, through the collection of a large amount of text and data mining, we can find the relationship between various topics, various viewpoints, various tendencies, various groups of people, various positions, and various demands that cannot be seen by human power, so as to form a more comprehensive, in-depth, accurate, and systematic understanding of a certain issue and make scientific and optimized decisions. Such decisions may be consistent with human intelligence, or they may surpass or even far exceed human intelligence. By making good use of the power of cognitive computing, especially by integrating the data of our country and the data of our opponents, we can better prevent, warn, and deploy in advance, and achieve the best, optimal, fastest, and most accurate strikes and counterattacks, and better reflect efficient, powerful, and targeted protection. Cognitive computing here is more about the possible reactions of a possible macro, meso, or micro topic in different groups of people, different time periods, and different backgrounds, in the entire network domain or a local network domain, or within a specific group, especially the analysis and inspection of the active and passive situations that both parties may present when playing games with opponents, and the attack and defense of cognitive domain.
New application of giving full play to the status of discourse subject and releasing the power of discourse
Cognitive domain operations have a very important support, that is, it mainly relies on language media to play a role, mainly exerts influence through the discourse level, mainly forms an implicit effect on the cognitive domain through the narrative of discourse, mainly exerts potential effects through cultural models, and exerts explicit or implicit effects through cross-cultural communication. It is mainly reflected in the following aspects:
Uniqueness of textual discourse: The cognitive domain needs to be influenced by information. Although information may be presented through the special visual effects of video images, fundamentally speaking, the uniqueness of the discourse expressed by the text becomes the main support for producing cognitive influence. Among them, the mode of discourse expression, the skills of discourse expression, the main design of the persuasiveness and appeal of discourse expression, and especially the uniqueness of discourse narrative will be the key to influencing people’s cognition. This may include the perspective of the narrative, the theme and style of the narrative, the story framework of the narrative, the language innovation of the narrative, the key sentences of the narrative, the philosophical, humanistic, religious, social, natural and other feelings contained in the narrative, the identities of different participants in the narrative, the diversified evaluation of the narrative, the authenticity, depth and emotional temperature of the narrative, the subtle influence of the narrative on the viewpoint, the personal emotions, values, ideology, and position evaluation released by the narrative. The uniqueness of textual discourse is an important reliance for cognitive domain operations to exert cognitive influence through text. Making full use of the complexity of the text, giving play to the respective advantages of diverse texts, and giving play to the role of implicit and explicit cognitive influence of the text connotation have become the key to cognitive domain operations of textual discourse. The most important thing is to innovate the text discourse, win readers with newer words, more novel expressions, and more unique expressions, so that readers can understand and feel the ideas in the text imperceptibly, and accept the ideas of the text silently.
Potentiality of cultural models: In cognitive domain operations, we must deeply grasp the characteristics and models of different countries and national cultures. Different countries and different nationalities have different cultural models. Their philosophical thinking, traditional culture, religious beliefs, customs, and ways of thinking are all obviously different. Citizens of different cultures also have different national psychology and national cognitive models. They should also have typical cognitive preferences belonging to their own national culture, as well as corresponding shortcomings and weaknesses. Some of them obviously have a huge difference in understanding from other nationalities in their own country, and even misunderstandings and hostility. Therefore, cognitive domain operations at the cultural level are to grasp the overall cultural models of different countries, build cultural models of different groups in different countries, build different cognitive models of different countries on different things, and fully grasp the overall attitude and behavior of a country on a series of things and issues, especially for some typical cases, cultural taboos, religious requirements, spiritual pursuits, and overall concepts. With the help of existing theories and discoveries, we should comprehensively construct the basic performance of different groups of people in the cognitive field on some typical problems, sensitive problems, and important problems, so as to provide important reference and guidance for the next step of cognitive operations. Strengthening the study of the cultural patterns of different enemy personnel, especially military personnel, personnel in key positions, including the study and construction of the basic cultural characteristics and models of enemy generals, officers, soldiers, etc., such as the character’s psychological cognitive behavior and cultural model portrait, has become the core practice of cognitive domain operations. The cognitive analysis of ordinary enemy personnel, especially the general public, citizens, and specific groups, including special non-governmental organizations, is also of great value.
Cross-cultural strategic communication: Cognitive domain operations are international language and cultural communications, and need to follow the laws of international communication. We must grasp the basic paradigm of international communication, skillfully combine our own stories with international expressions, and skillfully combine the other party’s language and culture with our own stories and ideas; we must be good at combining different art forms, including text, pictures, paintings, music (sound), video and other means or multimodal means to achieve international communication of information. At the same time, we must coordinate multi-dimensional macro communication at the strategic level: we must use various means to carry out communication through military-civilian integration, military-civilian coordination, and military-civilian integration; in addition to non-governmental organizations, we must especially rely on civilian forces, experts, opinion leaders, and ordinary people to help the military carry out cognitive domain operations; we must unify the setting of topics, speak out in multiple locations and dimensions, form a strategic communication situation, and form a good situation for emergency solutions for major actions, major issues, and major crisis management, form a good public opinion atmosphere, create positive effects, and eliminate or extinguish adverse effects. In particular, we must establish a capable team that is proficient in foreign languages, understands cross-cultural skills, knows the laws of international communication, and can speak out skillfully on international multi-dimensional platforms. These people can usually conduct extensive topic perception, information collection and discussion, and use common or special topics to build personal connections and establish fan communities. More importantly, at critical moments, they can exert influence through their fan groups and complete strategic communication tasks.
At present, with the prevalence of hybrid warfare, multi-domain warfare and global warfare, cognitive domain warfare has become a common means of mixing and blending. The process of cognitive domain warfare from unfamiliarity, emerging, development to growth is also the advanced stage, complex stage and upgraded stage of the development of traditional public opinion warfare, psychological warfare and legal warfare. Its rise is more deceptive, ambiguous, concealed, embedded, implanted and unobservable, especially considering its deep integration with the entry of contemporary emerging media, and it is constantly learning and drawing on new ideas, new technologies and new means that integrate into multiple disciplines, cross-disciplines and cross-disciplinary disciplines. As a result, cognitive domain warfare has become a form of warfare that we must be highly vigilant and guard against. (Liang Xiaobo, professor and doctoral supervisor at the College of Arts and Sciences of the National University of Defense Technology)
[This article is a phased result of the National Social Science Fund Major Project “National Defense Language Capacity Building in the Perspective of National Defense and Military Reform”]
The winning mechanism of war refers to the main factors for winning a war, the way they play a role, and the internal mechanisms, laws and principles of their mutual connection and interaction. With the advent of the intelligent era, the increasingly widespread application of artificial intelligence in the military field has promoted the transformation of the war form to intelligent warfare, and the winning mechanism of war has also changed accordingly.
Having data advantage is the basis for success
In the era of intelligence, the core foundation of many “disruptive technologies” is data, and war will also be “no data, no war”. In intelligent warfare, both sides will fight a “data war” around understanding data, relying on data, competing for data, and using data. Whoever owns the “data right” will have the initiative in the war. Fighting for data, mastering data, analyzing data, and applying data in war are the keys to winning intelligent warfare.
Data resources are combat effectiveness. In intelligent warfare, data comes first before troops move. Whoever controls the data controls the resources to win the war, and controls the initiative and the chips for victory. The ability to understand and use data is an important indicator for measuring combat capability and directly affects the outcome of the war. Obtaining data, analyzing data, and using data are not only the yardsticks for measuring the combat capability of troops, but also the new engine for improving the combat effectiveness of troops. Data is the most direct record of the objective world. It appears in the form of numbers and is raw data, such as the performance parameters of weapons and equipment, the size of troops, the number of guarantees, target parameters, etc. These data can be processed to become the information and intelligence needed for combat. In the information age led by data, data has become the blood of intelligent warfare.
Big data has given rise to a data-based battlefield. To some extent, whoever controls the data resources controls the “winning space” of the war. Data has changed the logical cognition of war. In the past, people inferred the whole from the individual and inferred the inevitability from the small probability events, but now they deduce individual characteristics from the high probability and find the internal laws of specific things from the correlation. Only by understanding the relevant data can we grasp the overall situation, only by gathering similar data can we grasp the trend, and only by integrating all-source data can we understand the connection. All of this is attributed to the control of the data-based battlefield.
Big data changes the way of fighting. As the most important strategic resource, how to distinguish the authenticity and quality of data, how to fight and counter-fight, deceive and counter-deceive, attack and counter-attack around massive data, has become a key issue in winning intelligent wars. When data becomes the focus of war, it will inevitably lead to competition and gaming around data, thereby promoting changes in the style of fighting. At present, the competition for data collection is intensifying, and major countries have launched research on national defense big data projects to provide more intelligence with practical value for military decision-making. The “asymmetry” of data forms the “asymmetry” of algorithms, and then achieves the “asymmetry” of tactics.
Data has given rise to intelligent equipment systems. Data technology has upgraded combat platforms to highly intelligent and autonomous systems. Data has enabled command and control systems, air combat platforms, precision-guided munitions, etc. to complete the transition from informatization to intelligence. For example, modern “swarm technology” is the application of artificial intelligence supported by big data. Data has become a “telescope”, “microscope” and “perspective lens” for analyzing wars. To win intelligent wars, one must have a data mind, data awareness and data thinking.
Mastering algorithm advantages is the key to success
One of the characteristics of intelligent warfare is that all battle plans, campaign plans and war plans need to be generated by computers, and its essence is algorithm-generated tactics. Having an algorithm advantage means having an intelligent advantage, which can achieve a high degree of unity of information advantage, cognitive advantage, decision-making advantage and action advantage.
Algorithm advantage dominates information advantage. Algorithm is a systematic method to describe the strategic mechanism for solving problems, and is the key and prerequisite for improving intelligence advantage. Algorithm technology mainly includes deep learning, supercomputing, brain-like intelligence and other technologies. The use of intelligent sensing and networking technology can widely and quickly deploy various types of intelligent perception nodes, and can implement active collaborative detection for tasks, thereby building a transparent and visible digital combat environment. Judging from the current development trend, the advantage of war algorithms dominates information advantage, which contains great potential to rewrite the rules of the modern war game. This pair of “invisible hands” will shape the new landscape of future intelligent warfare.
Algorithmic advantage dominates cognitive advantage. In intelligent warfare, big data can quickly convert massive amounts of data into useful intelligence after being processed by high-performance and efficient algorithms, thereby gaining cognitive advantage. Algorithms, as the “brain” of artificial intelligence, have become the key to intelligently sensing the battlefield and using it for decision-making, command, and coordination. The party with algorithmic advantage can dispel the “battlefield fog” and “information fog” caused by the failure to process data in a timely manner, making cognition more profound and thus seizing the initiative in the war. In the future, whoever has algorithmic advantage will have stronger cognitive ability, faster learning speed, and better quality results.
Algorithm advantage dominates decision-making advantage. With its high-speed and precise calculation, the algorithm can replace people’s hard thinking and repeated exploration, thereby accelerating knowledge iteration. With the support of massive data and supercomputing capabilities, the judgment and prediction results of artificial intelligence will be more accurate. By constructing combat model rules through algorithms, commanders can be assisted in making rapid decisions in multi-level planning and ad hoc handling of strategies, campaigns, tactics, etc. through actuarial, detailed, deep and expert reasoning. With the development of disruptive technologies such as big data, cloud computing, and quantum computing and their application in the military field, the future combat decision-making cycle will become near real-time. In intelligent warfare, the party that masters super algorithms can quickly propose flexible and diverse combat plans and countermeasures in response to changes in combat opponents, constantly disrupting the opponent’s established intentions and deployments, and thus seize the dominance of the war.
Algorithmic advantage leads to operational advantage. In the era of intelligent warfare, algorithms determine tactics, and algorithmic advantage leads to war advantage. Supported by superior algorithms, the reaction speed of artificial intelligence is thousands of times that of humans. “Algorithmic warfare” foreshadows the transformation of future wars. Whoever can seize the commanding heights of intelligent algorithms can seize the initiative and win before the battle. On the intelligent battlefield, algorithms are far more important than artillery shells. War algorithms have become the key factor in winning intelligent warfare and are the strategic commanding heights that future intelligent armies must seize. Intelligent warfare calculations are ubiquitous. The party that has the algorithmic advantage can quickly and accurately predict the battlefield situation, innovate combat methods, and achieve the advantage of “winning before the battle.”
Multi-domain integration is the key to success
Multi-domain integration is based on the cloud-based combat system. With the support of the cloud-based battlefield situation, various combat personnel, equipment, facilities, and environmental elements have expanded the battlefield space from the traditional three-dimensional space to the polar regions, deep sea, space, and cyberspace, and even to multi-dimensional domains such as cognitive domain and information domain. Multi-domain integration has formed a giant, complex, and adaptive confrontation system. The integration of “cloud gathering” and “network gathering” has become a new mechanism for intelligent combat.
Cross-domain integration and integrated energy release. Under the conditions of intelligent warfare, the emergence of a large number of new long-range combat platforms and intelligent new concept weapons has made the future combat landscape present the characteristics of air-ground-sea-sky integration, global instant strikes, and cross-domain strategic deterrence and control. Supported by the cross-domain, distributed, and networked “cloud killing” collaborative combat system, through the cross-domain aggregation of multiple combat capabilities, cross-domain interoperability of combat command, cross-domain sharing of combat information, cross-domain movement of combat weapons, cross-domain response of combat actions, and cross-domain complementarity of combat functions are achieved. Cross-domain integration is the close coordination of main domain control and cross-domain support to implement cross-domain collaborative support. Integrated energy release is the transition of joint operations from integrated joint operations to cross-domain joint operations, realizing the cross-domain aggregation and overall energy release of multiple combat capabilities.
Human-machine integration, using speed to defeat slowness. If weapons are an extension of the human body, intelligence is an extension of the human brain. In the era of intelligent warfare, there will be a mode of giving human intelligence to machines to implement combat. People will further withdraw from the front-line confrontation and combat, and the combination of people and weapons will appear in a new form. Unmanned combat weapons and human intelligence are deeply integrated into an organic symbiosis, perfectly combining human creativity, thinking and the precision and speed of machines. Therefore, in future intelligent warfare, the mode of engagement will gradually change from the mutual killing of “human-machine integration” to the unmanned system cluster confrontation of “human-machine integration”. Relying on the intelligent combat system, commanders adaptively adjust and select the mode of action according to changes in the battlefield environment. Unmanned combat develops from single-platform remote control combat to multi-platform cluster autonomy, forming a simple command chain of “commander-combat cluster”, highlighting the rapid, flexible and autonomous characteristics of human-machine collaboration.
Brain-intelligence fusion and efficient control. The combat system of intelligent warfare will be characterized by a highly intelligent “human + network + machine”. The intelligent command and control system will operate in a collaborative manner of “human brain + intelligent system”. The intelligent system will assist or even partially replace the role of humans in command and control. The intelligent command and control system will have relatively strong autonomous command and control capabilities, and can relatively independently obtain information, judge situations, make decisions, and deal with situations. Relying on the battlefield situation awareness system, with the help of big data, cloud computing, artificial intelligence, and modeling and simulation technology, it is possible to accurately analyze and judge massive battlefield information, realize the transformation of combat command from “human experience-centered” to “data and model-centered” intelligent decision-making methods, and make combat planning more scientific and efficient. In the future, the super self-evolution and strategic decision-making capabilities of deep neural networks will realize the combat cycle of “human out of the loop”.
Integration of intelligence and mind, attacking the mind and winning the will. With the development of artificial intelligence technology, the boundaries between the biologicalization and humanization of intelligent weapons will be blurred in the future, and the control of people themselves will become the focus. “Attacking the mind and winning the will” is still the highest combat purpose of intelligent warfare. “Cognitive control warfare” based on the control of human brain and consciousness cognition may evolve into an important combat style. With human cognitive thinking as the target, various means are used to stimulate, influence and control the cognitive system to achieve the effect of disrupting the enemy’s command and decision-making system, inducing the enemy’s combat power, and disintegrating the enemy’s morale. For example, based on brain reading and brain control technology, using mental guidance and control means, the strategic intentions, combat intentions, and combat methods of the enemy commander can be grasped in real time, and even directly act on the brain of the enemy personnel, or the consciousness of the party can be “injected” in the form of EEG coding to interfere with or control their consciousness, thinking and psychology, and finally seize the “right to control intelligence” and achieve deep control over combat personnel. With the large-scale application of intelligent combat platforms on the battlefield, information systems assisting humans will gradually transform into intelligent systems partially replacing humans. The focus of the power struggle will shift from “information rights” to “intelligence rights”, and using elite troops to gain control of key domains will become the dominant approach.
At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.
The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.
USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.
On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.
The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, minesweeping, reconnaissance, and patrolling. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds me of the half-cyborg Grace in the movie “Terminator: Dark Fate”.
On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.
According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.
In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment
The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.
Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).
It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.
In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.
On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.
Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.
Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.
Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.
On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.
The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.
At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.
It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force
With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.
In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”
In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.
The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.
With the accelerated application of cutting-edge technology in the military field, intelligent unmanned systems have become an important part of modern warfare. The world’s major military powers attach great importance to the application of intelligent unmanned system technology in the military field. In the future, intelligent unmanned systems will have a profound impact on combat methods and subvert the rules of war. As a culmination of cutting-edge science and technology (such as artificial intelligence, intelligent robots, intelligent perception, intelligent computing, etc.), intelligent unmanned systems represent the highest level of development of a country’s scientific and technological strength. Therefore, research in the field of intelligent unmanned systems can greatly promote the development of existing military and livelihood fields. At present, unmanned system equipment has emerged in military conflicts. For example, in the conflict between Turkey and Syria, Turkey used the Anka-S long-flight drone and the Barakta TB-2 reconnaissance and strike drone equipped by the Air Force to attack the Syrian government forces; the Russian Ministry of Defense also announced that militants in Syria used drones carrying explosives to launch a cluster attack on its military bases; in 2020, the United States used an MQ-9 “Reaper” drone to attack a senior Iranian military commander and killed him on the spot. Unmanned combat is coming, and intelligent unmanned systems, as a key weapon on the future battlefield, will determine the victory of the entire war.
Image from the Internet
The development of intelligent unmanned systems will not only promote the upgrading and progress of existing military technology, but also drive the intelligent development of civilian technology, including intelligent transportation systems, smart home systems, intelligent manufacturing systems and intelligent medical systems. In order to develop intelligent unmanned systems more scientifically and rapidly, major scientific and technological powers have introduced a series of plans and routes for the development of intelligent unmanned systems, striving to seize the initiative and commanding heights in the development of intelligent unmanned systems. Related ones include the United States’ integrated roadmap for autonomous unmanned systems, Russia’s national weapons and equipment plan, the United Kingdom’s defense innovation technology framework, China’s new generation of artificial intelligence development plan, and Japan’s medium- and long-term technology plan. In recent years, from air to space, from land to sea, various types of intelligent unmanned systems have emerged in large numbers. The world’s major powers have gradually deployed intelligent unmanned systems into the military, and in some regional conflicts and anti-terrorism battlefields, the key role of intelligent unmanned systems is increasing. Therefore, this article will focus on the military needs of the future battlefield, based on the challenges of the actual complex environment faced by the future battlefield, analyze the key technologies required for the development and application of intelligent unmanned systems, and analyze the key technologies of individual enhancement and cluster enhancement from a military perspective, and explain the development trend of intelligent unmanned systems.
Current research status at home and abroad
The concept of intelligent unmanned system has only been proposed recently. At present, its research is still in its early stages, and there is no unified definition in the world. It is temporarily defined as: an organic whole composed of an unmanned platform and several auxiliary parts, with the ability to perceive, interact and learn, and capable of autonomous reasoning and decision-making based on knowledge to achieve the goal. Intelligent unmanned systems can be divided into three major parts: land unmanned systems, air unmanned systems and marine unmanned systems according to the spatial scope of their functions. Among them, land unmanned systems mainly include reconnaissance unmanned vehicles, transport unmanned vehicles, combat unmanned vehicles, obstacle removal unmanned vehicles, bomb disposal unmanned vehicles, unmanned vehicle formations and command systems, etc.; air unmanned systems mainly include reconnaissance drones, combat drones, logistics transport drones and drone formations, etc.; marine unmanned systems mainly include reconnaissance unmanned boats, combat unmanned boats, logistics transport unmanned boats, patrol search and rescue unmanned boats, reconnaissance unmanned submarines, combat unmanned submarines and shore-based support systems, etc. This section will explain the current research status of intelligent unmanned systems at home and abroad from the above three parts. ⒈ Current status of foreign intelligent unmanned system research ⑴ Land unmanned system Land unmanned systems are mainly used in intelligence collection, reconnaissance and patrol, mine clearance and obstacle removal, firepower strike, battlefield rescue, logistics transportation, communication relay and electronic interference. As the advantages of land unmanned systems in combat become more and more prominent, research on them has attracted more and more attention from various countries. The United States launched the “Joint Tactical Unmanned Vehicle” project in November 1993, which is the predecessor of the “Gladiator” unmanned combat platform project. In 2006, the United States completed the design of the entire system of the “Gladiator” unmanned combat platform and officially equipped the Marine Corps in 2007. The “Gladiator” tactical unmanned combat platform is the world’s first multi-purpose combat unmanned platform. It is equipped with sensor systems such as day/night cameras, GPS positioning systems, and acoustic and laser search systems. It is also equipped with machine guns, submachine guns, tear gas, sniper systems, biological and chemical weapons detection systems, etc. It can perform reconnaissance, nuclear and biological weapons detection, obstacle breakthrough, anti-sniper, firepower strike and direct shooting in different weather and terrain. The Gladiator unmanned combat platform is equipped with a highly mobile and survivable chassis. For this platform, a portable handheld control system has also been developed, and a series of development work has been completed around the technical issues of the control system’s anti-interference, network interoperability, miniaturization and ease of operation. However, due to the weak armor protection capability of the Gladiator unmanned combat platform and the poor concealment of its mission, its long-range reconnaissance and control system faces more interference. In addition, the US Army has also put some other land unmanned systems into service, such as the Scorpion robot and the Claw robot. In 2017, the US Army formulated the Robotics and Autonomous Systems (RAS) Strategy, which provides a top-level plan for the construction of unmanned combat capabilities. Figure 1 shows the US land unmanned system.
Figure 1 US land unmanned system Israel, Russia, the United Kingdom and Germany have also successively carried out the development of land unmanned systems and developed a series of advanced products. The product list is shown in Table 1. For example, the “Guardian” series of autonomous unmanned vehicles developed by Israel can combine the sensors and fusion algorithms on board to autonomously detect and identify dangerous obstacles, and perform patrol, surveillance and small-scale fire strike tasks; the MARSA-800 unmanned vehicle developed by Russia can perform tasks such as transportation and logistics support, tracking and surveillance, and can realize autonomous path planning and avoid obstacles during the execution of tasks. The unmanned vehicle has been deployed on the Syrian battlefield. The United Kingdom and Germany also started research on land unmanned systems earlier. The United Kingdom launched a trolley bomb disposal robot in the 1960s, and later launched the Harris T7 tactile feedback robot for performing dangerous tasks such as bomb disposal and bomb disposal; the “Mission Master” ground armed reconnaissance unmanned vehicle developed by Germany’s Rheinmetall is mainly used to perform tactical surveillance, dangerous object detection, medical evacuation, communication relay and fire support tasks.
Table 1 Land unmanned systems of various countries
⑵ Aerial unmanned systems Aerial unmanned systems are mainly based on single drone platforms and drone clusters. Due to their advantages such as wide field of view, freedom of flight, and good equipment carrying capacity, drones are widely used in the military field and have played a great role in military conflicts in recent years. The main functions of aerial unmanned systems include: intelligence gathering, reconnaissance and surveillance, decoy target aircraft, target tracking, tactical strikes and air rescue. In 2000, the U.S. Air Force Research Laboratory proposed the concept of autonomous combat for unmanned aerial vehicles, quantified the degree of autonomy of unmanned aerial vehicles, and formulated a development plan. The quantitative content and development stage of the degree of autonomy of unmanned aerial vehicles are shown in Figure 2.
Figure 2 Autonomous control level and the trend of autonomous
unmanned aerial vehicles In 2003, the United States merged the unmanned combat aircraft system projects of the Air Force and the Navy, launched the “Joint Unmanned Combat System” (J-UCAS) project, and began research on the unmanned combat aircraft X-47B. In 2006, the U.S. Navy proposed the “Navy Unmanned Combat Air System” (N-UCAS) project, which aims to introduce unmanned combat aircraft to the aircraft carrier-based aircraft wing and continue to conduct research on the X-47B. Between 2012 and 2014, the aircraft carrier catapult, landing, touch-and-go and other tests were completed many times, and the autonomous aerial refueling test was completed in 2015. The X-47B attack drone is an autonomously maneuverable, stealthy, and land-based and ship-based unmanned combat aircraft. It has the characteristics of high range and high flight time, and is equipped with advanced sensors such as illumination radar, optoelectronic guidance system, and aperture radar. Its main functions include intelligence reconnaissance, target tracking, electronic warfare interference, and firepower strikes. Other unmanned aerial systems developed by the United States, such as the Global Hawk, Predator, Hunter, and Raven, have also been in service in the military, as shown in Figure 3. The “Harpy” drone developed by Israel is equipped with anti-radar sensors, optoelectronic guidance systems and missiles, and can autonomously attack enemy radar systems, as shown in Figure 3.
Figure 3 Aerial Unmanned Systems of Various Countries
A single aerial unmanned system is easily interfered with and attacked when performing a mission, resulting in mission failure, while an aerial unmanned system cluster can make up for this defect and give full play to the advantages of aerial unmanned systems. The Defense Advanced Research Projects Agency (DARPA) of the United States has successively launched the “Gremlins” low-cost drone project, the low-cost drone cluster project, the “Perdix” micro-drone airborne high-speed launch demonstration project, and the offensive swarm enabling tactics (OFFSET) project for aerial unmanned system clusters. By developing and testing the architecture, communication system and distributed control algorithm for unmanned system clusters, an autonomous control system for drone clusters has been developed, and cutting-edge scientific and technological technologies such as artificial intelligence, situational awareness, virtual reality and augmented reality have been used to enhance the comprehensive combat capability of aerial unmanned system clusters on the battlefield.
⑶ Marine unmanned systems Marine unmanned systems include two types: surface unmanned systems and underwater unmanned systems. Among them, surface unmanned systems mainly refer to surface unmanned boats (hereinafter referred to as “unmanned boats”), which are mainly used to perform tasks such as maritime search and rescue, reconnaissance and surveillance, firepower strikes, patrol security, electronic interference, logistics support and decoy target ships; underwater unmanned systems mainly refer to unmanned submersibles. Compared with manned submarines, they have the advantages of no casualties, high concealment and high autonomy, and are mainly used to perform intelligence collection, target monitoring, combat deterrence and firepower strikes. In 2018, the US Navy released the “Navy Department Unmanned System Strategic Roadmap”, and in 2019, it released the “Navy Artificial Intelligence Framework”, which provides route planning and guidance for the development of naval operations and marine unmanned systems. In terms of surface unmanned systems, the United States proposed the “American Advanced Concept Technology Demonstration Project” (ACTD), one of whose important tasks is to carry out research on the “Spartan Scout” unmanned boat. The project was completed in 2007 and tested in the Iraqi theater. The “Spartan Scout” unmanned boat is equipped with an unmanned driving system and a line-of-sight/beyond-line-of-sight communication system, as well as advanced sensors such as electro-optical/infrared search turrets, high-definition cameras, navigation radars, surface search radars, and global positioning system receivers, as well as weapons such as naval guns, anti-ship missiles, and anti-submarine sensors. It is mainly used to perform intelligence collection, target monitoring, information reconnaissance, anti-mine and maritime security tasks, and has a certain degree of autonomy. The “Sea Hunter” unmanned boat developed by the United States is equipped with sonar and optoelectronic sensors, as well as short-range and long-range radar detection systems and expandable modular sonar systems. It is mainly used to perform tasks such as identifying and monitoring suspicious targets and guiding fire strikes. The US marine unmanned system is shown in Figure 4. The “Protector” unmanned boat developed by Israel is mainly used to perform intelligence reconnaissance, suspicious target identification, tactical interception, electronic interference and precision strikes (Figure 4). The unmanned surface reconnaissance boat developed by Russia can perform rapid patrol tasks under the command of the mother ship and inspect and monitor designated areas to search for intelligence.
Figure 4 Marine unmanned systems of various countries
In terms of underwater unmanned systems, the nuclear-powered unmanned submarine “Poseidon” developed by Russia can carry conventional and nuclear warheads to perform reconnaissance and strategic nuclear strike missions, as shown in Figure 4. The “Knifefish” unmanned submarine developed by the United States can scan suspicious objects and search for intelligence by emitting low-frequency electromagnetic waves; the “Tuna”-9 unmanned submarine developed by the United States can carry a variety of standard payloads and can be used to perform offshore exploration, anti-mine, surveillance and reconnaissance (ISR) and other tasks.
⒉ Current status of domestic intelligent unmanned system research In recent years, China’s military intelligent unmanned systems have developed rapidly. This article will explain the three aspects of land unmanned systems, air unmanned systems and marine unmanned systems. In terms of land unmanned systems, the National University of Defense Technology and Sany Heavy Industry Co., Ltd. jointly developed the “Desert Wolf” land unmanned light platform, which is powered by tracks and equipped with weapon systems such as grenade launchers and machine guns. It can be used to perform logistics transportation, wounded transportation, reconnaissance monitoring, firepower strikes and other tasks. The “Longma” series of unmanned vehicles developed by Sunward Intelligent Group have strong transportation and obstacle crossing capabilities. The “Shenxing-III” military ground intelligent robot system developed by Nanjing University of Science and Technology has strong autonomous navigation and intelligence reconnaissance capabilities. The unmanned nuclear reconnaissance vehicle jointly developed by the National University of Defense Technology and Harbin Institute of Technology has high mobility and armor protection capabilities. The weapon system it carries can perform fire strikes and has certain autonomous capabilities. In terms of aerial unmanned systems, the “Wing Loong” series of unmanned aerial vehicles developed by Chengdu Aircraft Industry Group has fully autonomous horizontal take-off and landing capabilities, cruise flight capabilities, air-to-ground coordination capabilities, and ground relay control capabilities. It is equipped with multiple types of optoelectronic/electronic reconnaissance equipment and small air-to-ground precision strike weapons, and can perform intelligence reconnaissance, target tracking, fire strikes and other tasks. The “Rainbow” series of unmanned aerial vehicles developed by China have medium-altitude and long-range navigation capabilities, can carry electronic jamming systems and a variety of weapon systems, and can perform fire strikes, intelligence reconnaissance, communication jamming, radio wave jamming and other tasks; the attack 11 type unmanned aerial vehicle developed has extremely strong stealth capabilities and can carry precision-guided missiles for ground attack missions. China’s aerial unmanned systems are shown in Figure 5.
Figure 5 China’s aerial unmanned systems
In terms of surface unmanned systems of marine unmanned systems, the “Tianxing No. 1” unmanned boat, developed by Harbin Engineering University, uses oil-electric hybrid power, with a maximum speed of more than 92.6km/h and a maximum range of 1,000km. It is currently the fastest unmanned boat in the world. The boat integrates technologies such as autonomous perception, intelligent control, and autonomous decision-making, and can achieve rapid situation information recognition and danger avoidance of the surrounding complex environment. It can be used to perform tasks such as meteorological information monitoring, landform mapping, alert patrol, intelligence reconnaissance, and firepower attack. The “Jinghai” series of unmanned boats developed by Shanghai University have semi-autonomous and fully autonomous operation capabilities, and can perform tasks such as target reconnaissance, ocean mapping, and water quality testing. The “Haiteng 01” intelligent high-speed unmanned boat developed by Shanghai Maritime University is equipped with sensors such as millimeter-wave radar, laser radar, and forward-looking sonar. It can perform suspicious target monitoring, underwater measurement, maritime search and rescue, and other tasks, and has fully autonomous and semi-autonomous navigation capabilities. The JARI intelligent unmanned combat boat developed by Jiangsu Automation Research Institute is equipped with detection equipment such as photoelectric detectors and four-sided phased arrays. At the same time, it is also equipped with weapon systems such as missiles and torpedoes, which can perform tasks such as intelligence collection, enemy reconnaissance, and precision firepower strikes. The “Lookout II” unmanned missile boat jointly developed by Zhuhai Yunzhou Intelligent Technology Co., Ltd. and other units is equipped with a fully autonomous unmanned driving system and missiles and other weapons, which can perform tasks such as enemy reconnaissance, intelligence collection, and precision firepower strikes. China’s marine unmanned system is shown in Figure 6.
Figure 6 China’s marine unmanned system
In terms of underwater unmanned systems of marine unmanned systems, the “Devil Fish” unmanned submersible developed by Northwestern Polytechnical University is a bionic manta ray unmanned submersible that has completed a deep-sea test of 1025m. The “Wukong” full-sea depth unmanned submersible developed by Harbin Engineering University has successfully completed a deep dive and autonomous operation test of 10,896m. Deep-sea submersibles such as “Qianlong No. 1” and “Seahorse” developed by China have successfully completed deep-sea exploration missions.
⒊ Summary of the current state of technology At present, intelligent unmanned systems have been gradually applied to various fields of military applications, and with the development of cutting-edge science and technology, the application of intelligent unmanned systems in the military field will increase day by day. However, in the use of intelligent unmanned systems, autonomy and intelligence have not yet been fully realized. At present, the application status of intelligent unmanned system technology in the military field can be mainly divided into the following three parts:
① From the perspective of combat missions: combat missions have developed from simple reconnaissance and surveillance to mainstream confrontation operations; battlefield confrontation has changed from human confrontation to human-machine confrontation, and then to machine-machine confrontation; the application environment has changed from structured environment and laboratory environment to real battlefield environment, and will gradually develop into an augmented reality environment combining real environment and virtual reality in the future. ② From the perspective of command and control: the control method has developed from simple remote control and program control of a single machine to intelligent fusion and interactive control of human-machine, but autonomous control has not yet been fully realized; the system architecture has developed from specialization and singularity to generalization, standardization, and interoperability. ③ From the perspective of perception and decision-making: the decision-making method has changed from relying solely on people to relying mainly on people and supplemented by human-machine intelligent interactive decision-making; the perception method has changed from relying solely on sensors to obtain feature information and people to judge target attributes to target recognition and feature information acquisition based on artificial intelligence.
Key technologies of intelligent unmanned systems
As a culmination of multidisciplinary fields, intelligent unmanned systems involve many technologies, perform diverse tasks, and have complex and changeable application scenarios. For example, the air environment is rainy and foggy, with low visibility, strong winds, and light interference; the land environment has complex terrain, obstacles, interference, and dangerous pollution areas; the sea environment has wind and wave interference, ship swaying, inconspicuous targets, and irregular coastlines. Different environments and uses pose huge challenges to the research and performance of intelligent unmanned system technology. In order to adapt to the restricted and changing environment, the key technologies of intelligent unmanned systems can be summarized as autonomous perception and understanding technology in complex environments, multi-scenario autonomous skill learning and intelligent control technology, multi-task cluster collaboration technology, human-computer interaction and human-computer fusion technology, decision-making planning technology and navigation and positioning technology. This section will mainly use marine unmanned systems as examples to elaborate on the key technologies of intelligent unmanned systems.
⒈ Autonomous perception and understanding technology in complex environments Autonomous perception and scene understanding of the environment in complex environments is a prerequisite for intelligent unmanned systems to operate autonomously and form combat capabilities, which will directly affect whether the mission can be successfully completed. In view of the complexity and variability of the actual environment, especially the difficulties of wind and wave interference and ship shaking in the sea environment, intelligent unmanned systems need to complete the goals of autonomous target selection perception, obtain multimodal information, and abstract and complete understanding of information. Therefore, the autonomous perception and understanding technology of the environment of intelligent unmanned systems in complex environments needs to break through the autonomous perception technology of multimodal sensor fusion, as well as the complex scene target recognition and understanding technology.
⑴ Multimodal sensor fusion autonomous perception technology At present, the information acquisition sensors carried by intelligent unmanned systems mainly include navigation radar, millimeter wave radar, laser radar, optoelectronic payload, etc. A single sensor cannot directly obtain high-precision, dense three-dimensional scene information. It is necessary to study the autonomous environmental perception technology of multi-sensor fusion to provide support for scene understanding. Multi-sensor fusion is to carry out multi-level and multi-space information complementation and optimization combination processing of various sensors, and finally produce a consistent interpretation of the observed environment. In this process, it is necessary to make full use of multi-source data for reasonable control and use, and the ultimate goal of information fusion is to derive more useful information based on the separated observation information obtained by each sensor through multi-level and multi-faceted combination of information. By taking advantage of the mutual cooperation of multiple sensors, the data of all information sources are comprehensively processed to improve the intelligence of the entire sensor system. The natural environment of the ocean is more complex than that of land and air. Faced with special challenges such as violent swaying of ships, wind and wave interference, uneven lighting, and inconspicuous targets, the marine intelligent unmanned system needs to perform multi-sensor information fusion processing on the designated target based on the unique attributes of each sensor, and then combine the electronic chart information of the internal navigation unit of the unmanned system and the shore-based support system to build a multi-dimensional three-dimensional situation map of the sea surface environment, perform tracking, detection, identification and cognition tasks for the designated target, and finally realize the autonomous perception and complete understanding of the sea surface environment by the marine intelligent unmanned system.
⑵ Complex scene target recognition and understanding technology The key to the operation autonomy of intelligent unmanned systems lies in the ability to effectively understand the scene and target information, and accurate understanding of scene information mainly includes the construction of target semantic information and the description of scene text information. Compared with land and air environments, the natural marine environment faces unique difficulties such as wind and wave interference and violent swaying of the hull, which brings challenges to the intelligent unmanned system to fully understand the environmental information and accurately identify the designated target. Using sensors such as laser radar and high-definition cameras carried by intelligent unmanned systems, the original point cloud information and image feature information of the marine environment scene can be obtained. Using three-dimensional target detection methods based on point clouds, point clouds and image fusion, and three-dimensional scene semantic segmentation methods, etc., the intelligent unmanned system can fully recognize the scene information and accurately identify the designated target. There are mainly two types of point cloud-based methods: grid-based or voxel-based methods, and point-based methods. The grid-based or voxel-based method uses voxels or bird’s-eye views to convert the irregular point cloud of the acquired sea surface into a regular representation method, and then extracts the point cloud features. The point-based method directly extracts target features from the acquired original point cloud of the sea surface. The three-dimensional target detection method based on point cloud and image fusion combines the precise coordinates of the target in the sea scene obtained by the laser radar with the environmental texture and color information provided by the sea surface image, which is more conducive to the intelligent unmanned system to accurately identify and accurately and completely understand the target of the ocean scene.
⒉ Behavior decision-making and trajectory planning technology In actual and complex war scenes, for the complex mission environment and multiple tasks faced by intelligent unmanned systems, it is necessary to break through the behavior decision-making technology in multi-source heterogeneous environments, trajectory planning technology in dynamic/static environments, and trajectory tracking technology in complex scenes.
⑴ Behavior decision-making technology in multi-source heterogeneous environments Behavior decision-making is the key to the realization of autonomous control of intelligent unmanned systems. In the complex environment of different speeds, different relative distances, and different data types of unmanned boats, it is necessary to accurately extract effective information to make safe and reliable control instructions for the next decision of the unmanned boat. First, extract representative environmental feature information and establish a sufficient number of accurately calibrated learning data sets; then, construct a decision maker based on a deep neural network and use the established database for learning; finally, use machine learning algorithms to optimize the constructed decision maker to further improve the decision accuracy. ⑵Trajectory planning technology in dynamic/static environment Trajectory change is the most basic behavior of unmanned boats and unmanned submarines. In a complex battlefield environment, planning a feasible and reliable trajectory according to different environmental conditions is the key to the intelligent driving of unmanned boats and unmanned submarines. This technology mainly includes trajectory planning technology based on polynomials, trajectory planning technology based on multi-objective constraints, and trajectory planning technology based on positive and negative trapezoidal lateral acceleration.
⑶Trajectory tracking technology in complex scenes Tracking the planned ideal trajectory is an important task for unmanned boats and unmanned submarines. The key lies in solving the problem of high-precision and high-stability control when unmanned boats or unmanned submarines track target trajectories. The main solution is: according to the kinematic and dynamic models of unmanned boats and unmanned submarines, the corresponding actuator control quantity is output to achieve real-time and accurate tracking of the specified target, and under the premise of ensuring tracking accuracy, the autonomous intelligent steering of unmanned boats and unmanned submarines and the coordinated control of multiple actuators of each drive module are realized.
⒊Autonomous navigation and positioning technology The navigation and positioning system is a key component of the intelligent unmanned system, which can provide accurate and reliable information about the speed and position of unmanned boats or unmanned submarines. The navigation system is generally composed of gyroscopes, accelerometers, satellite receivers, etc., some of which are supplemented by visual modules, or are equipped with prior spatial position maps and physical information sensors based on actual complex environmental conditions. In order to achieve accurate execution of tasks, intelligent unmanned systems must break through navigation and positioning technology based on inertial/satellite deep information fusion, navigation and positioning technology based on inertial/astronomical information fusion, navigation technology based on visual tracking, and geophysical assisted navigation technology.
⑴ Navigation and positioning technology based on inertial/satellite deep information fusion This technology introduces the inertial information of the unmanned boat into the satellite carrier/code loop, and then uses fully autonomous, short-term, and high-precision inertial information to assist the update of satellite receiver signals, thereby realizing the complementary advantages and optimal fusion of the inertial navigation and satellite navigation of the unmanned boat.
⑵ Navigation and positioning technology based on inertial/astronomical information fusion The astronomical-based navigation system has the advantages of high autonomy and low susceptibility to interference. By using the information output by astronomical navigation and the information provided by the initial position, the position of the unmanned boat can be calculated. The fusion of inertial navigation information and astronomical navigation information can improve the robustness of astronomical navigation positioning. Inertial/astronomical combined positioning technology based on astronomical navigation assistance has become a key part of the field of autonomous navigation of unmanned systems.
⑶ Navigation technology based on visual tracking Due to the complexity of the actual battlefield environment, unmanned boats will be in a complex working environment and are easily interfered by the outside world, resulting in GPS denial, which makes the navigation system unable to be in a combined state. A single inertial navigation system has low accuracy and is prone to accumulating errors. Long-term pure inertial navigation will make the unmanned boat lose the ability to perform tasks. However, the vision-based method does not have time error accumulation. It only needs to extract the key features of the image obtained by the high-definition camera to obtain the position information of the unmanned boat and the unmanned submersible through visual algorithms and prior knowledge. The vision-based navigation algorithm is not easily interfered with, has strong robustness, and can make up for the error accumulation caused by pure inertial navigation in a GPS denial environment, and is widely used.
⑷ Geophysical assisted navigation technology Due to the unique environment of the ocean, unmanned submersibles need to sail underwater for a long time, resulting in the inability to obtain real-time and accurate satellite signals and astronomical information. In addition, due to problems such as weak underwater light, vision-based navigation methods are also limited. Therefore, by obtaining a priori spatial position map inside the ocean and using the field scene information obtained by the physical sensors carried by the unmanned submersible and matching them, high-precision autonomous navigation of the unmanned submersible can be achieved. The temporal and spatial distribution characteristics of the inherent geophysical properties of the surveyed ocean can be used to produce a geophysical navigation spatial position map. By matching the physical feature information obtained by the physical property sensor carried by the unmanned submersible with the pre-carried spatial position map, the high-precision positioning of the unmanned submersible can be obtained, and the high-precision autonomous navigation of the unmanned submersible can be realized.
⒋ Multi-scenario autonomous skill learning and intelligent control technology Multi-scenario intelligent control technology is a key technology for intelligent unmanned systems to solve complex, changeable and unstable control objects. It is an effective tool for intelligent unmanned systems to adapt to complex task requirements. In a complex marine environment, if intelligent unmanned systems want to complete real-time and accurate regional monitoring, target tracking, information acquisition and precision strikes, they must break through the autonomous skill learning technology of tasks, autonomous operation interactive control technology, and unmanned system motion control technology of human-like intelligent control.
⑴ Autonomous skill learning technology of tasks Autonomous skill learning refers to the process of learning based on prior knowledge or rules to complete tasks in the process of interaction between unmanned systems and the outside world. The autonomous learning of unmanned system operation skills is essentially a partial process of simulating human learning cognition. Intelligent unmanned systems use deep reinforcement learning-based technology to combine the perception ability of deep learning with the decision-making ability of reinforcement learning, and can achieve direct control from high-latitude raw data information input to decision output in complex sea environments. The autonomous skill learning of intelligent unmanned systems mainly includes three aspects: first, describing the complex environment of the ocean surface and the interior of the ocean, and obtaining the initial state data information of the surrounding environment; second, based on the description of the intelligent unmanned system and the complex environment of the ocean surface and the interior, mathematical modeling of deep reinforcement learning is carried out to obtain key information such as the state value function and control strategy function of the autonomous skill learning process; third, using the data information obtained by the interaction between the intelligent unmanned system and the complex environment of the ocean surface and the interior, the state value function and the control strategy function are updated to enable the marine intelligent unmanned system to learn a better control strategy.
⑵ Autonomous operation interactive control technology In the process of autonomous learning and control of tasks, the intelligent unmanned system needs to contact with the ocean surface and the complex internal environment to form a good coupling system to ensure the real-time and accurate acquisition of information on the ocean surface and the complex internal environment, and correctly and quickly carry out navigation planning, autonomous navigation control and autonomous collision avoidance of unmanned boats and unmanned submersibles. The tasks of the interactive control technology of autonomous operation of intelligent unmanned systems mainly include: the design of interactive rules and control strategies of intelligent unmanned systems; modeling methods of complex environments on the surface and inside of the ocean; online modeling and correction of the dynamics of unmanned boats, unmanned submarines and operating objects; dynamic generation and shared control methods of virtual force constraints in complex environments on the surface and inside of the ocean.
⑶ Motion control technology of unmanned systems with humanoid intelligent control The motion control technology of unmanned systems with humanoid intelligent control combines artificial intelligence with traditional control methods to solve the problem of stable and precise control of unmanned boats and unmanned submarines in actual complex marine battlefield environments. It mainly includes two aspects: the design of intelligent control algorithms for unmanned systems and the design of intelligent control strategies for unmanned systems. The design of intelligent control algorithms for unmanned systems mainly includes: hierarchical information processing and decision-making mechanisms; online feature identification and feature memory; open/closed-loop control, positive/negative feedback control, and multi-modal control combining qualitative decision-making with quantitative control; the application of heuristic intuitive reasoning logic. The design of intelligent control strategies for unmanned systems is to design reasonable solutions for unmanned boats or unmanned submarines to meet actual mission requirements.
⒌ Unmanned cluster collaborative control technology In actual combat scenarios, due to the complexity of the battlefield environment and the diversity of tasks, a single unmanned boat or unmanned submarine usually cannot meet the needs of actual tasks. The number of equipment carried by a single unmanned boat or unmanned submarine is limited, and the perception perspective and regional range are not comprehensive enough, resulting in insufficient precision and thoroughness in performing complete intelligence detection, target tracking, battlefield environment perception and comprehensive firepower strike tasks. Therefore, it has become an inevitable trend for a cluster of intelligent unmanned systems composed of multiple unmanned boats and unmanned submarines to collaboratively perform tasks. To complete the control of the intelligent unmanned system cluster, it is necessary to break through the local rule control technology of the intelligent unmanned system cluster, the soft control technology of the intelligent unmanned system cluster, the pilot control technology of the intelligent unmanned system cluster, and the artificial potential field control technology of the intelligent unmanned system.
⑴ Local rule control technology of intelligent unmanned system cluster The control technology based on local rules is the basic method for intelligent unmanned systems to control unmanned boats and unmanned submarines. It mainly lies in the designation of individual local control rules within the cluster of unmanned boats and unmanned submarines. Local rule control technology has achieved intelligent control of marine unmanned system clusters to a certain extent, but a large number of experiments are needed to obtain the parameters between the behavior of marine unmanned system clusters and the cluster model, and the values of the parameters are also very sensitive. Therefore, to achieve complete intelligent control of intelligent unmanned systems, other technologies are needed.
⑵ Soft control technology of intelligent unmanned system clusters The soft control technology of intelligent unmanned system clusters is mainly based on two requirements: First, in the intelligent unmanned system cluster, the control rules between individuals are very important. For example, the control and internal function of each unmanned boat and unmanned submarine are necessary conditions for the group behavior of the entire marine intelligent unmanned system cluster; second, the intelligent unmanned system cluster adopts a local communication strategy. With the increase of unmanned boats and unmanned submarines in the cluster system, it will not affect the state of the entire intelligent unmanned system cluster.
The soft control method is to add one or more new unmanned boats or unmanned submarines without destroying the individual rules of unmanned boats and unmanned submarines in the intelligent unmanned system cluster. These unmanned boats or unmanned submarines participate in the actions of the entire intelligent unmanned system cluster according to the same local rules, but they are controllable and can receive external instructions. After receiving the command, these unmanned boats or unmanned submarines will independently complete the corresponding tasks. The soft control method of the intelligent unmanned system cluster is to add a controllable unmanned boat and unmanned submarine on the basis of the local control rules of the unmanned system, so that it can affect the entire unmanned system cluster, and finally complete the control of the entire intelligent unmanned system group.
⑶ Intelligent unmanned system cluster navigation control technology The basic content of the intelligent unmanned system cluster navigation control technology is: under the premise that the individuals of the entire marine intelligent unmanned system cluster maintain local rules, a small number of unmanned boats and unmanned submarines in the cluster have more information and stronger information processing capabilities, and interact with other unmanned boats and unmanned submarines through local information to play a leading role, so as to achieve the purpose of controlling the entire intelligent unmanned system cluster.
⑷ Artificial potential field control technology of intelligent unmanned system In the control of intelligent unmanned system clusters, control technology based only on local rules is difficult to achieve accurate and real-time perception of the battlefield, as well as the collection and acquisition of intelligence information, tracking and identification of suspicious targets, and precise strikes on enemy areas. Artificial potential field control technology introduces the concept of potential field in physics into the control of intelligent unmanned system clusters, and uses potential functions to simulate the internal and external effects that affect a single unmanned boat or unmanned submarine. The single unmanned boat or unmanned submarine in the system cluster acts under the action of the potential function, and finally realizes the control of the entire intelligent unmanned system through the potential function.
⒍Natural human-computer interaction technology In the actual battlefield environment, intelligent unmanned systems face problems such as complex operation tasks, low level of operation intelligence, high training risks and costs, and low equipment use and maintenance efficiency. In this case, it is necessary to improve the controllability and intelligence of intelligent unmanned system equipment, and it is necessary to break through the human-computer interaction technology of intelligent unmanned systems, augmented reality and mixed reality technology of intelligent unmanned systems, and brain-computer interface technology of intelligent unmanned systems.
⑴Human-computer interaction technology of intelligent unmanned systems Human-computer interaction technology of intelligent unmanned systems refers to the command platform obtaining the image and voice information of officers and soldiers through image and voice sensors, and then using algorithms such as image segmentation, edge detection, and image recognition to extract key information such as gestures and eye gestures of officers and soldiers, and then using algorithms based on deep learning to obtain the voice information of officers and soldiers and pass it to the command platform, so as to issue the officers and soldiers’ instructions to lower-level combat units. The human-computer interaction technology of intelligent unmanned systems can improve the intelligence of task operations and the fault tolerance and robustness of the operation process, so that the officers and soldiers’ instructions can be issued to combat units more stably and effectively.
⑵Augmented reality and mixed reality technology of intelligent unmanned systems Augmented reality technology of intelligent unmanned systems is to superimpose computer-generated images on real complex combat environments, and mixed reality technology of intelligent unmanned systems is to present information of virtual scenes in actual combat scenes, and set up an interactive feedback information loop between the virtual world and officers and soldiers in a real combat environment, thereby increasing the officers and soldiers’ sense of reality in the combat environment experience. As an important development direction of immersive human-computer interaction technology, virtual reality and augmented reality for intelligent unmanned systems have a variety of different real combat application scenarios, which can effectively reduce the cost and risk of training and improve the use and maintenance efficiency of equipment during combat.
⑶ Brain-computer interface technology for intelligent unmanned systems The main function of the brain-computer interface is to capture a series of brain wave signals generated by the human brain when thinking. In actual combat environments, the brain-computer interface technology of intelligent unmanned systems extracts features and classifies the brain wave signals of commanders and fighters, thereby identifying the intentions of commanders and fighters and making corresponding decisions to cope with complex combat tasks and emergencies. The brain-computer interface technology of intelligent unmanned systems can enhance the cognitive and decision-making capabilities of commanders and fighters, greatly improve brain-computer interaction and brain control technology, and give commanders and fighters the ability to control multiple unmanned boats, unmanned submarines and other unmanned combat equipment while relying on thinking.
Future development trend of intelligent unmanned systems
Due to its advantages of unmanned, autonomous, and intelligent, intelligent unmanned systems will appear in every corner of the future battlefield. As they undertake more battlefield tasks, they will participate in different war scenarios, which will lead to a number of key problems for intelligent unmanned systems, restricting their development. The key problems faced by intelligent unmanned systems are mainly:
① Highly complex environment. The specific application environment of intelligent unmanned systems will face more and more factors. The numerous shelters in unstructured environments, the limited perception viewpoints and ranges, etc., put forward higher requirements on the environmental perception ability of intelligent unmanned systems. ② High game confrontation. The battlefield game of intelligent unmanned systems is an important means to gain battlefield advantages. The fierce mobile confrontation between the two sides of the war, as well as the many interferences caused by the enemy and the battlefield environment, have put forward new challenges to the mobile decision-making ability of intelligent unmanned systems. ③ High real-time response. In the future battlefield, the combat situation will change dramatically, the combat mode will be more flexible and changeable, and it is necessary to respond to battlefield emergencies in a timely manner, which puts forward new requirements for the real-time response ability of intelligent unmanned systems. ④ Incomplete information. In the future battlefield, due to the limitations of the battlefield environment and the existence of enemy interference, the information acquisition ability of the intelligent unmanned system will be restricted, resulting in incomplete situational awareness, loss and attenuation of battlefield situation information data, and the inability to fully obtain information on both sides of the enemy. ⑤ Uncertain boundaries. The unmanned combat mode of the intelligent unmanned system has subverted the traditional combat mode. The integration of land, sea, air and space in the future unmanned combat, as well as the social public opinion brought about by the high degree of integration with society, will have an impact on the unmanned combat of the intelligent unmanned system, thus causing uncertainty in the combat boundary.
Based on the various difficulties that will be faced above, the development of intelligent unmanned systems in the future will focus on two aspects: individual capability enhancement and cluster capability enhancement. Individual capability enhancement is mainly reflected in individual cognitive intelligence, individual autonomous operation and algorithm chipization; cluster capability enhancement is mainly reflected in improving interoperability through a universal architecture, as well as cross-domain collaborative operations, network security and human-machine hybrid intelligence.
⒈ Cognitive intelligence adapts to complex task environments In order to improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to enhance the individual cognitive intelligence of intelligent unmanned systems. The enhancement of individual cognitive intelligence is mainly reflected in the transformation from individual perceptual intelligence to cognitive intelligence. The comprehensive acquisition of multi-source sensor information enables intelligent unmanned systems to have human semantic understanding, associative reasoning, judgment analysis, decision planning, emotional understanding and other capabilities. The development of individual cognitive intelligence of intelligent unmanned systems will be based on brain science and bionics, and will achieve intelligent understanding and accurate application of acquired information by combining knowledge graphs, artificial intelligence, knowledge reasoning, decision intelligence and other technologies, thereby improving the high real-time response capabilities of intelligent unmanned systems to emergencies.
⒉ Autonomous operation improves the task capability of single machines In order to solve the problem of highly complex tasks faced by intelligent unmanned systems in highly complex environments, it is necessary to improve the autonomous operation capabilities of single machines. This includes developing decision-making methods based on deep reinforcement learning, autonomous environmental perception and interaction methods based on multi-source information of vision and other sensors, autonomous motion planning methods for robots based on neurodynamics, and autonomous operation methods based on artificial intelligence, so as to improve the autonomous environmental modeling and positioning capabilities, autonomous decision-making capabilities, autonomous planning capabilities and autonomous control capabilities of individuals in intelligent unmanned systems, so that intelligent unmanned systems can adapt to complex environments and carry out autonomous operation tasks.
⒊ Algorithm chipization achieves high real-time response The complex environment faced by intelligent unmanned systems places high demands on algorithms and computing power. It is necessary to be able to accelerate computing in real time to achieve high real-time response to battlefield emergencies. To solve this problem, it is necessary to improve the chipization level of individual algorithms of intelligent unmanned systems, that is, to develop a new architecture of storage and computing integrated chips to improve the computing power of chips and the level of algorithm chipization. New chips based on artificial neural technology can be studied. By changing the binary computing method of digital chips and exchanging gradient signals or weight signals, the chips can work in a simulated neuron manner, simulating the parallel computing flow of the brain to effectively process large amounts of data, and obtaining the parallel computing capabilities of supercomputers, thereby greatly improving the computing power of chips and the level of algorithm chipization, and solving the problem of high real-time response of intelligent unmanned systems.
⒋ Universal architecture improves cluster interoperability In order to improve the adaptability of intelligent unmanned systems facing highly complex environments and the maintenance and support efficiency of intelligent unmanned systems, intelligent unmanned systems will continue to develop standardized command and control frameworks in the future, improve the intelligence of human-machine collaboration, and improve the modularity of the system. It is mainly reflected in:
① Developing a general artificial intelligence framework to support autonomous, precise, and real-time good coupling and collaboration between humans and machines; ② Improving the modularity and component interchangeability of intelligent unmanned systems to support rapid maintenance and configuration upgrades of intelligent unmanned systems and their members in future battlefields; ③ Improving the level of data transmission integration and the anti-interference capability of data transmission on future battlefields to reduce the rate of data interception.
⒌ Cross-domain collaboration breaks the boundaries of cluster applications
In order to improve the adaptability of intelligent unmanned systems in highly complex environments and solve the problem of uncertain boundaries during combat, it is necessary to improve the cross-domain collaborative combat capabilities of intelligent unmanned systems to make up for the lack of capabilities in a single combat domain. Through the cross-domain collaborative combat of intelligent unmanned systems, the advantages of various components can be complemented. That is, by utilizing the advantages of large search range and long communication distance of air unmanned systems, as well as long endurance and strong stability of land unmanned systems and marine unmanned systems, the advantages of different components are combined to increase the multi-dimensional spatial information perception capabilities of intelligent unmanned systems, and form a heterogeneous multi-autonomous collaborative system, thereby improving the ability of intelligent unmanned systems to complete complex tasks.
⒍ Secure network guarantees reliable application of clusters Intelligent unmanned systems face the problems of incomplete information and high game confrontation on future battlefields. Therefore, it is necessary to improve the network security protection capabilities of intelligent unmanned systems in high confrontation environments, improve flexibility in dealing with highly complex and highly variable tasks, and improve stability in the face of high-intensity network attacks. The improvement of network security protection capabilities in adversarial environments is mainly reflected in the following aspects:
① Plan reasonable data permissions to ensure data security and flexibility of task execution; ② Improve information protection capabilities, develop and upgrade information protection products for intelligent unmanned systems, and record response decisions for information explosion situations; ③ Increase the network’s deep defense capabilities, unify network security standards and levels, build network defense autonomy, and improve the network’s ability to resist attacks under network attacks.
⒎ Human-machine hybrid intelligence improves adversarial capabilities In order to solve the problem of high real-time response faced on future battlefields and improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to combine the advantages of humans and machines to form a new hybrid intelligent mode of human-machine collaboration, that is, to develop human-machine hybrid intelligence for intelligent unmanned systems. Human-machine hybrid intelligence of intelligent unmanned systems is a new intelligent scientific system that combines physics and biology in which human, machine, and environmental systems interact. In response to the problems of high-complexity environments and high real-time responses faced by intelligent unmanned systems on future battlefields, the development of human-machine hybrid intelligence in the future is mainly reflected in the following aspects: ① Information intelligence input. At the input end of information acquisition, the information data objectively collected by the sensors of the unmanned system equipment is combined with the subjective perception information of the combat commanders to form a multi-dimensional information acquisition and information input method. ② Intelligent information fusion. After obtaining multi-dimensional data information, a new data understanding method is constructed by integrating the computer’s calculation data with the information cognition of the combat commanders. ③ Intelligent information output. After the data information is fused and processed, the computer’s calculation results are matched with the value decisions of the combat commanders to form an organically combined probabilistic and regularized optimization judgment.
IV. Conclusion Due to its autonomy, intelligence and unmanned characteristics, intelligent unmanned systems will play an increasingly important role in the future battlefield. The development of intelligent unmanned systems will also drive the development of intelligent computing, intelligent transportation, intelligent manufacturing, smart medical care, brain-like science and other disciplines. In the future, we should be guided by the mission requirements of actual complex battlefield environments, combine advanced technologies in cutting-edge disciplines such as artificial intelligence, and make overall top-level planning for intelligent unmanned systems; verify reliable airborne intelligent perception and intelligent computing equipment on different unmanned system combat platforms in land, air and marine unmanned systems, and develop reliable and stable key technologies such as unmanned system autonomous control, intelligent perception, intelligent decision-making and intelligent interaction, overcome the key difficulties of intelligent unmanned systems, and continuously improve the autonomous control, intelligent perception and intelligent decision-making capabilities of intelligent unmanned systems.
●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.
●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.
President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.
Answering the question “What is it?” and understanding the laws of intelligent warfare
Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.
The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.
The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.
If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.
Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare
The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.
The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of intelligent warfare.”
Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.
The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.
Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance
As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.
You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.
Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.
Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.
Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.
In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.
(Author’s unit: Academy of Military Science, Institute of War Studies)
Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12
At present, judging from the reform and development of the establishment system in major countries in the world, the military is developing towards a lean, small, efficient, intelligent, and integrated “man-machine (robot-drone)” direction, seeking to coordinate and fight together with robot soldiers, drones and human soldiers. According to statistics, the armies of more than 60 countries in the world are currently equipped with military robots, with more than 150 types. It is estimated that by 2040, half of the members of the world’s military powers may be robots. In addition to the United States, Russia, Britain, France, Japan, Israel, Turkey, Iran and other countries that have successively launched their own robot warriors, other countries have also invested in the research and development of unmanned weapons.
The world’s military powers will set off a wave of forming unmanned combat forces to compete. The so-called unmanned combat forces are a general term for combat robots or battlefield killing robot systems. With the development of various types of information-based, precise, and data-based weapons and equipment, intelligent platforms have become the driving force for pre-designed battlefields, combat robots have become the main force on the battlefield, and the combination of man and machine has become the key to defeating the enemy. In the future, battlefield space forces will highlight the three-dimensional unmanned development trend of land, sea, and air.
USA Today once published an article titled “New Robots Take War to the Next Level: Unmanned Warfare,” which described unmanned warfare like this: drone fleets swarm in, using sophisticated instruments for detection, reconnaissance, and counter-reconnaissance; after locking onto a target, they calmly launch missiles; automatically programmed unmanned submarines perform a variety of tasks including underwater search, reconnaissance, and mine clearance; on the ground battlefield, robots are responsible for the delivery of ammunition, medical supplies, and food… In future wars, these may become a reality.
On land, various robots that can perform specific tasks are highly integrated mobile strike platforms with mechanization, informatization, and intelligence. For example, unmanned tanks are unmanned tracked armored platforms that are mainly controlled by their own programs. They can be remotely controlled by soldiers, and are dominated by long-range attack intelligent weapons and informationized weapons. They can automatically load ammunition and launch autonomously, and carry out long-range indirect precision strikes, effectively reducing the casualties of soldiers. In the ocean, various unmanned submarines, unmanned warships, etc. can sail thousands of miles and perform various maritime combat missions without the need for onboard personnel to operate. In the air, the human-controlled drone system deployed in actual combat is a drone system platform with its own reconnaissance and judgment, human control, integrated reconnaissance and attack, autonomous attack, and human-machine collaboration.
The use of drone weapons in wars highlights their combat capabilities, which will inevitably lead the armies of countries around the world to form unmanned combat units in full swing. In the Iraq War, the United States began to test the actual combat capabilities of unmanned combat vehicles. In March 2013, the United States released a new version of the “Robotics Technology Roadmap: From the Internet to Robots”, which elaborated on the development roadmap of robots, including military robots, and decided to invest huge military research funds in the development of military robots, so that the proportion of unmanned combat equipment of the US military will increase to 30% of the total number of weapons. It is planned that one-third of ground combat operations in the future will be undertaken by military robots. It is reported that the US military deployed the first future robot combat brigade (including at least 151 robot warriors) before 2015. In 2016, the US military conducted another experimental simulation test of the “modular unmanned combat vehicle” in a multinational joint military exercise. In 2020, the US Pentagon issued a contract with a price tag of 11 million US dollars to form a “combined arms squad” with the ability to cooperate with humans and robots, and plans to complete the construction of 15 future combat brigades by 2030. All squad members have human-like vision, hearing, touch and smell, can send information and attack targets in a timely manner, and can even undertake tasks such as self-repair and vehicle maintenance, transportation, mine clearance, reconnaissance, and patrol. The US Daily Science website reported that the US Army has developed a new technology that can quickly teach robots to complete new crossing actions with minimal human intervention. The report said that the technology can enable mobile robot platforms to navigate autonomously in combat environments, while allowing robots to complete combat operations that humans expect them to perform under certain circumstances. Currently, US Army scientists hope to cultivate muscle cells and tissues for robots for biological hybridization rather than directly extracting them from living organisms. Therefore, this combination of muscle and robot reminds the author of the half-cyborg Grace in the movie “Terminator: Dark Fate”.
On April 21, 2018, the Russian Federal Security Service (FSB) special forces launched a raid against extremist terrorists in Derbent, Dagestan, and for the first time publicly dispatched armed unmanned combat vehicles equipped with machine guns as pioneers. During the 2018 Russian Red Square military parade, the United States discovered a large number of Russian “Uranus-9” robots and other combat systems that had exchanged fire with Syrian anti-government forces in southern Syria, and showed their appearance characteristics to the audience. In August 2015, the Russian army used combat robot combat companies to carry out position assaults on the Syrian battlefield. The tracked robots charged, attacked, attracted the militants to open fire, and guided the self-propelled artillery group to destroy the exposed fire points one by one. In the end, the robot combat company took down the high ground that is now difficult for Russian soldiers to capture in one fell swoop in just 20 minutes, achieving a record of zero casualties and killing 77 enemies.
According to the British Daily Star website, after the British Army conducted a large-scale combat robot test at an event called “Autonomous Warrior 2018”, it unified drones, unmanned vehicles and combat personnel into a world-class army for decades to come. Future British Army autonomous military equipment, whether tanks, robots or drones, may have legs instead of tracks or wheels. In early 2021, after the UK held the “Future Maritime Air Force Acceleration Day” event, it continued to develop a “plug-and-play” maritime autonomous platform development system, which, after being connected to the Royal Navy’s ships, can simplify the acquisition and use of automation and unmanned operation technologies.
In addition to the development of robots by Russia, the United States, and the United Kingdom, other powerful countries have also successively launched their own robot warriors. It is expected that in the next 20 years, the world will usher in robots on land, sea, and air to replace soldiers to perform high-risk tasks. The future battlefield will inevitably be unmanned or man-machine integrated joint combat operations. The world’s military powers will launch a human-machine (drone) integrated combat experiment
The style of air combat is always evolving with the advancement of aviation technology. Since 1917, with the successful development of the world’s first unmanned remote-controlled aircraft by the United Kingdom, the family of unmanned equipment has continued to grow and develop, and various drones are increasingly active in the arena of modern warfare.
Since the 21st century, with the large number of drones being used on the battlefield, the combat style has been constantly updated. In the Gulf War, drones were limited to reconnaissance, surveillance and target guidance, but in the Afghanistan War, Iraq War and the War on Terrorism, the combat capabilities of drones have become increasingly prominent, and the combat style and methods have shown new characteristics, allowing countries around the world to see drones as a sharp sword in the air, thus opening the prelude to the integrated combat test of man-machine (drone).
It is reported that the total number of drones in NATO countries increased by 1.7 times between 1993 and 2005, reaching 110,000 by 2006. The United States, other NATO countries, Israel, and South Africa all attach great importance to the development and production of unmanned reconnaissance aircraft and multi-purpose drones.
In 2019, more than 30 countries in the world have developed more than 50 types of drones, and more than 50 countries are equipped with drones. The main types are: “password” drones, multi-function drones, artificial intelligence drones, long-term airborne drones, anti-missile drones, early warning drones, stealth drones, micro drones, air combat drones, mapping drones, and aerial photography drones. The main recovery methods: automatic landing, parachute recovery, aerial recovery, and arresting recovery.
On September 14, 2019, after Saudi Aramco’s “world’s largest oil processing facility” and oil field were attacked, the Yemeni Houthi armed forces claimed “responsibility for the incident” and claimed that they used 10 drones to attack the above facilities. On January 3, 2020, Qassem Soleimani, commander of the “Quds Force” under the Iranian Islamic Revolutionary Guard Corps, was “targeted and eliminated” in a drone raid launched by the United States at Baghdad International Airport in the early morning of the Iraqi capital. At the end of 2020, in the battle between Armenia and Azerbaijan in Nagorno-Karabakh (Nagorno-Karabakh region), it was obvious that drones played an important role in the conflict between the two sides. In particular, many military experts were shocked by the videos that the Azerbaijani Ministry of Defense kept releasing of the TB-2 “Flagship” and Israeli “Harop” suicide drones just purchased from Turkey attacking Armenian armored vehicles, artillery, cars and even infantry positions and S-300 air defense missiles. In December 2020, local conflicts in the Middle East and Transcaucasus showed that drones are playing an increasingly important role. Based on this, some military experts even predicted that the 21st century will be the “golden age” for the development of drones. Drones are bound to completely replace manned aircraft and become the “battlefield protagonist” of the 21st century.
Currently, the US Air Force plans to expand the teaming of manned and unmanned platforms between drones and manned aircraft, and by 2025, 90% of fighters will be drones. In other words, larger aircraft (F-35 fighters or F-22 fighters) can control a nearby drone fleet. For example, the F-35 fighter is like a flying sensor computer, which can obtain a large amount of data, and communicate, analyze and judge on its own, and finally upload the conclusion to the pilot’s helmet display. The pilot analyzes and processes the information obtained, formulates a combat plan based on the combat plan, battlefield situation, and weapons equipped by the formation, and then issues it to the drone… to achieve the purpose of manned aircraft commanding drones to cooperate in combat. In other words, the mixed formation of manned and unmanned aircraft will change the previous ground control to air control of drones, and the pilot will directly command the combat operations of drones. The US military envisions a modular design so that soldiers can assemble drones after taking out the parts of drones from their backpacks when needed in future battlefield operations, and can also use 3D printing drones. In August 2020, the U.S. Air Force defeated top F-16 fighter pilots in a simulated air battle with AI, which also proved that AI pilots can “think” creatively and quickly, and it may not be long before they surpass the skills of human pilots. The U.S. Navy’s new MQ-25 “Stingray” carrier-based unmanned tanker will be tested in 2021 and have initial operational capability in 2024, which will help expand the combat radius of aircraft carriers.
Since 2013, Russia has been equipped with a large number of drones, of which unmanned reconnaissance aircraft alone exceeded 2,000 by the end of 2019, most of which are light drones, such as the Kalashnikov drones that participated in the military operations in Syria. In the next step, each brigade or division-level unit of the Russian Army will have a drone company, and the airborne troops will also be equipped with a large number of drones. The Russian Northern Fleet will have a drone regiment, and some modern Russian warships will also be equipped with drones. In addition, from 2021, the “Orion” reconnaissance and strike drone developed by the Kronstadt Group will be equipped with the Russian army. This heavy drone can carry a variety of guided ammunition to perform combat missions. In addition, the Russian army is also testing two heavy drones, the “Altair” and the C-70 “Hunter”. These are enough to show that Russia has made significant progress in the field of drone research and development.
Israel is a true pioneer in the field of drones. The drones it develops are not only advanced, but also exported to other countries. It has equipped its troops with hundreds of drones, including the “Bird’s Eye” series of single-soldier drones, the “Firefly” drone, the light “Skylark-I” drone, the light “Hero” drone, the medium “Skylark-II/III” drone, the “Heron” drone, etc. In the mid-1980s, Israel had developed a land-based launch and patrol drone named “Harpy” or “Harpy”. The Harpy is a “suicide drone” capable of autonomous anti-radar attacks. It weighs 135 kg, can carry 32 kg of high explosives, and has a range of 500 km. Due to confidentiality reasons, the specific number and type of drones equipped by the Israel Defense Forces are not yet known. In order to deal with threatening targets such as enemy ground-to-ground missiles, Israel Aircraft Industries is developing a high-altitude, long-flight stealth unmanned fighter. The aircraft combines stealth technology with long-range air-to-air missiles, can carry Moab missiles, penetrate into the rear of the enemy’s battle zone, and intercept and attack ground-to-ground missiles in the boost phase.
On February 5, 2013, the British army stationed in Afghanistan used a micro unmanned helicopter for the first time to carry out front-line work of spying on military intelligence. This unmanned helicopter is equipped with a micro camera, which can transmit the captured images to a handheld control terminal in real time; it can fly around corners and avoid obstacles to identify potential dangers. Next, the UK plans to enable one manned aircraft to command five unmanned aircraft at the same time. According to a report on the website of the British “Times” on January 26, 2021, the British Ministry of Defense invested 30 million pounds to develop the first unmanned aerial vehicle force in Northern Ireland. According to reports, the contract for the design and manufacture of the prototype has been given to the American “Spirit” Aerospace Systems. The company has a branch in Belfast, and the contract is expected to provide 100 jobs. The British Ministry of Defense plans to start manufacturing the first prototype of this new type of unmanned aerial vehicle by 2025. It will be equipped with missiles, reconnaissance and electronic warfare technology equipment, becoming the British Army’s first unmanned aerial vehicle capable of targeting and shooting down enemy aircraft and avoiding surface-to-air missile attacks. Its partner manned fighters will be able to focus on missions such as electronic warfare, reconnaissance and bombing, thereby reducing costs and the high risks faced by British aircrews.
The French Navy will form its first carrier-based drone squadron at a base near Toulon, the 36F carrier-based aircraft squadron of the French Naval Aviation. The squadron will be equipped with S-100 drones and carried on the Navy’s Mistral-class amphibious landing ship. The formation of this carrier-based drone squadron reflects the French Navy’s desire to integrate drone expertise into a single professional team. Previously, the French Navy discussed the establishment of a dedicated drone squadron and the option of equipping the 31F, 35F or 36F squadrons with drones.
At the Paris Air Show in June 2004, the full-scale model of the NX70 Neuron unmanned combat aircraft displayed by the French Dassault Aviation Company rekindled people’s interest in the development of European drones. Iran, Turkey, the United Arab Emirates…some new countries have disrupted the geopolitical landscape of drones and are writing a new page.
It can be predicted that drones will become the biggest highlight in the development of weapons and equipment in various countries around the world, and become the “trump card” of land warfare, naval warfare, air warfare, and space warfare in the 21st century. It will become a new combat force in offensive and defensive operations. It can not only use the various ground attack weapons it carries to strike enemy ground military targets in frontline and deep areas, but also use air-to-ground missiles or bombs to suppress enemy air defense weapons; it can not only use weapons such as anti-tank missiles to attack enemy tanks or tank groups, but also use weapons such as cluster bombs to bomb enemy ground forces; it can not only detect targets and judge the value of targets and then launch missiles autonomously, but also deceive and interfere with enemy command and control systems, etc. The world’s military powers will set off a battle to form a “man-machine (robot drone)” integrated force
With the deepening of military-civilian integration, the rapid development of artificial intelligence technology, and the rapid development of big data, cloud computing, and the Internet of Things, not only will the development of unmanned weapons and equipment bring about tremendous changes, but it will also subvert the existing military force formation form. The “human-machine (robot-drone)” integrated intelligent army is bound to come.
In December 2015, in addition to sending traditional combat forces to the Syrian battlefield, the Russian army also sent a robot combat company mainly composed of unmanned combat platforms to participate in the battle for the first time. The company adopted a new combat mode of mixed manned and unmanned formations, built an intelligent combat system with the “Andromeda-D” automated command system as the core, and launched an attack on Hill 754.5 using a combination of full-dimensional reconnaissance and saturation attack, successfully seizing the hill. A few years ago, U.S. Navy officials in charge of expeditionary operations mentioned the vision of building a thousand man-machine combined warships, that is, a larger fleet of unmanned ships controlled by humans and coordinated with each other. The U.S. Navy announced that it plans to build an unmanned fleet of 10 large unmanned surface ships in the next five years for independent operations or joint operations with surface forces. According to the conceptual plan currently disclosed by the U.S. Navy, the unmanned fleet composed of large unmanned surface ships will mainly assist the Navy in completing highly dangerous combat missions. By combining with the Aegis combat system and other sensors, the coordinated combat capabilities of manned and unmanned systems will be enhanced. Its deployment will help reduce the demand for the number of large manned warships and reduce casualties in combat. According to the National Interest Network on January 20, 2021, the U.S. Navy Chief of Operations Michael Gilday released the “Navigation Plan of the Chief of Naval Operations” document on January 11, calling for the establishment of a mixed fleet of man-machine ships including large warships, various types of unmanned ships, submersibles and air strike equipment to prepare for all-domain operations in the new threat environment in the next few decades. The document states: “It is necessary to establish a larger fleet of underwater, surface and water platforms that meet the strategic and campaign needs of the troops, and a mixture of manned and unmanned platforms.”
In the “man-machine (robot-drone)” integrated forces, artificial intelligence technology is used to achieve an organic combination of “man-machine”, and cloud computing, new algorithms, and big data are used to formulate “man-machine” collaborative combat plans. Artificial intelligence is like an engine, big data + cloud computing is like a spaceship, and intelligent robots are astronauts. The organic combination of the three will surely add wings to the tiger and integrate man and machine. The future army is a human-machine integrated army. The squad and platoon commanders are gradually replaced by robots. Robots are gradually transformed from human control to autonomous decision-making or mind control through human brain cells. There may also be canteen-free barracks in the military camps. The military management may also be led by one or several military personnel to lead multiple or even dozens of intelligent robot teams with different division of labor tasks to complete the combat training management tasks that were previously completed by squads, platoons, and companies. Or there may be only one military commander in the command and control center for military training, and all intelligent robots in the training grounds may be controlled through video command and control for confrontation training, or remote control robot commanders may issue new training instructions, adjust task deployment, and change training grounds in real time.
The urgent need for the intelligent quality of military talents will also force the readjustment of the setting of the first-level military disciplines in the field of artificial intelligence. In the future, military academies will also open intelligent robot control disciplines, establish relevant human-machine integration laboratories and training bases, and focus on training intelligent professional military talents who understand computer control programs, intelligent design and management, image cognition, data mining, knowledge graphs, and can systematically master intelligent science and technology and have innovative consciousness. Future military talents must be proficient in intelligent technology, big data applications, and cloud computing, especially in the use of 3D or 4D printing technology to make various military equipment at any time, proficient in the control procedures, command methods, command issuance, and adjustment of tasks of intelligent robots, and proficient in the essentials of human-machine integrated autonomous combat coordination, so as to achieve the best combination of human information technology quality and efficient operation of intelligent robots. In addition, it is not ruled out that human-machine integration squads, combat simulation centers, imaginary enemy forces, combat units, intelligent headquarters, unmanned brigades, divisions, etc. will be established. By then, the military chief may also have one human and one machine, or the robot may serve as a hand or deputy.
In recent years, with the rapid development of artificial intelligence technology and its widespread application in the military field, the form of war and combat style have been constantly changing. Some foreign academic articles believe that artificial intelligence is reshaping the form of combat forces, enhancing the effectiveness of combat systems, improving the effectiveness of combat command, and improving the quality of combat coordination, promoting profound changes in combat activities.
Reshaping the combat force
These academic articles point out that combat forces are mainly composed of combat personnel, weapons and equipment, and organizational structures, and are undergoing tremendous changes under the influence of artificial intelligence technology.
From the perspective of personnel structure, with the widespread application of artificial intelligence technology and related equipment systems in the military field, the demand for professionals with the ability to develop, manage, use and maintain artificial intelligence technology has increased significantly, and the proportion of technical personnel in combat forces will continue to increase. Frontline combat personnel are no longer just direct operators of weapons, but are gradually transforming into battlefield monitors, system commanders and key decision makers in human-machine collaborative operations, and the requirements for their scientific and technological literacy and information processing capabilities have been greatly improved.
From the perspective of the equipment system, intelligent weapons and equipment such as drones, unmanned combat vehicles, and intelligent missiles will appear in large numbers and become an important part of the equipment system. These equipment are highly accurate and flexible, with stronger autonomous combat capabilities, and can independently complete tasks such as reconnaissance and strikes, greatly changing the traditional equipment structure and combat mode. In addition, traditional weapons and equipment will also accelerate intelligent transformation by adding intelligent sensors, communication modules, and automatic control systems, so as to have the ability to interconnect and cooperate with artificial intelligence systems. For example, old tanks can be upgraded and transformed to realize functions such as automatic driving, automatic aiming, and intelligent ammunition loading, thereby improving overall combat effectiveness.
From the perspective of combat unit formation, unmanned combat systems will gradually develop from auxiliary combat forces to independent combat units and organize them, relying on their unique advantages in high-risk and high-intensity combat environments. Research reports from some think tanks in Western countries believe that drone swarm combat forces and unmanned combat vehicle battalions will become common combat formations, which can complete a variety of tasks such as reconnaissance and surveillance, intelligence analysis, and firepower strikes. In order to give full play to the respective advantages of artificial intelligence and human warriors, human-machine mixed formations will also become the main form of future combat forces. In this formation, human warriors and intelligent weapons and equipment work closely together to complete combat missions.
Enhance combat system effectiveness
Judging from the evolution trend, intelligent technology will integrate unmanned equipment across domains and empower traditional combat platforms, and will become the “enabler” of future system warfare.
At present, many military experts in Western countries believe that artificial intelligence can conduct a comprehensive analysis and evaluation of various elements of the combat system, identify weak links and optimization space in the system, and provide a scientific basis for the construction and adjustment of the combat system. By optimizing the structure and function of the combat system, the overall effectiveness and stability of the combat system can be improved, making it more competitive when facing a changing battlefield environment and a powerful combat system.
During the combat process, artificial intelligence can analyze the combat systems of both sides in real time, predict the opponent’s possible actions and weaknesses, propose targeted system confrontation strategies, and continuously adjust and optimize according to the actual situation in the combat process to achieve efficient operation of one’s own combat system and improve the quality and effectiveness of combat system confrontation.
Western militaries believe that based on the advantages of artificial intelligence empowerment, they can greatly enhance security risk defense capabilities. By automatically predicting, identifying, discovering, and handling complex security risks, they can autonomously protect personnel, equipment, and materials from various attacks, improve all-domain and all-round defense capabilities, and ensure the safety and stability of the combat system.
Improving combat command effectiveness
At present, artificial intelligence has been deeply integrated into all aspects of combat command, affecting the external manifestations and main activities of combat command. Human-machine intelligent fusion control supported by artificial intelligence technology will become the basic form of combat action control.
Some foreign research institutions have found that artificial intelligence systems can quickly analyze the situation based on real-time battlefield situations and a large amount of historical data, generate multiple combat plans, and timely deduce and evaluate plans, adjust and optimize actions, provide commanders with more scientific and reasonable decision-making suggestions, and efficiently guide the execution of plans, so that combat planning can keep up with the rapidly changing battlefield rhythm. Especially when facing rapidly changing battlefield situations, it can help commanders make accurate judgments more quickly.
With the continuous development of artificial intelligence technology, some intelligent combat systems have a certain degree of autonomous decision-making capabilities. In certain situations, such as facing sudden threats or the temporary appearance of fighter jets, combat command systems assisted by artificial intelligence can make decisions and take actions autonomously within the preset rules and authority range, shorten the decision-making chain, and improve the response speed and flexibility of combat. When the combat terminal has stronger intelligent autonomy, it can even realize the self-generation, self-evaluation, and self-adjustment of combat plans, breaking through the limitations of human reaction capabilities and forming a more adaptive combat command.
Many experiments have proved that based on the accumulation of massive combat data and the enhancement of big data analysis technology, artificial intelligence technology can accurately calculate the entire process of combat planning under simulation conditions, helping commanders to accurately analyze the situation in advance, comprehensively judge trends, and reasonably plan trends. Then, through combat simulation, simulation and deduction, etc., it can virtually carry out activities such as calculation of combat force requirements and optimization of tactics and actions. In the planning process, it can scientifically and dynamically adjust combat plan strategies to form the best option, provide more reliable reference basis for combat command, and improve the accuracy of command and control.
Improve the quality of combat coordination
As artificial intelligence technology is deeply integrated into the combat system, the responsiveness of various combat elements on the battlefield continues to improve, the response time is gradually shortened, the adaptability level is gradually enhanced, and the quality of combat coordination is continuously improved.
Some military experts in Western countries believe that the battlefield of the future will be cross-domain, networked, and nonlinear. Artificial intelligence can break the boundaries between various combat domains and combat elements through efficient algorithms, making the coordination between different combat forces closer and more efficient. Based on artificial intelligence technology, autonomous coordination and cooperation between manned and unmanned combat forces can be achieved, so that manned and unmanned combat forces can complement each other and complement each other, significantly improving combat effectiveness. Moreover, the application of unmanned combat systems is becoming more and more extensive. Artificial intelligence technology can perform cluster control and collaborative management of a large number of unmanned combat platforms, achieve efficient coordination and task allocation between them, and improve the overall effectiveness and safety of unmanned combat.
China Military Network Ministry of National Defense Network
Source: China Military Network-People’s Liberation Army Daily Author: Yang Lianzhen Editor-in-charge: Yang Fanfan
2022-04-22 06:42
Combat management is the foundation for winning modern wars and the core of the modern combat system. It is the planning, organization, coordination and control of personnel, equipment, information, resources, time and space and other elements during the combat process.
Combat management system refers to the command information system used to support combat management activities, including intelligence collection, information transmission, target identification, threat assessment, weapon allocation, mission planning, etc. It has gradually developed with the evolution of war and technological progress.
Combat Management System: The Core of Modern Combat System
Schematic diagram of the combat management system
Past and present life
Implementing timely and accurate command and control of combat operations and making timely and decisive combat decisions are the goals and dreams that commanders have always pursued in different war periods. Before the emergence of scientific management, there was no concept of combat management in war, and naturally there was no combat management system. However, simple combat management activities and systems have always been associated with war and developed in an integrated manner.
The core of combat management is to ensure that commanders and troops can exchange information and instructions smoothly. In the ancient combat command system, gongs, drums, and flags were called the “three officials”. “When words cannot be heard, gongs and drums are used; when sight cannot be seen, flags are used.” Sight and hearing are the primitive means of command and control.
After the invention of the telegraph, telephone, and radio, long-distance and rapid transmission of combat orders and combat information became a reality, and the scope of combat management shifted from two-dimensional to three-dimensional. The war decision-making of “planning and winning thousands of miles away” is no longer a myth. Of course, traditional battlefield management methods are not completely ineffective. For example, in the Korean War, due to limited communication conditions, our army still used bugles to transmit combat orders to the company and below, and there were more than 20 types of bugle calls related to combat. “The sound of bugles from all sides rose up,” and the bugles on the Korean battlefield once frightened the US military. Ridgway wrote in his memoirs: “As soon as it sounded, the Chinese Communist Army would rush towards the coalition forces as if it were under a spell. At this time, the coalition forces were always beaten back like a tide.”
At the beginning of the 20th century, the concept of scientific management gradually gained popularity, and the military quickly applied it to combat. The term “combat management” first appeared in the US Air Force, where combat managers provided long-range target indication and voice guidance to fighters based on radar detection. The core combat organization is called the BM/C3 system, namely Battle Management and Command, Control, and Communication. In 1946, the first electronic computer “ENIAC” was successfully developed, and the military began to use computers to store and process various data related to combat. In 1958, the US military built the world’s first semi-automated combat management system-the “Seqi” air defense command and control system, which used computers to realize the automation of part of the information collection, processing, transmission and command decision-making process for the first time. In the same year, the Soviet Army built the “Sky No. 1” semi-automated air defense command and control system. Combat management systems began to appear on the war stage, and human-machine collaborative decision-making gradually became the main form of combat decision-making for commanders. During the “Rolling Thunder” campaign of the Vietnam War, the U.S. military commanded more than 5,000 aircraft to dispatch 1.29 million sorties and dropped 7.75 million tons of bombs, which would have been impossible to achieve by manual command alone.
The combat management system has gone through weapon-centered, platform-centered, network-centered, and system-centered construction stages, and has gradually been able to receive and process information from sensors and other sources in multiple domains, perceive and generate combat situation maps in real time, automatically implement command and control of troops and equipment, and intelligently assist commanders in making decisions, involving the army, navy, air force and other military services.
For example, the Israeli Army’s “Ruler” combat management system uses a single-soldier digital device to connect to a channel state information device to provide real-time situational awareness and command and control information for troops performing tactical operations and fire support. The U.S. Navy’s “Aegis” combat system uses a multi-task signal processor to integrate air defense and anti-missile capabilities, and realizes the integration of shipborne phased array radars, command decisions, and weapon control. The NATO Air Force’s ACCSLOC1 system, based on network distributed deployment, integrates 40 types of radars and more than 3,000 physical interfaces, and undertakes air operations such as mission planning, combat command, and combat supervision. From the launch of the first Gulf War to the Libyan War, the time from sensor information acquisition to firing by the U.S. military has been shortened from 24 hours to 2.5 minutes.
Features
The combat management system is a rapidly developing and constantly improving distributed operating system. It mainly collects and processes sensor data, facilitates the transmission and integration of various types of information, conducts situation identification and prediction, generates combat plans, completes action evaluation and selection, and issues combat orders to weapon platforms and shooters. Its essence is to achieve an efficient combat “observation-judgment-decision-action” cycle (OODA loop).
The combat management system widely uses situation assessment and prediction, combat space-time analysis, online real-time planning, combat resource management and control, and combat management engine technologies, and adopts a “cloud + network + terminal” technical architecture based on information technology.
For example, the U.S. military took the lead in using information technology to build a C4ISR system that integrates command, control, computers, communications, intelligence, surveillance and reconnaissance, laying the foundation for the combat management system. In the Afghanistan War, the C4ISR system achieved near-real-time transmission of combat information to combat platforms for the first time. With the continuous maturity of sensors, networks and artificial intelligence, technologies such as intelligent situation understanding and prediction, intelligent information push, intelligent task planning, intelligent collaborative control, intelligent rapid reconstruction and intelligent parallel command and control are having an increasingly significant impact on combat management systems.
Combat management systems usually support functions such as situational awareness, mission planning, engagement management, communications, modeling, simulation and analysis, and test training. For example, a missile defense combat management system mainly includes command and control, engagement management, and communications. The command and control function enables pre-battle combat planning and battlefield situation awareness; the engagement management function enables auxiliary combat decision-making, allocation of anti-missile weapons, and completion of strike missions; and the communication function enables the transmission and sharing of intelligence and data among the anti-missile units in the system.
The combat management system is an open and complex system. The structure determines the function. Different system structures determine the functional expansion of different systems: the ship’s self-defense combat management system enables the ship to have a strong self-defense capability through automated weapon control regulations, collaborative engagement management systems and tactical data links; the electromagnetic combat management system improves the planning, sharing and mobility of the electromagnetic spectrum by integrating and displaying battlefield electromagnetic spectrum data; the individual combat system enhances the soldier’s mobility, support, lethality and survivability by integrating individual protection, individual combat weapons and individual communication equipment.
Combat management systems generally have the characteristics of integration, automation, optimization, and real-time. The combat mode of modern warfare is complex and the battlefield scale is expanding. The requirements for force control, resource integration, and task scheduling have increased, and system integration must be achieved. The French Army’s “Scorpion” system fully integrates tanks, armored vehicles, infantry fighting vehicles, unmanned ground vehicles, drones, and attack helicopters into the same combat group, and links all platforms and combat units in the task group.
With the increase of combat elements in modern warfare and the expansion of battlefield perception space, the command automation system that relies heavily on people can no longer fully adapt, and the system must be automated. All operating functions of Pakistan’s combat management artillery control system are fully automated, “providing an automated solution for preparing, coordinating, transmitting, executing and modifying fire support plans and firing plans.”
The pace of modern warfare is accelerating and battlefield data is massive. It is necessary to quickly grasp the situation and make decisions efficiently, and it is necessary to achieve system optimization decision-making. Military powers are combining artificial intelligence, cloud computing, the Internet of Things and big data technologies to facilitate faster decision-making in multi-domain operations.
Future Development
Traditional combat management systems place more emphasis on pre-established engagement sequences and combat rules. However, future wars will emphasize the confrontation between systems, and it is impossible to exhaust all situations in advance. The battlefield information that needs to be mastered is also becoming more complex and massive. For this reason, the armies of various countries have begun to abandon the traditional method of developing combat management systems for each combat domain separately, and are network-centric and supported by artificial intelligence, trying to help commanders make combat decisions more quickly and realize real-time connection between sensors in each combat domain and any shooter.
The combat management system will promote the implementation of combat concepts. The “Advanced Combat Management System” developed by the US Air Force plans to connect all military services and their weapon platforms in real time in a military Internet of Things. Its core is to seamlessly link various intelligence reconnaissance platforms, command and control platforms, strike platforms and combat management platforms with various cross-domain capabilities, convert intelligence and target indication data into timely and usable information, shorten the “discovery-positioning-tracking-targeting-strike-assessment” cycle, and execute combat operations at a speed that opponents cannot keep up. The Russian military proposed the “military unified information space” theory and organized the development of the “automatic control system” for integrated joint operations of land, sea and air networks. By establishing a network-centric command model, it attempts to integrate the command, communication, reconnaissance, firepower, and support of the entire army, realize cross-domain operations in the true sense, and improve battlefield situation awareness and combat command efficiency.
The combat management system will rely on artificial intelligence technology. The application of artificial intelligence will not only multiply the capabilities of weapon systems, but will also fundamentally change the implementation of the OODA loop. In future combat management systems, artificial intelligence technology will become the core support and driving engine, and the key factor is the quality of the algorithm. The system will have built-in upgradeable artificial intelligence, and people will be in a supervisory or collaborative state to minimize manual input, spontaneously identify and classify threat targets in the combat environment, autonomously evaluate and weigh, and automatically allocate weapons, thereby providing adaptive combat advantages and decision-making options.
For example, the “Intelligent Autonomous Systems Strategy” released by the US Navy in July 2021 aims to accelerate the development and deployment of intelligent platforms through a highly distributed command and control architecture, integrate unmanned systems, artificial intelligence, and autonomous driving technologies, and realize future combat decisions facilitated by intelligent autonomous systems. The Russian military has more than 150 artificial intelligence projects under development, one of the focuses of which is to introduce artificial intelligence into command and control systems, adapt intelligent software to different weapon platforms, achieve the unification of physical and cognitive domains, and double combat effectiveness through intelligent empowerment.
The combat management system will achieve a breakthrough in cross-domain capabilities. The military’s combat management capabilities are shifting towards full-domain coordination, including land, sea, air, space, electricity, network, cognitive domain, and social domain. To adapt to the full-domain environment, the combat management system needs to have the following functions: a resilient and redundant communication system, flexible and secure data operation; artificial intelligence and machine learning directly extract and process data from sensors, and conduct decentralized integration and sharing; segmented access based on confidentiality levels to meet perception, understanding, and action needs. On this basis, it is also necessary to provide troops with reconnaissance and surveillance, tactical communications, data processing, network command and control, and other capabilities.
The future combat management system will focus on security processing, connectivity, data management, application, sensor integration and effect integration, optimize data sharing, collaborative operations and command and control in the entire combat domain, and support decision-making advantages from the tactical level to the strategic level. Its purpose is only one: to give commanders the ability to surpass their opponents.
(The author is the deputy director and professor of the Training Management Department of the Armed Police Command Academy)
China Military Network Ministry of National Defense NetworkThursday, November 14, 2024
Intelligent warfare is the latest form of warfare development. Under intelligent warfare conditions, the battle rhythm changes rapidly, humans and machines are deeply integrated, and complex elements are interconnected, presenting new characteristics on the battlefield.
The combat tempo changes rapidly. The combat tempo refers to the phenomenon that in the course of combat, different participating forces, under different combat missions, actions, and spaces, synchronously complete their respective established tasks at specified time nodes according to the combat phase division. In essence, the combat tempo is the effect of the confrontational interaction between the military systems of all parties in a common external environment. It is a regular phenomenon that appears periodically or non-periodically. It is objective due to the interaction, and uncertain due to the active role played by the opposing parties based on their respective perspectives. In war, the combat tempo represents not only the speed of time and speed, but also the embodiment of the comprehensive effect of multiple factors such as time, space, purpose, goal, and opponent. With the continuous expansion of the battlefield and the improvement of battlefield cognitive decision-making capabilities, the future intelligent battlefield may gradually change from the simple “quick kill” type of simple use of the one-dimensionality of time to a comprehensive game and mixed confrontation in multiple dimensional fields such as politics, economy, diplomacy and multiple time and space cycles. Combat is a game between the enemy and us, and the quality of our combat rhythm depends largely on the opponent as a reference system. The combat rhythm should always focus on the opponent, and by changing the enemy and our power comparison in various forms in various dimensions, we can gain an “asymmetric” advantage, so that the battlefield situation can continue to develop in a direction that is beneficial to us in a variety of states between the active “using our own capabilities to control the enemy’s inability” and “suppressing the enemy’s capabilities when we are unable to do so.”
Humans and machines achieve deep integration. In a broad sense, human-machine integration refers to the state and process in which all humans and machines work closely together based on their respective characteristics and advantages. With the emergence of artificial intelligence technology, especially multimodal large models represented by ChatGPT, the foundation has been laid for the knowledge-level interaction between humans and machines, which has brought new opportunities for combat planning and combat command invisibly. As intelligent creatures, humans have creativity and thoughtfulness that other objects cannot match. Compared with humans, machines have obvious advantages in storage, computing and other capabilities, and have the characteristics of fast response speed and strong environmental adaptability. Under current technical conditions, the dominance of humans in human-machine fusion intelligence determines the basic mode of human-machine fusion operations. Machines are only tools and means of implementation for operations. To a certain extent, they become the main body of operations together with operators. The interactive output is also limited to the predictable changes defined by several major variables, and is closely related to the professional ability and experience of the operators themselves. As technology continues to improve, the positioning of people may gradually shift to macro-control, focusing on controlling strategic key contents and nodes such as the timing of launching a war, the scale level, the style intensity, the process development, and the ending time. The combination of human and machine does not mean a hard coupling between the two in terms of spatial position and physics, but through the mechanism and engineering of business processes and operating procedures, they play to their respective strengths and achieve dynamic adaptive operation.
Complex elements are interconnected. Modern warfare is a complex giant system, especially in the current era of global, cross-domain, and distributed operations. Focusing on the construction of the “kill network” and element-level coordination, the widely distributed combat force entities, combat platforms, sensors, weapons, etc. are further decoupled, and the combat system is gradually developing towards “decentralization”. Focusing on the combat purpose and combat objectives, in the combat system, various functional combat elements that are three-dimensionally networked are quickly reorganized and aggregated in a self-organizing and self-adaptive manner to dynamically form a closed kill chain. It is difficult to discover, identify, and calibrate the landmark nodes of the opponent’s system one by one in the various links of “detection, control, attack, and evaluation” as before, and then achieve system destruction. This “black box” state in the organization and operation of forces makes the logical causal relationship of the combat behaviors of all parties more “inexplicable” and the “incomprehensible war” effect more prominent. War is largely a confrontation of human thinking, and thanks to the help of intelligent decision-making systems, the uncertainty of combat intentions in future wars will be further increased in the fierce confrontation of broader cognitive and information domains. From the initial combat purpose to the final combat means, combat methods, and force application, “misalignment” may occur. Therefore, future wars will place more emphasis on finding a balance in active changes at the battle tactical level, which puts higher demands on better realizing “you fight yours, I fight mine” and exerting one’s own advantages.