Category Archives: 馬賽克戰

Uncertainty – Fog of War and the Way to Win in Modern Warfare for China’s Military

不確定性-戰爭迷霧與中國軍隊在現代戰爭中的勝利之道

現代英語:

Wars in different eras have different characteristics, and the “fog of war” that accompanies them is constantly changing. Often when people feel that they have basically seen the way to win through multi-faceted exploration, the next war presents new uncertainties. Local wars such as the Syrian War and the India-Azerbaijan conflict have demonstrated the multifaceted and complex nature of modern warfare from different perspectives. It can be seen that although traditional firepower warfare is still on the stage, the characteristics of intelligence have already emerged; although the combat type is still an offensive and defensive struggle, the combat guidance, environmental conditions, and specific methods of play have undergone profound changes. Wars are accelerating their evolution towards intelligence. The battlefield space has expanded from land, sea, air, space, electricity, and the Internet to space, polar regions, deep sea, and cognitive confrontations. The game competition has changed from military confrontation to multi-dimensional competitions such as politics, economy, science and technology, and public opinion. The participating forces have developed from the two warring parties to global attention and multi-dimensional intervention. Information intelligence has moved from auxiliary support to comprehensive dominance, full penetration, and full coverage. The combat unit has evolved from scale optimization to small, micro, and sophisticated, and the form is scattered and capable. Intelligence and hybrid have become basic trends. In the face of evolving wars and new uncertainties, we need to be sensitive to change and respond proactively, accumulate momentum and forge ahead in the midst of change, so as to achieve leadership and surpass others and seize the opportunity to win.

Enhance the hybrid nature of war based on the “pan-variability”. War is the continuation of politics and has never been a simple military confrontation. In the era of intelligence, visible struggles and invisible struggles coexist, battlefields with gunpowder smoke and silent battles coexist, and gray areas, hybrid warfare, and marginal conflicts coexist. In the face of fierce and complex competitive game situations, it is necessary to accelerate the construction of a hybrid warfare system with military as the cornerstone. First, enrich strategic options. Closely follow the characteristics of the times, strengthen the exploration of the characteristics and laws of non-military confrontation and the construction of power means, implement relevant preparations, and form comprehensive advantages. Secondly, enhance invisible strength. Attach importance to geopolitical, cultural, psychological and other aspects of research, and form an effective discourse system through think tank exchanges, academic promotion, cultural integration, legal construction, media propaganda and other means to influence the other party’s cognition in a silent way. Thirdly, unite the forces of peace. Take the construction of a united front in the new era as an important means of hybrid confrontation, unite all forces that can be united, and enhance international influence and appeal.

Enhance the flexibility of tactics based on the “smart change” of the battlefield. Looking at recent local wars and conflicts, due to factors such as the regional dimension and the strength of both sides, the traces of traditional warfare are still relatively obvious, but intelligent and unmanned warfare has irreversibly come to the fore. It can be foreseen that comprehensive intelligent warfare is not far away, the extension range of weapons and equipment will be farther and wider, the combat perspectives of the opposing sides will be larger and wider, and the degree of hinge fusion between the physical domain, network domain, and cognitive domain will be deeper. The battlefield with deep “smart change” calls for concepts and tactics that are adapted to it. We should accelerate the promotion of intelligent thinking, intelligent technology, and intelligent network aggregation and empowerment to form a flexible closed link with fast perception, fast decision-making, fast judgment, fast action, and fast feedback, based on “OODA” and the kill chain to beat the slow with the fast and change with change. Relying on intelligent computing power and intelligent algorithms, we design wars in advance, build various models, and innovate tactics and training methods in peacetime. In wartime, we analyze the battle situation in real time, keenly seize opportunities, and make precise decisions and actions. We use “military + technology”, “theory + experiment”, and “algorithm + tactics” to integrate the art of strategy with intelligent technology to achieve a combination of the strange and the orthodox, take the lead in rapid changes, and win by intelligence.

Enhance the plasticity of forces based on the “micro-change” of units. One of the important characteristics of modern warfare is that large systems support elite combat, and combat units are becoming increasingly miniaturized, integrated, and modular. We must focus on the combat unit, the end of combat effectiveness, and forge a “sharp knife” and “sharp blade” that is small, fine, micro, and strong to adapt to intelligent warfare. On the one hand, strengthen its ability to integrate into the system and connect all parties, rely on ubiquitous access to information networks, and achieve decentralized combat and energy concentration through flexible matching and rapid reorganization; on the other hand, strengthen its independent decision-making and improvisation capabilities, improve robustness and self-recovery, and be able to survive, respond to emergencies, and fight in extreme situations. It is possible to explore the formation of a “micro-unit” concept force, implement a flexible organization, do not fix the number of personnel, and do not restrict the field. Advanced combat theories, new combat formations, and new weapons and equipment can be tested and verified in advance, so as to explore ways to achieve cloud combat, cloud joint, cloud energy gathering, and self-combination at the end of the strike chain.

Enhance strategic bottom line based on deterrence “evolution”. Deterrence has a long history like war. With the in-depth application of intelligent technology and weapons and equipment, the connotation and extension, force means, form and effect of deterrence are changing. Although traditional nuclear deterrence is still the cornerstone of bottom line, new deterrence capabilities have been quietly formed, requiring higher determination, strength, wisdom, and strategy. Focusing on the role of deterrence in blocking the enemy invisibly in peacetime, controlling the situation at the key in times of crisis, and winning the final victory in wartime, we should focus on strengthening the strong and making up for the weak, opening up new areas, and long-term strategy to maximize the strategic value of deterrence. First, we should give equal importance to conventional and unconventional, accelerate the development of new weapons and new forces, and achieve the predetermined deterrence intention through actual combat training and actual combat deployment, supplemented by the expression and transmission of strategic will. Secondly, we should continue to study new combat concepts and new combat theories, and promote the transformation of theories from “soft” to “hard” through academic exchanges, think tank collisions, and multi-track and multi-layer confrontations, and transform them into real deterrence. Thirdly, accelerate the transformation of science and technology into the military field, increase research efforts in cloud computing, blockchain, quantum technology, etc., and strive to form a potential deterrent to opponents.

現代國語:

郭呈淵 趙中其

不同時代的戰爭有不同的特點,而與之相伴的「戰爭迷霧」也在不斷變幻。往往當人們透過多方探索、感覺已經基本看清其中的勝利之道時,下一場戰爭又呈現出新的不確定性。敘利亞戰爭、亞阿衝突等局部戰爭,從不同側面展示了現代戰爭的多面性、複雜性。可以看到,傳統火力戰雖仍在舞台之中,但智慧化特徵已然顯現;作戰類型雖仍為攻防爭奪,但作戰指導、環境條件、具體打法已深刻變化。戰爭正加速向智慧化演進,戰場空間由陸、海、空、天、電、網向太空、極地、深海、認知等全域對抗拓展,博弈比拼由軍事對決向政治、經濟、科技、輿論等多維較量轉變,參與力量由交戰雙向全球關注、多元介入方向發展,資訊智能由輔助支撐向全面主導、全程貫穿、全域覆蓋邁進,作戰單元由規模集優向小微精尖、形散能聚演化,智能、混合成為基本趨勢。面對嬗變中的戰爭和新的不確定性,需要敏銳知變、積極應變,於變中蓄勢、變中進取,實現領先超越、搶得制勝先機。

基於戰爭「泛變」增強超限混合性。戰爭是政治的延續,從來不是單純的軍事對抗。智能化時代,看得見的爭鬥和看不見的鬥爭並存,有硝煙的戰場和無聲息的爭戰同在,灰色地帶、混合戰爭、邊緣衝突相伴而生。面對激烈複雜的競爭賽局態勢,需要加速建構以軍事為基石的混合戰爭體系。首先,豐富戰略選項。緊貼時代特點,加強非軍事抗衡特點規律探究和力量手段建設,實化相關準備,形成綜合優勢。其次,提升隱形實力。重視做好地緣、文化、心理等面向研究,透過智庫交流、學術推廣、文化交融、法律建構、媒介宣傳等方式,形成有效話語體系,在潤物無聲中影響對方認知。再次,團結和平力量。把建構新時代統一戰線作為混合對抗的重要手段,團結一切可以團結的力量,增強國際影響力和感召力。

基於戰場「智變」增強戰法彈性。縱觀近幾場局部戰爭與衝突,囿於地域維度、雙方實力等因素,傳統作戰痕跡仍較為明顯,但智能化、無人化已不可逆轉地走向前台。可以預見,全面智慧化戰爭並不遙遠,武器裝備的延伸範圍將更遠更廣,對抗雙方的交戰視角將更大更寬,物理域、網絡域、認知域鉸鏈融合程度更深。深度「智變」的戰場,呼喚與之相適應的理念、戰法,應加快推進智能化思維、智能化技術、智能化網絡聚合增能,形成快感知、快決策、快判斷、快行動、快反饋的彈性閉合鏈路,基於「OODA」和殺傷鏈以快打慢、以變制變。依托智能算力、智能演算法,平時超前設計戰爭、建構多種模型、創新戰法訓法,戰時即時研判戰情、敏銳捕捉戰機、精準決策行動,運用“軍事+科技”“理論+試驗” “演算法+打法”,融合謀略藝術與智慧技術,實現奇正結合、搶先快變、以智制勝。

基於單元「微變」增強力量可塑性。大體系支撐精兵作戰是現代戰爭的重要特色之一,作戰單元變得日益微型化、整合化、模組化。要扭住作戰單元這一戰鬥力末端,鍛造適應智慧化戰爭、小而精、微而強的「尖刀」「利刃」。一方面,強化其融入體系、連結各方的能力,依托泛在接取的資訊網絡,透過靈活搭配、快速重組,實現分散作戰、集效聚能;另一方面,強化其自主決策、臨機應變能力,提高魯棒性和自恢復性,在極端情況下能生存、能應急、能作戰。可探索組成「微單元」概念部隊,實行彈性編制,不固定員額、不限制領域,超前試驗論證先進作戰理論、新式作戰編組、新型武器裝備,為實現打擊鏈條末端雲作戰、雲聯合、雲聚能、自組合運用摸索路子。

基於威懾「衍變」增強戰略保底性。威懾與戰爭一樣歷史悠久。隨著智慧化技術和武器裝備的深入運用,威懾的內涵外延、力量手段、形式效果等都在改變。雖然傳統的核威懾仍是保底基石,但新的威懾能力已在悄悄形成,對決心、實力、智慧、謀略等要求更高。著眼發揮威懾平時阻敵於無形、危時控勢於關鍵、戰時決勝於最後的作用,應注重固強補弱、開拓新域、長期經略,實現威懾戰略價值最大化。首先,堅持常規與非常規並重,加速發展新型武器、新質力量,透過實戰化演訓、實戰化部署,輔以謀略意志表達傳遞,達成預定威懾企圖。其次,持續研究新作戰概念、新作戰理論,透過學術交流、智庫碰撞和多軌多層對抗,推動理論由“軟”變“硬”,轉化為現實威懾力。再次,加速科技向軍事領域轉化進程,在雲端運算、區塊鏈、量子科技等方面加強研究力度,努力形成對對手的潛在嚇阻。

中国军网 国防部网

2022年9月16日 星期五

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2022-09/16/content_324164888.htm

Chinese Military Intelligent Warfare Research Cannot be separated from Dialectical Thinking

中國軍事智能化戰爭研究離不開辯證思維

現代英語:

●The application of artificial intelligence in the military field is a double-edged sword. On the one hand, it greatly improves combat effectiveness, but on the other hand, it also requires great attention to the potential weaknesses and loopholes of artificial intelligence.

●The use of intelligent weapons does not mean that the role of humans has declined, but rather that some of the functions of humans have been transferred and materialized into weapons. Weapons extend the human body and brain, and stimulate human creativity and initiative.

Accelerating the development of military intelligence is a strategic task proposed in the report of the 19th CPC National Congress. It is a powerful tool to promote the modernization of national defense and the army and realize the party’s goal of strengthening the army in the new era. It is also a major measure to aim at the future war situation and seize strategic opportunities. When conducting research on intelligent warfare, we should adhere to dialectical thinking, prevent research from “deviating from reality to virtuality”, “generalizing from a single case”, and “focusing on technology rather than theory”. Only by scientifically analyzing the characteristics and laws of intelligent warfare can we truly promote in-depth and practical research.

To prevent “decoupling from reality and turning to virtuality”, we need to use scientific methodology and epistemology to analyze the problem

Intelligent warfare is a highly informationized war conducted in the physical and cognitive domains through the extensive use of intelligent weapons and equipment and the corresponding combat styles and methods. It is essentially not out of the scope of informationized warfare. The trend of unmanned warfare in recent local wars only has some characteristics of intelligent warfare, and is far from being an intelligent war in the true sense. At present, there is a wave of research on artificial intelligence in all walks of life, but to some extent, there is also a phenomenon of exaggeration and exaggeration. Some people also believe that intelligent warfare will give rise to geopolitical changes, and the traditional physical space control will be replaced by “intelligence control” with artificial intelligence as the core. This view inevitably has a tendency to virtualize cognition. To this end, intelligent warfare should be rationally studied and understood using scientific methodology and epistemology.

System theory perspective. Intelligent warfare is an advanced stage of information warfare, and is essentially still a system confrontation based on information systems. Whether it is human-machine collaborative operations, real-time perception of the entire battlefield, or brain-machine integrated decision-making, the characteristics it exhibits are all conscious behaviors of the various elements of the military system with “winning the war” as the ultimate goal. The understanding of military intelligence cannot stop at “technology-only theory” and “weapon-only theory”, but should focus on the mutual connection and action characteristics between the various elements of the military system, and explore its triggering mechanism, internal laws and implementation path.

Global thinking. Qian Xuesen believes that war is an organic whole composed of many parts and cannot be separated. In all human social practices, there is no activity that emphasizes the global concept and the overall concept more than directing war, and emphasizes starting from the overall situation, using all forces rationally, and ultimately achieving the overall final effect. This is true for directing war and studying war. Intelligent warfare not only refers to the intelligence of weapons and equipment, but also includes a series of intelligence such as intelligence analysis, command and control, military training, and logistics support. Only by conducting all-round research and thinking on the relevant elements can we have a global understanding of intelligent warfare. Global thinking also requires us to consider military intelligence in the context of achieving the Party’s goal of strengthening the military in the new era and the overall national strategy, and to grasp the dialectical relationship between short-term and long-term, key and urgent needs, and actual military needs and overall military modernization.

Engineering design. To win future wars, we must have the ability to design future wars. We should use engineering thinking to classify and plan the operational concepts, operational styles, and force use of future intelligent warfare, and put forward practical military needs, phased development goals, and methods based on the current development stage of our army and targeting powerful enemies. We can follow the idea of ​​”proposing theories – developing concepts – experimental simulations – actual military exercises” to promote innovative breakthroughs in military theories based on intelligent warfare, incorporate them into operational regulations, and integrate them into actual combat training.

Avoid generalizing from a single example, and grasp the opposites of contradictions with the unity of opposites thinking

The ancients said: “The way to win or lose, to be safe or dangerous, is the way.” The “way” here includes not only the fundamental view of war, but also the speculative understanding of the laws of winning war. Intelligent warfare research should go beyond the limitations of one-sided descriptions such as “algorithmic warfare”, “unmanned warfare” and “self-adaptation”, and use dialectical thinking to fully understand and grasp the relationship between the various elements of future wars.

The relationship between people and weapons. With the widespread use of drones, unmanned combat vehicles, unmanned submarines, etc. in the military, “war between people” will be largely replaced by “war between machines”. The realization of combat means such as autonomous coordination and autonomous decision-making has reshaped the combat process, and the combat style with unmanned operations as a prominent feature has rewritten the rules of the battlefield. Despite this, the decisive role of people in war has not changed, but the way they act is significantly different from before. As Engels said, “It is people, not guns, who win the battle… Guns will not move by themselves, and they need a brave heart and a strong hand to use them.” Intelligent weapons undoubtedly play an important role in war, but the subject of war is still people, and people are always the most active factor in war. The use of intelligent weapons does not mean that the role of humans has declined, but rather that some of the functions of humans have been transferred and materialized into weapons. Weapons extend the human body and brain, and stimulate human creativity and initiative. Intelligent weapons cannot replace the important role of fighting spirit. The superposition of indestructible political beliefs, overwhelming heroism, the bloody spirit of daring to fight and win, as well as superb strategies and flexible strategies and tactics, these dynamic factors make it possible to win when the enemy and our strength are equal, and to have the possibility of defeating the strong with the weak when we are at a disadvantage.

The relationship between offense and defense. The application of artificial intelligence in the military field is a double-edged sword. On the one hand, it greatly improves combat effectiveness, but on the other hand, it is also necessary to pay great attention to the potential weaknesses and loopholes of artificial intelligence. Intelligent warfare mainly relies on powerful algorithms and interconnected networks. Once they are attacked, fatal errors occur, or they are reversely controlled, the advantage may turn into a disadvantage. The U.S. Department of Defense has now established a special agency to assess the potential risks of military intelligence and countermeasures. While promoting military intelligence, we should pay special attention to strengthening information protection and risk management, and simultaneously develop “anti-artificial intelligence technology” to establish a two-way advantage of both offense and defense.

The relationship between inheritance and innovation. Artificial intelligence has promoted major changes in the war situation, but it has not changed the general sense of the war guidance rules and war winning mechanism. No matter how the future war is fought, we must not abandon or deviate from the precious war experience and theoretical guidance accumulated by our army in long-term practice. We must still adhere to the principle of “you fight yours, I fight mine”, uphold the principle of asymmetric strategic checks and balances, and attach importance to giving full play to people’s subjective initiative. On the other hand, we must follow the general trend of military reform, keep a close eye on the forefront of war development, promote military innovation with a sense of urgency and accelerate the application and transformation of results.

To prevent “focusing on technology and neglecting science”, it is necessary to promote technological and theoretical innovation by integrating science and technology.

An advanced army needs advanced military theory to guide it. The emergence of intelligent warfare is first of all due to the promotion of the new scientific and technological revolution, but it is inseparable from the scientific guidance of advanced military theory, especially Marxist military theory. The report of the 19th National Congress of the Communist Party of China proposed to comprehensively promote the modernization of military theory, which is an inevitable requirement for realizing the party’s goal of strengthening the army in the new era, and is also the meaning of intelligent warfare research. To this end, we must conscientiously implement the development idea of ​​integrating theory and technology, and promote the simultaneous innovation of technology and theory in deepening problem research.

Conceptual integration. Modern military theories are increasingly characterized by actual combat-driven, interdisciplinary, and systemic support. To promote the integration of science and technology, we must first break through the barriers of concepts and ideas. We should adhere to the complex research approach of overall planning, system design, and system integration, based on the evolution of war forms and the actual national and military conditions and development stages, and coordinate the promotion of technological breakthroughs, concept development, tactics innovation, combat power generation and other theoretical innovations to provide scientific guidance and theoretical support for winning future wars. We should strengthen research on the winning mechanism, combat guidance, and combat style of intelligent warfare, and conduct in-depth research on the military organization form caused by intelligent warfare, especially the series of changes in organizational system, scale structure, combat organization, tactical principles, combat support, and force application, so as to make ideological and theoretical preparations for a new round of military reforms.

Integration of disciplines. Intelligent warfare research not only involves the application of artificial intelligence in the military field, but also involves multiple fields such as algorithms and materials, and multiple disciplines such as physics, chemistry, electronics, and biology, and involves a wide range of fields such as war ethics and international law. In order to achieve the integration of science and technology, technical workers are required to break away from the shackles of pure engineering thinking, establish strategic thinking and global awareness, master scientific methodology and epistemology, and use dialectical thinking to lead technology research and development. Theoretical researchers should break the boundaries of disciplines, step out of the small circle of pure academic research, actively promote the interaction between scientific research institutions and colleges, troops, and technology research and development departments, strive to achieve original results in the basic field of artificial intelligence, and enrich the theory of intelligent warfare. Make good use of data, focus on actual combat, adhere to the “three aspects”, and effectively play the leading and guiding role of theory on technology.

現代國語:

要點提示

●人工智慧運用於軍事領域是柄雙刃劍,一方面極大提高了作戰效能,另一方面也需要高度重視人工智慧潛在的弱點和漏洞。

●智慧武器的運用不表示人的作用下降了,而是人的部分功能被轉移物化在武器之中了。武器延長了人的肢體,也延伸了人的大腦,激發了人的創造性和能動性。

加速軍事智慧化發展是黨的十九大報告提出的戰略任務,是推進國防和軍隊現代化建設、實現黨在新時代的強軍目標的有力抓手,是瞄準未來戰爭形態、搶抓戰略機遇的重大舉措。在進行智慧化戰爭研究時,應堅持辯證思維,防止研究“脫實向虛”“以偏概全”“重技輕理”,科學分析智能化戰爭的特點規律,才能真正推動研究走深走實。

謹防“脫實向虛”,需用科學方法論和認識論分析問題

智慧化戰爭是透過廣泛使用智慧武器裝備及與其相適應的作戰樣式、作戰方法,在物理域和認知域進行的高度資訊化的戰爭,本質上沒有脫離資訊化戰爭範疇。近期局部戰爭中所呈現的無人化作戰趨勢,僅僅是具備了智慧化戰爭的某些特點,還遠遠不是真正意義上的智慧化戰爭。當前各界掀起一股研究人工智慧的熱潮,但某種程度上也存在著拔高和誇大的現象。還有人認為,智慧化戰爭催生地緣政治異變,傳統的實體空間制權將被以人工智慧為核心的「制智權」取代。這種觀點不免帶有認識虛化的傾向。為此,應以科學方法論、認識論來理性研究和認識智能化戰爭。

系統論視角。智能化戰爭是資訊化戰爭的高級階段,本質上仍是基於資訊系統的體系對抗,無論是人機協同作戰、戰場全局實時感知,還是腦機一體決策,其展現出的特點莫不是軍事體系諸要素以「勝戰」為終極牽引而湧現的自覺行為。對軍事智能化的認識不能停留於“唯技術論”“唯武器論”,而應著眼軍事體系諸要素間的相互聯繫和作用特性,探究其觸發機理、內在規律和實現路徑。

全局性思維。錢學森認為,戰爭是由許多部分構成的、不可分離的有機整體。在人類全部的社會實踐活動中,沒有比指導戰爭更強調全局觀念、整體觀念,更強調從全局出發,合理地使用全部力量,最終求得全局最終效果的了。指導戰爭如此,研究戰爭也是如此。智慧化戰爭不僅指武器裝備的智慧化,更包含情報研判、指揮控制、軍事​​訓練、後勤保障等一系列的智慧化,只有對有關諸要素進行全方位研究與思考,方能對智能化戰爭有全局性認識。全局性思維也要求我們將軍事智能化放在實現黨在新時代的強軍目標和國家戰略大局下通盤考量,把握短期與長期、重點與急需、現實軍事需求與整體軍事現代化的辯證關系。

工程化設計。打贏未來戰爭,必須有設計未來戰爭的能力。應運用工程化思維對未來智能化戰爭的作戰概念、作戰樣式、力量運用等進行分類規劃和層次化設計,立足我軍現有發展階段,瞄準強敵,提出切合實際的軍事需求以及階段性發展目標和方法手段。可依照「提出理論—發展概念—實驗模擬—實兵演習」的思路,推動基於智慧化作戰的軍事理論實現創新突破,進入作戰條令,融入實戰化訓練。

力避“以偏概全”,需以對立統一思維把握矛盾對立面

古人雲:“以決勝敗安危者,道也。”這裡的“道”,不僅包含對戰爭的根本看法,也包含對戰爭制勝規律的思辨性認識。智慧化戰爭研究應超越「演算法戰」「無人化」「自適應」等片面所描述的限制,以辯證思維完整理解與掌握未來戰爭各要素間的相互關系。

人與武器的關系。隨著無人飛機、無人戰車、無人潛艇等在軍事上的廣泛運用,「人與人的戰爭」將在很大程度上被「機器與機器的戰爭」所取代,自主協同、自主決策等作戰手段的實現使作戰流程得以重塑,以無人化為突顯標志的作戰樣式使戰場規則重新改寫。盡管如此,人在戰爭中的決定性作用並未改變,只是作用方式與以往相比出現重大不同。正如恩格斯所稱,「贏得戰鬥勝利的是人而不是槍……槍是不會自己動的,需要有勇敢的心和強有力的手來使用它。」智能武器在戰爭中無疑發揮重要作用,但戰爭主體依舊是人,人永遠是戰爭中最活躍的因素。智慧武器的運用不顯示人的作用下降了,而是人的部分功能被轉移物化在武器之中了。武器延長了人的肢體,也延伸了人的大腦,激發了人的創造性和能動性。智慧武器也無法取代戰鬥精神的重要角色。堅不可摧的政治信念、壓倒一切的英雄氣概、敢打必勝的血性精神,以及高超的謀略和靈活的戰略戰術,這些能動性因素的疊加,使在敵我實力相當時有製勝的把握,在居於劣勢時有以弱勝強的可能。

進攻與防禦的關系。人工智慧運用於軍事領域是柄雙刃劍,一方面極大提高了作戰效能,另一方面也需要高度重視人工智慧潛在的弱點和漏洞。智慧化戰爭主要依賴強大的演算法和互聯互通的網絡,一旦受到攻擊、出現致命錯誤或遭反向控制,優勢將可能轉化為劣勢。美國國防部目前已成立專門機構,評估軍事智慧化的潛在風險及應對措施。在推動軍事智慧化的同時,我們應特別注意加強資訊防護和風險管控,同步發展“反人工智慧技術”,以確立攻防兼備的雙向優勢。

傳承與創新的關系。人工智慧推動戰爭形態發生重大變化,但並未改變一般意義上的戰爭指導規律和戰爭制勝機理。不管未來戰爭怎麼打,都不能丟棄或偏離我軍在長期實踐中積累的寶貴戰爭經驗和理論指導,仍要堅持“你打你的,我打我的”,秉持非對稱戰略制衡原則,重視發揮人的主觀能動性。另一方面,要順應軍事變革大勢,緊盯戰爭發展前沿,以時不我待的緊迫感推動軍事創新並加快成果應用轉化。

防止“重技輕理”,需以理技融合推動技術與理論創新

先進的軍隊需要先進的軍事理論作指導。智能化戰爭的出現首先源自於新科技革命的推動,但離不開先進軍事理論尤其是馬克思主義軍事理論的科學指導。黨的十九大報告提出要全面推進軍事理論現代化,這是實現黨在新時代的強軍目標的必然要求,也是智慧化戰爭研究的題中之義。為此,要認真貫徹好理技融合的發展思路,在深化問題研究中推動技術與理論同步創新。

觀念融合。現代軍事理論日益呈現出實戰牽引、學科交叉、體系支撐的特徵,要推動理技融合,首先需要打破觀念和思想藩籬,應秉持整體謀劃、體系設計、系統集成的複合型研究思路,立足戰爭形態演變與國情軍情實際與發展階段,協調推進技術突破、概念研發、戰法革新、戰鬥力生成等多面向理論創新,為打贏未來戰爭提供科學引領與理論支撐。應加強研究智能化戰爭的製勝機理、作戰指導、作戰樣式,深入研究智能化戰爭引發的軍隊組織形態,尤其是組織體制、規模結構、戰鬥編成、戰術原則、作戰保障、力量運用等方面的系列變化,為迎接新一輪軍事變革做好思想與理論準備。

學科融合。智慧化戰爭研究不僅涉及人工智慧在軍事領域的運用,還涉及演算法、材料等多領域和物理、化學、電子、生物等多學科,涉及戰爭倫理、國際法等廣泛領域。為實現理技融合,要求技術工作者要擺脫單純工程思維的羈絆,樹立戰略思維和全局意識,熟練掌握科學方法論和認識論,用辯證思維統領技術研發。理論研究者要打破學科界限,走出純學術研究的小圈子,積極推動科研機構與院校、部隊、技術研發部門的互動,力爭在人工智慧基礎領域取得原創性成果,同時豐富智能化戰爭理論。善用數據說話,向實戰聚焦,堅持“三個面向”,切實發揮理論對技術的引領和指導作用。

來源:解放軍報 作者:馬榮升 責任編輯:楊一楠 2019-07-04 14:xx

中國原創軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4845177.html

Chinese Military Combat Deception on the Intelligent Battlefield

中國軍隊在智慧戰場上進行作戰欺騙

現代英語:

It is easy to break the “fog” of the battlefield, but it is difficult to break the “obsession” in your heart——

Since ancient times, achieving surprise through combat deception has been an important way to win on the battlefield. Entering the era of intelligence, the in-depth application of artificial intelligence technology has not only clearly dispelled the original war “fog”, but also created a large amount of new war “fog”. If we only rely on improving deception techniques and means, and simply superimposing and strengthening the traditional deception paradigm, it will become increasingly difficult to achieve the deception goal. From “smart deception” to “smart victory”, there is an urgent need for an overall transformation of the objects of deception, means of deception, methods of deception, and focus of deception, so as to form a new deception paradigm that meets the requirements of the intelligent era.

The target of deception has shifted from humans to human-machine hybrid agents

Clausewitz believed that three-quarters of the factors on which war is based are more or less surrounded by the “fog” of uncertainty. Combat deception is essentially the use of uncertainty in war. The more “fog” there is in war, the more room there is for maneuvering. Traditional combat deception is carried out around the opponent’s decision-making level, and people are the only target of deception. However, with the increasingly prominent role of intelligent intelligence analysis and auxiliary decision-making systems in command activities, the use of deception to achieve strategic, campaign, and tactical surprises faces major challenges. How to deceive human-machine hybrid intelligent entities composed of humans and intelligent systems has become an important factor that needs to be considered when planning and implementing deception in the intelligent era. The competition surrounding intelligent deception and anti-deception is becoming increasingly fierce.

There is a world of difference between deceiving people and deceiving intelligent systems. In the past, the “calculations” that deceived people may be exposed when facing the “calculations” of intelligent systems. Intelligent systems can efficiently integrate and process massive amounts of sensor data and Internet open source information, making a qualitative leap in the speed, depth, breadth and accuracy of battlefield situation perception, realizing a profound transformation from “sensing” to “knowing”, from “state” to “momentum”, and playing an important role in dispelling the “fog” of war. For example, on the battlefield, although both sides try to hide the truth and cover up their intentions in various ways, they still cannot escape the “eyes” of the intelligent system: the tracks left by carefully disguised tanks and armored vehicles, after being detected by the opponent’s satellites, drones, etc., will also reveal their specific locations under the analysis of the intelligent system.

On the contrary, it is very easy to deceive intelligent systems with methods that target them, but it may not be able to deceive people. A foreign research team found that by changing a few key pixels in a picture of a cat, the intelligent system can identify the cat as a dog, while the human eye will not make any recognition errors due to this change. Similar incidents are common. Some studies have pointed out that sticking a piece of paper with a special pattern on a person’s forehead can deceive the strongest facial recognition system, and this method is highly portable and can deceive other facial recognition algorithms with a slight change.

It can be seen that deceiving people and deceiving intelligent systems are two different “deception methods”. After the deep application of artificial intelligence in the field of intelligence analysis and auxiliary decision-making, from the formulation of strategic deception plans to the design of battlefield camouflage patterns, how to deceive both the human brain and the computer and keep the human-machine hybrid intelligent body “in the dark” will be an important issue that needs to be focused on and solved in order to win the initiative in war.

The fraudulent methods have shifted from being mainly human-based to a combination of human and machine.

The organization and implementation of traditional combat deception is mainly manual, especially large-scale strategic deception, which requires a lot of manpower, material and financial resources. For example, in World War II, the Allies formulated a series of deception plans to ensure the success of the Normandy landing: setting up a fake radio network and a simulated landing fleet, and imagining that the US 1st Army Group with 50 divisions and 1 million people was actively preparing to cross the channel and land in the direction of Calais; using the air force to bomb Calais and Normandy, but the former was bombed more than 1 times more than the latter, etc. The application of artificial intelligence in deception can fundamentally change this situation. With humans as the main guide and intelligent means as the auxiliary, it can quickly generate massive amounts of false information, confusing the real with the fake, and create a thicker war “fog” for the opponent.

The use of intelligent means can improve the quality of deception. On the one hand, intelligent decision-making aids can be used to formulate deception plans, optimize the design of deception forces, deception deployment, deception processes, etc., to achieve systematic deception with the best overall effect; on the other hand, intelligent intelligence analysis systems can be used to pre-test the deception effect, “using one’s own spear to attack one’s own shield”, find out the loopholes and contradictions in the plan, and then improve the deception plan to make it logically self-consistent and seamless.

The use of intelligent means can expand the scale of deception. The increasingly mature deep fake technology can synthesize realistic fake pictures, handwriting, audio, video, etc. in large quantities, and has broad application prospects in strategic, campaign, and tactical deception. For example, in strategic campaign deception, corresponding technical means can be used to confuse opponents by forging fake radio stations and fake commanders, and even to fake an active command post in a certain battle direction; in tactical deception, battlefield camouflage can be used to attach special patterns to high-value equipment to make the opponent’s intelligent system recognize it incorrectly.

The use of intelligent means can reduce the cost of deception. With the support of technologies such as virtual reality and deep fakes, unexpected deception effects can often be achieved with the help of synthetic optics, acoustics and other means, and they are low-cost and low-investment, which is more cost-effective than traditional strategic deception methods. For example, setting up false targets such as bait unmanned combat platforms, using electronic feints and electronic camouflage to send false signals can effectively restrain the opponent’s power, produce high returns at low cost, and thus gain the upper hand.

The use of intelligent means can optimize the accuracy of deception. Traditional combat deception is usually stereotyped, with prominent characteristics of broadcast, extensive, and generalized. For this reason, in the era of intelligence, we should focus on collecting data on opponent decision makers in peacetime and use big data for precise analysis to “know the enemy” more deeply and specifically. On this basis, deep fake technology can be used in wartime to customize the content of deception, realizing precise deception from targeting groups to targeting individuals.

The method of deception has shifted from mainly deceiving to mainly confusing and seducing.

“Playing cards” and “playing chess” are two game modes with completely different battlefield transparency. In the “playing cards” mode, both sides only know the cards that the opponent has played, but do not know the cards in the opponent’s hand, let alone what cards the opponent will play next; while in the “playing chess” mode, the deployment of both sides’ forces on the chessboard is completely transparent, but the opponent’s intentions and the next move are unknown. It is not difficult to see that from cold weapon wars, hot weapon wars, mechanized wars, informationized wars, and then to intelligent wars, the form of war confrontation is increasingly changing from the “playing cards” mode to the “playing chess” mode.

In a war of “playing cards”, blind deception is very useful. Through strict disguise and strict confidentiality, the opponent’s channels of information can be blocked as much as possible, making it impossible for the opponent to detect one’s own intentions and actions, thereby achieving surprise. In the past, when the means of obtaining information were limited and information on the battlefield situation was scarce, there were many examples of wars that used “hiding the truth” and “showing falsehood” to achieve surprise. However, at present, with the help of advanced reconnaissance technology, full-dimensional and full-spectrum reconnaissance has been realized, and the battlefield is becoming more and more transparent. Complete concealment without any revealing features is difficult to achieve. Once the concealment state is switched to the action state, the probability of being discovered by the opponent will be greatly increased. Blind deception can only become an auxiliary deception method.

In the war of “chess”, the following two deception methods are usually used: one is confusing deception, that is, using intelligent means to send a large amount of true and false mixed and difficult to identify information, increasing the ambiguity of information and the difficulty of analysis, making it difficult for the opponent to judge or misjudge. The second is inducement deception, that is, by sending high-definition misleading information, the opponent is led into a preset trap. The combination of these two methods and the cooperation of blinding deception together constitute a hybrid deception that is difficult for the opponent to guard against.

The focus of deception shifts from human perception to human cognition

As the main subject of war, people are important variables that influence the war situation, which implies uncertainty and uncontrollability. From the perspective of psychology, cognitive neurology and other aspects, the “black box” of the mind still cannot be revealed. Deception by deception targets people’s eyes and ears, taking advantage of human sensory weaknesses, while deception by deception and temptation directly targets people’s minds, taking advantage of human weaknesses.

From past cases, even with the most advanced intelligence surveillance and reconnaissance technology and the most intelligent analysis methods, it is impossible to make up for and overcome human weaknesses. In many cases, it is not that the intelligence department failed to recognize the opponent’s deception, but that the decision-makers are unwilling to believe the facts. On the eve of the Soviet-German War in World War II, although more and more evidence showed that Germany was planning to invade the Soviet Union, the Soviet decision-makers believed that the war would not come for the time being. Therefore, when the war broke out, the Soviet army was not well prepared for the response, and the initial defensive actions were very passive.

War practice shows that in the era of intelligence, even if the opponent has obvious military technology advantages and can achieve one-way transparency on the battlefield through advanced intelligence surveillance and reconnaissance technology, the enemy can still take advantage of the cognitive weaknesses of the opponent’s decision-making layer to implement counter-intuitive deception and cover up the true intentions and actions. This also shows that the focus and center of deception in the era of intelligence should not be entirely on how to deliberately cover up the traces of military actions, but should focus more on targeting the opponent’s decision-making layer and inducing it to make decisions and actions that the enemy wants to see.

Yuan Yi Zhao Di

(Author’s unit: Institute of War Studies, Academy of Military Science)

現代國語:

破戰場“迷霧”易,破心中“執念”難——

袁 藝 趙 頔

自古以來,透過作戰欺騙達成突然性,是戰場制勝的重要途徑。進入智慧化時代,人工智慧技術的深度應用,在清晰撥開原有戰爭「迷霧」的同時,又製造出大量新的戰爭「迷霧」。如果只依賴改進欺騙技術和手段,在傳統欺騙範式上做簡單的疊加強化,就想達成欺騙目標的難度越來越大。由“智騙”到“智勝”,迫切需要欺騙對象、欺騙手段、欺騙方式、欺騙重心等各個方面的整體轉變,形成適應智能化時代要求的新型欺騙範式。

欺騙對象由人轉向人機混合智能體

克勞塞維茨認為,戰爭所依據的四分之三的因素或多或少被不確定性的「迷霧」包圍著。作戰欺騙本質上就是對戰爭中不確定性的利用,戰爭「迷霧」越多,施計用謀的空間就越大。傳統作戰欺騙都是圍繞著對方決策層而展開的,人是欺騙的唯一對象。但隨著智慧情報分析與輔助決策系統在指揮活動中的地位作用日益凸顯,以欺騙達成戰略、戰役、戰術突然性面臨重大挑戰。如何欺騙人與智慧系統共同組成的人機混合智能體,成為智能化時代籌劃實施欺騙需要考慮的重要因素,圍繞智能欺騙與反欺騙的較量日趨激烈。

欺騙人與欺騙智慧系統有著天壤之別,以往欺騙人的「算計」在面對智慧系統的「計算」時可能會被識破。智慧型系統可高效融合處理海量的傳感器數據和互聯網開源信息,使得戰場態勢感知的速度、深度、廣度和精度產生質的飛躍,實現由“感”到“知”、由“態”到“勢”的深刻轉變,在撥開戰爭「迷霧」方面發揮重要作用。例如,戰場上盡管交戰雙方都試圖用各種方法隱藏真相、掩蓋企圖,但仍逃不出智能係統的「慧眼」:精心偽裝的坦克、裝甲車等留下的車轍痕跡,被對方衛星、無人機等偵照後,在智慧型系統的分析下也會暴露出具體位置。

相反,針對智慧型系統的欺騙方式欺騙智慧系統非常容易,但可能又欺騙不了人。國外研究團隊發現,只要改變一隻貓的圖片中的少數幾個關鍵像素,就可以使智慧系統將貓識別為狗,而人眼則完全不會因這種變化而出現識別錯誤。類似的事件屢見不鮮,有研究指出,在人類前額上貼一張有特殊圖案的紙片,就能夠騙過最強的人臉識別系統,且這一方法具有很強的可移植性,稍加改變就可以欺騙其他的人臉識別演算法。

由此可見,欺騙人與欺騙智慧系統是兩種不同的「騙法」。人工智慧深度應用於情報分析與輔助決策領域後,大到戰略欺騙方案的製定,小到戰場迷彩圖案的設計,如何既騙過人腦又騙過電腦,把人機混合智能體「蒙在鼓裡”,將會是贏得戰爭主動權需要重點關注並加以解決的重要課題。

欺騙手段由人工為主轉向人機結合

傳統作戰欺騙的組織實施以人工為主,尤其是大規模的戰略欺騙,需要投入大量的人力物力財力。例如,二戰時盟軍為確保諾曼底登陸成功,制定了一系列疑兵計畫:建立假的無線電網和模擬登陸艦隊,虛構有50個師100萬人的美第1集團軍群,正在積極準備橫渡海峽向加萊方向登陸;使用空軍對加萊和諾曼底進行轟炸,但前者遭到的轟炸比後者多1倍以上等等。人工智慧運用於欺騙可從根本上改變這一局面,以人為主導輔以智能手段,可快速生成海量虛假信息,以假亂真,給對手製造更加濃厚的戰爭“迷霧”。

運用智慧手段可提升欺騙品質。一方面,可運用智慧輔助決策手段訂定欺騙計畫,優化設計欺騙力量、欺騙部署、欺騙流程等,實現全局效果最佳的體系化欺騙;另一方面,可運用智慧情報分析系統預先檢驗欺騙效果, “以己之矛攻己之盾”,找出計劃中的漏洞和矛盾點,進而完善欺騙計劃,使其邏輯自洽、嚴絲合縫。

運用智慧手段可擴大欺騙規模。日益成熟的深度偽造技術,可大量合成逼真的虛假圖片、筆跡、音頻、視頻等,在戰略、戰役、戰術欺騙中有著廣泛的應用前景。例如,在戰略戰役欺騙方面,可透過相應技術手段,偽造假電台、假指揮員等迷惑對手,甚至能夠在某一戰役方向偽造一個活躍的指揮所;在戰術欺騙方面,可通過戰場偽裝,給高價值裝備貼上特製圖案,使對手的智慧系統識別出錯。

運用智慧手段可降低欺騙成本。在虛擬現實、深度偽造等技術的支持下,借助合成光學、聲學等手段往往也能達到意想不到的欺騙效果,並且兼具低成本、小投入的特點,相比傳統戰略欺騙方式具有高效費比優勢。如設置誘餌無人作戰平台等假目標,運用電子佯動、電子偽裝等施放假信號,都能夠有效牽制對手力量,以低成本產出高回報,從而贏得制勝先機。

運用智慧手段可優化欺騙精度。傳統作戰欺騙通常千篇一律,廣播式、粗放式、概略化特點比較突出。為此,智能化時代,平時就應注重廣泛收集對手決策者數據,並運用大數據進行精確分析,以更加深刻更加具體地「知彼」。在此基礎上,戰時就可運用深度偽造技術個性化客製化欺騙內容,實現由針對群體到瞄準個體的精準欺騙。

欺騙方式由以蒙蔽為主轉向以迷惑、誘導為主

「打牌」和「下棋」是戰場透明度截然不同的兩種賽局模式。 「打牌」模式中,雙方都只知道對手已出的牌,但不知道對手手中的牌,更不知道下一步對手會出什麼牌;而「下棋」模式中,棋盤上雙方兵力部署完全透明,但不知道對手企圖和下一步棋怎麼走。不難看出,從冷兵器戰爭、熱兵器戰爭、機械化戰爭到資訊化戰爭,再到智慧化戰爭,戰爭對抗形式日益由「打牌」模式轉變為「下棋」模式。

在「打牌」模式的戰爭中,蒙蔽式欺騙非常管用,可通過嚴密偽裝和嚴格保密,盡可能地封鎖對手的獲情渠道,使其無法察覺己方企圖和行動,進而達成突然性。在過去資訊獲取手段有限、戰場態勢資訊匱乏的年代,主用「隱真」輔以「示假」達成突然性的戰例很多。但當前,憑借先進偵察技術,已經實現了全維全譜偵察,戰場透明化程度越來越高,無任何暴露特徵的完全隱蔽已難以實現,而一旦由隱蔽狀態轉入行動狀態,更會大大增加被對手發現的機率,蒙蔽式欺騙只能成為輔助欺騙手段。

在「下棋」模式的戰爭中,通常採用以下兩種欺騙方式:一是迷惑式欺騙,即藉助智能手段,發出大量真假混雜、難以辨認的信息,增大信息模糊度和分析難度,使對手難以判斷或判斷失誤。二是誘導式欺騙,即透過發出高清晰誤導訊息,將對手引入預設陷阱。兩種方式結合再加上蒙蔽式欺騙的配合,共同構成了對手難以防範的混合式欺騙。

欺騙重心由人的感知轉向人的認知

作為戰爭的主體,人是左右戰局的重要變量,蘊含著不確定性和不可控性。從心理學、認知神經學等層面來看,心智的「黑箱」仍然無法揭開。蒙蔽式欺騙針對的是人的耳目,利用的是人類感官弱點,而迷惑式和誘導式欺騙直指人的心智,利用的是人性弱點。

從以往案例來看,即使擁有最先進的情報監視偵察技術和最聰明化的分析手段,也無法彌補和克服人性弱點。很多情況下,不是情報部門沒有辨識出對手的欺騙,而是決策層不願意相信事實。在第二次世界大戰蘇德戰爭前夕,盡管當時越來越多的證據表明,德國正計劃入侵蘇聯,但蘇聯決策層認為戰爭暫時不會來臨,所以當戰爭爆發時,沒有做好應對準備的蘇軍,前期的防禦行動非常被動。

戰爭實踐表明,進入智能化時代,即使對手擁有明顯的軍事技術優勢,能夠通過先進的情報監視偵察技術達成戰場單向透明,但己方仍可利用對手決策層的認知弱點,實施反直覺欺騙,掩蓋真實意圖和行動。這也表明,智能化時代欺騙的發力點和重心,不應全部放在如何刻意掩蓋軍事行動痕跡上,而應更加註重針對對手決策層,誘導其作出己方希望看到的決策行動。

(作者單位:軍事科學院戰爭研究院)

中國原創軍事資源:http://www.81.cn/szb_223187/szbxq/index.html?paperName=jfjb&paperDate=2024-08-13&paperNumber=07&articleid=937433

Chinese Military Considers Metaverse the New Frontier for Future Cognitive Warfare

中國軍方認為元宇宙是未來認知戰的新領域

現代英語翻譯:

●The essence of the metaverse is a highly developed virtual world that exists in parallel with the real world but also reacts to the real world.

●Parallel with the real world, reaction to the real world, and integration of multiple high technologies are the three major characteristics of the future metaverse.

●The metaverse provides a new way of thinking to understand and discover the operating behaviors, states and laws of complex real systems, as well as a new means to explore objective laws and transform nature and society.

● Strengthening the follow-up research on the role of the metaverse in cognitive warfare and highlighting the exploration of the mechanism of the role of the metaverse in cognitive warfare will help enrich and promote the construction of cognitive warfare theory.

The essence of the metaverse is a highly developed virtual world that exists in parallel with the real world but reacts to the real world. When virtual technologies such as digital, Internet, augmented reality and modern communications, blockchain, artificial intelligence and other technologies develop to a certain stage, the metaverse will emerge. Being parallel to the real world, reacting to the real world, and integrating multiple high technologies are the three major characteristics of the future metaverse. The operation of the metaverse conforms to the natural law of human understanding and transformation of the world. It directly acts on human thinking and cognition but is not bound by the essential attributes of thinking and cognition, which determines that it carries the operating laws of the real world, provides a new way of thinking to understand and discover the operating behavior, state and laws of complex systems in reality, and a new means to explore objective laws and transform nature and society. At the same time, it is itself a complex cognitive body, so it has immeasurable cognitive warfare application value.

The basic mechanism of cognitive warfare in the metaverse

The difference between the metaverse and other technologies is that it builds a complete digital world. Its operation is not supported by a single or a few technologies, but by a complex high-tech complex. This complex is built by humans, is a product of cognition, and continues to develop and evolve with the development of human cognitive practice. Its cognitive application has a unique regular mechanism.

System enhancement mechanism. The digital world constructed by the metaverse is itself a highly developed cognitive world. In this special cognitive world, technology not only exists as an additional role such as support and guarantee, but also directly participates in the shaping of cognition itself as a basic element of cognition. In other words, the technology that constitutes the metaverse itself has a distinct cognitive background, which not only supports the operation of cognition but also realizes the self-construction, revolution and transcendence of cognition; it not only provides a series of necessary technical services, but also creates a holographic technical soil for human cognition to operate independently and fight independently. The effect of the metaverse on cognition is not one-dimensional, but full-dimensional; not single-line, but full-system; not independent, but immersive; not fragmentary, but continuous; not cyclical, but full-life process. How far the thinking cognition develops, how far the metaverse develops, and thus it can shape people’s thinking cognition more comprehensively, deeply and lastingly. Therefore, humans have used high technology to create “Avatar”, a complex system combining man and machine, and have also created a life form on “Pandora” that can think independently, recognize itself, and think and act on its own. This life form, which was created by humans and is independent of humans, has achieved self-improvement and development in the new universe.

The mechanism of mutual construction of technology and knowledge. Unlike the one-way effect of individual technologies such as artificial intelligence and information networks on thinking and cognition, the metaverse provides a space for mutual construction of technology and cognition, and influence and counter-influence. In this space, we can simulate, demonstrate, simulate, and verify the process and results of this two-way mutual construction and promotion, so as to understand cognition more accurately and efficiently, improve cognitive warfare methods, and directly engage in real cognitive confrontation. The metaverse provides a parallel cognitive space that digitally twins real combat scenes, where cognitive warfare can be promoted efficiently, enhanced at a fast pace, and presented in a panoramic manner. It is reported that the US military uses virtual technology to verify the performance of new weapons and equipment, test the effectiveness of the use of new tactics, and conduct combat simulation training, relying on the deployment of forces, combat terrain, human characteristics, and other scenes similar to actual combat constructed in virtual spaces such as the metaverse. At the same time, more and more countries and armies are conducting direct cognitive attacks and defenses with their opponents through virtual spaces, confusing their minds, misleading their directions, and eroding their will.

Active reflection mechanism. As a virtual existence parallel to the real world, the metaverse is not a simple digital copy of the three-dimensional space, but has its own operating rules and can actively act on the real world. This active action is the focus of the cognitive application of the metaverse. The metaverse space game reflects the characteristics of cognitive warfare. The war results deduced in the metaverse through virtual simulation may directly affect the real world, extending to the conscious cognitive competition game through sensory touch, thereby winning the dominant position in cognitive warfare. In the cognitive perspective, the metaverse is both a new cognitive space and the main battlefield of cognition, as well as an extended domain of cognition and a new cognitive component. At present, the military of many countries uses sandbox operations, war games and even computer simulations to formulate and test strategies and tactics, revise the application of tactics, improve training methods, and improve weapons and equipment. This is a typical example of the virtual world reacting to reality. With the continuous development and integration of the metaverse technology group, cognitive confrontation will inevitably shift more and faster from the real world to a hybrid world combining virtuality and reality.

The basic characteristics of cognitive warfare in the metaverse

Existence determines consciousness, and technology drives creation. The metaverse has many characteristics, such as parallelism with the real world, initiative in the real world, and comprehensiveness that integrates multiple technologies. These prominent characteristics determine the different characteristics and laws of its effects on thinking and cognition.

Cross-domain construction. The formation, development and evolution of cognition are rarely determined by a single factor, but are often the result of the combined effect of multiple factors. The metaverse originates from the real world and is presented in the virtual space. It has the characteristics of multi-domain interconnection that runs through the real and virtual worlds. As the saying goes, “a lot of gossip can melt gold, and accumulated criticism can destroy bones.” This cross-domain characteristic that spans different fields and opens up related spaces can best influence and shape people’s thinking and cognition from different angles. The most typical case is that game developers are increasingly focusing on using virtual stories based on historical facts and real feelings to attract and infect people. The United States has used this cross-domain shaped surreal “real” experience to spread values. At present, the most representative “metaverse” themed science fiction work is “Ready Player One” directed by Spielberg. The play focuses on depicting the era background of the birth of the “metaverse” and the huge contrast between the real status and virtual status of the protagonist. Through the plot and special effects shots, it delicately portrays the real sense of human participation, thereby spreading the American ideology, especially the values ​​of gaining wealth, status, love and friendship through “bloodless” struggle in the virtual world.

Integrated influence. The important fulcrums of cognitive warfare are strategy and technology. With the development of science and technology and the progress of society, the proportion of technology in cognitive warfare is increasing and its role is becoming more and more prominent. It can be said that cognitive warfare without scientific and technological support is cognitive warfare without power, and cognitive warfare with advanced technology is more likely to win. As a complex system integrating multiple cutting-edge technologies, the metaverse has a natural advantage in the use of cognitive warfare. Many people, including adults, are deeply trapped in the virtual world and indulge in online games. It is very important that the virtual space gives game operators a super-time and space experience and a sense of achievement. If martial arts novels are fairy tales for adults, then the metaverse, which can “do whatever you want”, creates a super fairy tale world, which has an immeasurable impact on people’s thinking, cognition, value pursuit, moral concepts, emotional will, and behavior patterns.

Compromising influence. A big difference between the metaverse and other technical means is that it constructs a virtual world that originates from the real world but reacts to the real world. In this complex domain space, people’s thinking and cognition go back and forth between the real world and the virtual space, verify each other, repeatedly confirm, and constantly correct, thereby generating new thinking and cognition, and exerting a dynamic influence on both worlds. This two-way interactive compromising influence, on the one hand, is conducive to the formation and development of correct thinking and cognition, making the cognition of the real world more imaginative with the wings of the virtual world’s thoughts, and at the same time, it also makes the cognition of the virtual space find the material support of the real world and become more scientific. On the other hand, if it is not operated properly, it is likely to cause great safety hazards and ethical problems. In recent years, the U.S. military has relied on artificial intelligence and virtual technology to remotely control drones to attack opponents, which is a typical example of the virtual world reacting to the real world. This attack is far away from the tragic scene of face-to-face fighting, which greatly dilutes the drone operator’s awe of life and lowers the threshold for remotely controlling the opponent. At the same time, due to the imperfect reconnaissance and identification technology, incidents of accidental shooting, injury, and killing of civilians, friendly forces, and even their own troops often occur.

The basic style of cognitive warfare in the metaverse

Metaverse cognitive warfare is based on reality and leads future development. It involves both the virtual and real worlds, penetrates multiple fields, covers multiple technologies, and has a variety of combat styles. There is great uncertainty, but it is not without rules. Comprehensive analysis shows that there are three basic styles.

Platform confrontation. In terms of its relationship with human thinking and cognition, the metaverse itself is a complex cognitive actor, a derivative of human thinking and cognition, and an important component and platform of cognitive warfare. When hostile countries and armies regard the metaverse as an important position for cognitive warfare, cognitive offensive and defensive operations between different camps within the metaverse exist in reality. On this platform, all technologies, resources and forces of the metaverse are integrated and operated with thinking and cognition as the center. Metaverse operations are prominently manifested as cognitive offensive and defensive operations aimed at disrupting, delaying, blocking, destroying and eliminating the existence and operation of the opponent’s metaverse. In this field, whoever has higher-end strategic planning, more flexible tactical application, more advanced technical force and more solid material support will be able to gain the initiative in metaverse cognitive warfare.

System attack. The metaverse is a cognitive system composed of a series of cutting-edge technologies, and systemicity is its inherent attribute and vitality guarantee. Advanced technologies such as digital foundation, efficient communication, blockchain identity authentication, holographic AR imaging, artificial intelligence, and high-performance Internet constitute a unified body with tight structure, functional coupling, and complete system. The components are indispensable for the formation and development of thinking cognition and offensive and defensive confrontation. It is difficult to imagine that the metaverse still has the possibility of existence without the support of advanced technology groups such as high-level digitization, high-quality communication, and high-speed computing. Using superior forces to force or use asymmetric tactics to attack and block the key nodes and technological operation chains of the opponent’s metaverse system, hinder its operation, suppress its functions, and destroy its existence is an important style and efficient path of metaverse cognitive warfare.

Divert the flow. An important value and significance of the existence and development of the metaverse lies in serving and supporting the related activities of the real world. Under normal circumstances, the metaverse can demonstrate, display, review and predict the related activities of the real world in a digital form. Once the communication between the virtual and real worlds is disturbed or the self-operation of the metaverse is disordered, it is easy to cause the situation reflected to be untrue, the information analyzed to be distorted, the conclusions derived to be invalid, and the suggestions provided to be wrong, causing the related activities of the real world to deviate. It is based on this that we can concentrate our efforts on inducing attacks on the internal operation of the opponent’s metaverse or the communication technology devices of the two worlds, and use extremely confusing and deceptive information and scenes to divert the flow, confuse their cognition, interfere with their judgment, and mislead their decision-making. Therefore, we should strengthen the tracking research on the cognitive warfare of the role of the metaverse, highlight the exploration of the cognitive warfare mechanism of the role of the metaverse, and strengthen and promote the construction of cognitive warfare theory.

(Author’s unit: Military Political Work Research Institute of the Academy of Military Sciences)

現代國語:

●元宇宙本質是與現實世界平行存在但又反作用於現實世界的高度發展的虛擬世界。

●與現實世界平行、反作用於現實世界、多種高技術綜合,是未來元宇宙的三大特徵。

●元宇宙提供了理解和發現現實複雜系統運作行為、狀態和規律的全新思維方式,以及探知客觀規律、改造自然和社會的新手段。

●加強元宇宙作用認知戰追蹤研究,突顯元宇宙作用認知戰機制探索,將有助於豐富促進認知戰理論建構。

元宇宙本質是與現實世界平行存在但又反作用於現實世界的高度發展的虛擬世界。當數位、網路、擴增實境等虛擬技術和現代通訊、區塊鏈、人工智慧等技術發展到一定階段,元宇宙就橫空出世。與現實世界平行、反作用於現實世界、多種高技術綜合,是未來元宇宙的三大特徵。元宇宙運作符合人類認識世界、改造世界的自然規律,其直接作用於人的思維認知但又不拘泥於思維認知的本質屬性,決定其本身承載了現實世界的運作規律,提供了理解和發現現實複雜系統運作行為、狀態和規律的全新思維方式和探知客觀規律、改造自然和社會的新手段,同時它本身就是一個複雜的認知體,因而具有不可估量的認知戰應用價值。

元宇宙作用認知戰的基本機制

元宇宙相對於其他技術的差異在於構築了一個完整的數位世界,支撐其運作的不是單一或幾個技術,而是一個複雜的高科技複合體。這個複合體是人構築的,是認知的產物並隨人類認知實踐的發展不斷發展演變,其認知運用具有獨特的規律機制。

體系增強機理。元宇宙構築的數位世界本身就是一個高度發展的認知世界,在這個特殊的認知世界裡,科技不僅以支撐和保障等附加角色存在,也直接作為認知的基本元素參與認知本身的塑造。也就是說構成元宇宙的技術本身俱有鮮明的認知底色,既支撐了認知的運作又實現了認知的自我建構、革命與超越;既提供了一系列必要的技術服務,又打造了一個人類認知自我運作、獨立作戰的全息技術土壤。元宇宙對認知的作用不是單向度的,而是全維度的;不是單線的,而是全系統的;不是獨立式的,而是沉浸型的;不是片段的,而是持續型的;不是周期階段型的,而是全壽命流程的。思維認知發展有多遠,元宇宙發展就有多遠,因而能夠更全面更深入、更持久地塑造人的思維認知。於是,人類既用高科技打造了「阿凡達」這個人機結合的複雜系統,同時也打造了一個在「潘朵拉星球」上能夠自主思維、自我認知、自行思想與行動的生命體,這個產生於人又獨立於人的生命體在新的宇宙空間中實現了自我完善與發展。

技知互構機理。與人工智慧、資訊網路等單一技術對思考認知的單向作用不同,元宇宙提供了一個技術與認知作用與反作用、影響與反影響的互構空間。在這個空間裡,我們能夠模擬、展示、模擬、驗證這種雙向互構共促的過程與結果,進而更加精準高效地認識認知、改進認知戰方式,同時也可以直接進行真刀真槍的認知對抗。元宇宙提供了一個將現實作戰場景數位孿生的平行認知空間,在這裡認知戰得以高效率推進、快節奏增強、全景式呈現。據悉,美軍將虛擬技術運用於新武器裝備性能驗證、新戰法運用效果檢驗及作戰模擬訓練等,依託的就是在元宇宙等虛擬空間中構建的兵力佈置、作戰地形、人文特徵等近似實戰的場景。同時,也有越來越多的國家和軍隊透過虛擬空間與對手進行直接的認知攻防,迷茫其心智,誤導其方向,銷蝕其意志。

能動反射機理。元宇宙作為與現實世界平行的虛擬存在,不是簡單地將三維空間數位化複製,而有著自身運行規則並能動作用於現實世界,這種能動作用即是元宇宙認知運用的著力點。元宇宙空間博弈體現認知戰特點,透過虛擬模擬在元宇宙中推演出的戰爭結果,可能直接作用於現實世界,透過感官觸覺延伸到意識認知的爭奪博弈,從而贏得認知戰主導權。在認知視域下,元宇宙既是認知的新空間也是認知的主戰場,既是認知的延伸域也是認知的新構件。目前,不少國家軍隊透過沙盤作業、兵棋推演甚至電腦模擬模擬來發展和檢驗戰略戰術、修訂戰法運用、完善訓練方法、改進武器裝備,就是虛擬世界反作用於現實的典型案例。隨著元宇宙技術群不斷發展融合,認知對抗必將更多、更快由現實世界向虛實結合的混合世界發展轉進。

元宇宙作用認知戰的基本特徵

存在決定意識,技術驅動創造。元宇宙具有與現實世界的平行性、對現實世界的能動性、融多種技術於一體的綜合性等諸多特徵。這些突出特徵,決定其作用於思考認知的不同特徵規律。

跨領域構塑。認知的形成發展演變很少由單一因素決定,往往是多種因素綜合作用的結果。元宇宙源自現實世界、呈現於虛擬空間,具有貫穿現實與虛擬的多域連結特徵。所謂“眾口鑠金,積毀銷骨”,這種跨越不同領域、打通關聯空間的跨域特質,最能從不同角度影響和塑造人的思維認知。最典型的案例就是遊戲開發商越來越注重用建立在歷史事實和現實感受基礎上的虛擬故事吸引人感染人。美國已將這種跨領域塑造的超現實「真實」體驗用於價值觀的傳播。目前最具代表性的「元宇宙」主題科幻作品是史匹柏導演的《頭號玩家》,該劇聚焦於描繪「元宇宙」誕生的時代背景及主角的現實地位與虛擬地位之間的巨大反差,透過故事情節和特效鏡頭細膩地刻畫人類的真實參與感,從而傳播在虛擬世界裡透過「不流血」的鬥爭也能獲得財富、地位、愛情和友誼的美式意識形態特別是價值觀。

融合式影響。認知戰運作依託的重要支點是謀略和技術,隨著科技的發展和社會的進步,技術之於認知戰構成所佔比重越來越大、作用越來越突出。可以說,缺乏科技支撐的認知戰是缺乏力量的認知戰,有先進科技加持的認知戰獲勝的可能性更大。元宇宙作為融多種前沿科技於一體的複雜系統,在認知戰運用上具有天然優勢。不少人包括成年人深陷虛擬世界、沉湎網路遊戲,很重要的是虛擬空間賦予遊戲操盤手的超時空體驗和成就快感。如果說武俠小說是成人的童話,那麼可以「隨心所欲」縱橫馳騁的元宇宙,則打造了一個超級童話世界,其對人的思維認知、價值追求、道德觀念、情感意志、行為模式等的影響不可限量。

折衝性浸染。元宇宙與其他技術手段的一個很大不同,在於其建構的是一個源自現實世界但又反作用於現實世界母體的虛擬世界。在這個複雜領域空間中,人的思維認知在現實世界與虛擬空間之間往來折衝、相互印證、反覆確認、不斷修正進而產生新的思考認知,並對兩個世界都產生施動性影響。這種雙向互動的折衝性浸染,一方面有利於正確思維認知的形成與發展,使現實世界的認知插上虛擬世界思想放飛的翅膀而更富想像力,同時也使虛擬空間的認知找到現實世界的物質支撐而更科學。另一方面如果操作不當,很可能產生極大的安全隱患和倫理問題。這些年美軍依賴人工智慧和虛擬技術遙控的無人機攻擊對手,就是虛擬世界反作用於現實世界的典型案例。這種攻擊因遠離面對面搏殺的慘烈現場,極大淡化了無人機操作員對生命的敬畏,降低了其遙控攻擊對手的門檻。同時,由於偵察辨識技術不完善,誤擊誤傷誤殺平民、友軍甚至自己軍隊的事時有發生。

元宇宙作用認知戰的基本樣式

元宇宙作用認知戰基於現實基礎、引領未來發展,涉及虛實兩界、貫通多個領域、涵蓋多種技術,作戰樣式多種多樣,有很大的不確定性,但並非無規律可循。綜合分析,基本樣式有以下三種。

平台對抗。元宇宙就其與人的思維認知的關係而言,本身就是一個複雜的認知行為體,是人類思維認知的衍生品,也是認知戰的重要構件和平台。當敵對國家和軍隊都將元宇宙視為認知戰的重要陣地時,元宇宙內部不同陣營間的認知攻防作戰就會現​​實存在。在這個平台上,元宇宙的一切技術、資源和力量都以思維認知為中心來整合運作。元宇宙作戰突顯為以擾亂、遲滯、阻擋、摧毀、消滅對手元宇宙存在和運作為目的的認知攻防作戰。在這個領域中,誰的戰略運籌更高端、戰術運用更靈活、技術力量更先進、物質支撐更堅實,誰就能取得元宇宙認知戰主動權。

體系破襲。元宇宙是由一系列前沿技術所構成的認知系統,而體系性則是其固有屬性和活力保證。數位基礎、高效通訊、區塊鏈身分認證、全像AR成像、人工智慧、高效能互聯網等先進科技,構成結構緊密、功能耦合、體系完整的統一體,其中構件對思維認知的形成發展與攻防對抗缺一不可。很難想像缺乏高階階數位化、高品質通聯、高速度計算等先進技術群的支撐,元宇宙還有存在的可能性。運用優勢力量高壓強製或以非對稱戰法攻擊和阻斷對手元宇宙體系的關鍵節點和科技運行鏈條,阻遏其運作、壓制其功能、摧毀其存在,是元宇宙認知戰的重要樣式和高效路徑。

曲嚮導流。元宇宙存在發展的一個重要價值和意義在於服務支持現實世界關聯活動。正常情況下,元宇宙能夠以數位形式全景展示、展示、複盤和預測現實世界的相關活動。一旦虛實兩個世界的通聯受擾受阻或元宇宙內部自運行失序,很容易導致其反映的情況失實、分析的信息失真、推導的結論失效、提供的建議失策,使現實世界的關聯活動跑偏走向。正是基於此,可集中力量對對手元宇宙內部運作或兩個世界的通聯技術裝置進行誘導攻擊,用極具迷惑性欺騙性的信息和場景曲嚮導流,迷茫其認知,幹擾其判斷,誤導其決策。因此,應加強元宇宙作用認知戰追蹤研究,突顯元宇宙作用認知戰機制探索,強化促進認知戰理論建構。

(作者單位:軍事科學院軍事政治工作研究院)

中國軍事資源:https://www.81.cn/jfjbmap/content/2022-03/03/content_310888.htm

中國軍隊從“網路戰”到“馬賽克戰”

Chinese Military From “Cyber Warfare” to “Mosaic Warfare”

繁體中文原文:

理論是行動的先導。 加強作戰理念創新、推動作戰指導創新一直是世界各國軍隊培養軍事優勢的重要途徑。 近年來,美軍先後提出「網路戰」、「馬賽克戰」等前線作戰理論,以實現作戰模式的「生產關係」能夠更適應「生產力」的發展的作戰能力。 透過這兩種作戰理論的比較分析,世人可以一窺美軍作戰能力建設思維的變化,特別是對「馬賽克戰」制勝機制的認識,從而有的放矢,找到有效的把關。和餘額。

● 從威脅反應到戰爭設計—

積極塑造並推動作戰能力提升

「基於威脅」或「基於能力」是軍事作戰能力建構的兩種基本方式。 「威脅為本」體現需求牽引,著力解決近中期實際問題,是軍隊作戰能力建構應遵循的基本法則; 「能力為本」體現目標牽引,瞄準未來戰略任務,以新作戰理論支撐戰略理念,是軍事行動的關鍵。 這樣,才能實現能力的創新與超越。 從「網路戰」到「馬賽克戰」的發展,體現了上述兩種方式內在規律的差異和演變,也體現了近年來美軍推進作戰能力建設的思路和理念的變化。

觀念開始改變。 網路空間最初是為了解決人類的交流需求而創建的。 後來逐漸演變為獨立於陸、海、空、天的新作戰域。 由此衍生出以爭奪網路空間主導權為核心的「網路空間」。 相較之下,「馬賽克戰」是美軍為維持戰略優勢、直接針對競爭對手而主動研發設計的新作戰理念。其形成過程體現了需求驅動與能力驅動相結合、戰略性、主動性、牽引力更加突出。

技術應用新思路。 「網路戰」強調發展新一代技術來支持作戰理念的轉變和實施。 《馬賽克戰》突破了這個模式,並不過度強調新一代裝備技術的研發。 更注重軍民共性技術的快速轉化和成熟技術的漸進式迭代。 其基本想法是,依照叫車、眾籌開發等服務平台的應用理念,在現有裝備的基礎上,透過模組升級和智慧化改造,將各種作戰系統單元「鑲嵌」成單功能、可靈活組裝的單元。 、易於更換的“積木”或“像素”,建構動態協調、高度自主、無縫整合的作戰系統,體現新技術驅動的概念。

路徑開發新設計。 「網路戰」是網路空間的一個伴隨概念。 網路空間發展到哪裡,「網路戰」就會隨之而來。 一般來說,我們在進行「主觀」概念設計之前,先考慮「客觀」物質條件。 ,對路徑發展有很強的依賴。 「馬賽克戰」首先從「主觀」演變為「客觀」。 透過開發能夠動態調整職能結構的部隊設計模型,能夠適應不同的作戰需求和戰場環境的變化。

可見,與以往的「網路戰」等作戰概念相比,「馬賽克戰」目標更明確、技術更成熟、路徑更可靠,體現了美軍積極塑造的思維轉變。

● 從網路中心到決策中心—

群體智慧實現系統能量優化釋放

人工智慧技術是資訊時代的關鍵變量,也是「馬賽克戰」體系發展的核心增量。 “網路戰”強調“網路中心”,而“馬賽克戰”緊緊圍繞著人工智慧技術核心,將制勝關鍵從“網路中心”調整為“決策中心”,將作戰系統架構從“從系統級到平台級的聯盟轉變為功能級、要素級的融合,尋求在網路能量充分匯聚的前提下,利用群體智慧技術實現系統能量的最佳化釋放,賦予網路新的內涵。智慧戰爭的致勝機制

時代。

用“快”控制“慢”,在認知上佔上風。 未來戰爭中,戰場情勢瞬息萬變,時間元素的權重將持續上升。 「快」與「慢」可以產生近乎尺寸縮小的戰鬥打擊效果。 「馬賽克戰」利用資料資訊技術與人工智慧技術,提升己方「OODA」循環的單循環決策速度,擴大並行決策的廣度,降低群循環決策的粒度,加快系統運作進度,整體打造領先一步的典範。 「先發制人」的姿態旨在牢牢掌控戰場認知決策的主導地位。

用“低”控“高”,累積成本優勢。 與追求高端武器平台的傳統作戰概念不同,「馬賽克戰」著重於利用人工智慧技術挖掘現有武器平台和作戰資源的潛力並提高效率。 透過在眾多中低階武器平台上載入並運行智慧演算法和特定功能模組,可以實現與高階武器平台相媲美的作戰性能。 這整體提高了武器平台投入產出的成本效益,進而累積成本優勢。

以“散”控“聚”,求可持續生存。 「馬賽克戰」強調運用去中心化思想和非對稱制衡,利用開放的系統架構,在各種有人/無人平台上去中心化配置偵察、定位、通信、打擊等各種功能,實現力量的分佈式部署。 同時利用智慧演算法,提升各平台的自組織、自協調、獨立攻擊能力,進而實現集中火力。 當部分作戰平台被消滅、打亂或剝離時,整個作戰體系仍能正常運行,進而增強部隊集群的戰場生存能力。

用“動”控“靜”,提高系統靈活性。 「馬賽克戰」強調進一步突破各作戰領域的障礙。 透過將不同作戰域的固定“殺傷鏈”變成動態可重構的“殺傷網”,將“OODA”大環拆解為小環,將單環分化為多環。 根據作戰流程和作戰需求的變化,依靠智慧組網,實現作戰力量的動態分割、動態部署、動態組合。 這樣,一方面可以增強作戰系統的彈性和適應性; 另一方面,它也可以抵消複雜網路的節點聚合效應,使對手很難找到關鍵節點來擊敗自己的系統。

「馬賽克戰爭」為智慧戰爭提供了參考原型。 但同時,「馬賽克戰爭」作為一種理想化的力量設計與運用框架,也需要與其密切相關的技術、條令、政策等支撐支撐。 距離完全實現還有很長的路要走。 與傳統戰爭相比,系統共存的局面將長期存在。

● 從要素整合到系統重組—

動態結構增強作戰系統靈活性

結構和關係常常決定功能和屬性。 「網路戰」與「馬賽克戰」建立在資訊時代相同的物質基礎上,遵循相同的演化範式,但係統建構的原理和效果不同。 「網路戰」所形成的架構可以靜態解構,而「馬賽克戰」則依照一定的建構規則動態組合功能單元,形成具有自組織和自適應特性的彈性架構,類似「動態黑盒子」。 常規手段難以追蹤和預測。 這種靈活的結構經常「湧現」新的能力,以增強和提高作戰系統的效率。

網路與雲端融合發展,使作戰空間和時間更具動態性和可塑性。 網際網路和雲端是資訊作戰系統運作的基礎環境。 它們重塑了傳統作戰中的情報、指揮、攻擊、支援等流程要素,同時衍生出新的作戰時空。 「網路戰」主要針對網路空間,其作戰時間和空間相對靜態。 「馬賽克戰」並不限於單一的作戰空間。 在資訊基礎設施網路隨雲而動、雲端網融合的發展趨勢下

無形空間和無形空間可以進一步鉸接,作戰空間和時間的界限更加靈活,作戰資源的配置更加靈活。 戰鬥架構更加動態。

數據跨域流動,使戰鬥控制更加無縫協調。 在指揮控制環節,「網路戰」著重於聯合作戰指揮機構對作戰單位的指揮控制,資料的跨域交換與流動主要集中在戰區戰場。 「馬賽克戰」將聯合作戰的水平進一步降低到戰術端。 透過戰術層面資料的獨立跨域交換和無縫流動,可以將各種資料孤島按需聚集成資料集群,從而產生顯著的「溢出」效應,使得資料的動態、離散、敏捷、並行的特性作戰指揮控制迴路更加明顯,更有利於實現各作戰單元按需敏捷連動、高效協同行動。

演算法穿透各個維度,讓系統運作更自主、更有效率。 演算法是人類意識在網路空間的映射,形成兩種基本形式:意圖轉化的編譯碼和知識轉化的神經網路。 在《網路戰》中,大量使用編譯程式碼,而神經網路僅在本地使用。 在「馬賽克戰爭」中,演算法拓展到塑造規則和提供引擎兩大關鍵功能,應用的廣度和深度更為凸顯。 塑造規則以編譯碼為主,神經網路為輔,建構「馬賽克戰」系統的流程架構與運作邏輯,為其不確定性、適應性和「突現」能力奠定結構基礎; 提供引擎主要整合智慧演算法模型,分送到邊緣要素進行運算,形成知識擴散效應,從而全面提升「馬賽克戰」系統的智慧自主作戰能力。

邊緣能量的獨立釋放,讓戰鬥方式更靈活多元。 邊緣是各種有人/無人作戰功能單元的抽像模型,也是系統能力「湧現」的直接來源。 在「網路戰」體系中,邊緣要素與上級和下級指揮控制流程緊密耦合,處於精確控制狀態。 在「馬賽克戰爭」系統中,邊緣要素的感知、互動、推理、決策能力大幅提升。 其「OODA」循環無需回溯至上級指揮機構,有利於支撐形成高低、有人/無人的分散組合。 優化的作戰集群形態可以賦予邊緣分子更多的自組織權威,顯著增強戰場對抗優勢。

可見,如果說「網路戰」被稱為精密的戰爭機器,那麼「馬賽克戰」則可以被視為一個能夠激發作戰能力動態增長的複雜「生態」。 網路雲、資料、演算法和邊緣設備產生的新技術變化促進了動態且複雜的「架構」的形成。 這種結構反過來又對要素、平台和系統進行反向調節,不斷湧現新的能力,對作戰系統的賦能和演進發揮重要作用。

● 從制度突破到複合對抗——

分析利弊,尋求有效制衡

「馬賽克戰」在某種程度上代表了未來聯合作戰的可能發展方向。 要充分研究掌握「馬賽克戰」制勝機制,將資訊通信領域塑造成為打破傳統戰爭時空界限的新領域,打造雲化作戰新理念,建構強大的資訊通訊領域新格局。國防資訊基礎設施保障能力。 突顯軍事資訊網路安全防禦能力,增強戰略戰役指揮機構運作的基礎支撐能力,不斷完善網路資訊體系。

另一方面,「馬賽克戰」理論的出現,使得傳統作戰手段難以透過搶先並控制有限的目標節點來達到毀點、斷環的系統破局效果。 但也應該看到,任何制度都有其固有的矛盾。 即便是看似“無懈可擊”的去中心化結構的“馬賽克戰爭”,依然能找到有效破解的方法。 例如,掌握系統的複雜性特徵,利用其相關性和依賴性,突顯通訊網路的功能抑制

建構網路和電力複合攻擊路徑,實現作戰系統各單元的拆解和隔離; 掌握其結構的耗散特性,利用其對外部資訊的依賴,凸顯資訊資料的偽裝性和誤導性,促使作戰系統轉變為資訊封閉、資訊過載等異常狀態; 掌握其群體自主特點,利用其對關鍵技術的依賴,凸顯與智慧演算法的對抗,降低效率,抑制各作戰單元的智慧驅動力; 抓住其功能非線性特點,利用其未知漏洞,突出戰場差異化打擊評估,以更高的效率、更快的速度探索和發現作戰系統中的不平衡點,尋找系統中的關鍵弱點進行突破。

(作者單位:61001部隊)

外文音譯:

Chinese Military From “Cyber Warfare” to “Mosaic Warfare”

Theory is the precursor to action. Strengthening innovation in combat concepts and promoting innovation in combat guidance have always been important ways for militaries around the world to cultivate military advantages. In recent years, the U.S. military has successively proposed cutting-edge combat theories such as “cyber warfare” and “mosaic warfare” in order to realize that the “production relationship” of combat mode can be more adaptable to the development of “productivity” of combat capabilities. By comparing and analyzing these two combat theories, the world can get a glimpse of the changes in the US military’s combat capability building thinking, especially the understanding of the winning mechanism of “mosaic warfare”, so that it can be targeted and find effective checks and balances.

● From threat response to war design——

Actively shape and promote the improvement of combat capabilities

“Threat-based” or “capability-based” are two basic ways to build military combat capabilities. “Threat-based” embodies demand traction and focuses on solving practical problems in the near and medium term, which is the basic law that should be followed in the construction of military combat capabilities; “capability-based” embodies goal traction, aims at future strategic missions, and supports strategic concepts with new combat theories, which is the key to military operations. The only way to achieve innovation and transcendence in capabilities. The development from “cyber warfare” to “mosaic warfare” reflects the differences and evolution of the inherent laws of the above two approaches, and also reflects the changes in the US military’s ideas and concepts for promoting combat capability building in recent years.

The concept begins to change. Cyberspace was originally created to solve human communication needs. Later, it gradually evolved into a new combat domain independent of land, sea, air and space. From this, the “cyberspace” with the core of fighting for cyberspace dominance was derived. war”. In contrast, “mosaic warfare” is a new operational concept actively developed and designed by the US military in order to maintain its strategic advantage and directly target competitors. Its formation process reflects the integration of demand-driven and capability-driven, strategic, proactive, and Traction is more prominent.

New ideas for technology application. “Cyber ​​warfare” emphasizes the development of new generation technologies to support the transformation and implementation of combat concepts. “Mosaic warfare” breaks out of this model and does not overemphasize the research and development of new generation equipment technology. It pays more attention to the rapid transformation of common military and civilian technologies and the incremental iteration of mature technologies. The basic idea is to “mosaic” various combat system units into single-function, flexibly assembled units based on existing equipment and through module upgrades and intelligent transformation in accordance with the application concepts of service platforms such as online ride-hailing and crowdfunding development. , easy-to-replace “building blocks” or “pixels” to build a dynamically coordinated, highly autonomous, and seamlessly integrated combat system, embodying new technology-driven ideas.

Path development new design. “Cyber ​​warfare” is an accompanying concept of the cyberspace. Wherever the cyberspace develops, “cyber warfare” will follow. Generally speaking, we first consider the “objective” material conditions before making the “subjective” conceptual design. , has strong dependence on path development. “Mosaic warfare” first evolved from “subjective” to “objective”. By developing a force design model that can dynamically adjust the functional structure, it can adapt to different operational needs and changes in the battlefield environment.

It can be seen that compared with previous combat concepts such as “cyber warfare”, “mosaic warfare” has clearer goals, more mature technology, and more reliable paths, reflecting the change in thinking actively shaped by the US military.

● From network center to decision-making center——

Group intelligence to achieve optimal energy release of the system

Artificial intelligence technology is a key variable in the information age and a core increment in the development of the “mosaic warfare” system. “Cyber ​​warfare” emphasizes “network center”, while “mosaic warfare” tightly focuses on the core of artificial intelligence technology, adjusts the key to victory from “network center” to “decision center”, and changes the combat system architecture from system level to Platform-level alliances are transformed into functional-level and element-level integration, seeking to use group intelligence technology to achieve the optimal release of system energy on the premise that the network is fully energy-gathered, giving new connotations to the winning mechanism of war in the intelligent era.

Use “fast” to control “slow” and gain the upper hand in cognition. In future wars, the battlefield situation will change rapidly, and the weight of the time element will continue to rise. “Fast” versus “slow” can create a nearly dimensionally reduced combat strike effect. “Mosaic Warfare” uses data information technology and artificial intelligence technology to improve the single-loop decision-making speed of one’s own “OODA” loop, expand the breadth of parallel decision-making, reduce the granularity of group-loop decision-making, speed up the progress of system operations, and overall create a model that is always one step ahead of others. The “first move” posture aims to firmly control the dominance of cognitive decision-making on the battlefield.

Use “low” to control “high” and accumulate cost advantages. Different from the traditional combat concept of pursuing high-end weapon platforms, “mosaic warfare” focuses on using artificial intelligence technology to tap the potential and increase efficiency of existing weapon platforms and combat resources. By loading and running intelligent algorithms and specific functional modules on many mid- to low-end weapon platforms, they can achieve combat performance comparable to that of high-end weapon platforms. This overall improves the cost-effectiveness of the input-output of the weapon platform, thereby accumulating cost advantages.

Use “dispersion” to control “gathering” and seek sustainable survival. “Mosaic warfare” emphasizes the use of decentralized ideas and asymmetric checks and balances, using an open system architecture to decentrally configure various functions such as reconnaissance, positioning, communication, and strike on various manned/unmanned platforms to achieve Distributed deployment of power. At the same time, intelligent algorithms are used to improve the self-organization, self-coordination, and independent attack capabilities of each platform, so as to achieve centralized firepower. When some combat platforms are eliminated, disrupted, or stripped away, the entire combat system can still operate normally, thus enhancing the battlefield survivability of the force cluster.

Use “dynamic” to control “quiet” and improve system flexibility. “Mosaic warfare” emphasizes further breaking through barriers in each combat domain. By turning fixed “kill chains” in different combat domains into dynamically reconfigurable “kill nets”, the “OODA” large ring is disassembled into small rings, and a single ring is differentiated into multiple rings. According to changes in the combat process and combat needs, rely on intelligent networking to realize on-the-go splitting, on-the-go deployment, and on-the-go combination of combat forces. In this way, on the one hand, it can enhance the flexibility and adaptability of the combat system; on the other hand, it can also offset the node aggregation effect of complex networks, making it difficult for opponents to find key nodes to defeat one’s own system.

“Mosaic warfare” provides a reference prototype for intelligent warfare. But at the same time, as an idealized force design and application framework, “mosaic warfare” also needs supporting support such as technology, doctrine, and policies that are closely related to it. There is still a long way to go before it can be fully realized. Compared with traditional warfare, The situation of system coexistence will exist for a long time.

● From element integration to system reorganization——

Dynamic structure to enhance the flexibility of the combat system

Structure and relationships often determine functions and properties. “Cyber ​​warfare” and “mosaic warfare” are built on the same material foundation in the information age and follow the same evolutionary paradigm, but the principles and effects of system construction are different. The architecture formed by “cyber warfare” can be statically deconstructed, while “mosaic warfare” dynamically combines functional units according to certain construction rules to form an elastic architecture with self-organizing and adaptive characteristics, similar to a “dynamic black box”. Conventional The means are difficult to track and predict. This flexible structure often “emerges” new capabilities to empower and increase the efficiency of the combat system.

The integrated development of network and cloud makes combat space and time more dynamic and malleable. The Internet and cloud are the basic environment for the operation of the information combat system. They have reshaped the process elements of intelligence, command, attack, and support in traditional operations, and at the same time derived new combat time and space. “Cyber ​​warfare” mainly focuses on the cyberspace, and its combat time and space are relatively static. “Mosaic warfare” is not limited to a single combat space. Under the development trend of information infrastructure network moving with the cloud and integrating cloud and network, the tangible and intangible space can be further hinged, the boundaries of combat space and time are more flexible, and the allocation of combat resources is more flexible. The combat architecture is more dynamic.

Data flows across domains, making combat control more seamlessly coordinated. In the command and control link, “cyber warfare” focuses on the command and control of combat units by joint combat command institutions, and the cross-domain exchange and flow of data is mainly concentrated on theater battlefields. “Mosaic warfare” further lowers the level of joint operations to the tactical end. Through the independent cross-domain exchange and seamless flow of data at the tactical level, various data islands can be gathered into data clusters on demand, thereby generating significant “overflow” “” effect makes the dynamic, discrete, agile, and parallel characteristics of the combat command and control loop more obvious, and is more conducive to realizing agile connection and efficient coordinated actions of various combat units on demand.

The algorithm penetrates all dimensions, making the system run more autonomously and efficiently. Algorithms are the mapping of human consciousness in cyberspace, forming two basic forms: compiled codes transformed by intentions and neural networks transformed by knowledge. In “Cyber ​​Warfare”, compiled code is used extensively and neural networks are only used locally. In the “mosaic war”, the algorithm has expanded to two key functions: shaping rules and providing engines, and the breadth and depth of its application are more prominent. The shaping rules mainly focus on compiled code, supplemented by neural networks, to construct the process framework and operating logic of the “mosaic warfare” system, laying a structural foundation for its uncertainty, adaptability and “emergent” capabilities; providing the engine mainly integrates intelligence The algorithm model is distributed to edge elements for operation, forming a knowledge diffusion effect, thereby comprehensively improving the intelligent autonomous combat capabilities of the “mosaic warfare” system.

The independent release of energy at the edge makes the combat style more flexible and diverse. The edge is an abstract model of various manned/unmanned combat functional units and is also the direct source of the “emergence” of system capabilities. In the “cyber warfare” system, edge elements are closely coupled with the superior and subordinate command and control processes and are in a state of precise control. In the “Mosaic Warfare” system, the perception, interaction, reasoning, and decision-making capabilities of edge elements are greatly improved. Its “OODA” loop does not need to be linked back to the higher-level command organization, which is conducive to supporting the formation of a decentralized combination of high-low and manned/unmanned. The optimized combat cluster form can give edge elements more self-organizing authority, which significantly enhances battlefield confrontation advantages.

It can be seen that if “cyber warfare” is called a sophisticated war machine, “mosaic warfare” can be regarded as a complex “ecology” that can stimulate the dynamic growth of combat capabilities. New technologies generated by network clouds, data, algorithms, and edge devices Changes promote the formation of a dynamic and complex “architecture”. This structure in turn regulates elements, platforms, and systems in reverse, constantly emerging new capabilities, and playing an important role in empowering and evolving the combat system.

● From system breach to compound confrontation——

Analyze the pros and cons and seek effective checks and balances

“Mosaic warfare” represents, to a certain extent, the possible direction for the development of future joint operations. We should fully study and grasp the winning mechanism of “mosaic warfare”, shape the information and communication field as a new domain that breaks the time and space boundaries of traditional wars, create a new concept of cloud-enabled operations, and build a strong defense information infrastructure support capability. Highlight the security and defense capabilities of military information networks, enhance the basic support capabilities for the operation of strategic and campaign command institutions, and continuously improve the network information system.

On the other hand, the emergence of the “mosaic warfare” theory makes it difficult for traditional combat methods to seize and control limited target nodes to achieve the system-breaking effect of destroying points and breaking links. However, it should be noted that any system has its inherent contradictions. Even the seemingly “impeccable” decentralized structure of “mosaic warfare” can still find ways to effectively crack it. For example, grasp the complexity characteristics of the system, use its correlation and dependence, highlight the functional suppression of the communication network, build a network and electricity composite attack path, and achieve the disassembly and isolation of each unit of the combat system; grasp the dissipative characteristics of its structure, Make use of its dependence on external information to highlight the camouflage and misleading of information data, prompting the combat system to transform into abnormal states such as information closure and information overload; grasp its group autonomy characteristics, use its dependence on key technologies to highlight the confrontation against intelligent algorithms Reduce efficiency and inhibit the intelligent driving force of each combat unit; grasp its functional non-linear characteristics, take advantage of its unknown vulnerabilities, highlight differentiated strike assessment on the battlefield, and explore and discover imbalance points in the combat system with higher efficiency and faster speed , looking for key weaknesses in the system to break.

(Author’s unit: Unit 61001)

中國軍事資源:http://www.mod.gov.cn/gfbw/jmsd/4894888.html