Category Archives: 認知域戰

Future Proofing China’s National Defense & Military An Important Aspect of Chinese-style Modernization

面向未來的中國國防和軍隊是中國式現代化的重要面向

現代英語:

Soldiers are a major event for the country. In the great journey of “building a powerful country and rejuvenating the nation, and against the background of the accelerated evolution of major changes unseen in the world in a century, building and consolidating national defense and a strong people’s army are directly related to the future and destiny of the country and the nation”. The Third Plenary Session of the 20th Central Committee of the Communist Party of China pointed out that “national defense and military modernization are important components of Chinese-style modernization”, which fully reflects the great importance that the Party Central Committee with Comrade Xi Jinping as the core attaches to national defense and military construction, and provides guidance for national defense and military modernization on the new journey. Modernization points out the direction.

  The modernization of the national defense and military is the security guarantee and strategic support for Chinese-style modernization

  ”If you fall behind, you will be beaten. Only when the army is strong can the country be safe”. Without a strong army, there can be no strong state. After the Opium War in 1840, modern China was repeatedly defeated in its battles with Western powers. The vast country gradually became a semi-colonial and semi-feudal society, with the country humiliated, the people in trouble, and civilization in dust. History has inspired us that the Chinese nation’s emergence from suffering and the liberation of the Chinese people depend on a heroic people’s army; to comprehensively promote the great cause of building a powerful country and national rejuvenation with Chinese-style modernization, we must place national defense and military modernization as a barrier to national security, plan and deploy in strategic positions based on career development, and accelerate the construction and consolidation of national defense and a strong people’s army.

  The modernization of the national defense and military is closely linked and internally unified with Chinese-style modernization. Without the modernization of national defense and the military, there would be no Chinese-style modernization. Comrade Mao Zedong once profoundly pointed out “the original requirements for building socialism were industrial modernization, agricultural modernization, scientific and cultural modernization, and now we must add national defense modernization”; Comrade Deng Xiaoping also emphasized “four modernizations, one of which is national defense modernization”, these all reflect the great importance our party attaches to national defense and military construction.

  Since the 18th National Congress of the Communist Party of China, President Xi has always adhered to the integrated operation of strengthening the country and the military, put national defense and military modernization in the chess game of Chinese-style modernization, and opened up the road to strengthening the military with Chinese characteristics, forming a new strategy for national defense and military modernization by 2027, 2035, and the middle of this century, a new “three-step” strategy for national defense and military modernization that connects near, medium and long-term goals Created a new situation in the cause of strengthening the military. Guided by the party’s goal of strengthening the military in the new era, we will comprehensively implement the strategy of reforming and strengthening the military, promote the reform of the leadership and command system, the reform of scale structure and force organization, and the reform of military policies and systems. Our military’s organizational structure will achieve historic changes, and the force system will achieve revolutionary changes. Reshaping, the basic framework of the socialist military policy system with Chinese characteristics has been constructed and formed. Our military system has been completely new, its structure has been completely new, its pattern has been completely new, and its appearance has been completely new It has laid a solid foundation for the modernization of national defence and the army.

  Military means, as a means of guaranteeing the realization of great dreams, can only stop a war if it can be fought. The current and future periods are critical periods for comprehensively promoting the great cause of building a powerful country and rejuvenating the nation through Chinese-style modernization, and will inevitably encounter various risks, challenges and even turbulent waves. We must comprehensively modernize our national defense and military, build the People’s Army into a world-class military, effectively guarantee Chinese-style modernization, and safeguard national sovereignty, security, and development interests.

   Comprehensive and accurate grasp of the scientific connotation of national defense and military modernization

  Since the 18th National Congress of the Communist Party of China, President Xi has issued a series of important expositions around “Chinese-style modernization”, summarizing the Chinese characteristics, essential requirements and major principles for the formation of Chinese-style modernization, building a theoretical system for Chinese-style modernization, and promoting the new era and new journey. Chinese-style modernization provides scientific guidance and also carries out strategic design and scientific deployment for national defense and military modernization.

  The most fundamental thing about modernizing the national defense and military is to uphold the absolute leadership of the party over the military. The leadership of the Party is the fundamental guarantee of Chinese-style modernization, which determines the fundamental nature of Chinese-style modernization, and it must also determine the fundamental nature of national defense and military modernization. To promote the modernization of national defense and the military on the new journey, we must fully implement a series of fundamental principles and systems for the party to lead the people’s army, comprehensively and thoroughly implement the chairman’s responsibility system of the Military Commission, and effectively unify thoughts and actions into the decisions and arrangements of the Party Central Committee and President Xi; Adhere to the party’s management of cadres and talents, and highlight political standards and combat capabilities Ensure that the barrel of the gun is always in the hands of those who are loyal and reliable to the party; improve the comprehensive and strict governance of the party system, enhance the political and organizational functions of party organizations at all levels, and integrate the party’s leadership throughout the entire process of continuing to deepen national defense and military reforms in all aspects.

  To modernize national defense and the military is to modernize military doctrine, military organization, military personnel, and weapons and equipment. This reflects the inherent requirements for the construction of military forces resulting from changes in the concept of victory in modern warfare, elements of victory and methods of victory, and clarifies the main signs of the basic realization of national defence and military modernization. To realize the modernization of military theory is to keep pace with the times, innovate war and strategic guidance, and form a military theoretical system that is contemporary, leading, and unique; to realize the modernization of organizational form is to deepen the reform of national defense and the military, and the military force structure layout is scientific and reasonable, strategic deterrence capabilities are consolidated and improved, new areas and new quality combat forces continue to grow, and elite operations, system support, and joint victory have become the basic application models; To realize the modernization of military personnel is to deeply implement the strategy of strengthening the military with talents in the new era, promote the comprehensive transformation and upgrading of military personnel’s capabilities, structural layout, and development management, and forge high-quality, professional new military talents with both ability and political integrity; to realize the modernization of weapons and equipment, It is necessary to focus on strengthening national defense scientific and technological innovation and accelerating the development of strategic, cutting-edge and disruptive technologies Accelerate the upgrading of weapons and equipment and the development of intelligent weapons and equipment.

  For the modernization of national defence and the military, we must adhere to the integrated development of mechanization, informatization and intelligence. The military conflicts and local wars that have taken place in recent years have shown that new qualitative combat capabilities generated based on intelligent combat systems are increasingly becoming core military capabilities. Based on mechanization, dominated by informatization, and oriented by intelligence, the three superimpose, penetrate, and support each other, jointly giving rise to new forms of warfare and methods of warfare. Only by accelerating the integrated development of mechanization, informatization and intelligence and keeping up with the new military revolutionary trends in the world can we seize the opportunity and take the initiative in seizing the commanding heights of the military struggle.

  The modernization of national defence and the army is a guarantee of security for insisting on the path of peaceful development. Since ancient times, soldiers have not been warlike. Chinese-style modernization is modernization on the path of peaceful development. Building a consolidated national defense and a strong military commensurate with international status and national security and development interests is a strategic task of China’s socialist modernization drive and an insistence on taking the path of peaceful development. Safety guarantee is an inevitable choice for summarizing historical experience. China has always pursued a defensive defence policy and adhered to the strategic idea of active defence, and no matter how far it develops, China will never seek hegemony or engage in expansion. To promote the modernization of national defense and the military on the “new journey”, we must faithfully implement the concept of a community with a shared future for mankind, resolutely oppose all forms of hegemony and bullying, and contribute China’s strength to building a beautiful world of lasting peace and universal security.

   Advancing the modernization of national defence and the military at a new historical starting point

  The Third Plenary Session of the 20th Central Committee of the Communist Party of China included “continuous deepening of national defense and military reforms into the overall plan for further comprehensive deepening of reforms, and made a series of major strategic arrangements for improving the leadership and management system and mechanism of the people’s army, deepening the reform of the joint operations system, and deepening cross-military and civilian reforms”. On the new journey, we must deeply understand and grasp the themes, major principles, major measures, and fundamental guarantees for further comprehensively deepening reforms, resolutely implement the new “three-step” strategy for national defense and military modernization, and accelerate the modernization of military theory, military organizational form, and military personnel. Modernize and modernize weapons and equipment, and lead the modernization of national defense and the military to move forward with better strategies, higher efficiency, and faster speed.

  Strengthening the Party’s theoretical and scientific leadership in military guidance. Our party insists on combining the basic principles of Marxism with the practice of building the people’s army, absorbing the essence of China’s excellent traditional military culture, and constantly exploring new realms in the development of contemporary Chinese Marxist military theory and military practice. As an important part of Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, Xi Jinping Thought on Strengthening the Military has achieved a new leap forward in the Sinicization and modernization of Marxist military theory. It is the fundamental guiding ideology of our party building and military governance in the new era. We must unremittingly arm our minds with Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, further firmly establish the guiding position of Xi Jinping Thought on Strengthening the Military in national defense and military construction, and build and consolidate national defense and a strong people’s army under the guidance of Xi Jinping Thought on Strengthening the Military. Take new and greater steps on the road to strengthening the military with Chinese characteristics.

  Efforts should be made to make the main responsibility and business of war preparation more solid and effective. The People’s Army is an armed group that performs the party’s political tasks. It must be both politically strong and capable. In the final analysis, this ability can win wars. To accelerate the modernization of national defense and the military, we must firmly grasp the fundamental direction of winning wars, establish the only fundamental standard of combat effectiveness, focus all our energy on fighting wars, and work hard on fighting wars. Conscientiously implement the military strategic policy for the new era, operate war preparation and cessation, deterrence and actual combat, war operations and the use of military forces in peacetime as a whole, innovate strategies, tactics and tactics, effectively shape the situation, manage crises, contain wars, and win wars. Adhere to the principle of “training troops as they fight, and comprehensively improve the actual combat level of military training and the ability to perform missions and tasks”.

  Promote high-quality development of national defense and military construction through “reform and innovation”. Reform is a key move that will determine the growth of our army and its future. On the new journey, we must put innovation at the core of the overall military construction and development, transform development concepts, innovate development models, enhance development momentum, and promote the transformation of national defense and military modernization from quantitative growth to qualitative improvement. Focus on integrating national defense and military construction into the national economic and social development system on a wider scale, at a higher level, and to a deeper extent, continuously improve the quality and efficiency of national defense and military modernization, promote the simultaneous improvement of national defense strength and economic strength, and consolidate and improve the integration National strategic system and capabilities, and constantly write a new chapter of strengthening the country and the military.

現代國語:

時間:2024年11月15日 08:20 來源:解放軍報
兵者,國之大事。在強國建設、民族復興偉大征程中,在世界百年未有之大變局加速演進的背景下,建構鞏固國防和強大人民軍隊直接關係國家和民族的前途命運。黨的二十屆三中全會指出,“國防和軍隊現代化是中國式現代化的重要組成部分”,充分體現了以習近平同志為核心的黨中央對國防和軍隊建設的高度重視,為新征程上國防和軍隊現代化建設指明了方向。

國防與軍隊現代化是中國式現代化的安全保障與戰略支撐

落後就要挨打,軍強才能國安。沒有一支強大的軍隊,就不可能有強大的國家。 1840年鴉片戰爭以後,近代中國在與西方列強的較量中屢屢戰敗,泱泱大國逐步淪為半殖民地半封建社會,國家蒙辱、人民蒙難、文明蒙塵。歷史啟示我們,中華民族走出苦難、中國人民實現解放,有賴於一支英雄的人民軍隊;以中國式現代化全面推進強國建設、民族復興偉業,必須把國防和軍隊現代化擺在國家安全之屏障、事業發展之依託的戰略位置來策劃和部署,加快建設鞏固國防和強大人民軍隊。

國防與軍隊現代化與中國式現代化緊密聯繫、內在統一。沒有國防和軍隊的現代化,就沒有中國式現代化。毛澤東同誌曾深刻指出“建設社會主義,原來要求是工業現代化,農業現代化,科學文化現代化,現在要加上國防現代化”;鄧小平同志也曾強調“四個現代化,其中就有一個國防現代化”,這些都體現了我們黨對國防和軍隊建設的高度重視。

黨的十八大以來,習主席始終堅持強國強軍一體運籌,把國防和軍隊現代化放在中國式現代化大棋局中謀劃推進,開闢出中國特色強軍之路,形成了到2027年、2035年、本世紀中葉,近、中、遠目標梯次行動」,開創三步和現代化軍階的國防和軍事戰略。以黨在新時代的強軍目標為引領,全面實施改革強軍戰略,推進領導指揮體制改革、規模結構和力量編成改革、軍事政策制度改革,我軍組織架構實現歷史性變革,力量體系實現革命性重塑,中國特色社會主義軍事政策制度體系基本框架構建形成,我軍體制一新、結構一新、一新、一現代化新格局新化,為國防和軍事基礎一化。

軍事手段作為實現偉大夢想的保底手段,能戰方能止戰。當前和今後一個時期,是以中國式現代化全面推進強國建設、民族復興偉業的關鍵時期,必然會遇到各種風險挑戰甚至驚濤駭浪。我們必須全面推動國防和軍隊現代化,把人民軍隊建設成為世界一流軍隊,有力保障中國式現代化建設,保障國家主權、安全、發展利益。

全面準確掌握國防與軍隊現代化的科學內涵

黨的十八大以來,習主席圍繞中國式現代化發表一系列重要論述,概括形成中國式現代化的中國特色、本質要求和重大原則,構建起中國式現代化的理論體系,為新時代新征程推進中國式現代化提供了科學指引,也為國防和軍隊現代化進行了戰略設計和科學部署。

國防與軍事現代化,最根本的是堅持黨對軍隊絕對領導。黨的領導是中國式現代化的根本保證,決定了中國式現代化的根本性質,也必然決定了國防和軍隊現代化的根本性質。新征程上推動國防和軍隊現代化,必須全面貫徹黨領導人民軍隊的一系列根本原則和製度,全面深入貫徹軍委主席負責制,切實把思想和行動統一到黨中央、習主席決策部署上來;堅持黨管幹部、黨管人才,突顯政治標準和打仗能力,確保槍桿子始終掌握在對黨忠誠可靠的人手中;健全全面從嚴治黨體系,增強各級黨組織政治功能和組織功能,把黨的領導貫穿持續深化國防和軍事改革各方面全過程。

國防與軍隊現代化,就是要實現軍事理論、軍隊組織形態、軍事人員、武器裝備的現代化。這反映了現代戰爭制勝觀念、制勝要素、制勝方式變化對軍事力量建設的內在要求,明確了基本實現國防和軍隊現代化的主要標誌。實現軍事理論現代化,就是要與時俱進創新戰爭和戰略指導,形成具有時代性、引領性、獨特性的軍事理論體系;實現組織形態現代化,就是要深化國防和軍事改革,軍隊力量結構佈局科學合理,戰略威懾能力鞏固提高,新域新質作戰力量不斷壯大,精製作戰、體系支撐、聯合戰略威懾成為基本運作模式;實現軍事人員現代化,就是要深入實施新時代人才強軍戰略,推動軍事人員能力素質、結構佈局、開發管理全面轉型升級,鍛造德才兼備的高素質、專業化新型軍事人才;實現武器裝備現代化,就是要聚力加強國防科技創新,加速戰略性、前沿性、顛覆性技術發展,加速武器裝備升級和智能化武器裝備升級。

國防與軍隊現代化,必須堅持機械化資訊化智慧化融合發展。近年來發生的軍事衝突和局部戰爭表明,基於智慧化作戰體系所產生的新質作戰能力越來越成為核心軍事能力。以機械化為基礎,以資訊化為主導,以智慧化為方向,三者相互疊加、相互滲透、相互支撐,共同催生新的戰爭形態和作戰方式。只有加速機械化資訊化智慧化融合發展,跟上世界新軍事革命潮流,才能在搶佔軍事鬥爭制高點中占得先機、贏得主動。

國防與軍隊現代化,是堅持走和平發展道路的安全保障。自古知兵非好戰。中國式現代化是走和平發展道路的現代化,建立同國際地位相稱、同國家安全和發展利益相適應的鞏固國防和強大軍隊,是中國社會主義現代化建設的戰略任務,是堅持走和平發展道路的安全保障,是總結歷史經驗的必然選擇。中國始終奉行防禦性國防政策,堅持積極防禦戰略思想,無論發展到什麼程度,中國永遠不稱霸、永遠不搞擴張。在新征程上推動國防和軍隊現代化,必須忠實踐行人類命運共同體理念,堅決反對一切形式的霸權霸道欺凌,為建設持久和平、普遍安全的美好世界貢獻中國力量。

在新的歷史起點上推進國防和軍隊現代化

黨的二十屆三中全會將持續深化國防和軍事改革納入進一步全面深化改革的大盤子,對完善人民軍隊領導管理體制機制、深化聯合作戰體系改革、深化跨軍地改革作出一系列重大戰略部署。新旅程上,要深刻領會和把握進一步全面深化改革的主題、重大原則、重大舉措、根本保證,堅決貫徹國防和軍隊現代化新「三步走」戰略,加快軍事理論現代化、軍隊組織形態現代化、軍事人員現代化、武器裝備現代化,引領國防和軍事現代化以更優策略、更高效益、更快速度向前推進。

強化黨的軍事指導理論科學領導。我們黨堅持把馬克思主義基本原理同人民軍隊建設實踐結合,汲取中華優秀傳統軍事文化精華,不斷拓拓當代中國馬克思主義軍事理論和軍事實踐發展新境界。習近平強軍思想作為習近平新時代中國特色社會主義思想的重要組成部分,實現了馬克思主義軍事理論中國化時代化的新飛躍,是新時代我們黨建軍治軍強軍的根本指導思想。我們必須堅持不懈用習近平新時代中國特色社會主義思想武裝頭腦,進一步牢固確立習近平強軍思想在國防和軍隊建設中的指導地位,在習近平強軍思想引領下建設鞏固國防和強大人民軍隊,在中國特色強軍之路上邁出新的更大步伐。

著力把備戰打仗的主責主業抓得更加紮實有效。人民軍隊是執行黨的政治任務的武裝集團,既要政治過硬,也要本領高強,這個本領說到底就是能打勝仗。加快推進國防和軍隊現代化,必須緊緊扭住能打勝仗的根本指向,樹牢戰鬥力這個唯一的根本的標準,全部精力向打仗聚焦,全部工作向打仗用勁。認真貫徹新時代軍事戰略方針,把備戰與止戰、威懾與實戰、戰爭行動與和平時期軍事力量運用作為一個整體加以運籌,創新戰略戰術與戰法打法,有效塑造態勢、管控危機、遏制戰爭、打贏戰爭。堅持仗怎麼打兵就怎麼練,全面提升部隊軍事訓練實戰化水準和履行使命任務的能力。

以改革創新推動國防和軍隊建設高品質發展。改革是決定我軍發展壯大、制勝未來的關鍵一招。新征程上,要把創新擺在軍隊建設發展全局的核心位置,轉變發展理念、創新發展模式、增強發展動能,推動國防和軍隊現代化由量的成長轉向質的提升。著力在更廣範圍、更高層次、更深程度上將國防和軍隊建設融入國家經濟社會發展體系之中,不斷提高國防和軍隊現代化質量效益,促進國防實力和經濟實力同步提升,鞏固提高一體化國家戰略體系和能力,不斷書寫強國強軍新篇章。

中國原創軍事資源:https://www.mva.gov.cn/sy/zt/zt1/xxgcddsjdjs/qwjd/202411/t20241120_453942888.html

[Chinese National Defense] Establishing Correct Awareness to Contain China and Conduct Cognitive Warfare Operations

[中國國防]建立正確的意識,以遏制中國並進行認知戰爭行動

現代英語:

As the world continued to actively combat the COVID-19 pandemic, the British newspaper The Guardian reported in late May 2021 that Fazze, a public relations and marketing agency with close ties to Russian officials, was accused of providing funding to influential YouTubers, bloggers, and other opinion leaders in France, Germany, and other European countries to spread false information claiming that vaccines like Pfizer (BNT) and AstraZeneca (AZ) had caused hundreds of deaths. The false information also criticized the EU vaccine procurement system for harming public health in European countries, with the goal of sowing public distrust of Western vaccines and shifting public acceptance toward Russia’s Sputnik V vaccine. This is the most significant example of “perception warfare” in recent international history.

 In fact, human society has always adhered to the principle of “conquering the enemy without fighting” as the guiding principle for optimal military operations. While traditional warfare still primarily takes place in physical space, victory requires the physical capture of cities and territories, as well as the destruction of enemy forces. However, as humanity’s understanding of the nature of war deepens, the use of information technology has become a new trend in warfare, enabling the achievement of traditional combat effectiveness without the need for physical engagement. Given the increasing attention paid to “information warfare” and “hybrid warfare,” this article discusses the closely related concept of “cognitive warfare,” exploring the emerging threats facing our country and our national defense response strategy.

 Whether it’s what the US calls “hybrid warfare” or what Russia calls “information warfare,” the implications are quite similar: centered on the cognitive realm, the use of information to influence and manipulate targets, encompassing both peacetime public opinion and wartime decision-making. The rise of Nazi Germany after World War I was arguably the first modern regime to master the use of information to shape perceptions within its own country and even abroad. Its successful use of propaganda and lies, delivered through various communication technologies, was highly successful. Principles such as “repetition is power” and “negative information is more easily accepted and remembered than positive information” would later profoundly influence authoritarian governments, including Russia.

 Using information capabilities to subvert national regimes

 At the beginning of the 21st century, Russia began to pay attention to the situation where international discourse power was completely controlled by Western countries. It successively put forward theories such as “Information Warfare Theory” and “Sixth Generation Warfare Theory”, arguing that the sixth generation of warfare is a non-contact war that uses precision weapons and information warfare to traverse the battlefield. The purpose of war is no longer a devastating global war, but to achieve effects that cannot be achieved through traditional warfare by exploiting the enemy’s information capabilities to exploit its weaknesses, including changing social and cultural orientations and values, and thus subverting national regimes.

 In 2005, Russia established the international news channel “Russia Today.” Initially focused on soft power propaganda, it shifted its focus after the 2008 Georgian War to attacking negative aspects of Western society and fostering conspiracy theories. The 2014 Ukraine crisis became a training ground for Russian information warfare forces. Using electronic jamming and cyber theft, they intercepted Ukrainian communications, inferring subsequent Ukrainian actions and releasing damaging information at critical moments. They also targeted sensitive issues in eastern Ukraine, including the status of ethnic Russians and economic downturn, distributing a large amount of carefully selected, targeted information to resonate with the public, influencing their perceptions and behavior and gaining control of media opinion. In terms of “cognitive warfare,” Russia’s approach has been successful, and has become a model for the Chinese Communist Party.

 Manipulating “brain control” to control the public

 In 2014, the Chinese Communist Party (CCP) proposed the cognitive operational concept of “brain control,” building on its past “three warfares” of psychological warfare, legal warfare, and public opinion warfare, as well as Russia’s theoretical framework of “information warfare.” It states that a nation’s cognitive space is composed of the superposition of countless individuals, and that “brain control” uses national languages, propaganda media, and cultural products as weapons to comprehensively infiltrate and control the cognition, emotions, and consciousness of the general public and national elites, ultimately distorting, disintegrating, and reshaping their national spirit, values, ideology, history, and culture, thereby achieving the strategic goal of winning without fighting.

 Therefore, the CCP’s “cognitive operations” fall under the broad category of psychological warfare. In the era of information globalization, it integrates information warfare, psychological warfare, and public opinion warfare, becoming the core of the CCP’s overall strategy. Since the 2016 military reform, it has been led by the newly formed “Strategic Support Force” and implemented at all political and military levels. On the one hand, the PLA has adopted American operational thinking in the field of “cognitive operations,” using units such as the 311 Base, the National University of Defense Technology, and the Academy of Military Sciences to develop tactics such as “psychological operations,” “ideological operations,” “consciousness manipulation,” and “strategic communication” to strengthen the “cognitive operations” capabilities jointly constructed by military-civilian integration and joint combat systems. On the other hand, it uses professional personnel to operate media platforms, shape the public opinion environment, and introduce “cognitive operations” into the actual combat application stage.

 The CCP’s recent “cognitive warfare” offensive against Taiwan reveals its methods and tactics. First, the CCP primarily uses the internet to collect personal data from Taiwanese citizens, using big data databases to categorize information by target group, based on political leanings, age, occupation, and other factors. Second, it leverages intelligence gathering to launch targeted cognitive attacks on specific social media platforms, influencing the psychology of the targeted groups, particularly by releasing disinformation to weaken and distract Taiwanese society. Third, it employs online virtual organizations to set up fake social media accounts, infiltrate online communities, and disguise themselves as whistleblowers, deliberately spreading fabricated information to create confusion. Cybertroopers then massively repost and discuss this information, manipulating audience perceptions and creating a cycle of disrupting information retention, manipulating cognitive psychology, and altering thinking patterns.

 Identify fake news and fight back together

 At this stage, the CCP’s campaign for “brain control” over Taiwan aims to influence Taiwanese society’s cognition, distorting public opinion, devaluing democratic values, intensifying opposition, disrupting political conditions, and undermining public trust in the government. The following preventive measures can be taken within the national defense system:

 1. Strengthening educational functions

 Through national defense education in schools, institutions, and society, we will raise the public’s awareness of the threat posed by the CCP’s “cognitive warfare” and their ability to identify false information, and cultivate the habit of rationality, verification, and calmness.

 2. Follow the constraints

 Although there are currently no internationally accepted legal rules that can clearly define the extent to which cognitive warfare constitutes an act of war, making it even more difficult to hold people accountable, media platforms can still strengthen the review of their own reporting content in accordance with existing regulations, and the public can also refrain from spreading suspicious information and following the trend of tennis melee, so as to facilitate the establishment of information verification measures and mechanisms.

 3. Combining Military and Civilian Strength

 Incorporate information and communication-related institutions and industries into the national defense mobilization mechanism, coordinate in peacetime the review, analysis, and disposal of fake news, strengthen talent training and research cooperation, and enhance the capabilities of professional units of the government and the national army; in wartime, cooperate with the overall national actions and carry out countermeasures.

 Currently, Taiwan already has the National Security Bureau’s National Security Operations Center responsible for responding to controversial information from hostile foreign forces. There’s also the non-profit Taiwan Fact-Checking Center. Facing the challenges of cognitive warfare, we must continue to integrate various sectors, strive for international intelligence exchange and experience sharing, optimize the media environment, collaborate across multiple channels, and instantly identify the authenticity and source of information, jointly building our offensive capacity to respond to cognitive warfare.

 Conclusion

 In reality, all countries around the world face threats related to cognitive warfare and information-based psychological warfare. However, democratic and free societies are by no means vulnerable to cognitive warfare attacks and must instead rely on diverse strategies and methods to protect them. We aim to establish a more comprehensive and substantive framework, build a powerful counterforce, and enhance the quality and discernment of our citizens, thereby gaining immunity from the CCP’s cognitive warfare campaign to seize control of our minds.

(The author is a PhD candidate at the Institute of Strategic Studies, Tamkang University)

現代國語:

在全球持續積極對抗新冠疫情之際,英國《衛報》2021年5月下旬報道,與俄羅斯官員關係密切的公關和營銷機構Fazze被指控向法國、德國和其他歐洲國家頗具影響力的YouTube用戶、博主和其他意見領袖提供資金,用於傳播虛假信息,聲稱輝瑞(BNTAZ)和阿斯特利康(BNTAZ)和阿斯特疫苗已導致數百人死亡。這些假訊息也批評歐盟疫苗採購體系損害了歐洲國家的公共衛生,目的是挑起大眾對西方疫苗的不信任,並促使大眾接受俄羅斯的Sputnik V疫苗。這是近代國際史上最顯著的「感知戰」案例。

事實上,人類社會自古以來,均以「不戰而屈人之兵」作為最佳軍事行動指導原則,儘管傳統戰爭主要仍在物理空間進行,需透過實際攻城掠地、消滅敵有生力量,才能獲得勝利。然隨人類對戰爭本質認知深化,利用資訊科技,於不需實體短兵相接的情況下,卻能達到傳統戰爭效果,已成為新型態戰爭趨勢。鑑於「資訊戰」、「混合戰」日益受重視,謹就與其密切相關的「認知作戰」概念進行論述,並探討我國所面臨的新型威脅及全民國防因應策略。

無論是美國所稱的「混合戰」,或俄國所說的「資訊戰」,其實指涉意涵很相似,即以認知領域為核心,利用訊息影響、操控對象目標涵蓋承平時期輿論及戰時決策的認知功能。一戰後,逐漸興起的納粹德國,可謂當代首個擅長運用資訊形塑本國,甚至外國民眾認知的政權,其透過各種傳播技術的政治宣傳與謊言包裝,相當成功;而所謂「重複是一種力量」、「負面訊息總是比正面訊息,更容易讓人接受和印象深刻」等實踐原則,日後更深刻影響專制極權政府與現在的俄羅斯。

藉資訊能力 顛覆國家政權

俄國於進入21世紀初,開始注意國際話語權遭西方國家完全掌控的情形,陸續提出「資訊戰理論」、「第6代戰爭理論」等論述,主張第6代戰爭是以精確武器及資訊戰,縱橫戰場的非接觸式戰爭,戰爭目的不再是毀滅性的全球大戰,而是藉利用敵方弱點的資訊能力,達成傳統戰爭無法實現的效果,包括改變社會文化取向、價值觀,進而顛覆國家政權等。

2005年,俄國成立國際新聞頻道「Russia Today」,起初主要是軟實力宣傳,2008年「喬治亞戰爭」後,轉為攻擊西方社會負面問題與製造陰謀論;2014年「烏克蘭危機」,成為俄軍資訊戰部隊的練兵場,透過電子干擾、網路竊密等手段,截收烏國對外通聯訊息,依此推判烏方後續舉動,並選擇在關鍵時機,釋放對烏國政府不利消息;另選定烏東地區敏感議題,包括俄裔民族地位、經濟不振等,投放大量經篩選的特定資訊,引發民眾共鳴,從而影響烏東人民認知與行為,取得媒體輿論主動權。就「認知作戰」言,俄國作法是成功的,更成為中共的效法對象。

操弄「制腦權」 控制社會大眾

中共2014年於過去心理戰、法律戰、輿論戰等「三戰」基礎,以及俄國「資訊戰」理論架構上,提出「制腦權」認知操作概念,指國家認知空間係由無數個體疊加而成,「制腦」是以民族語言、宣傳媒體、文化產品為武器,全面滲透、控制社會大眾與國家精英之認知、情感與意識,最終扭曲、瓦解、重塑其民族精神、價值觀念、意識形態、歷史文化等,達致不戰而勝的戰略目標。

是以,中共「認知作戰」屬於廣義心理戰範疇,是資訊全球化時代,融合資訊戰、心理戰及輿論戰的戰法,成為中共整體戰略主軸,並自2016年「軍改」後,由新組建的「戰略支援部隊」操盤,在各政略、軍事層次開展執行。一方面,共軍擷取美國在「認知作戰」領域的操作思維,以311基地、國防科技大學、軍事科學院等單位研提「心理作戰」、「思想作戰」、「意識操縱」、「戰略傳播」等戰法,以加強軍民融合及聯戰體系共同建構的「認知作戰」能力;另一方面,則以專業人員操作媒體平臺,形塑輿論環境,將「認知作戰」導入實戰運用階段。

從近年中共對臺進行的「認知作戰」攻勢,可拆解其途徑與手段。首先,中共主要係以網路蒐集國人個資,透過大數據資料庫,劃分政治傾向、年齡、職業等不同目標族群資訊;其次,配合情報偵蒐,針對個別社群媒體展開認知精準打擊,影響目標群眾心理,尤其釋放假訊息,以削弱、分散臺灣社會注意力;再次,則運用網路虛擬組織設置社群媒體假帳號,打入網路族群,偽裝成揭密者、吹哨者,刻意傳散變造資訊,製造混亂,再由網軍大量轉傳、討論,操弄受眾認知,進入阻斷資訊記憶、操縱認知心理、改變思考模式的運作循環。

識別假訊息 全民齊反制

基於現階段,中共對臺「制腦權」作戰,影響臺灣社會認知的目的,在於扭曲輿論、貶低民主價值、激化對立、擾亂政情、減損民眾對政府信任等,於全民國防體系可採取的防制辦法包括:

一、強化教育功能

分別透過全民國防之學校教育、機關教育、社會教育途徑,提高公眾對中共「認知作戰」威脅的認識,與對假訊息識別能力,養成理性、查證、冷靜習慣。

二、遵循約束規範

儘管目前尚無國際通用的法律規則,可明確定義何種程度的認知作戰已構成戰爭行為,更難以究責;然各媒體平臺仍可按既有規範,對自身報導內容加強審查,民眾也可做到不傳播可疑訊息、不跟風網壇混戰,俾利訊息查證措施與機制建立。

三、結合軍民力量

將資訊與傳播相關機構、產業,納入全民防衛動員機制,平時協調因應假訊息審查、分析、處置,加強人才培訓、研究合作,提升政府、國軍專業單位能力;戰時則配合國家整體作為,執行反制任務。

目前我國已有國安局「國家安全作業中心」執行對境外敵對勢力爭議訊息應處有關工作,民間亦有非營利組織成立的「臺灣事實查核中心」。面對「認知作戰」挑戰,仍應持續整合各界力量,爭取國際情報交流與經驗共享,優化媒體環境,多管道合作,即時辨識訊息真偽與來源,共同建設應處「認知作戰」攻勢能量。

結語

事實上,世界各國都同樣面臨「認知作戰」、「資訊心理戰」等相關威脅,然民主自由的社會環境,絕非易受「認知作戰」攻擊的溫床,更需仰賴多元策略與方式守護。期以更完善周全的實質架構,建構強而有力的反制力量,並提升我國公民素質及識別能力,於中共奪取「制腦權」的認知作戰中,獲得免疫。

(作者為淡江大學戰略研究所博士)

中國原創軍事資源:https://www.ydn.com.tw/news/newsInsidePage?chapterID=1431550

Implementation of the “Outline of Joint Cooperation” Within the People’s Liberation Army of China

中國人民解放軍內部實施《聯合合作綱要》

現代英語:

With the approval of Xi Jinping, Chairman of the Central Military Commission, the Central Military Commission issued the “Outline of Joint Cooperation between the People’s Liberation Army of China (Trial Implementation)”, which will come into effect on November 7, 2020.

The Outline focuses on building a legal system for joint operations and strengthening the clear orientation of preparing for war. It is of great significance to consolidate and deepen the results of the reform of the leadership and command system, scale structure and force composition, and to promote the liberation and development of our military’s joint operations capabilities.

The Outline is the top-level regulation of our military’s new-era combat doctrine system. It focuses on clarifying the basic issues of joint combat organization and implementation, unifying combat thinking, clarifying responsibilities and procedures, and guiding combat operations. It also clarifies major principles, requirements, and basic procedures for joint combat command, combat operations, combat support, national defense mobilization, and political work.

The Central Military Commission requires that all levels should earnestly study and implement the “Outline”, adhere to combat effectiveness as the only fundamental standard, use the “Outline” as the basic basis for organizing and implementing joint operations and joint training, and comprehensively improve the ability to win in the new era.

The battle flag hunt, the military parade ground was full of ups and downs, and the climaxes continued——

From north to south, the surging iron torrents train elite soldiers; in the deep blue ocean, soldiers step on the waves to forge sharp swords; above the vast sky, eagles fly thousands of miles towards the blue sky; deep in the dense forests, the east wind roars to the sky; the skynet controls power, and the invisible war defeats the visible… One after another joint combat exercises are gradually unfolding in multiple domains and all dimensions, presenting a picture of a strong army that trains together to plan for war, uses training to promote war, and wins war through strong training, sounding the strong note of a new era in the history of our army’s training and preparation.

Over the past year, the world has been undergoing unprecedented changes unseen in a century, intertwined with the global COVID-19 pandemic. Under the sky shrouded by the epidemic, the international situation has been in constant turmoil and confrontation. The drone warfare that has shined in the Nagorno-Karabakh conflict has shown the world the unique characteristics of modern warfare.

“When times change, things change. When things change, we must be prepared for change.” In the future, “what kind of war to fight and how to fight it” carries the heavy mission, and the entire military is surging with enthusiasm for researching and winning wars.

Faced with new changes in the national security situation, new threats from powerful enemies and adversaries, and new developments in the form of warfare, we urgently need to provide answers to strengthening the military, winning battles, and meeting the needs of the times.

“Overall, modern warfare has indeed undergone profound changes. These changes may seem dazzling, but there are regularities behind them. The fundamental thing is that the winning mechanism of war has changed.” Faced with the rapid development of the new world military revolution and changes in the war situation, under the guidance of the commander-in-chief and in accordance with the unified deployment of the CMC’s policy and system reforms, the CMC Joint Staff Department organized experts from the Academy of Military Sciences and capable personnel from relevant departments of the CMC, various theater commands, various military services and armed police forces to form a joint research group to pool wisdom and strength to tackle key problems and advance the formulation of new-era combat regulations.

On November 7, 2020, the “Outline of the Joint Cooperation Warfare of the People’s Liberation Army of China (Trial Implementation)” was implemented throughout the army, marking a new coordinate system for our army’s joint cooperation war in the new era.

Since the issuance of the Outline, commanders have taken the lead in learning it, agencies have taken the lead in studying it, and troops have practiced learning it. The officers and soldiers of the whole army have been enthusiastic about learning and publicizing the Outline. A great discussion on joint operations in the new era, a great liberation of thoughts, and a great practice of preparation for war have been vigorously carried out in the whole army.

Pointing to victory, leading the new practice of preparing for war in the new era

“Following the main road, who would you follow to seek a shortcut?” In the world of soldiers, there is no such thing as “easy”. The only way to win a battle is to be prepared.

What kind of war we will fight in the future will require innovative tactics; if we cannot innovate tactics, it will be difficult to win future wars.

In essence, combat regulations are about solving the problem of how to fight and how to win, and are the refinement, deepening and concretization of military strategic policies. The Outline of Joint Cooperation of the People’s Liberation Army of China (Trial) (hereinafter referred to as the Outline) deeply studies the characteristics and laws of future wars, accurately grasps the era characteristics of the integrated development of mechanization, informatization and intelligentization of our army, and through the forward-looking and concrete design of future operations, implements the spiritual essence and content requirements of the new era’s military strategic policy into the troops’ preparation for war.

The Outline is not only a guideline for preparing for war, but also a guideline for winning joint operations.

At the beginning of the new year of 2021, a certain area of the Eastern Theater Command is organizing a multi-service, multi-directional, systematic combat training. Under the guidance of the newly issued “Outline”, this exercise involves the full-domain linkage of land, sea, air, space, network and electric power, close coordination of political and public opinion, and information-led throughout the entire process from combat preparation to situation shaping to mission implementation. All units work closely together, demonstrating the firm determination and strong ability to maintain national unity with a thunderous momentum, and also witnessing the transformation of our military joint cooperation from “formal linkage” to “spiritual linkage”.

In the west, at midnight in mid-spring 2021, a series of urgent alarm bells rang. According to the level transfer order of a certain base of the Western Theater Air Force, the officers and soldiers of a certain air defense battalion of the Army quickly rushed to their positions, and the level transfer time was further shortened. According to the unified deployment, more than 10 Army air defense forces in the theater air force responsibility area entered the Air Force command chain in an organized manner, breaking the information barrier of the services, sharing early warning information, and jointly taking on combat readiness duty, and initially forming a joint air defense combat system. “You lend me the ‘eye in the sky’, and I will help you with the ‘iron fist'”, the integrated joint air defense combat across the services has taken a new step and entered a new stage.

In the north, at the beginning of the summer of 2021, war eagles soared and iron currents rolled, and an exercise with the theme of air-ground joint operations was in full swing. According to the plan, a certain command post of the Air Force of the Northern Theater Command and a certain group army of the Army jointly organized a brigade-level command post exercise to study and explore the composition of joint command institutions and test the integrated joint combat command capabilities of the command post personnel. Intelligence analysis and processing, joint firepower strikes, and integrated rear-end support were coordinated and planned and carried out in an integrated manner, and the command institutions were organized in an integrated manner with all elements. Through repeated joint combat and training, the policy of leading training through combat and carrying out combat through training has been further implemented, and the joint combat and command capabilities of commanders of all services and arms have been significantly improved.

In the direction of the South China Sea, war eagles roared and attacked fiercely, dragons took off and stepped on the sea and waves, radars flew and missiles raised their heads… Under the unified command of the theater joint command, all mission forces worked as a whole and coordinated closely to quickly build a battlefield layout that was multi-domain joint, both offensive and defensive, and deployed in echelons. They adopted a combination of centralized command and decentralized command, and flexibly carried out sea and air escort and deterrence and expulsion in a reasonable, forceful and restrained manner, effectively maintaining peace and tranquility in the South China Sea.

In the past year since the implementation of the Outline, the orientation of preparing for war has become clearer and firmer, the sole fundamental standard of combat effectiveness has been more firmly established, training and preparation for war as the main responsibility of the troops has become more prominent, researching and planning war as the primary responsibility of officers and soldiers has become clearer, the ideas and measures for joint operations and victory have become increasingly effective, and the entire army has continued to set off a new upsurge in training and preparation for war.

Keep pace with the times and clarify the new mechanism of joint cooperation in the new era

“All beneficial ways go with the times.”

Military theorist Douhet once said: “Victory smiles only on those who can foresee the changes in the character of war, not on those who wait for the changes to happen and then adapt to them.”

Looking around the world, the game and struggle among major powers are intensifying, the threat of war exists, the war situation continues to evolve, new military reforms are booming, stealth, unmanned and intelligent weapons and equipment have become the mainstream trend, the battlefield space has expanded to all domains and dimensions, the integrated linkage of combat forces has become the norm, combat command, action and support have become more sophisticated, and winning future wars requires the support of more advanced combat theories.

The gap in combat concepts is the fundamental gap, and the backwardness of combat theory is the biggest backwardness. When modern wars are surging in the world, what is most needed is newer and braver minds.

The new-era combat regulations, led by the Outline, adhere to Xi Jinping’s military strategic thinking and the new-era military strategic policy as the soul and outline, deeply grasp the new changes in national security, new adjustments in combat opponents, new designs in strategic layout, new connotations of active defense, and new developments in combat guidance, and materialize the principles and methods of commanders’ understanding and guidance of war into norms and standards for the specific implementation of the troops, so as to promote our military-joint cooperation war to a higher level.

——It comprehensively expounds the contemporary connotation of war guidance under information conditions.

The Outline aims to win future high-end wars, accurately grasps the characteristics of lowered thresholds for future armed conflicts, blurred boundaries of war, and increasingly prominent mutual influence and efficiency between the war field and other fields, strengthens the political and social attributes of combat operations, innovatively develops military struggle paradigms, emphasizes relying on the country’s integrated strategic system and capabilities, emphasizes the integration of war and non-war domains, emphasizes the comprehensive implementation of military and political, diplomatic, economic, cultural and other means, and gives full play to the overall advantages of the party, government, military, police and people. It reflects the modern war concept and the war guidance for winning the people’s war and total war in the new era.

——All elements standardize the style and methods of our joint military operations.

The Outline is based on the tasks and development of our army, and systematically expounds on the possible joint operations in the future, covering the core missions of various strategic directions, covering land, sea, air, space, network and electromagnetic multi-dimensional space. At the same time, it also creatively summarizes the basic types of joint operations, highlights the basic actions that run through the joint operations and have common characteristics, and forms a closed-loop chain of joint operations with all elements and in all fields.

——The joint combat command system and organizational operation mode were designed throughout the entire process.

The implementation of joint operations organizations is extremely complex and difficult. Whether they can be “coordinated” in terms of strength, “joined” in operations, and “excellent” in effectiveness depends crucially on whether they can achieve “unification” in command. The “Outline” focuses on building a strong and efficient joint operations command structure, closely integrates the Central Military Commission and the theater joint command operation model mechanism, fully considers that it not only complies with the general direction and general requirements of the reform, but also leaves room for flexible formation in practice. It focuses on solving major issues such as the construction of a joint operations command system, the differentiation of command authority and responsibility interfaces, and the integration of services into the joint system, so as to ensure that thousands of troops and horses can jointly act under unified orders.

Taking joint training as the guideline, promoting a new leap forward in joint training in the new era

At the Central Military Commission’s military training conference, President Xi Jinping stressed the need to strengthen joint training, adhere to joint training as the key, develop a joint training system with Chinese characteristics, and accelerate the improvement of integrated joint combat capabilities. Soldiers should be trained in the way they fight, and troops should be trained in what is needed for fighting. Today’s world-class armies all regard improving joint training as the top priority for war preparation.

The Outline is the opening chapter of the new era combat doctrine and the guiding principle for the transformation of joint training in the new era. The Outline provides direction, inspires vitality, and gives birth to a new pattern of joint training in the new era.

——Incorporate combat into training to present an “integrated posture” of training.

In the Taiwan Strait, the naval and air fleets carried out joint combat readiness patrols to test and enhance the joint combat capabilities of multiple services, maintain a high state of alert at all times, and resolutely defend national sovereignty and territorial integrity. Exercise preparation is combat preparation, and the exercise state is the combat state. Joint military exercises are no longer simple training activities, but have become a preparation process to promote combat readiness and enhance capabilities. Joint training, the “source” and “main stream” full of power, is guiding and driving the in-depth advancement and vigorous development of military struggle preparations, and fully unleashing the role and effectiveness of training to carry out combat and training to promote preparations.

——Systematic training has become the “new normal” of joint training.

“East”, “South”, “West”, “North”, and “Central” are joint live-fire exercises organized by various theater commands, “Crossing”, “Mobility”, “Red Sword”, “Sky Sword”, and “Joint Logistics Mission” are series of systematic exercises organized by various services, covering all seasons, all weather, and all regions. The CMC, theater commands, and services are responsible for division of labor, overall design, and systematic organization. They are decomposed from top to bottom and integrated from bottom to top, driving the operation and inspection of the joint combat system. Joint exercises and systematic training present a new look, and new changes have taken place in the training and preparation mode. Our military’s joint training has entered a new stage of all-round transformation and overall improvement.

——Joint training between China and foreign countries highlights the “integration” of joint exercises.

At the foot of the Helan Mountains and in the heart of the Bronze Gorge Desert, the “Western Joint-2021” China-Russia joint exercise was booming. In this joint exercise, the Chinese and Russian militaries were mixed and planned together. The two sides shared their positions, coordinated closely, and acted together. They practiced more than 20 subjects such as joint air defense, joint obstacle removal, and joint three-dimensional seizure. With the support of the deeply integrated combat system between China and Russia, new breakthroughs in joint exercises and training were achieved. “Maritime Joint”, “Common Destiny”, “Peace Mission”… With the joint training between China and foreign countries as a “window”, the new changes in the joint training of the Chinese military are being brilliantly presented to the world.

——Intensive training in new domains, demonstrating an “open attitude” in research and warfare.

In joint exercises, underwater unmanned “fish schools”, land unmanned “wolf packs”, and air unmanned “bee swarms” began to emerge. New domains and new types of forces such as land aviation, special operations, electric power, unmanned, network, and aerospace were deeply integrated into the joint combat system and the joint exercise process, and realistic combat scenarios were carefully constructed to accurately experiment with modern war organization and management. As the most active practice area for preparing for war, joint training, with an innovative and open attitude, boldly tried and made great strides towards the new combat areas pointed out in the Outline.

Integrating war and construction to shape a new pattern of system construction in the new era

President Xi stressed that we must adhere to the principle of building the country in accordance with war, strengthen the coordination of war and construction, speed up the promotion of major strategic, leading and fundamental projects, and accelerate the creation of a high-level strategic deterrence and joint combat system.

If the “trouble” in the construction of the joint combat system is not resolved quickly, once the “interest” of the debt accumulates, it will become a “pain” on the battlefield tomorrow. From the perspective of war, the “Outline” calibrates the “sight” of construction and firmly points to the correct direction of military construction.

——Calibrate the construction “sight” to point to the needs of joint operations.

Under the guidance of the Outline, the concept of jointness has been gradually established, and the barriers of “coordination” of military operations and “integration” of combat domain capabilities have been gradually broken down. The land, sea, air, and fire arms have been combined in the same domain, and cross-domain integration of combat domains such as space, network, and electromagnetic space has gradually become a reality. With the support of the network information system and combat data information as the link, a full-time and smooth command link has been built. The system is internally connected to each combat sub-center, and is connected to each combat group (team) command post. When necessary, it can directly reach the end of the individual platform to achieve joint command to the end. All operational forces worked together around the overall intention, realizing the transformation of the joint combat concept from focusing on the “service attributes” of combat forces to focusing on the “operational domain”, which has become the main feature of future joint combat. Studying, planning, and training for war with the “Outline” has become a trend throughout the military.

——Calibrate construction’s “sights” to point to system shortcomings and weaknesses.

Based on the Outline, our army insists on combining inheritance and innovation, theory and practice, innovatively designs strategies for winning future wars, focuses on highlighting problem orientation, takes root in training and preparation for war, promotes the construction of joint combat command system and new combat force construction, and effectively solves the outstanding shortcomings and weaknesses in military combat preparation. In mid-May 2021, the Party Committee of the Northern Theater Command held a special war meeting, and in accordance with the Outline, thoroughly identified contradictions and problems in joint combat research, command and control mode transformation, joint handling level, and efficient command capabilities. According to the Outline, it optimized system support, improved command and control methods, and improved command means, which promoted the transformation of the operation mode of the theater joint command center and the improvement of command effectiveness. Looking across the entire military, similar practices are becoming more and more common. Referring to the Outline to find gaps, ideas, and methods in the near and long term has become the new mainstream for planning and promoting construction at all levels and in all fields.

——Calibrate the construction “sight” to point to the urgent need to balance powerful enemies.

To implement the principle of building the military in accordance with war and coordinating the military construction, we must not only focus on solving current practical problems, but also pay attention to solving long-term development problems. The Outline is anchored on the future of defeating the strong and contains a far-sighted plan to build a world-class military. Guided by the Outline and focusing on changes in the war situation and changes in scientific and technological development, the construction of asymmetric means to check and balance powerful enemies has ushered in a qualitative leap. Batches of new drones, new helicopters and other advanced weapons and equipment have been tested and deployed, and a series of high-tech equipment has been deployed and developed, which has given us more confidence and stronger capabilities to win the war. The Outline condenses the “war code” of historical wisdom and also integrates the way to build first-class and win the future in the new era.

“But look at the path you have come from, and you will see verdant and green mountains.” One year after the implementation of the Outline, the new-era combat regulations are releasing capabilities and increasing efficiency in building a joint combat system with Chinese military characteristics.

In the new era and new journey, our path of joint military operations will surely become broader, our ability to defend the country’s strategic development interests will surely become stronger, our confidence in winning future informationized wars will surely become firmer, and the great goal of building a world-class military will surely be fully realized.

“We have a string that is tightly tied to us, a mission that we shoulder, and a storm that we are watching closely… We are always ready!”

現代國語:

經中央軍委主席習近平批准,中央軍委印發《中國人民解放軍聯合作戰綱要(試行)》,於2020年11月7日起施行。

《綱要》著眼構建聯合作戰法規體系,強化備戰打仗的鮮明導向,對鞏固深化領導指揮體制、規模結構和力量編成改革成果,對推動我軍聯合作戰能力解放和發展,具有重要意義。

《綱要》是我軍新時代作戰條令體系的頂層法規,重在明確聯合作戰組織實施的基本問題,重在統一作戰思想、釐清權責程序、指導作戰行動,明確聯合作戰指揮、作戰行動、作戰保障、國防動員、政治工作等重大原則、要求和基本程序。

中央軍委要求,各級要認真抓好《綱要》的學習貫徹,堅持戰斗力這個唯一的根本的標准,將《綱要》作為組織實施聯合作戰和聯合訓練的基本依據,全面提高新時代打贏能力。

戰旗獵獵,演兵場上風起雲湧、高潮迭起——

大江南北,鐵流澎湃礪精兵;深藍大洋,蹈海踏浪鑄利劍;蒼穹之上,鵬飛萬裡向碧空;密林深處,東風浩蕩嘯九天;天網制權,無形之戰勝有形……一場場聯合作戰演練在多域全維漸次展開,鋪陳出一幅幅聯訓謀戰、以訓促戰、強訓勝戰的強軍畫卷,奏響著我軍練兵備戰史上新的時代強音。

一年來,世界百年未有之大變局交織全球新冠疫情之大流行,疫霾籠罩的天空之下,國際局勢波瀾不斷,伴隨著動蕩和對抗,納卡沖突中大放異彩的無人機作戰,向世界展現出現代戰爭獨有的特征。

“世異則事異,事異則備變。”未來“打什麼仗、怎麼打仗”承載著使命之重,全軍上下處處湧動著研戰謀勝的熱潮。

面對國家安全形勢新的變化,面對強敵對手新的威脅,面對戰爭形態新的演進,迫切需要我們給出強軍答案,給出勝戰答案,給出時代答案。

“總的看,現代戰爭確實發生了深刻變化。這些變化看上去眼花繚亂,但背後是有規律可循的,根本的是戰爭的制勝機理變了。”面對迅猛發展的世界新軍事革命和戰爭形態變化,在統帥指引下,按照軍委政策制度改革統一部署,軍委聯合參謀部組織軍事科學院專家力量和軍委機關有關部門、各戰區、各軍兵種和武警部隊精干人員成立聯合課題組,集智聚力攻關,緊前推動新時代作戰條令制定工作。

2020年11月7日,《中國人民解放軍聯合作戰綱要(試行)》在全軍施行,標定了新時代我軍聯合作戰新的坐標系。

《綱要》頒發以來,指揮員率先領學、機關帶頭熱學、部隊實際踐學,全軍官兵學習宣貫《綱要》熱潮奔湧,一場新時代聯合作戰大討論、思想大解放、備戰大實踐,在全軍部隊蓬勃開展。

劍指勝戰,引領新時代備戰打仗新實踐

“遵通衢之大道兮,求捷徑欲從誰?”軍人的世界,沒有“容易”二字。勝戰之道,唯有備戰。

未來打什麼樣的仗,就要創新什麼樣的戰法;創新不了戰法,就難以打贏未來的戰爭。

作戰條令實質上就是解決如何打仗、怎麼打贏的問題,是對軍事戰略方針的細化、深化和具體化。《中國人民解放軍聯合作戰綱要(試行)》(以下簡稱《綱要》)深入研究未來戰爭特點規律,准確把握我軍機械化、信息化、智能化融合發展的時代特征,通過對未來作戰的前瞻性具象化設計,將新時代軍事戰略方針的精神實質和內容要求具體落實到部隊備戰打仗實踐中去。

《綱要》既是備戰指導綱要,更是聯戰勝戰綱要。

2021年新春伊始,東部戰區某區域,正在組織一場多軍種多方向成體系實戰化訓練。此次演練,在新出台的《綱要》引領下,陸海空天網電全域聯動,政治輿論密切配合,從作戰准備到態勢塑造再到任務實施,全流程信息主導,各單位密切協同,以雷霆萬鈞之勢彰顯了維護國家統一的堅定決心和強大能力,也見證了我軍聯合作戰由“形聯”到“神聯”的蛻變。

西部方向,2021年仲春午夜,一陣急促的警鈴聲響起,根據西部戰區空軍某基地等級轉進指令,陸軍某防空營官兵迅速奔向戰位,等級轉進時間進一步縮短。按照統一部署,戰區空軍責任區內,10余支陸軍防空力量成建制進入空軍指揮鏈條,打破軍種信息壁壘,實現共享預警信息、共同擔負戰備值班,初步形成聯合防空作戰體系。“你借我‘天眼’,我助你‘鐵拳’”,跨軍兵種的一體化聯合防空作戰邁出了新步伐,進入了新階段。

北部方向,2021年盛夏之初,戰鷹翱翔,鐵流滾滾,一場以空地聯合為主題的演習正在火熱進行。根據計劃,北部戰區空軍某指揮所與陸軍某集團軍共同組織軍旅兩級指揮所演習,研究探索聯合指揮機構編成,檢驗指揮所人員一體化聯合作戰指揮能力。情報分析處理、聯合火力打擊、綜合後裝保障等環節協同籌劃、一體展開,指揮機構人員一體編設、要素齊全。在一次次聯戰聯訓的淬煉下,以戰領訓、以訓載戰進一步落地落實,各軍兵種指揮員的聯合作戰指揮能力得到明顯提升。

南海方向,戰鷹呼嘯、攻勢凌厲,蛟龍出動、蹈海踏浪,雷達飛轉、導彈昂首……在戰區聯指的統一指揮下,各任務部隊一體聯動、密切協同,迅速構建起多域聯合、攻防兼備、梯次部署的戰場布勢,采取集中指揮與分散指揮相結合的方式,靈活機動開展海空護航和威懾驅離,有理有力有節,有效維護了南海的和平與安寧。

《綱要》施行一年來,備戰打仗的導向更加鮮明堅定,戰斗力這個唯一的根本的標准樹得更牢,練兵備戰作為部隊主責主業更加突出,研戰謀戰作為官兵第一責任更加清晰,聯戰勝戰的思路舉措越來越見成效,全軍持續掀起練兵備戰新的熱潮。

與時俱進,釐清新時代聯合作戰新機理

“凡益之道,與時偕行。”

軍事理論家杜黑曾言:“勝利只向那些能預見戰爭特性變化的人微笑,而不是向那些等待變化發生再去適應的人微笑。”

放眼世界,大國博弈斗爭加劇,戰爭威脅現實存在,戰爭形態持續演進,新軍事變革蓬勃發展,武器裝備隱身化、無人化、智能化成為主流趨勢,戰場空間向全域全維拓展,作戰力量一體聯動成為常態,作戰指揮、行動和支援保障更趨精細,打贏未來戰爭需要更加先進的作戰理論支撐。

作戰理念的差距才是根本的差距,作戰理論的落後才是最大的落後。當現代化戰爭在世界洶湧澎湃的時候,最需要的是更新銳、更勇敢的頭腦。

以《綱要》為統領的新時代作戰條令,堅持把習近平軍事戰略思想、新時代軍事戰略方針作為魂和綱,深刻把握國家安全新變化、作戰對手新調整、戰略布局新設計、積極防御新內涵、作戰指導新發展,將統帥認知戰爭、指導戰爭的原則和方法,物化為部隊具體執行的規范標准,推進我軍聯合作戰邁向更高層次。

——全維度闡述了信息化條件下戰爭指導的時代內涵。

《綱要》瞄准打贏未來高端戰爭,准確把握未來武裝沖突門檻降低、戰爭界限模糊,戰爭領域與其他領域的斗爭相互影響增效日漸突出等特點,強化作戰行動的政治、社會屬性,創新發展軍事斗爭范式模式,強調依托國家一體化戰略體系和能力,強調戰與非戰多域融合,強調軍事與政治、外交、經濟、文化等多手段綜合施策,發揮黨政軍警民整體優勢,反映了現代戰爭理念和打贏新時代人民戰爭、總體戰的戰爭指導。

——全要素規范了我軍聯合作戰行動樣式和行動方法。

《綱要》立足我軍擔負任務和建設發展實際,對未來可能實施的聯合作戰樣式進行了系統闡述,覆蓋各戰略方向核心使命,遍及陸、海、空、天、網絡和電磁多維空間。同時,還創造性地總結歸納了聯合作戰基本行動類型,將貫穿聯合作戰始終並具有共性特征的基本行動突出出來,形成全要素全領域聯合行動的閉環鏈路。

——全流程設計了聯合作戰指揮體系及組織運行方式。

聯合作戰組織實施復雜度極高、難度極大,能否在力量上“合”、行動上“聯”、效能上“優”,關鍵要看指揮上能否實現“統”。《綱要》圍繞打造堅強高效的聯合作戰指揮機構,緊密結合軍委、戰區聯指運行模式機制,充分考慮到既順應改革大方向和總要求,又為實際中靈活編組留有余地,重點解決聯合作戰指揮體系構建、指揮權責界面區分、軍種融入聯合體系等重大問題,確保千軍萬馬在統一號令下聯合行動。

以聯為綱,推動新時代聯合訓練新躍升

一引其綱,萬目皆張。習主席在中央軍委軍事訓練會議上強調,要強化聯合訓練,堅持以聯為綱,發展我軍特色聯合訓練體系,加速提升一體化聯合作戰能力。仗怎麼打、兵就怎麼練,打仗需要什麼、部隊就應該練什麼。當今世界一流軍隊,無不把提高聯合訓練水平視為戰爭准備的第一要務。

《綱要》是新時代作戰條令的開篇之作,也是新時代聯合訓練轉型的指向遵循。《綱要》指引著方向,《綱要》激發著活力,催生了新時代聯合訓練的新格局。

——寓戰於訓,呈現訓備“一體態”。

台灣海峽,海空編隊實施聯合戰備警巡,檢驗提升多軍兵種聯合作戰能力,時刻保持高度戒備狀態,堅決捍衛國家主權和領土完整。演練准備就是作戰准備,演練狀態就是作戰狀態,聯合演兵不再是單純的訓練活動,已經成為推進備戰、提升能力的准備過程。聯合訓練這個充滿力量的“源頭”“干流”,正在牽引、帶動軍事斗爭准備深入推進、蓬勃發展,充分釋放以訓載戰、以訓促備的作用功效。

——體系實訓,成為聯訓“新常態”。

“東部”“南部”“西部”“北部”“中部”,各戰區組織的一場場聯合實兵演習,“跨越”“機動”“紅劍”“天劍”“聯勤使命”,各軍兵種組織的系列體系化演訓,覆蓋了全季節、全天候、全地域。軍委機關、戰區、軍兵種分工負責,整體化設計、體系化組織,從上到下逐級分解,從下向上逐級集成,帶動聯合作戰體系運轉檢驗。聯合演訓、體系練兵呈現新氣象,練兵備戰模式出現新變化,我軍聯合訓練進入了全方位變革、整體性提升的新階段。

——中外聯訓,突顯聯演“融合態”。

賀蘭山下,青銅峽大漠腹地,“西部·聯合-2021”中俄聯演炮聲隆隆。此次聯演,中俄兩軍混合編組、合帳籌劃,雙方態勢共享、密切協同、聯合行動,演練聯合防空、聯合破障、聯合立體奪要等20余個課目,在中俄深度融合的作戰體系支撐下,實現聯演聯訓的新突破。 “海上聯合”“共同命運”“和平使命”……以中外聯訓為“窗口”,中國軍隊聯合訓練的新變化正在向世界精彩呈現。

——新域精訓,展現研戰“開放態”。

一場場聯合演練活動中,水下無人“魚群”、陸上無人“狼群”、空中無人“蜂群”開始真正湧現,陸航、特戰、電抗、無人、網絡、空天等新域新質力量,深度融入聯合作戰體系,深度進入聯合演練流程,精細構設現實作戰場景,精准實驗現代戰爭組織管理。作為備戰打仗最活躍的實踐領域,聯合訓練以創新、開放的姿態,朝著《綱要》指出的新型作戰領域,大膽嘗試、闊步前進。

戰建一體,塑造新時代體系建設新格局

習主席強調指出,要堅持以戰領建,加強戰建統籌,抓緊推進戰略性、引領性、基礎性重大工程,加快打造高水平戰略威懾和聯合作戰體系。

聯合作戰體系建設上的“患”,如不加快解決,一旦欠賬“復息”疊加,就將成為明天戰場上的“痛”。《綱要》從戰的角度,校准建的“准星”,堅定地指向軍隊建設正確的方向。

——校准建設“准星”指向聯合作戰所需。

在《綱要》指引下,聯合理念逐步確立,軍兵種行動“配合”、作戰域能力“整合”的壁壘逐漸被打破,陸、海、空、火等軍兵種並域聯合,太空、網絡、電磁空間等作戰域跨域融合逐步成為現實。以網絡信息體系為支撐,以作戰數據信息為紐帶,構建起全時暢通的指揮鏈路。系統內聯各作戰分中心,下接各作戰群(隊)指揮所,必要時直達單兵平台末端,實現聯合指揮到底到邊。各行動力量圍繞整體意圖共同發力,實現了聯合作戰理念以作戰力量“軍種屬性”為著眼,向以“作戰域”歸屬為著眼的轉變,成為未來聯合作戰的主要特征。拿著《綱要》研打仗、謀打仗、練打仗,在全軍上下蔚然成風。

——校准建設“准星”指向體系短板弱項。

以《綱要》為依據,我軍堅持繼承與創新、理論與實踐相結合,創新設計未來戰爭制勝之策,注重突出問題導向,植苗扎根練兵備戰,推進聯合作戰指揮體系建設、新型作戰力量建設,有效解決了軍事斗爭准備的突出短板弱項。2021年5月中旬,北部戰區黨委召開專題議戰會,對照《綱要》深入查找聯合作戰研究、指控模式轉變、聯合處置層次、高效指揮能力等方面的矛盾問題,依據《綱要》優化體系支撐、改進指控方法、完善指揮手段,推動了戰區聯指中心運行模式轉變和指揮效能提升。放眼全軍,類似的做法越來越多,參照《綱要》顧近及遠找差距、找思路、找方法,成為各層級各領域謀劃推動建設的新主流。

——校准建設“准星”指向制衡強敵所急。

落實以戰領建、戰建統籌,既要立足解決當前實際問題,又要注重解決長遠發展問題。《綱要》錨定未來制強勝強,蘊含著建設世界一流軍隊的深遠謀劃。以《綱要》為引領,著眼戰爭形態之變、科技發展之變,制衡強敵非對稱手段建設迎來了質的飛越。一批批新型無人機、新式直升機等先進武器裝備試驗列裝,一系列高新技術裝備部署研發,我們勝戰的底氣更足、能力更強。《綱要》濃縮了歷史智慧的“戰爭法典”,也融匯了新時代建設一流、制勝未來的勝戰之道。

“卻顧所來徑,蒼蒼橫翠微。”《綱要》施行一年來,新時代作戰條令正在為構建我軍特色的聯合作戰體系釋能增效。

新時代新征程,我軍聯合作戰之路必將更加寬廣,捍衛國家戰略發展利益的能力必將更加強大,打贏未來信息化戰爭的信心必將更加堅定,建設世界一流軍隊的偉大目標必將全面實現。

“有一根弦我們緊繃著,有一種使命我們肩扛著,有一片風浪我們緊盯著……我們時刻准備著!”

中國原創軍事資源:http://www.mod.gov.cn/gfbw/qwfb/4902340888.html

Chinese Military’s Brief Analysis of Multi-dimensional Central Warfare

中國軍隊多維中心戰淺析

現代英語:

2023-09-27 11:58:xx

Source: Guangming Military

Since the 1990s, the concepts of multi-dimensional central warfare, such as network-centric warfare, personnel-centric warfare, action-centric warfare, and decision-centric warfare, have been proposed one after another. The evolution of the concept of multi-dimensional central warfare reflects the overall goal of seeking advantages such as platform effectiveness, information empowerment, and decision-making intelligence by relying on military science and technology advantages, and also reflects the contradictory and unified relationship between people and equipment, strategy and skills, and the strange and the normal. Dialectically understanding these contradictory and unified relationships with centralized structured thinking makes it easier to grasp the essential connotation of its tactics and its methodological significance.

Strengthen the integration of the “human” dimension in the combination of people and equipment

The concepts of personnel-centric warfare and platform-centric warfare largely reflect the relationship between people and weapons and equipment. Some have specially formulated human dimension strategies, emphasizing continuous investment in the human dimension of combat effectiveness, which is the most reliable guarantee for dealing with an uncertain future. Since the beginning of the 21st century, with the rapid development of intelligent weapons and equipment, unmanned combat has emerged, and voices questioning the status and role of people have arisen one after another. It is imperative to strengthen the integration of the human dimension and enhance the synergy of the human dimension.

First, we need to enhance spiritual cohesion. Marxism believes that consciousness is the reflection of objective matter in the human mind. Tactics are the expression and summary of combat experience, and they themselves have spiritual or conscious forms. When studying tactics, we naturally need to put spiritual factors first. Some scholars believe that war is still fundamentally a contest of human will. In the information age, people’s spirits are richer and more complex, and enhancing the spiritual cohesion of the human dimension is more challenging and difficult. To enhance people’s spiritual cohesion, we need to coordinate the cultivation of collective spirit and individual spirit, maximize the satisfaction of individual spiritual needs in leading the collective spirit, realize individual spiritual pursuits in shaping the value of collective spirit, and empower people’s spirit with all available and useful information; we need to coordinate the cultivation of critical spirit and innovative spirit, adhere to the tactical epistemology of dialectical materialism, resolutely oppose idealism and mechanism in tactical cognition, and constantly inherit and innovate in criticism; we need to coordinate the cultivation of fighting spirit and scientific spirit, and promote the revolutionary spirit of facing death with courage and winning, and promote the spirit of winning by science and technology.

The second is to enhance the organizational structure. Organizations are the organs of the military, and people are the cells of the organization. The settings of military organizations in different countries have their own characteristics and commonalities. For example, the Ministry of National Defense is generally set up to distinguish between the structure of military branches, hierarchical structures and regional structures, and to distinguish between peacetime and wartime organizations. Although the purpose of construction and war is the same, the requirements for the unity of construction and the flexibility of war are different. To enhance the organizational structure and promote the consistency of war and construction, it is necessary to smooth the vertical command chain, reasonably define the command power and leadership power, command power and control power, so that the government and orders complement each other, and enhance the vertical structural strength of the organization; it is necessary to open up horizontal coordination channels, explore the establishment of normalized cross-domain (organizations, institutions, departments) coordination channels, change the simple task-based coordination model, and enhance the horizontal structural strength of the organization; it is necessary to improve the peace-war conversion mechanism, focus on the organization connection, adjustment and improvement in the change of leadership or command power of the troops, and maintain the stability and reliability of the organizational structure network.

The third is to enhance material support. The spiritual strength of people in combat can be transformed into material strength, but spiritual strength cannot be separated from the support of material strength. To enhance material support and thus realize the organic unity of material and spirit, it is necessary to ensure combat equipment, bedding, food, and medical care, build good learning venues, training facilities, and re-education channels, provide good technical services in combat regulations, physiological medicine, etc., help design diversified and personalized capacity improvement plans and career development plans, and provide strong material and technical support for the development of people’s physical fitness, skills, and intelligence, and thus comprehensively improve people’s adaptability and combat effectiveness in the uncertain battlefield environment of the future.
             

Deepen the practice of the “skill” dimension in the combination of combat and skills

The combination of combat skills is an important principle of tactical application. The technology includes not only the technology at the practical operation level (such as shooting technology), but also the technology at the theoretical application level (such as information technology). It can be said that tactics, technology, art and procedures together constitute its “combat methodology”. Scientific and technological development and scientific technology are important characteristics of scientific and technological development. To deepen the combination of combat skills, it is necessary to correctly grasp the relationship between technology and tactics, art and procedures, and continuously deepen the practice of the “skill” dimension.

First, promote the tacticalization of advanced technology. Technology determines tactics, which is the basic view of dialectical materialism’s tactical theory. The evolution of the concept of multi-dimensional central warfare is also an example of technology driving the development and change of tactics. Engels once pointed out: “The entire organization and combat methods of the army and the related victory or defeat… depend on the quality and quantity of the population and on technology.” However, technology-driven tactics have a “lag effect”, especially in the absence of actual combat traction. This requires actively promoting the military transformation of advanced civilian technologies and the tactical application of advanced military technologies. On the one hand, we must actively introduce advanced civilian technologies, especially accelerate the introduction and absorption of cutting-edge technologies such as deep neural networks and quantum communication computing; on the other hand, we must strengthen tactical training of advanced technology equipment, closely combine technical training with tactical training, and promote the formation of new tactics and new combat capabilities with new equipment as soon as possible.

Second, promote the technicalization of command art. “Art” is a highly subjective concept. Some Chinese and foreign scholars believe that “the art of command is rooted in the commander’s ability to implement leadership to maximize performance”, while others believe that “the art of command is the way and method for commanders to implement flexible, clever and creative command”. Chinese and foreign scholars generally regard command as an art. The main reason is that although command has objective basis and support such as combat regulations, superior orders and technical support, the more critical factor lies in the commander’s subjective initiative and creativity, which is difficult to quantify by technical means. With the development of disciplines and technologies such as cognitive psychology and cognitive neuroscience, the cognitive structure and mechanism of command will become more explicit, the mysterious veil of “command art” will gradually fade, and the technicalization of command art will become an inevitable trend. This requires continuous strengthening of technical thinking, continuous deepening of the construction of artificial intelligence-assisted command decision-making means, continuous deepening of the application of human brain decision-making mechanisms, practical use of technology to deconstruct art, and continuous promotion of the technicalization of command art.

The third is to promote the regulation of combat technology. Many scholars place technology on a position that is almost as important as tactics. This insistence on the integrated development of tactical regulation and the regulation of specialized military technology and special combat technology is an important way to promote the systematic and standardized construction of combat regulations and further achieve the integration and unification of tactics and technology at the legal level.
              

Seeking the advantage of the “odd” dimension in combining the odd and the regular

The odd and the even are a basic contradictory structure of tactics, with inherent identity. Without the odd, there is no even, and without the even, there is no odd; either the odd or the even, ever-changing. The choice of the odd and the even is the category of decision-centered warfare, and the application of the odd and the even is the category of action-centered warfare. In the 1990s, the theories of asymmetric warfare, non-contact warfare, and non-linear warfare were proposed. If “symmetric warfare, contact warfare, and linear warfare” are even, then “asymmetric warfare, non-contact warfare, and non-linear warfare” can be called odd. From the perspective of natural science, “symmetry, contact, and linear” are general, and “asymmetry, non-contact, and non-linear” are detailed. It is an inevitable requirement to grasp the dimension of “odd” in the combination of odd, odd, and even, and to seek the advantages of the “three nons”.

First, seek “asymmetric” advantages. “Symmetry” and “asymmetry” originally refer to the morphological characteristics of things or space. Symmetrical warfare is a battle between two troops of the same type, and asymmetric warfare is a battle between two different types of troops. The theory of asymmetric warfare requires the scientific and reasonable organization of troops, combat forces and weapon systems of different military services, deployment in a wide area, and the concentration of superior forces to deal a fatal blow to the enemy at the best combat opportunity, and then quickly redeploy the forces. Due to the limited combat power, the troops have positive asymmetric advantages and negative asymmetric disadvantages. Seeking asymmetric advantages and avoiding asymmetric disadvantages is the common expectation of the warring parties, which will lead to such a situation that the warring parties cycle back and forth between symmetry and asymmetry. Therefore, to seek “asymmetric” advantages, it is necessary to seek asymmetry in combat power, combat capability, combat command and other aspects, adhere to and carry forward “avoid the strong and attack the weak, avoid the real and attack the virtual”, “you fight yours, I fight mine”, and effectively play advantages and avoid disadvantages in asymmetry. For example, when weapons and equipment are symmetrical, strive to gain an asymmetric advantage in personnel capabilities; when forces are symmetrical, strive to gain an asymmetric advantage in command art.

The second is to seek “non-contact” advantages. “Contact” and “non-contact” are a description of the distance between different things. Contact in the military field is usually defined by the projection distance of weapons. The concept of “non-contact combat” originated from World War II and was created during the Cold War. The connotation of contact combat and non-contact combat changes with the change of the striking distance of weapons and equipment. The warring parties always seek to attack each other at a farther distance or in a wider space without being threatened. Since the 1990s, the theory of “non-contact combat” has been used in many local wars. Non-contact combat is a combat action style that implements long-range precision strikes outside the defense zone while being far away from the opponent. Non-contact combat embodies the idea of winning by technology, flexible mobility, and center of gravity strikes. With the rapid development of military science and technology, the armies of major countries in the world will have the ability to perceive and strike globally, and the connotation of “non-contact” will be further compressed to space, cognitive domain and other space fields. To this end, on the one hand, we must base ourselves on the reality of “contact combat”, learn from each other’s strengths and overcome our weaknesses in contact, and continuously accumulate advantages; on the other hand, we must expand the space for “non-contact combat”, seize the initiative and seize the opportunity in non-contact, and continuously expand our advantages.

The third is to seek “nonlinear” advantages. “Linear” and “nonlinear” usually refer to people’s thinking or behavior patterns. The movement of all things in the universe is complex and mostly nonlinear, while human cognition always tends to be simple, abstract, and linear, and has invented concepts such as logic lines, time lines, and linear mathematics. In military science, the transition from linear operations to nonlinear operations reflects the development and progress of military technology theory. Since the second half of the 20th century, nonlinear operations have been on the historical stage. Some scholars have pointed out that in linear operations, each unit mainly acts in a coordinated manner along a clear front line of its own side. The key is to maintain the relative position between its own units to enhance the safety of the units; in nonlinear operations, each unit simultaneously carries out combat operations from multiple selected bases along multiple combat lines. The key is to create specific effects at multiple decision points against the target. Linear operations mainly reflect the action-centered warfare idea, while nonlinear operations mainly reflect the target-centered warfare idea. To this end, on the one hand, we must deepen the use of linear warfare and make full use of its practical value in facilitating command, coordination and support; on the other hand, we must boldly try non-linear warfare and maximize its potential advantages of extensive mobility and full-dimensional jointness. (Yin Tao, Deng Yunsheng, Sun Dongya)

現代國語:

2023-09-27 11:58:xx

來源:光明軍事
自1990年代以來,網路中心戰、人員中心戰、行動中心戰、決策中心戰等多維度的中心戰概念先後被提出。多維度中心戰概念的演變,反映了依靠軍事科技優勢尋求平台效能、資訊賦能、決策智能等優勢的總體目標,更反映了人與裝、謀與技、奇與正等方面的對立統一關係。以中心式結構化思維辯證地認識這些對立統一關係,更便於掌握其戰術的本質內涵及其方法論意義。
強化人裝結合中「人」維度融合
人員中心戰與平台中心戰概念很大程度上反映的是人與武器裝備的關係。有的專門制定人維度策略,強調在戰鬥力的人維度進行持續投入,對於應對不確定的未來是最可靠的保障。進入21世紀以來,隨著智慧化武器裝備的快速發展,無人作戰異軍突起,對人的地位作用的質疑聲音此起彼伏,強化人維度的融合、增強人維度的合力勢在必行。
一是增強精神凝聚力。馬克思主義認為,意識是客觀物質在人腦中的反映。戰術是戰鬥經驗的表現與概括,本身俱有精神或意識上的形態,研究戰術自然要把精神因素放在第一位。有學者認為,戰爭從根本上來說仍然是人類意志的較量。在資訊化時代,人的精神更加豐富複雜,增強人維度精神上的凝聚力,挑戰和難度更高。增強人的精神凝聚力,需要統籌培養集體精神與個體精神,在引領集體精神中最大限度滿足個體精神需求,在培塑集體精神價值中實現個體精神追求,用一切可用、有用的信息賦能人的精神;需要統籌培養批判精神與創新精神,堅持辯證唯物論的戰術知識論,堅決反對戰術認識上的唯心論和機械論,不斷在批判中繼承、在繼承中創新;需要統籌培養戰鬥精神與科學精神,既要弘揚視死如歸、敢打必勝的革命精神,又要發揚科學制勝、技術制勝的精神。


二是增強組織結構力。組織是軍隊的器官,人是組織的細胞。不同國家軍事組織的設置有其特性,也有其共通性。例如普遍設有國防部,區分軍種結構、層級結構與區域結構,區分平時編制與戰時編成。儘管建與戰在目的上是一致的,但是建的統一性與戰的彈性在要求上不盡相同。增強組織結構力進而促進戰建一致,需要暢通縱向指揮鏈路,合理界定指揮權與領導權、指揮權與控制權,做到政令相長,增強組織的縱向結構力;需要打通橫向協同管道,探索建立常態化的跨領域(組織、機構、部門)協同途徑,改變單純的任務式協同模式,增強組織的橫向結構力;需要健全平戰轉換機制,重點關注部隊領導權或指揮權變更中組織銜接、調整和健全等工作,保持組織結構網絡的穩定性、可靠性。
三是增強物質保障力。戰鬥中人的精神力量可以轉化為物質力量,但精神力量也離不開物質力量的支撐。增強物質保障力進而實現物質與精神的有機統一,需要像為決策保障情報、為槍砲保障彈藥、為車輛保障油料一樣,保障好戰鬥裝具、被裝、伙食、醫療,建設好學習場地、訓練設施和再教育渠道,提供好戰條令、生理醫學等方面技術服務,幫助設計多樣化個人化的能力提升計劃、職業發展規劃,為發展人的體能、技能和智能,進而全面提高人在未來不確定性戰場環境中的適應性和戰鬥力,提供堅強的物質和技術支撐。

深化戰技結合中「技」維度實踐
戰技結合是戰術運用的重要原則。其中的技術不僅包括實務操作層面的技術(如射擊技術),也包括理論應用層面的技術(如資訊科技)。可以認為,戰術、技術、藝術和程序共同構成了其「戰鬥方法論」。科學技術化和技術科學化是科學技術發展的重要特徵。深化戰技結合,需要正確掌握技術與戰術、藝術、程序的關係,不斷深化「技」維度實踐。


一是推動先進技術戰術化。技術決定戰術,是辯證唯物論戰術論的基本觀點。多維度中心戰概念的演變,也是技術推動戰術發展變革的例子。恩格斯曾指出:“軍隊的全部組織和作戰方式以及與之有關的勝負……,取決於居民的質與量和取決於技術。”然而,技術推動戰術具有“滯後效應”,尤其在缺少實戰牽引的情況下。這就需要主動推進先進民用技術的軍事轉化和先進軍事技術的戰術應用。一方面,要積極引進民用先進技術,尤其要加速推進深度神經網路、量子通訊運算等尖端技術的引進吸收;另一方面,要加強先進技術裝備戰術訓練,把練技術與練戰術緊密結合起來,推動新裝備盡快形成新戰術和新戰力。
二是推動指揮藝術技術化。 「藝術」是一個具有較強主體性的概念。中外學者有的認為“指揮藝術根植於指揮官實施領導以最大限度提高績效的能力”,有的認為“指揮藝術是指揮官實施靈活巧妙和富有創造性指揮的方式與方法”。中外學者普遍將指揮視為藝術,主要原因在於:指揮儘管有作戰條令、上級命令和技術保障等客觀方面的依據和支撐,但更關鍵的因素在於指揮員的主觀能動性和創造性,而這是比較難以用技術手段加以量化的。隨著認知心理學、認知神經科學等學科和技術的發展,指揮的認知結構和作用機制將更加顯性化,「指揮藝術」的神秘面紗將逐漸退去,指揮藝術技術化將會成為必然趨勢。這需要不斷強化技術思維,持續深化人工智慧輔助指揮決策手段建設,持續深化人類大腦決策機理運用,切實用技術解構藝術,不斷推動指揮藝術技術化。


三是推動戰鬥技術條令化。不少學者把技術置於與戰術近乎同等重要的地位。這種堅持戰術條令化與兵種專業技術和專門戰鬥技術條令化的融合發展,是推動戰鬥條令體系化規範化建設,進而實現戰術與技術在法規層面融合統一的重要途徑。

謀求奇正結合中「奇」維度優勢
奇與正是戰術的一種基本矛盾結構,具有內在同一性。無奇便無正,無正也無奇;或奇或正,千變萬化。奇與正的選擇是決策中心戰的範疇,奇與正的運用是行動中心戰的範疇。 1990年代,非對稱作戰、非接觸作戰、非線式作戰理論被提出。若稱「對稱作戰、接觸作戰、線式作戰」為正,則可稱「非對稱作戰、非接觸作戰、非線式作戰」為奇。從自然科學角度來看,「對稱、接觸、線式」是概述的,「非對稱、非接觸、非線式」是詳實的。把握好奇正結合中「奇」的維度,謀取「三非」優勢是必然要求。
一是謀取「非對稱」優勢。 「對稱」與「非對稱」本來是對事物或空間的形態特徵的指稱。對稱作戰是兩種相同類型部隊之間的交戰,非對稱作戰是兩種不同類型部隊之間的交戰。非對稱作戰理論要求對不同軍兵種部隊、作戰力量和武器系統進行科學合理編組,在寬廣的地域展開部署,在最佳的作戰時機集中優勢力量給敵人以致命的打擊,然後迅速重新部署力量。由於作戰力量的有限性,部隊有正面的非對稱優勢,就有負面的非對稱劣勢。謀取非對稱優勢、規避非對稱劣勢是交戰雙方的共同期望,進而造成這樣一種局面──交戰雙方在對稱與非對稱之間往復循環。因此,謀取“非對稱”優勢,要謀取作戰力量、作戰能力、作戰指揮等多方面上的非對稱,堅持和發揚“避強擊弱、避實擊虛”“你打你的,我打我的”,在非對稱中有效發揮優勢、規避劣勢。例如,在武器裝備對稱時爭取佔據人員能力上的非對稱優勢,在力量對稱時爭取佔據指揮藝術上的非對稱優勢。
二是謀取「非接觸」優勢。 「接觸」與「非接觸」是對不同事物之間距離狀態的一種描述。軍事領域的接觸通常是以武器的投射距離來界定的。 「非接觸作戰」的概念起源於二戰,產生於冷戰時期。接觸作戰與非接觸作戰的內涵是隨著武器裝備打擊距離的改變而改變的。交戰雙方也總是謀求在免受威脅的更遠距離或更廣空間攻擊對方。自1990年代以來,「非接觸作戰」理論在多場局部戰爭中被運用。非接觸作戰是在遠離對方的情況下實施防區外遠程精確打擊的作戰行動樣式。非接觸作戰體現了技術制勝、靈活機動、重心打擊的思想。隨著軍事科技的快速發展,世界主要國家軍隊將具備全球感知和全球打擊的能力,「非接觸」的內涵將進一步壓縮至太空、認知域等太空領域。為此,一方面要立足「接觸作戰」實際,在接觸中取長補短、固強補弱,不斷積蓄勝勢;另一方面要拓展「非接觸作戰」空間,在非接觸中搶抓先手、搶佔先機,不斷拓展優勢。
三是謀取「非線式」優勢。 「線式」與「非線式」通常是指人的思維或行為模式。宇宙萬物運動是複雜的,大抵是非線式的,而人類的認知總是傾向於簡單的、抽象的、線式的,並發明了邏輯線、時間線以及線性數學等概念。軍事學中,從線式作戰到非線式作戰,反映了軍事技術理論的發展進步。 20世紀下半葉起,非線作戰就登上歷史舞台。有學者指出,線式作戰中各部隊主要沿著明確的己方前沿協調一致行動,關鍵是保持己方部隊之間的相對位置,以增強部隊的安全性;非線式作戰中各部隊從選定的多個基地沿多條作戰線同時實施作戰行動,關鍵是針對目標在多個決定點製造特定效果。線式作戰體現的主要是行動中心戰思想,非線式作戰體現的主要是目標中心戰思想。為此,一方面要深化運用線式作戰,充分利用其便於指揮、協同和保障的實用價值;另一方面要大膽嘗試非線式作戰,最大限度地發揮其廣泛機動、全維聯合的潛在優勢。 (殷濤、鄧雲生、孫東亞)

中國原創軍事資源:http://www.81it.com/2023/0927/14581888.html

A Comprehensive Look at Chinese Military Intelligent Warfare

全面檢視中國軍事智能化戰爭

現代英語:

Source: China Military Network-People’s Liberation Army Daily Author: Gao Kai and Chen Liang Editor-in-charge: Zhao Leixiang

2025-01-23 06:50:x

“Order dispatch”: a new style of precision strike

■Gao Kai, Chen Liang

Lenin once said, “If you don’t understand the times, you can’t understand war.” In recent years, the widespread use of information and intelligent technology in the military field has promoted the deep integration of technology and tactics, and has given birth to “order-based” precision strikes based on intelligent network information systems. Commanders and command agencies can generate strike list requirements based on combat missions. The decision-making system can intelligently match strike platforms, autonomously plan action paths, and scientifically select strike methods based on personalized needs such as strike time, combat space, and damage indicators, thereby quickly and accurately releasing strike effectiveness.

The operational characteristics of “order-to-order” precision strikes

As the informationization and intelligence of weapons and ammunition continue to improve, the cost of modern warfare is also increasing. How to use limited strike resources to achieve the best cost-effectiveness and maximize combat effectiveness has become a central issue for commanders and command agencies in combat planning. “Order-based” precision strikes can provide a “feasible solution” for this.

Instant optimization and precise energy release. Modern warfare places more emphasis on structural strikes and destruction of the enemy’s combat system, and achieves combat objectives by quickly and accurately releasing combat effectiveness. This requires commanders and command agencies to seize the fleeting “window” of opportunity and strike high-value, nodal, and key targets in the enemy’s combat system before the enemy responds. The traditional “discovery-guidance-strike-assessment” combat loop is time-consuming and has poor combat effectiveness. Therefore, “order-dispatching” precision strikes need to rely on advanced intelligent network information systems, do not pre-determine the strike platform, and publish a list of strike targets in real time. The auxiliary decision-making system quickly evaluates the strike performance of various weapon platforms and the expected damage to the target, autonomously assigns strike platform tasks, quickly links and regulates multi-domain firepower strike forces, and autonomously closes the kill chain to quickly strike key targets.

Multi-domain energy gathering and coordinated strike. The advantage of modern combat precision strikes over previous firepower strikes lies in the information-based and intelligent combat system, which does not require human intervention and relies on a closed strike chain to autonomously complete tasks such as “detection, control, attack, and evaluation”. It can not only save the cost of strikes and reduce resource waste, but also achieve adaptive coordination based on unified combat standards. Therefore, the “order-to-order” precision strike requires the firepower strike forces distributed in various combat fields to establish a unified standard grid. As long as a demand is issued at one point, multiple points can respond and the overall linkage can be achieved. Forces and firepower can be flexibly concentrated, and multiple means and rapid multi-domain energy gathering can be used to determine the strike direction, strike order, and strike method of each strike platform on the move. Through system integration, time can be effectively saved, and multi-domain precision strikes can be carried out on key node targets and key parts of core targets of the enemy, giving full play to the overall power of the superposition and integration of the combat effectiveness of each combat unit.

The attack must break the enemy’s system and be quick and decisive. Modern warfare is a “hybrid war” implemented simultaneously in multiple fields. The interweaving influence and confrontation of new domains and new qualities such as information, aerospace, and intelligence are more obvious. This requires both sides of the war to be able to discover and act one step faster than the enemy, destroy and paralyze the enemy’s combat system, and reduce the efficiency of the enemy’s system. On the one hand, it is necessary to accurately identify the nodes of the enemy system and instantly optimize and accurately strike; on the other hand, it is necessary to conceal one’s own intentions and strike forces, and strike quickly when the enemy is unprepared. “Order dispatch” type precision strikes can well meet these two requirements. With the support of network information systems, intelligent integration of firepower strike forces in various fields can be achieved, and multi-source information perception, data cross-linking, and multi-domain coordinated strikes can be achieved. The seamless and high-speed operation of “target perception-decision-making command-firepower strike-damage assessment” is realized, and information and firepower are highly integrated to quickly achieve combat objectives.

The system composition of “order dispatch” type precision strike

The “order-based dispatch” precision strike builds an efficient closed strike chain, compresses action time, improves strike effectiveness, enables various firepower strike platforms to better integrate into the joint firepower strike system, and provides fast and accurate battlefield firepower support. The key lies in the “network” and the focus is on the “four” systems.

Multi-domain platform access network. With the support of information and intelligent technology, an integrated information network system with satellite communication as the backbone will be established, and the firepower strike platforms distributed in the multi-dimensional battlefield will be integrated into the combat network to establish a battlefield “cloud”. Different combat modules will be distinguished, and “subnet clouds” such as “detection, control, attack, and evaluation” will be established. Relying on the integrated communication network chain, the “subnet cloud” will be linked to the “cloud”, which can enhance the firepower strike platform’s full-domain, full-time, on-the-go access, autonomous networking, and spectrum planning capabilities, and realize the network interconnection of firepower platforms, domain-based combat systems, and joint combat systems, as well as the interconnection of internal strike forces.

Joint reconnaissance and perception system. Relying on various reconnaissance and surveillance forces within the joint combat system, conduct all-weather, multi-directional, and high-precision battlefield perception of the combat area. This requires the construction of a full-dimensional reconnaissance and perception force system that exists in physical and logical spaces, tangible and intangible spaces, and the deployment of intelligent perception equipment over a wide area to form an intelligence data “cloud”. Through the intelligence data “cloud”, the enemy situation is analyzed, the key points of the enemy combat system and time-sensitive targets are found, and the reconnaissance information is updated in real time to show the dynamics of the target.

Intelligent command and decision-making system. Relying on a new command and control system with certain intelligent control capabilities, various planning and analysis models are constructed to expand functions such as intelligent intelligence processing, intelligent task planning, automatic command generation, and precise action control. Databases such as the target feature library, decision-making knowledge base, and action plan library are expanded and improved to strengthen the system support capabilities for task planning, action decision-making, and control in the process of combat organization and implementation, improve planning and decision-making and combat action control capabilities, clarify “how to fight, where to fight, and who will fight”, and achieve accurate “order dispatching”.

Distributed firepower strike system. Relying on the intelligent network information system, on the one hand, it integrates land, sea, air, space and other multi-dimensional firepower strike platforms, strengthens the functions of intelligent target identification and remote control strike, and realizes various combat methods such as remote control combat of combat units, manned and unmanned coordinated combat, and flexible and mobile combat; on the other hand, it can build a low-cost firepower strike platform mainly composed of low-altitude and ultra-low-altitude unmanned strike platforms such as crossing aircraft and cruise missiles. By adding different functional combat payloads, it can work closely with high-end firepower strike platforms to implement battlefield guidance, precision strikes, firepower assessment and other tasks, and efficiently complete the “order”.

Autonomous damage assessment system. Relying on the reconnaissance and surveillance forces within the joint combat system to build a damage assessment system, after the firepower platform completes the strike, it will autonomously conduct strike effect verification on the target. It mainly conducts real-time, dynamic, objective, and systematic analysis and evaluation of the target’s appearance, degree of functional loss, etc., and promptly transmits relevant information to decision-making and command centers at all levels through video images. The evaluation center will judge “how well the strike was” and whether it meets the expected damage requirements. If it does not meet the requirements, the combat operations can be adjusted in a timely manner and supplementary strikes can be carried out to provide strong support for maximizing combat effectiveness.

Planning and implementation of “order-based” precision strikes

The “order dispatch” type of precision strike is just like the way online ride-hailing services operate. Through a series of processes such as formatted “order” generation, intelligent object matching, and autonomous path planning, it independently completes the “OODA” combat cycle. Its actions are more efficient, the strikes are more precise, and the coordination is closer.

Firepower requirements are reported in real time, and combat units “submit orders” on demand. Reconnaissance elements distributed in different combat areas and multi-dimensional battlefield spaces use radar, optical, infrared and technical reconnaissance methods to form battlefield target intelligence information through wide-area multi-source detection. This information is connected to the battlefield information network through intelligence links and is transmitted to combat units anytime and anywhere. The combat units will perform correlation processing, multi-party comparison and verification, and comprehensively compile battlefield target information to generate accurate task “orders”. The combat unit analyzes the target value and connects to the decision-making platform on demand, builds an “order”-style closed strike chain, and submits task “orders” in real time to achieve in-motion optimization and precise adaptation.

Differentiate fire strike tasks, and the decision center intelligently “dispatches orders”. Through the battlefield information network and relying on the intelligent task planning system, the decision center can automatically parse the task “order” information data submitted by the combat unit, and automatically generate the task requirements such as the type and quantity of ammunition, strike method and damage index required for the fire strike action according to the nature, coordinate position, movement status, threat level, etc. of the battlefield target, and form a fire support task “order”. Through intelligent matching of the best firepower platform, link nodes are connected as needed, and intelligent command-based “dispatching” is carried out, which is immediately delivered to the firepower platform waiting for combat.

The firepower platform can “accept orders” immediately by matching the best targets at all times. The firepower platforms distributed at multiple points in the battlefield area can respond to “accept orders” immediately through the battlefield information network. The firepower platform and the combat unit can establish a chain autonomously, and directly establish a guided strike chain after mutual “identity” verification, coordinate and cooperate with the firepower strike operation, and adjust the strike method and shooting parameters in time according to the damage to the target after the strike and the dynamics of the battlefield target, and then carry out firepower strikes again until the “dispatching” task is completed. The firepower platform always follows the principle of “strike-transfer-strike-transfer”, completes the strike task, quickly moves the position, stays in a combat state at all times, and receives “orders” online in real time. After the task is completed, the guided strike chain between the firepower platform and the combat unit will be automatically cancelled.

Acquire damage information from multiple sources, and the assessment center will “evaluate” in real time. Comprehensively use long-distance information-based intelligent reconnaissance methods such as satellite reconnaissance, radar reconnaissance, and drone reconnaissance to implement multi-domain three-dimensional reconnaissance, obtain the target’s fire damage information in real time, and provide accurate assessments for precision fire strikes. Comprehensively determine the damage effect, conduct quantitative and qualitative evaluations of the strike effect, distinguish the three damage states of the target’s physical, functional, and system, and provide timely feedback to the decision-making center. According to the damage assessment results of the strike target, timely put forward control suggestions, adjust the fire strike plan, optimize combat operations, and achieve precise control of fire strikes, so that commanders can accurately control the combat process and achieve efficient command and control of the effectiveness of fire strikes.

現代國語:

「訂單派單」:精確打擊新樣式

■高 凱 陳 良

引言

列寧說過,「不理解時代,就不能理解戰爭」。近年來,資訊化智慧化技術在軍事領域的廣泛運用,促進了技術與戰術深度融合,依托智能化網絡資訊體系,催生出「訂單派單」式精確打擊。指揮員及指揮機關可依據作戰任務格式化產生打擊清單需求,決策系統依據打擊時間、作戰空間、毀傷指標等個性化需求智慧匹配打擊平台、自主規劃行動路徑、科學選擇打擊方式,進而快速精準釋放打擊效能。

「訂單派單」式精確打擊的作戰特點

隨著武器彈藥資訊化智慧化程度不斷提升,現代作戰成本也不斷提高。如何運用有限打擊資源打出最高效費比,實現作戰效能最大化,已成為指揮員及指揮機關作戰籌劃的中心問題,「訂單派單」式精確打擊可為此提供「可行解」。

即時聚優精確釋能。現代作戰更強調對敵作戰體系進行結構性打擊破壞,透過快速且精準地釋放作戰效能實現作戰目的。這就要求指揮員及指揮機關能夠抓住稍縱即逝時機的“窗口”,在敵未做出反應之時對其作戰體系內高價值、節點性、關鍵性目標實施打擊。傳統的「發現—引導—打擊—評估」的作戰環路耗時長,作戰效果不佳。因此,「訂單派單」式精確打擊,需要依托先進的智能化網絡信息體系,不預先確定打擊平台,實時發布打擊目標清單,由輔助決策系統對各種武器平台的打擊性能與目標打擊毀傷預期等進行快速評估,自主分配打擊平台任務,快速鏈接調節多領域火力打擊力量,自主閉合殺傷鏈,對關鍵目標實施快速打擊。

多域聚能協同打擊。現代作戰精確打擊較以往火力打擊的優勢在於資訊化智能化的作戰體系,無需人工介入,依托閉合打擊鏈自主完成「偵、控、打、評」等任務,不僅能夠節省打擊成本,減少資源浪費,還能夠實現基於統一作戰標準的自適應協同。因此,「訂單派單」式精確打擊,需要分佈在各作戰領域的火力打擊力量能夠建立統一標準網格,只要一點發出需求,就能夠多點響應、全局聯動,靈活集中兵力、火力,多手段、快速多域聚能,動中確定各打擊平台打擊方向、打擊次序以及打擊方式。透過體系整合有效節約時間,對敵關鍵節點目標以及核心目標的關鍵部位實施多域精確打擊,充分發揮各作戰單元作戰效能疊加融合的整體威力。

擊要破體速戰速決。現代作戰是在多領域同步實施的“混合戰爭”,資訊、空天、智慧等新域新質力量交織影響、對抗更加明顯。這就需要作戰雙方能夠快敵一秒發現、快敵一步行動,毀癱敵作戰體系、降低敵體系運作效率。一方面,要透過找準敵體系節點,即時聚優精準打擊;另一方面,要隱蔽己方企圖及打擊力量,乘敵不備快速打擊。 「訂單派單」式精確打擊能夠很好地契合這兩點需求,在網絡資訊系統的支撐下,智慧融合各領域火力打擊力量,實現資訊多源感知、數據相互交鏈、多域協同打擊,實現「目標感知—決策指揮—火力打擊—毀傷評估」無縫高速運轉,資訊火力高度融合,快速達成作戰目的。

「訂單派單」式精確打擊的體系構成

「訂單派單」式精確打擊通過構建高效閉合打擊鏈,壓縮行動時間,提高打擊效果,使各火力打擊平台能夠更好地融入聯合火力打擊體系,並提供快速精準的戰場火力支援,其關鍵在“網”,重點在“四個”系統。

多領域平台接取網。在資訊化智慧化技術支撐下,建立以衛星通訊為骨幹的一體化資訊網系,將分佈在多維域戰場的火力打擊平台融入作戰網絡建立戰場“雲”,區分不同作戰模塊,建立“偵、控、打、評”等“子網雲”,並依託一體化的通訊網鏈將“子網雲”鏈入“雲”,能夠提升火力打擊平台全局全時、動中接入、自主組網、頻譜規劃的能力,實現火力平台、分域作戰體係與聯合作戰體系的網絡互聯,以及內部打擊力量的互聯互通。

聯合偵察感知系統。依托聯合作戰體系內的各種偵察監視力量對作戰地域進行全天候、多方位、高精度戰場感知。這就要建立物理空間和邏輯空間、有形空間和無形空間泛在存在的全維域偵察感知力量系統,廣域佈設智能感知設備,形成情報數據“雲”,通過情報數據“雲”分析敵情態勢,找出敵作戰體系關鍵點以及時敏性目標,實時更新偵察信息,展現目標動態。

智慧指揮決策系統。依托具備一定智能控制能力的新型指控系統,構建各類籌劃分析模型,擴展情報智能處理、任務智能規劃、指令自動生成、行動精確控制等功能,擴充完善目標特徵庫、決策知識庫、行動預案庫等數據庫,強化戰鬥組織與實施過程中的任務規劃、行動決策和控制的系統支撐能力,提升行動籌劃決策和明確行動能力,誰來打」

分佈火力打擊系統。依托智能網絡資訊系統,一方面,融入陸、海、空、天等多維域火力打擊平台,強化目標智能識別、遠程遙控打擊等功能,實現作戰單元遠程遙控作戰、有人無人協同作戰、靈活機動作戰等多種作戰方式;另一方面,可構建以穿越機、巡導彈等低空超低空無人打擊平台為主的低成本火力打擊平台,通過加掛不同功能作戰載荷,與高端火力打擊平台密切協同來實施戰場引導、精確打擊、火力評估等任務,高效完成“訂單”。

自主毀傷評估系統。依托聯合作戰體系內的偵察監視力量建構毀傷評估系統,在火力平台打擊完畢後,自主對目標實施打擊效果核查。主要就目標的外觀狀態、功能喪失程度等進行實時、動態、客觀、系統的分析和評估,並及時通過視頻圖像的方式將相關信息返回至各級決策指揮中心,由評估中心判斷“打得怎麼樣”,是否達到預期毀傷要求。如不符合,可適時調控作戰行動,進行補充打擊,為最大限度釋放作戰效能提供強力支撐。

「訂單派單」式精確打擊的規劃實施

「訂單派單」式精確打擊就如同網約車的運作方式一樣,透過格式化「訂單」生成、智能化對象匹配、自主化路徑規劃等一系列流程,自主完成「OODA」作戰循環,其行動更為高效、打擊更為精準、協同更為密切。

實時提報火力需求,作戰單元按需「提單」。分佈在不同作戰地域、多維戰場空間的偵察要素,通過雷達、光學、紅外和技術偵察等方式,廣域多源偵獲形成戰場目標情報資訊。這些資訊依托情報鏈路接入戰場資訊網,隨時隨地被傳至作戰單元,由作戰單元進行關聯處理、多方對比印證,綜合整編戰場目標訊息,產生精確的任務「訂單」。作戰單元分析目標價值按需連通決策平台,建立“訂單”式閉合打擊鏈,實時提報任務“訂單”,實現動中集優、精準適配。

區分火力打擊任務,決策中心智能「派單」。決策中心通過戰場資訊網,依托智能任務規劃系統,能夠自動解析作戰單元提報的任務“訂單”信息數據,根據戰場目標性質、坐標方位、移動狀態、威脅程度等,自動生成火力打擊行動所需彈種彈量、打擊方式和毀傷指標等任務要求,形成火力支援任務“訂單”,通過智能匹配最佳火力平台,連通式鏈路節點,按需送飛機服務“訂單”。

全時匹配最優目標,火力平台快速即時「接單」。多點分佈在戰場區域內的火力平台,通過戰場信息網迅即響應“接單”,火力平台與作戰單元之間自主建鏈,相互核驗“身份”後直接建立引導打擊鏈,協同配合火力打擊行動,並根據打擊後目標毀傷情況以及戰場目標動態,及時調整打擊方式、射擊參數等,而後再次實施火力打擊,直至完成“派單”任務。火力平台始終遵循「打擊—轉移—打擊—轉移」的原則,完成打擊任務,迅即轉移陣地,全時保持待戰狀態,實時在線接收「訂單」。任務結束後,火力平台與作戰單元之間的引導打擊鏈會自動取消。

多源獲取毀傷訊息,評估中心即時「評單」。綜合運用衛星偵察、雷達偵察、無人機偵察等遠距離資訊化智能化偵察手段,實施多域立體偵察,實時獲取目標的火力毀傷訊息,為開展精確火力打擊提供準確評估。綜合判定毀傷效果,對打擊效果進行定量和定性評估,區分目標物理、功能和系統三種毀傷狀態,及時回饋至決策中心。根據打擊目標的毀傷評估結果,適時提出調控建議,調整火力打擊計畫,優化作戰行動,實現對火力打擊的精確控制,便於指揮員精準把控作戰進程,達成對火力打擊效能的高效指揮控制。

資料來源:中國軍網-解放軍報 作者:高凱 陳亮 責任編輯:趙雷翔
2025-01-23 06:50:xx

中國原創軍事資源:http://www.81.cn/ll_208543/16365873888.html

Comprehensive Look at Chinese Military Intelligent Warfare: AI War brought about by AGI

縱覽中國軍事智慧化戰爭:AGI帶來的人工智慧戰爭

現代英語:

Technology and war are always intertwined. While technological innovation is constantly changing the face of war, it has not changed the violent nature and coercive purpose of war. In recent years, with the rapid development and application of artificial intelligence technology, people have never stopped debating the impact of artificial intelligence on war. Compared with artificial intelligence (AI), general artificial intelligence (AGI) has a higher level of intelligence and is considered to be a form of intelligence equivalent to human intelligence. How will the emergence of AGI affect war? Will it change the violence and coercive nature of war? This article will discuss this issue with you with a series of thoughts.

  Is AGI just an enabling technology?

  Many people believe that although large models and generative artificial intelligence show the strong military application potential of AGI in the future, they are only an enabling technology after all, that is, they can only enable and optimize weapons and equipment, make existing equipment more intelligent, and improve combat efficiency, and it is difficult to bring about a real military revolution. Just like “cyber warfare weapons” were also highly expected by many countries when they first appeared, but now it seems a bit exaggerated.

  The disruptive nature of AGI is actually completely different. It brings huge changes to the battlefield with a reaction speed and knowledge breadth far exceeding that of humans. More importantly, it has brought about huge disruptive results by promoting the rapid advancement of science and technology. On the battlefield of the future, autonomous weapons will be endowed with advanced intelligence by AGI, their performance will be generally enhanced, and they will become “strong at attack and difficult to defend” with their speed and cluster advantages. By then, the highly intelligent autonomous weapons that some scientists have predicted will become a reality, and AGI will play a key role in this. At present, the military application areas of artificial intelligence include autonomous weapons, intelligence analysis, intelligent decision-making, intelligent training, intelligent support, etc. These applications are difficult to simply summarize as “empowerment”. Moreover, AGI has a fast development speed and a short iteration cycle, and is in a state of continuous evolution. In future operations, AGI needs to be a priority, and special attention should be paid to the possible changes it brings.

  Will AGI make war disappear?

  Historian Geoffrey Blainey believes that “wars always occur because of misjudgments of each other’s strength or will”, and with the application of AGI in the military field, misjudgments will become less and less. Therefore, some scholars speculate that wars will decrease or disappear. In fact, relying on AGI can indeed reduce a large number of misjudgments, but even so, it is impossible to eliminate all uncertainties, because one of the characteristics of war is uncertainty. Moreover, not all wars are caused by misjudgments. Moreover, the inherent unpredictability and inexplicability of AGI, as well as people’s lack of experience in using AGI, will bring new uncertainties, making people fall into a thicker “fog of artificial intelligence”.

  There are also rational problems with AGI algorithms. Some scholars believe that AGI’s mining and accurate prediction of important intelligence will have a dual impact. In actual operation, AGI does make fewer mistakes than humans, which can improve the accuracy of intelligence and help reduce misjudgments; but sometimes it may also make humans blindly confident and stimulate them to take risks. The offensive advantage brought by AGI leads to the best defense strategy being “preemptive strike”, which breaks the balance between offense and defense, triggers a new security dilemma, and increases the risk of war.

  AGI has the characteristics of strong versatility and can be easily combined with weapons and equipment. Unlike nuclear, biological and chemical technologies, it has a low threshold for use and is particularly easy to spread. Due to the technological gap between countries, people are likely to use immature AGI weapons on the battlefield, which brings huge risks. For example, the application of drones in the latest local war practices has stimulated many small and medium-sized countries to start purchasing drones in large quantities. The low-cost equipment and technology brought by AGI are very likely to stimulate the occurrence of a new arms race.

  Will AGI be the ultimate deterrent?

  Deterrence is the ability to maintain a certain capability to intimidate an adversary from taking actions that go beyond its own interests. When deterrence is too strong to be used, it is the ultimate deterrence, such as the nuclear deterrence of mutually assured destruction. But what ultimately determines the outcome is “human nature,” which is the key that will never be missing in war.

  Without the various trade-offs of “humanity”, will AGI become a formidable deterrent? AGI is fast but lacks empathy, is resolute in execution, and has an extremely compressed gaming space. AGI is a key factor on future battlefields, but it is difficult to accurately evaluate due to lack of practical experience, and it is easy to overestimate the opponent’s capabilities. In addition, in terms of autonomous weapon control, whether humans are in the loop and supervise the entire process, or are humans outside the loop and completely let go, this undoubtedly requires deep thought. Can the firing control of intelligent weapons be handed over to AGI? If not, the deterrent effect will be greatly reduced; if so, can the life and death of humans really be decided by machines that have nothing to do with them? In research at Cornell University, large war game simulation models often “suddenly use nuclear attacks” to escalate wars, even if they are in a neutral state.

  Perhaps one day in the future, AGI will surpass humans in capabilities. Will we be unable to supervise and control it? Geoffrey Hinton, who proposed the concept of deep learning, said that he has never seen a case where something with a higher level of intelligence was controlled by something with a lower level of intelligence. Some research teams believe that humans may not be able to supervise super artificial intelligence. In the face of powerful AGI in the future, can we really control them? This is a question worth pondering.

  Will AGI change the nature of war?

  With the widespread use of AGI, will battlefields filled with violence and blood disappear? Some people say that AI warfare is far beyond the capabilities of humans and will push humans out of the battlefield. When AI turns war into a war fought entirely by autonomous robots, is it still a “violent and bloody war”? When opponents of unequal capabilities confront each other, the weak may not have the opportunity to act at all. Can wars be ended before the war through war games? Will AGI change the nature of war? Is an “unmanned” “war” still a war?

  Yuval Noah Harari, author of Sapiens: A Brief History of Humankind, said that all human behavior is mediated by language and affects our history. The Big Language Model is a typical AGI. The biggest difference between it and other inventions is that it can create new ideas and culture. “Artificial intelligence that can tell stories will change the course of human history.” When AGI touches the control of language, the entire civilization system built by humans may be subverted, and it does not even need to generate consciousness in this process. Like Plato’s “Allegory of the Cave”, will humans worship AGI as a new “god”?

  AGI establishes a close relationship with humans through human language and changes human perceptions, making it difficult for humans to distinguish and discern, thus posing the danger of the will to war being controlled by people with ulterior motives. Harari said that computers do not need to send out killer robots. If necessary, they will let humans pull the trigger themselves. AGI accurately creates and polishes situation information and controls battlefield cognition through deep fakes. It can use drones to fake battlefield situations and build public opinion before the war. This has been seen in recent local wars. The cost of war will be greatly reduced, leading to the emergence of a new form of war. Will small and weak countries still have a chance? Can the will to war be changed without bloodshed? Is “force” no longer a necessary condition for defining war?

  The form of war may be changed, but the essence remains. Whether war is “bloody” or not, it will still force the enemy to obey its will and bring a lot of “collateral damage”, but the way of confrontation may be completely different. The essence of war lies in the “human nature” deep in the heart, and “human nature” is determined by culture, history, behavior and values, etc. It is difficult to completely replicate it with some artificial intelligence technology, so we cannot outsource all ethical, political and decision-making issues to artificial intelligence, and we cannot expect artificial intelligence to automatically generate “human nature”. Artificial intelligence technology may be abused due to passionate impulses, so it must be under human control. Since artificial intelligence is trained by humans, it will not always be free of bias, so they cannot be completely separated from human supervision. In the future, artificial intelligence can become a creative tool or partner to enhance “tactical imagination”, but it must be “aligned” with human values. These issues need to be constantly thought about and understood in practice.

  Will AGI revolutionize the theory of war?

  Most subject knowledge is expressed in natural language. The large language model, which is a collection of human writings, can connect language writings that are difficult to be compatible with scientific research. For example, some people input classical masterpieces and even philosophy, history, politics, economics, etc. into the large language model for analysis and reconstruction. It is found that it can not only conduct a comprehensive analysis of all scholars’ views, but also put forward its “own views” without losing originality. Therefore, some people say that it is also possible to re-analyze and interpret war theories through AGI, stimulate human innovation, and drive major evolution and reconstruction of war theories and systems? Perhaps there will be certain improvements and developments in theory, but war science is not only theoretical, but also practical, but practicality and reality are what AGI cannot do at all. Can the classic war theory really be reinterpreted? If so, what is the meaning of the theory?

  In short, AGI’s subversion of the concept of war will far exceed “mechanization” and “informatization”. People should boldly embrace the arrival of AGI, but also be cautious. Understand the concept so as not to be ignorant; conduct in-depth research so as not to fall behind; strengthen supervision so as not to be negligent. How to learn to cooperate with AGI and guard against AGI technology raids by opponents is what we need to pay attention to first in the future. (Rong Ming and Hu Xiaofeng)

 Afterword

  Looking to the future with an open mind

  Futurist Roy Amara has a famous assertion that people tend to overestimate the short-term benefits of a technology but underestimate its long-term impact, which is later called “Amara’s Law”. This law emphasizes the nonlinear characteristics of technological development, that is, the actual impact of technology often takes a longer time scale to fully manifest, reflecting the pulse and trend of technological development and embodying human acceptance and longing for technology.

  At present, in the process of the development of artificial intelligence from weak artificial intelligence to strong artificial intelligence, and from special artificial intelligence to general artificial intelligence, every time people think that they have completed 90% of the journey, looking back, they may have only completed less than 10% of the journey. The driving role of the scientific and technological revolution in the military revolution is becoming more and more prominent, especially the multi-faceted penetration of high-tech represented by artificial intelligence technology into the military field, which has led to profound changes in the mechanism, elements and methods of winning wars.

  In the foreseeable future, intelligent technologies such as AGI will not stop iterating, and the cross-evolution of intelligent technologies and their enabling applications in the military field will become more diversified, perhaps going beyond the boundaries of human cognition of existing war forms. The development of science and technology is unstoppable and unstoppable. Whoever can see the trend and future of science and technology, the potential and power of science and technology with a keen eye and a clear mind, and see through the “fog of war”, will be more likely to seize the initiative to win.

  This reminds us that we should have a broader perspective and thinking when exploring the development of future war forms, so that we can get closer to the underestimated reality. Where is AGI going? Where is intelligent warfare going? This is a test of human wisdom.

[Editor: Wang Jinzhi]

現代國語:

AGI帶來的戰爭思考

編者按

科技與戰爭總是交織在一起,科技創新在不斷改變戰爭面貌的同時,並沒有改變戰爭的暴力性質和強迫性目的。近年來,隨著人工智慧技術的快速發展應用,人們關於人工智慧對戰爭影響的爭論從未停止。與人工智慧(AI)相比,通用人工智慧(AGI)的智慧程度更高,被認為是與人類智慧相當的智慧形式。 AGI的出現將如何影響戰爭,會不會改變戰爭的暴力性和強迫性?本文將帶著一系列思考與大家共同探討這個問題。

AGI只是賦能技術嗎

很多人認為,雖然大模型以及生成式人工智慧展現出未來AGI強大的軍事應用潛力,但它們畢竟只是一種賦能技術,即只能對武器裝備賦能優化,使現有裝備更加智能,提高作戰效率,難以帶來真正的軍事革命。就如同「網路戰武器」在剛出現時也曾被許多國家寄予厚望,但現在看來確實有點誇大。

AGI的顛覆性其實完全不同。它以遠超人類的反應速度和知識廣度為戰場帶來巨大改變。更重要的是,它透過促進科技的快速進步,湧現出巨大的顛覆性結果。未來戰場上,自主武器將被AGI賦予高級智能,性能得到普遍增強,並且憑藉其速度和集群優勢變得「攻強守難」。屆時,一些科學家曾預言的高智慧自主武器將成為現實,而AGI在其中扮演了關鍵性角色。目前,人工智慧的軍事化應用領域包括自主武器、情報分析、智慧決策、智慧訓練、智慧保障等,這些應用很難用「賦能」來簡單概括。而且,AGI發展速度快、迭代周期短,處於不斷進化的狀態。未來作戰,需要將AGI作為優先事項,格外注意其帶來的可能改變。

AGI會讓戰爭消失嗎

歷史學家杰弗裡·布萊尼認為“戰爭總是因為對各自力量或意願錯誤的判斷而發生”,而隨著AGI在軍事領域的應用,誤判將變得越來越少。因此,有學者推測,戰爭將隨之減少或消失。其實,依托AGI確實可以減少大量誤判,但即便如此,也不可能消除所有不確定性,因為戰爭的特徵之一就是不確定性。何況並非所有戰爭都因誤判而產生,而且,AGI固有的不可預測性、不可解釋性,以及人們對AGI使用經驗的缺乏,都會帶來新的不確定性,使人們陷入更加濃重的「人工智慧迷霧」之中。

AGI演算法還存在理性難題。有學者認為,AGI對重大情報的挖掘和精確預測,會帶來雙重影響。 AGI在實際操作層面,確實比人類犯錯少,能夠提高情報準確性,有利於減少誤判;但有時也可能會使人類盲目自信,刺激其鋌而走險。 AGI帶來的進攻優勢,導致最佳防禦戰略就是“先發制人”,打破了進攻與防禦的平衡,引發了新型安全困境,反而增加了戰爭爆發的風險。

AGI具有通用性強的特點,容易與武器裝備結合。與核子、生化等技術不同,它使用門檻低,特別容易擴散。由於各國之間存在技術差距,導致人們很可能將不成熟的AGI武器運用於戰場,帶來巨大風險。例如,無人機在最新局部戰爭實務的應用,就刺激許多中小國家開始大量採購無人機。 AGI帶來的低成本裝備和技術,極有可能刺激新型軍備競賽的發生。

AGI會是終極威懾嗎

威懾是維持某種能力以恐嚇對手使其不採取超越自身利益的行動。當威懾強大到無法使用時就是終極威懾,例如確保相互摧毀的核威懾。但最終決定結果的卻是“人性”,這是戰爭永遠不會缺少的關鍵。

如果沒有了「人性」的各種權衡,AGI是否會成為令人生畏的威懾? AGI速度很快但缺乏同理心,執行堅決,博弈空間被極度壓縮。 AGI是未來戰場的關鍵性因素,但因缺乏實務經驗很難進行準確評估,很容易高估對手能力。此外,在自主武器控制方面,是人在環內、全程監督,還是人在環外、完全放手,這無疑需要深思。智慧化武器的開火控制權能交給AGI嗎?如果不能,威懾效果將大打折扣;如果能,人類的生死就真的可以交由與其無關的機器來決定?在康乃爾大學的研究中,兵棋推演大模型經常「突然使用核攻擊」升級戰爭,即使處於中立狀態。

或許未來某一天,AGI會在能力上超過人類,我們是不是就無法對其進行監管控制了?提出深度學習概念的傑弗裡·辛頓說,從沒見過更高智能水平的東西被更低智能水平的東西控制的案例。有研究團隊認為,人類可能無法監督超級人工智慧。未來面對強大的AGI,我們真的能夠控制住它們嗎?這是一個值得人們深思的問題。

AGI會改變戰爭本質嗎

隨著AGI的大量運用,充滿暴力和血腥的戰場會不會消失?有人說,人工智慧戰爭遠超過人類能力範圍,反而會將人類推到戰場之外。當人工智慧將戰爭變成全部由自主機器人對抗時,那它還是「暴力和血腥的戰爭」嗎?當能力不對等的對手對抗時,弱者可能根本沒有行動的機會,戰爭是不是透過兵棋推演就可以在戰前被結束? AGI會因此改變戰爭的本質嗎? 「無人」的「戰爭」還是戰爭嗎?

《人類簡史》作者尤瓦爾·赫拉利說,人類的一切行為都透過語言作為中介並影響我們的歷史。大語言模型是一種典型的AGI,它與其他發明最大的不同在於可以創造全新的想法和文化,「會說故事的人工智慧將改變人類歷史的進程」。當AGI觸及對語言的掌控時,人類所建構的整個文明體係就可能被顛覆,在這個過程中甚至不需要其產生意識。如同柏拉圖的“洞穴寓言”,人類會不會將AGI當成新的“神明”加以膜拜?

AGI透過人類語言和人類建立親密關係,並改變人類的看法,使人類難以區分和辨別,從而存在戰爭意志被別有用心之人控制的危險。赫拉利說,電腦不需要派出殺手機器人,如果真的需要,它會讓人類自己扣下板機。 AGI精準製造和打磨態勢訊息,透過深度偽造控制戰場認知,既可用無人機對戰場態勢進行偽造,也可以在戰前進行輿論造勢,在近幾場局部戰爭中已初見端倪。戰爭成本會因此大幅下降,導致新的戰爭形態產生,小國弱國還會有機會嗎?戰爭意志是否可以不用流血就可改變,「武力」是否不再是戰爭定義的必要條件?

戰爭形態或被改變,但本質仍在。無論戰爭是否“血腥”,其仍會強迫敵人服從自己的意志並帶有大量“附帶損傷”,只不過對抗方式可能會完全不同。戰爭本質在於內心深處的“人性”,而“人性”是由文化、歷史、行為和價值觀等決定的,是很難用某種人工智能技術完全復刻出來的,所以不能將倫理、政治和決策問題全部外包給人工智能,更不能期望人工智能會自動產生“人性”。人工智慧技術可能會因激情衝動而被濫用,所以必須在人類掌控之中。既然人工智慧是人類訓練的,它就不會永遠都沒有偏見,所以它們就無法完全脫離人類的監督。在未來,人工智慧可以成為有創意的工具或夥伴,增強“戰術想像力”,但必須“對齊”人類的價值觀。這些問題需要在實踐中不斷地去思考和理解。

AGI會顛覆戰爭理論嗎

大多數的學科知識是用自然語言表達的。集人類著述之大成的大語言模型,可以將很難相容的語言著述與科學研究連結起來。例如,有人將古典名著甚至哲學、歷史、政治、經濟學等輸入大語言模型,進行分析重構。發現它既可以對所有學者觀點進行全面分析,也可以提出它“自己的見解”,而且不失創見。因此有人說,是否也可以透過AGI對戰爭理論重新加以分析解釋,激發人類創新,以驅使戰爭理論及體系發生重大演化與重構?也許從理論上確實會有一定的改進和發展,但戰爭科學不僅具有理論性,而且還具有實踐性,但實踐性、現實性卻是AGI根本做不到的。經典戰爭理論真的可以重新詮釋嗎?若是,則理論的意義何在?

總之,AGI對戰爭概念的顛覆將遠超越「機械化」與「資訊化」。對於AGI的到來,人們既要大膽擁抱,也要心存謹慎。理解概念,不至於無知;深入研究,不致於落伍;強化監管,不致於失察。如何學習與AGI合作,防範對手AGI技術突襲,是我們未來首先需要關注的事情。 (榮明 胡曉峰)

編 後

以開闊思維前瞻未來

未來學家羅伊·阿瑪拉有一個著名論斷,人們總是傾向於高估一項技術帶來的短期效益,卻又低估了它的長期影響,後被稱作“阿瑪拉定律”。這個定律,強調了科技發展的非線性特徵,即科技的實際影響往往需要在更長的時間尺度上才能完全顯現,反映了科技發展的脈動與趨勢,體現人類對科技的接納與憧憬。

目前,人工智慧由弱人工智慧到強人工智慧、由專用人工智慧到通用人工智慧的發展過程中,每次人們認為已走完全程的90%時,回首一看,可能才剛到全程的10%。科技革命對軍事革命驅動作用愈發凸顯,尤其是以人工智慧技術為代表的高新技術多方位向軍事領域滲透,使得戰爭制勝機理、制勝要素、制勝方式正在發生深刻演變。

在可以預見的未來,AGI等智慧化技術不會停止迭代的步伐,而智慧化技術交叉演化以及在軍事領域的賦能應用等都將趨於多元化,或許會跳脫出人類對現有戰爭形態認知的邊界。科技的發展已勢不可擋、也無人能擋,誰能以敏銳的眼光、清醒的頭腦,看清科技的趨勢和未來、看到科技的潛質和威力,洞穿“戰爭迷霧”,誰就更有可能搶佔制勝先機。

這提醒著人們,對於未來戰爭形態發展的探索應持更開闊的視野和思維,才可能更接近被低估的現實。 AGI向何處去?智能化戰爭往何處去?這考驗著人類的智慧。 (野鈔洋)

【責任編輯:王金志】

中國原創軍事資源:http://www.news.cn/milpro/20250121/1eb771b26d264926b0c2d23d12084f0f888/c.html

Cognitive Domain Warfare The New Main Chinese Battlefield for Language Confrontation

認知領域戰爭:中國語言對抗的新主戰場

現代英語:

Cognitive domain warfare refers to the important form of public opinion propaganda, psychological attack and defense, winning people’s hearts, subverting confidence, influencing beliefs, fighting for thinking, and ideological struggle, guided by modern cognitive theory and science, calling on multi-domain means such as public opinion, psychology, and law, and using multi-dimensional technologies such as modern networks, media, text, pictures, videos, and numbers, aiming to fight for people’s initiative in thinking, beliefs, values, personal attitudes, emotions, identification, and judgment tendencies. Cognitive domain warfare is a complex collection of traditional public opinion warfare, psychological warfare, legal warfare, trade warfare, diplomatic warfare, scientific and technological warfare, ideological warfare, and other multi-domain warfare.

At present, cognitive domain warfare has become an important support for countries to carry out military struggles and struggles in other fields. Language confrontation driven by cognitive domain goals has become an important form of cognitive domain warfare and deserves high attention.

Language confrontation: a new area for exerting influence on combat targets

Cognitive domain operations are a result of the development of contemporary cognitive science research. They are an emerging field of operations that emerged after people actively explored the cognitive activities of the brain to gain a more complex, abstract and thorough understanding of the brain. They are also a high-end form of influence in language confrontation that targets the advanced, deep and hidden activities of the audience’s brain. Whether it is the object of information action, the producer of information, the information content itself or the channel of information, cognitive domain operations are all permeated with cognitive characteristics, and always emphasize taking action at the cognitive level.

In terms of the recipients of information, this cognition targets the deep cognitive aspects of the opponent’s audience, including its people, military, military commanders or important leaders, important figures in the political and business circles, and even directly includes the leaders of the other country or specific important generals of the army, etc. It can also be a specific group of people or the public. It can involve the cognitive preferences, cognitive shortcomings, cognitive habits, cognitive biases, and cognitive misunderstandings of individuals or groups; it can also be the beliefs, values, political identity, national identity, social and cultural identity, and emotional attitudes of individuals and groups.

From the perspective of the distributor and content of information, it should be infused with the cognitive design and arrangement of the information producer, which includes the unique cognition of the text, such as the discourse mode of the text, the narrative mode of the text, the observation perspective of things, the cognitive focus and depth of the narrative, the organization form of the sentence, the value concept and other tendencies of the sentence, the acceptability of the concept of the sentence to the other party, etc.

In terms of the channels for information issuance and dissemination, the form of text is closer to multimedia and multimodal forms, closer to the needs of cyberspace, closer to the advantages of contemporary smart phones, and closer to the characteristics of the current emerging media era, that is, it is more in line with the cognitive characteristics, cognitive habits and cognitive tendencies accepted by the audience. The dissemination form of text fully considers the cognitive effects in international communication, especially cross-cultural, cross-linguistic, cross-media and cross-group cognitive communication. In this way, the text will better influence the audience from a cognitive level.

Language confrontation responds to changes in combat styles and generates new tactics

Throughout human history, it is not difficult to find that the style of military struggle has been constantly changing. From the initial physical struggle with cold weapons to the contest of hot weapons and mechanical forces, and then to the balance and counter-balance of information capabilities under high-tech warfare conditions, in recent years, it has developed towards the intelligent decision-making competition in the direction of intelligence and unmanned. Each change has brought profound changes in tactics. In the current transitional stage of coexistence of mechanization, informatization and intelligence, people not only pay attention to the competition for dominance in the physical and information domains of the battlefield, but also pay more attention to the control of the cognitive domain that affects the main body of war, that is, the competition in the fields of thinking, cognitive patterns and styles, values, emotional attitudes, cultural models, communication patterns, psychological strengths and weaknesses, cognitive preferences, cultural and knowledge maps, and ideological identity of the personnel on both sides of the war. The latter involves the basic situation of social personnel and social existence, that is, the emerging field of cognitive domain warfare, and its tactics have strong particularity.

Flexibility of topics: Cognitive domain operations can select many topics in the cognitive domain and carry out flexible and flexible combat operations. According to the current situation and needs, topics can be selected from the relatively macroscopic strategic level (such as the ideology and system of the opponent’s entire society, etc.), the mesoscopic campaign level (such as social problems in the local field or direction of the opponent’s society: social welfare policy or environmental protection policy, etc.), and very microscopic tactical issues in society (such as the unfairness, injustice, and non-beautiful side of society reflected by a certain person or a specific event). Macro, meso, and micro cognitive domain issues are interconnected and transformed into each other. It is very likely that a microscopic topic will also become a major macroscopic strategic topic. The raising of issues depends on the relationship with the entire military operation. Cognitive domain operations should be subject to the overall combat operations and serve the needs of the macroscopic political and diplomatic situation. More importantly, topics should be prepared in peacetime, and data on various topics should be collected in peacetime, especially paying attention to various important data in the real society. Once needed, these data can be quickly transformed into arrows, bullets, and shells shot at the enemy’s cognitive domain, and even become strategic weapons that affect the overall situation.

Controllability of the operational level: The important design of cognitive operations is that it can be controlled and regulated as a whole at the operational level, and can be upgraded or reduced in dimension according to changes in the situation. If it is necessary at the strategic level, the commander can open the strategic level design and force investment; if it is necessary at the campaign level, it can also be controlled at the corresponding campaign level; if it is only necessary at the level of specific small problems, it can also be controlled at the corresponding niche local level, so that the entire action serves the needs of the overall combat operation. The strategic campaign tactics here refer more to operational design and force investment. Since the battlefield situation may change rapidly, some issues may also change at the level, with strategic issues affecting the effects of the campaign and tactical levels; some issues, due to the particularity of tactical issues, become campaign and strategic level issues that affect the overall situation.

Dominance of emerging media: The main influence channel of cognitive domain has shifted from traditional paper media and print media to emerging media. Traditional media mainly rely on single media, such as newspapers, magazines, books, flyers, posters, etc. to convey information; the emergence of television in the later period brought three-dimensional media. In the Internet era, especially the Internet 2.0 era and the birth of smart communication devices, people rely more on multi-media, multi-modal, short videos and short texts to convey information. The introduction of various advanced devices such as smart phones, smart tablets, smart players, and the birth of various emerging social software and tools have made emerging media the main tool for people to communicate and exchange. Emerging media, emerging social software and tools have become an important space for various forces to play games and struggle in social security, public opinion security, ideological security, social security and political security. Internet security, especially whether the security of new social media, emerging social software and tools can be mastered, is, to some extent, the key to whether a country’s cognitive domain can be secure. Information in emerging media tools and new media space has become the main battlefield, main position and main space for competition in cognitive operations of various countries. It is worth pointing out that ideas and theories that influence people’s cognition will become the most influential weapons at all levels of cognitive domain operations.

Language confrontation adapts to the intelligent era, cognitive computing enhances new computing power

In the era of artificial intelligence, based on the substantial improvement in big data analysis and application, supercomputing capabilities, intelligent computing capabilities, natural language processing capabilities, smartphone communication capabilities, and new generation network communication capabilities, humans have begun to accurately model and analyze language culture, psychological cognition, group emotions, and social behavior for the entire society, the entire network domain, local groups, local different groups, and specific individuals. In particular, people have a deep understanding and grasp of brain cognition, human brain thinking, thinking patterns, habitual preferences, image schemas, cognitive frameworks, and even neural networks, human-computer collaboration, and brain control technology. As long as there is enough diverse dynamic data, people can calculate and simulate all people’s psychological activities, emotional activities, cognitive activities, social opinions, and behavioral patterns. Through deep calculations, actuarial calculations, and clever calculations, people’s cognitive world can be accurately grasped, and a fine and profound control of people’s cognitive domain can be formed. This aspect also presents the following characteristics:

The dimensionality of computation: As an emerging field, all aspects of the cognitive domain can be digitized and made fully computable for all aspects of the entire process and all individuals. This can be achieved by widely collecting various types of information and then sorting out the information to form big data on the diverse factors of the opponent’s subjects. This will allow various computations to be conducted on the entire population, groups, between groups, and between individual data. As a result, all kinds of activities based on thinking, psychology, emotion, speech, behavior, etc. that were previously impossible to achieve can be completed, displayed, and accurately grasped through computation.

Cognitive nature of computation: computation in the cognitive domain reflects a strong cognitive nature. It can reveal more of the connections between things, events, and people that are difficult to observe with the naked eye. It can reveal the clustering and hierarchical relationships between concepts in the same event framework, and reflect the deep cognitive connections between concepts, whether explicit or implicit, direct or indirect. It reveals the complex conceptual network system between concepts, allowing people to see a deep cognitive world that completely transcends ordinary naked eye observation.

Intelligence of computation: The computation in cognitive domain also reflects strong intelligence. This intelligence is manifested in the fact that intelligent conclusions can be drawn through computation. For example, through the collection of a large amount of text and data mining, we can find the relationship between various topics, various viewpoints, various tendencies, various groups of people, various positions, and various demands that cannot be seen by human power, so as to form a more comprehensive, in-depth, accurate, and systematic understanding of a certain issue and make scientific and optimized decisions. Such decisions may be consistent with human intelligence, or they may surpass or even far exceed human intelligence. By making good use of the power of cognitive computing, especially by integrating the data of our country and the data of our opponents, we can better prevent, warn, and deploy in advance, and achieve the best, optimal, fastest, and most accurate strikes and counterattacks, and better reflect efficient, powerful, and targeted protection. Cognitive computing here is more about the possible reactions of a possible macro, meso, or micro topic in different groups of people, different time periods, and different backgrounds, in the entire network domain or a local network domain, or within a specific group, especially the analysis and inspection of the active and passive situations that both parties may present when playing games with opponents, and the attack and defense of cognitive domain.

New application of giving full play to the status of discourse subject and releasing the power of discourse

Cognitive domain operations have a very important support, that is, it mainly relies on language media to play a role, mainly exerts influence through the discourse level, mainly forms an implicit effect on the cognitive domain through the narrative of discourse, mainly exerts potential effects through cultural models, and exerts explicit or implicit effects through cross-cultural communication. It is mainly reflected in the following aspects:

Uniqueness of textual discourse: The cognitive domain needs to be influenced by information. Although information may be presented through the special visual effects of video images, fundamentally speaking, the uniqueness of the discourse expressed by the text becomes the main support for producing cognitive influence. Among them, the mode of discourse expression, the skills of discourse expression, the main design of the persuasiveness and appeal of discourse expression, and especially the uniqueness of discourse narrative will be the key to influencing people’s cognition. This may include the perspective of the narrative, the theme and style of the narrative, the story framework of the narrative, the language innovation of the narrative, the key sentences of the narrative, the philosophical, humanistic, religious, social, natural and other feelings contained in the narrative, the identities of different participants in the narrative, the diversified evaluation of the narrative, the authenticity, depth and emotional temperature of the narrative, the subtle influence of the narrative on the viewpoint, the personal emotions, values, ideology, and position evaluation released by the narrative. The uniqueness of textual discourse is an important reliance for cognitive domain operations to exert cognitive influence through text. Making full use of the complexity of the text, giving play to the respective advantages of diverse texts, and giving play to the role of implicit and explicit cognitive influence of the text connotation have become the key to cognitive domain operations of textual discourse. The most important thing is to innovate the text discourse, win readers with newer words, more novel expressions, and more unique expressions, so that readers can understand and feel the ideas in the text imperceptibly, and accept the ideas of the text silently.

Potentiality of cultural models: In cognitive domain operations, we must deeply grasp the characteristics and models of different countries and national cultures. Different countries and different nationalities have different cultural models. Their philosophical thinking, traditional culture, religious beliefs, customs, and ways of thinking are all obviously different. Citizens of different cultures also have different national psychology and national cognitive models. They should also have typical cognitive preferences belonging to their own national culture, as well as corresponding shortcomings and weaknesses. Some of them obviously have a huge difference in understanding from other nationalities in their own country, and even misunderstandings and hostility. Therefore, cognitive domain operations at the cultural level are to grasp the overall cultural models of different countries, build cultural models of different groups in different countries, build different cognitive models of different countries on different things, and fully grasp the overall attitude and behavior of a country on a series of things and issues, especially for some typical cases, cultural taboos, religious requirements, spiritual pursuits, and overall concepts. With the help of existing theories and discoveries, we should comprehensively construct the basic performance of different groups of people in the cognitive field on some typical problems, sensitive problems, and important problems, so as to provide important reference and guidance for the next step of cognitive operations. Strengthening the study of the cultural patterns of different enemy personnel, especially military personnel, personnel in key positions, including the study and construction of the basic cultural characteristics and models of enemy generals, officers, soldiers, etc., such as the character’s psychological cognitive behavior and cultural model portrait, has become the core practice of cognitive domain operations. The cognitive analysis of ordinary enemy personnel, especially the general public, citizens, and specific groups, including special non-governmental organizations, is also of great value.

Cross-cultural strategic communication: Cognitive domain operations are international language and cultural communications, and need to follow the laws of international communication. We must grasp the basic paradigm of international communication, skillfully combine our own stories with international expressions, and skillfully combine the other party’s language and culture with our own stories and ideas; we must be good at combining different art forms, including text, pictures, paintings, music (sound), video and other means or multimodal means to achieve international communication of information. At the same time, we must coordinate multi-dimensional macro communication at the strategic level: we must use various means to carry out communication through military-civilian integration, military-civilian coordination, and military-civilian integration; in addition to non-governmental organizations, we must especially rely on civilian forces, experts, opinion leaders, and ordinary people to help the military carry out cognitive domain operations; we must unify the setting of topics, speak out in multiple locations and dimensions, form a strategic communication situation, and form a good situation for emergency solutions for major actions, major issues, and major crisis management, form a good public opinion atmosphere, create positive effects, and eliminate or extinguish adverse effects. In particular, we must establish a capable team that is proficient in foreign languages, understands cross-cultural skills, knows the laws of international communication, and can speak out skillfully on international multi-dimensional platforms. These people can usually conduct extensive topic perception, information collection and discussion, and use common or special topics to build personal connections and establish fan communities. More importantly, at critical moments, they can exert influence through their fan groups and complete strategic communication tasks.

At present, with the prevalence of hybrid warfare, multi-domain warfare and global warfare, cognitive domain warfare has become a common means of mixing and blending. The process of cognitive domain warfare from unfamiliarity, emerging, development to growth is also the advanced stage, complex stage and upgraded stage of the development of traditional public opinion warfare, psychological warfare and legal warfare. Its rise is more deceptive, ambiguous, concealed, embedded, implanted and unobservable, especially considering its deep integration with the entry of contemporary emerging media, and it is constantly learning and drawing on new ideas, new technologies and new means that integrate into multiple disciplines, cross-disciplines and cross-disciplinary disciplines. As a result, cognitive domain warfare has become a form of warfare that we must be highly vigilant and guard against. (Liang Xiaobo, professor and doctoral supervisor at the College of Arts and Sciences of the National University of Defense Technology)

[This article is a phased result of the National Social Science Fund Major Project “National Defense Language Capacity Building in the Perspective of National Defense and Military Reform”]

(Source: China Social Sciences Network)

(Editors: Chen Yu, Huang Zijuan)

現代國語:

認知域作戰指的是以現代認知理論和科學為指導,調用輿論、心理、法律等多域手段,運用現代網絡、傳媒、文字、圖片、視頻、數字等多維技術,開展輿論宣傳、心理攻防、人心爭取、信心顛覆、信仰影響、思維爭奪以及意識形態斗爭的重要形式,意在爭奪人們在思維、信仰、價值觀、個人態度、情感、認同與評判傾向方面主動權。認知域作戰是傳統輿論戰、心理戰、法律戰及貿易戰、外交戰、科技戰、思想戰等多域戰的復合集合體。

當前,認知域作戰已成為國家間開展軍事斗爭和其他領域斗爭的重要依托,認知域目標驅動的語言對抗已經成為認知域作戰的重要形式,值得高度關注。

語言對抗針對作戰對象施加影響的新領域

認知域作戰是當代認知科學研究發展的伴隨結果,是人們積極探索大腦認知活動獲得對大腦更為復雜更為抽象更為透徹的理解后產生的一種新興作戰領域,更是語言對抗以受眾大腦的高級深層隱性活動為作用對象的高端影響形式。不管是從信息作用的對象、信息的生產者、信息內容本身還是信息的渠道,認知域作戰都無不貫穿了認知的特點,自始至終都突出從認知層面開展行動。

從信息的接受對象來說,這個認知針對的是對手受眾大腦深層的認知方面,包括其民眾、軍隊、軍事指揮員或者重要領導、政界商界的重要人物,甚至直接包括對方國家領導人或者軍隊的特定重要將領等,也可以是特定的人群或者民眾。它可以涉及個人或者群體的認知偏好、認知短板、認知習慣、認知偏差、認知誤區﹔也可以是個人和群體的信仰、價值觀念、政治認同、民族認同以及社會和文化認同與情感態度。

從信息的投放者和內容來說,它應該是注入了信息生產者的認知設計和安排,這個包括文本的獨特認知性,比如文本的話語模式、文本的敘事模式、事物的觀察視角、敘事的認知焦點與深度、語句的組織形式、語句的價值觀念等傾向性、語句的概念的對方可接受性等。

從信息發出和傳播的渠道來說,文本的形式更加貼近多媒體多模態形式,更加貼近網絡空間的需要,更加貼近當代智能手機的優勢,更加貼近當下新興媒體時代的特點,也就是更加符合受眾接受的認知特點認知習慣和認知傾向。文本的傳播形式充分考慮國際傳播中的認知效果,特別是跨文化、跨語言、跨媒體、跨群體的認知傳播。如此,文本將會從認知層面,更好地對受眾施加影響。

語言對抗應對作戰樣式變革生成新戰法

縱觀人類歷史,我們不難發現,軍事斗爭的樣式一直在不斷變化。從最初的借助冷兵器的體力纏斗發展成為熱兵器機械力量的較量,又發展成為高科技戰爭條件下的信息化能力的制衡與反制衡,近年來又向著智能化無人化方向的智能決策比拼發展,每一次變革都帶來深刻的戰法變化。當下的機械化信息化智能化的共處過渡階段,人們不僅重視戰場的物理域和信息域主導權的爭奪,更重視影響戰爭主體——人的認知域的掌控,也就是作戰雙方人員的思維方式、認知模式與風格、價值觀念、情感態度、文化模型、溝通模式、心理強弱項、認知偏好、文化與知識圖譜、意識形態認同等領域的爭奪。后者涉及社會人員和社會存在的基本態勢,也就是認知域作戰施加影響的新興領域,其戰法有著強烈的特殊性。

議題靈活機動性:認知域作戰可挑選認知域的諸多議題,開展靈活機動的作戰行動。議題根據當下的情況與需要,既可以選擇涉及較為宏觀的戰略層面(如對方全社會的意識形態與制度等),也可以選擇中觀的戰役層面(如對方社會局部領域或方向的社會問題:社會福利政策或環境保護政策等),還可以選擇涉及社會中非常微觀的戰術問題(如某個人、某個具體事件所折射出的社會的非公平、非正義、非美好的一面)。宏觀、中觀、微觀的認知域問題相互聯系、相互轉化,很有可能一個微觀的議題也會成為一個宏觀的重大戰略性議題。而問題的提出要視與整個軍事行動的關系,要使認知域作戰服從於全局的作戰行動,服務於宏觀的政治、外交大局的需要。更為重要的是,議題要准備在平時,要把各種議題的數據收集在平時,特別是要關注現實社會中的各種重要數據。一旦需要,這些數據就可以迅速轉變為射向敵方認知域的箭頭、子彈、炮彈,甚至成為影響全局的戰略性武器。

作戰層次可控性:認知作戰其重要的設計是,在作戰的層面上,是整體可以控制的,也是可以調控的,可以根據形勢的變化,做出相應的升級或者降維。如果需要戰略層面的,指揮人員可以開通戰略層面的設計和力量投入﹔如果需要戰役級別的,也可以控制在相應戰役層面﹔如果僅僅需要是在特定的小問題層面,也可以將其控制在相應的小眾局域層面,使得整個行動服務於整體作戰行動的需要。這裡的戰略戰役戰術,更多的指的是作戰設計和力量的投入。由於戰場態勢可能瞬息萬變,有些議題也有可能在層級上發生變化,由戰略性的議題影響到戰役和戰術級的效果﹔有些議題,則由於戰術議題的特殊性,成為影響全局的戰役戰略級議題。

新興媒介主導性:認知域的主要影響渠道,已經從傳統的紙質媒體和平面媒體轉向了新興媒體。傳統媒介主要依靠單一媒介,如報紙、雜志、書籍、傳單、海報等來傳遞信息﹔后期電視的產生帶來了立體媒體。到了互聯網時代,特別是互聯網2.0時代和智能通訊設備的誕生,人們更加依靠多媒介、多模態以及短視頻、短文本的形式來傳遞信息。各種智能手機、智能平板、智能播放器等高級設備的推陳出新,各種新興社交軟件和工具的誕生,使得新興媒體成為當下人們開展溝通和交流的主要工具。新興媒體、新興社交軟件和工具已經成為當下各種力量在社會安全、輿論安全、意識形態安全、社會安全和政治安全展開博弈和斗爭的重要空間。互聯網安全,特別是能否掌握住新型的社交媒體、新興社交軟件和工具等的安全,在某種程度上說,是一國認知域能否安全的關鍵。新興媒體工具和新型媒體空間的信息已經成為各個國家認知作戰的主戰場、主陣地和主要爭奪空間。值得指出的是,左右人們認知的思想和理論將成為認知域作戰各層面的最為有影響力的武器。

語言對抗適應智能時代認知計算增強新算力

人工智能時代,在大數據分析與運用、超級計算能力、智能計算能力、自然語言處理能力、智能手機傳播能力以及新一代網絡通信能力大幅提高的基礎上,人類已經開始可以對全社會、全網域、局部群體、局部不同群體以及特定個體開展精准的語言文化、心理認知、群體情感、社會行為建模和分析。特別是人們對大腦認知、人腦思維、思維模式、習慣偏好、意象圖式、認知框架、乃至神經網絡、人機協同、腦控技術等的深刻認識和把握,隻要有足夠多樣化的動態數據,人們就可以把人們的心理活動、情感活動、認知活動、社會輿論以及行為方式等全部計算模擬出來,通過深算、精算、妙算,可以精准地把握人們的認知世界,形成對人們認知域的精細和深刻的掌控。這方面又呈現以下特征:

計算的全維性:認知域作為一個新興領域,其涉及的方方面面都可以被數據化並實現全方位全過程全個體可計算,可以通過廣泛的收集各類型信息,經過信息梳理進而可體現為關於作戰對手主體因素多樣化的大數據,從而可以就此開展面向全體、群體、群體之間以及個體數據及其之間的各種計算,由此,以往無法實現的基於思維、心理、情感、言論、行為等方面的各種活動都可以通過計算來完成、展示和精准把握。

計算的認知性:認知域的計算體現了了強烈的認知性,它更多地可以揭示各種事物、事件、人物之間的難以用肉眼觀察到的關聯關系,可以揭示同一事件框架中各種概念之間的聚類和層級關系,體現各概念之間或明或暗、或直接或間接的深層認知聯系,揭示概念之間的復雜概念網絡體系,使人們看到完全超越一般肉眼觀察的深層認知世界。

計算的智能性:認知域的計算又體現了強烈的智能性。這種智能性表現為通過計算,會得出具有智慧性的結論。譬如可以通過大量文本收集和數據挖掘,尋找人工力量受限而看不到的各種主題、各種觀點、各種傾向、各種人群、各種立場、各種訴求之間的關系,形成對某一問題的更為全面、縱深、精確、系統的認識,做出科學優化的決策。這類決策既可能是與人類智能相符,也可能是超越甚至遠遠勝過人類的智能。運用好認知計算的力量,特別是綜合本國的數據和對手的數據,可以更好地做到提前預防、提前預警、提前開展布局,並能夠實現最好最優最快最精准地打擊和反擊,也能夠更好地體現高效有力有針對性的防護。這裡的認知計算,更多的是對某一可能的宏觀中觀或微觀的議題在不同人群、不同時間段、不同背景下,在全網域或者某一局域網域、某一特定群體內部可能產生的反響,特別是對與對手展開博弈時雙方可能呈現的主動、被動的態勢開展分析和檢視,對認知域的攻防等。

發揮話語主體地位釋放話語力量的新運用

認知域作戰有一個非常重要的依托,就是它主要依托語言媒介來發揮作用,主要通過話語層面來施加影響,主要通過話語的敘事性來形成對認知域的隱性作用,主要通過文化模式來施加潛在作用,通過跨文化的傳播來施加或明或暗的作用。其主要體現為以下方面:

文本話語獨特性:認知域是需要用信息來施加影響的。盡管信息可能依托視頻圖片的特殊視覺效果來展現,但從根本上說,文本所綜合表達話語的獨特性成為產生認知影響的主要依托。這其中,話語表達的模式、話語表達的技巧、話語表達說服力和感染力的主要設計,特別是話語敘事獨特性將是影響人們認知的關鍵。這可能會包括敘事的視角,敘事的主題、風格,敘事的故事框架,敘事的語言創新,敘事的關鍵語句,敘事蘊含的哲學、人文、宗教、社會、自然等情懷,敘事的不同參與者身份,敘事的多樣化評價,敘事的真實度、深度和情感溫度,敘事對於觀點的潛移默化影響作用,敘事釋放的個人情感、價值觀念、意識形態、立場評價等。文本話語的獨特性,是認知域作戰以文本施加認知影響的重要依靠。充分利用文本的復雜性,發揮多樣化文本各自優勢,發揮文本內涵的隱性和顯性認知影響的作用,已經成為文本話語認知域作戰的關鍵。其中最為重要的,就是要創新文本話語,用更加嶄新的話語、更加新奇的表述,更加獨特的表達來贏得讀者,使讀者了解並在潛移默化中感受文本中的思想,並在無聲無息中接受文本的思想。

文化模式潛在性:認知域作戰,一定要深刻把握不同國家和民族文化的特點和模式。不同國家、不同民族,其文化的模型不一樣,哲學思維、傳統文化、宗教信仰、風俗習慣、思維方式皆有明顯不同﹔不同文化下的國民,也有著不同樣的民族心理、民族性的認知模式,還應該有典型的屬於本民族本文化的認知偏好,也有相應的短處與弱點,有的還明顯存在與本國其他民族有巨大差異的認識,甚至還有誤解和敵意。因此,認知域作戰在文化層面,就是要把握好不同國家的總體文化模型,建設不同國家不同群體的文化模型,建設不同國家在不同事物上的不同認知模型,充分把握某一國家在一系列事物和議題上的總體態度和行事方式,特別是針對一些典型案例、文化禁忌、宗教要求、精神追求、總體觀念等。要借助現有理論和發現,綜合構建在認知領域不同人群對一些典型問題、敏感問題、重要問題的基本表現,為下一步開展認知作戰提供重要的參考和指導。加強對敵方不同人員的文化模式研究,特別是軍隊人員,重點崗位的人員,包括對方將領、軍官、士兵等的基本文化特點和模型的研究與構建,譬如人物心理認知行為與文化模型畫像,已經成為認知域作戰的核心做法。對對方普通人員,特別是一般國民、市民的認知模式,以及特定人群,包括特殊的非政府組織力量等的認知分析,也同樣具有重要價值。

跨文化戰略傳播性:認知域作戰,是面向國際的語言傳播和文化傳播,需要遵循國際傳播的規律。要把握好國際傳播的基本范式,要把本國故事與國際表達巧妙結合,要將對方語言與文化和本國的故事與思想巧妙結合﹔要善於結合不同的藝術形式,包括文字、圖片、繪畫、音樂(聲音)、視頻等手段或者多模態的手段來實現信息的國際傳播。同時,還要在戰略層面統籌多維宏觀的傳播:要利用各種手段,依靠軍民融合軍民協同軍民一體開展傳播﹔除了非政府組織之外,特別是要依靠民間力量,依靠專家、意見領袖、普通民眾來幫助軍隊來開展認知域作戰﹔要統一設置議題,多點多位多維發聲,形成戰略傳播態勢,為重大行動、重大議題、重大危機管控等形成應急解決的良好態勢,形成良好輿論氛圍,營造積極效應,消除不利影響或者扑滅不利影響。特別是要建立一支能夠精通外語、懂得跨文化技巧、知曉國際傳播規律、能在國際多維平台巧妙發聲的精干隊伍。這些人員平時可以開展廣泛的議題感知、收集和討論,借助普通議題或者特殊議題建立人脈關系,建立粉絲群落﹔更重要的是,在關鍵時刻,通過他們的粉絲群體,施加影響,完成戰略傳播任務。

當前,隨著混合戰多域戰全域戰的大行其道,認知域作戰已經成為雜糅其間、混合其間的常用手段,認知域作戰由陌生、新興、發展到壯大的歷程,更是傳統輿論戰、心理戰、法律戰發展的高級階段復雜階段升級階段。它的興起,更具有欺騙性、模糊性、隱蔽性、嵌入性、植入性和不可觀察性,特別是考慮它與當代新興媒體進場深度接軌深度融合,而且還不斷學習借鑒融入多學科、跨學科、交叉學科的新思想、新技術、新手段。由此,認知域作戰已然成為我們必須高度警惕高度提防的作戰形式。(國防科技大學文理學院教授、博士生導師梁曉波)

【本文系國家社科基金重大項目“國防與軍隊改革視野下的國防語言能力建設”階段性成果】

(來源:中國社會科學網)

(責編:陳羽、黃子娟)

2022年05月17日10:xx | 

中國原創軍事資源:https://military.people.com.cn/BIG5/n1/2022/0517/c1011-32423539888.html

Chinese Military Research of International Intelligent Unmanned System Technology Application and Development Trends

軍研究國際智慧無人系統技術應用及發展趨勢

現代英語:

With the accelerated application of cutting-edge technology in the military field, intelligent unmanned systems have become an important part of modern warfare. The world’s major military powers attach great importance to the application of intelligent unmanned system technology in the military field. In the future, intelligent unmanned systems will have a profound impact on combat methods and subvert the rules of war. As a culmination of cutting-edge science and technology (such as artificial intelligence, intelligent robots, intelligent perception, intelligent computing, etc.), intelligent unmanned systems represent the highest level of development of a country’s scientific and technological strength. Therefore, research in the field of intelligent unmanned systems can greatly promote the development of existing military and livelihood fields.
At present, unmanned system equipment has emerged in military conflicts. For example, in the conflict between Turkey and Syria, Turkey used the Anka-S long-flight drone and the Barakta TB-2 reconnaissance and strike drone equipped by the Air Force to attack the Syrian government forces; the Russian Ministry of Defense also announced that militants in Syria used drones carrying explosives to launch a cluster attack on its military bases; in 2020, the United States used an MQ-9 “Reaper” drone to attack a senior Iranian military commander and killed him on the spot. Unmanned combat is coming, and intelligent unmanned systems, as a key weapon on the future battlefield, will determine the victory of the entire war.

Image from the Internet

The development of intelligent unmanned systems will not only promote the upgrading and progress of existing military technology, but also drive the intelligent development of civilian technology, including intelligent transportation systems, smart home systems, intelligent manufacturing systems and intelligent medical systems. In order to develop intelligent unmanned systems more scientifically and rapidly, major scientific and technological powers have introduced a series of plans and routes for the development of intelligent unmanned systems, striving to seize the initiative and commanding heights in the development of intelligent unmanned systems. Related ones include the United States’ integrated roadmap for autonomous unmanned systems, Russia’s national weapons and equipment plan, the United Kingdom’s defense innovation technology framework, China’s new generation of artificial intelligence development plan, and Japan’s medium- and long-term technology plan.
In recent years, from air to space, from land to sea, various types of intelligent unmanned systems have emerged in large numbers. The world’s major powers have gradually deployed intelligent unmanned systems into the military, and in some regional conflicts and anti-terrorism battlefields, the key role of intelligent unmanned systems is increasing. Therefore, this article will focus on the military needs of the future battlefield, based on the challenges of the actual complex environment faced by the future battlefield, analyze the key technologies required for the development and application of intelligent unmanned systems, and analyze the key technologies of individual enhancement and cluster enhancement from a military perspective, and explain the development trend of intelligent unmanned systems.

  1. Current research status at home and abroad

The concept of intelligent unmanned system has only been proposed recently. At present, its research is still in its early stages, and there is no unified definition in the world. It is temporarily defined as: an organic whole composed of an unmanned platform and several auxiliary parts, with the ability to perceive, interact and learn, and capable of autonomous reasoning and decision-making based on knowledge to achieve the goal. Intelligent unmanned systems can be divided into three major parts: land unmanned systems, air unmanned systems and marine unmanned systems according to the spatial scope of their functions. Among them, land unmanned systems mainly include reconnaissance unmanned vehicles, transport unmanned vehicles, combat unmanned vehicles, obstacle removal unmanned vehicles, bomb disposal unmanned vehicles, unmanned vehicle formations and command systems, etc.; air unmanned systems mainly include reconnaissance drones, combat drones, logistics transport drones and drone formations, etc.; marine unmanned systems mainly include reconnaissance unmanned boats, combat unmanned boats, logistics transport unmanned boats, patrol search and rescue unmanned boats, reconnaissance unmanned submarines, combat unmanned submarines and shore-based support systems, etc. This section will explain the current research status of intelligent unmanned systems at home and abroad from the above three parts.
⒈ Current status of foreign intelligent unmanned system research
⑴ Land unmanned system
Land unmanned systems are mainly used in intelligence collection, reconnaissance and patrol, mine clearance and obstacle removal, firepower strike, battlefield rescue, logistics transportation, communication relay and electronic interference. As the advantages of land unmanned systems in combat become more and more prominent, research on them has attracted more and more attention from various countries.
The United States launched the “Joint Tactical Unmanned Vehicle” project in November 1993, which is the predecessor of the “Gladiator” unmanned combat platform project. In 2006, the United States completed the design of the entire system of the “Gladiator” unmanned combat platform and officially equipped the Marine Corps in 2007. The “Gladiator” tactical unmanned combat platform is the world’s first multi-purpose combat unmanned platform. It is equipped with sensor systems such as day/night cameras, GPS positioning systems, and acoustic and laser search systems. It is also equipped with machine guns, submachine guns, tear gas, sniper systems, biological and chemical weapons detection systems, etc. It can perform reconnaissance, nuclear and biological weapons detection, obstacle breakthrough, anti-sniper, firepower strike and direct shooting in different weather and terrain.
The Gladiator unmanned combat platform is equipped with a highly mobile and survivable chassis. For this platform, a portable handheld control system has also been developed, and a series of development work has been completed around the technical issues of the control system’s anti-interference, network interoperability, miniaturization and ease of operation. However, due to the weak armor protection capability of the Gladiator unmanned combat platform and the poor concealment of its mission, its long-range reconnaissance and control system faces more interference. In addition, the US Army has also put some other land unmanned systems into service, such as the Scorpion robot and the Claw robot. In 2017, the US Army formulated the Robotics and Autonomous Systems (RAS) Strategy, which provides a top-level plan for the construction of unmanned combat capabilities. Figure 1 shows the US land unmanned system.

Figure 1 US land unmanned system
Israel, Russia, the United Kingdom and Germany have also successively carried out the development of land unmanned systems and developed a series of advanced products. The product list is shown in Table 1. For example, the “Guardian” series of autonomous unmanned vehicles developed by Israel can combine the sensors and fusion algorithms on board to autonomously detect and identify dangerous obstacles, and perform patrol, surveillance and small-scale fire strike tasks; the MARSA-800 unmanned vehicle developed by Russia can perform tasks such as transportation and logistics support, tracking and surveillance, and can realize autonomous path planning and avoid obstacles during the execution of tasks. The unmanned vehicle has been deployed on the Syrian battlefield. The United Kingdom and Germany also started research on land unmanned systems earlier. The United Kingdom launched a trolley bomb disposal robot in the 1960s, and later launched the Harris T7 tactile feedback robot for performing dangerous tasks such as bomb disposal and bomb disposal; the “Mission Master” ground armed reconnaissance unmanned vehicle developed by Germany’s Rheinmetall is mainly used to perform tactical surveillance, dangerous object detection, medical evacuation, communication relay and fire support tasks.


Table 1 Land unmanned systems of various countries

⑵ Aerial unmanned systems
Aerial unmanned systems are mainly based on single drone platforms and drone clusters. Due to their advantages such as wide field of view, freedom of flight, and good equipment carrying capacity, drones are widely used in the military field and have played a great role in military conflicts in recent years. The main functions of aerial unmanned systems include: intelligence gathering, reconnaissance and surveillance, decoy target aircraft, target tracking, tactical strikes and air rescue.
In 2000, the U.S. Air Force Research Laboratory proposed the concept of autonomous combat for unmanned aerial vehicles, quantified the degree of autonomy of unmanned aerial vehicles, and formulated a development plan. The quantitative content and development stage of the degree of autonomy of unmanned aerial vehicles are shown in Figure 2.

Figure 2 Autonomous control level and the trend of autonomous


unmanned aerial vehicles In 2003, the United States merged the unmanned combat aircraft system projects of the Air Force and the Navy, launched the “Joint Unmanned Combat System” (J-UCAS) project, and began research on the unmanned combat aircraft X-47B. In 2006, the U.S. Navy proposed the “Navy Unmanned Combat Air System” (N-UCAS) project, which aims to introduce unmanned combat aircraft to the aircraft carrier-based aircraft wing and continue to conduct research on the X-47B. Between 2012 and 2014, the aircraft carrier catapult, landing, touch-and-go and other tests were completed many times, and the autonomous aerial refueling test was completed in 2015. The X-47B attack drone is an autonomously maneuverable, stealthy, and land-based and ship-based unmanned combat aircraft. It has the characteristics of high range and high flight time, and is equipped with advanced sensors such as illumination radar, optoelectronic guidance system, and aperture radar. Its main functions include intelligence reconnaissance, target tracking, electronic warfare interference, and firepower strikes. Other unmanned aerial systems developed by the United States, such as the Global Hawk, Predator, Hunter, and Raven, have also been in service in the military, as shown in Figure 3.
The “Harpy” drone developed by Israel is equipped with anti-radar sensors, optoelectronic guidance systems and missiles, and can autonomously attack enemy radar systems, as shown in Figure 3.

Figure 3 Aerial Unmanned Systems of Various Countries


A single aerial unmanned system is easily interfered with and attacked when performing a mission, resulting in mission failure, while an aerial unmanned system cluster can make up for this defect and give full play to the advantages of aerial unmanned systems. The Defense Advanced Research Projects Agency (DARPA) of the United States has successively launched the “Gremlins” low-cost drone project, the low-cost drone cluster project, the “Perdix” micro-drone airborne high-speed launch demonstration project, and the offensive swarm enabling tactics (OFFSET) project for aerial unmanned system clusters. By developing and testing the architecture, communication system and distributed control algorithm for unmanned system clusters, an autonomous control system for drone clusters has been developed, and cutting-edge scientific and technological technologies such as artificial intelligence, situational awareness, virtual reality and augmented reality have been used to enhance the comprehensive combat capability of aerial unmanned system clusters on the battlefield.


⑶ Marine unmanned systems
Marine unmanned systems include two types: surface unmanned systems and underwater unmanned systems. Among them, surface unmanned systems mainly refer to surface unmanned boats (hereinafter referred to as “unmanned boats”), which are mainly used to perform tasks such as maritime search and rescue, reconnaissance and surveillance, firepower strikes, patrol security, electronic interference, logistics support and decoy target ships; underwater unmanned systems mainly refer to unmanned submersibles. Compared with manned submarines, they have the advantages of no casualties, high concealment and high autonomy, and are mainly used to perform intelligence collection, target monitoring, combat deterrence and firepower strikes. In 2018, the US Navy released the “Navy Department Unmanned System Strategic Roadmap”, and in 2019, it released the “Navy Artificial Intelligence Framework”, which provides route planning and guidance for the development of naval operations and marine unmanned systems.
In terms of surface unmanned systems, the United States proposed the “American Advanced Concept Technology Demonstration Project” (ACTD), one of whose important tasks is to carry out research on the “Spartan Scout” unmanned boat. The project was completed in 2007 and tested in the Iraqi theater. The “Spartan Scout” unmanned boat is equipped with an unmanned driving system and a line-of-sight/beyond-line-of-sight communication system, as well as advanced sensors such as electro-optical/infrared search turrets, high-definition cameras, navigation radars, surface search radars, and global positioning system receivers, as well as weapons such as naval guns, anti-ship missiles, and anti-submarine sensors. It is mainly used to perform intelligence collection, target monitoring, information reconnaissance, anti-mine and maritime security tasks, and has a certain degree of autonomy. The “Sea Hunter” unmanned boat developed by the United States is equipped with sonar and optoelectronic sensors, as well as short-range and long-range radar detection systems and expandable modular sonar systems. It is mainly used to perform tasks such as identifying and monitoring suspicious targets and guiding fire strikes. The US marine unmanned system is shown in Figure 4. The “Protector” unmanned boat developed by Israel is mainly used to perform intelligence reconnaissance, suspicious target identification, tactical interception, electronic interference and precision strikes (Figure 4). The unmanned surface reconnaissance boat developed by Russia can perform rapid patrol tasks under the command of the mother ship and inspect and monitor designated areas to search for intelligence.

Figure 4 Marine unmanned systems of various countries


In terms of underwater unmanned systems, the nuclear-powered unmanned submarine “Poseidon” developed by Russia can carry conventional and nuclear warheads to perform reconnaissance and strategic nuclear strike missions, as shown in Figure 4. The “Knifefish” unmanned submarine developed by the United States can scan suspicious objects and search for intelligence by emitting low-frequency electromagnetic waves; the “Tuna”-9 unmanned submarine developed by the United States can carry a variety of standard payloads and can be used to perform offshore exploration, anti-mine, surveillance and reconnaissance (ISR) and other tasks.


⒉ Current status of domestic intelligent unmanned system research
In recent years, China’s military intelligent unmanned systems have developed rapidly. This article will explain the three aspects of land unmanned systems, air unmanned systems and marine unmanned systems.
In terms of land unmanned systems, the National University of Defense Technology and Sany Heavy Industry Co., Ltd. jointly developed the “Desert Wolf” land unmanned light platform, which is powered by tracks and equipped with weapon systems such as grenade launchers and machine guns. It can be used to perform logistics transportation, wounded transportation, reconnaissance monitoring, firepower strikes and other tasks. The “Longma” series of unmanned vehicles developed by Sunward Intelligent Group have strong transportation and obstacle crossing capabilities. The “Shenxing-III” military ground intelligent robot system developed by Nanjing University of Science and Technology has strong autonomous navigation and intelligence reconnaissance capabilities. The unmanned nuclear reconnaissance vehicle jointly developed by the National University of Defense Technology and Harbin Institute of Technology has high mobility and armor protection capabilities. The weapon system it carries can perform fire strikes and has certain autonomous capabilities.
In terms of aerial unmanned systems, the “Wing Loong” series of unmanned aerial vehicles developed by Chengdu Aircraft Industry Group has fully autonomous horizontal take-off and landing capabilities, cruise flight capabilities, air-to-ground coordination capabilities, and ground relay control capabilities. It is equipped with multiple types of optoelectronic/electronic reconnaissance equipment and small air-to-ground precision strike weapons, and can perform intelligence reconnaissance, target tracking, fire strikes and other tasks. The “Rainbow” series of unmanned aerial vehicles developed by China have medium-altitude and long-range navigation capabilities, can carry electronic jamming systems and a variety of weapon systems, and can perform fire strikes, intelligence reconnaissance, communication jamming, radio wave jamming and other tasks; the attack 11 type unmanned aerial vehicle developed has extremely strong stealth capabilities and can carry precision-guided missiles for ground attack missions. China’s aerial unmanned systems are shown in Figure 5.

Figure 5 China’s aerial unmanned systems


In terms of surface unmanned systems of marine unmanned systems, the “Tianxing No. 1” unmanned boat, developed by Harbin Engineering University, uses oil-electric hybrid power, with a maximum speed of more than 92.6km/h and a maximum range of 1,000km. It is currently the fastest unmanned boat in the world. The boat integrates technologies such as autonomous perception, intelligent control, and autonomous decision-making, and can achieve rapid situation information recognition and danger avoidance of the surrounding complex environment. It can be used to perform tasks such as meteorological information monitoring, landform mapping, alert patrol, intelligence reconnaissance, and firepower attack. The “Jinghai” series of unmanned boats developed by Shanghai University have semi-autonomous and fully autonomous operation capabilities, and can perform tasks such as target reconnaissance, ocean mapping, and water quality testing. The “Haiteng 01” intelligent high-speed unmanned boat developed by Shanghai Maritime University is equipped with sensors such as millimeter-wave radar, laser radar, and forward-looking sonar. It can perform suspicious target monitoring, underwater measurement, maritime search and rescue, and other tasks, and has fully autonomous and semi-autonomous navigation capabilities. The JARI intelligent unmanned combat boat developed by Jiangsu Automation Research Institute is equipped with detection equipment such as photoelectric detectors and four-sided phased arrays. At the same time, it is also equipped with weapon systems such as missiles and torpedoes, which can perform tasks such as intelligence collection, enemy reconnaissance, and precision firepower strikes. The “Lookout II” unmanned missile boat jointly developed by Zhuhai Yunzhou Intelligent Technology Co., Ltd. and other units is equipped with a fully autonomous unmanned driving system and missiles and other weapons, which can perform tasks such as enemy reconnaissance, intelligence collection, and precision firepower strikes. China’s marine unmanned system is shown in Figure 6.

Figure 6 China’s marine unmanned system


In terms of underwater unmanned systems of marine unmanned systems, the “Devil Fish” unmanned submersible developed by Northwestern Polytechnical University is a bionic manta ray unmanned submersible that has completed a deep-sea test of 1025m. The “Wukong” full-sea depth unmanned submersible developed by Harbin Engineering University has successfully completed a deep dive and autonomous operation test of 10,896m. Deep-sea submersibles such as “Qianlong No. 1” and “Seahorse” developed by China have successfully completed deep-sea exploration missions.


⒊ Summary of the current state of technology
At present, intelligent unmanned systems have been gradually applied to various fields of military applications, and with the development of cutting-edge science and technology, the application of intelligent unmanned systems in the military field will increase day by day. However, in the use of intelligent unmanned systems, autonomy and intelligence have not yet been fully realized. At present, the application status of intelligent unmanned system technology in the military field can be mainly divided into the following three parts:


① From the perspective of combat missions: combat missions have developed from simple reconnaissance and surveillance to mainstream confrontation operations; battlefield confrontation has changed from human confrontation to human-machine confrontation, and then to machine-machine confrontation; the application environment has changed from structured environment and laboratory environment to real battlefield environment, and will gradually develop into an augmented reality environment combining real environment and virtual reality in the future.
② From the perspective of command and control: the control method has developed from simple remote control and program control of a single machine to intelligent fusion and interactive control of human-machine, but autonomous control has not yet been fully realized; the system architecture has developed from specialization and singularity to generalization, standardization, and interoperability.
③ From the perspective of perception and decision-making: the decision-making method has changed from relying solely on people to relying mainly on people and supplemented by human-machine intelligent interactive decision-making; the perception method has changed from relying solely on sensors to obtain feature information and people to judge target attributes to target recognition and feature information acquisition based on artificial intelligence.

  1. Key technologies of intelligent unmanned systems

As a culmination of multidisciplinary fields, intelligent unmanned systems involve many technologies, perform diverse tasks, and have complex and changeable application scenarios. For example, the air environment is rainy and foggy, with low visibility, strong winds, and light interference; the land environment has complex terrain, obstacles, interference, and dangerous pollution areas; the sea environment has wind and wave interference, ship swaying, inconspicuous targets, and irregular coastlines. Different environments and uses pose huge challenges to the research and performance of intelligent unmanned system technology. In order to adapt to the restricted and changing environment, the key technologies of intelligent unmanned systems can be summarized as autonomous perception and understanding technology in complex environments, multi-scenario autonomous skill learning and intelligent control technology, multi-task cluster collaboration technology, human-computer interaction and human-computer fusion technology, decision-making planning technology and navigation and positioning technology. This section will mainly use marine unmanned systems as examples to elaborate on the key technologies of intelligent unmanned systems.


⒈ Autonomous perception and understanding technology in complex environments
Autonomous perception and scene understanding of the environment in complex environments is a prerequisite for intelligent unmanned systems to operate autonomously and form combat capabilities, which will directly affect whether the mission can be successfully completed. In view of the complexity and variability of the actual environment, especially the difficulties of wind and wave interference and ship shaking in the sea environment, intelligent unmanned systems need to complete the goals of autonomous target selection perception, obtain multimodal information, and abstract and complete understanding of information. Therefore, the autonomous perception and understanding technology of the environment of intelligent unmanned systems in complex environments needs to break through the autonomous perception technology of multimodal sensor fusion, as well as the complex scene target recognition and understanding technology.


⑴ Multimodal sensor fusion autonomous perception technology
At present, the information acquisition sensors carried by intelligent unmanned systems mainly include navigation radar, millimeter wave radar, laser radar, optoelectronic payload, etc. A single sensor cannot directly obtain high-precision, dense three-dimensional scene information. It is necessary to study the autonomous environmental perception technology of multi-sensor fusion to provide support for scene understanding. Multi-sensor fusion is to carry out multi-level and multi-space information complementation and optimization combination processing of various sensors, and finally produce a consistent interpretation of the observed environment. In this process, it is necessary to make full use of multi-source data for reasonable control and use, and the ultimate goal of information fusion is to derive more useful information based on the separated observation information obtained by each sensor through multi-level and multi-faceted combination of information. By taking advantage of the mutual cooperation of multiple sensors, the data of all information sources are comprehensively processed to improve the intelligence of the entire sensor system. The natural environment of the ocean is more complex than that of land and air. Faced with special challenges such as violent swaying of ships, wind and wave interference, uneven lighting, and inconspicuous targets, the marine intelligent unmanned system needs to perform multi-sensor information fusion processing on the designated target based on the unique attributes of each sensor, and then combine the electronic chart information of the internal navigation unit of the unmanned system and the shore-based support system to build a multi-dimensional three-dimensional situation map of the sea surface environment, perform tracking, detection, identification and cognition tasks for the designated target, and finally realize the autonomous perception and complete understanding of the sea surface environment by the marine intelligent unmanned system.


⑵ Complex scene target recognition and understanding technology
The key to the operation autonomy of intelligent unmanned systems lies in the ability to effectively understand the scene and target information, and accurate understanding of scene information mainly includes the construction of target semantic information and the description of scene text information. Compared with land and air environments, the natural marine environment faces unique difficulties such as wind and wave interference and violent swaying of the hull, which brings challenges to the intelligent unmanned system to fully understand the environmental information and accurately identify the designated target. Using sensors such as laser radar and high-definition cameras carried by intelligent unmanned systems, the original point cloud information and image feature information of the marine environment scene can be obtained. Using three-dimensional target detection methods based on point clouds, point clouds and image fusion, and three-dimensional scene semantic segmentation methods, etc., the intelligent unmanned system can fully recognize the scene information and accurately identify the designated target.
There are mainly two types of point cloud-based methods: grid-based or voxel-based methods, and point-based methods. The grid-based or voxel-based method uses voxels or bird’s-eye views to convert the irregular point cloud of the acquired sea surface into a regular representation method, and then extracts the point cloud features. The point-based method directly extracts target features from the acquired original point cloud of the sea surface. The three-dimensional target detection method based on point cloud and image fusion combines the precise coordinates of the target in the sea scene obtained by the laser radar with the environmental texture and color information provided by the sea surface image, which is more conducive to the intelligent unmanned system to accurately identify and accurately and completely understand the target of the ocean scene.


⒉ Behavior decision-making and trajectory planning technology
In actual and complex war scenes, for the complex mission environment and multiple tasks faced by intelligent unmanned systems, it is necessary to break through the behavior decision-making technology in multi-source heterogeneous environments, trajectory planning technology in dynamic/static environments, and trajectory tracking technology in complex scenes.


⑴ Behavior decision-making technology in multi-source heterogeneous environments
Behavior decision-making is the key to the realization of autonomous control of intelligent unmanned systems. In the complex environment of different speeds, different relative distances, and different data types of unmanned boats, it is necessary to accurately extract effective information to make safe and reliable control instructions for the next decision of the unmanned boat. First, extract representative environmental feature information and establish a sufficient number of accurately calibrated learning data sets; then, construct a decision maker based on a deep neural network and use the established database for learning; finally, use machine learning algorithms to optimize the constructed decision maker to further improve the decision accuracy.
⑵Trajectory planning technology in dynamic/static environment
Trajectory change is the most basic behavior of unmanned boats and unmanned submarines. In a complex battlefield environment, planning a feasible and reliable trajectory according to different environmental conditions is the key to the intelligent driving of unmanned boats and unmanned submarines. This technology mainly includes trajectory planning technology based on polynomials, trajectory planning technology based on multi-objective constraints, and trajectory planning technology based on positive and negative trapezoidal lateral acceleration.


⑶Trajectory tracking technology in complex scenes
Tracking the planned ideal trajectory is an important task for unmanned boats and unmanned submarines. The key lies in solving the problem of high-precision and high-stability control when unmanned boats or unmanned submarines track target trajectories. The main solution is: according to the kinematic and dynamic models of unmanned boats and unmanned submarines, the corresponding actuator control quantity is output to achieve real-time and accurate tracking of the specified target, and under the premise of ensuring tracking accuracy, the autonomous intelligent steering of unmanned boats and unmanned submarines and the coordinated control of multiple actuators of each drive module are realized.


⒊Autonomous navigation and positioning technology
The navigation and positioning system is a key component of the intelligent unmanned system, which can provide accurate and reliable information about the speed and position of unmanned boats or unmanned submarines. The navigation system is generally composed of gyroscopes, accelerometers, satellite receivers, etc., some of which are supplemented by visual modules, or are equipped with prior spatial position maps and physical information sensors based on actual complex environmental conditions. In order to achieve accurate execution of tasks, intelligent unmanned systems must break through navigation and positioning technology based on inertial/satellite deep information fusion, navigation and positioning technology based on inertial/astronomical information fusion, navigation technology based on visual tracking, and geophysical assisted navigation technology.


⑴ Navigation and positioning technology based on inertial/satellite deep information fusion
This technology introduces the inertial information of the unmanned boat into the satellite carrier/code loop, and then uses fully autonomous, short-term, and high-precision inertial information to assist the update of satellite receiver signals, thereby realizing the complementary advantages and optimal fusion of the inertial navigation and satellite navigation of the unmanned boat.


⑵ Navigation and positioning technology based on inertial/astronomical information fusion
The astronomical-based navigation system has the advantages of high autonomy and low susceptibility to interference. By using the information output by astronomical navigation and the information provided by the initial position, the position of the unmanned boat can be calculated. The fusion of inertial navigation information and astronomical navigation information can improve the robustness of astronomical navigation positioning. Inertial/astronomical combined positioning technology based on astronomical navigation assistance has become a key part of the field of autonomous navigation of unmanned systems.


⑶ Navigation technology based on visual tracking
Due to the complexity of the actual battlefield environment, unmanned boats will be in a complex working environment and are easily interfered by the outside world, resulting in GPS denial, which makes the navigation system unable to be in a combined state. A single inertial navigation system has low accuracy and is prone to accumulating errors. Long-term pure inertial navigation will make the unmanned boat lose the ability to perform tasks. However, the vision-based method does not have time error accumulation. It only needs to extract the key features of the image obtained by the high-definition camera to obtain the position information of the unmanned boat and the unmanned submersible through visual algorithms and prior knowledge. The vision-based navigation algorithm is not easily interfered with, has strong robustness, and can make up for the error accumulation caused by pure inertial navigation in a GPS denial environment, and is widely used.


⑷ Geophysical assisted navigation technology
Due to the unique environment of the ocean, unmanned submersibles need to sail underwater for a long time, resulting in the inability to obtain real-time and accurate satellite signals and astronomical information. In addition, due to problems such as weak underwater light, vision-based navigation methods are also limited. Therefore, by obtaining a priori spatial position map inside the ocean and using the field scene information obtained by the physical sensors carried by the unmanned submersible and matching them, high-precision autonomous navigation of the unmanned submersible can be achieved.
The temporal and spatial distribution characteristics of the inherent geophysical properties of the surveyed ocean can be used to produce a geophysical navigation spatial position map. By matching the physical feature information obtained by the physical property sensor carried by the unmanned submersible with the pre-carried spatial position map, the high-precision positioning of the unmanned submersible can be obtained, and the high-precision autonomous navigation of the unmanned submersible can be realized.


⒋ Multi-scenario autonomous skill learning and intelligent control technology
Multi-scenario intelligent control technology is a key technology for intelligent unmanned systems to solve complex, changeable and unstable control objects. It is an effective tool for intelligent unmanned systems to adapt to complex task requirements. In a complex marine environment, if intelligent unmanned systems want to complete real-time and accurate regional monitoring, target tracking, information acquisition and precision strikes, they must break through the autonomous skill learning technology of tasks, autonomous operation interactive control technology, and unmanned system motion control technology of human-like intelligent control.


⑴ Autonomous skill learning technology of tasks Autonomous
skill learning refers to the process of learning based on prior knowledge or rules to complete tasks in the process of interaction between unmanned systems and the outside world. The autonomous learning of unmanned system operation skills is essentially a partial process of simulating human learning cognition. Intelligent unmanned systems use deep reinforcement learning-based technology to combine the perception ability of deep learning with the decision-making ability of reinforcement learning, and can achieve direct control from high-latitude raw data information input to decision output in complex sea environments. The autonomous skill learning of intelligent unmanned systems mainly includes three aspects: first, describing the complex environment of the ocean surface and the interior of the ocean, and obtaining the initial state data information of the surrounding environment; second, based on the description of the intelligent unmanned system and the complex environment of the ocean surface and the interior, mathematical modeling of deep reinforcement learning is carried out to obtain key information such as the state value function and control strategy function of the autonomous skill learning process; third, using the data information obtained by the interaction between the intelligent unmanned system and the complex environment of the ocean surface and the interior, the state value function and the control strategy function are updated to enable the marine intelligent unmanned system to learn a better control strategy.


⑵ Autonomous operation interactive control technology
In the process of autonomous learning and control of tasks, the intelligent unmanned system needs to contact with the ocean surface and the complex internal environment to form a good coupling system to ensure the real-time and accurate acquisition of information on the ocean surface and the complex internal environment, and correctly and quickly carry out navigation planning, autonomous navigation control and autonomous collision avoidance of unmanned boats and unmanned submersibles. The tasks of the interactive control technology of autonomous operation of intelligent unmanned systems mainly include: the design of interactive rules and control strategies of intelligent unmanned systems; modeling methods of complex environments on the surface and inside of the ocean; online modeling and correction of the dynamics of unmanned boats, unmanned submarines and operating objects; dynamic generation and shared control methods of virtual force constraints in complex environments on the surface and inside of the ocean.


⑶ Motion control technology of unmanned systems with humanoid intelligent
control The motion control technology of unmanned systems with humanoid intelligent control combines artificial intelligence with traditional control methods to solve the problem of stable and precise control of unmanned boats and unmanned submarines in actual complex marine battlefield environments. It mainly includes two aspects: the design of intelligent control algorithms for unmanned systems and the design of intelligent control strategies for unmanned systems. The design of intelligent control algorithms for unmanned systems mainly includes: hierarchical information processing and decision-making mechanisms; online feature identification and feature memory; open/closed-loop control, positive/negative feedback control, and multi-modal control combining qualitative decision-making with quantitative control; the application of heuristic intuitive reasoning logic. The design of intelligent control strategies for unmanned systems is to design reasonable solutions for unmanned boats or unmanned submarines to meet actual mission requirements.


⒌ Unmanned cluster collaborative control technology
In actual combat scenarios, due to the complexity of the battlefield environment and the diversity of tasks, a single unmanned boat or unmanned submarine usually cannot meet the needs of actual tasks. The number of equipment carried by a single unmanned boat or unmanned submarine is limited, and the perception perspective and regional range are not comprehensive enough, resulting in insufficient precision and thoroughness in performing complete intelligence detection, target tracking, battlefield environment perception and comprehensive firepower strike tasks. Therefore, it has become an inevitable trend for a cluster of intelligent unmanned systems composed of multiple unmanned boats and unmanned submarines to collaboratively perform tasks. To complete the control of the intelligent unmanned system cluster, it is necessary to break through the local rule control technology of the intelligent unmanned system cluster, the soft control technology of the intelligent unmanned system cluster, the pilot control technology of the intelligent unmanned system cluster, and the artificial potential field control technology of the intelligent unmanned system.


⑴ Local rule control technology of intelligent unmanned system cluster
The control technology based on local rules is the basic method for intelligent unmanned systems to control unmanned boats and unmanned submarines. It mainly lies in the designation of individual local control rules within the cluster of unmanned boats and unmanned submarines. Local rule control technology has achieved intelligent control of marine unmanned system clusters to a certain extent, but a large number of experiments are needed to obtain the parameters between the behavior of marine unmanned system clusters and the cluster model, and the values ​​of the parameters are also very sensitive. Therefore, to achieve complete intelligent control of intelligent unmanned systems, other technologies are needed.


⑵ Soft control technology of intelligent unmanned system clusters The
soft control technology of intelligent unmanned system clusters is mainly based on two requirements: First, in the intelligent unmanned system cluster, the control rules between individuals are very important. For example, the control and internal function of each unmanned boat and unmanned submarine are necessary conditions for the group behavior of the entire marine intelligent unmanned system cluster; second, the intelligent unmanned system cluster adopts a local communication strategy. With the increase of unmanned boats and unmanned submarines in the cluster system, it will not affect the state of the entire intelligent unmanned system cluster.


The soft control method is to add one or more new unmanned boats or unmanned submarines without destroying the individual rules of unmanned boats and unmanned submarines in the intelligent unmanned system cluster. These unmanned boats or unmanned submarines participate in the actions of the entire intelligent unmanned system cluster according to the same local rules, but they are controllable and can receive external instructions. After receiving the command, these unmanned boats or unmanned submarines will independently complete the corresponding tasks. The soft control method of the intelligent unmanned system cluster is to add a controllable unmanned boat and unmanned submarine on the basis of the local control rules of the unmanned system, so that it can affect the entire unmanned system cluster, and finally complete the control of the entire intelligent unmanned system group.


⑶ Intelligent unmanned system cluster navigation control technology
The basic content of the intelligent unmanned system cluster navigation control technology is: under the premise that the individuals of the entire marine intelligent unmanned system cluster maintain local rules, a small number of unmanned boats and unmanned submarines in the cluster have more information and stronger information processing capabilities, and interact with other unmanned boats and unmanned submarines through local information to play a leading role, so as to achieve the purpose of controlling the entire intelligent unmanned system cluster.


⑷ Artificial potential field control technology of intelligent unmanned system
In the control of intelligent unmanned system clusters, control technology based only on local rules is difficult to achieve accurate and real-time perception of the battlefield, as well as the collection and acquisition of intelligence information, tracking and identification of suspicious targets, and precise strikes on enemy areas. Artificial potential field control technology introduces the concept of potential field in physics into the control of intelligent unmanned system clusters, and uses potential functions to simulate the internal and external effects that affect a single unmanned boat or unmanned submarine. The single unmanned boat or unmanned submarine in the system cluster acts under the action of the potential function, and finally realizes the control of the entire intelligent unmanned system through the potential function.


⒍Natural human-computer interaction technology
In the actual battlefield environment, intelligent unmanned systems face problems such as complex operation tasks, low level of operation intelligence, high training risks and costs, and low equipment use and maintenance efficiency. In this case, it is necessary to improve the controllability and intelligence of intelligent unmanned system equipment, and it is necessary to break through the human-computer interaction technology of intelligent unmanned systems, augmented reality and mixed reality technology of intelligent unmanned systems, and brain-computer interface technology of intelligent unmanned systems.


⑴Human-computer interaction technology of intelligent unmanned systems
Human-computer interaction technology of intelligent unmanned systems refers to the command platform obtaining the image and voice information of officers and soldiers through image and voice sensors, and then using algorithms such as image segmentation, edge detection, and image recognition to extract key information such as gestures and eye gestures of officers and soldiers, and then using algorithms based on deep learning to obtain the voice information of officers and soldiers and pass it to the command platform, so as to issue the officers and soldiers’ instructions to lower-level combat units. The human-computer interaction technology of intelligent unmanned systems can improve the intelligence of task operations and the fault tolerance and robustness of the operation process, so that the officers and soldiers’ instructions can be issued to combat units more stably and effectively.


⑵Augmented reality and mixed reality technology of intelligent unmanned systems
Augmented reality technology of intelligent unmanned systems is to superimpose computer-generated images on real complex combat environments, and mixed reality technology of intelligent unmanned systems is to present information of virtual scenes in actual combat scenes, and set up an interactive feedback information loop between the virtual world and officers and soldiers in a real combat environment, thereby increasing the officers and soldiers’ sense of reality in the combat environment experience. As an important development direction of immersive human-computer interaction technology, virtual reality and augmented reality for intelligent unmanned systems have a variety of different real combat application scenarios, which can effectively reduce the cost and risk of training and improve the use and maintenance efficiency of equipment during combat.


⑶ Brain-computer interface technology for intelligent unmanned systems
The main function of the brain-computer interface is to capture a series of brain wave signals generated by the human brain when thinking. In actual combat environments, the brain-computer interface technology of intelligent unmanned systems extracts features and classifies the brain wave signals of commanders and fighters, thereby identifying the intentions of commanders and fighters and making corresponding decisions to cope with complex combat tasks and emergencies. The brain-computer interface technology of intelligent unmanned systems can enhance the cognitive and decision-making capabilities of commanders and fighters, greatly improve brain-computer interaction and brain control technology, and give commanders and fighters the ability to control multiple unmanned boats, unmanned submarines and other unmanned combat equipment while relying on thinking.

  1. Future development trend of intelligent unmanned systems

Due to its advantages of unmanned, autonomous, and intelligent, intelligent unmanned systems will appear in every corner of the future battlefield. As they undertake more battlefield tasks, they will participate in different war scenarios, which will lead to a number of key problems for intelligent unmanned systems, restricting their development. The key problems faced by intelligent unmanned systems are mainly:


① Highly complex environment. The specific application environment of intelligent unmanned systems will face more and more factors. The numerous shelters in unstructured environments, the limited perception viewpoints and ranges, etc., put forward higher requirements on the environmental perception ability of intelligent unmanned systems.
② High game confrontation. The battlefield game of intelligent unmanned systems is an important means to gain battlefield advantages. The fierce mobile confrontation between the two sides of the war, as well as the many interferences caused by the enemy and the battlefield environment, have put forward new challenges to the mobile decision-making ability of intelligent unmanned systems.
③ High real-time response. In the future battlefield, the combat situation will change dramatically, the combat mode will be more flexible and changeable, and it is necessary to respond to battlefield emergencies in a timely manner, which puts forward new requirements for the real-time response ability of intelligent unmanned systems.
④ Incomplete information. In the future battlefield, due to the limitations of the battlefield environment and the existence of enemy interference, the information acquisition ability of the intelligent unmanned system will be restricted, resulting in incomplete situational awareness, loss and attenuation of battlefield situation information data, and the inability to fully obtain information on both sides of the enemy.
⑤ Uncertain boundaries. The unmanned combat mode of the intelligent unmanned system has subverted the traditional combat mode. The integration of land, sea, air and space in the future unmanned combat, as well as the social public opinion brought about by the high degree of integration with society, will have an impact on the unmanned combat of the intelligent unmanned system, thus causing uncertainty in the combat boundary.


Based on the various difficulties that will be faced above, the development of intelligent unmanned systems in the future will focus on two aspects: individual capability enhancement and cluster capability enhancement. Individual capability enhancement is mainly reflected in individual cognitive intelligence, individual autonomous operation and algorithm chipization; cluster capability enhancement is mainly reflected in improving interoperability through a universal architecture, as well as cross-domain collaborative operations, network security and human-machine hybrid intelligence.

⒈ Cognitive intelligence adapts to complex task environments
In order to improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to enhance the individual cognitive intelligence of intelligent unmanned systems. The enhancement of individual cognitive intelligence is mainly reflected in the transformation from individual perceptual intelligence to cognitive intelligence. The comprehensive acquisition of multi-source sensor information enables intelligent unmanned systems to have human semantic understanding, associative reasoning, judgment analysis, decision planning, emotional understanding and other capabilities. The development of individual cognitive intelligence of intelligent unmanned systems will be based on brain science and bionics, and will achieve intelligent understanding and accurate application of acquired information by combining knowledge graphs, artificial intelligence, knowledge reasoning, decision intelligence and other technologies, thereby improving the high real-time response capabilities of intelligent unmanned systems to emergencies.


⒉ Autonomous operation improves the task capability of single machines
In order to solve the problem of highly complex tasks faced by intelligent unmanned systems in highly complex environments, it is necessary to improve the autonomous operation capabilities of single machines. This includes developing decision-making methods based on deep reinforcement learning, autonomous environmental perception and interaction methods based on multi-source information of vision and other sensors, autonomous motion planning methods for robots based on neurodynamics, and autonomous operation methods based on artificial intelligence, so as to improve the autonomous environmental modeling and positioning capabilities, autonomous decision-making capabilities, autonomous planning capabilities and autonomous control capabilities of individuals in intelligent unmanned systems, so that intelligent unmanned systems can adapt to complex environments and carry out autonomous operation tasks.


⒊ Algorithm chipization achieves high real-time response
The complex environment faced by intelligent unmanned systems places high demands on algorithms and computing power. It is necessary to be able to accelerate computing in real time to achieve high real-time response to battlefield emergencies. To solve this problem, it is necessary to improve the chipization level of individual algorithms of intelligent unmanned systems, that is, to develop a new architecture of storage and computing integrated chips to improve the computing power of chips and the level of algorithm chipization. New chips based on artificial neural technology can be studied. By changing the binary computing method of digital chips and exchanging gradient signals or weight signals, the chips can work in a simulated neuron manner, simulating the parallel computing flow of the brain to effectively process large amounts of data, and obtaining the parallel computing capabilities of supercomputers, thereby greatly improving the computing power of chips and the level of algorithm chipization, and solving the problem of high real-time response of intelligent unmanned systems.


⒋ Universal architecture improves cluster interoperability
In order to improve the adaptability of intelligent unmanned systems facing highly complex environments and the maintenance and support efficiency of intelligent unmanned systems, intelligent unmanned systems will continue to develop standardized command and control frameworks in the future, improve the intelligence of human-machine collaboration, and improve the modularity of the system. It is mainly reflected in:


① Developing a general artificial intelligence framework to support autonomous, precise, and real-time good coupling and collaboration between humans and machines;
② Improving the modularity and component interchangeability of intelligent unmanned systems to support rapid maintenance and configuration upgrades of intelligent unmanned systems and their members in future battlefields;
③ Improving the level of data transmission integration and the anti-interference capability of data transmission on future battlefields to reduce the rate of data interception.


⒌ Cross-domain collaboration breaks the boundaries of cluster applications


In order to improve the adaptability of intelligent unmanned systems in highly complex environments and solve the problem of uncertain boundaries during combat, it is necessary to improve the cross-domain collaborative combat capabilities of intelligent unmanned systems to make up for the lack of capabilities in a single combat domain. Through the cross-domain collaborative combat of intelligent unmanned systems, the advantages of various components can be complemented. That is, by utilizing the advantages of large search range and long communication distance of air unmanned systems, as well as long endurance and strong stability of land unmanned systems and marine unmanned systems, the advantages of different components are combined to increase the multi-dimensional spatial information perception capabilities of intelligent unmanned systems, and form a heterogeneous multi-autonomous collaborative system, thereby improving the ability of intelligent unmanned systems to complete complex tasks.


⒍ Secure network guarantees reliable application of clusters
Intelligent unmanned systems face the problems of incomplete information and high game confrontation on future battlefields. Therefore, it is necessary to improve the network security protection capabilities of intelligent unmanned systems in high confrontation environments, improve flexibility in dealing with highly complex and highly variable tasks, and improve stability in the face of high-intensity network attacks. The improvement of network security protection capabilities in adversarial environments is mainly reflected in the following aspects:


① Plan reasonable data permissions to ensure data security and flexibility of task execution;
② Improve information protection capabilities, develop and upgrade information protection products for intelligent unmanned systems, and record response decisions for information explosion situations;
③ Increase the network’s deep defense capabilities, unify network security standards and levels, build network defense autonomy, and improve the network’s ability to resist attacks under network attacks.


⒎ Human-machine hybrid intelligence improves adversarial capabilities
In order to solve the problem of high real-time response faced on future battlefields and improve the adaptability of intelligent unmanned systems in highly complex environments, it is necessary to combine the advantages of humans and machines to form a new hybrid intelligent mode of human-machine collaboration, that is, to develop human-machine hybrid intelligence for intelligent unmanned systems. Human-machine hybrid intelligence of intelligent unmanned systems is a new intelligent scientific system that combines physics and biology in which human, machine, and environmental systems interact. In response to the problems of high-complexity environments and high real-time responses faced by intelligent unmanned systems on future battlefields, the development of human-machine hybrid intelligence in the future is mainly reflected in the following aspects:
① Information intelligence input. At the input end of information acquisition, the information data objectively collected by the sensors of the unmanned system equipment is combined with the subjective perception information of the combat commanders to form a multi-dimensional information acquisition and information input method.
② Intelligent information fusion. After obtaining multi-dimensional data information, a new data understanding method is constructed by integrating the computer’s calculation data with the information cognition of the combat commanders.
③ Intelligent information output. After the data information is fused and processed, the computer’s calculation results are matched with the value decisions of the combat commanders to form an organically combined probabilistic and regularized optimization judgment.

IV. Conclusion
Due to its autonomy, intelligence and unmanned characteristics, intelligent unmanned systems will play an increasingly important role in the future battlefield. The development of intelligent unmanned systems will also drive the development of intelligent computing, intelligent transportation, intelligent manufacturing, smart medical care, brain-like science and other disciplines. In the future, we should be guided by the mission requirements of actual complex battlefield environments, combine advanced technologies in cutting-edge disciplines such as artificial intelligence, and make overall top-level planning for intelligent unmanned systems; verify reliable airborne intelligent perception and intelligent computing equipment on different unmanned system combat platforms in land, air and marine unmanned systems, and develop reliable and stable key technologies such as unmanned system autonomous control, intelligent perception, intelligent decision-making and intelligent interaction, overcome the key difficulties of intelligent unmanned systems, and continuously improve the autonomous control, intelligent perception and intelligent decision-making capabilities of intelligent unmanned systems.

現代國語:

目前,無人系統裝備已在軍事衝突中嶄露頭角,例如,在土耳其與敘利亞的衝突中,土耳其利用空軍裝備的安卡-S型長航時無人機和巴拉克塔TB-2察打一體式無人機,對敘利亞政府軍進行了打擊;俄羅斯國防部也曾公佈敘利亞境內的武裝分子利用載有爆炸物的無人機對其軍事基地展開了集群式攻擊;2020年,美國利用一架MQ-9「收割者」無人機襲擊了伊朗高級軍事指揮官並使其當場斃命。無人作戰正在到來,智慧無人系統作為未來戰場的關鍵利器,將決定整個戰爭的勝利歸屬。

圖片來自網路

發展智慧無人系統不僅會推動現有軍事科技的升級與進步,還將帶動民用科技的智慧性發展,包括智慧交通系統、智慧家庭系統、智慧製造系統與智慧醫療系統等。為了更科學、快速地發展智慧無人系統,各科技大國紛紛推出了一系列有關智慧無人系統發展的規劃與路線,力求在智慧無人系統領域的發展中搶得先機,奪取制高點。相關的有美國的自主無人系統綜合路線圖、俄羅斯的國家武器裝備計畫、英國的國防創新技術框架、中國的新一代人工智慧發展計畫以及日本的中長期技術規劃等。
近年來,從空中到空間、從陸地到海洋,各種類型的智慧無人系統大量湧現,世界各國已經逐步將智慧無人系統部署到軍隊中,並且在一些地區衝突、反恐戰場中,智慧無人系統的關鍵作用日益增加。因此,本文將重點從未來戰場的軍事需求出發,基於未來戰場面臨的實際複雜環境的挑戰,分析智慧無人系統發展與應用所需的關鍵技術,並從軍事角度分析個體增強與集群增強關鍵技術,闡述智慧無人系統的發展趨勢。

一、國內外研究現狀

智慧無人系統概念才提出不久,目前其研究尚處於初級階段,國際上也未形成統一的定義,暫且將其定義為:由無人平台及若干輔助部分組成,具有感知、交互和學習能力,並且能夠基於知識進行自主推理、自主決策,從而達成目標的有機整體。智慧無人系統依據其作用的空間範圍,可劃分為陸地無人系統、空中無人系統和海洋無人系統三大部分。其中,陸地無人系統主要包括偵察無人車、運輸無人車、作戰無人車、破障無人車、排爆無人車、無人車編隊與指揮系統等;空中無人系統主要包括偵察無人機、作戰無人機、後勤運輸無人機以及無人機編隊等;海洋無人系統主要包括偵察無人艇、作戰無人艇、後勤運輸無人艇、巡邏搜救無人艇、偵察無人潛航器、作戰無人潛航器、岸基支援系統等。本節將從以上3個部分來對國內外智慧無人系統的研究現況進行闡述。
⒈國外智慧無人系統研究現狀
⑴陸地無人系統
陸地無人系統主要用於情報蒐集、偵察巡邏、掃雷除障、火力打擊、戰場救援、後勤運輸、通信中繼以及電子乾擾等領域,隨著陸地無人系統在戰鬥中的優勢愈發凸顯,針對其的研究愈發受到各國的廣泛關注。
美國曾於1993年11月啟動「聯合戰術無人車」項目,亦即「角鬥士」無人作戰平台項目的前身。 2006年,美國完成了「角鬥士」無人作戰平台全系統的設計,並於2007年正式裝備海軍陸戰隊。 「角鬥士」戰術無人作戰平台是世界上第1款多用途作戰無人平台,搭載的感測器系統有日/夜攝影機、GPS定位系統以及聲學與雷射搜尋系統等,並裝備有機槍、衝鋒槍、催淚彈、狙擊手系統、生化武器探測系統等,可以在不同的天氣和地形下執行偵察、催淚彈、狙擊手電擊
「角鬥士」無人作戰平台搭載有高機動與高生存底盤,針對該平台,還開發了便攜式手持控制系統,並圍繞該控制系統的抗干擾性、網絡互操作性、小型化與操縱簡便化等技術問題完成了一系列開發工作。但因「角鬥士」無人作戰平台的裝甲防護能力較弱,執行任務的隱蔽性差,導致其遠程偵察與控制系統面臨的干擾較多。除此之外,美國陸軍還服役了一些其他的陸地無人系統,如「蝎子」機器人、「魔爪」機器人等。 2017年,美國陸軍制定了《機器人與自主系統(RAS)戰略》,為進行無人作戰能力建構提供了頂層規劃。圖1所示為美國陸地無人系統。

圖1 美國陸地無人系統
以色列、俄羅斯、英國和德國也相繼進行了陸地無人系統的研發工作,並研發出了一系列先進的產品,產品清單如表1所示。例如,以色列研發的「守護者」系列自主無人車可以結合搭載的傳感器與融合演算法,自主偵察與識別危險障礙,執行巡邏、監視與小規模的火力打擊任務;俄羅斯研製的MARSA-800無人車可以執行運輸和後勤保障障礙以及跟踪監視等任務,並可以在執行任務的過程中實現自主路徑規劃,規避障礙,該程序已部署。英國和德國對陸地無人系統的研究也開展得較早,英國於上世紀60年代就推出了手推車排爆機器人,後來又推出HarrisT7觸覺反饋機器人,用於執行拆彈、排爆等危險任務;德國萊茵金屬公司開發的「任務大師」地面武裝偵察無人車主要用於執行戰術監視、危險物品;德國萊茵金屬公司開發的「任務大師」地面武裝偵察無人車輛主要用於執行戰術監視、危險物品檢測、醫療後送機、消防系統
表1 各國陸地無人系統

⑵空中無人系統
空中無人系統主要以單一無人機平台和無人機集群為主。無人機由於具有視野開闊、飛行自由、設備搭載性好等優點,被廣泛應用於軍事領域,並在近年來的軍事衝突中發揮了極大的作用。空中無人系統的主要功能包括:情報蒐集、偵察監視、誘餌靶機、目標追蹤、戰術打擊與空中救援等。
美國空軍研究實驗室於2000年提出了針對無人機自主作戰的概念,並對無人機的自主程度進行了量化定義,並制定了發展計畫。無人機自主程度量化內容與發展階段如圖2所示。

圖2 自主控制水準與無人機自主化趨勢
2003年,美國將空軍和海軍的無人作戰飛機系統項目合併,啟動了「聯合無人作戰系統」(J-UCAS)項目,開始了對無人作戰飛機X-47B的研究。 2006年,美海軍提出了「海軍無人作戰航空系統」(N-UCAS)項目,旨在為航空母艦載機聯隊引入無人作戰飛機,並繼續對X-47B開展研究。在2012—2014年間,又多次完成了航母彈射、著艦、觸艦復飛等試驗,並於2015年完成了自主空中加油試驗。 X-47B攻擊型無人機是一款可以自主操縱、隱身性能好且適用於陸基和艦載的無人作戰飛機,具備高航程和高航時的特點,裝備有照射雷達、光電導引系統和孔徑雷達等先進的感測器,主要功能包括情報偵察、目標追蹤、電子戰幹擾、火力打擊等。美國研發的其他空中無人系統,如「全球鷹」、「掠食者」、「獵人」和「大烏鴉」等也已在軍隊服役,如圖3所示。
以色列研發的「哈比」無人機配備反雷達感應器、光電導引系統和飛彈,可自主攻擊敵方雷達系統,如圖3所示。

圖3 各國空中無人系統
單一空中無人系統在執行任務時容易被幹擾和打擊從而導致任務失敗,而空中無人系統集群則可以彌補這一缺陷,更大程度地發揮空中無人系統的優勢。美國國防先進研究計畫局(DARPA)針對空中無人系統集群先後啟動了「小精靈」低成本無人機計畫、低成本無人機集群計畫、「山銻」(Perdix)微型無人機機載高速發射展示項目、進攻性蜂群使能戰術(OFFSET)項目等,透過開發和測試用於無人系統集群的體系架構、通訊系統以及分散式控制演算法,發展了無人機集群自主控制系統,並利用人工智慧、態勢感知、虛擬實境和擴增實境等前沿科學技術,提升了空中無人系統集群在戰場上的綜合作戰能力。
⑶海洋無人系統
海洋無人系統包括水面無人系統及水下無人系統2類。其中,水面無人系統主要指水面無人艇(以下簡稱「無人艇」),主要用於執行海上搜救、偵察監視、火力打擊、巡邏安防、電子乾擾、後勤保障及誘餌靶船等任務;水下無人系統主要指無人潛航器,與執行人潛艦相比,其具無性戰力戰、高防震力與高威力控制權。 2018年,美海軍發布了《海軍部無人系統戰略路線圖》,2019年,又發布了《海軍人工智慧框架》,為海軍作戰與海洋無人系統的發展提供了路線規劃與指南。
在水面無人系統方面,美國提出了「美國先進概念技術演示計畫」(ACTD),其重要任務之一便是開展「斯巴達偵察兵」無人艇的研究。該計畫已於2007年完成,並在伊拉克戰區進行了試驗。 「斯巴達偵察兵」無人艇搭載有無人駕駛系統與視距/超視距通訊系統,並搭載有電光/紅外線搜尋轉塔、高畫質攝影機、導航雷達、水面搜索雷達、全球定位系統接收機等先進感測器,以及艦砲、反艦飛彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦飛彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦導彈及反潛感應器等武器,主要用於執行情報蒐集、具有防監視、情報、反艦導彈及反潛感美國研發的「海上獵人」無人艇搭載有聲吶與光電感測器,以及近距、遠程雷達偵測系統與可擴展模組化聲吶系統,主要用於執行辨識、監測可疑目標,引導火力打擊等任務。美國海洋無人系統如圖4所示。以色列研發的「保護者」無人艇主要用於執行情報偵察、可疑目標辨別、戰術攔截、電子乾擾和精確打擊等任務(圖4)。俄羅斯研發的無人水面偵察艇可以在母艦的指揮下執行快速巡邏任務並檢查、監視指定區域,搜尋情報。

圖4 各國海洋無人系統
在水下無人系統方面,俄羅斯開發的核動力無人潛航器“波塞冬”,可攜帶常規以及核彈頭,執行偵察與戰略核打擊任務,如圖4所示。美國研發的「刀魚」無人潛航器,可透過發出低頻電磁波來掃描可疑物體,搜尋情報;研發的「鮪魚」-9無人潛航器可攜帶多種標準載重,可用於執行近海勘探、反水雷、監視和偵察(ISR)等任務。
⒉國​​內智慧無人系統研究現狀
近年來,我國軍用智慧無人系統發展迅速,本文將從陸地無人系統、空中無人系統和海洋無人系統3個面向進行闡述。
在陸地無人系統方面,國防科技大學與三一重工股份有限公司共同開發了「沙漠蒼狼」陸地無人輕型平台,其以履帶為動力,搭載榴彈發射器和機槍等武器系統,可以用來執行後勤運輸、傷員運送、偵察監測、火力打擊等任務。山河智慧集團開發的「龍馬」系列無人車,具有強大的運輸與越障能力。南京理工大學研發的「神行-III」軍用地面智慧機器人系統,具有較強的自主導航與情報偵察能力。國防科技大學與哈爾濱工業大學等單位聯合研發的無人駕駛核化偵察車,具有較高的機動能力與裝甲防護能力,搭載的武器系統可以執行火力打擊並具備一定的自主能力。
在空中無人系統方面,成都飛機工業集團開發的「翼龍」系列無人機具有全自主水平起降能力、巡航飛行能力、空地協同能力與地面接力控制能力等,搭載有多型光電/電子偵察設備以及小型空地精確打擊武器,可以執行情報偵察、目標跟踪、火力打擊等任務。我國研發的「彩虹」系列無人機具有中空長航時的航行能力,可搭載電子乾擾系統與多種武器系統,能執行火力打擊、情報偵察、通訊幹擾、電波幹擾等任務;研發的攻擊11型無人機具有極強的隱身能力,可搭載精確的導引飛彈,用於執行對地導攻擊任務。我國空中無人系統如圖5所示。

圖5 我國空中無人系統
在海洋無人系統的水面無人系統方面,由哈爾濱工程大學主導開發的「天行一號」無人艇,採用油電混合動力,最高航速超過92.6km/h,最大航程1000km,為目前世界上最快的無人艇。該艇融合了自主感知、智慧控制、自主決策等技術,可實現對周圍複雜環境的快速態勢資訊認知與危險規避,可用於執行氣象資訊監控、地形測繪、警戒巡邏、情報偵察、火力攻擊等任務。由上海大學研發的「精海」系列無人艇具有半自主與全自主的作業能力,可執行目標偵察、海洋測繪、水質檢測等任務。由上海海事大學研發的「海騰01」號智慧高速無人艇,搭載有毫米波雷達、雷射雷達、前視聲吶等感測器,可執行可疑目標監視、水下測量、海上搜救等任務,具備全自主與半自主航行能力。江蘇自動化研究所研發的JARI智慧無人作戰艇,搭載有光電偵測器、四面相控陣等偵測設備,同時,也搭載有飛彈魚雷等武器系統,可以執行情報蒐集、敵情偵察、精準火力打擊等任務。由珠海雲洲智慧科技有限公司等單位聯合研發的「瞭望者Ⅱ」無人飛彈艇,搭載全自主無人駕駛系統及飛彈等武器,可執行敵情偵察、情報蒐集、精準火力打擊等任務。我國海洋無人系統如圖6所示。

圖6 我國海洋無人系統
在海洋無人系統的水下無人系統方面,西北工業大學開發的「魔鬼魚」無人潛航器為仿生蝠鱝無人潛水器,已完成了1025m的深海測試。由哈爾濱工程大學研發的「悟空號」全海深無人潛航器,成功完成了10896m的深潛和自主作業試驗。我國研發的「潛龍一號」、「海馬號」等深海潛水器都已成功完成深海探測任務。
⒊技術現況總結
目前,智慧無人系統已逐步應用於軍事應用的各個領域,隨著前沿科學技術的發展,智慧無人系統在軍事領域的應用將日益增加。但在智慧無人系統的使用方面,尚未完全實現自主化與智慧化。目前,智慧無人系統技術在軍事領域的應用現況主要分為以下3個部分:
①從作戰任務的角度:作戰任務從執行簡單的偵察監視向主流對抗作戰方向發展;戰場對抗由人人對抗向人機對抗,再向機機對抗方式轉變;應用環境由結構化環境、實驗室環境向真實戰場環境轉變,並在未來逐步發展成真實環境與虛擬現實相結合的增強現實環境。
②從指揮控制的角度:控制方式從單機簡單遙控、程控方式向人機智慧融合互動控制方向發展,不過尚未完全實現自主控制;體系結構由專用化、單一化向通用化、標準化、互通性方向發展。
③從感知決策的角度:決策方式由單一依靠人來決策向以人為主,人機智能交互決策為輔的方式轉變;感知方式由單一依靠傳感器獲取特徵信息,由人來判斷目標屬性向基於人工智能的目標識別、特徵信息獲取的方式轉變。

二、智慧無人系統關鍵技術

智慧無人系統作為多學科領域的集大成者,涉及的技術眾多,執行的任務多樣,且應用場景複雜多變。例如,空中環境多雨、多霧,能見度低,有大風、光照幹擾等;陸地環境地形複雜,有障礙物遮擋幹擾和危險污染區域等;海上環境有風浪幹擾、船舶搖擺、目標不顯著、海岸線不規則等。不同的環境及用途給智慧無人系統技術研究和性能的發揮提出了巨大挑戰。為適應受限的多變環境,可將智慧無人系統關鍵技術歸納為複雜環境下自主感知與理解技術、多場景自主技能學習與智慧控制技術、多任務集群協同技術、人機互動與人機融合技術、決策規劃技術與導航定位技術,本節將主要以海洋無人系統為案例對智慧無人系統關鍵技術進行詳細闡述。
⒈複雜環境下自主感知與理解技術
在複雜環境下對環境進行自主感知與場景理解是智慧無人系統能夠自主作業並形成作戰能力的前提,將直接影響任務能否成功完成。針對實際環境的複雜多變,尤其是海面環境的風浪幹擾及船舶搖晃等困難,智慧無人系統需要完成目標自主選擇感知,獲取多模態訊息,並對資訊抽象完整理解等目標。因此,複雜環境下的智慧無人系統環境自主感知與理解技術需突破多模態感測器融合自主感知技術,以及複雜場景目標辨識與理解技術。
⑴多模態感測融合自主感知技術
目前,智慧無人系統搭載的資訊取得感測器主要包括導航雷達、毫米波雷達、光達、光電載重等。單一感測器無法直接獲取高精度、稠密的場景三維訊息,需研究多感測器融合的環境自主感知技術,從而為場景理解提供支撐。多感測器融合是將各種感測器進行多層次、多空間的資訊互補和最佳化組合處理,最終產生對觀測環境的一致性解釋。在此過程中,要充分利用多源數據進行合理的支配與使用,而信息融合的最終目標則是基於各傳感器獲得的分離觀測信息,通過對信息多級別、多方面組合導出更多有用的信息。透過利用多個感測器相互協同操作的優勢,綜合處理所有資訊來源的數據,從而提高整個感測器系統的智慧化。海洋自然環境相比陸地與空中環境更為複雜,面臨船舶的劇烈搖擺、風浪幹擾、光照不均、目標不顯著等特殊的挑戰,海洋智慧無人系統需要依據每種感測器的獨特屬性來對指定目標進行多感測器資訊融合處理,接著結合無人系統內部導航單元與岸基支援系統的電子海圖訊息,建構海面環境多維立體態勢圖,執行對指定目標的追蹤、偵測、辨識與認知任務,最終實現海洋智慧無人系統對海面環境的自主感知與完整理解。
⑵複雜場景目標辨識與理解技術
智慧無人系統具備作業自主性的關鍵在於能有效理解場景與目標訊息,而準確理解場景資訊主要包括目標語意訊息建構與場景文字訊息描述。相較於陸地與空中環境,海洋自然環境面臨風浪幹擾、船體劇烈搖擺等獨特的困難,這為智慧無人系統完整地理解環境資訊與準確識別指定目標帶來了挑戰。利用智慧無人系統搭載的雷射雷達與高清攝影機等感測器,可以獲得海洋環境場景的原始點雲信息及影像特徵信息,利用基於點雲、點雲與影像融合的三維目標檢測方法與三維場景語義分割方法等,可以實現智慧無人系統對場景資訊的完整認知及對指定目標的準確識別。
基於點雲的方法主要包括2種:基於網格或體素的方法,以及基於點的方法。基於網格或體素的方法是利用體素或鳥瞰圖來將所獲得的海面不規則的點雲轉換成規則的表徵方式,然後提取點雲特徵。基於點的方法則是直接在所獲取的海面原始點雲中提取目標特徵。基於點雲與影像融合的三維目標檢測方法,是將雷射雷達獲得的海面場景中目標的精確座標與海面影像提供的環境紋理和色彩資訊相結合,這樣更加有助於智慧無人系統對海洋場景目標的精確識別與準確、完整的理解。
⒉行為決策與軌跡規劃技術
在實際的、複雜的戰爭場景中,對於智慧無人系統面臨的複雜任務環境與多重任務,必須突破多源異質環境下的行為決策技術、動/靜環境下的軌跡規劃技術與複雜場景下的軌跡追蹤技術。
⑴多源異質環境下的行為決策技術
行為決策是智慧無人系統實現自主控制的關鍵。在無人艇不同速度、不同相對距離、不同資料類型的複雜環境下,需要準確提取有效資訊來為無人艇下一刻的決策做出安全可靠的控制指令。首先,提取出具有代表性的環境特徵信息,建立足夠數量與精確標定的學習數據集;然後,構建基於深度神經網絡的決策器,並利用建立的數據庫進行學習;最後,利用機器學習算法對構建的決策器進行優化,進一步提高決策精度。
⑵動/靜環境下的軌跡規劃技術
軌跡變換是無人艇與無人潛航器最基本的行為。在複雜的戰場環境下,根據不同的環境狀況規劃一條可行、可靠的軌跡是無人艇與無人潛航器實現智慧行駛的關鍵。此技術主要包括基於多項式的軌跡規劃技術、基於多目標限制的軌跡規劃技術與基於正、反梯形側向加速度的軌跡規劃技術。
⑶複雜場景下的軌跡追蹤技術
對規劃出的理想軌跡進行追蹤是無人艇與無人潛航器的重要任務,其關鍵在於解決無人艇或無人潛航器進行目標軌跡追蹤時的高精度與高穩定性控制難題。主要解決方法為:根據無人艇與無人潛航器的運動學與動力學模型,輸出對應的執行器控制量來實現對指定目標的即時、準確跟隨,在保證追蹤精度的前提下,實現無人艇與無人潛航器的自主智慧轉向與各個驅動模組多執行器之間的協調控制。
⒊自主導航定位技術
導航定位系統是智慧無人系統的關鍵組成部分,其可提供精準、可靠的有關無人艇或無人潛航器的速度與位置等資訊。導航系統一般由陀螺儀、加速計、衛星接收器等組成,部分輔以視覺模組,或基於實際複雜的環境狀況搭載先驗空間位置圖與實體資訊感測器等。智慧無人系統要實現任務的精準執行,必須突破基於慣性/衛星深度資訊融合導航定位技術、基於慣性/天文資訊融合導航定位技術、基於視覺追蹤的導航技術與地球物理輔助導航技術。
⑴基於慣性/衛星深度資訊融合的導航定位技術
該技術是將無人艇的慣性資訊引入衛星載波/碼環路,然後利用全自主、短時、高精度的慣性資訊輔助衛星接收機訊號的更新,從而實現無人艇的慣性導航與衛星導航的優勢互補及最適融合。
⑵基於慣性/天文學資訊融合的導航定位技術
基於天文的導航系統具有高自主性與不易受干擾的優勢,透過利用天文導航輸出的信息與初始位置提供的信息,可以推算出無人艇的位置。將慣性導航資訊與天文導航資訊融合,可以提高天文導航定位的穩健性。基於天文導航輔助的慣性/天文組合定位技術已成為無人系統自主導航領域的關鍵部分。
⑶基於視覺追蹤的導航技術
由於實際戰場環境的複雜性,無人艇會處於複雜的工作環境中,容易受到外界幹擾而出現GPS拒止​​的情況,使導航系統無法處於組合狀態。單獨的慣性導航系統精度較低,容易累積誤差,長時間的純慣性導航會使無人艇失去執行任務的能力。而基於視覺的方法卻沒有時間的誤差積累,只需提取到高清相機所獲得影像的關鍵特徵,即可透過視覺演算法與先驗知識獲得無人艇與無人潛航器的位置資訊。基於視覺的導航演算法不易受到干擾,魯棒性較強,且能彌補在GPS拒止​​環境下由純慣性導航帶來的誤差積累,被廣泛應用。
⑷地球物理輔助導航技術
由於海洋獨特的環境,無人潛航器需長時間在水下航行,導致無法取得即時、準確的衛星訊號與天文資訊。另外,由於水下光照弱等問題,基於視覺的導航方法也受到限制。因此,透過獲得海洋內部的先驗空間位置圖,並利用無人潛航器搭載的物理感測器所獲得的實地場景資訊並進行匹配,可以實現無人潛航器的高精度自主導航。
可以利用勘測的海洋固有的地球物理屬性的時空分佈特徵,來製作地球物理導航空間位置圖,透過將無人潛航器所搭載的物理屬性感測器實地獲取的物理特徵資訊與預先搭載的空間位置圖相匹配,可以獲得無人潛航器的高精度定位,實現無人潛航器的高精度自主導航。
⒋多場景自主技能學習與智慧控制技術
多場景智慧控制技術是智慧無人系統解決複雜、多變和控制物件不穩定等問題的關鍵技術,是智慧無人系統適應複雜任務需求的有效工具。在複雜的海洋環境下,智慧無人系統要完成即時、準確的區域監控、目標追蹤、資訊取得與精準打擊,就必須突破任務的自主技能學習技術、自主作業互動控制技術,以及類人智慧控制的無人系統運動控制技術。
⑴任務的自主技能學習技術
自主技能學習是指在無人系統與外界互動的過程中,基於先驗知識或規則進行學習以完成任務的過程。無人系統作業技能的自主學習本質是模擬人學習認知的部分過程。智慧無人系統利用基於深度強化學習的技術,將深度學習的感知能力與強化學習的決策能力相結合,可實現在海面複雜環境下從高緯度的原始資料資訊輸入到決策輸出的直接控制。智慧無人系統自主技能學習主要包括3個面向:一是對海洋表面與海洋內部的複雜環境進行描述,並獲得周圍環境的初始狀態資料資訊;二是基於智慧無人系統與海洋表面和內部複雜環境的描述方式,進行深度強化學習的數學建模,獲得自主技能學習過程的狀態價值函數與控制策略函數等關鍵信息;三是利用智能無人系統與海洋表面和內部複雜環境交互所獲得的數據信息,對狀態價值函數及控制策略函數進行更新,以使海洋智能無人系統學習出更優的控制策略。
⑵自主作業互動控制技術
智慧無人系統在任務的自主學習與控制過程中,需要與海洋表面和內部複雜環境接觸形成良好的耦合系統,以確保對海洋表面與內部複雜環境資訊的即時、準確獲取,並正確、快速進行無人艇、無人潛航器的航行規劃、自主航行控制與自主規避碰撞等。智慧無人系統自主作業互動控制技術的任務主要包括:智慧無人系統互動規則與控制策略的設計;海洋表面與內部複雜環境的建模方法;無人艇、無人潛航器與作業物件的動力學線上建模及修正;海洋表面與內部複雜環境中虛擬力約束的動態生成及共享控制方法。
⑶類人智慧控制的無人系統運動控制技術
類人智慧控制的無人系統運動控制技術是將人工智慧與傳統控制方法結合,以解決在實際複雜的海洋戰場環境下,無人艇與無人潛航器的穩定精確控制問題,主要包括無人系統智慧控制演算法的設計與無人系統智慧控制策略的設計2個面向。無人系統智慧控制演算法設計主要包括:分層的資訊處理和決策機構;線上的特徵辨識與特徵記憶;開/閉環控制、正/負回饋控制以及定性決策與定量控制相結合的多模態控制;啟發式直覺推理邏輯的運用。無人系統智慧控制策略設計則是設計合理的無人艇或是無人潛航器的方案,以滿足實際的任務需求。
⒌無人群聚協同控制技術
在實際的作戰場景中,由於戰場環境的複雜性與任務的多樣性,單艘無人艇或是無人潛航器通常都無法滿足實際任務的需求。單艘無人艇或無人潛航器搭載的設備數量有限,感知視角與區域範圍不夠全面,導致在執行完整的情報探測、目標跟踪、戰場環境感知與全面火力打擊任務時不夠精確與徹底,因此,由多艘無人艇與無人潛航器組成的智能無人系統集群協同執行任務就成為必然的趨勢。要完成對智慧無人系統集群的控制,需要突破智慧無人系統集群局部規則控制技術、智慧無人系統集群軟控制技術、智慧無人系統集群領航控制技術以及智慧無人系統人工勢場控制技術。
⑴智慧無人系統叢集局部規則控制技術
基於局部規則的控制技術是智慧無人系統針對無人艇、無人潛航器集群控制的基本方法,主要在於對無人艇、無人潛航器集群內部個體局部控制規則的指定。局部規則控制技術在一定程度上實現了對海洋無人系統集群的智慧控制,但是對於海洋無人系統集群行為與集群模型之間的參數,需要進行大量的實驗來獲得,並且對參數的取值也非常敏感。所以,要實現對智慧無人系統完全的智慧控制,還需輔助以其他技術。
⑵智慧無人系統叢集軟控制技術
智慧無人系統集群的軟控制技術主要基於2點需求:一是在智慧無人系統集群中,個體之間的控制規則很重要,例如每艘無人艇、無人潛航器的控制與內部作用是整個海洋智慧無人系統集群出現群體行為的必要條件;二是智慧無人能動工具的控制與內部作用是整個海洋智慧無人系統集群出現群體行為的必要條件;二是智慧無人能動系統採用的是局部通訊策略,隨著智慧客系統集群出現群體行為的必要條件)
軟控制方法是在不破壞智慧無人系統集群內部無人艇、無人潛航器個體規則的前提下,加入一個或多個新的無人艇或是無人潛航器,這些無人艇或無人潛航器按照同樣的局部規則來參與整個智能無人系統集群的行動,但本身可控,可以接收外部指令。在接收指令後,這些無人艇或無人潛航器將獨立完成相應的任務。智慧無人系統集群的軟控制方法是在無人系統局部控制規則的基礎上,加入一個可以控制的無人艇與無人潛航器,使其對整個無人系統集群產生影響,最終完成對整個智慧無人系統群體的控制。
⑶智慧無人系統叢集領航控制技術
智慧無人系統集群領航控制技術的基本內容是:在整個海洋智慧無人系統集群個體保持局部規則的前提下,令集群中少數無人艇與無人潛航器擁有更多的信息量和更強的信息處理能力,並與其他無人艇和無人潛航器通過局部信息交互來起到領導者的作用,從而達到控制整個智能沒有集群的目的。
⑷智慧無人系統人工勢場控制技術
在智慧無人系統集群控制中,只基於局部規則的控制技術難以完成對戰場準確、即時的感知,以及對情報資訊的蒐集獲取、對可疑目標的追蹤識別和對敵方區域的精準打擊。人工勢場控制技術是將物理學中的位能場概念引入智慧無人系統集群的控制中,利用位勢函數來模擬影響單艘無人艇或無人潛航器的內、外作用,而係統集群中的單艘無人艇或無人潛航器則在勢函數的作用下行動,最終透過勢函數來實現對整個智慧無人能動系統的控制。
⒍自然人機互動技術
在實際的戰場環境中,智慧無人系統面臨著操作任務複雜、操作智慧化程度低、訓練風險大且成本高、設備使用與維修效率低等問題,在這種情況下,就需要提高智慧無人系統設備的可操控性與智慧化,需要突破智慧無人系統人機互動技術、智慧無人系統擴增實境與混合實境技術以及智慧無人系統介面技術。
⑴智慧無人系統人機互動技術
智慧無人系統人機互動技術是指指揮平台透過影像和語音感應器獲取指戰員的影像與語音訊息,然後利用影像分割、邊緣偵測、影像辨識等演算法擷取出指戰員的手勢與眼勢等關鍵訊息,接著利用基於深度學習的演算法獲得指戰員的語音訊息並傳遞給指揮平台,從而將指作戰員的指令下發給下級的指令。智慧無人系統的人機互動技術可以提高任務操作的智慧化以及操作過程的容錯率與魯棒性,從而使指戰員的指令能夠更加穩定、有效地下發給作戰單位。
⑵智慧無人系統擴增實境與混合實境技術
智慧無人系統擴增實境技術是將電腦生成的影像疊加在真實的複雜作戰環境中,智慧無人系統混合實境技術則是透過在實際作戰場景中呈現虛擬場景的訊息,在真實的作戰環境下在虛擬世界與指戰員之間搭起一個互動回饋的資訊迴路,從而增加指戰員對作戰環境體驗的真實感。智慧無人系統虛擬實境與擴增實境作為沉浸式人機互動技術的重要發展方向,已有多種不同的真實作戰應用場景,可有效降低訓練時的成本與風險,提高作戰時設備的使用與維修效率。
⑶智慧無人系統腦機介面技術
腦機介面的主要功能是捕捉人腦在進行思考活動時產生的一系列腦波訊號。在實際作戰環境中,智慧無人系統腦機介面技術透過對指戰員的腦波訊號進行特徵提取、功能分類,從而辨別出指戰員的意圖而做出相應的決策,以此應對複雜的作戰任務與突發情況。智慧無人系統腦機介面技術可以增強指戰員的認知與決策能力,大幅提升腦機互動與腦控技術,賦予指戰員在藉助思維的同時具有能操控多艘無人艇與無人潛航器等無人作戰設備的能力。

三、智慧無人系統未來的發展趨勢

智慧無人系統由於其無人化、自主性、智慧性等優點,將出現在未來戰場的各個角落,而隨著其承擔戰場任務的增多,將會參與不同的戰爭場景,導致智慧無人系統將面臨多項關鍵性的難題,使其發展受到限制。智慧無人系統面臨的關鍵性難題主要有:
①環境高度複雜。智慧無人系統具體的應用環境將面臨越來越多的要素,非結構化環境下遮蔽物眾多、感知視點及範圍受限等對智慧無人系統的環境感知能力提出了更高的要求。
②博弈高對抗。智慧無人系統的戰場博弈是取得戰場優勢的重要手段,作戰雙方激烈的機動對抗,以及因敵方和戰場環境帶來的諸多幹擾對智慧無人系統的機動決策能力提出了新的挑戰。
③響應高實時。在未來戰場中,戰鬥態勢變化劇烈,交戰方式將更加靈活多變,需及時應對戰場突發事件,這就對智​​慧無人系統的即時響應能力提出了新的要求。
④資訊不完整。在未來戰場中,受戰場環境的限制以及敵方幹擾的存在,智慧無人系統的資訊取得能力將會受到製約,從而造成態勢感知不完備、戰場態勢資訊資料遺失與衰減,導致無法完整取得敵我雙方的資訊。
⑤邊界不確定。智慧無人系統的無人作戰方式顛覆了傳統作戰模式,未來無人作戰的陸海空天一體化,以及透過與社會高度交融帶來的社會輿情,都將對智慧無人系統的無人作戰產生影響,從而造成作戰邊界的不確定性。
基於以上將面臨的各種難題,未來智慧無人系統的發展將集中在個體能力增強與群聚能力增強2個面向。個體能力增強主要體現在個體認知智能、個體自主作業與演算法晶片化等方面;集群能力增強則主要體現在透過通用化架構提升互通性,以及跨域協同作戰、網路安全與人機混合智能等。
⒈認知智能適應複雜任務環境
為提高智慧無人系統在高度複雜環境下的適應能力,需要增強智慧無人系統的個別認知智能。個體認知智能增強主要體現在從個體感知智能轉變為認知智能的轉變方面,綜合獲取的多源感測資訊使得智能無人系統具備人類的語意理解、聯想推理、判斷分析、決策規劃、情感理解等能力。智慧無人系統個體認知智能的發展將以腦科學和仿生學等為基礎,透過結合知識圖譜、人工智慧、知識推理、決策智慧等技術來實現獲取資訊的智慧理解與準確運用,從而提升智慧無人系統對突發事件的高即時響應能力。
⒉自主作業提升單機任務能力
為解決智慧無人系統在高度複雜環境下所面臨的高度複雜任務的難題,需要提升單機的自主作業能力。包括開發基於深度強化學習的決策方法、基於視覺及其他感測器多源資訊的自主環境感知與交互方法、基於神經動力學的機器人自主運動規劃方法,以及基於人工智慧的自主作業方法等,以提升智能無人系統個體的自主環境建模與定位能力、自主決策能力、自主規劃能力及自主控制能力,使智能無人系統能夠適應複雜的環境建模與定位能力、自主決策能力、自主規劃能力及自主控制能力,使智能無人系統能夠適應複雜的環境建模並開展自主作業。
⒊演算法晶片化實現高即時響應
智慧無人系統面臨的複雜環境對演算法、算力提出了較高要求,需要能即時加速運算,實現對戰場突發事件的高即時回應。為解決此問題,需要提高智慧無人系統個體演算法的晶片化水平,即開發新型架構的存算一體晶片,以提高晶片的算力與演算法晶片化水平。可研究基於人工神經技術的新型晶片,透過改變數位晶片的二進制計算方式,交換梯度訊號或權重訊號來使晶片以模擬神經元的方式進行工作,模擬大腦有效處理大數據量的並行運算流,獲得超級電腦的並行運算能力,從而極大地提升晶片的計算力與晶片化水平,解決智慧系統的高即時演算法響應。
⒋通用化的架構提升集群互通性
為提高智慧無人系統面臨高度複雜環境的適應能力,以及智慧無人系統的維修保障效率,未來智慧無人系統將繼續發展標準化的指控框架,提高人機協作的智慧性並提高系統的模組化程度。主要體現在:
①開發通用式的人工智慧框架,支援人與機器之間自主、精確、即時的良好耦合與協作關係;
②提高智慧無人系統的模組化與零件互換性,以支援在未來戰場中對智慧無人系統及其成員進行的快速維修與配置升級;
③提高資料傳輸一體化水平,以及在未來戰場上資料傳輸的抗干擾能力,降低資料的被截獲率。
⒌跨域協同打破群集應用邊界
為提高智慧無人系統在高度複雜環境下的適應能力,解決作戰時的邊界不確定難題,需要提高智慧無人系統的跨域協同作戰能力,以彌補單一作戰域能力的不足。可透過智慧無人系統的跨域協同作戰,將各個組件進行優勢互補。即利用空中無人系統的搜尋範圍大、通訊距離遠等優點,以及陸地無人系統與海洋無人系統續航時間長、穩定性強等優點,將不同組件的優勢進行組合,以增加智能無人系統的多維空間資訊感知能力,構成異質多自主體協同系統,從而提高智能無人系統完成複雜任務的能力。
⒍安全網路保障集群可靠應用
智慧無人系統在未來戰場上面臨著資訊不完整與博弈高對抗的難題,因此需要提高智慧無人系統在高對抗環境下的網路安全保障能力,提高在應對高複雜、高變化任務時的靈活性與面臨高強度網路攻擊時的穩定性。對抗環境下網路安全保障能力的提升主要體現在以下幾個方面:
①規劃合理的資料權限,以確保資料的安全性與任務執行的彈性;
②提升資訊保障能力,開發並升級智慧無人系統的資訊保障產品,備案資訊爆炸狀況的因應決策;
③增加網路的深度防禦能力,統一網路安全的標準與等級,建構網路防禦的自主性,提升網路攻擊下網路的抗打擊能力。
⒎人機混合智能提升對抗能力
為解決在未來戰場上面臨的高即時回應的難題,提高智慧無人系統在高度複雜環境下的適應能力,需要將人類與機器的優點結合,構成一種新的人機協作的混合智慧方式,即發展智慧無人系統的人機混合智慧。智慧無人系統人機混合智慧是一種由人、機、環境系統相互作用的新的物理與生物結合的智慧科學系統。針對智慧無人系統在未來戰場上所面臨的高複雜環境與高即時反應的難題,未來人機混合智慧的發展主要體現在以下幾個方面:
①資訊智能輸入。在獲取資訊的輸入端,將無人系統設備感測器客觀收集的資訊資料與作戰指揮人員的主觀感知資訊結合,構成一種多維的資訊獲取與資訊輸入方式。
②資訊智能融合。在取得多維的資料資訊後,透過將電腦的運算資料與作戰指揮人員的資訊認知融合,建構一種新的資料理解途徑。
③資訊智慧輸出。將資料資訊進行融合處理之後,將電腦的計算結果與作戰指揮人員的價值決策相互匹配,從而形成有機結合的機率化與規則化的最佳化判斷。

四、結語
智慧無人系統由於其自主性、智慧性與無人化的特點,在未來戰場上將起著日益重要的作用,智慧無人系統的發展也將帶動智慧運算、智慧交通、智慧製造、智慧醫療、類腦科學等學科領域的發展。今後,應以實際複雜環境戰場的任務需求為導向,結合人工智慧等前沿學科的先進技術,對智慧無人系統進行總體頂層規劃;在陸地、空中以及海洋無人系統中不同的無人系統作戰平台上,驗證可靠的機載智能感知與智慧運算設備,並發展可靠、穩定的無人系統自主控制、智慧感知、智慧決策與智慧互動等關鍵技術,攻克智慧無人系統的關鍵難題,不斷提升智慧無人系統的自主控制、智慧感知與智慧決策能力。

中國原創軍事資源:http://www.81it.com/2022/1031/13846888.html

China’s “Deep technology” Brings New Forms of Warfare

中國的「深度技術」帶來新的戰爭形式

現代英語:

China Military Network Ministry of National Defense Network

Friday , August 13, 2021

Since the 21st century, global scientific and technological innovation has entered an unprecedented period of intensive activity. A new round of scientific and technological revolution and industrial transformation is reshaping the global innovation landscape and reshaping the global economic structure. Some people therefore call the current era the era of “deep technology”.

The military field is the most sensitive to technological change. At present, some major disruptive technologies are constantly emerging, showing a trend of cross-integration and group leaps. Their military applications will bring about sudden and revolutionary consequences, and even bring about a new form of war.

Artificial Intelligence: Opening the Door to Intelligent Warfare

Artificial intelligence was born in 1956. Its essence is to simulate the human thinking process, that is, to make machines understand, think and learn like humans, form experience, and generate a series of corresponding judgments and processing methods. In the past 10 years, with the continuous development of new theories and technologies such as big data, neural networks, and deep learning, artificial intelligence has pressed the fast-forward button and started to develop rapidly, bringing fundamental changes to all areas of human society.

In 2016, the artificial intelligence program AlphaGo defeated the world Go champion Lee Sedol. By 2020, the latest algorithmic programs can teach themselves to play Go, chess and other games without even being told the rules of the game.

As a strategic technology leading a new round of scientific and technological revolution and industrial transformation, the application of artificial intelligence in the military field has accelerated the transformation of warfare from informationization to intelligence. This transformation will be full-dimensional and full-spectrum, involving almost all links in the military chain. The most prominent impacts basically include the following aspects:

——Assisting unmanned combat. The rapid development of artificial intelligence will greatly enhance the collaborative and autonomous combat capabilities of various unmanned combat systems. This will undoubtedly promote structural changes in the composition of combat forces, and unmanned combat mode will gradually become the “main theme” of war. In a simulated confrontation in August 2020, an intelligent system funded by the US Defense Advanced Research Projects Agency controlled a fighter jet and defeated experienced air force pilots. The trend of unmanned combat seems to be increasingly unstoppable.

——Reshape command and control. Complex adaptive systems supported by artificial intelligence, such as swarm systems, will have increasingly strong self-organizing capabilities, thereby breaking the traditional strict hierarchical command system and incubating a new command and control model. The action control of a swarm composed of thousands of unmanned systems will be completed by an intelligent and efficient algorithm system, which can achieve a high degree of decentralization and dynamic aggregation, demonstrating a new concept of group intelligent combat.

——Achieve intelligent decision-making. That is, generate intelligent evaluation and auxiliary decision-making capabilities, realize automatic generation, dynamic optimization, and real-time adjustment of combat plans, and enable combat planning to flexibly adapt to changes in the mission environment and battlefield uncertainties. At present, the new generation of artificial intelligence technology is in a stage of vigorous development, and new technologies will continue to emerge.

Quantum technology: writing the winning code in “entanglement”

Quantum is the smallest, indivisible unit of energy. The biggest feature of quantum technology is that it can break through the physical limits of existing information technology, play a huge role in information processing speed, information capacity, information security, information detection accuracy, etc., and thus significantly improve human ability to obtain, transmit and process information, providing strong impetus for the evolution and development of the future information society.

Quantum theory has gone through more than a hundred years of development since its birth. The development of quantum technology has directly given rise to modern information technology. Nuclear energy, semiconductor transistors, lasers, nuclear magnetic resonance, high-temperature superconducting materials, etc. have come into being, changing human production and life. In recent years, the continuous combination of quantum mechanics and information technology will usher in a new quantum technology revolution, impacting the traditional technology system and even causing the reconstruction of the traditional technology system.

Compared with the macroscopic physical world, quantum has many wonderful properties, the most representative of which are quantum superposition and quantum entanglement. Quantum superposition means that a quantum can be in different states at the same time, and can be in a superposition of these states. A vivid metaphor is the cat in a state of “both dead and alive” imagined by physicist Schrödinger. Quantum entanglement means that independent particles can be completely “entangled” together. No matter how far apart they are, when the state of one quantum changes, the other will change accordingly like “telepathy”.

These special properties of quantum contain great military potential. In quantum detection, quantum communication, quantum imaging, quantum computing, etc., they are gradually showing great military application value. For example, by taking advantage of the characteristics of quantum state superposition and the inability to accurately copy unknown quantum states, quantum codes that cannot be deciphered can be developed.

In addition, based on the characteristics of quantum entanglement, the high correlation between two microscopic particles with a common source can be utilized, and entangled photons can be used as light sources to achieve quantum imaging, which can greatly improve the resolution and anti-interference ability of imaging.

Gene technology: a new weapon that can be “edited”

Genes are the genetic information that controls various characteristics of organisms and are known as the “master switch” of various life activities of organisms. Gene editing is equivalent to a pair of “gene scissors”, which can accurately achieve gene “modification” such as insertion, removal, and replacement of specific target genes of organisms, thereby achieving control over the genetic information of organisms.

In 2012, researchers from the United States and Sweden found a very effective pair of “gene scissors”, namely the CRISPR/Cas9 system, which can cut any genome at any desired location. Since then, the development of gene editing technology has achieved unprecedented “acceleration”, realizing gene editing of fruit flies, mice, pigs, sheep, rice, wheat and other organisms, and also providing new medical means for treating diseases such as tumors, AIDS, and thalassemia.

While genetic technology is gradually unlocking the mysteries of life, it will also cause unpredictable military security issues. If gene editing is used in the development of biological weapons, it means that developers can modify genes to obtain new pathogenic microorganisms according to their own needs, or implant biological gene fragments with different characteristics and transform existing biological warfare agents, or even artificially design and synthesize new viruses that do not exist in nature. These may produce new biological weapons that humans cannot prevent and control, and even use the precision of genetic technology to make attacks more targeted. This new coronavirus epidemic has made the world suspicious of Fort Detrick and more than 200 American overseas biological experimental bases. The United States should disclose more facts and give an explanation to the international community.

Brain science: heading towards the battlefield of “brain control”

The human brain is a highly complex information processing system that consists of billions of neurons that communicate with each other and complete a variety of cognitive tasks in an overall coordinated manner.

The brain’s complex neural information processing and cognition are so complex that even supercomputers pale in comparison. Therefore, brain science research is regarded as the “ultimate frontier” of natural science research, and the International Brain Research Organization believes that the 21st century is the “era of brain science.”

In recent years, major countries in the world have announced the launch of brain science research programs. With the emergence of new imaging technologies, convergence technologies, and computing and information communication technology platforms, brain science research has made new breakthroughs in the fields of neural circuits, brain-like intelligence, and brain-computer interfaces.

As a branch of cognitive science, the “brain-computer interface” technology was born in the 1970s. It collects the EEG signals generated by the activity of the cerebral cortex nervous system, and converts them into signals that can be recognized by computers through methods such as amplification and filtering, so that external devices can read the brain’s neural signals, identify people’s true intentions, and achieve effective control of external physical devices. In other words, a certain operation is performed by the human brain without the need to complete it through the body.

As a new type of human-computer interaction, brain-computer interface technology provides a new intelligent development direction for the control of weapons and equipment. Realizing the direct control of weapons and equipment by the human brain and giving them the intelligent features of “moving at will” are becoming the goals pursued by Western military powers. In 2013, the US Department of Defense disclosed a research project called “Avatar”, which plans to control remote “machine warriors” through thoughts in the future to replace soldiers in the battlefield and carry out various combat tasks.

If the above research is regarded as “brain control”, then the use of “brain-computer interface” and other technical means to interfere with, destroy or even control people’s neural activities and thinking abilities is the so-called “brain control”. For example, electromagnetic waves and sound waves are used to affect the normal activities of human brain cells, and even suggestions and commands are directly “projected” into the human brain. In March 2018, a Western country proposed the “Next Generation Non-Invasive Neurotechnology (N3)” plan to develop a new generation of non-invasive two-way brain-computer interfaces to further improve the high-level interaction capabilities of soldiers and weapons and equipment.

In the future, the rapid development of brain science will give rise to a new cognitive domain combat model centered on the brain, and “brain control” will also become a new battlefield for the competition in the cognitive domain.

At present, a new round of scientific and technological revolution and military revolution is in a “qualitative change period”. Science and technology have never had such a profound impact on national security and military strategy as today. In the face of the rapid development of science and technology, we must vigorously enhance our scientific and technological cognition and acumen, strive to seize the commanding heights of science and technology, seek military competitive advantages, and seize the initiative in future wars.

Professor Liu Yangyue from the College of Arts and Sciences at the National University of Defense Technology 

現代國語:

中國軍網 國防部網
2021年8月13日 星期五

國防科技大學文理學院劉揚月教授

21世紀以來,全球科技創新進入空前密集活躍期,新一輪科技革命與產業變革,重建全球創新版圖、重塑全球經濟結構。有人因而將當今時代稱為「深度科技化」時代。

軍事領域是對科技變革最敏感的領域。目前,一些重大顛覆性技術不斷湧現,呈現交叉融合、群體躍進之勢,其軍事應用將會帶來突變性、革命性後果,甚至帶來戰爭新形態。

人工智慧:叩開智慧化戰爭之門

人工智慧誕生於1956年,它的實質是模擬人的思考過程,即讓機器像人一樣理解、思考和學習,形成經驗,並產生一系列相應的判斷與處理方式。近10年來,隨著大數據、神經網路、深度學習等新理論新技術不斷發展,人工智慧按下了快進鍵,開始飛速發展並為人類社會各領域帶來根本性改變。

2016年,人工智慧程式「阿爾法狗」擊敗了世界圍棋冠軍李世石。到了2020年,最新演算法程式甚至不需要被告知遊戲規則,就能自學成才,掌握下圍棋、西洋棋等技藝。

作為引領新一輪科技革命和產業變革的戰略性技術,人工智慧應用於軍事領域,使戰爭形態加速由資訊化轉變為智慧化。這項轉變將是全維度、全圖譜的,幾乎涉及軍事鏈的所有環節。最突出的影響基本上包括以下幾個方面:

——助力無人作戰。人工智慧的快速發展,將極大提升各類無人作戰系統的協同作戰、自主作戰能力。這無疑會推動作戰力量組成發生結構性變化,無人化作戰模式將逐步成為戰爭「主旋律」。在2020年8月的一場模擬對抗中,美國國防高級研究計畫局資助的智慧系統操縱戰機,完勝經驗豐富的空軍飛行員,無人作戰趨勢似乎愈發勢不可擋。

——重塑指揮控制。由人工智慧支撐的複雜自適應系統,如蜂群系統,將具備越來越強的自組織能力,從而打破傳統的嚴格層級的指揮體制,孵化出全新的指揮控制模式。由成千上萬個無人系統組成的蜂群,其行動控制將由智慧高效的演算法系統完成,能實現高度去中心化與動態聚合,展現出群體智慧作戰新概念。

——實現智能決策。即產生智慧化的評估和輔助決策能力,實現作戰方案計畫的自動生成、動態優化、即時調整,使作戰規劃靈活適應任務環境變化和戰場不確定性。目前,新一代人工智慧技術正處於蓬勃興起階段,新技術仍將持續出現。

量子技術:在「糾纏」中書寫制勝密碼

量子是最小的、不可再分割的能量單位。量子科技最大特點在於,它可以突破現有資訊科技的物理極限,在資訊處理速度、資訊容量、資訊安全、資訊偵測精準度等方面發揮極大作用,進而顯著提升人類獲取、傳輸和處理資訊的能力,為未來資訊社會的演進和發展提供強勁動力。

量子理論從誕生至今,已走過數百年發展歷程,量子科技的發展直接催生了現代資訊技術,核能、半導體電晶體、雷射、核磁共振、高溫超導材料等紛紛問世,改變了人類的生產生活。近年來,量子力學與資訊科技不斷結合,將開啟一場新的量子科技革命,衝擊著傳統科技體系,甚至引起傳統科技體系的重建。

相對於宏觀物理世界,量子有許多奇妙特性,最具代表性的莫過於量子疊加與量子糾纏。量子疊加意味著量子可同時處於不同狀態,且可處於這些狀態的疊加態。形象的比喻就是,物理學家薛丁格所設想的處於「既死又活」狀態的貓。量子糾纏則意味著相互獨立的粒子可以完全「糾纏」在一起,無論相隔多麼遙遠,當一個量子的狀態發生變化,另一個就會「心靈感應」般發生相應變化。

量子的這些特殊性,蘊藏著極大的軍事潛能。在量子探測、量子通訊、量子成像、量子計算等方面,正逐漸展現出巨大的軍事應用價值。如利用量子態疊加與未知量子態無法精確複製等特點,可研發出無法破解的量子密碼。

此外,根據量子的糾纏特性,利用兩個有共同來源的微觀粒子高度關聯性,將糾纏的光子作為光源實現量子成像,可大幅提升成像的解析度和抗干擾性。

基因技術:可以「編輯」的新武器

基因是控制生物各種特徵的遺傳訊息,被譽為生物體各種生命活動的「總開關」。基因編輯就相當於一把“基因剪刀”,透過它可精確實現對生物體特定目標基因的插入、移除、替換等基因“修飾”,從而實現對生物遺傳訊息的控制。

2012年,美國和瑞典的研究人員找到一把十分有效的“基因剪刀”,即使用CRISPR/Cas9系統,可在任何想要的地方切割任何基因組。此後,基因編輯技術發展獲得前所未有的“加速”,實現了對果蠅、鼠、豬、羊以及水稻、小麥等各類生物的基因編輯,也為治療腫瘤、愛滋病、地中海貧血等疾病提供了新的醫學手段。

基因技術在逐漸破解生命奧秘的同時,也將引發難以預料的軍事安全問題。如將基因編輯運用於生物武器的開發上,那就意味著開發者可根據自己的需要,修改基因獲得新的致病微生物,或是將具有不同特徵的生物基因片段植入並改造已有的生物戰劑,甚至人工設計與合成自然界本不存在的新型病毒。這些都可能產生人類無法預防和控制的新生物武器,甚至利用基因技術的精準性,使得攻擊更具針對性。這次新冠肺炎疫情,讓世界對美國德特里克堡以及200多個美國海外生物實驗基地疑雲叢生,美國應該公開更多事實,給國際社會一個交代。

腦科學:走向「制腦」戰場

人的大腦是一個高度複雜的訊息處理系統,它由數十億神經元透過相互連結來進行訊息交流,以整體協調的方式完成各種各樣的認知任務。

大腦複雜的神經訊息處理與認知,即便是超級電腦也相形見絀。因此,腦科學研究被視為自然科學研究的“終極疆域”,國際腦研究組織認為21世紀是“腦科學時代”。

近年來,世界主要國家紛紛宣布啟動腦科學研究計畫。隨著新型影像技術、匯聚技術以及基於計算和資訊通信技術平台的出現,腦科學研究在神經環路、類腦智能、腦機介面等領域不斷取得新突破。

作為認知科學的一個分支,「腦機介面」技術誕生於1970年代。它透過擷取大腦皮質神經系統活動產生的腦電訊號,經過放大、濾波等方法,將其轉化為可被電腦辨識的訊號,讓外部設備讀懂大腦的神經訊號,從中辨別出人的真實意圖,實現對外部實體設備的有效控制。也就是由人腦思考執行某項操作,而不需要透過肢體來完成。

腦機介面技術作為一種新型的人機互動方式,為武器裝備操控提供了全新的智慧化發展方向。實現人腦對武器裝備的直接控制,賦予武器裝備「隨心所欲」的智慧化特徵,正成為西方軍事強國追求的目標。 2013年,美國防部披露了一項名為“阿凡達”的研究項目,計劃在未來能通過意念操控遠程的“機器戰士”,以代替士兵在戰場上作戰,遂行各種戰鬥任務。

如果把上述研究視為“腦控”,那麼,利用“腦機介面”等技術手段對人的神經活動、思考能力等進行幹擾、破壞甚至控制,就是所謂的“控腦”。如使用電磁波和聲波等對人類腦細胞正常活動產生影響,甚至把建議和命令直接「投射」到人腦中。 2018年3月,某西方國家提出「下一代非侵入性神經技術(N3)」計劃,開發新一代非侵入式雙向腦機接口,進一步提高士兵與武器裝備的高水平交互能力。

未來,腦科學的快速發展,將催生以大腦為中心的認知域作戰新模式,「控腦」也將成為認知域爭奪的新陣地。

目前,新一輪科技革命、軍事革命正處於“質變期”,科技從未像今天這樣深刻影響國家安全和軍事戰略全局。面對快速發展的科學技術,必須大力增強科技認知力和敏銳性,努力搶佔科技制高點,謀取軍事競爭優勢,掌握未來戰爭的主動權。

中國原創軍事資源:http://www.81.cn/jfjbmap/content/2021-08/13/content_296410888.htm

Chinese Military Laws Necessary for Winning Intelligent Warfare

中國軍事法規是贏得智慧化戰爭的必要條件

現代英語:

●To understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, the key of building a war knowledge and action system, and the essence of the changes in the connotation of war power.

●War leaders must examine intelligent warfare dynamically, keenly capture the new elements spawned by intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-understand intelligent warfare.

President Xi pointed out that we should seriously study the military, war, and how to fight, and grasp the laws of modern warfare and the laws governing war. Today, the intelligent characteristics of war are becoming increasingly prominent, and intelligent warfare has already shown its early form. In order to seize the initiative in future intelligent warfare, we should actively follow the development of modern warfare, keep close to the actual military struggle preparations, proactively understand the laws of intelligent warfare, deeply grasp its guiding laws, focus on answering questions such as “what is it” and “how to do it”, and constantly innovate war and strategic guidance.

Answering the question “What is it?” and understanding the laws of intelligent warfare

Comrade Mao Zedong pointed out: “The laws of war are a problem that anyone who directs a war must study and must solve.” Today, as intelligent warfare begins to emerge, we should proactively understand “what” intelligent warfare is. Otherwise, we will not be able to solve “how to do it,” let alone control future wars.

The laws of intelligent warfare are the reconstruction of the war knowledge and action system. The laws of intelligent warfare, like the laws of cold weapon warfare, hot weapon warfare, mechanized warfare, and information warfare, are the inherent and essential connections between the elements of war. The difference is that it has new elements and new modes of composition between elements. It is essentially the reconstruction of the war knowledge and action system caused by the intelligent revolution. Today, to understand the laws of intelligent warfare, we must grasp the foundation of intelligence and autonomy, grasp the key to building a war knowledge and action system, and grasp the essence of the change in the connotation of war power. Mastering these laws can overcome the chaos and uncertainty in future wars and find order and certainty from them. This is the objective requirement for dealing with intelligent warfare.

The laws of intelligent warfare are the basis of the laws of war guidance. In “Problems of Strategy in China’s Revolutionary War”, Mao Zedong first analyzed the characteristics of China’s revolutionary war and revealed the laws of war, and then “derived our strategies and tactics from this”, that is, the laws of war guidance; in “On Protracted War”, he first explained “what it is”, and then turned to the question of “how to do it”, reflecting a logical order of the cognitive process. Today, the study of intelligent warfare should still follow this order, and neither put the cart before the horse, nor reverse the order; nor add, reduce or replace links. On the basis of mastering the fundamental law of intelligent autonomy, we must reveal the laws of war guidance such as autonomous perception, autonomous planning, autonomous implementation, autonomous linkage, and autonomous evaluation.

If you don’t understand the laws of intelligent warfare, you can’t guide the war. “Sun Bin’s Art of War” points out: “Know, win” and “Don’t know, don’t win.” Tao is the law of war. If you master it and act in accordance with it, you can win; otherwise, you will lose. Mao Zedong also emphasized: “If you don’t know the laws of war, you don’t know how to guide the war, and you can’t win the war.” Similarly, mastering the laws of intelligent warfare is the premise for correctly guiding intelligent warfare. Otherwise, it is inevitable to be confused by the superficial phenomena of intelligent warfare. Today, we need to analyze the basic, long-term and subversive impact of intelligent technology groups on war, and study what intelligent warfare looks like? What are the laws? How should it be fought? These are all major issues that must be answered in the guidance of intelligent warfare.

Solve the “how to do it” problem and reveal the guiding principles of intelligent warfare

The guiding laws of intelligent warfare are the medium for guiding practice by using the laws of intelligent warfare, playing the role of “bridge” and “boat”. We should solve the problem of “how to do it” on the basis of answering “what is it” and propose the “swimming skills” of intelligent warfare.

The guiding laws of intelligent warfare are the laws of applying the laws of war. The purpose of understanding the laws of war is to apply them. Marx pointed out: “Philosophers only interpret the world in different ways, but the problem is to change the world.” Similarly, intelligent warfare itself forces commanders to discover the laws. Once discovered, they will combine initiative and use the laws to serve winning the war, which will inevitably lead to the emergence of guiding laws for intelligent warfare. Today, war is the continuation of politics, which is still the law of intelligent warfare. From this, it can be concluded that intelligent warfare must obey the guiding laws that serve politics; soldiers and civilians are the basis of victory, which is still the law of intelligent warfare. From this, it can be concluded that the guiding laws of mobilizing the people in the broadest possible way are derived, and so on. These guiding laws for intelligent warfare are derived from the laws of war and are “swimming skills in the sea of ​​intelligent warfare.”

Give full play to the active role of people in intelligent warfare. Engels said: “It is people, not guns, who win the battle.” The guiding laws of intelligent warfare are the laws of practice and use. It is not a simple “transfer” or “copying” of the laws of intelligent warfare, but it can be transformed into the guiding laws of war with the addition of people’s subjective initiative. Today, military talents who master artificial intelligence are not only the operators of intelligent weapons, but also the creators of artificial intelligence. People still occupy a dominant position in the intelligent human-machine system and are the decisive factor in the victory or defeat of intelligent warfare. Commanders should give full play to their initiative on the basis of mastering the laws of intelligent warfare and adhere to the “technology + strategy” combat theory generation model, so as to change from answering “what is” to solving “how to do”.

The laws governing intelligent warfare are constantly evolving. War is a “chameleon”. Intelligent warfare itself will also go through different stages such as germination, development, and maturity, which will inevitably lead to the development of laws governing intelligent warfare. War leaders must dynamically examine intelligent warfare, keenly capture the new elements of intelligent warfare, correctly analyze the changes in the relationship between the new elements, and constantly re-recognize intelligent warfare. We must keep up with the historical process of the accelerated advancement of war forms towards intelligence, grasp the direction of development of intelligent warfare and the pulse of the times, push the research on the laws governing intelligent warfare to a new level, and seize strategic initiative and opportunities on future battlefields.

Keep a close eye on the “initiative” and continue to innovate intelligent warfare and strategic guidance

As the military is ever-changing, water is ever-changing. As intelligent warfare has already arrived, we must follow the laws and guidance of intelligent warfare, keep close to the actual military struggle preparations, strengthen research on opponents and enemy situations, take the initiative to design “when”, “where” and “who to fight”, innovate war and strategic guidance, and firmly grasp the strategic initiative of future wars.

You fight yours, I fight mine. The highest realm of the art of war guidance is that you fight yours, I fight mine. “Each fights his own” requires commanders to use their own forces independently and autonomously in future intelligent wars, no matter how complex and difficult the environment is. In particular, enemies with high-tech equipment may cause a temporary local situation where the enemy is active and we are passive. At this time, we must use comprehensive means such as politics, economy, and diplomacy to make up for the disadvantages in weapons with an overall favorable situation, quickly reverse this situation, and restore the active position. If you are led by the nose by your strategic opponent, you may suffer a great loss.

Seize the opportunity and use the troops according to the time. The Six Secret Teachings pointed out: “The use depends on the opportunity.” Jomini emphasized: “The whole art of war lies in being good at waiting for the opportunity to act.” On the one hand, if the time is not right, do not force it. Be cautious about the opportunity, and have great patience before the opportunity comes to prevent strategic blind action. On the other hand, the time will not come again, so don’t miss the opportunity. Be good at seizing the opportunity, and once you encounter a favorable opportunity, you must resolutely use it and avoid being timid. It should be pointed out that we should look at the issue of the maturity of the opportunity dialectically. The future intelligent war is changing rapidly, requiring quick decision-making, but in the face of uncertain factors, we must make careful decisions. Sometimes making a decision early may be more effective than making a more perfect decision tomorrow. Therefore, we must dare to take a little risk, otherwise we will sit back and watch the loss of the opportunity for success.

Different domains are different, and operations are based on the local conditions. Clausewitz pointed out: “War is not like a field full of crops, but like a field full of trees. When harvesting crops, you don’t need to consider the shape of each crop, and the quality of the harvest depends on the quality of the sickle; when chopping down trees with an axe, you must pay attention to the shape and direction of each tree.” Different strategic spaces lead to different wars, and war guidance is also different. At present, the battlefield space is constantly expanding from traditional spaces such as land, sea and air to new spaces such as space and the Internet. War leaders should explore new intelligent war laws and guidance laws based on the characteristics of multi-domain, three-dimensional, and networked.

Aim at the opponent and win by taking advantage of the enemy. The Art of War by Sun Tzu states: “Follow the enemy and decide the battle.” Jomini also said: “No matter who you are, if you don’t understand the enemy, how can you know how to act?” Looking to the future, smart strategists should classify combat targets into primary combat targets and general combat targets, actual combat targets and potential combat targets according to their importance and urgency, and comprehensively and objectively understand the strategic intentions, force deployment, combat concepts, etc. of different combat targets, propose new intelligent war guidance laws that can give full play to the advantages of their own combat power, and implement correct war actions.

In short, the laws of intelligent warfare are the laws of the cognitive process, solving the problem of “what”; the guiding laws are the laws of the practical process, solving the problem of “how”. The two are dialectically unified and inseparable, forming a complete chain of understanding and guiding intelligent warfare. “Victory is not repeated, but should be formed in infinity.” Today, war and strategic leaders should, based on objective conditions, deeply explore and flexibly apply the laws of intelligent warfare and the laws of war guidance, and innovate war and strategic guidance in line with the times.

(Author’s unit: Academy of Military Science, Institute of War Studies)

Source: Liberation Army DailyAuthor: Hao Jingdong Niu Yujun Duan FeiyiEditor-in-charge: Wang Feng2021-03-16 10:12

現代國語:

认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。

●战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。

习主席指出,要认真研究军事、研究战争、研究打仗,把握现代战争规律和战争指导规律。今天,战争的智能化特征日益凸显,智能化战争已经展现出早期形态的样貌。要想掌握未来智能化战争主动权,就应积极跟踪现代战争发展,紧贴现实军事斗争准备,前瞻认识智能化战争规律,深刻把握其指导规律,着力回答“是什么”、解决 “怎么做”等问题,不断创新战争和战略指导。

回答“是什么”,前瞻认识智能化战争规律

毛泽东同志指出:“战争的规律——这是任何指导战争的人不能不研究和不能不解决的问题。”今天,在智能化战争初显端倪之际,应前瞻认识智能化战争“是什么”,否则就不能解决“怎么做”,更不可能驾驭未来战争。

智能化战争规律是战争知行体系的重建。智能化战争规律,和冷兵器战争、热兵器战争、机械化战争、信息化战争的规律一样,是战争诸要素间内在的、本质的联系,不同之处在于它有新质的要素和新的要素间的构成模式,本质上是基于智能化革命所引发的战争知行体系的重建。今天,认识智能化战争规律,要抓住智能化和自主化这个基础,抓住构建战争知行体系这个关键,抓住战争力量内涵发生改变这个实质。掌握这些规律,就能克服未来战争中的纷乱和不确定性,从中找出条理和确定性,这是应对智能化战争的客观要求。

智能化战争规律是战争指导规律的依据。毛泽东在《中国革命战争的战略问题》中,首先分析了中国革命战争的特点,揭示了战争规律,然后“由此产生我们的战略战术”,即战争指导规律;在《论持久战》中,他首先说明了“是什么”,再转到研究“怎么做”的问题上,体现了一种认识过程的逻辑顺序。今天,研究智能化战争仍应遵循这一顺序,既不能本末倒置,颠倒顺序;也不能增加、减少或更换环节。要在掌握智能自主这一根本规律的基础上,揭示自主感知、自主规划、自主实施、自主联动、自主评估等战争指导规律。

不懂得智能化战争规律,就不能指导战争。《孙膑兵法》指出:“知道,胜”“不知道,不胜”。道是战争规律,掌握它、行动符合它,就能取胜;反之,则败。毛泽东也强调:“不知道战争的规律,就不知道如何指导战争,就不能打胜仗。”同样,掌握智能化战争规律,是正确指导智能化战争的前提。否则,就难免要被智能化战争的表面现象所迷惑。今天,要通过分析智能化技术群对战争的基础性、长远性和颠覆性影响,研究智能化战争是个什么样子?有哪些规律?应该怎么打?这些都是智能化战争指导必须回答的重大课题。

解决“怎么做”,揭示掌握智能化战争指导规律

智能化战争指导规律是运用智能化战争规律指导实践的中介,起到“桥”和“船”的作用。应在回答“是什么”的基础上解决“怎么做”的问题,提出智能化战争的“游泳术”。

智能化战争指导规律是运用战争规律的规律。认识战争规律的目的在于应用。马克思指出:“哲学家们只是用不同的方式解释世界,而问题在于改变世界。”同样,智能化战争本身迫使指挥员不发现规律则已,一旦发现,就会结合能动性,利用规律为打赢战争服务,这就必然导致智能化战争指导规律的产生。今天,战争是政治的继续仍是智能化战争规律,由此得出智能化战争必须服从服务于政治的指导规律;兵民是胜利之本仍是智能化战争规律,由此得出最广泛地动员民众的指导规律,等等。这些智能化战争指导规律是战争规律派生出来的,是“智能化战争大海中的游泳术”。

充分发挥人在智能化战争中的能动作用。恩格斯说过:“赢得战斗胜利的是人而不是枪。”智能化战争指导规律是实践规律、使用规律。它不是对智能化战争规律的简单“移用”“照搬”,而是加上人的主观能动性,才能转化为战争指导规律。今天,掌握人工智能的军事人才,不仅是智能化武器的操控者,更是人工智能的创造者。人在智能化人机系统中仍处于主体地位,是智能化战争胜负的决定性因素。指挥员应在掌握智能化战争规律的基础上,充分发挥能动性,坚持“技术+谋略”的作战理论生成模式,才能由回答“是什么”向解决“怎么做”转变。

智能化战争指导规律是不断发展的。战争是一条“变色龙”。智能化战争本身也会经历萌芽、发展、成熟等不同阶段,这就必然带来智能化战争指导规律的发展。战争指导者须动态地考察智能化战争,敏锐捕捉智能化战争孕育的新质要素,正确分析新质要素之间关系的变化,不断对智能化战争进行再认识。要紧跟战争形态向智能化加速迈进的历史进程,把握智能化战争发展方向和时代脉搏,把对智能化战争指导规律的研究推向新境界,在未来战场占据战略主动和先机。

紧盯“主动权”,不断创新智能化战争和战略指导

兵无常势,水无常形。在智能化战争已然来临之际,要在遵循智能化战争规律和指导规律的基础上,紧贴现实军事斗争准备,加强对手研究、敌情研究,主动设计“在什么时间”“在什么地点”“和谁打仗”,创新战争和战略指导,牢牢掌握未来战争的战略主动权。

你打你的,我打我的。战争指导艺术的最高境界,就是你打你的、我打我的。“各打各的”要求指挥员在未来智能化战争中,无论处于怎样复杂、困难的环境,首先要立足自身实际,独立自主地使用自己的力量。特别是拥有高技术装备之敌,可能造成暂时的局部的敌之主动、我之被动的局面,这时要通过政治、经济、外交等综合手段,以总体有利态势弥补武器上的劣势,迅速扭转这一局面,恢复主动地位。如果被战略对手牵着鼻子走,就可能吃大亏。

把握时机,因时用兵。《六韬》指出:“用之在于机。”若米尼强调:“全部战争艺术就在于善于待机而动。”一方面,时不至,不可强动。要持重时机,时机未到,应有极大耐心,防止战略盲动。另一方面,时不再来,机不可失。要善于把握时机,一旦遇上有利时机,就要坚决利用,防止畏首畏尾。需要指出的是,要辩证地看待时机成熟问题。未来智能化战争瞬息万变,要求快速决策,而面对不确定性因素,又必须慎重决策。有时及早定下决心,比明天下达更完善的决心也许更有效。因此,要敢于冒一点风险,不然则会坐视成功机会的丧失。

各域有别,因地运筹。克劳塞维茨指出:“战争不像长满庄稼的田地,而像长满大树的土地。收割庄稼时不需要考虑每棵庄稼的形状,收割得好坏取决于镰刀的好坏;而用斧头砍伐大树时,就必须注意到每棵大树的形状和方向。”战略空间不同,战争就不同,战争指导也不一样。当前,战场空间不断由陆海空等传统空间向太空、网络等新型空间拓展,战争指导者应根据多域性、立体性、网络性等特点,探索新的智能化战争规律和指导规律。

瞄准对手,因敌制胜。《孙子兵法》指出:“践墨随敌,以决战事。”约米尼也说过:“不管是谁,如果不了解敌人,怎能知道自己应该如何行动呢?”着眼未来,聪明的战略家应根据轻重、缓急程度,把作战对象区分为主要作战对象和一般作战对象、现实作战对象和潜在作战对象,全面客观地了解不同作战对象的战略意图、兵力部署、作战构想等,提出能充分发挥己方战力优长的新的智能化战争指导规律,实施正确的战争行动。

总之,智能化战争规律是认识过程中的规律,解决“是什么”;指导规律是实践过程中的规律,解决“怎么做”。二者辩证统一,不可分割,构成了认识和指导智能化战争的完整链条。“战胜不复,而应形于无穷。”今天,战争和战略指导者应基于客观情况,深入探索和灵活运用智能化战争规律和战争指导规律,与时俱进创新战争和战略指导。

(作者单位:军事科学院战争研究院)

中國原創軍事資源:http://www.mod.gov.cn/jmsd/2021-03/16/content_4880989.htm?yikikata=7593b488-bf4396b2e061d55553e340f0a68ef7f8888